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Abstract

This paper studies a water market used by irrigated farms inhabiting a connected river network
in Australia’s southern Murray-Darling Basin during a period of substantial environmental change
(2007–2015). It uses new panel data to estimate shadow values of water for each farm from produc-
tion functions identified with regulatory variation in river diversion caps. The estimates imply that
observed water trades increased irrigated agricultural output by approximately 4–6%. Without this
reallocation, output is the same as under an 8–11% uniform reduction in water resources, roughly
the median reduction predicted for this region under 1◦C of global warming. The value of the water
market is increasing and highly convex in water scarcity, with realized gains an order-of-magnitude
greater during drought, concentrated in regions with stricter diversion limits and among farms with
less rainfall. This suggests that retrospective analyses may understate the future value of trade in a
changing climate and that a water market is an important institutional adaptation to climate change.
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“Nothing is more useful than water, but
it will purchase scarcely anything;
scarcely anything can be had in
exchange for it.”

Adam Smith (1776)

1 Introduction

Climate change will continue to amplify water scarcity and variability. Rising temperatures

directly alter the hydrological cycle (Oki and Kanae, 2006), intensifying droughts (Prud-

homme et al., 2014) and deluges (Sobel et al., 2016). Climate models predict substantial de-

clines in water resources for irrigation (Elliott et al., 2014) and greater uncertainty over future

river inflows (Schewe et al., 2014). How this scarcity will interact with water misallocation is

not well understood. Water regulators typically allocate water through non-market mech-

anisms, such as quotas based on landholdings, records of past usage, political influence, or

historical priority.1 When water is scarce, these allocation rules can imply that some users

access water at zero marginal price until their quotas bind, while users without rights face

an infinite price.

Despite the long-recognized possibility that “a continuous market in water rights” (Dales,

1968, p. 801) may improve efficiency, “the utility of water markets” remains “one of the most

polarizing areas of water management” (Allan et al., 2017, p. 397). Much of this controversy

over water trading arises from a tension between neoclassical models, in which the oppor-

tunity to trade cannot deteriorate welfare, and the practical realities of a river system, where

trading opportunities may be costly, uncertain, or manipulable. River flow constraints (Is-

rael and Lund, 1995), noncompetitive conduct (Ansink and Houba, 2012), and liquidity con-

straints (Donna and Espin-Sánchez, 2018) can each dampen or reverse the gains from trade

that are implied in competitive, frictionless models. Evidence from several nascent water

markets has led some economists to conclude that “the reality of water markets falls short

of their potential” (Regnacq et al., 2016, p. 1274).

This paper contributes to the debate over water markets’ role in climate adaptation by

estimating the value of trade in annual water diversion rights, without assuming that wa-

ter is valuable or that trade is efficient. It focuses on a set of irrigated farms trading in a

connected river network in Australia’s southern Murray-Darling Basin (sMDB), where rain-

fall is highly variable and environmental regulation has capped water diversions since the

1These institutions often reflect the view that water is an inalienable human right and should not be “treated
as a commodity,” and, in some places, histories of relative abundance due to expanding dam capacity. Olmstead
(2010), Ostrom (2011), and Barbier (2019) provide longer historical discussions.
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mid-1990s. Irrigated agriculture accounts for more than 70% of all water withdrawals glob-

ally, making this industry the single largest user of water in the global economy. As the

water market “routinely described as the world’s best” (Hughes et al., 2016, p. 4), the sMDB

mechanism is a key case study for the adoption of water markets worldwide. It is the largest

water market in the world by trading volume and the most valuable, with 7,700 gigaliters or

A$22.7 (US$15.3) billion of water entitlements on issue.2 How valuable is observed market-

based water reallocation, relative to fixed water rights? Does the market help farms adapt

to evolving water scarcity and other climate and productivity shocks? How do farms re-

spond to water market access through other economic decisions, such as demand for labor

or long-run land use, and how do these forms of adaptation alter estimated gains from water

trading?

Recovering the value of water trade in a river network with unobserved constraints on

trade raises at least two major empirical challenges. First, agents’ true valuations of river

diversions cannot be inferred from market prices without explicitly modeling information

at the time of trading, market structure, transaction costs, and the curvature of utility to

extrapolate total values from marginal values. Second, hydrological flow constraints make

it difficult to predict or even to characterize the set of feasible trades on a river network

(Israel and Lund, 1995). Interconnected tributaries make the decentralized water market

a multilateral bargaining game (Saleth et al., 1991) for which the appropriate equilibrium

concept is not obvious. Moreover, both valuations and trading opportunities depend on

evolving water scarcity and other environmental conditions.

This paper’s approach to address these challenges takes advantage of new data on wa-

ter rights, trades, and agricultural production in the sMDB. It values the water market

by (i) estimating irrigated agricultural production functions and then (ii) comparing pro-

ducer surplus at observed pre- and post-trade water allocations. The assumption that al-

locative efficiency can be measured using physical input-output data differs from revealed-

preference analyses of water markets which use only water trade data (e.g., Regnacq et al.,

2016; Hagerty, 2019) and delivers a distribution of trader valuations without assuming that

water-trading behavior reveals value, that trading constraints take a specific form, or that

the water market is competitive. The study of observed, rather than predicted, market-based

reallocation means that the market’s estimated value does not rely on a specification of river

flow constraints or an equilibrium concept to predict trades. Although these are necessary

ingredients for most calibrated models used to value water trade (e.g., Gupta et al., 2018),

they are unnecessary here because the data matches producers to rainfall, water rights, and

2Valued at average 2018 transaction prices for permanent rights; see Wakerman-Powell et al. (2019).
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water trades.

First, I estimate production functions—which map irrigation volumes into agricultural

output—with new producer-level panel survey data on irrigation and physical output ob-

tained from the Australian Department of Agriculture and local environmental conditions

from the Australian Bureau of Meteorology. Productivity differs arbitrarily across farms

and crop types, and evolves stochastically as in Olley and Pakes (1996) and Ackerberg et al.

(2015). Farms anticipate future productivity improvements, taking into account how crop

choices and land investments will affect their future production possibilities. Production

differs across crop types and depends on water (through irrigation, rainfall, and evapotran-

spiration) as well as land, labor, and materials. Water scarcity evolves over the growing

season: farms first commit to planting decisions and then irrigate in response to within-year

rainfall and water price shocks.

A significant concern in estimating the value of water in production is that (unobserv-

ably) more productive farms will likely use higher volumes of water, resulting in omitted

variable bias (Marschak and Andrews, 1944). Unobserved productivity may also persist

over time and exacerbate this endogeneity problem. The empirical strategy combines a

standard technique to control for time-varying productivity by inverting static materials

demand (Levinsohn and Petrin, 2003; Ackerberg et al., 2015) with a water-rights-based in-

strument to identify irrigation-output elasticities.3 Water-sharing rules (or “diversion for-

mulas”) evolve nonlinearly across regions and years in the sMDB, which provides a source

of variation in irrigation decisions at the farm level. The assumption is that the differential

incidence of these allocation rules across farms with different initial water rights is uncorre-

lated with the annual innovation in farm-level productivity, which I motivate through the

mechanical nature of these rules under Schedule E of the 2007 Water Act. The use of this

regulatory instrument differs from some recent work that identifies production functions by

relying on instruments constructed from endogenous variables, such as lagged input deci-

sions (Ackerberg et al., 2015) or prices (De Loecker et al., 2016; Doraszelski and Jaumandreu,

2018).

In addition to the water rights instrument, the empirical strategy requires that unob-

served productivity is multiplicatively separable in production or “Hicks (1932)-neutral.”

3An alternative method is to estimate the water-yield relationship with an experiment. However, such agro-
nomic experiments are costly, particularly at the scale necessary for generalization (Young and Loomis, 2014,
p. 154). Zwart and Bastiaanssen (2004) review more than eighty crop irrigation field experiments, concluding
that “the lesson learnt here is that [yield-evapotranspiration] functions are only locally valid and cannot be
used in macro-scale planning of agricultural water management.” Moreover, output elasticities with respect
to irrigation “derived from field experiments are very short run and for single crops, [so] the findings of those
experimental studies would be of limited value for long-run policy decisions” (Scheierling and Tréguer, 2018).
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While this assumption allows total factor productivities to differ flexibly across farms, crops,

and time, it rules out unobserved forms of water-augmenting or water-saving technology. I

show that the estimated relationship between irrigation and output is relatively stable un-

der several alternative specifications that allow production functions to differ by period and

irrigation efficiency to evolve over time or differ with farm-level irrigation equipment.4

Second, I take water trading data—linked to farms but not used to estimate the pro-

duction functions—as a measure of “realized” market-based water reallocation. This data

allows the use of the physical production functions to evaluate profits at observed pre-trade

water endowments and post-trade water inputs. The advantage of this model-free approach

to measuring reallocation is that it does not require specifying the set of feasible trades or an

equilibrium concept for the water market. Therefore, I do not need to model the river flow

network, the agents’ information at the time of trading, or the search and bargaining proto-

col of the brokered bilateral market. The disadvantage is that this calculation only recovers

the realized value of the market mechanism relative to pre-trade property rights.

The main empirical results indicate that water trading increased irrigated output for the

farms in the data by 4–6%, averaged over the sample period 2007–2015. Put differently,

output without the water market is the same as it is under an 8–11% uniform reduction

in water resources. Given that government climate models predict sMDB surface water

resources declining by 11 percent by 2030 in the median scenario under a 1◦C temperature

rise, this makes the cost of water misallocation comparable to the cost of water scarcity

predicted to arise from short-run climate change. The value of trade arises primarily from

productivity differentials and land-use decisions across farms.

This average value conceals an increasing and highly convex relationship between water

scarcity and the value of an annual water market. Water market access for water-scarce re-

gions and farms creates net gains from trade ranging 8–12% of the value of irrigated agricul-

tural production; in contrast, during years of relative abundance or in regions that receive

large water endowments, the realized value of water trading is, in many cases, indistin-

guishable from 0%. Water scarcity amplifies both the extent of misallocation and its social

cost. This result implies that retrospective analyses of the historical value of water trading

may understate its prospective benefits unless the historical data includes scarcity and vari-

4Appendix B derives a model that allows for unobserved differences in water-augmenting technology across
farms, using a control function approach similar to Doraszelski and Jaumandreu (2018). Specifically, it intro-
duces the auxiliary assumption that farms irrigate to maximize static profits under costless water market access.
This relationship can then be inverted to control for unobserved water-augmenting productivity. However, the
assumption of common water market access is troubling given the presence of unobserved flow constraints on
trade. Given that the focus of this paper is to estimate the gains from trade without using revealed preference, I
do not take this approach in the main text.
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ability comparable to that predicted by climate models. It also implies that climate change

may strengthen Dales’ (1968) original case for market-based water reallocation and weaken

the rationale for the non-market approaches that dominate water resource management in

most places outside of Australia.

Next, I study how water market access affects dynamic land-use decisions. To do this,

I augment the benchmark model with forward-looking crop choices, consistent with—but

not captured by—the production functions. Farms produce with the same technology as

the benchmark model and form beliefs about future productivity, prices, and environmental

shocks based on current values. The dynamic model of crop adjustment is estimated in two

steps. The first step recovers land policy functions and the law governing the evolution of

prices and environmental states directly from the productivity estimates and the data. This

lets me forward-simulate static profits and obtain each farm i’s expected value function,

up to unobserved crop-switching costs. The second step then estimates switching costs to

rationalize the observed land choices over time as in Bajari et al. (2007) and recovers expected

value functions with a fixed point contraction.

Like the benchmark model, this augmented model is robust to evolving constraints on

trade and does not simulate water prices or calculate general equilibrium water market al-

locations. Instead, the water allocation under the market is obtained by estimating (partial

equilibrium) irrigation policy functions designed to admit a range of possible forms of water

market access. A long-run value of water market access is then calculated as the difference

between the expected value of the sequence of water market allocations and a sequence of

autarky allocations recovered from the distribution of observed permanent rights. Under

autarky, farms reduce land allocations to perennials and save land investment costs; how-

ever, this adaptation channel lowers the costs of misallocation under autarky by only about

one-tenth. Relative to a fixed regime of water rights, long-run water market access induces

greater investment in orchards, vineyards, and other perennial crops. The long-run gains

of the market for perennial irrigators are approximately 8% of output, with approximately

one-fifth of this value arising from greater investment in perennial land relative to autarky.

Related literature. This paper builds on insights from several sets of papers. The re-

sults substantiate conjectures that the gains from trade in water rights may be substantial

(Dales, 1968; Burness and Quirk, 1979; Libecap, 2011). They corroborate anecdotal accounts

(Grafton et al., 2016) and regional-scale Australian computable general equilibrium analyses

of the Millennium Drought (Wittwer and Griffith, 2011). This paper’s analysis of farm-level

water values and trading decisions also complements ongoing regional modeling by the

Australian Department of Agriculture to predict water prices under alternative climate fu-
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tures (Gupta et al., 2018).

The gains from trade found in the Australian context also provide a counterpoint to the

recent collection of empirical papers on water markets mentioned earlier, which have led

some to conclude that water markets have not realized their potential. This view reflects

findings of limited or negative realized gains from trade in places such as California, Chile,

and Spain, attributed to transaction costs (Regnacq et al., 2016), local protectionism (Hagerty,

2019; Edwards et al., 2018), noncompetitive conduct (Hantke-Domas, 2017), or liquidity con-

straints (Donna and Espin-Sánchez, 2018). In contrast to these case studies, this paper shows

that a well-developed, advanced market mechanism can reallocate water swiftly and create

value when water is scarce yet have a value close to zero in periods of abundance.5

The findings that connect the market’s value for agricultural producers to changing cli-

mate conditions also relate to other work on climate shocks and agricultural markets. Par-

ticularly relevant are studies that incorporate irrigation technology (Schlenker et al., 2005;

Hornbeck and Keskin, 2014; Garcı́a Suárez et al., 2019) and agricultural trade (Costinot et al.,

2016) into the economics of climate change. The recognition that water markets may pro-

vide valuable flexibility to accommodate climate shocks is widespread (e.g., Greenstone,

2008; Debaere et al., 2014; Anderson, 2015). This paper extends these arguments by demon-

strating empirically that a water market can serve as a form of institutional adaptation to

climate change.

More generally, this paper’s focus on the efficient allocation of water rights across farms

fits within the study of factor misallocation across firms (Caselli and Feyrer, 2007; Hsieh

and Klenow, 2009; Adamopoulos and Restuccia, 2014; Asker et al., 2014; Hsieh et al., forth-

coming), and, in environmental economics, the design and performance of environmental

markets (Anderson and Libecap, 2014).6 Most closely related is ongoing research in in-

dustrial organization focused on the relationship between factor misallocation and market

structure, such as studies of deregulation and the efficient assignment of power plants to

meet electricity demand in the U.S. (Cicala, 2019), employment law and the allocation of

5This paper’s focus on trade, given a well-defined set of water rights, also makes it related to but distinct
from recent work examining the redefinition (or “adjudication”) of historical water rights in the western United
States. These event studies of the Snake River Basin (Browne, 2017), the Rio Grande Valley (Debaere and Li,
2017), and the Mojave Desert (Ayres et al., 2019) infer a value of water rights from the differential evolution of
land values and agricultural output over time on parcels of land with and without adjudication. In the sMDB, a
similar lower bound on the “economic value” of water rights is directly observable as the volume of entitlements
on issue multiplied by the average entitlement transaction price, though a welfare interpretation of this number
($15.3 billion in 2018) requires a theory of the social value of the Australian government’s aggregate diversion
limits (“[t]he price signals that the government gets from the [water] market are ‘false,’ in the sense that they are
largely echoes of its own arbitrary decision about the supply of rights,” Dales, 1968, p. 804).

6For example, analyses of permit trading in cap-and-trade mechanisms for lead (Kerr and Maré, 1998), sulfur
dioxide (Carlson et al., 2000), nitrogen oxide (Fowlie et al., 2012), and carbon dioxide (Borenstein et al., 2018).
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workers across French firms (Garicano et al., 2016), and price collusion and global oil extrac-

tion (Asker et al., 2019). In connecting factor market institutions to firm-level input-output

data, these papers rely on production functions (Marschak and Andrews, 1944; Mundlak,

1961; Griliches and Mairesse, 1998). This paper contributes to the literature on using control

function methods for estimating production functions (Olley and Pakes, 1996; Levinsohn

and Petrin, 2003; Ackerberg et al., 2015) where unobserved input price variation typically

poses a threat to the identification of these models. It overcomes this challenge by using a

regulatory source of variation to identify the model.

Outline. The remainder of this paper is organized as follows. Section 2 describes ir-

rigated agricultural production, the institutional background, and the data used. Section 3

then introduces an econometric model of water-based agricultural production in a regulated

river system. Sections 4 and 5 describe the main empirical strategy, its key restrictions, and

parameter estimates and robustness. Section 6 analyzes the realized gains from trade. Sec-

tion 7 augments the model to include forward-looking land use and crop choices. Section 8

concludes.

2 Irrigated farms and water trading

This section describes the role of water in agricultural production in the river network and

the regulatory and market institutions that dictate river diversions. These production pos-

sibilities determine the value of reallocating water across farms, seasons, and years, within

the constraints imposed by the natural and regulatory environments. Section 2.1 introduces

the data sources used, then Section 2.2 and 2.3 describe the agricultural production process

as well as differences across operation types. Section 2.4 outlines the institutions that regu-

late water rights, river diversions, and trade. Sections 2.5 and 2.6 discuss patterns of water

trading in the data indicating the potential sources of gains from trade.

2.1 Data sources

I use four data sources from 2007–2015, taking observations for each of nine Australian fiscal

years. First, the primary dataset is new data on water trading from the 2006-7 to 2014-15 an-

nual waves of a rotating panel survey conducted by the Australian Department of Agricul-

ture.7 The survey collects characteristics, input choices, and production levels from irrigated

7Hughes (2011) uses an earlier version of this data to estimate short-run marginal products of water for
Department of Agriculture research purposes; this is the first academic study using this data outside of the
Australian Department of Agriculture. The survey is conducted by its division of agricultural economists, the
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), which collects a rotating
random subsample of farms each year. Each data point entails an on-site visit by an analyst lasting four to six
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farms, linked with records of water trades and water rights owned. Second, I augment this

farm-level input-output data with spatial environmental data, including farm-level rainfall

and regional evapotranspiration, measured by the Australian Bureau of Meteorology. Third,

I obtain regulatory records of regional water allocation caps from state governments, which I

match to farms by region and year.8 Fourth, I draw on administrative, transaction-level wa-

ter market price data from the Murray-Darling Basin Authority (MDBA), which regulates

the water market, as well as from state governments and private brokers.9

2.2 Irrigation, rainfall shocks, and technology

I focus on four inputs in production used by all farms in the sample: land, irrigation, rainfall,

and other flexible factors (labor and materials).10

Land and scale of operation. The average irrigated farm surveyed produces annual

output valued at approximately 700,000 AUD, irrigates 299.7 hectares (ha.), and operates

a total area of 569.5 ha. Size varies by operation type, as discussed below, and the size

distribution is skewed, with the median farm irrigating 104 hectares of crops or pasture with

a total area operated of 190.5 ha. In terms of revenue, these farms are small firms relative to

broader industrial classifications; in terms of area operated, these are large farms, with the

median farm corresponding to the 75%ile farm size in the U.S. agricultural industry. Farm

managers average 50.9 years old.

Irrigation volumes. Irrigation inputs are recorded in megaliters (ML) at the farm-crop-

year level. Water costs are significant for farm operations and, in many years, trading ac-

counts for a substantial fraction of water used. The average farm diverts 685 ML for ir-

rigation (Table 1), or roughly the annual consumption of nearly 4,000 average Australian

hours. See Ashton and Oliver (2014, pp. 35–36) for more details on the survey construction.
8I use records of total water entitlements and annual allocations, from the New South Wales Office of Water,

Victorian Water Register, and the South Australian Department of Environment, Water and Natural Resources,
collated by Hughes et al. (2016, pp. 45–46).

9Market-level records of the price, volume, date, and origin- and destination-region for every water trade
between 2008–2015, comprising 80,599 trades after I omit outliers. I obtain these records from the Murray-
Darling Basin Authority and the now-defunct National Water Commission. For 2007, which predates federal
reporting requirements, I compile price data from various state government registries and a private broker.

10The primary capital input here is land (and, for dairy farms, dairy cows). The ABARES survey does record a
measure of farm-level financial capital, which sums the value of land owned, equipment, water rights, livestock,
and other capital, which averages 3.8 million AUD per farm (s.d., 3.5m). I do not use this financial measure for
data quality concerns, because it includes two forms of capital I already account for directly in physical units
(land and dairy cows), farms may rent machinery and equipment owned by others, and the approach that I use
to assign inputs recorded at the farm level to crop types relies upon static first-order conditions inappropriate
for dynamic fixed factors. The inclusion of this financial variable in the production function does not substan-
tively affect results; the coefficient estimated is, in most cases, close to zero. Note that, for counterfactuals that
hold capital fixed, the omission of this form of capital from the production function is without loss if it enters
multiplicatively separably in production, because the Hicks-neutral productivity shock introduced in Section 3
will capture capital’s entire contribution to production.
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households (ABS, 2016). River water is the primary source of irrigation for these farms.11

Valued at average market prices—235 AUD/ML over all years—this implies total irrigation

costs equal to 13.8% of revenue from 2007–2015. The average volume of water reallocation,

discussed at greater length below, is 17.6% of the average farm’s irrigation.

Farms adjust irrigation between years in response to changing economic and environ-

mental conditions. These adjustment possibilities differ across farm types, as I discuss be-

low. Over all farms, the average within-farm standard deviation in irrigation from 2007–15 is

245.8 ML or 32.7% of the mean. Across farms, irrigation levels vary substantially, with an in-

terquartile range more than twice the median, in part reflecting the dispersion in farm sizes

discussed above. The scale of operation (area of land irrigated) and farm type (discussed

below) can explain about two-thirds of the dispersion in irrigation levels across farms; i.e.,

the R2 of a log-linear regression of water on land and farm type dummies is 0.680. Rainfall

and farm type predict some, but not most (R2 = 0.171), of the variation in water application

rates (ML/ha.).

Rainfall. The total water available for a given crop over the growing cycle also depends

on precipitation and evapotranspiration. I obtain both of these data from the Australian

Bureau of Meteorology (BoM). Annual rainfall data is matched to each farm with georefer-

enced data by ABARES analysts. Evapotranspiration is model-derived by the BoM based

on soil data and daily rainfall and temperatures (Frost et al., 2016). I construct region-year

measures of evapotranspiration, as discussed in Appendix C.

Natural water availability varies substantially across both space and time. Rainfall, re-

ported in Table 2, averages 417 millimeters (mm) but ranges over more than an order of

magnitude from 112.2 to 1,950.8 mm. In particular, average yearly rainfall rises to three to

four times its drought levels once the drought abates (2010–2012), then diminishes again

after 2013. The dispersion (standard deviation) in annual average rainfall across years (169

mm) is comparable to its spatial dispersion across farms within each year (136 mm).

Labor and materials. In addition to land and water, the main remaining variable costs to

irrigators are labor and materials. Labor is measured in weeks and includes owner-operator

labor, other family labor, and hired labor. Wages, which average 684.19 AUD/week, exhibit

moderate variation across farm-years, with a standard deviation of about one-fifth the mean.

Materials consist of all fertilizer, electricity, fuel, pesticides, seed, and packing costs that are

used by the farm. I exclude services. These expenses, reported in Table A1, comprise 20.4%

and 22.3% of all revenue, respectively, or 24.2% and 19.4% for the median farm-year. In

11Groundwater accounts for a small share of irrigation in the southern MDB, due to limited volume and
salinity (Turral et al., 2005). This is in contrast to many other settings, such as the western United States, where
substantial groundwater reserves are essential aspects of irrigated agriculture and water regulation.
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estimation, I require that farms have nonzero materials inputs, which holds for 99.6% of

farms in the original sample.

2.3 Farm and crop types

Irrigation plays different roles in distinct types of agricultural production. The major irriga-

tors in the sMDB fall into three categories or “operation types”: (1) perennial farms, primarily

growing perennial irrigated crops on orchards or vineyards, (2) annual farms, specializing in

yearly crops, such as wheat and rice, and (3) dairy farms, which grow annual pasture and

also some annual crops. In the medium run, farms specialize: 86.8% of farms operate in

only one of these three categories.

Within each operation type, farms grow multiple crops. I group crops (e.g., wheat, rice)

into four major crop-types: (i) perennial irrigated, (ii) annual irrigated, (iii) annual nonir-

rigated, and (iv) annual pasture. Irrigation inputs and dynamic adjustment margins differ

substantially across these groupings.

This classification of crops into types reflects several aspects of agricultural production

(Hughes, 2011). First, adjustment over time differs by crop-type. Perennial irrigators are pri-

marily single-product firms that grow only perennial crops, such as fruits and wine grapes,

on orchards and vineyards. These operators have the least flexibility in the short- and

medium-run of the three types of irrigators considered. Trees and vines take five to ten

years to mature and require continuous water input to keep vines and trees alive (Ashton

and van Dijk, 2017). In contrast, annual crops and pasture are replanted and sown at the

beginning of each year. The hectares allocated to grow irrigated crops, nonirrigated crops,

and irrigated pasture changes on 95.0%, 97.8%, 92.7% of farms from one year to the next, in

contrast to 44.3% of perennial operations.

Second, water-intensity varies substantially across crop-types, as shown in Table 2. Most

obviously, nonirrigated annual crops require zero irrigation. This creates an important mar-

gin of adjustment for annual crop operations, which may plant both irrigated and nonirri-

gated annual crop-types. Farms often switch land between irrigated and nonirrigated crops,

and about half of annual farms grow both irrigated and nonirrigated crops in a given year.

Irrigation inputs are very similar across perennial and annual irrigated crops, 5.52 and 5.65

megaliters per hectare on average, but are more than pasture inputs (2.15 ML/ha).

Third, dairy farmers primarily irrigate annual pastures used to feed dairy cows. The

average dairy operation surveyed has 511.8 milk cows on hand, with an average within-

farm standard deviation in the nine-year sample of 11.6% of the mean, implying moderate

adjustments in herd size. I distinguish “annual irrigated pasture” from “annual irrigated
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crops” both because water application rates differ and because dairy farms growing pasture

have an additional outside option to purchase feed directly, which I also observe and include

in the production function.

Consistent with these differences in production, Table 2 shows that revenue per hectare

differs substantially across the four crop-types, with perennial crops generating higher av-

erage revenues per hectare (approximately 12,000 AUD/ha) compared with annual irri-

gated crops and pasture (8,000 and 6,500 AUD/ha) and with nonirrigated annual crops (400

AUD/ha).

2.4 River regulation and trade

River water in the sMDB is regulated at federal, state, and regional levels. Federal regu-

lation under the 2007 Water Act restricts total diversions for non-environmental purposes

to sustain minimum river flows and the integrity of environmental assets. Regional “al-

locations” (diversion limits) in each year are then determined by state laws and intricate

interstate water-sharing agreements according to formulas described below. Appropriative

water rights, or “entitlements,” are owned by farms, indexed by region, and denominated

in proportional shares of the annual regional allocation. Farm-level diversions are metered,

and account for 80–90% of all river diversions in the MDB depending on the year.12

The total volume of allocations varies in each year according to fixed, regional diversion

formulas mandated by Schedule E of the Water Act. Inputs into these formulas include the

prior year’s dam storage levels, the winter’s snowmelt, and expected river inflows calcu-

lated from inflow models calibrated with historical climate data. Figure 2A draws realized

allocation paths for each region. Realized allocations averaged 65.2% of the volume of is-

sued entitlements over the sample period 2007–2015, with allocations in some regions falling

to nearly zero in the worst drought year (2008), and rising slightly above 100% at the end of

the drought in 2011.

Water trading requires a legal framework that allows for exchange. A prerequisite is the

unbundling of water rights from land; appropriative rights replaced riparian rights in Aus-

tralia at the end of the 19th century, but individual users could not hold water entitlements

until the 1980s (Waye and Son, 2010). Local allocation trade dates to the early 1990s, while

permanent entitlement trading rarely occurred outside of local irrigation districts until the

federal 2007 Water Act outlawed local prohibitions on permanent trade. Water trades occur

12The initial allocation of these rights varies across different regions within the MDB, but generally reflects
historical usage (NWC, 2011). The Australian government also owns rights, purchased through the Restoring
the Balance Program, a large-scale reverse auction operated by the Commonwealth Environmental Water Office.
See Grafton and Wheeler (2018) for details.
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bilaterally between farms, with trades typically brokered through water exchange interme-

diaries. The Australian Competition and Consumer Commission (ACCC), which regulates

these intermediaries, reported ad valorem commission rates for nine intermediaries in the

range of 1–4% (ACCC, 2010, Appendix 1).

A river network’s hydrological connectivity then determines the physical constraints on

water trading at a given moment in time. These hydrological flow constraints are a function

of infrastructure as well as evolving environmental conditions (MBDA, 2013). The intercon-

nected river system in the sMDB enables reallocation of annual water diversion volumes

within flow constraints, which depend on both artificial and natural river flows. River water

originates in the Snowy Mountains Scheme, a collection of reservoirs and dams with 22,000

gigaliters of storage capacity. These dams allow river operators to channel water throughout

the southern connected zone, subject to the river network’s minimum and maximum flow

constraints. For this reason, irrigators do not pay conveyance costs to trade water during

my sample period; when flow constraints bind, river operators prohibit trade.

In particular, Schedule D of the Murray-Darling Basin Agreement under the Australian

Government, 2007 Water Act specifies baseline rules for allowable trades in the sMDB river

network based on hydrological constraints, complemented by additional transfer rules spec-

ified by the MDBA, state regulators, and local irrigation operators. Water cannot typically be

transferred upstream, whereas downstream transfers are limited by upstream dam capacity

and channel flow capacity, and large transfers may risk high transmission losses and/or en-

vironmental damage. In particular, interregional trading restrictions arise from the location

of storages and westward direction of river flow in the map of Figure 1.13 Flow constraints

on interregional trade are automatically triggered as temporary bans when net trade bal-

ances reach certain thresholds:14

13Five major flow constraints are commonly cited by water traders. First, water cannot be transferred up-
stream into the Murrumbidgee in New South Wales. Second, although storage capacity in the Murrumbidgee
(e.g., Burrinjuck Dam in Figure 1) allows the net export of water from Murrumbidgee, net export volumes are
ordinarily restricted to 100 GL (NSWDI, 2019), due to concerns with transmission losses. This limit was lifted
between 2007–2010. Third, water flows downstream from the Goulburn region in Victoria, so Schedule D re-
quires net trade flow into the Goulburn to be nonnegative. Fourth, while water storage infrastructure (including
reservoirs such as Lake Eildon in Figure 1) also allows the Goulburn to sustain a water trade surplus, from 2011,
the Victorian government has limited net exports out of the Goulburn to 200 GL, due to concerns with storage
spills. Fifth, prior to reaching South Australia, water must pass through the Barmah-Millewa forest on the Victo-
ria/NSW border, the narrowest point of the Murray River. River flow through the Barmah Choke cannot exceed
7,000–10,000 ML/day (MBDA, 2019) without spilling over the banks and onto the surrounding floodplain. This
constraint severely limits the delivery of irrigation water to South Australia, and is implemented similarly to the
interregional accounts: trade downstream from the Choke requires sufficient matching trade capacity available
in the opposite direction (“back trade”). Loch et al. (2018) find that river flow constraints on water delivery
“appear to have impacted up to 15% of trades in 2015/16” (p. 567).

14Constraints bind automatically at either threshold, but are only relaxed after 15 GL of buffer has been
restored, meaning that they frequently bind for extended periods of time. For example, between August–
September 2015, the 100 IVT limit restriction on flows out of Murrumbidgee was hit. Hughes et al. (2016, Figure
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Over time, the MDBA adjusts these accounts via river operation decisions (that is, by
physically releasing water from different storages).. . . As the account balances depend
on river operation decisions, the actual volumes of trade that are permitted in any given
month or year can vary significantly. (Hughes et al., 2016, p. 32)

These constraints affect trade directly. As the state government of Victoria advises,

People can seize trade opportunities quickly. If you plan to trade water to the Victorian
Murray, you or your broker need to keep an eye on the limits that apply to you. Even
when limits are reached, new trade opportunities can reopen during the season if the
inter-valley trade balance decreases. (VDEPI, 2014).

In sum, realized constraints on trade depend on natural inflows, diversions for irrigation,

and environmental diversions for conservation, as well as other river operation objectives

(such as the need to avoid evaporation or storage losses) and state government priorities.

2.5 Water market prices

The most immediate fact in the southern Murray-Darling water market is a clear correlation

between annual prices and changing diversion limits (Figure 2B). Water allocation prices

fluctuate across years by more than an order of magnitude, peaking at the height of the

Millennium Drought at 623.60 AUD/ML in 2008 and bottoming at 22.68 AUD/ML in 2012.

Rainfall, superimposed in Figure 3A, and regional water allocations (Figure 2A) exhibit the

inverse pattern, peaking at the end of the drought between 2011–2012.

In addition to annual water price fluctuations, interannual water price volatility is also

substantial. The standard deviation of average daily water prices across the sMDB, obtained

with administrative data on every water market transaction from 2008–2016, exceeds 70% of

the mean in an average year. Figure 4 plots daily water spot prices for two illustrative years.

The high-frequency nature of this daily market implies that even farms with the flexibility

to adjust planting decisions at the start of each year face substantial water price uncertainty.

Although water prices are less dispersed across the river network than across time; how-

ever, moderate interregional daily price dispersion exists, with a coefficient of variation of

12% for a median day. Restricting water price comparisons to trades within a region elimi-

nates about half of this dispersion, with the median daily within-region standard deviation

of water prices ranging 5–7% of the mean (Table A3).

2.6 Farm-level water-trading patterns

Water trading is an endogenous decision, but it is useful to understand in a strictly statis-

tical sense how the decision to trade correlates with observables. Together with evolving

33) show a considerable divergence between Murrumbidgee and Murray allocation prices that coincides with
this restriction, and convergence after it is relaxed.
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water scarcity, water trade participation and volumes vary substantially across years. Most

striking is the evident co-movement between annual scarcity and reallocation. Figure 3B

shows water trade volumes over time against rainfall. Farms trade the largest fraction of

their water inputs at the height of the drought: net water purchases comprise 28.7% of irri-

gation in 2008–9, compared with 12.6% in 2010–15. Trade volumes also closely track water

market participation. While nearly half (48%) of the farms in the sample trade annual water

allocations in at least one year, participation in each year ranges from 18% to 66% of farms,

falling to its lowest level when the drought abates in 2011.

Geography and farm type also predict trade, with farms in the Murrumbidgee region of

New South Wales (NSW) substantially more likely to sell and less likely to buy annual water

allocations than their counterparts in other regions (Table A4). In contrast, farms in South

Australia are much more likely to buy. These patterns corroborate interregional trade flow

data that shows South Australia and Victoria are net importers and the Murrumbidgee is a

net exporter during the period considered (Hughes et al., 2016, p. 15). Relative to dairy farms

and annual croppers, perennial operators are less likely to purchase, and more likely to sell,

water allocations, though the pattern reverses for permanent trades (Table A4, columns 3–4).

Time-varying rainfall remains a significant predictor for farm water trading, even after

controlling for these permanent differences across years, regions, and operation types. Table

3 shows results from a linear probability model of the indicator for trade regressed against

rainfall and water endowments. In particular, farms with relatively less rainfall within a

given year are significantly more likely to buy annual water allocations (panel A, column

1). This correlation remains significant for farms with relatively lower rainfall given region

(column 2), region-by-year (column 3), and farm fixed effects (column 4), indicating that

rainfall shocks are important to explain the differential evolution of trading decisions across

farms over time.

Taken together, these correlations indicate that farm-level annual water trading responds

to changing environmental conditions and water endowments. These correlations motivate

the model below, which (1) controls for rainfall directly in the production function, (2) dis-

tinguishes between crop types, and (3) allows unobserved productivity to evolve over time

and differentially across farms, given that a farm’s operation type, year, rainfall, and perma-

nent characteristics cannot fully explain residual differences in output or water-trading.

3 A model of irrigated agricultural production

To value the water trade flows described above, this section specifies an econometric model

of irrigated agricultural production. Farms combine land, irrigation, rainfall, labor, and ma-
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terials to produce output. Section 3.1 defines each crop type’s annual production technology.

Given the evolving, intra-annual uncertainty over water prices and environmental shocks

in the sMDB water market, Section 3.2 describes planting, growing, and harvest seasons

and defines the timing of input choices within the year. Section 3.3 discusses the model’s

remaining economic restrictions.

3.1 Production

Production cycles occur in each year, indexed by t ∈ {0, 1, 2, . . . }, reflecting the annual na-

ture of agricultural production. Farms, indexed by i, inhabit the river basin. I abstract from

issues of entry or exit.15 Each farm i specializes in annual, perennial, or dairy operations,

and produces crop-types c ∈ Ci, where

Ci =





{irrigated perennial, ∅} if i is a perennial operation
{irrigated annual crops, nonirrigated annual crops, ∅} if i is an annual crop operation
{irrigated annual crops, nonirrigated annual crops, irrigated pasture, ∅} otherwise,

as discussed in Section 2.3.

In year t, farm i allocates hectares of land, denoted by Kict, to crop-types c ∈ Ci. Given

these planting decisions, farms choose irrigation volumes, Wict, and other inputs, Xict. The

vector Xict includes labor, XL
ict, and total materials, XM

ict, for all farms, as well as feed, XF
ict,

and cows, XD
ict, for dairy farms. Rainfall and evapotranspiration, Eit = (ER

it , EV
it ), are also

observed. I assume that Eit enters production as net rainwater, defined in the same units as

irrigation (ML) as

Rict = (ER
it − EV

it )Kict, (1)

which is the volume of rainwater, net of evapotranspiration, incident to the cropland.

I study aggregate physical output for each crop-type c, defined as Qict = ∑ck∈c Pck0Qickt,

from Qickt (tonnes) and Pck0 (AUD/tonnes) measured for crops ck in each type c as described

in Appendix C. Output for crop-type c on farm i in year t is given by

Qict = eωict+εict Fc(Wict, Xict, Kict, Rict)

≡ eωict+εict

(
αc(Wict + ϑcRict)

σc−1
σc + (1− αc)K

σc−1
σc

ict

) σc
σc−1 βcW

∏
j∈{L,M}

(X j
ict)

βcj ,
(2)

where ωict is unobserved productivity and ε ict is measurement error. The specific form of

the production function Fc in the second line of (2) is not important for identification.16 The

15The ABARES survey is a random rotating panel, so it is not possible to determine if a farm not surveyed
previously that enters the data is an “entrant” or if a farm that ceases to be surveyed has “exited.” While some
farms change crop choices or owners, fewer convert to non-farmland.

16That is, given any functional form, the assumptions in Section 4 will identify Fc. Section 5.4 discusses how
the results differ under alternative specifications for Fc.
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nested, constant elasticity of substitution (CES) form is chosen to allow the irrigation-output

elasticity—crucial to the value of water—to vary flexibly across farms that use different ir-

rigation, rainfall, or land inputs.17 Note that (2) makes two assumptions to specialize the

more general nested CES structure. First, rainwater is taken as a perfect substitute for ir-

rigation, up to the conversion coefficient ϑc; second, the elasticity of substitution between

labor, materials, and the water-land aggregate, Wict ≡ αc(Wict + θcRict)
σc−1

σc + (1− αc)K
σc−1

σc
ict ,

is taken as unity.

Crop-type details. The production parameters for irrigated crops in (2) are the distri-

butional share αc ∈ [0, 1] of water relative to land, the conversion rate ϑc of rainwater to

irrigation, the elasticity of substitution σc ∈ [0, ∞) between water and land, and the output

elasticities βcj of water, labor, and materials, or θc = (αc, ϑc, σc, βcW , βcL, βcM) for irrigated

crops, and θc = (αc, σc, βcW , βcL, βcM) for nonirrigated crops.

In addition to irrigated pasture, milk production on dairy farms also depends on pur-

chased feed and the number of dairy cows. Given that milk production is limited by the

number of cows and the pasture/feed required to maintain them, I impose a zero elasticity

of substitution between these two factors, extending (2) to

Fc =min

{(
(1− αF)W

(σF−1)/σF
ict + αF(XF

ict)
(σF−1)/σF

) σF
σF−1

,
αDXD

ict
1− αD

}βcW

∏
j∈{L,M}

(X j
ict)

βcj (3)

for c = dairy. To recover the Leontief form in (3) from the data, I assume that cows are not

overfed in equilibrium, i.e.,

(
(1− αF)W

(σF−1)/σF
ict + αF(XF

ict)
(σF−1)/σF

) σF
σF−1 ≤ αD

1− αD
XD

ict, (4)

for all i, t, and c = dairy, which is plausible given that herd size is predetermined by the time

pasture is irrigated and feed purchased. This avoids estimation of the feed conversion ratio

(1− αD)/αD, although it can be recovered directly from the ratio of XD
ict to the pasture/feed

composite if (4) holds with equality. Consequently, the production parameters to estimate

for c = dairy are θc = (αc, ϑc, σc, αF, σF, βcW , βcL, βcM).

Hicks-neutrality. The main restriction in (2) is that the unobservable ωict is multiplica-

tively separable from Fc, or “Hicks (1932)-neutral.”18 Through this unobserved term, total

17An implicit restriction in (2) is that output depends only on the total volume of irrigation applied throughout
the year. This restriction reflects the annual resolution of the production data. In practice, the timing of irrigation
throughout the season affects crop yields (Flinn and Musgrave, 1967). For total irrigation volume to be a suffi-
cient statistic for output, the assumption in this setting is that for a given farm, conditional on crop choices, the
intra-seasonal irrigation timing is optimal. This reflects the sophisticated irrigation scheduling schemes used by
most farms (Ashton and Oliver, 2014). However, it rules out intra-seasonal gains from water trading that allow
producers to better time water inputs (Beare et al., 1998).

18The aggregation Qict from {Qickt}ck∈c makes Fc defined in (2) a representation of the convex hull of the
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factor productivity differs arbitrarily across farms and crop-types, allowing the marginal

product of water to differ across otherwise identical farms in each year. Hicks-neutrality

rules out unobserved differences in irrigation efficiency at the farm level, which may be a

crucial aspect of the response to water scarcity. The inclusion of rainfall in the production

function controls directly for one source of farm-year-specific differences in the marginal

value of irrigation. For robustness, I also consider other forms of Fc that include differences

in irrigation efficiency that take a known form, e.g., by allowing αc or υc to depend on t or

other observed farm characteristics such as the value of the farm’s irrigation equipment.

An alternative solution is to take one of the hypotheses this paper seeks to test—whether

farms optimize irrigation levels given observed water market prices—as an auxiliary model

assumption. Then it is conceptually straightforward to extend the procedure below to relax

Hicks-neutrality and introduce unobserved water-augmenting technology estimated from

the optimal irrigation moments (Doraszelski and Jaumandreu, 2018; Berry and Haile, 2018).

Some aspects of this exercise are nontrivial, so I derive identification and construct an esti-

mator for this alternative model in Appendix B. Because the focus of this paper is to study

the efficacy of the water market without imposing assumptions on water market participa-

tion, search costs or trading constraints, I do not take this approach in the main text.

3.2 Timing of agricultural calendar

An important feature of the water market is within-year water price and rainfall uncertainty

that resolves after planting decisions but before irrigation choices. I incorporate this feature

with a growing season of length b ∈ [0, 1]. Farms plant at t− 1, commit to irrigation at t− b,

and then harvest output given by (2) at t. This timing over planting, growing, and harvest

seasons, summarized in Figure 6, is based on my conversations with irrigators in the sMDB.

In each year, the agricultural calendar starts with the planting season, approximately

April to June. At t− 1, farms plant the season’s crops by allocating land Kict to each c ∈ Ci.

Dairy farms may also adjust their herd size, XD
ict. The farm’s information at t− 1 includes its

productivity at t− 1, its “predetermined” inputs Kict and XD
ict, and all of its past decisions,

prices, and water endowments. I denote this information set as

Fi,t−1 = ({ωicτ, Wicτ, Ricτ, Xicτ, Kicτ, Kic,τ+1, Picτ}c, ρi,τ+1, Wrτ, PW
iτ , PL

iτ)τ≤t−1. (5)

production possibilities frontiers of each of the crops ck that farm i might consider growing. The assumption
that Fc does not depend on ck means that crop-switching within a given c can affect the curvature of Fc only
through input combinations, so that all misspecification will be transmitted through ωict. One concern is that
changing final crop price ratios will lead to different crop mixes to attain the same Fc (Diewert, 1978).
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At t− b, the planting season (approximately June–October), farms observe

Fi,t−b = (Fi,t−1, Eit, PW
it , Wrt, {ωic,t−b}c),

decide water inputs Wict, and, if c = dairy, purchase feed, XF
ict. Finally, farms learn their final

productivity ωict and crop prices Pict for each c, as well as wages PL
X,it, then finalize labor XL

ict

and annual materials XM
ict decisions and harvest crops Qict with some measurement error ε ict

(November–March). The cycle then begins anew.

The estimator below is not sensitive to every detail of this timing and information struc-

ture. Irrigation can occur at any time t− b for b ∈ [0, 1]; for example, farms can commit to

irrigation alongside planting or make this decision at the same time as hiring labor and/or

finalizing materials. Moreover, although it is natural to suppose that Wrt, Eit ∈ Fi,t−b given

that I use Wrt and Eit as instruments for time-(t− b) irrigation decisions, my approach also

yields consistent estimates if farms instead have some common prior over Wrt and Eit at

t− b, provided that such beliefs correlate with realized levels. The water price that i faces,

PW
it , may be unobserved to either the econometrician, the farm, or both. The empirical strat-

egy primarily requires that (i) land decisions are predetermined, Kict ∈ Fi,t−1; (ii) irrigation

responds to Wrt and is not chosen strictly after the final time-t materials decision based

on new information not known at t; and (iii) labor and materials decisions are made with

knowledge of time-t prices and productivity.

3.3 Other economic assumptions

The main focus of this paper is water trading and the role of irrigation in production. I

impose the following restrictions on the remaining economic environment, necessary both

for the empirical strategy and for valuing water reallocation, which requires interpreting the

physical output given by (2) in economic terms.

Market structure. Agricultural producers are small; agricultural commodities exhibit

minimal differentiation relative to many other consumer goods; and trade is relatively free

across countries (Mundlak, 2001). Australia exports about two-thirds of its agricultural out-

put. I therefore assume that farms take crop prices Pict as given for each c.

Labor and materials. Labor is mobile, agricultural wages do not differ substantially

across farms (coefficient of variation of 0.207 across farm-years), and other inputs such as

seed, fertilizer, and electricity are relatively undifferentiated and likely to be supplied com-

petitively. I therefore assume farms take wages and materials prices PX,it as given. I observe

expenditures on materials rather than physical quantities, and assume that in each year, ma-

terials prices do not differ across farms. Observed wages can and do vary across farms, but
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the empirical strategy below requires that materials or labor costs do not differ unobservably

across firms.

I also suppose that labor and materials are set to maximize annual profits, as in Levin-

sohn and Petrin (2003), or, equivalently, to minimize the costs of producing expected output

(Doraszelski and Jaumandreu, 2019). This rules out all dynamic aspects of these factors,

such as labor adjustment costs that depend on past levels, or current materials inputs that

affect next year’s productivity. The assumption on labor can be relaxed (Ackerberg et al.,

2015), but delivers three main advantages in my setting: (i) increased precision, because the

labor elasticity can be estimated in a first stage; (ii) a microfoundation for using elasticity-

weighted revenue shares to apportion labor (observed at the farm level) to crop-types; and

(iii) a closed-form representation for the response of labor demand to water reallocation.

The assumption on materials, however, is crucial to my empirical strategy. It means that

static materials demand under the timing of Section 3.2 admits a nonparametric demand

function for materials,

XM
ict = χct

(
Wict, Rict, Kict, XL

ict, XF
ict, Pict, ωict

)
, (6)

which I use, under the additional statistical assumptions below, to control for productivity’s

persistence over time. Note that neither water prices nor wages appear in χct; this is because

water and labor are set before intermediate materials, and only the levels of irrigation and

labor inputs are output-relevant. Farms may face different water prices or employ different

water trading strategies and water market access may differ unobservably across farms and

over time. This is important given that actual water prices evolve over the course of the

season and differ across the river network (Section 2.5) and that it is difficult to rationalize

the large fraction of farms who do not trade in a given year (Section 2.6) with a continuous

model of water demand. While (6) requires optimal materials, it does not require that farms

optimize annual irrigation volumes. The time-t materials choice takes as given the irrigation

decisions at t− b, but does not restrict the form that these irrigation decisions take.

4 Empirical strategy

The empirical strategy to identify and estimate the multifactor production function in Sec-

tion 3 must account for the dynamic dependence of irrigation, labor, materials, and land de-

cisions on productivity. First, Section 4.1 introduces statistical assumptions that allow me to

control for the expected component of productivity by inverting a static materials demand

function. This control function is conditioned on other current inputs, which both avoids
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the problem of functional dependence (Ackerberg et al., 2015) and allows water prices, con-

straints on water trading, and market access to vary unobservably across farms. Second,

I assume that regional water-sharing rules, interacted with a farm’s predetermined water

rights, are orthogonal to the innovation in productivity from t− 1 to t as described in Section

4.2. This exclusion restriction shares with other dynamic methods the virtue of allowing the

instrument to be correlated with past levels of productivity or permanent differences across

farms or regions. The restriction differs from other models that use lagged decisions (Acker-

berg et al., 2015) or prices (Doraszelski and Jaumandreu, 2018) to identify flexible factors.

Section 4.3 discusses how the water rights instrument weakens some of the key restrictions

on water market structure and irrigation decisions that are implicit in the use of endogenous

objects (such as past decisions or prices) as instruments. Section 4.4 describes the first-order

conditions used for the remaining two flexible factors and Section 4.5 specifies the estimat-

ing equations.

4.1 Assumptions

The following allows observed materials to be used as a proxy for unobserved productivity:

Assumption A1. Materials demand χct, given in (6), is strictly increasing in ωict for all c and t.

Assumption A1 is both an economic restriction—that firms make static, optimal materials

decisions that differ only through the arguments of (6)—and a statistical restriction that

unobserved productivity is scalar and continuously distributed. The strict monotonicity of

materials demand in productivity follows from static optimality if firms take materials and

final goods prices as given and Fc is everywhere strictly increasing in XM
ict (as in the nested

CES form (2) when βcM > 0).

The estimator below identifies the production function using instruments orthogonal to

the productivity innovation, defined for each i, c, and t as

ξict = ωict −E[ωict|Fi,t−1]. (7)

Given that Fi,t−1 as defined in (5) is large and contains information that cannot be observed

in any finite panel, any study of (7) requires some restriction on the dependence of ωict on

Fi,t−1. In particular, to guarantee the existence of the Markov decomposition

ωict = E[ωict|Fi,t−1] + ξict

≡ ψct(ωic,t−1) + ξict,
(8)

which allows (7) to be recovered from the path of (ωict)t with ψct, I assume the following.
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Assumption A2 (Markov). Productivity (ωict)t≥0 evolves as an exogenous, first-order Markov

process for each i, c, and t.

Assumption A2 allows for a wide family of productivity processes. In particular, it makes

no distributional assumption on the cross-sectional productivity innovation, ξict. Its key re-

strictions are twofold. First, although farms anticipate future productivity and make long-

run decisions given these beliefs, they cannot influence the evolution of productivity over

time. For example, a farm’s past irrigation levels, materials inputs, and labor decisions can-

not affect its current or future productivity. Second, A2 rules out higher-order productivity

processes, such as forms of soil depletion that unfold over several years. This first-order

restriction is nontrivial because of A1: although any finite-order Markov process admits

a first-order representation in an appropriately extended state space, such an extension is

inconsistent with A1’s single-index restriction.

4.2 Water rights instrument

Even when the anticipated component of productivity ψct is known (or controlled for as in

Section 4.5), the flexible factors Wict and Xict will depend upon ξic,t−b and ξict, which will

bias a production function estimated without instruments. The timing of agricultural input

decisions given in Section 3.2 suggests several potential sources of variation in water inputs,

though some of these (e.g., water prices) are likely endogenous. I use

ZW
ict =

{
ρi,t−1Wrt if c = annual irrigated crops, pasture, or perennial crops
ER

it if c = annual nonirrigated crops.
(9)

For irrigated crops, the instrument for water is the interaction of annual regional allocations

with that farm’s previous year’s water endowments. The interaction between allocations

and previous endowments increases the variation from the region-year to the farm-year,

allowing the treatment intensity to increase with a predetermined measure of an irrigation

operation’s size. For nonirrigated crops, the instrument for water is farm-specific rainfall,

which provides exogenous variation in (rain)water applied to the crops conditional on the

predetermined land decision Kict.

The exclusion restriction for (9) is that water allocation rules Wrt satisfy

E[ρi,t−1Wrtξict|Fi,t−b] = 0 (10)

for each i, c, and t. This assumption is satisfied if a farm’s productivity innovation is con-

ditionally independent of the differential incidence of river diversion caps on farms with
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different predetermined water rights. The justification for this assumption is the mechan-

ical nature of diversion formulas.19 The primary threat is that the current and historical

environmental conditions that determine allocation caps directly affect productivity, and do

so differentially across large and small irrigation operations. To some extent, this concern is

mitigated by controlling for regional rainfall, evapotranspiration, and soil moisture.

Furthermore, the assumption rules out the possibility that Wrt affects other, unobserved

farm decisions, such as crop-mix choices. If these decisions are transmitted through ξict,

then (10) will not hold. However, note that Wrt may be correlated with either ωic,t−1 or even

E[ωict|ωic,t−1] without violating (10), since this information is contained in Fi,t−b.

Another concern is that river extraction caps may be determined by political processes

that react to productivity shocks at the farm level within the year. Although water market in-

stitutions reflect agricultural interests to an important extent, both the rule-based legislation

implied by Schedule E and my conversations with river operators at MDBA suggest that

regulatory agencies follow rigid water-sharing formulas rather than responding directly to

agricultural industry interest groups.

4.3 Discussion of identifying variation

Identifying a production function requires variation in each flexible input that is both consis-

tent with the restriction that demand for materials χct is common across all farms growing c

at t and exogenous. While a perfect control for ωict solves the endogeneity problem in (2) for

static inputs (Olley and Pakes, 1996), perfectly controlling for ωict raises functional depen-

dence issues, which is why Ackerberg et al. (2015) build moments based on the productivity

innovation ξict that control only for expected productivity ψct(ωic,t−1). However, moments

based on the productivity innovation require stronger identifying assumptions—or better

instruments—to avoid reintroducing the prospect of endogeneity. In this sense, while Olley

and Pakes (1996) solved the endogeneity problem but introduced concerns of consistency,

Ackerberg et al. (2015) obtain variation consistent with the model at the expense, potentially,

of reintroducing an endogeneity problem.

First, note that functional dependence is not a concern despite the use of a common ma-

terials demand function. This is because, like Ackerberg et al. (2015), materials demand in (6)

depends on other flexible inputs, so these other flexible inputs may differ arbitrarily across

firms, provided that they are not chosen strictly after the final time-t materials decision with

new information not known at t. Here, Wict may vary across otherwise identical farms due

19While it would be ideal to use the direct and exogenous shifters of the nonlinear quantity schemes directly,
quantity-setting models themselves are confidential.
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to water allocations, rainfall, water prices, and any unobserved constraints on trade real-

ized between planting and irrigation decisions (as described in the agricultural calendar in

Section 3.2). Such variation affects output only through Wict, does not influence the optimal

choice of XM
ict conditional on Wict, and is therefore consistent with the control function.20,21

Second, and more importantly, the water rights instrument given by (9) provides ob-

served variation in irrigation outside of the model, which opens the possibility for weaken-

ing some of the standard assumptions used to identify production functions (Griliches and

Mairesse, 1998). Crucially, the water rights instrument replaces the Ackerberg et al. (2015)

(“ACF”) assumption,

E[ξict|Fi,t−1] = 0, (11)

with the alternative exclusion restriction used in this paper,

E[Z′ictξict] = 0, (12)

where Zict = (1, ζc(ZW
ict, Kict, Φ̂ic,t−1)), and Φ̂ic,t−1 = ln Qic,t−1 − ε ic,t−1 is a control for time-

(t − 1) productivity defined below in Section 4.5. Equation (12) is not nested in the ACF

moments because Wrt, Eit /∈ Fi,t−1. However, the existence of an instrument in (10) allows

the ACF assumption to be strictly weakened, in the sense that if (10) holds, then (11) implies

(12). In particular, by using (12), it is not necessary to assume that

E[Wic,t−1ξict] = 0, (13)

which is implied by (11) and commonly used to justify the use of lagged inputs.

Lagged inputs are commonly used as instruments because they live in Fi,t−1, and there-

fore are excluded by (13) under the ACF moments, and because observed input choices are

highly correlated over time (Ackerberg et al., 2007, p. 4223). While this argument is econo-

metrically valid, its economic justification is less clear. The restriction E[ξict|Fi,t−1] = 0 is

both a statistical assumption on the process ξict and an economic restriction on Fi,t−1, which

includes all economic decisions and equilibrium objects prior to t. This exclusion restriction

is especially problematic given that identification also requires a source of variation in in-

puts across firms, but that many of the natural sources of variation cited by Ackerberg et al.

(2015) as potential solutions to functional dependence, such as unobserved adjustment costs

or autocorrelated firm-level input prices, seem likely to violate (11).
20In contrast, this variation will affect materials demand through water inputs, and is therefore inconsistent

with a Levinsohn and Petrin (2003) unconditional control function that does not depend on current inputs,
unless all such variation is observed and included in the control function.

21The argument for the variation that identifies the labor elasticity in this model is similar. Observed wages
PL

X,it vary across farms, but affect output, and enter into χct, only through labor inputs XL
ict. This wage variation

precludes collinearity by creating the possibility that two otherwise identical farms, each choosing materials
according to (6), use different labor inputs at the same (ωict, Wict, Rict, Kict, Pict).
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To see this issue, consider (13). Suppose, for example, irrigation involves unobserved ad-

justment costs. If adjusting irrigation is costly, then a farm’s irrigation at t− 1 should depend

on its beliefs about the distribution of productivity t—which suggests E[Wic,t−1ξict] 6= 0.22

The ACF moments therefore restrict the extent to which irrigation decisions are forward-

looking (or restrict the distribution of ξict). Alternatively, suppose that Wic,t−1 is correlated

with Wict through autocorrelated input prices. Then (13) implies that the distribution of ξict

cannot affect water prices at t− 1. Either water prices at t− 1 do not depend on beliefs over

t, or water prices at t are independent of productivity. Either restriction is problematic in a

setting where water prices depend on forward-looking water storage decisions and ξict is a

source of the gains from trade.

In contrast to instruments constructed from endogenous variables such as lagged input

decisions or prices, the water rights instrument is constructed from regulatory variation out-

side of the model. In particular, this allows irrigation Wic,t−1 to depend on i’s unobserved be-

liefs over the distribution of ξict in unobserved ways. Serially correlated, unobservable, and

endogenous trading constraints may shift or constrain Wict, as long as ρi,t−1Wrt remains rele-

vant to the irrigation decision. Irrigation can entail adjustment costs and this dynamic choice

can depend on the variance of ξict. Although the distribution of productivity must evolve

exogenously, water prices and water market outcomes may be endogenous and depend on

current or future distributions of ξict; just not allocation rules, Wrt, or predetermined rights

ρi,t−1. This is still a strong assumption, but relies primarily on variation generated by the

underlying institutions, rather than restrictions on equilibrium decisions.

4.4 Identification of other flexible factors

Finally, I recover relationships between output, labor, and materials, and infer the unob-

served assignment of labor and materials to crops for multi-crop farms, using first-order

conditions implied by the continuously differentiable production function and the facts that

labor and materials are static factors selected optimally at t.

Materials and labor. Materials’ contribution to output is not separately identified from

the control using only moments constructed from E[ε ict] = 0 and E[ξict|Fi,t−1] = 0. This

functional dependence problem results in collinearity even when the only two flexible in-

puts are labor and materials (Gandhi et al., 2016). To identify materials’ contribution to Fc

separately from χct, I use the fact that (2) and the assumption of static optimality implies

22Controlling for ω̂ic,t−1 does not alleviate these concerns; there is no reason why Wic,t−1 should not depend
on higher moments of the distribution of ωict|ωic,t−1. Note that this concern is only avoided for the predeter-
mined input Kict by assumption in (12); the moment implies that investment only depends on the level of current
productivity; Griliches and Mairesse (1998) discuss this restriction.
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that βcM is identified from the first-order conditions,

E[ε ict|Fit] = E[ln βcj − ln(Pj
X,itX

j
ict) + ln(PictQict)|Fit] = 0 (14)

for j = M. This contrasts with Ackerberg et al. (2015), who do not estimate βcM, and instead

assume that output is Leontief in materials and a “value-added” production function that

does not depend on materials, and that materials are never the limiting factor for produc-

tion. In addition, while the farm-specific wages that I observe are possible instruments for

XL
ict, I recover βcL using (14) for j = L, because (14) is more efficient and does not require

assuming that E[PL
X,itξict] = 0.

Multi-crop farms. Irrigation volumes, land allocations, and physical output are ob-

served at the crop level, but labor, materials, and water rights only at the farm level. Appor-

tioning labor, materials and water rights to crop type is not a problem for the 65.5% of farms

growing only a single crop type. To address this for the remaining 34.5% of farms, I appor-

tion farm-level labor and materials inputs to crop types using elasticity-weighted realized

revenue shares.23 This imputation is implied by profit-maximization if labor and materials

are uniquely assigned to crops and measurement error ε ict does not depend on c for a given

i and t.

4.5 Estimation procedure

The primitives for each c are the production technology θc, productivity distribution {ωict},
and Markov transition operator ψct. The algorithm proceeds in two steps, after recovering

labor and materials elasticities from first-order conditions. As in Olley and Pakes (1996), I

never recover χ−1
ct directly; rather, in a first stage, I estimate the sum ln Fc(·) + ωict = Φict,

Φict = Φct

(
XM

ict; Wict, Rict, Kict, XL
ict, Pict

)
, (15)

to eliminate the measurement error ε ict. I estimate (15) by regressing ln Qict on transforma-

tions of

t, XM
ict, Wict, Rict, Kict, XL

ict, and Pict,

to obtain Φ̂ict and the implied measurement error ε̂ ict. I approximate this nonparametric

regression with a cubic polynomial; polynomial splines (i.e. with k > 0 knots) as in Chen

and Pouzo (2012) yield similar results.

23These elasticities are estimated by c using the revenue shares of single-product firms. If the elasticities do
not differ across c, the unweighted revenue share can be used directly (e.g., De Loecker and Collard-Wexler,
2015). An alternative to using input maximization is to estimate Fc for single-crop farms, adjust for selection
into single-cropping, then proceed as in De Loecker et al. (2016).
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The second stage estimates the remaining parameters of the production function and the

evolution of productivity, (θc, ψc), using

E
[(

qict − fict − ψc(Φ̂ic,t−1 − fic,t−1)
)
⊗ Z′ict

]
= 0, (16)

where lowercase letters denote natural logs, and fict to denote fc evaluated at i’s observed

inputs in year t. I then estimate (16) using two-step generalized method of moments with

an algorithm inspired by Ackerberg et al. (2015, Appendix A4) to concentrate out ψct as

described in Appendix A.1.

5 Estimates

I now report the estimated production function parameters, distribution of productivities,

and curvature of production with respect to water. I then show that estimated productivity

is statistically significant predictor of annual water-trading behavior, argue that the implied

shadow values of water seem reasonable relative to existing evidence on agricultural water

demand, and consider robustness to various alternative specifications.

5.1 Production technologies

Benchmark estimates of the main production function parameters are reported in Table 4.

The main estimates in the first row of Table 4 show that water plays a significant role in the

production of crops for irrigated farms in the southern Murray-Darling Basin, with average

implied irrigation-output elasticities of 0.277, 0.210, and 0.087 for irrigated perennial crops,

annual crops, and pasture, respectively. Irrigation elasticities ∂ f̂c
∂w evaluated at observed in-

put combinations differ meaningfully across farms; the interdecile range of elasticities for

perennial operations, for example, is [0.124, 0.381]. That ∂ f̂c
∂w differs across input combina-

tions reflects the flexibility of the nested CES functional form in (2). In particular, allowing

rainwater to substitute for irrigation plays an important role in these elasticity estimates.

Tables A11—A13 show that restricting rainfall’s presence in the production function to total

factor productivity (i.e., ϑc ≡ 0) inflates the estimated ∂ f̂c
∂w by more than one-third.

The estimated elasticities of output with respect to the irrigation-land-rainwater com-

posite, β̂cW , also differ across c—0.625 for perennial operations, 0.484 for annual irrigated,

and 0.727 for irrigated pasture. This suggests that the technical differences in these opera-

tions (discussed in Section 2.3) translate into meaningful differences in the irrigation-output

relationship for each crop type. For each c, the estimated distributional parameters αc lie

strictly in (0, 1).
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Labor and materials also play significant roles in production: β̂cL + β̂cM ranges from 0.25

(for c = dairy) to 0.66 (for annual crops). The relative importance of these two factors differs

by operation, with output in perennial operations being roughly one-and-a-half times more

elastic to labor than annual operations, consistent with the higher labor inputs required

to maintain more sophisticated irrigation operation schemes. The estimates of the role of

labor in production are in line with existing agricultural production function estimates. For

example, the review in Mundlak (2001) finds output elasticities with respect to labor ranging

from 0.25 to 0.45.

The returns to scale for dairy are close to unity but for perennial and annual operations,

where ∑j β̂cj = 1.164 and 1.142, exceeds one. This may reflect unobserved constraints on

large-scale expansion (e.g., total landholdings) that prevent farms from growing the size of

their operations to profit from increasing returns from scale.

The distributions of estimated productivities for each crop type, ω̂ict = Φ̂ict − f̂ict, are

reported in Table 5. In this setting, where productivities are used to infer the (in)efficient

allocation of resources by agents without knowledge of ε ict, the distinction between ω̂ict and

the traditional Solow (1956)-residual ω̂ict + ε ict = qict − f̂ict is crucial: the latter is a more

appropriate primitive to measure welfare-relevant dispersion in shadow water prices.

For each c, the estimated {ω̂ict} lie within a narrow range, with standard deviations

of 0.44, 0.50, and 0.70 for irrigated perennial, annual, and dairy types considerably below

their respective means. In contrast, over all i, the standard deviation of farm-level pro-

ductivity {ω̂it} is 2.71, where ω̂it ≡ ln ∑c eω̂ict PictQict
∑c PictQict

. Finally, productivity persists across

farms over time, with estimated persistence significantly above zero but also below one.

Across irrigated crop types, productivity is most persistent for perennials—autocorrelation

of $̂c = 0.639, compared with $̂c ∈ {0.504, 0.384} for annual and dairy—consistent with the

discussion in Section 2.3 that perennial operations have relatively fewer options for annual

adjustment in production possibilities.

5.2 Productivity predicts trade

Given that estimated productivities did not use data on water trading, it is possible to test

whether productivity predicts water trade by regressing an indicator for buying (selling)

water allocations on the estimated productivities and other controls.

Panels A and B of Table 6 show that more productive farms buy annual water alloca-

tions and less productive farms sell water, consistent with economic intuition. These regres-

sions include the same controls as the descriptive regressions from Table 3. The positive

relationship between net trade and estimated productivity survives controls for year, re-
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gion, region-by-year, and farm-type fixed effects, suggesting that the estimated differences

in unobserved technology matter for interpreting water-trading behavior. A one-standard-

deviation increase in ω̂it from its mean increases the conditional probability that i buys an-

nual water allocations in year t by 0.104–0.141 across specifications, or 32–44% of the mean,

and decreases the probability of sale by 0.065–0.101, or 33–52% of the mean. Table 7 shows

that water trading also positively correlates with the productivity innovation at t, condi-

tional on ω̂i,t−1, with a one-standard-deviation increase in ξ̂it increasing the probability that

i buys annual allocations at t by 8–12% and decreasing the sale probability by 0–9%.

Perhaps surprisingly, the productivity estimates do not predict permanent trading, which

I measure as the sign of ρit− ρi,t−1 for farms observed at least twice. Panels C and D of Table

6 show no statistically significant relationship between a farm’s estimated productivity and

either its decision to buy or to sell permanent rights. There are a variety of explanations for

this result. Statistical insignificance could reflect sparse data, given that permanent trades

are imputed from lags and fewer farms trade permanent rights than annual allocations. It

may also suggest that in the presence of a liquid annual market, initial endowments do not

affect real output (Coase, 1960).

5.3 Water shadow values

Crucial to the value of water reallocation is the derived shadow value of water in produc-

tion. Using the estimated production functions, farm-crop-type-specific productivities, and

realized crop prices, I define each farm i’s “shadow value” function for water at t and crop

c as

λ̂ict(W, Xict, Kict, Rict) = Picteωict E[eεict ]
∂Fc(W, Xict, Kict, Rict)

∂W
, (17)

which is purged of measurement error ε ict. The rest of this paper omits the constant E[eεict ]

in notation where relevant. Equation (17) captures the marginal effect of an additional me-

galiter of irrigation on expected time-t revenue. If variable irrigation costs do not differ

across farms and water at t does not affect i’s profits in years s > t, then (17) also measures

the relative value of marginal river diversions to farm i at t.24

Figure 7 plots λ̂ict(W; ·) for each c, with bands showing the interquartile and interdecile

ranges of the function λ̂ict over i and t. The figures show substantial dispersion across farms

within each c (through ωict, Pict, Rict, and other inputs) and rapidly diminishing marginal

returns in W. This convexity of production in water scarcity will affect the value of trade,

which is a function of both ∂Fc/∂W and ∂2Fc/∂W2.
24In the context of the model of Section 3, the restriction that water at t does not affect i’s profits for years

s > t only rules out current water inputs from affecting future input costs, since the production function in (2)
is already restricted to depend only on current inputs, and Assumption A2 precludes (Wict)t from affecting ω.
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Table 8 and Figure 8 report the distribution of shadow values (17) evaluated at observed

inputs, λ̂ict(Wict, Xict, Kict, Rict). Most variation in shadow values occurs between farm types.

Perennial operations, such as vineyards or orchards, have the highest estimated values, with

the median marginal value of water for perennial farms close to the 90th-percentile market-

clearing water price. Irrigated annual crops and pasture have much higher values than

nonirrigated crops but values that are significantly less than perennials.

How economically reasonable are these estimated shadow values? The dispersion across

operation types and years may not be surprising given the wide range of demand elastici-

ties for irrigation documented by agricultural economists (Scheierling et al., 2006). The rel-

atively higher estimated values for perennials, in particular, align with earlier estimates for

the sMDB (Bell et al., 2007; Hughes, 2011). The estimates for annual irrigated and pasture op-

erations are also comparable to county-level estimates from Garcı́a Suárez et al. (2019), who

find marginal values of irrigation in the midwestern United States averaging $196/acre or

about $205 AUD/ML.25

At observed input levels, the last column of Table 8 shows that shadow values for irri-

gated farms are similar to average observed water transaction prices discussed in Section 2.5

but not used in estimation. Furthermore, the average estimated shadow value of (rain)water

for nonirrigated annual crops is less than the average market price of water, potentially ra-

tionalizing the decision of farms not to irrigate this land. While it is not possible to draw

conclusions from this comparison without imposing additional structure on water market

access and participation, given that this water price data is not used in estimation and that

the shadow values of water are not calibrated to equalize the marginal products of water

across farms, the comparison suggests the estimated production technologies are not unrea-

sonable.

5.4 Robustness

The benchmark production function allows for arbitrary Hicks-neutral productivity, but

constrains the parameters (θc, ψc) to be constant across t. Given the substantial changes

in environmental conditions and aggregate water market prices over 2007–2015, Tables A6,

A7, and A8 test the stability of the production function parameters over time. First, I con-

sider differential irrigation efficiency across farms by replacing Wict in (2) with exp(ζict)Wict.

I study common water-augmenting technical change across farms, which takes the form

25Garcı́a Suárez et al. (2019) estimate a county-level biomass yield function in the United States from 1960–2007
and its elasticity with respect to a county’s fraction of irrigated land. They find marginal values of irrigation
averaging $196/acre in 2007 USD, or 821.40 2015 AUD/ha. Even with identical crops grown, this number is
not directly comparable to my estimates without a measure of the irrigation application rate. I recover $205
AUD/ML using approximate average application rates for Nebraska, Texas, and Arkansas of 4 ML/ha.
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ζict = ζt. I also consider irrigation efficiency that differs with observed irrigation equip-

ment, ζict = ζirrig1{i has irrigation equipment at t}, an observable described in Appendix

A.2. In addition, I partition the data into two periods (2007–2011 and 2012–2015) and esti-

mate the entire production function (θ, ψ) separately for each period.

A separate concern is that the shape of the production function given by (2) may unduly

constrain the substitution possibilities between factors. Table A9 and A10 test the sensitivity

of results to the elasticity of substitution between water and land. The vast literature on

agricultural production functions in general (Mundlak, 2001) provides limited guidance for

the specification of irrigation in these functions (Scheierling et al., 2014). I focus on two

functional forms commonly used in agricultural economics that do not impose a constant

elasticity of substitution between water and land: translog (Garcı́a Suárez et al., 2019) and

quadratic (Shoengold and Zilberman, 2007) forms. The irrigation elasticity estimates are less

precise, given that both forms double the dimension of θc, but not dissimilar from the main

results. In particular, they imply similar shadow water value distributions. Table A9 also

contains results from two important special cases of (2). First, Cobb-Douglas, where σc = 1

(Mundlak et al., 2012); second, a Leontief relationship where σ→ 0.26

Finally, given the particular importance of rainfall for the value of water, Tables A11,

A12, and A13 show the sensitivity of (θc, ψc) to the specification of rainfall and evapotranspi-

ration, considering cases in which rainfall does not substitute directly for irrigation (ϑc = 0)

and is a perfect substitute (ϑc = 1), in contrast to the benchmark estimated ϑc.

6 Valuing the water market

I now apply the estimates of Section 5—which used irrigation volumes and crop yields at

the farm level to recover production technologie—to the water trading data not used in

estimation. I focus on three main results from the market-based water reallocation from

the initial pre-trade endowments described in Section 6.1. First, water trading reduces dis-

persion in estimated shadow water values across farms, although considerable dispersion

remains (Section 6.2). Second, and most importantly, integrating over the observed trade

flows, the efficiency gains from this reallocation are substantial (Section 6.3). Third, this

value is concentrated in water-scarce years and water-scarce regions (Section 6.4).

26Although the latter case is commonly used in agricultural settings (Berck and Helfand, 1990), if σc = 0, then
Fc is not smooth and not identified without additional assumptions; hence, I assume that farms never over-
irrigate in equilibrium, which lets me recover βcW using Wict as a sufficient statistic for min{Wict,

αc
1−αc

Kict}.

30



6.1 Pre-trade water allocations

The central exercise of this paper is to contrast observed irrigation under the water market

with alternative distributions of water endowments. I construct three “pre-trade” alloca-

tions:

1. Input levels without annual allocation trades, Wa,annual
ict = Wict − ∆annual

ict . Allocation

trades are observed as net purchases ∆annual
it at the farm level. I allocate trade volumes

for farms growing more than one irrigated crop in proportion to realized water appli-

cation rates, so that ∆annual
ict = Wict

∑c′ Wic′ t
∆annual

it . The results are insensitive to allowing

each water-trading farm i to allocate trade volumes optimally across c.

2. Input levels without permanent trades, Wa,permanent
ict = Wict − ∆permanent

ict . Entitlements

are denominated as proportional shares, so I construct realized volumes in megaliters

using allocations Wrt as ∆permanent
it ≡ (ρit − ρi,t−1)1i∈rWrt, again downscaled to c for

multicrop farms in proportion to realized water application rates.

3. Input levels without annual or permanent trades: Wa,total
ict = Wict− (∆annual

ict +∆permanent
ict ).

These reallocations involve 13.3%, 5.0%, and 14.4% of total irrigation volumes, respectively.

The results in the next three sections analyze the value of the market mechanism as it op-

erates in the world relative to these pre-trade endowments. Although pre-trade rights were

determined for a variety of historical reasons, many of which predate trade in the perma-

nent market (Turral et al., 2005), it is possible that the distribution of pre-trade endowments

would have been different had agents not anticipated the introduction of the water market.

The measured gains from annual trading are potentially less likely to be confounded by this

issue, given that some of the value of annual trading may arise from misallocation that even

a first-best allocation of permanent water rights at t− 1 cannot eliminate.

6.2 Marginal values and trade

Water trades that reduce misallocation shift resources from lower to higher-value farms. If

market-based water allocation increases agricultural output, then water buyers should have

higher pre-trade shadow values for water than the sellers with whom they trade. Although

the data does not match buyers with sellers, Figure 10 reports the distributions of farm-level

pre-trade shadow values conditioned on net annual allocation trade balances. The values

are constructed with pre-trade endowments and de-meaned by average annual estimated

shadow values for comparability across years. Panel A shows that water-buying farms have

pre-trade shadow values that are more dispersed and on average greater than water-selling
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farms; Panel B shows that the first distribution stochastically dominates the second. Conse-

quently, on average, the market reallocates water resources to more marginally productive

farms, though the considerable overlap of these two distributions indicates the presence of

residual constraints on trade.

In an efficient water market without trading frictions, shadow values should converge

across traders with nonzero post-trade endowments. Figure 11 shows that the total effect of

water trading on the distribution of estimated shadow values across all farms is small. A

more apparent effect is evident during the drought (2007–2009, Figure 11), but substantial

dispersion in shadow values remains. Given that only about half of farms trade water in

any given year, Table 9 quantifies these effects for water-trading farms only using ordinal

dispersion measures as in Syverson (2004). The estimates show that water trading reduces

the interquartile range of the distribution of shadow values for water-trading farms in each

year except 2007. However, none of these declines are statistically significant at a 10%-level

except for 2011.

6.3 Total gains from trade

The marginal analysis above indicates that water market trade flows conform to some of

the economic predictions that arise from efficient trade. Measuring the cost of pre-trade

misallocation requires an infra-marginal calculation to integrate the distribution of shadow

value functions over the set of observed trades. Using (2), I define farm i’s expected profits

at the time of harvest t, conditional on water inputs Wit ≡ {Wict}c, as

Πit(Wit) = max
Xit

∑
c

Picteωict Fc(Wict, Xict, Kict, Rict)− PX,it · Xict − ΓW
it (Wit), (18)

which is revenue minus the costs of labor and materials, PX,it ·Xict, and irrigation, ΓW
it (Wit) =

PW
it ∑c Wict, where PW

it denotes the average price in i’s region in year t.27 The social value of

producing in year t using equilibrium water inputs rather than pre-trade water endowments—

what I call the “realized gains from trade”—is then

GFT(k)
t = ∑

i
Πit(Wit)−∑

i
Πit(W

a,k
it ) (19)

27Assuming this form of irrigation costs requires that (a) W and Wa,k entail the same total conveyance costs
and (b) variable irrigation costs differ across farms only through water prices. The former seems to be a rea-
sonable approximation for the marginal reallocations considered given the discussion of conveyance costs in
Section 2.4 (Note that any fixed irrigation costs incurred by farms both in equilibrium and k-autarky vanish
from (19)). When the market clears in the observed sample (∑i Wit = ∑i Wa

it) and PW
it does not differ across i,

then PW
it also vanishes from the calculation of the gains from trade in (19). Because the ABARES survey is not

an administrative dataset and does not contain all water traders, this means I account for trade surpluses and
deficits at market prices. This makes (19) a lower bound on the gains from trade in years where ∑i Wit > ∑i Wa

it,
and an upper bound in years where ∑i Wit < ∑ Wa

it.
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for k ∈ {annual, permanent, both}. Note that using (18) to evaluate the gains from trade

also strengthens the assumption of Section 3 that farms take crop prices as given to the as-

sumption that the water market does not affect final crop prices. This rules out general

equilibrium effects, such as countercyclical increases in the prices of water-intensive crops

during water-scarce years, which will arise to the extent that sMDB agricultural output in-

fluences Australian or world prices.

Table 10 reports the total gains from trade, GFT(k) = ∑t δtGFT(k)
t , under each regime k,

taking δ = 1− r = 0.957 from the real market interest rate r faced by Australian farms from

2007–15.28 The total gains from trade equal 6.2% of total irrigated output from 2007–2015,

with most of the value from annual trading (5.7%) relative to permanent trades. Confidence

intervals for the total gains, [3.3%, 7.8%] at the 90% level, clearly bound these gains from

zero.29 This is notable because nothing in the model prevents the estimated gains from

trade from falling below zero. The net benefits of the market are concentrated in the years

during the drought (2007–2009), in South Australia, and for perennial and annual irrigation

operations rather than dairy farms (Table A15). In years in which water is abundant, 2011–

2013, zero gains from trade cannot be rejected and the lower bounds of the 90% confidence

intervals lie strictly below zero.

How does this benchmark estimate of the realized gains from the water market compare

with water scarcity from expected climate change? Consider a uniform reduction in water

resource availability across all farms that would reduce output by GFT(k). This number,

−11.8% for k = both, is the equivalent (uniform water) variation of a price change that elim-

inates the market. For comparison, the most recent climate models run by the Australian

government for the southern MDB predict median declines of surface water availability of

11 percent by 2030 (MDBA, 2019). Average annual rainfall and river runoff in the sMDB

is expected to decline between [0, 9%] and [2, 22%], respectively, for 1◦C of global warming,

with estimates for 2◦C “roughly twice as large” (CSIRO, 2012, pp. 31). Declining surface wa-

ter availability is, of course, only one aspect of climate change, which alters higher moments

of river inflow and rainfall distributions, as well as a range of other agronomically relevant

variables such as temperature.

28Table A14 shows results for δ = 1 as well as results that constrain labor and materials adjustment or hold
both of these inputs fixed.

29Constructed as the 5%-95%-ile interval block-bootstrapped at the farm level. The confidence interval reflects
both parametric uncertainty, with (θ, ψ) re-estimated for each draw, and uncertainty over realized trades.
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6.4 Water scarcity and the value of water market access

A vital question in the context of climate change is whether regions receiving particularly

low water allocations in a given year (relative to other years) realize greater gains from

water market access. Here, I focus only on the annual allocation market, given that most of

the trading occurs in this market and that these trades are likely to be most responsive to

evolving water scarcity within the year.

Table 11 is the basis for this paper’s claim that the value of a water market is increasing

and convex in water scarcity. Taking regional water allocations Wrt as a proxy for water

scarcity, Panel A stratifies (19) into within-region annual quantiles of realized allocations.

The value of water trading is substantial for water-scarce quantiles, but declines dramati-

cally for regions receiving more abundant annual surface water endowments.

Similarly, it is possible to test whether farms with below-median rainfall ER
it have larger

estimated gains from annual water trading. The gains from trade for below-median-rainfall

farms (9.9%) is more than twice that of above-median rainfall farms (3.4%). Stratifying by

quartile shows that the gains from trade for farms in the bottom rainfall quartile are 14.9%,

compared with 7.5, 4.6, and 1.7% for the second, third, and fourth quartiles.

Across space, a similar pattern emerges. Panel C considers the value of trade for spatial

differences in water scarcity, stratifying farms within each year by quartile of that year’s

rainfall. Gains from the annual market are 8.4% for farms with rainfall below that year’s

median, compared with only 3.5% for farms receiving above-median rainfall in that year.

The within-farm differences in rainfall over time (Panel D) are similar, with gains of 9.6%

for below-median within-farm rainfall versus 2.8% for above-median within-farm rainfall.

7 Forward-looking land investments and water market access

The benchmark empirical strategy allows unobserved productivity to differ across farms,

crops, and years. It identifies the productivity distribution in the presence of dynamic deci-

sions over land, crops, and other fixed factors, and recovers the efficiency of annual water

reallocation holding these decisions fixed. But climate change will occur over long time hori-

zons and create permanent changes for agricultural producers, and institutions for water

management are infrequently revised. Permanent water market access alters the expected

allocation of water resources across farms, which should influence forward-looking land-

use decisions, such as investments in water-intensive crops such as orchards.

This section contrasts the long-run value of a water market with permanent water au-

tarky. Section 7.1 augments the model of Sections 3–4 by specifying land-use costs and
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extending the informational assumption made on productivity to the process governing the

evolution of prices and environmental shocks. Section 7.2 derives an estimator for land costs

from the dynamic program that characterizes land-use decisions. Section 7.3 discusses the

parameter estimates, and Section 7.4 recovers value functions and future land investments

to study the long-run value of the sMDB mechanism.

7.1 Water market access and forward-looking land use

Under the water market, farm i’s profits at the time of harvest t can be written as

Π(Kit, ωit, µit) = Πit (W(Kit, ωit, µit)) , (20)

which is (18) evaluated at an irrigation functionW(Kit, ωit, µit) that depends on land Kit =

{Kict}c∈Ci , productivity ωit = {ωict}c∈Ci , and a farm state vector

µit = (ρi0, Wrt, PW
it , Eit, PX

it , {Pict}c∈Ci , Ci).

The farm state vector µit includes water market conditions—i-specific water rights, alloca-

tions, and water prices—as well as rainfall, evapotranspiration, wages, crop prices at t, and

i’s permanent operation type. Similarly, profits at an autarky allocation Wa
it are a function of

(Ka
it, ωit, µit),

Πa(Ka
it, ωit, µit) = Πit(Wa

it) (21)

for each i and t. The production function and productivity estimates from Section 5 suffice

to calculate (20) and (21) for any givenW , Wa, and (K, Ka, µ). For example, the value of the

water market in Section 6 for each farm i is the difference between (20) and (21), lettingW
equal observed irrigation and taking Ka

it = Kit for all i and t.

This section endogenizes land-use trajectories with and without the water market, (Kit)t≥0

and (Ka
it)t≥0 respectively, as optimal forward-looking decisions given by functions κ and κa

of i’s current state,

sit = (Kit, ωit, µit).

Under the water market, i’s land decisions κ maximize its expected value V,

V(si0; κ; γ) = Ei0

[
∞

∑
t=0

δt
[
Π(κt(si0), ωit, µit)− Γ

(
κt(si0), κt−1(si0); γ

)]]
, (22)

given investment costs, Γ(Kit, Ki,t−1; γ), parametrized by γ. The value Va for operation i

under autarky is defined as (22) evaluated at Πa rather than Π. Then the infinite-horizon

value of the water market is given by

GFT∞ = ∑
i

V(si0; κ; γ)−Va(si0; κa; γ). (23)
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This long-run value of the market is consistent with the earlier gains-from-trade measure

(19), which is the special case of (23) where κa = κ, and µ does not evolve over time. Eval-

uating the more general version of (23) requires the irrigation policy W defined above, as

well as land investment costs Γ and the evolution of the farm state vector µ.

Land investment costs. Land investment costs differ by i’s operation type, as well as

random fixed costs drawn by i in each t at the time of planting decisions. All farms adjust-

ing land under cultivation incur quadratic adjustment costs that differ with the direction

of adjustment and by the crop types discussed in Section 2.3. Perennials adjust land rela-

tively infrequently (with 44% of farm-years making nonzero adjustments) and incur fixed

costs for nonzero adjustment. Annual and dairy farms do not incur fixed costs (more than

95% of these farms adjust land in each year). Total costs then take the form of a piecewise

polynomial of degree two; for a vector of land adjustments xc = Kict − Kic,t−1 over c,

Γ(x; γ) = ∑
c

1(xc > 0)
[
γ̃c1 + γc2xc + γc3x2

c
]
+ 1(xc < 0)

[
γ̃c4 + γc5xc + γc6x2

c
]

(24)

The vector γ includes adjustment cost parameters, γcj for j ∈ {2, 3, 5, 6}, which differ by

c, but are otherwise common to all i and t, as well as the distributional parameters for the

random fixed costs γ̃c1 and γ̃c4. Each perennial operation i draws an investment fixed cost,

γ̃c1 ∼ N (γi1, γ2
σ1), and divestment fixed cost, γ̃c4 ∼ N (γi4, γ2

σ4), for c = perennial in each

t. These costs are drawn at t− 1, prior to the decision Kit. The value function V(si,t−1; κ; γ)

given in (22) is defined in expectation over these cost shocks and κ is the stochastic decision

rule prior to the realization of γ̃. Only perennials incur fixed costs, so γ̃c1 = γ̃c4 = 0 for

c 6= perennial. The parameters necessary to calculate the expectation of (24) are then γ =

({{γcj}j∈{2,3,5,6}}c, {γi1}i, {γi4}i, γ2
σ1, γ2

σ4).

In addition, I only consider reallocation of existing land under agriculture to alternative

crop types, and restrict land allocations to lie within the maximum land irrigated over all

years t, ∑c Kict ≤ maxt ∑c Kict for each i. Modeling the rural real estate market lies outside

the scope of this paper; at the farm level, the opportunities for expansion onto contiguous

parcels are likely to be highly dependent upon endogenous arrival of neighbors willing to

trade.

Evolution of states. The conditional expectation in (22) depends on the evolution of the

farm state vector. To ensure that farm i’s beliefs about its state µit at t− 1 can be written as

a function of observables at t− 1, I assume:

Assumption A3 (Markov state). For every i and t, the conditional distribution of µit at t− 1 is

given by H(µit|µi,t−1).
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Assumption A3 is a natural extension of the information structure that farms have been as-

sumed to hold about their productivity (Assumption A2) to the market prices and environ-

mental shocks that they face. It allows me to recover state transitions directly from the data,

up to unobservable water market access. Economically, Assumption A3 means that farmers

in the sMDB treat last year’s crop and water prices as sufficient statistics for predicting cur-

rent prices and do not expect the law governing the conditional price distribution to shift

over time. This assumption will not be satisfied if, for example, some farms have private in-

formation about wages or crop prices, form beliefs over longer-run averages, do not update

their beliefs in each year, or anticipate longer-run structural changes in markets for labor or

agricultural goods.

The policy rule κ for observed land decisions under water market access then solves the

following dynamic stochastic program:

κ(si,t−1) = arg max
K

Ei,t−1 [Π(K, ωit, µit)− Γ(K, Ki,t−1; γ̃) + δV(K; κ; γ)] . (25)

Note that κ is a random variable that depends on the distribution of γ̃. Integrating the values

attained by κ over the distribution of cost shocks gives the value function (22). The empirical

strategy below relies on (25) to estimate γ from the function κ implied by the observed path

(Kit)t≥0, then uses a version of (25) with Πa constructed from the initial distribution of water

property rights to obtain land allocations under autarky to calculate (23).

7.2 Estimation

Estimating the dynamic gains from trade requires θ, ω, and ψ estimated in Section 5, as well

as three new primitives: irrigation policies W , the distribution H of state transitions, and

investment cost parameters γ. I recover W and H directly from the data. To estimate γ, I

follow Hotz et al. (1994), Bajari et al. (2007), and Pakes et al. (2007) to forward-simulate value

functions given (a) a land policy function recovered from observed data and (b) alterna-

tive policies. The estimator for γ then rationalizes each irrigator’s land use and investment

strategy relative to paths not taken. Appendix A.3 describes the procedure in detail. The

approach involves three steps.

Step 1. Recover irrigation W and state transitions H. Irrigation policy functions are

necessary to infer irrigation inputs under alternative states s. I estimate irrigation functions

for each c as functions of the observed components of s, by regressing water irrigated on

state variables. The estimating equations,

Wict =Wc(sit) + ϑict, (26)
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for each c, are based on flexible polynomial approximationsWc. Two restrictions of (26) are

worth highlighting. First, the specification ofW = (Wc)c requires that dynamic aspects of

irrigation decisions arise only through s and do not, for example, depend on past irriga-

tion levels. Second, given that sit includes water market access through PW
it , in practice, I

estimate (26) by including region fixed effects and summary statistics of the water price dis-

tribution of regional water transactions (mean and variance). The irrigation policy estimator

is consistent if the unobserved component of irrigation decisions (including water market

access), ϑit, is uncorrelated with the observable components of sit used to estimate (26).

To recover the state transitions given by H(µit|µi,t−1), I estimate a linear model µit =

Mµi,t−1 + υit. The estimates of M̂ are given in Table A18. Then I define Ĥ(µ|µ−) as the law

of

µ = M̂µ− + υ̂, (27)

using draws of υ̂ from the joint empirical distribution of residuals, {µit − M̂µi,t−1}i,t.

Step 2. Recover land decisions. To extend observed land decisions to future states

s, I estimate policy functions that differ by operation type and depend flexibly on s. The

dynamic program (25) implies that optimal land use decisions κ : s 7→ {Kc}c∈Ci are functions

of s = (K−, ω, µ) and differ across i only by operation type, as

κ(s) =





κperennial(s) if s is perennial
κannual(s) if s is annual
κdairy(s) otherwise.

The land use decision for all perennial operations can be written as

κperennial(s) =





K− + κ(s) with probability p+(s)
K− − κ(s) with probability p−(s)
K− else.

I estimate the adjustment probabilities p±(s) with a probit model, first for the uncondi-

tional probability of {Kict 6= Kic,t−1}, and then for the conditional probability of invest-

ment, {Kict > Kic,t−1}, given {Kict 6= Kic,t−1}. Denoting these predictions with p̂1 and p̂2,

respectively, the investment and divestment probabilities are p+(s) = p̂1 p̂2 and p−(s) =

p̂1(1 − p̂2). In principle, p±(s) should be a very flexible function of s; however, the data

limits the power of these regressions and I estimate a linear probit model in ln(s). I estimate

the adjustment width κ(s) by fitting the observed |Kict − Kic,t−1| to transformations of

Kic,t−1, ω̂ic,t−1, Ei,t−1, Wic,t−1, and Pic,t−1, for c = perennial

and region fixed effects, specifically using a quadratic polynomial in ln(s) for all perennial

i and t such that Kict 6= Kic,t−1. Annual and dairy operations make decisions jointly over
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more than one c ∈ Ci. All annual operations share a policy function κannual(s) obtained from

regressing {Kict}c∈Ci on a quadratic polynomial in natural logarithms of

Kic,t−1, ω̂ic,t−1, Ei,t−1, Wi,t−1, and Pic,t−1, for c ∈ Ci.

Dairy operations use a function κdairy(s) that predicts {Kict}c∈Ci from these observables as

well as the number of cows, XD
ict.

Step 3. Estimate switching costs. To search for a γ that rationalizes (25), I recover (22)

by forward-simulating expected profits in each period with κ, F, ω, andW using ψ and H.

Assumption A3 allows the expectation in (22) to be approximated by numerical integrating

payoffs over ∏T
t=1 dĤ(µit|µi0), simulating Ĥ with (27).

By revealed preference, the optimality of κ implies that

V(s; κ; γ?) ≥ V(s; κ′; γ?)

at the true parameter γ? for any κ′ and all initial conditions s. The Bajari et al. (2007) estima-

tor searches over parameters γ to minimize profitable deviations from the optimal policy:

Q(γ) = ∑
i

L

∑
`=1

1 {V(si0; κ; γ) < V(si0; κ`; γ)} ‖V(si0; κ`; γ)−V(si0; κ; γ)‖ , (28)

using a sufficiently rich set of L alternative policies {κ`}L
`=1. In practice, I construct alterna-

tive policies by perturbing the policy functions with ϑ` ∈ [0.75, 1.25], so that κ` = ϑ`κ(s), first

along equilibrium investment choices, and then by adjusting investment (then, divestment)

probabilities. I take ‖x‖ = 1x>0 ln(1 + x) to penalize profitable deviations in proportion to

the natural logarithm of the deviation’s value.

To efficiently recover i-specific mean switching costs for perennials, I also use the addi-

tional moments implied by the optimal land rule in (25),

p+(s) = Pγ̃ (V(s; κ+; γ)− γ̃ic1 ≥ max{V(s; κ−; γ)− γ̃ic4, V(s; κ0; γ)})

and similarly for divestment,30 where value functions conditional on investment, divest-

ment, or doing nothing are denoted by V(s; κj; γ) for j ∈ {+,−, 0}.31 These value func-

tions V(s; κ+; γ), V(s; κ−; γ), and V(s; κ0; γ) are constructed alongside V(s; κ; γ) during the

forward-simulation by perturbing the initial land condition with κ(si0) and−κ(si0). Because

γ̃i1 and γ̃i4 are Gaussian, Pγ̃(k) admits an exact functional form.32 I also fix γσ1 = γσ4 = 105.

30 p−(s) = Pγ̃ (V(s; κ−; γ)− γ̃c4 ≥ max{V(s; κ+; γ)− γ̃c1, V(s; κ0; γ)}).
31E.g., V(si,t−1; κ+; γ) ≡ Ei,t−1

[
Π(Ki,t−1 + κ(si,t−1), ωit, µit)− Γ(Ki,t−1 + κ(si,t−1), Ki,t−1, γ) + δV(sit; κ; γ)

]
.

32To further simplify the order statistic and make Pγ̃ linear in γi1 and γi4, I also assume a zero probability
for both divestment and investment being preferred to doing nothing; i.e., that {V(s; κ+; γ)− γ̃i1 ≥ V(s; κ0; γ)}
implies {V(s; κ+; γ) − γ̃i1 ≥ V(s; κ−; γ) − γ̃i4}, and {V(s; κ−; γ) − γ̃i4 ≥ V(s; κ0; γ)} implies {V(s; κ−; γ) −
γ̃i4 ≥ V(s; κ+; γ)− γ̃i1}. In practice, this restriction on the joint probability on the investment and divestment
cost draws is not so restrictive, given the low probabilities of either investing or divesting.
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For a candidate value of γc, the estimator first inverts p+(s) and p−(s) for each i to recover

{(γi1, γi4)}i, and then minimizes (28). The estimator γ̂ ∈ arg minγ Q(γ) is then consistent

for γ? under additional regularity conditions to ensure that γ? is the unique solution to

minγ Q(γ) (Bajari et al., 2007, Assumption S2).

Computational details. Appendix A.3 contains details on the algorithm and its imple-

mentation. Note that the expected value function’s linearity in the parameters γ (conditional

on κ) significantly reduces algorithmic complexity. While per-period payoffs require the cal-

culation of the expectation of various transformations of multivariate random variables, us-

ing the joint empirical probability distribution in the data retains linearity of payoffs across

states of the world and means that, as in Bajari et al. (2007), it is sufficient to simulate tra-

jectories of observables once along each of L paths of perturbed policy functions, {κ`}, and

then compute (28) over all of the perturbed policy functions for each candidate γ.

Relation to previous methods. The model of dynamic investment is similar to Ryan

(2012), with an important difference: the dynamic land choices depend on unobserved, per-

sistent differences in productivity. Dynamic models typically rule out agent-specific unob-

servables that persist over time because they preclude the estimation of policy functions “di-

rectly from the data” by making the state variables in the dynamic policy function correlated

with unobservables that enter the same function. Here, because ω is estimated previously

in Section 4 from the observed physical output, inputs, and prices, I can estimate dynamic

policy functions that depend directly on ω. Note that without this production function es-

timation step, any persistence in ω would bias the approach taken above: investment at t

depends on both Kit and productivity ωit, but Kit will be correlated with ωit through ωi,t−1,

so a nonparametric regression of Ki,t+1 on Kit and µit cannot recover unbiased estimates of

the true policy function Ki,t+1 = κ(Kit, ωit, µit).

7.3 Estimated primitives

The estimated irrigation policies increase in land, crop price, and productivity and decrease

in rainfall and the average water price (Table A16). These estimates are relatively insensitive

to the specific polynomial approximation (Table A17). The estimated adjustment probabili-

ties for perennials (Table A19) are noisy, but show that adjustment is more likely for farms

with greater land investments, higher average water prices, and higher crop prices. The

adjustment bandwidth, κ(·), increases in farm size and productivity, and diminishes in irri-

gation inputs. Annual farms’ irrigated land inputs in κannual(·) increase in past land inputs

and irrigation, but diminish in productivity. Dairy farms’ area of irrigated pasture in κdairy(·)
increases in past inputs, productivity, and dairy cows.
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Table 12 contains the dynamic investment cost parameters. The distribution of means of

the investment fixed cost distribution is moderately dispersed; the median is approximately

A$1.5 million, with an interquartile range of A$833,000 to A$3.3 million. Divestment costs

are smaller; the median cost is−A$850,000; the negative cost captures the value of the land’s

alternative use. Average costs are large, to rationalize the fact that perennial operations

do not frequently adjust their operation size. Variable costs are much smaller relative to

fixed costs, and convex—linear investment cost of γ̂c2 = A$88/ha for c = perennial and

quadratic cost of γc3 =A$312/ha. Divestment also exhibits increasing marginal costs, with

γ̂c6 = A$55.

7.4 Long-run value of trade

While the value of the market can be recovered from V, the value Va cannot be recovered

from the estimated policy functions κ, which only capture land-use decisions in the presence

of the water market. These value functions depend on a high-dimensional state s; to focus on

land, I embed the dependence of V on si0 by recovering i-specific value functions, and take

as profits in each period Π̃i(Kit), defined as the expected profits over the paths of (ωit, µit)

expected to arise from (ωi0, µi0). This allows me to recover value functions Vi for each i

using a fixed point operator on a five-hectare discretized grid, via the contraction

V(si0; κ; γ) = Vi(Ki0) = max
K

Ei0

[
Π̃i(K)− Γ(K, Ki0; γ) + δVi(K)

]
(29)

under the water market. For each iteration of the contraction (29), it is necessary to integrate

over the distribution of γ̃ in the calculation of arg maxK, unlike the value function given

in (25), which could be calculated using only on expected fixed costs of switching and the

policy rule κ. The Gaussian distributional assumption makes numerical calculation of (29)

straightforward.

Autarky endowments are constructed from ρi0Wrt. To ensure that the total volume of

water diverted across i in each year t is the same under both mechanisms in every state

of the world, I calculate Wrt(st) by each year t by apportioning total irrigation under the

market mechanism, Wt = ∑iW(sit), to regions using average historical shares over all years

t in the data, 1
T ∑t

Wrt
∑r Wrt

. I then allocate ρi0Wrt across c for each i in proportion to Wict
∑c Wict

as

before. These autarky allocations give Va
i (Ki0) using (29), replacing Π̃i with Π̃a

i .

Long-run gains from trade. Table 13 reports GFT∞ from (23), taking the data from 2007–

2015 as initial conditions and evaluating (23) for perennial operations only. The estimated

long-run expected value of the market is 8.2% of total net output. This value moderately ex-

ceeds the annual gains calculated in the benchmark model (5.8% for perennials), implying
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that in the long run, land investments improve the dynamic efficiency of the land alloca-

tion relative to the observed initial land allocation in 2007–2015. That these investments

amplify the longer-run gains from water market access implies that their value exceeds the

adaptation under autarky that the benchmark calculation did not take into account.33

How does (23) differ from a short-run value of market-based water reallocation? The

benchmark calculations did not assume dynamically efficient land-use; the opportunity to

alter land-use investments affects the value of agricultural production under (i) autarky and

(ii) the existing water market.

First, farms adapt to water misallocation under autarky. This adaptation channel was not

considered when land was taken as a fixed characteristic, and an estimate of the long-run

gains-from-trade calculated along the efficient water-market land trajectory will overstate

the market’s actual value. The second row of Table 13 reports the following decomposition:

∑
i

V(s∗i ; κ; ·)−Va(sa
i ; κa; ·) = ∑

i
V(s∗i ; κ; ·)−Va(s∗i ; κ; ·)︸ ︷︷ ︸

static allocative efficiency A

− [Va(sa
i ; κa; ·)−Va(s∗i ; κ; ·)]︸ ︷︷ ︸
value of adaptation

.

(23A)

Evaluating (23) holding land use fixed to its efficient trajectory under the water market,

the gains from trade are 9.0%, relative to 8.2%. Failing to take into account this adaptation

channel would therefore overstate the market’s estimated long-run value by about 10%. The

opportunity for adaptation under autarky matters, but does not considerably dampen the

water market’s estimated value.

Second, water market access alters farms’ land-use relative to autarky. Table 13 shows

that irrigated perennial land increases by 4.6% with the introduction of the water market.

The value of this investment, relative to a gains-from-trade estimate holding land fixed

along its autarky path, can be recovered from the decomposition

∑
i

V(s∗i ; κ; ·)−Va(sa
i ; κa; ·) = ∑

i
V(s∗i ; κ; ·)−V(sa

i ; κa; ·)︸ ︷︷ ︸
value of investment

+V(sa
i ; κa; ·)−Va(sa

i ; κa; ·)︸ ︷︷ ︸
static allocative efficiency B

, (23B)

Equation (23B) separates the value of more efficient dynamic land use from allocative ef-

ficiency holding land fixed to its pre-market level. Table 13 shows that this dynamic in-

vestment channel creates value equal to 1.8% of output, relative to “static gains” calculated

along the autarky path of land use, 6.3%. In this sense, measuring the value of introduc-

ing a water market—holding pre-market land-use decisions fixed—misses approximately

one-fifth of the market’s total value.
33Note that it is not possible to sign the difference ex-ante between (23) and the NPDV of (19). While the static

measure of allocative efficiency in (23A) overstates (23) because Va(sa
i ; κa; γ) ≥ Va(s∗i ; κ; γ), it is not directly

comparable because investment costs vanish from (19). The optimality of sa
i does not imply (19) overestimates

(23), because Πa(K, ·)− Γ(K, ·; γ) ≤ maxKa [Πa(Ka, ·)− Γ(Ka, ·; γ)] need not imply that Πa(K, ·) ≤ Πa(Ka, ·).
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8 Conclusion

Climate change has renewed calls for water markets to allocate resources more efficiently

and to forestall increasing scarcity. But how important is allocative efficiency in a changing

climate? If the value of water differs greatly across competing uses and is relatively uncorre-

lated with current property rights, water markets may be crucial in the response to climate

change; otherwise, water trading may be closer to rearranging deck chairs on the Titanic.

This paper used physical input-output data—not theories of water demand or assump-

tions about water market access—to identify shadow water values and recover the value

of trade from observed market-based reallocation. This “primal” approach avoids using

revealed preference from observed trades. Such analyses can deliver many critical, policy-

relevant insights, including but not limited to the prediction of equilibrium water market

prices (e.g., Gupta et al., 2018). In contrast, the model presented here neither requires that

farms trade or irrigate optimally, nor relies on a specific form of water market access, trans-

action costs, or trading constraints. This allows the paper to (a) value water trading without

assuming that it cannot be bad, in contrast to revealed preference methods; and (b) test

whether the market reallocates water efficiently, in contrast to simulations that typically as-

sume efficient reallocation subject to a specification of river flow constraints.

The estimates imply that water trading under the Australian sMDB mechanism increased

producer surplus by 4–6% of irrigated agricultural GDP between 2007–2015 for surveyed

farms and that these gains increase with water scarcity. Viewed in terms of factor misallo-

cation, more efficient water allocation across irrigated farms increased the industry’s total

factor productivity (TFP) by approximately one-half percent per year from 2007–2015, for

an industry with annual TFP growth of 1–2% from 1970–present. Alternatively, reverting

to pre-trade endowments reduces output by the same amount as an 11.8% uniform decline

in water resources from observed levels, in a region where climate forecasts project median

reductions in surface water of 11% from 1◦C of warming. In this sense, the value of the

Australian mechanism is potentially on the same order of magnitude as the water scarcity

predicted to arise from short-run climate change. Dynamic reallocation of land (e.g., to

high-value orchards and vineyards) further amplifies a water market’s value.

These results raise a range of questions for future work. The focus on agricultural users

while holding diversion caps fixed avoids the vital question of environmental protection,

the other primary value of river water in the Murray-Darling (Grafton et al., 2011). Whether

general equilibrium forces (such as wages and crop prices) adjust countercyclically to mit-

igate the losses associated with the misallocation of water is an interesting question with a
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long lineage (Samuelson, 1948). In addition, water market access should affect equilibrium

investment in irrigation technology (Acemoglu, 2007), which could further increase water

markets’ social value (Dales, 1968, p. 794). The ownership of water rights may also provide

considerable insurance value for risk-averse farms (Bontems and Nauges, 2019), a value that

measures of unweighted producer surplus will not capture. Finally, dams and other water

storage technologies allow the conservation of river water between years, creating water

stocks that affect equilibria in annual and permanent markets and serve an essential role in

the management of future drought risk (Hughes et al., 2013). Understanding the value of

the intertemporal water trade enabled by these forms of infrastructure will be particularly

crucial in a world where water resources are less evenly-distributed across time.
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FIGURE 1. MAP OF THE SOUTHERN MURRAY-DARLING BASIN (SMDB)

River network, regions, irrigation areas, and dams in the southern Murray-Darling Basin.

Source: Australian Department of Agriculture.
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TABLE 1. WATER RIGHTS, TRADING, AND PRICES

N × T mean s.d. Q.10 Q.25 Q.50 Q.75 Q.90

total irrigation, ML 2, 032 684.65 1, 385.21 17.01 68.45 211.05 650 1, 589.80

permanent rights, nominal ML 2, 032 881.82 1, 253.49 72 156 406.50 1, 091.15 2, 257.10
permanent rights, realized ML 2, 032 515.90 794.42 31.91 81.49 233.39 609.70 1, 259.38

buy annual water, {0, 1} 2, 032 0.32 0.47 0 0 0 1 1
annual volume bought, ML 2, 032 93.49 296.12 0 0 0 35 235.40
sell annual water, {0, 1} 2, 032 0.20 0.40 0 0 0 0 1
annual volume sold, ML 2, 032 26.40 87.60 0 0 0 0 80

buy permanent rights, {0, 1} 954 0.23 0.42 0 0 0 0 1
permanent volume bought, realized ML 954 45.16 184.62 0 0 0 0 77.62
sell permanent rights, {0, 1} 954 0.29 0.46 0 0 0 1 1
permanent volume sold, realized ML 954 60.28 235.62 0 0 0 7.32 129.32

net buyer, {0, 1} 2, 032 0.42 0.49 0 0 0 1 1
net volume bought, ML 2, 032 120.98 341.03 0 0 0 78.25 333.94
net seller, {0, 1} 2, 032 0.31 0.46 0 0 0 1 1
net volume sold, ML 2, 032 54.70 184.90 0 0 0 27.15 149.82

annual regional water price, AUD/ML 44 235.01 198.37 24.55 55.05 160.26 338.74 621.91

Farm-level irrigation, water rights, and trading from 2007–2015. Volumes denominated in megaliters (ML).
Nominal permanent rights calculated as i’s share of the total entitlement volume on issue, ρit. Realized perma-
nent rights reported as ρitWrt. Number of observations falls for permanent rights because they are only defined
for farms observed at least twice and each farm observation after the first.

Source: ABARES Survey of Irrigated Farms.
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TABLE 2. YIELDS, IRRIGATION, AND RAINFALL

A. Yields (’1000 AUD/ha)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2007–15

Perennial 9.586 10.061 11.198 10.106 10.245 10.105 14.453 14.085 14.578 10.874
Annual (irrigated) 14.556 15.933 9.901 7.108 6.801 2.155 5.892 4.937 6.174 8.937
Annual (nonirrigated) 0.318 0.547 0.463 0.436 0.664 0.508 0.370 0.503 0.570 0.510
Pasture 5.608 10.383 11.665 9.723 6.999 5.542 3.748 5.205 9.864 7.767

B. Irrigation (ML/ha)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2007–15

Perennial 5.801 4.932 4.527 4.252 3.967 5.452 6.849 5.720 5.763 5.109
Annual (irrigated) 3.950 2.867 3.140 3.784 5.093 5.937 3.990 8.466 6.384 4.497
Annual (nonirrigated) 0 0 0 0 0 0 0 0 0 0
Pasture 2.511 2.124 1.897 1.969 2.020 2.127 2.208 3.141 2.985 2.275

C. Rainfall and Evapotranspiration (mm)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2007–15

Rainfall 221.85 333.66 294.06 447.38 773.52 537.75 257.20 373.14 400.52 417.80
(47.76) (174.02) (121.30) (149.98) (153.25) (175.27) (110.20) (127.61) (161.64) (219.10)

Evapotr. 139.77 148.50 143.21 204.57 264.66 218.52 154.73 204.21 172.42 184.93
(19.01) (4.24) (10.70) (6.86) (16.32) (10.57) (23.39) (16.82) (5.33) (44.19)

The unit of observation is (i, c, t) for Panels A and B, (i, t) for Panel C rainfall, and (r, t) for Panel C evapotran-
spiration. Appendix C describes the definition of each crop type.

Source: ABARES Survey of Irrigated Farms; Australian Bureau of Meteorology.
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A. Regional Water-Sharing Rules
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FIGURE 2. REGIONAL WATER ALLOCATIONS AND MARKET PRICES

A. Regional water allocations by year as percentages of entitlement volume on issue in 2007. Tabulated in Table
A2.

B. Average annual sMDB-wide water allocation prices, ln(AUD/ML). Blue bands show [5-%,95%] intervals of
transaction-volume-weighted price distribution of all trades within each year (2008–2015) and minimum and
maximum annual regional average prices for 2007. Table A3 contains additional details on within-year water
price variation.

Source: A. NSW, VIC, and South Australia state government regulatory records. B. MDBA administrative
transaction-level allocation water trade data (2008–2015); state registries and a private water broker (2007).
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FIGURE 3. WATER MARKET OUTCOMES AND RAINFALL, 2007–2015

Panel A. Average annual allocation water prices (whiskers: interdecile interval of transaction price distribution)
and mean (red) and interdecile interval (ribbon) of farm-level rainfall minus evapotranspiration.

Panel B. Fraction of total irrigation volumes bought on the annual water market in each year t (blue bars) and
the same rainfall series.

Source: ABARES Survey of Irrigated Farms; MDBA, state government registries, and private water broker.

55



250

500

750

1000

1250

2007−09−03 2007−10−29 2007−12−24 2008−02−18 2008−04−14 2008−06−09

date

Pr
ic

e 
(A

U
D

/
M

L
)

NSW Murray

Murrumbidgee

SA Murray

Goulburn

VIC Murray

Daily Water Prices, 2007

20

40

60

80

100

2013−08−05 2013−09−30 2013−11−25 2014−01−20 2014−03−17 2014−05−12 2014−07−07

date

Pr
ic

e 
(A

U
D

/
M

L
)

NSW Murray

Murrumbidgee

SA Murray

Goulburn

VIC Murray

Daily Water Prices, 2013

FIGURE 4. EXAMPLES OF INTRA-ANNUAL WATER PRICE DISPERSION

[5%,95%]-tile intervals of daily water prices (AUD/ML) and cumulative volume traded (ML). Note that the
scale of the y-axes differ between figures. Figures for all years 2008–2015 in the Online Appendix.

Source: MDBA administrative transaction-level water price data.
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TABLE 3. ANNUAL WATER TRADING DECISIONS AND RAINFALL

A. Annual purchases

Dependent variable:

Buy, 1(∆it > 0)

(1) (2) (3) (4)

ln(net rainfallit) −0.105∗∗∗ −0.063∗∗∗ −0.053∗∗∗ −0.126∗∗∗

(0.017) (0.019) (0.020) (0.036)

ln(water endowmentit) −0.003 0.017∗ 0.021∗∗ −0.067∗∗

(0.010) (0.010) (0.010) (0.028)

Year FEs X X X X
Region FEs X X
Region×Year FEs X
Farm FEs X
Observations 2,032 2,032 2,032 2,032
Adjusted R2 0.122 0.142 0.191 0.401

B. Annual sales

Dependent variable:

Sell, 1(∆it < 0)

(1) (2) (3) (4)

ln(net rainfallit) 0.023 −0.041∗∗ −0.051∗∗∗ 0.035
(0.016) (0.017) (0.019) (0.024)

ln(water endowmentit) 0.051∗∗∗ 0.028∗∗∗ 0.026∗∗∗ 0.045∗∗

(0.008) (0.008) (0.009) (0.021)

Year FEs X X X X
Region FEs X X
Region×Year FEs X
Farm FEs X
Observations 2,032 2,032 2,032 2,032
Adjusted R2 0.074 0.132 0.172 0.468

The unit of observation is the farm-year. Regressions of the indicator for trading annual water rights on net
rainfall (annual rainfall minus evapotranspiration), realized permanent water endowments, and fixed effects
denoted by checkmarks. Every regression includes crop-type fixed effects. Table A5 reports results for perma-
nent trading.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses. Nonzero coefficients
significant at ∗10%, ∗∗5% and ∗∗∗1% levels.
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FIGURE 6. AGRICULTURAL CALENDAR
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TABLE 4. PRODUCTION FUNCTION ESTIMATES

Perennial Annual irrigated Annual nonirrigated Dairy
(1) (2) (3) (4)

Irrigation

Average irrigation-output elasticity E[
∂ fc
∂w ] 0.277∗∗∗ 0.210∗∗∗ 0.359∗∗∗ 0.087∗∗

(0.054) (0.041) (0.081) (0.038)

Interquartile range of ∂ fc
∂w across i, t [0.231, 0.354] [0.149, 0.278] [0.341, 0.388] [0.043, 0.118]

10-90%-ile range [0.124, 0.381] [0.075, 0.321] [0.305, 0.405] [0.024, 0.152]

Water-land aggregator

Scale coefficient, βcW 0.625∗∗∗ 0.484∗∗∗ 0.549∗∗∗ 0.727∗∗∗

(0.135) (0.080) (0.067) (0.157)

Irrigation share, αc 0.575∗∗∗ 0.468∗∗∗ — 0.125
(0.053) (0.045) (0.095)

Land share, 1− αc 0.425∗∗∗ 0.532∗∗∗ 0.450∗∗∗

(0.053) (0.045) (0.131)

Rainwater coefficient, ϑc 0.550∗∗∗

(0.131)

Elasticity of substitution, σc 1.744∗∗∗ 1.964∗∗∗ 2.014
(0.363) (0.412) (1.639)

Other factors

Labor elasticity, βcL 0.348∗∗∗ 0.233∗∗∗ 0.233∗∗∗ 0.149∗∗∗

(0.016) (0.013) (0.013) (0.007)

Materials elasticity, βcM 0.191∗∗∗ 0.425∗∗∗ 0.425∗∗∗ 0.113∗∗∗

(0.009) (0.016) (0.016) (0.004)

Feed share, αF 0.875∗∗∗

(0.095)

Pasture-feed elasticity of substitution, σF 0.540
(5.852)

Returns to scale, ∑j βcj 1.164∗∗∗ 1.142∗∗∗ 1.207∗∗∗ 0.988∗∗∗

(0.137) (0.086) (0.070) (0.158)

J-statistic 0.206∗∗∗ 0.255∗∗∗ 2.664 1.161∗∗∗

Adjusted R2 0.816 0.748 0.793 0.866
Observations 493 170 210 256

Results from the GMM procedure described in Section 4 using the nested CES production function given by
(2). Each column contains separately estimated production functions for each type. For irrigated/nonirrigated
annual crops, first-stage labor and materials elasticities are estimated pooling across both crop-types. Instru-
ments are regional water allocations interacted with previous period’s water rights for irrigated c and rainfall
for nonirrigated c as described in Section 4.2. Mean, interquartile, and interdecile ranges of { ∂ fc

∂w } calculated at
observed inputs over all i, t. Adjusted R2 reports the fit of the first-stage polynomial Φ̂ict = ωict + fict on qict.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses. Nonzero coefficients
significant at ∗10%, ∗∗5% and ∗∗∗1% levels.
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TABLE 5. PRODUCTIVITY ESTIMATES

Perennial Annual irrigated Annual nonirrigated Dairy
(1) (2) (3) (4)

Median productivity 7.828 3.617 1.655 6.366
(1.006) (1.470) (9.782) (1.582)

Interquartile interval [7.55, 8.08] [3.21, 3.99] [1.13, 2.07] [6.20, 6.59]
Interquartile range 0.523 0.779 0.945 0.387

(0.179) (0.136) (0.111) (0.097)

Interdecile interval [7.30, 8.33] [2.77, 4.43] [0.71, 2.47] [6.01, 6.84]
Interdecile range 1.028 1.656 1.763 0.829

(0.301) (0.195) (0.153) (0.153)

Persistence, $̂c 0.639 0.504 0.640 0.384
(0.062) (0.091) (0.055) (0.180)

Growth rate 0.067 0.064 0.184 −0.103
(0.018) (0.059) (0.044) (0.037)

Observations 493 170 210 256

Estimated productivities {ω̂ict}, denominated in natural logarithms of AUD and recovered as Φ̂ict − f̂ict, using
production function estimates F̂c reported in Table 4.

Persistence is defined as the coefficient $̂c in the regression ω̂ict = $0c + $cω̂ic,t−1 + εict. Growth rate is annual
and defined as 1

NT ∑i,t(ω̂ict − ω̂ic,t−1)

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses..
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TABLE 6. WATER TRADING DECISIONS AND ESTIMATED PRODUCTIVITY

Dependent variable:

A. Buy annual allocations

(1) (2) (3) (4)

Productivity, ω̂it 0.062∗∗∗ 0.057∗∗∗ 0.045∗∗∗ 0.051∗∗

(0.013) (0.012) (0.011) (0.021)

B. Sell annual allocations

(1) (2) (3) (4)

Productivity, ω̂it −0.044∗∗∗ −0.035∗∗∗ −0.029∗∗∗ −0.036∗

(0.010) (0.010) (0.010) (0.021)

C. Buy permanent rights

(1) (2) (3) (4)

Productivity, ω̂it −0.009 −0.008 −0.002 −0.014
(0.008) (0.009) (0.008) (0.022)

D. Sell permanent rights

(1) (2) (3) (4)

Productivity, ω̂it 0.010 0.009 0.005 0.026
(0.010) (0.010) (0.011) (0.030)

Rainfall X X X X
Endowment X X X X
Year FEs X X X X
Region FEs X X
Region×Year FEs X
Farm FEs X
Observations 2,032 2,032 2,032 2,032

The unit of observation is the farm-year. Regressions of binary indicators of trading water on estimated farm
productivity and the same controls as Table 3 (natural logarithms of net rainfall and realized permanent water
endowments, plus fixed effects). Every regression includes crop-type fixed effects. Productivity defined for
multicrop farms as output-weighted mean: ω̂it ≡ ln(∑c exp(ω̂ict)PictQict).

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses. Nonzero coefficients
significant at ∗10%, ∗∗5% and ∗∗∗1% levels.
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TABLE 7. WATER TRADING DECISIONS AND ANNUAL PRODUCTIVITY SHOCKS

Dependent variable:

A. Buy annual allocations

(1) (2) (3) (4)

Productivity innovation, ξ̂it 0.126∗∗∗ 0.120∗∗∗ 0.089∗∗∗ 0.136∗∗∗

(0.027) (0.027) (0.026) (0.039)

Lagged productivity, ω̂i,t−1 0.054∗∗∗ 0.051∗∗∗ 0.042∗∗∗ 0.030
(0.016) (0.016) (0.015) (0.030)

B. Sell annual allocations

(1) (2) (3) (4)

Productivity innovation, ξ̂it −0.041 −0.019 0.006 −0.040
(0.029) (0.028) (0.029) (0.036)

Lagged productivity, ω̂i,t−1 −0.041∗∗∗ −0.027∗∗ −0.022∗ −0.039
(0.013) (0.013) (0.013) (0.033)

C. Buy permanent rights

(1) (2) (3) (4)

Productivity innovation, ξ̂it −0.027 −0.026 −0.020 −0.042
(0.024) (0.024) (0.025) (0.033)

Lagged productivity, ω̂i,t−1 −0.0003 0.0002 0.006 0.002
(0.007) (0.008) (0.008) (0.018)

D. Sell permanent rights

(1) (2) (3) (4)

Productivity innovation, ξ̂it 0.040 0.039 0.036 0.078∗∗

(0.027) (0.028) (0.027) (0.039)

Lagged productivity, ω̂i,t−1 0.007 0.006 −0.001 0.023
(0.011) (0.011) (0.011) (0.036)

Rainfall X X X X
Endowment X X X X
Year FEs X X X X
Region FEs X X
Farm FEs X
Observations 954 954 954 954
Adjusted R2 0.182 0.195 0.256 0.438

Version of Table 6 replacing ω̂it with ω̂i,t−1 and ξ̂it.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses. Nonzero coefficients
significant at ∗10%, ∗∗5% and ∗∗∗1% levels.
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FIGURE 7. CURVATURE OF SHADOW VALUE FUNCTIONS

Plots of the estimated shadow value functions given by (17) with interdecile range (light blue band), interquar-
tile range (dark blue), and median values (black line) across farm-years. Note that x-axes differ across figures
as they are bounded by the 97.5%-ile volume of irrigation for each irrigated c.
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TABLE 8. WATER SHADOW VALUES AT OBSERVED INPUTS

Perennial Annual irrigated Annual nonirrigated Dairy Water market
(1) (2) (3) (4) (5)

Median shadow value (AUD/ML) 467.55 87.87 42.77 129.20 160.26
(89.573) (18.070) (9.214) (67.524) (198.37)

Interquartile interval [334.79, 666.43] [50.06, 178.19] [25.94, 63.59] [55.91, 291.11] [55.05, 338.74]

Range 331.633 128.129 37.641 235.205 289.81
(77.407) (94.311) (8.478) (79.382)

Interdecile interval [239.17, 1001.33] [38.04, 721.42] [17.48, 87.06] [31.95, 587.85] [24.55, 621.91]

Range 762.163 683.382 69.580 555.904 578.91
(182.971) (181.177) (19.606) (199.677)

Observations 493 170 210 256 2,032

Water shadow water values pooled over 2007–2015, in columns (1)–(4); regional water allocation prices dis-
tributed over farms in column (5). Shadow values obtained by evaluating (17) at observed input levels, using
the estimated production functions (Table 4) and productivities (Table 5).

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses..
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FIGURE 8. WATER SHADOW VALUES AT OBSERVED INPUTS

Pooled histogram (top) and conditional densities (bottom) of estimated farm-crop-level shadow water values
obtained from evaluating (17) at observed inputs. The x-axis range is 0 to the 97.5%-tile observation. Nonpara-
metric densities obtained using a Gaussian kernel estimator with a Silverman (1986) optimal bandwidth.
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FIGURE 9. POST-TRADE SHADOW VALUE DISTRIBUTION V. TRANSACTION PRICES

Conditional probability densities (top) and CDF (bottom) of farm-crop-level shadow water values at observed
inputs (blue) and transaction prices (red), both from 2008–2015; 2007 predates water-price-transaction-level
reporting. The x-axis range is 0 to the 97.5%-ile shadow value observation. Nonparametric densities obtained
using a Gaussian kernel estimator with a Silverman (1986) optimal bandwidth.
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FIGURE 10. PRE-TRADE SHADOW VALUES

Conditional probability densities (top) and CDF (bottom) of farm-crop-level shadow water values, centered at
the annual average, and evaluated at pre-annual-trade endowments for annual buyers (blue) and annual sellers
(red). Nonparametric densities obtained using a Gaussian kernel estimator with a Silverman (1986) optimal
bandwidth.
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FIGURE 11. EFFECT OF TRADE ON SHADOW PRICE DISPERSION

Nonparametric densities of estimated farm-crop-level shadow water prices evaluated at observed inputs (blue)
and pre-trade inputs (red), for 2007–2015 (top) and 2007–2010 (bottom). The x-axis range is 0 to 97.5%-tile
observation. Nonparametric densities obtained using a Gaussian kernel estimator with a Silverman (1986)
optimal bandwidth.
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TABLE 9. MISALLOCATION AND WATER TRADING

Interquartile shadow value range

Pre-trade Post-trade Difference

All 680.72∗∗∗ 641.52∗∗∗ −39.19
(150.47) (151.38) (24.90)

Years
2007 640.28∗∗∗ 655.43∗∗∗ 15.15

(187.00) (174.04) (47.83)

2008 765.02∗∗∗ 761.05∗∗∗ −3.97
(183.64) (235.98) (118.19)

2009 1207.85∗∗∗ 1025.99∗∗∗ −181.86
(252.27) (276.22) (129.52)

2010 540.46∗∗∗ 501.57∗∗∗ −38.89
(200.75) (182.05) (89.14)

2011 494.09∗∗∗ 368.86∗∗∗ −125.23∗

(165.65) (129.96) (71.02)

2012 410.73∗∗∗ 365.49∗∗∗ −45.24
(134.26) (109.16) (48.49)

2013 400.17∗∗ 314.50∗ −85.67
(181.72) (166.26) (75.91)

2014 634.26∗∗∗ 614.65∗∗∗ −19.61
(192.21) (178.34) (66.02)

2015 797.76∗∗ 760.77∗∗∗ −36.98
(337.10) (256.68) (133.65)

Interdecile shadow value range

Pre-trade Post-trade Difference

All 1579.37∗∗∗ 1567.63∗∗∗ −11.73
(355.39) (354.17) (70.05)

Years
2007 1389.61∗∗∗ 1386.38∗∗∗ −3.23

(400.46) (342.70) (127.37)

2008 1627.09∗∗∗ 1676.32∗∗∗ 49.23
(434.88) (481.10) (175.35)

2009 2467.01∗∗∗ 2055.77∗∗∗ −411.24
(613.19) (708.76) (402.34)

2010 1506.80∗∗∗ 1454.92∗∗ −51.88
(511.18) (568.48) (271.85)

2011 953.59∗∗ 847.60∗∗ −105.99
(393.62) (351.46) (119.82)

2012 749.38∗∗ 736.71∗∗∗ −12.67
(300.03) (223.85) (122.50)

2013 900.02∗∗ 844.67∗∗∗ −55.35
(349.17) (306.67) (114.26)

2014 1155.24∗∗ 1158.33∗∗∗ 3.09
(540.53) (421.65) (203.07)

2015 1851.29∗ 1725.91∗∗∗ −125.38
(1003.65) (578.99) (619.77)

Restricted to water-trading farms only. Interquartile range of estimated shadow values evaluated at pre-
trade endowments, post-trade observed inputs, and the difference between the two. Standard errors block-
bootstrapped at the farm level (700 iterations) in parentheses. Nonzero coefficients significant at ∗10%, ∗∗5%
and ∗∗∗1% levels.
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TABLE 10. REALIZED GAINS FROM WATER TRADING

Gains from trade Reallocation

% %, traders AUD/ML realloc (%) traders (%)

Both 0.062 0.093 414.98 0.144 0.62
[0.034, 0.093] [0.050, 0.135] [202.98, 658.61] [0.128, 0.161] [0.60, 0.64]

Annual 0.057 0.101 412.47 0.133 0.50
[0.033, 0.078] [0.058, 0.133] [208.46, 596.30] [0.118, 0.149] [0.48, 0.52]

Permanent 0.009 0.041 178.30 0.050 0.24
[−0.011, 0.034] [−0.054, 0.140] [−192.15, 808.47] [0.034, 0.069] [0.21, 0.26]

Estimated gains from observed water trading, 2007–2015, from pre-trade endowments described in Section 6.1.
Gains from trade defined as discounted sum of (19) over t, reported as the fraction of total irrigated profits
(column 1), total irrigated profits of only water-trading farms (column 2), and total trade volume (column 3).
Columns 4 and 5 show trade volumes divided by total irrigation volumes and the proportion of farm-years
with nonzero trade balances.

Confidence intervals report [5%,95%]-ile range of 700 draws block-bootstrapped at the farm level.
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TABLE 11. WATER SCARCITY AND THE GAINS FROM ANNUAL TRADE

Gains from trade Reallocation

% %, traders AUD/ML realloc (%) traders (%)

All (annual market) 0.057 0.101 412.47 0.133 0.50
[0.033, 0.078] [0.058, 0.133] [208.46, 596.30] [0.118, 0.149] [0.48, 0.52]

A. Regional water allocations
Below median 0.084 0.140 750.38 0.163 0.57

[0.048, 0.129] [0.077, 0.193] [394.91, 1196.13] [0.141, 0.186] [0.54, 0.60]

Above median 0.038 0.070 243.29 0.122 0.43
[0.011, 0.054] [0.020, 0.100] [67.12, 354.08] [0.103, 0.141] [0.40, 0.46]

Q1 0.104 0.185 870.86 0.187 0.63
[0.045, 0.155] [0.084, 0.230] [369.18, 1244.34] [0.156, 0.221] [0.60, 0.67]

Q2 0.064 0.099 608.30 0.143 0.50
[0.019, 0.136] [0.031, 0.194] [165.10, 1468.99] [0.119, 0.169] [0.46, 0.54]

Q3 0.046 0.069 223.62 0.134 0.56
[0.010, 0.078] [0.015, 0.117] [42.35, 365.32] [0.106, 0.163] [0.51, 0.61]

Q4 0.034 0.071 258.31 0.114 0.37
[0.004, 0.052] [0.010, 0.103] [35.74, 389.02] [0.092, 0.138] [0.33, 0.41]

B. Rainfall
Below median 0.099 0.147 513.72 0.150 0.59

[0.050, 0.129] [0.079, 0.194] [281.37, 786.94] [0.125, 0.178] [0.56, 0.61]

Above median 0.034 0.067 313.68 0.120 0.41
[0.012, 0.055] [0.023, 0.100] [86.79, 499.40] [0.102, 0.138] [0.38, 0.44]

Q1 0.149 0.204 784.00 0.179 0.59
[0.086, 0.204] [0.121, 0.270] [444.68, 1116.45] [0.142, 0.222] [0.56, 0.63]

Q2 0.075 0.117 390.26 0.139 0.58
[0.023, 0.112] [0.037, 0.179] [123.10, 764.89] [0.111, 0.170] [0.54, 0.61]

Q3 0.046 0.071 347.48 0.171 0.57
[0.010, 0.079] [0.014, 0.108] [52.04, 573.98] [0.144, 0.196] [0.54, 0.62]

Q4 0.017 0.054 226.56 0.068 0.24
[0.005, 0.034] [0.018, 0.106] [64.27, 480.80] [0.051, 0.087] [0.20, 0.28]

Estimated gains from observed annual water trading, for all farms 2007–2015 and then subsets specified by row.
See Table 10 for additional details.

Panel A stratifies the data by Wrt quartile, calculated across years within each region; B stratifies the data by
rainfall quartile calculated over all farm-years. Continued on next page.

Confidence intervals report [5%,95%]-ile range of 700 draws block-bootstrapped at the farm level.
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TABLE 11 (CONT’D). WATER SCARCITY AND THE GAINS FROM ANNUAL TRADE

Gains from trade Reallocation

% %, traders AUD/ML realloc (%) traders (%)

All (annual market) 0.057 0.101 412.47 0.133 0.50
[0.033, 0.078] [0.058, 0.133] [208.46, 596.30] [0.118, 0.149] [0.48, 0.52]

C. Within-year rainfall
Below median 0.084 0.131 459.87 0.130 0.56

[0.042, 0.103] [0.067, 0.156] [212.09, 571.39] [0.110, 0.154] [0.54, 0.59]

Above median 0.035 0.070 344.92 0.138 0.44
[0.014, 0.066] [0.027, 0.130] [124.76, 726.93] [0.117, 0.158] [0.41, 0.47]

Q1 0.077 0.145 477.32 0.121 0.55
[0.042, 0.124] [0.079, 0.202] [259.36, 702.95] [0.088, 0.161] [0.51, 0.59]

Q2 0.089 0.123 448.75 0.137 0.58
[0.027, 0.106] [0.040, 0.147] [109.16, 591.88] [0.114, 0.162] [0.54, 0.62]

Q3 0.030 0.062 306.42 0.132 0.45
[−0.002, 0.063] [−0.004, 0.110] [−20.47, 582.54] [0.106, 0.160] [0.42, 0.50]

Q4 0.042 0.080 394.93 0.145 0.42
[0.013, 0.090] [0.032, 0.180] [123.71, 1146.04] [0.110, 0.181] [0.38, 0.46]

D. Within-farm rainfall
Below median 0.096 0.153 639.72 0.167 0.61

[0.055, 0.141] [0.077, 0.190] [305.25, 879.00] [0.140, 0.198] [0.58, 0.65]

Above median 0.028 0.060 295.12 0.104 0.39
[−0.006, 0.039] [−0.013, 0.083] [−53.54, 446.01] [0.084, 0.125] [0.36, 0.42]

Q1 0.125 0.162 675.53 0.162 0.62
[0.060, 0.156] [0.081, 0.203] [303.78, 940.94] [0.134, 0.194] [0.58, 0.66]

Q2 0.042 0.118 492.54 0.192 0.60
[0.015, 0.119] [0.025, 0.178] [100.63, 961.64] [0.142, 0.242] [0.54, 0.66]

Q3 0.017 0.028 194.90 0.107 0.50
[−0.047, 0.033] [−0.087, 0.057] [−604.76, 372.99] [0.075, 0.139] [0.44, 0.55]

Q4 0.033 0.082 337.80 0.103 0.34
[0.004, 0.054] [0.012, 0.118] [37.36, 636.73] [0.079, 0.128] [0.31, 0.37]

Continuation of previous table. Panels C and D stratify the data by rainfall quartile calculated for each year
over all farms (Panel C) and for each farm over all years (Panel D).

Confidence intervals report [5%,95%]-ile range of 700 draws block-bootstrapped at the farm level.
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A. Regional Water Scarcity, Wrt
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FIGURE 12. WATER SCARCITY AND THE GAINS FROM ANNUAL TRADE

Visual depiction of column (1) from Table 11.

Whiskers denote [5%,95%]-ile range of 700 draws block-bootstrapped at the farm level.
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C. Within-Year Differences in Farm-Level Rainfall Across Farms, ER
it
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D. Within-Farm Differences in Rainfall Across Years, ER
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FIGURE 12 (CONT’D). WATER SCARCITY AND THE GAINS FROM ANNUAL TRADE

Whiskers denote [5%,95%]-ile range over 700 draws block-bootstrapped at the farm level.
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TABLE 12. DYNAMIC PARAMETERS

Operation type

Perennial Annual Dairy

Fixed investment cost parameters
Median γ̂i1 1, 535, 305.00
Q1 833, 641.00
Q3 3, 326, 805.00

Fixed divestment cost parameters
Median γ̂i4 −850, 368.20
Q1 −2, 390, 432.00
Q3 −357, 217.30

Variable cost parameters
Linear investment cost, γ̂c2 88.02 47.53 141.99
Quadratic investment cost, γ̂c3 312.89 −0.14 105.35

Linear divestment cost, γ̂c5 −97.96 329.58 156.01
Quadratic divestment cost, γ̂c6 54.63 0.003 −0.23

Estimated cost parameters for the land cost function (24).
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TABLE 13. LONG-RUN VALUE OF WATER MARKET ACCESS

Equilibrium outcome

GFT/Output Perennial land

Dynamic gains from trade

∑i V(s∗i )−Va(sa
i ) 0.082 0.044

Decomposition A.

Static gains: ∑i V(s∗)−Va(s∗i ) 0.090 0
Dynamic adaptation channel: ∑i Va(s∗i )−Va(sa

i ) −0.009 −0.044

Decomposition B.

Static gains: ∑i V(sa
i )−Va(sa

i ) 0.063 0
Dynamic investment channel: ∑i V(s∗i )−V(sa

i ) 0.018 0.046

Perennial operations only. Gains from trade divided by ∑i V(s∗i ). Estimated long-run gains from trade, GFT∞ in
equation (23), in the first row, with decompositions (23A) and (23B) in the successive rows. Column 2 contains
average differences in investment, e.g., limt→∞(∑i Kit − Ka

it)/ ∑i Kit.
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A Estimation details

A.1 Concentration algorithm

I concentrate out ψc with the following procedure of Ackerberg et al. (2015, Appendix A4). For a
candidate θ̃c, construct the residuals with (15) as

ω̂ict = Φ̂ict − f̃c(Wict, Xict, Kict, Rict) (30)

and
ω̂ic,t−1 = Φ̂ic,t−1 − f̃c(Wic,t−1, Xic,t−1, Kic,t−1, Ric,t−1) (31)

and regress (30) against (31). The coefficients of this regression give the transition function ψct. The
residual of this regression,

ξ̃ict ≡ ωict − ψ̂ct(ωic,t−1) + εict

is then stacked over t as mic = (ξ̃ic1 . . . ξ̃icT)
′ to form the instrumental variables estimator

(θ̂c, ψ̂c) ∈ arg min
(θ̃c ,ψ̃c)

[
∑

i
Z′icmic(θ̃c, ψ̃c)

]′
Ξ̂

[
∑

i
Z′icmic(θ̃c, ψ̃c)

]
, (32)

The estimator (32) is consistent for (θc, ψc) under that standard rank assumption that the inverse of
E
[
Z′ic

∂mic
∂(θc ,ψc)

]
exists for each c and every i. I recover the weight matrix Ξ̂ using a two-step procedure

that first estimates (32) with Ξ̂ = I to obtain (θ̌c, ψ̌c) as above, then lets ǔic = qic − f̌c − ψ̌ic and
re-estimates (32) with Ξ̂ =

[
∑i Z′icǔicǔ′icZic

]−1.

To recover {ω̂ict} for farm-years not in the main estimation sample, i.e., all (i, t) such that i first
appears in the sample in year t (see Appendix C), I re-estimate the polynomial series Φict over all
farms and use the coefficients of Fc(·) from the estimation sample to recover ω̂ict = Φ̂ict − f̂c(·).

A.2 Common water-augmenting technical change

Exogenous water-augmenting technical change that is common across farms and takes a known form
can be included directly in the production function. I denote water-augmenting technical change by
ζict and consider the augmented production function

Fc(·, ζict) =

[
αc

(
eζictWict + ϑcRict

) σc−1
σc + (1− αc)K

σc−1
σc

ict

] σc
σc−1 βcW

∏
j

X j
ict)

βcj . (2′)

I consider irrigation-specific technical change that varies across two observables. First, over time,
using the panel structure of the data; second, over observed irrigation equipment, using a measure
of farm-specific irrigation capital contained in the data.

Technical change over time. I let water-augmenting technical change depend only on c and t, de-
fined as

ζict = 1t∈T0 + ζc11t∈T1 + ζc21t∈T2 (33)

where {Tτ} is a partition of 2007–2015 into three periods of equal length. This requires no revision
of χct in (6), which already depends on t.

Observable irrigation equipment The data includes a direct value of irrigation equipment owned
by the farm, K I

it. All farms have land equipped for irrigation, primarily using flood-and-furrow
methods; 46.9% of farms report some additional irrigation equipment of nonzero value. Relative to a
farm’s total capital, the value of this irrigation equipment is small—$47,629 for an average farm with
irrigation equipment—comprising 0.55% of non-land accounting capital for the median farm that
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does have nonzero irrigation equipment and 1.69% of non-land capital for the 75%-ile such farm. If
irrigation equipment adoption decisions are exogenous,34 then it is straightforward to allow the 47%
of farms with nonzero irrigation equipment to have different water-augmenting technology, so that

ζict = 1 + ζc1{K I
it > 0}. (34)

Then I estimate Fc, now including ζ, as before, adding an indicator for irrigation equipment, 1{K I
it >

0} to the information set Fi,t−1 in the exclusion restriction (10), and extending the functions for
materials demand and the productivity control to include 1{K I

it > 0} as an argument in (6) and (15).

A.3 Details of dynamic estimation

First step. To recover the autocorrelation coefficients M̂ in Table A18 used to simulate Ĥ via (27), I
estimate the following first-order autoregression




Wrt
PW

rt
Eit
PX

it
(Pict)c



= M




Wr,t−1
PW

r,t−1
Ei,t−1
PX

i,t−1
(Pic,t−1)c



+ υit

over all i and t, using a diagonal matrix M.

Second step. I construct L = 90 alternative policy functions κ` by perturbing the outcome of the
realized policy function, as discussed in the text.

I initialize the algorithm taking each µit observed in the data for each i and t as an initial condition
µit0; I abuse notation by taking i = it in what follows. From these initial conditions, the algorithm
simulates paths of µt ≡ {µit}i as in (27).

The full forward simulation runs T = 50 periods.

I draw K = 500 sequences of states, {({µk
it}i)

T
t≥0}K

k=1. For each k, I calculate the discounted sequence
of payoffs for the kth sequence using κ (and L perturbed κ`). Expected profits are obtained numeri-
cally for each i by averaging over all states k = 1, . . . K profits, ∑t δtΠ, associated with the policy κ
and each policy κ`, respectively.

Each sequence also corresponds to an L× K matrix of alternative land adjustments. Each alternative
adjustment path corresponds to a discounted sum of switching costs, translated into an expected
discounted sum of switching costs by averaging over all sequences of states of the world. To preserve
linearity, I form a basis xik that corresponds to the terms of Γ; specifically, for each state of the world
k,

xi1k = ∑
t

δt(Kk
it − Kk

i,t−1)
+, xi2k = ∑

t
δt(Kk

it − Kk
i,t−1)

+(Kk
it − Kk

i,t−1), etc.

which admits a representation of expected discounted land-switching costs as the linear function

Ei0

[
∑

t
δtΓ(κt

`, κt−1
` ; γ)

]
= γ′

1
K ∑

k
x(`)ik

for each ` and each c. Note that the appropriate γi1 and γi4 to use in this linear function are not the
unconditional means γi1 and γi4, but the conditional means from the truncated normal distributions
for which γ̃i1 ≤ V(si0; κ+; γ)−V(si0; κ0; γ), and similarly for divestment costs.

34This is partially motivated by the fact that during my period, the government ran a large-scale subsidy
program irrigation technology, which complicates modeling the adoption decision. However, note that survey
evidence finds a positive association between irrigation technology upgrades and a long-term plan to trade
water allocations on the market (GBCMA, 2017, p. 57; Tables 42–43).
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The estimator for γ is still not linear because (28) is a nonlinear objective function. As discussed, I
calculate the objective in (28) by first recovering the i-specific means, then maximizing.To solve (28),
I use the Nelder and Mead (1955) nonlinear optimization method implemented in optim in R.

Fixed point. I discretize the grid of Kict for c = perennial from {5, 10, . . . , 500}, given that the maxi-
mum observed perennial land irrigated is 497 ha. I also restrict maximum jump sizes to 20 hectares.
First, I run the contraction to calculate V(si; κ; ·) = Vi under the water market. I then recover land
paths (Kit)t≥0 by solving the Bellman equation given Vi. Then I use W under (Kit)t≥0 to calculate
total long-run water use under the market mechanism. This allows me to construct stationary profits
Π̃a using the autarky allocations that sum to this total long-run water use. This allows the construc-
tion of Va(si; κ; ·) in (23A). More importantly, it allows me to solve for Va

i = Va(si; κa; ·) with a second
contraction mapping, which implies Va(si; κa; ·). Finally, I recover (Ka

it)t≥0 by forward-simulating
optimal autarky land use with Va

i , which allows me to calculate the decomposition (23B).

B Nonparametric water-augmenting technological change

There are two steps. First, introduce a first-order condition that overidentifies the model of Section
4. Second, take this first-order condition and also make the model once again exactly-identified by
introducing nonparametric technological change at the (i, c, t) level.

B.1 Water trading and price data in estimation

The estimator of Section 4 does not use water price data. In a first-best calculation, water inputs
maximize interim expected profits. An immediate question is: how does imposing this optimality
assumption in estimation affect the production functions? If observed inputs are set optimally, it is
more efficient to include additional moments.

Information at the time of trade. To calculate the expectation Ei,t−b, I assume that i draws produc-
tivity, wages, and crop prices at t conditional on their t− 1 values. In other words, I assume that the
joint distribution of productivity, wages, and crop prices is first-order Markov and that no new infor-
mation arises in [t− 1, t− b]. Let Fit = (PW

it , Eict, Pict, PL
X,it, ωit) denote the payoff-relevant exogenous

variables known by i at time t. Interim information at t− b is given by

Fi,t−b = (PW
it , Eict, Pic,t−1, PL

X,i,t−1).

That is, time-t water prices and rainfall are known at t− b, as discussed in Section 3.2, but no new
information arrives about productivity, crop prices, or wages. The assumption is that Fit evolves
from Fi,t−b for each i according to a first-order Markov process:

Assumption B1 (Interim information set). The interim, conditional distribution of Fit at t− b is given by

H(Fit|Fi,t−b), (35)

that is, it does not depend on i, t, or (Fi,t−s) for s > 1, except through Fi,t−b.

Assumption B1 lets me recover the conditional distribution H of crop prices, wages, and productivity
directly from the multivariate empirical distribution of

(Pict, PL
X,it, ω̂ict|PW

it , Eit, Pi,c,t−1, PL
X,i,t−1, ω̂ic,t−1)

observed in (or, in the case of ω̂ict, estimated from) the data. Then the interim expected shadow value
of water can be written as

Et−b

[
Picteωict

∂Fc

∂W

]
= Λict(W) · µict(W,Fi,t−b) (36)
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where the known component of the shadow value at t− b,

Λict(W) =
αcβcWW−1/σc

[Aict(W)]
σc

σc−1−σc βcW

,

is obtained with the derivative of (2), denoting Aict(W) ≡ (αc(W +ϑcRict)
(σc−1)/σc +(1− αc)K

(σc−1)/σc
ict )σc/(σc−1),

and the expected component due to random crop prices, labor, and productivity is defined given H
and its supportH as

µict(W,Fi,t−b) =
∫

H

[
Pceω ∏

j
X∗c,j(W, Pc, PL

X , ω; ·)βcj

]
dH(Pc, PL

X , ω|Fi,t−b). (37)

With the estimated H, (36) then gives the interim expected shadow price of water relevant to the
optimal irrigation decision.35

The decomposition (36) further simplifies when labor and materials are multiplicatively separable in
the production function as in (2). After taking natural logarithms, optimal labor and materials solve
the linear system of equations

ln X∗c (W, Pict, PL
X,it, ωict; ·) =

[
xL

ict
xFict

]
=

[
βcL − 1 βcM

βcL βcM − 1

]−1 [pL
X,it − cict

ln 1− cict

]

where cict = ωict + pict + βcW ln Aict. Then ln µict = dict + bict ln Aict(W), where

dict = −
[

βcL
βcM

]′ [
βcL − 1 βcM

βcL βcM − 1

]−1 [ln βcL + ωict + pict − pL
X,it

ln βcM + ωict + pict − ln 1

]

and bict = −
[

βcL
βcM

]′ [
βcL − 1 βcM

βcL βcM − 1

]−1 [
βcW
βcW

]
,

so that I can simulate Dict = edict separately from Λict(W)[Aict(W)]bict .

Without transaction costs, if irrigation is set to interim first-best levels, given a market water price
PW

it —which in the data I take to be the average price of i’s region in year t—-then it is possible to
model irrigation with the following assumption.

Assumption Z1 (Optimal irrigation). For all i, c, and t,

Ei,t−b

[
Picteωict+εict

∂Fc(Wict, ·)
∂Wict

]
≤ PW

it , (38)

with equality if Wict > 0.

The set of moments given previously by (16) become

E

[(
qict − fict − ψc(Φ̂ic,t−1 − fic,t−1)

∂ fict
∂wict
− pW

it + Φ̂ict − fict − ψc

(
∂ fic,t−1
∂wic,t−1

− pW
i,t−1 + Φ̂ic,t−1 − fic,t−1

)
)
⊗ Zict

]
= 0, (16′)

where ∂ fict
∂wict

= ln µict + λict(Wict) is the interim ex-ante shadow value.

35Calculating the integral in (37) once for every i, c, and t is computationally intensive, but (37) is also a
function of W and in principle the expectation must be calculated for every value of W. The multiplicative
separability of labor and materials in the production function (2) allows the derivation of x∗c as a linear form in
wict, giving the decomposition

ln µict(W,Fi,t−b) = di,t−b + bictΛict(W),

which enables the evaluation of (36) at any W after a single evaluation of the integral in (37).
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B.2 Nonparametric water-augmenting technology

If farms do make annual irrigation decisions with respect to the water price using (35) and (38),
then a natural extension of the benchmark model of Section 3 is one that allows for an additional
unobservable—“water-augmenting productivity”—recovered by jointly inverting the materials and
irrigation optimality conditions to control for both unobserved productivities in the spirit of Acker-
berg et al. (2007, §2.4.3) and Doraszelski and Jaumandreu (2018).

If Assumptions B1 and Z1 do hold, then this extension improves the fit of the model, and allows
us to study water-augmenting productivity, a primitive that is relevant to water-trading as well as
potentially of independent interest. It also delivers a calculation of the realized gains from trade
under the hypothesis that the market is (interim ex-ante) efficient.

Overview of solution. The additional complication introduced by this extension is that materials
demand χct, used previously to control for ωict, now also depends on the unobserved ζict. This
requires extending Assumption A1 to restrict the conditional dependence of (XM

ict, Wict) on (ωict, ζict).
Given that the baseline model imposes the strongest possible restriction—that ζict = 0 for all i, c and
t—this extension is a generalization of the model of Section 3.

The algorithm I use inverts irrigation demandWct(·) to recover ζict conditional on ωict, then inverts
materials demand evaluated at exp(ζict)Wict to control for ω. The first step of this algorithm is the
same as in Section 4, except that it uses a revised Φζ

ict that inverts the composition of materials de-
mand and (inverted) irrigation demand to control for ω. The step now includes a nested fixed point
algorithm that, for each candidate f̃c, recovers the unobserved water-augmenting change {ζ} to ra-
tionalize the observed irrigation decisions, and then proceeds to estimate E[ξict + εict|Fi,t−1] = 0 as
before, replacing the observed value of Wict with the technology-adjusted eζictWict. The algorithm
is computationally intensive but attractive because it is clearly admits the model of Sections 4 as a
special case.

Detailed assumptions. I assume that both ζict and ωict are known at t− b, so that the time-(t− b)
information set is

Fi,t−b = (PW
it , Eit, Pic,t−1, PL

X,i,t−1, ωict, ζict).

Irrigation demand equals

Wict =Wct(Kict,Fi,t−b)

=Wct(Kict, PW
it , Eit, Pic,t−1, PL

X,i,t−1, ωict, ζict).
(39)

IfW ζ
c (·) is strictly monotonic in ζict, it can be inverted obtain

ζict = (Wct)
−1(Wict; Kict,Fi,t−b). (40)

The nonparametric demand function for intermediate inputs is unchanged from (6) after adjusting
Wict by its water-augmenting productivity:

XM
ict = χct

(
exp(ζict)Wict, Rict, Kict, XL

ict, XF
ict, Pict, ωict

)

= χct

(
exp

(
(Wct)

−1(Wict; Kict,Fi,t−b)
)

Wict, Rict, Kict, XL
ict, XF

ict, Pict, ωict

)
,

(6′)

or the composition of χct and (Wct)−1, given by

XM
ict = χ

ζ
ct(Wict, Rict, Kict, XL

ict, XF
ict, Pict,Fi,t−b, ωict), (41)

which differs from (6) only through the presence of Fi,t−b. To use the two-step procedure similar to
that of Section 4, I modify Assumption A1 to ensure that (40) exists and that (41) is strictly increasing
in ωict:
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Assumption Z1. For all c and t, materials demand χ
ζ
ct, given in (41), is strictly increasing in ωict, and

irrigation demandWct, given in (39), is strictly increasing in ζict.

In language similar to Section 4, the key control function assumption is then that

χct(exp((W)−1
ct (ω; . . . ))Wict, · · · , ω)

remains strictly monotone in ω.

The only restriction that I impose on water-augmenting productivity is that it contain no useful
information about Hicks-neutral productivity. I restate Assumption A2 as

Assumption Z2. Productivity (ωict)t≥0 evolves as an exogenous first-order Markov process that is condi-
tionally independent from (ζict)t≥0 given (ωic,t−1)t≥0, for each i, c, and t.

Assumption Z2 is a convenient simplification to avoid needing to condition on (ζics)s≤t in the pre-
diction ψct(ωic,t−1) = E[ωict|Fi,t−1]. As mentioned previously, Assumption Z2 does not otherwise
restrict water-augmenting productivity. In particular, it may evolve arbitrarily over time, in contrast
to the first-order restriction on (ωict)t≥0. This is because (ζict)t≥0 is never estimated, but recovered
from (40) for every i, c, and t and candidate parameter value from the static optimality condition in
Assumption Z1, and affects output only through eζictWict. Expectations about its evolution will affect
the dynamic input decisions Kict, but these are outside of the model.36

Algorithm. The first step recovers a slightly modified (15),

f ζ
ict + ωict = Φζ

c

(
XM

ict; Wict, Rict, KD
ict, XL

ict, Pict,Fi,t−b

)
. (15′)

exactly as before, where f ζ
ict denotes fc(·; ζict) evaluated at observed inputs. Equation (16) still holds,

but now (16) is calculated as

E
[(

qict − f ζ
ict − ψc(Φ̂

ζ
ic,t−1 − f ζ

ic,t−1)
)
⊗ Zζ

ict

]
= 0, (16′)

with ζict recovered from (36) as the solution to

ζ = pW
it −Φζ

ict + fc(·; ζ)− dict − λict(Wict, ζ)− bict ln Aict(eζWict)

since Φζ
ict − fc(·; ζict) = ωict.

Because ZW
ict and PW

it appear in (15′) through Fi,t−b, they can no longer be used as instruments for
Wict. Hence I use their lagged counterparts, setting

Zζ
ict = (1, ζc(ZW

ic,t−1, PL
X,it, Kict, Eict))

′,

and then estimating two-step GMM as in (32).

36This is in contrast to Doraszelski and Jaumandreu (2018). In their setting, firms also choose an unobservable
temporary labor share. To identify labor-augmenting productivity ζict in the presence of this unobservable
choice, they assume ζ is first-order Markov so that the time-t labor-augmenting productivity anticipated at t− 1
can be estimated as a function of ζic,t−1.
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C Details of data construction

1. Sample restrictions

1.1 Geographic restrictions. The survey collected data from the following regions from 2007–2015
in the southern Murray Darling Basin: Victoria Murray, Victoria Goulburn, South Australia Murray,
New South Wales Murrumbidgee, and New South Wales Murray. (Survey regions outside of these
five sMDB regions were discontinued after 2011 due to funding cuts.) Australian fiscal years run 1
July to 30 June; throughout, “2007” refers to 1 July 2006 to 30 June 2007, et cetera.

1.2 The rotating survey design means not all farms are observed more than once. I restrict estimation
of (θ, ψ) to farms observed in at least two years. Counterfactuals are calculated with data from all
farms.

2. Variable definitions

2.1 Output, Qict, is computed for each crop type c as the weighted sum of physical production Qickt
over all crops ck ∈ c,

Qict = ∑
ck∈c

Pck0Qickt

weighted by baseline average prices, Pck0 ≡ ∑i Yick2007/ ∑i Qsold
ick ,2007, where Yick2007 is the recorded

revenue (AUD) farm i received in 2007 for Qsold
ick ,2007 tonnes of crop ck sold. The categories are:

For c = annual irrigated, ck ∈ {rice, oilseeds, cotton, pulse, vegetables, cereal, coarse grains}.
For c = annual nonirrigated, ck ∈ {rice, oilseeds, cotton, pulse, vegetables, cereal, coarse grains}.
For c = horticulture, ck ∈ {pome fruits, citrus fruits, stone fruits, vine fruits, wine}.
For c = dairy, ck corresponds to milk production (liters).

2.2 Crop prices. I define crop-type prices as the weighted sum of the value of ck in year t, Pckt ≡
∑i Yickt/ ∑i Qsold

ickt in year t for crop ck, divided by output,

Pict =
∑ck∈c PcktQickt

∑ck∈c Pck0Qickt
.

2.3 Irrigation volumes and extent of land planted are recorded at the resolution Wickt and Kickt, so
Wict ≡ ∑ck∈c Wickt and Kict ≡ ∑ck∈c Kickt. Irrigation and land for dairy is the sum of irrigation and
land used for pasture to grow feed.

Other inputs

2.4 Materials, XM
ict, are calculated as the sum of i’s year-t expenditure on crop and pasture chemicals,

fertilizer, seed, electricity, fuel, packing materials, and packing charges. The survey also records
expenses for repairs and maintenance, administrative costs, motor vehicle expenses, handling and
market expenses, and other services.

2.5 Labor, XL
ict, is measured in total weeks worked, both by hired labor and family labor.

2.6 The wage, PL
X,it, is the sum of i’s hired labor costs and imputed family labor costs in year t (AUD),

divided by the total labor weeks worked on farm i in year t.

Environmental variables

3.1 Rainfall is collected by the BoM, interpolated to a grid of 0.05 degree resolution. Rainfall is
matched to farms by ABARES analysts with GIS codes. Winter rainfall is April–October and summer
rainfall is November–March.

3.2 Evapotranspiration. The BoM Australian Water Resource Assessment Landscape (AWRA-L)
model (Frost et al., 2016) recovers implied evapotranspiration from rainfall, temperature, and soil
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conditions using an adaptation of the Penman (1948) equations to agriculture (Van Dijk and Brui-
jnzeel, 2001). I take the unweighted average over all grid cells in each Water Resource Plan Area
(WRPA) surface water polygon, corresponding to the legal boundaries specified in the 2007 Water
Act for NSW Murray, NSW Murrumbidgee, Victoria Murray, Victoria Goulburn, and South Australia
Murray.

Other prices

4. Average farm interest rate data collected by ABARES. Real interest rate calculated by deflating the
average nominal rate (0.0714) with the Australian Bureau of Statistics consumer price index.
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A Supplementary Tables and Figures (Not For Publication)

TABLE A1. OUTPUT, LAND, LABOR, MATERIALS

N × T mean s.d. Q.10 Q.25 Q.50 Q.75 Q.90

price-weighted quantity 2, 032 977.44 1, 428.54 42.62 117.77 407.37 1, 263.19 2, 627.17
revenue 2, 032 682.90 995.83 42.72 115.81 345.01 910.68 1, 712.91
crop price index 2, 032 0.88 0.30 0.42 0.66 0.94 1.11 1.23

irrigated land, hectares 2, 032 299.72 522.37 11.40 25 104 360 780.90
land operated, hectares 2, 032 569.45 1, 148.44 16.20 40 190.50 607 1, 360

labor, weeks 2, 032 179.75 285.32 42.60 68.58 114 190 329
materials 2, 032 158.65 249.45 12.51 29.10 75.63 183.19 383.92

Farm-level input-output data. Units are in thousands of 2015 Australian dollars.

Source: ABARES Survey of Irrigated Farms.

TABLE A2. REGIONAL WATER-SHARING RULES

2007 2008 2009 2010 2011 2012 2013 2014 2015

NSW Murray 0.095 0.059 0.179 0.351 0.735 0.433 0.685 0.965 0.652
NSW Murrumbidgee 0.247 0.229 0.316 0.368 0.767 0.764 0.664 0.582
SA Murray 0.800 0.320 0.180 0.620 0.670 1 1 1 1
VIC Goulburn 0.290 0.570 0.330 0.720 1.014 1.014 1.014 1.014 1.014
VIC Murray 0.950 0.430 0.350 1.000 1.015 1.015 1.015 1.015 1.053

Data underlying Figure 2. Total water allocated in each region and each year, as a fraction of total entitlements
on issue at baseline, 2007.

Source: NSW, VIC, and South Australia state government regulatory records.

TABLE A3. INTRADAY WATER PRICE DISPERSION

Min. 1st Qu. Median Mean 3rd Qu. Max. Days Volume

VIC Murray 0 0.043 0.076 0.124 0.140 2.471 1, 908 2, 217, 989
NSW Murray 0 0.019 0.058 0.123 0.147 1.311 1, 907 2, 569, 916
SA Murray 0 0.018 0.051 0.127 0.114 3.347 643 706, 268
Murrumbidgee 0 0.032 0.073 0.173 0.173 2.552 1, 211 2, 283, 161
Goulburn 0 0.029 0.058 0.117 0.116 4.217 1, 681 1, 650, 034
All regions 0 0.068 0.126 0.213 0.239 4.345 2, 459 9, 427, 368

Transaction-level water price data from the annual allocation market. Summary of the daily volume-weighted
coefficients of variation for water prices, over all days with at least two trades (2008–2015). The last two columns
report the number of days with at least two trades and total volume of traded water (ML), respectively.

Source: MDBA administrative transaction-level water price data.
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TABLE A4. WATER TRADING AND FIXED CHARACTERISTICS

Annual Rights Permanent Rights
Buy, 1(∆it > 0) Sell, 1(∆it < 0) Buy, 1(ρit > ρi,t−1) Sell, 1(ρit < ρi,t−1)

(1) (2) (3) (4)

ln(net rainfallit) −0.069∗∗∗ −0.049∗∗∗ −0.001 −0.013
(0.016) (0.014) (0.019) (0.022)

1(c = annual nonirrig) −0.321∗∗∗ 0.180∗∗∗ −0.034 0.010
(0.039) (0.033) (0.040) (0.046)

1(c = pasture) −0.011 0.039 0.053 −0.036
(0.036) (0.030) (0.037) (0.043)

1(c = perennial) −0.106∗∗∗ 0.159∗∗∗ −0.006 −0.063∗

(0.028) (0.024) (0.030) (0.035)

1(t = 2008) 0.225∗∗∗ 0.022
(0.036) (0.031)

1(t = 2009) 0.188∗∗∗ 0.058∗ −0.102∗∗∗ −0.338∗∗∗

(0.037) (0.032) (0.035) (0.041)

1(t = 2010) 0.118∗∗∗ −0.031 −0.177∗∗∗ −0.419∗∗∗

(0.041) (0.035) (0.035) (0.041)

1(t = 2011) −0.028 −0.056 −0.150∗∗∗ −0.392∗∗∗

(0.049) (0.042) (0.043) (0.050)

1(t = 2012) −0.021 −0.080∗∗ −0.176∗∗∗ −0.380∗∗∗

(0.043) (0.037) (0.038) (0.044)

1(t = 2013) 0.109∗∗ 0.004 −0.200∗∗∗ −0.480∗∗∗

(0.052) (0.045) (0.046) (0.053)

1(t = 2014) 0.192∗∗∗ 0.053 −0.101∗∗ −0.296∗∗∗

(0.043) (0.037) (0.043) (0.050)

1(t = 2015) 0.061 0.087∗∗ −0.185∗∗∗ −0.420∗∗∗

(0.041) (0.035) (0.038) (0.044)

1(i ∈ r = NSW Murrumbidgee) −0.101∗∗∗ 0.150∗∗∗ 0.005 0.023
(0.034) (0.029) (0.034) (0.039)

1(i ∈ r = SA Murray) 0.091∗∗ −0.209∗∗∗ 0.009 0.013
(0.036) (0.031) (0.039) (0.046)

1(i ∈ r = VIC Goulburn) 0.065∗ −0.082∗∗ −0.065∗ 0.053
(0.037) (0.032) (0.038) (0.044)

1(i ∈ r = VIC Murray) −0.004 −0.057∗ −0.022 0.006
(0.039) (0.034) (0.040) (0.047)

Constant 0.661∗∗∗ 0.359∗∗∗ 0.243∗∗ 0.578∗∗∗

(0.071) (0.061) (0.096) (0.112)

Mean of dep. var. 0.319 0.196 0.094 0.154
Observations 2,032 2,032 954 954
R2 0.143 0.136 0.055 0.158

Unit of observation is the farm-year. OLS regression of an indicator variable for farm i
(1) buying water allocations in year t,
(2) selling water allocations in year t,
(3) increasing water entitlements owned from t− 1 to t
(4) reducing water entitlements owned from t− 1 to t.
Crop-types assigned by year t for multicrop farms as c ∈ arg maxc:Kict>0 Wict. Omitted factors are 1{c =
annual irrigated}, 1{t = 2007}, and 1{i ∈ NSW Murray}. Conventional standard errors in parentheses;
nonzero coefficients significant at ∗10%, ∗∗5% and ∗∗∗1% levels.
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TABLE A5. PERMANENT WATER TRADING DECISIONS AND RAINFALL

A. Increase in permanent rights held

Dependent variable:

Buy, 1(ρit > ρi,t−1)

(1) (2) (3) (4)

ln(net rainfallit) −0.009 0.010 0.027 0.004
(0.014) (0.023) (0.026) (0.034)

ln(water endowmentit) 0.030∗∗∗ 0.030∗∗∗ 0.031∗∗∗ 0.072∗

(0.009) (0.009) (0.010) (0.037)

Year FEs X X X X
Region FEs X X
Region×Year FEs X
Farm FEs X
Observations 954 954 954 954
Adjusted R2 0.059 0.058 0.059 0.036

B. Decrease in permanent rights held

Dependent variable:

Sell, 1(ρit < ρi,t−1)

(1) (2) (3) (4)

ln(net rainfallit) −0.005 −0.007 −0.040 0.010
(0.016) (0.026) (0.028) (0.051)

ln(water endowmentit) 0.002 0.006 0.002 −0.142∗∗∗

(0.009) (0.010) (0.010) (0.045)

Year FEs X X X X
Region FEs X X
Region×Year FEs X
Farm FEs X
Observations 954 954 954 954
Adjusted R2 0.149 0.147 0.238 0.188

Version of Table 3 for permanent rights. The unit of observation is the farm-year. Regressions of the indicator
of trading permanent water rights on farm-level characteristics: net rainfall (annual rainfall minus evapotran-
spiration), realized permanent water endowments, and crop prices.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses. Nonzero coefficients
significant at ∗10%, ∗∗5% and ∗∗∗1% levels.
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TABLE A6. SENSITIVITY TO TECHNICAL CHANGE: PERENNIAL IRRIGATED

(1) (2) (3) (4) (5)

E[
∂ fc
∂w ] 0.277 0.300 0.265 0.282 0.290

(0.061) (0.131) (0.056) (0.074) (0.052)
∂ fc
∂w 10 0.124 0.137 0.116 0.127 0.182

(0.038) (0.048) (0.036) (0.045) (0.044)
∂ fc
∂w 25 0.231 0.249 0.222 0.227 0.247

(0.057) (0.088) (0.052) (0.069) (0.046)
∂ fc
∂w 75 0.354 0.380 0.340 0.359 0.359

(0.074) (0.182) (0.071) (0.091) (0.063)
∂ fc
∂w 90 0.381 0.408 0.362 0.382 0.389

(0.078) (0.243) (0.072) (0.096) (0.068)

Returns to scale, ∑j βcj 1.164 1.160 1.166 1.201 1.106
(0.146) (0.060) (0.056) (0.111) (0.197)

λict median 467.55 507.62 447.50 470.57 473.11
(99.76) (215.73) (93.13) (126.64) (84.26)

λict IQ 331.63 370.04 321.67 357.17 344.84
(84.53) (203.86) (76.20) (100.32) (111.79)

λict 90 10 762.16 818.47 713.25 841.22 881.51
(195.99) (407.35) (179.49) (247.92) (219.87)

Productivity persistence, ρc 0.639 0.611 0.629 0.635 0.587
(0.064) (0.049) (0.044) (0.083) (0.106)

E[ωict −ωic,t−1] 0.067 0.050 0.060 0.041 0.097
(0.017) (0.031) (0.016) (0.031) (0.060)

J-statistic 0.206 0.349 0.325 0.154 0.248
Adjusted R2 0.816 0.816 0.816 0.798 0.831
N × T 493 493 493 298 189

(1) Original estimates.
(2) ζict as a function of observed irrigation equipment as in (34).
(3) Common ζict over time as in (33).
(4) Restricts estimation sample to 2007–2011.
(5) Restricts estimation sample to 2012–2015.

Standard errors block-bootstrapped at the farm level (500 iterations) in parentheses..
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TABLE A7. SENSITIVITY TO TECHNICAL CHANGE: ANNUAL IRRIGATED

(1) (2) (3) (4) (5)

E[
∂ fc
∂w ] 0.234 0.173 0.193 0.167 0.347

(0.044) (0.039) (0.035) (0.039) (0.081)
∂ fc
∂w 10 0.089 0.068 0.082 0.053 0.192

(0.035) (0.025) (0.023) (0.020) (0.063)
∂ fc
∂w 25 0.170 0.129 0.144 0.107 0.286

(0.044) (0.032) (0.031) (0.029) (0.070)
∂ fc
∂w 75 0.309 0.226 0.249 0.228 0.430

(0.054) (0.050) (0.044) (0.051) (0.099)
∂ fc
∂w 90 0.353 0.254 0.285 0.258 0.463

(0.058) (0.061) (0.050) (0.059) (0.106)

Returns to scale, ∑j βcj 1.124 1.123 1.131 1.244 1.157
(0.088) (0.082) (0.080) (0.122) (0.172)

λict median 100.84 74.25 82.44 72.53 127.25
(19.05) (17.18) (15.54) (45.67) (28.97)

λict IQ 143.73 111.84 126.43 392.07 78.15
(94.26) (92.43) (87.85) (146.87) (24.16)

λict 90 10 774.29 599.81 675.39 712.12 234.45
(195.47) (170.78) (157.38) (242.92) (163.33)

Productivity persistence, ρc 0.524 0.497 0.506 0.522 0.767
(0.090) (0.091) (0.089) (0.105) (0.141)

E[ωict −ωic,t−1] 0.081 0.061 0.073 −0.151 −0.012
(0.063) (0.055) (0.056) (0.159) (0.072)

J-statistic 0.191 0.218 0.217 0.360 0.651
Adjusted R2 0.748 0.748 0.748 0.539 NaN
N × T 170 170 170 90 74

(1) Original estimates.
(2) ζict as a function of observed irrigation equipment as in (34).
(3) Common ζict over time as in (33).
(4) Restricts estimation sample to 2007–2011.
(5) Restricts estimation sample to 2012–2015.

Standard errors block-bootstrapped at the farm level (500 iterations) in parentheses..
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TABLE A8. SENSITIVITY TO TECHNICAL CHANGE: DAIRY

(1) (2) (3) (4) (5)

E[
∂ fc
∂w ] 0.087 0.069 0.051 0.091 0.174

(0.035) (0.048) (0.091) (0.037) (0.069)
∂ fc
∂w 10 0.024 0.016 0.015 0.056 0.088

(0.020) (0.022) (0.021) (0.019) (0.037)
∂ fc
∂w 25 0.043 0.027 0.023 0.074 0.126

(0.027) (0.029) (0.030) (0.028) (0.051)
∂ fc
∂w 75 0.118 0.083 0.063 0.111 0.227

(0.046) (0.058) (0.090) (0.048) (0.090)
∂ fc
∂w 90 0.152 0.137 0.092 0.120 0.256

(0.059) (0.085) (0.203) (0.060) (0.097)

Returns to scale, ∑j βcj 0.988 1.032 0.998 1.074 0.958
(0.158) (0.150) (0.132) (0.165) (0.208)

λict median 129.20 85.32 68.93 217.62 224.15
(64.45) (73.42) (81.34) (85.86) (90.14)

λict IQ 235.21 48.81 34.97 175.25 111.41
(78.02) (84.57) (216.72) (82.20) (48.94)

λict 90 10 555.90 125.88 90.74 366.57 225.15
(196.25) (211.51) (720.66) (196.36) (102.85)

Productivity persistence, ρc 0.384 0.399 0.371 0.352 0.359
(0.178) (0.179) (0.161) (0.200) (0.290)

E[ωict −ωic,t−1] −0.103 −0.076 −0.089 −0.092 −0.021
(0.035) (0.033) (0.030) (0.090) (0.031)

J-statistic 1.161 0.646 0.687 0.639 1.102
Adjusted R2 0.866 0.866 0.866 0.913 NaN
N × T 256 256 256 151 104

(1) Original estimates.
(2) ζict as a function of observed irrigation equipment as in (34).
(3) Common ζict over time as in (33).
(4) Restricts estimation sample to 2007–2011.
(5) Restricts estimation sample to 2012–2015.

Standard errors block-bootstrapped at the farm level (500 iterations) in parentheses..
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TABLE A9. SENSITIVITY TO FUNCTIONAL FORM: PERENNIAL IRRIGATED

(1) (2) (3) (4) (5) (6)

E[
∂ fc
∂w ] 0.277 0.214 0.177 0.348 0.206 0.270

(0.037) (0.146) (0.159) (0.149) (0.358) (0.357)
∂ fc
∂w 10 0.126 0.033 0.177 0.150 0.123 0.090

(0.026) (0.175) (0.159) (0.105) (0.331) (0.259)
∂ fc
∂w 25 0.232 0.091 0.177 0.284 0.158 0.204

(0.034) (0.188) (0.159) (0.140) (0.328) (0.226)
∂ fc
∂w 75 0.352 0.331 0.177 0.453 0.254 0.359

(0.046) (0.138) (0.159) (0.184) (0.408) (0.237)
∂ fc
∂w 90 0.378 0.439 0.177 0.480 0.302 0.412

(0.049) (0.104) (0.159) (0.194) (0.450) (0.252)

Returns to scale, ∑j βcj 1.174 0.753 1.158 1.006 1.325 1.419
(0.054) (0.147) (0.068) (0.122) (0.902) (0.317)

λict median 467.87 307.78 295.72 582.84 354.24 459.74
(63.57) (261.58) (261.16) (250.73) (586.98) (359.83)

λict IQ 331.71 367.60 262.71 421.58 356.44 373.59
(61.16) (189.58) (254.78) (206.08) (493.29) (244.00)

λict 90 10 760.99 678.88 711.42 951.41 858.91 955.68
(146.34) (577.21) (668.12) (491.95) (1257.37) (637.25)

Productivity persistence, ρc 0.619 0.602 0.601 0.617 0.591 0.729
(0.054) (0.087) (0.069) (0.064) (0.083) (0.049)

E[ωict −ωic,t−1] 0.058 0.064 0.059 0.059 0.057 0.059
(0.017) (0.019) (0.017) (0.017) (0.019) (0.017)

J-statistic 0.328 0.218 0.609 0.315 0.559 2.876
Adjusted R2 0.816 0.816 0.816 0.816 0.816 0.816
N × T 493 493 493 493 493 493

(1) Nested CES: original estimates of (2) in Table 4.
(2) Leontief (σc → 0) without overwatering.

(3) Cobb-Douglas (σc = 1) with separable rain: fc = θcW wict + θcKkict + ∑j βcjx
j
ict.

(4) Cobb-Douglas (σc = 1) with rain as a perfect substitute: fc = θcW ln(Wict + ϑcRict) + θcKkict + ∑j βcjx
j
ict.

(5) Translog: fc = ∑`+m+n≤2 θc,`mnw`
ict ln(ER

ict − EV
ict)

m ln kn
ict.

(6) Quadratic: Fc = ∑`+m+n≤2 θc,`mnW`
ict(ER

ict − EV
ict)

mKn
ict.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses..

91



TABLE A10. SENSITIVITY TO FUNCTIONAL FORM: ANNUAL IRRIGATED

(1) (2) (3) (4) (5) (6)

E[
∂ fc
∂w ] 0.213 0.233 0.113 0.180 0.542 0.622

(0.034) (0.112) (0.179) (0.172) (0.892) (0.448)
∂ fc
∂w 10 0.083 0.070 0.113 0.040 0.453 0.259

(0.025) (0.137) (0.179) (0.163) (0.809) (0.454)
∂ fc
∂w 25 0.158 0.158 0.113 0.101 0.485 0.527

(0.033) (0.134) (0.179) (0.174) (0.835) (0.367)
∂ fc
∂w 75 0.280 0.317 0.113 0.252 0.582 0.794

(0.043) (0.107) (0.179) (0.185) (0.941) (0.272)
∂ fc
∂w 90 0.318 0.385 0.113 0.341 0.638 0.868

(0.047) (0.095) (0.179) (0.189) (1.033) (0.250)

Returns to scale, ∑j βcj 1.144 0.891 1.209 0.861 1.021 1.350
(0.080) (0.118) (0.083) (0.156) (1.552) (0.485)

λict median 92.45 96.58 50.92 66.68 237.59 269.63
(15.52) (52.88) (75.80) (72.55) (407.70) (136.79)

λict IQ 133.84 143.24 127.09 120.87 600.74 466.81
(89.14) (197.01) (218.71) (194.09) (1139.29) (428.16)

λict 90 10 707.85 697.03 486.43 487.93 2650.07 2598.34
(163.86) (523.37) (695.65) (632.67) (3513.66) (1311.19)

Productivity persistence, ρc 0.500 0.508 0.541 0.544 0.438 0.714
(0.089) (0.099) (0.097) (0.095) (0.151) (0.111)

E[ωict −ωic,t−1] 0.064 0.067 0.075 0.064 0.054 0.053
(0.056) (0.059) (0.055) (0.056) (0.075) (0.084)

J-statistic 0.262 0.459 0.781 0.705 0.459 1.106
Adjusted R2 0.748 0.748 0.748 0.748 0.748 0.748
N × T 170 170 170 170 170 170

(1) Nested CES: original estimates of (2) in Table 4.
(2) Leontief (σc → 0) without overwatering.

(3) Cobb-Douglas (σc = 1) with separable rain: fc = θcW wict + θcKkict + ∑j βcjx
j
ict.

(4) Cobb-Douglas (σc = 1) with rain as a perfect substitute: fc = θcW ln(Wict + ϑcRict) + θcKkict + ∑j βcjx
j
ict.

(5) Translog: fc = ∑`+m+n≤2 θc,`mnw`
ict ln(ER

ict − EV
ict)

m ln kn
ict.

(6) Quadratic: Fc = ∑`+m+n≤2 θc,`mnW`
ict(ER

ict − EV
ict)

mKn
ict.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses..
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TABLE A11. SENSITIVITY TO RAINFALL SPECIFICATION: PERENNIAL IRRIGATED

(1) (2) (3) (4) (5) (6) (7) (8)

E[
∂ fc
∂w ] 0.277 0.390 0.364 0.328 0.275 0.285 0.195 0.294

(0.054) (0.054) (0.065) (0.062) (0.065) (0.071) (0.069) (0.061)
∂ fc
∂w 10 0.124 0.342 0.319 0.197 0.165 0.135 0.093 0.125

(0.034) (0.052) (0.060) (0.046) (0.048) (0.039) (0.039) (0.036)
∂ fc
∂w 25 0.231 0.382 0.357 0.306 0.257 0.244 0.167 0.238

(0.050) (0.055) (0.066) (0.059) (0.062) (0.062) (0.060) (0.055)
∂ fc
∂w 75 0.354 0.414 0.387 0.389 0.326 0.358 0.245 0.380

(0.067) (0.057) (0.069) (0.073) (0.076) (0.089) (0.087) (0.076)
∂ fc
∂w 90 0.381 0.424 0.397 0.408 0.342 0.382 0.261 0.411

(0.070) (0.057) (0.068) (0.076) (0.079) (0.094) (0.091) (0.080)

Returns to scale, ∑j βcj 1.164 1.152 1.140 1.156 1.148 1.172 1.163 1.165
(0.137) (0.141) (0.117) (0.251) (0.244) (0.227) (0.242) (0.164)

λict median 467.55 648.10 604.60 549.80 461.01 481.22 329.59 494.78
(89.57) (93.70) (112.33) (104.92) (108.81) (117.35) (113.12) (101.53)

λict IQ 331.63 578.60 539.05 412.37 345.03 354.34 243.60 346.28
(77.41) (128.41) (136.61) (100.75) (103.29) (98.95) (98.19) (85.33)

λict 90 10 762.16 1476.06 1377.04 945.77 794.45 784.15 536.33 798.93
(182.97) (288.29) (311.28) (239.07) (241.76) (226.34) (219.33) (200.83)

Productivity persistence, ρc 0.639 0.567 0.577 0.607 0.625 0.617 0.647 0.618
(0.062) (0.069) (0.076) (0.082) (0.083) (0.076) (0.079) (0.065)

E[ωict −ωic,t−1] 0.067 0.053 0.054 0.058 0.060 0.058 0.068 0.060
(0.018) (0.016) (0.017) (0.017) (0.018) (0.017) (0.018) (0.017)

J-statistic 0.206 0.240 0.238 0.233 0.175 0.277 0.140 0.317
Adjusted R2 0.816 0.816 0.816 0.816 0.816 0.816 0.816 0.816
N × T 493 493 493 493 493 493 493 493

Odd columns control for summer and winter rainfall separately rather than total annual rainfall.
(1) Original estimates.
(2), (3) Imposes ϑc = 0.

(4), (5) Imposes ϑc =
1
2 .

(6), (7) Imposes ϑc = 1.

(8) Estimates ϑ̂c.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses..
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TABLE A12. SENSITIVITY TO RAINFALL SPECIFICATION: ANNUAL IRRIGATED

(1) (2) (3) (4) (5) (6) (7) (8)

E[
∂ fc
∂w ] 0.210 0.335 0.312 0.263 0.235 0.240 0.243 0.211

(0.041) (0.047) (0.068) (0.034) (0.044) (0.029) (0.037) (0.038)
∂ fc
∂w 10 0.075 0.264 0.246 0.134 0.119 0.095 0.097 0.076

(0.029) (0.048) (0.063) (0.031) (0.033) (0.024) (0.024) (0.032)
∂ fc
∂w 25 0.149 0.307 0.286 0.211 0.188 0.176 0.182 0.150

(0.038) (0.047) (0.067) (0.034) (0.039) (0.029) (0.032) (0.039)
∂ fc
∂w 75 0.278 0.373 0.347 0.328 0.294 0.315 0.317 0.280

(0.052) (0.048) (0.073) (0.042) (0.054) (0.038) (0.048) (0.044)
∂ fc
∂w 90 0.321 0.389 0.362 0.360 0.323 0.357 0.358 0.323

(0.057) (0.049) (0.072) (0.045) (0.059) (0.043) (0.055) (0.048)

Returns to scale, ∑j βcj 1.142 1.173 1.137 1.161 1.145 1.152 1.154 1.161
(0.086) (0.088) (0.088) (0.084) (0.086) (0.083) (0.086) (0.082)

λict median 87.87 150.40 139.99 112.96 101.32 103.61 105.34 88.58
(18.07) (26.90) (34.19) (17.96) (19.94) (14.92) (16.67) (17.28)

λict IQ 128.13 315.98 295.43 186.59 165.96 150.24 155.06 127.30
(94.31) (132.68) (130.73) (125.26) (113.26) (105.50) (97.62) (94.63)

λict 90 10 683.38 1393.43 1297.19 1054.82 941.40 806.63 817.95 685.25
(181.18) (343.16) (361.58) (215.05) (208.07) (171.24) (167.44) (182.63)

Productivity persistence, ρc 0.504 0.494 0.498 0.493 0.508 0.505 0.510 0.509
(0.091) (0.095) (0.094) (0.093) (0.094) (0.092) (0.092) (0.090)

E[ωict −ωic,t−1] 0.064 0.055 0.089 0.045 0.083 0.070 0.078 0.063
(0.059) (0.057) (0.061) (0.059) (0.061) (0.060) (0.061) (0.059)

J-statistic 0.255 0.508 0.185 0.523 0.154 0.318 0.152 0.349
Adjusted R2 0.748 0.748 0.748 0.748 0.748 0.748 0.748 0.748
N × T 170 170 170 170 170 170 170 170

See Table A11 for list of specifications.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses..
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TABLE A13. SENSITIVITY TO RAINFALL SPECIFICATION: DAIRY

(1) (2) (3) (4) (5) (6) (7) (8)

E[
∂ fc
∂w ] 0.087 0.329 0.044 0.018 0.049 0.055 0.083 0.057

(0.038) (0.127) (0.108) (0.044) (0.049) (0.029) (0.031) (0.034)
∂ fc
∂w 10 0.024 0.272 0.010 0.001 0.009 0.003 0.006 0.034

(0.021) (0.120) (0.102) (0.025) (0.029) (0.011) (0.013) (0.019)
∂ fc
∂w 25 0.043 0.299 0.017 0.003 0.018 0.009 0.018 0.045

(0.029) (0.126) (0.107) (0.034) (0.039) (0.017) (0.020) (0.025)
∂ fc
∂w 75 0.118 0.358 0.052 0.020 0.065 0.079 0.120 0.069

(0.049) (0.134) (0.114) (0.058) (0.064) (0.043) (0.044) (0.044)
∂ fc
∂w 90 0.152 0.386 0.084 0.034 0.092 0.124 0.178 0.078

(0.063) (0.136) (0.118) (0.070) (0.074) (0.059) (0.059) (0.058)

Returns to scale, ∑j βcj 0.988 1.025 0.994 0.991 0.990 0.975 1.003 1.012
(0.158) (0.103) (0.108) (0.095) (0.107) (0.117) (0.141) (0.147)

λict median 129.20 599.09 52.30 15.70 64.63 54.60 97.34 99.89
(67.52) (242.57) (203.75) (80.25) (91.43) (47.99) (53.70) (60.11)

λict IQ 235.21 556.05 31.27 46.12 133.32 153.34 237.67 130.45
(79.38) (236.43) (201.80) (96.61) (102.42) (78.94) (77.75) (51.22)

λict 90 10 555.90 1088.86 80.47 137.92 341.93 371.90 549.53 288.70
(199.68) (436.06) (375.71) (230.51) (233.87) (179.64) (184.91) (119.19)

Productivity persistence, ρc 0.384 0.412 0.431 0.391 0.399 0.379 0.390 0.381
(0.180) (0.123) (0.131) (0.147) (0.156) (0.165) (0.179) (0.171)

E[ωict −ωic,t−1] −0.103 −0.075 −0.097 −0.088 −0.115 −0.098 −0.129 −0.092
(0.037) (0.024) (0.036) (0.027) (0.038) (0.030) (0.039) (0.029)

J-statistic 1.161 2.060 0.638 0.923 0.914 1.218 1.371 1.052
Adjusted R2 0.866 0.866 0.866 0.866 0.866 0.866 0.866 0.866
N × T 256 256 256 256 256 256 256 256

See Table A11 for list of specifications.

Standard errors block-bootstrapped at the farm level (1000 iterations) in parentheses..
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TABLE A14. REALIZED GAINS FROM WATER TRADING: SENSITIVITY TO PROFIT FUNCTION

(1) (2) (3) (4) (5)

GFT/output 0.062 0.058 0.052 0.044 0.048
[0.034, 0.093] [0.032, 0.088] [0.028, 0.071] [0.021, 0.059] [0.020, 0.060]

GFT/ML 414.98 481.08 287.58 210.15 171.50
[202.98, 658.61] [235.31, 763.50] [156.36, 400.78] [101.07, 281.54] [72.50, 223.91]

Estimated gains from observed water trading, 2007–2015, relative to pre-trade endowments net of both annual
and permanent trades, reported as proportion of total irrigated profits under the market.
(1) Baseline estimate: optimal labor, materials.
(2) No discounting (δ = 1).
(3) Optimal labor, materials constrained to X∗ict ≤ 5Xict.
(4) Optimal labor, materials constrained to X∗ict ≤ 2Xict.
(5) Labor, materials held fixed at observed levels.

Confidence intervals report [5%,95%]-ile range of 700 draws block-bootstrapped at the farm level.
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TABLE A15. REALIZED GAINS FROM TRADE — ADDITIONAL RESULTS

Gains from trade Reallocation

% %, traders AUD/ML realloc (%) traders (%)

All 0.062 0.093 414.98 0.144 0.62
[0.034, 0.093] [0.050, 0.135] [202.98, 658.61] [0.128, 0.161] [0.60, 0.64]

Years
2007 0.052 0.091 284.66 0.105 0.48

[−0.002, 0.091] [−0.006, 0.179] [−17.65, 728.57] [0.081, 0.131] [0.44, 0.52]

2008 0.042 0.109 391.25 0.255 0.81
[−0.045, 0.156] [−0.053, 0.184] [−245.22, 842.22] [0.195, 0.327] [0.78, 0.86]

2009 0.194 0.214 1164.24 0.308 0.76
[0.099, 0.270] [0.109, 0.299] [602.14, 2011.97] [0.253, 0.363] [0.71, 0.81]

2010 0.158 0.185 1456.48 0.200 0.64
[0.052, 0.300] [0.065, 0.342] [416.99, 2801.09] [0.138, 0.266] [0.58, 0.70]

2011 −0.002 −0.005 −22.58 0.095 0.45
[−0.027, 0.014] [−0.062, 0.034] [−230.22, 167.22] [0.067, 0.141] [0.39, 0.51]

2012 −0.003 −0.005 −19.79 0.092 0.51
[−0.049, 0.032] [−0.080, 0.052] [−294.30, 185.35] [0.075, 0.121] [0.45, 0.57]

2013 0.007 0.009 27.05 0.227 0.74
[−0.061, 0.080] [−0.083, 0.110] [−268.71, 309.25] [0.171, 0.282] [0.65, 0.81]

2014 0.073 0.089 394.91 0.132 0.73
[0.012, 0.106] [0.015, 0.129] [56.04, 634.53] [0.105, 0.161] [0.67, 0.79]

2015 0.014 0.022 79.67 0.158 0.64
[−0.025, 0.040] [−0.041, 0.063] [−162.02, 223.38] [0.119, 0.198] [0.59, 0.69]

B. Regions
VIC.Goulburn 0.073 0.101 647.58 0.209 0.60

[0.027, 0.098] [0.048, 0.147] [250.08, 1120.52] [0.171, 0.253] [0.55, 0.66]

NSW.Murrumbidgee 0.063 0.092 324.04 0.095 0.60
[−0.033, 0.165] [−0.050, 0.220] [−155.07, 981.56] [0.074, 0.118] [0.55, 0.64]

SA.Murray 0.108 0.145 677.49 0.220 0.68
[0.032, 0.204] [0.040, 0.260] [210.36, 1130.80] [0.176, 0.280] [0.63, 0.71]

VIC.Murray 0.022 0.034 244.56 0.143 0.60
[−0.001, 0.059] [−0.001, 0.095] [−5.54, 794.02] [0.120, 0.188] [0.54, 0.67]

NSW.Murray 0.056 0.103 316.94 0.179 0.62
[0.014, 0.090] [0.022, 0.136] [54.22, 379.81] [0.143, 0.216] [0.57, 0.68]

C. Crop types
Perennial irrigated 0.058 0.080 544.04 0.169 0.64

[0.019, 0.098] [0.026, 0.132] [172.69, 985.93] [0.147, 0.202] [0.61, 0.67]

Annual irrigated 0.087 0.150 505.73 0.107 0.54
[0.044, 0.185] [0.075, 0.274] [174.74, 1116.41] [0.087, 0.127] [0.50, 0.58]

Dairy 0.032 0.047 188.84 0.223 0.65
[−0.011, 0.037] [−0.016, 0.056] [−61.27, 220.23] [0.187, 0.260] [0.60, 0.69]

Supplement to Table 11. Estimated gains from all water trading for all farms 2007–2015 and then subsets speci-
fied by row. Gains from trade defined as discounted sum of (19) over t, reported as the fraction of total irrigated
profits (column 1), total irrigated profits of only water-trading farms (column 2), and total trade volume (column
3). Columns 4 and 5 show trade volumes divided by total irrigation volumes and the proportion of farm-years
with nonzero trade balances.

Confidence intervals report [5%,95%]-ile range of 700 draws block-bootstrapped at the farm level.
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TABLE A16. IRRIGATION POLICY FUNCTION

crop type

(1) (2) (3)

land, Kict 0.981 0.903 0.421
interquartile 0.060 0.106 0.122
interdecile 0.216 0.483 0.443

productivity, ω̂ict 0.180 0.529 −0.257
interquartile 0.234 0.202 0.221
interdecile 0.754 0.918 0.751

crop price, Pict 0.324 0.464 0
interquartile 0.169 0.857 0
interdecile 0.950 3.314 0

dairy cows, XD
ict 0 0 0.442

interquartile 0 0 0.122
interdecile 0 0 0.474

rainfall, ER
it −0.303 −0.179 −0.271

interquartile 0.179 0.350 0.085
interdecile 0.845 1.518 0.437

water price, PW
rt −0.174 −0.161 −0.257

interquartile 0.053 0.358 0.152
interdecile 0.251 1.360 0.675

Region FEs X X X
Observations 1,000 464 475
R2 0.848 0.833 0.648
Adjusted R2 0.842 0.817 0.616

Summary statistics of local elasticities of estimated function W : average, interquartile, and interdecile range
across i, c, t of the local elasticity of irrigation at observed sit with respect to land, productivity, and µit, indicated
by row. Estimated separately for each c, using a fully saturated translog specification:
(1) perennial irrigated
(2) annual irrigated
(3) pasture.
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TABLE A17. IRRIGATION POLICY ESTIMATES — SENSITIVITY TO POLYNOMIAL APPROXIMATION

A. Perennial irrigated

specification
(1) (2) (3) (4) (5)

land, Kict 0.996 0.981 0.947 1.002 0.972
interquartile 0 0.060 0.073 0.112 0.212
interdecile 0 0.216 0.442 0.734 1.212

productivity, ω̂ict 0.285 0.180 0.129 −0.032 0.103
interquartile 0 0.234 0.349 0.203 0.585
interdecile 0 0.754 1.272 1.123 2.528

crop price, Pict 0.385 0.324 0.086 −0.035 −0.213
interquartile 0 0.169 0.779 0.477 1.246
interdecile 0 0.950 3.657 2.823 4.985

rainfall, ER
it −0.412 −0.303 −0.318 −0.115 0.029

interquartile 0.065 0.179 0.255 0.168 0.474
interdecile 0.253 0.845 1.032 1.208 3.198

water price, PW
rt −0.223 −0.174 −0.023 −0.124 0.062

interquartile 0 0.053 0.215 0.150 0.478
interdecile 0 0.251 1.123 0.876 2.404

Region FEs X X X X X
Crop-specific estimates X X X X X
Observations 1,000 1,000 1,000 1,000 1,000
R2 0.816 0.848 0.876 0.918 0.965
Adjusted R2 0.814 0.842 0.859 0.911 0.953

B. Annual irrigated

specification
(1) (2) (3) (4) (5)

land, Kict 0.950 0.903 0.874 0.779 0.864
interquartile 0 0.106 0.148 0.217 0.465
interdecile 0 0.483 1.020 1.341 2.637

productivity, ω̂ict 0.564 0.529 0.365 0.266 0.070
interquartile 0 0.202 0.622 0.390 0.651
interdecile 0 0.918 2.921 1.875 3.723

crop price, Pict 0.558 0.464 −0.130 −0.182 −0.636
interquartile 0 0.857 2.507 0.965 2.187
interdecile 0 3.314 12.838 4.742 11.253

rainfall, ER
it −0.130 −0.179 −0.231 −0.218 −0.199

interquartile 0.021 0.350 0.687 0.570 1.250
interdecile 0.076 1.518 3.522 2.980 4.450

water price, PW
rt −0.260 −0.161 −0.066 −0.460 −0.161

interquartile 0 0.358 0.845 0.298 0.739
interdecile 0 1.360 4.288 1.996 5.181

Region FEs X X X X X
Crop-specific estimates X X X X X
Observations 464 464 464 464 464
R2 0.789 0.833 0.896 0.801 0.950
Adjusted R2 0.784 0.817 0.859 0.764 0.882

Summary statistics of local elasticities of estimated function W : average, interquartile, and interdecile range
across i, c, t of the local elasticity of irrigation at observed sit with respect to land, productivity, and µit, indicated
by row. Each polynomial estimated separately by c.
(1) log-linear
(2) translog, second-degree
(3) translog, third-degree
(4) quadratic, levels
(5) cubic, levels.
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TABLE A17 (CONT’D). IRRIGATION POLICY ESTIMATES — SENSITIVITY TO POLYNOMIAL APPROXI-
MATION

C. Dairy

specification
(1) (2) (3) (4) (5)

land, Kict 0.466 0.421 0.302 0.231 0.277
interquartile 0 0.122 0.259 0.148 0.655
interdecile 0 0.443 1.257 0.702 2.403

productivity, ω̂ict −0.333 −0.257 −0.482 −0.161 −0.377
interquartile 0 0.221 0.633 0.230 0.658
interdecile 0 0.751 2.900 1.471 4.206

K moo 0.404 0.442 0.497 0.532 0.482
interquartile 0 0.122 0.389 0.301 0.778
interdecile 0 0.474 2.108 1.295 3.629

rainfall, ER
it −0.319 −0.271 −0.359 −0.251 0.124

interquartile 0.086 0.085 0.310 0.322 1.414
interdecile 0.174 0.437 1.891 1.667 5.871

water price, PW
rt −0.291 −0.257 −0.309 −0.231 −0.106

interquartile 0 0.152 0.668 0.106 0.633
interdecile 0 0.675 1.982 1.230 3.425

Region FEs X X X X X
Crop-specific estimates X X X X X
Observations 475 475 475 475 475
R2 0.602 0.648 0.746 0.725 0.900
Adjusted R2 0.595 0.616 0.661 0.676 0.775

Table A17, continued.
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TABLE A18. PERSISTENCE OF FARM STATES

Current value, si(c)t

PW
it ER

it − EV
it PL

X,it Pict ω̂ict

(1) (2) (3) (4) (5)

Lagged value, si,t−1 0.562∗∗∗ 0.617∗∗∗ 0.879∗∗∗

(0.025) (0.025) (0.017)

sic,t−11{c = annual irr} 0.714∗∗∗ 0.352∗∗∗

(0.041) (0.038)

sic,t−11{c = annual nonirr} 0.384∗∗∗ 0.646∗∗∗

(0.046) (0.035)

sic,t−11{c = dairy} −0.167 0.235∗

(0.269) (0.124)

sic,t−11{c = perennial} 0.355∗∗∗ 0.600∗∗∗

(0.043) (0.047)

Observations 1,028 1,028 1,028 1,274 1,274
Adjusted R2 0.332 0.370 0.724 0.642 0.896
Residual Std. Error 160.197 160.263 70.537 0.177 0.413

Columns (1)–(3) are regressions at the farm-year level; columns (4) and (5) are at farm-crop-type level.

Uncorrected standard errors.
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TABLE A19. PERENNIAL ADJUSTMENT PROBIT

specification

1(Kict 6= Kic,t−1) 1(Kict > Kic,t−1|Kict 6= Kic,t−1)

(1) (2) (3) (4) (5) (6) (7) (8)

land, Kic,t−1 0.186∗∗∗ 0.187∗∗∗ 0.240∗∗∗ 0.250∗∗∗ −0.054 −0.049 −0.101 −0.086
(0.058) (0.059) (0.062) (0.063) (0.110) (0.112) (0.116) (0.118)

productivity, ω̂ic,t−1 −0.041 −0.012 0.100 0.158 −0.072 0.027 −0.065 0.077
(0.149) (0.160) (0.159) (0.170) (0.259) (0.274) (0.271) (0.288)

crop price, Pic,t−1 0.664 0.770∗ 1.333∗∗∗ 1.407∗∗∗ 0.260 −0.048 0.151 0.029
(0.428) (0.433) (0.480) (0.491) (0.797) (0.836) (0.925) (0.958)

rainfall, ER
i,t−1 −0.151 −0.343∗ 0.340 0.327 0.071 0.245 0.130 0.320

(0.170) (0.196) (0.216) (0.292) (0.282) (0.340) (0.366) (0.482)

water intensity, Wic,t−1/Kic,t−1 −0.139 −0.099 0.001 0.016 0.245 0.297 0.302 0.363
(0.130) (0.132) (0.141) (0.142) (0.223) (0.228) (0.249) (0.258)

water price, PW
r,t−1 0.221∗∗ 0.260∗∗ 0.349 0.245 0.011 0.045 −0.038 0.137

(0.100) (0.109) (0.260) (0.301) (0.159) (0.180) (0.396) (0.468)

allocation rule, Wr,t−1 0.119 0.293∗ −0.163 −0.119 −0.118 −0.122 0.006 0.162
(0.136) (0.172) (0.156) (0.213) (0.194) (0.302) (0.219) (0.389)

Region FEs X X X X
Year FEs X X X X
Mean empirical p±(s) 0.316 0.316 0.316 0.316 0.477 0.477 0.477 0.477
Mean predicted p̂±(s) 0.316 0.316 0.316 0.316 0.477 0.478 0.477 0.478
Q0 predicted p̂±(s) 0.041 0.032 0.007 0.007 0.320 0.140 0.000 0.000
Q10 predicted p̂±(s) 0.157 0.139 0.110 0.103 0.388 0.347 0.338 0.300
Q25 predicted p̂±(s) 0.234 0.220 0.183 0.175 0.430 0.430 0.388 0.402
Q75 predicted p̂±(s) 0.391 0.403 0.424 0.436 0.522 0.544 0.548 0.576
Q90 predicted p̂±(s) 0.467 0.491 0.585 0.583 0.573 0.585 0.673 0.698
Q100 predicted p̂±(s) 0.609 0.632 0.850 0.864 0.621 0.655 0.836 0.881
Observations 484 484 484 484 153 153 153 153
Log Likelihood −287.116 −282.291 −266.614 −264.227 −104.464 −102.016 −98.985 −96.804
Akaike Inf. Crit. 590.231 588.582 563.227 566.455 224.927 228.031 227.970 231.608

Definition of adjustment as 1 ha or greater and at least 1% total.
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TABLE A20. PERENNIAL ADJUSTMENT BANDWIDTH

specification for κ

(1) (2) (3) (4) (5)

land, Kic,t−1 −0.003 0.062 1.005 0.037 1.029
interquartile 0 0.056 0.418 0.131 0.539
interdecile 0 0.214 1.853 0.552 2.117

water, Wic,t−1 −0.062 −0.131 −0.097 −0.124 −0.127
interquartile 0 0.034 0.285 0.190 0.285
interdecile 0 0.138 1.297 0.531 1.871

productivity, ω̂ic,t−1 −0.011 0.036 −0.431 0.073 0.334
interquartile 0 0.104 0.772 0.156 0.594
interdecile 0 0.384 3.420 0.675 3.065

Region FEs X X X X X
Observations 153 153 153 153 153
R2 0.100 0.218 0.744 0.291 0.806
Adjusted R2 0.056 0.138 0.718 0.145 0.765

Summary statistics of local elasticities of estimated function κperennial: average, interquartile, and interdecile
range across i, t of the local elasticity of Kict at observed si,t−1, with respect to land, productivity, and µi,t−1,
indicated by row. Preferred estimates are in column (2). Estimated from an ordinary least squares regression
of |kict − kic,t−1| (for logarithms; |Kict − Kic,t−1| for levels) over all c = perennial such that Kict 6= Kic,t−1, on the
following transformations of si,t−1:
(1) logarithms (linear)
(2) logarithms (quadratic)
(3) levels (quadratic)
(4) logarithms (cubic)
(5) levels (cubic).
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TABLE A21. LAND POLICY FUNCTION — ANNUAL FARMS

A. Annual irrigated crops

specification for κ

(1) (2) (3) (4) (5)

land, Kic,t−1 0.607 0.408 0.234 0.495 0.156
interquartile 0 0.148 0.112 0.194 0.163
interdecile 0 0.641 0.389 0.679 0.918

water, Wic,t−1 0.189 0.343 0.228 0.428 0.342
interquartile 0 0.165 0.159 0.198 0.310
interdecile 0 0.548 0.425 0.758 0.898

productivity, ω̂ic,t−1 −0.167 −0.132 −0.236 −0.109 −0.338
interquartile 0 0.043 0.120 0.201 0.176
interdecile 0 0.183 0.763 0.968 1.250

Region FEs X X X X X
Observations 172 172 172 172 172
R2 0.707 0.735 0.421 0.757 0.455
Adjusted R2 0.695 0.712 0.370 0.714 0.357

B. Pasture for dairy cows

specification for κ

(1) (2) (3) (4) (5)

land, Kic,t−1 0.149 0.081 −0.159 0.065 0.090
interquartile 0 0.261 0.065 0.249 0.275
interdecile 0 0.867 0.366 1.090 1.155

water, Wic,t−1 0.069 0.077 0.120 0.020 0.137
interquartile 0 0.108 0.121 0.160 0.274
interdecile 0 0.436 0.494 0.979 1.218

productivity, ω̂ic,t−1 0.109 0.159 0.260 0.222 0.148
interquartile 0 0.224 0.249 0.391 0.535
interdecile 0 0.863 0.787 1.847 2.356

dairy cows, XD
ict 0.051 0.052 0.156 0.080 −0.223

interquartile 0 0.207 0.227 0.238 0.688
interdecile 0 0.728 1.040 1.577 2.561

Region FEs X X X X X
Observations 257 257 257 257 257
R2 0.587 0.654 0.445 0.709 0.543
Adjusted R2 0.571 0.617 0.385 0.625 0.413

Summary statistics of local elasticities of estimated function κannual: average, interquartile, and interdecile range
across i, t of the local elasticity of Kict at observed si,t−1, with respect to land, productivity, and µi,t−1, indicated
by row. Preferred estimates are in column (2). Polynomial approximation for κannual:
(1) logarithms (linear)
(2) logarithms (quadratic)
(3) levels (quadratic)
(4) logarithms (cubic)
(5) levels (cubic).
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TABLE A22. SUMMARY OF NOTATION

Farm inputs units

Qict physical output tonnes
Wict irrigation volumes megaliters (ML)
ER

it rainfall millimeters (mm)
EV

it evapotranspiration mm

XL
ict labor weeks

XF
ict feed deflated tonnes

XM
ict materials AUD

XD
ict number of dairy cows Z+

Kict land hectares

Pict final crop price AUD/tonne
PL

X,it realized wage AUD/week

Water market

Wrt regional water allocation path ML
PW

it water prices AUD/ML
ρit permanent water rights [0, 1]

Primitives

Fc production technology
θc production parameters

ωict productivity
εict measurement error
ψct Markov transition operator

Summary of the notation used in the text: i indexes farm, c indexes crop type (irrigated annual, nonirrigated
annual, irrigated pasture, or irrigated perennial), t indexes year.
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