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Abstract

This paper studies bidding behavior in first-price sealed bid auctions with risk-neutral
bidders and independent private values. Instead of assuming that bids and beliefs are
consistent with a Bayesian Nash equilibrium (BNE), I only assume consistency with k steps
of iterated elimination of strategies that are never best responses (k-rationalizability). I
provide an econometric test for the largest value of k that is consistent with the data.
Rejecting any finite k automatically rules out BNE and (full) rationalizability. It allows
to quantify strategic sophistication of bidders and improve counterfactual predictions. My
framework includes “cognitive hierarchy” or “level-k” models as special cases but, unlike
those models, I make no assumptions about how beliefs are selected. My approach relies
only on inequalities between functionals of conditional distributions that are implied by
k-rationalizability. As an empirical illustration I apply my test to USFS timber auction
data. The results show that values of k as low as 2 can be rejected in asymmetric auctions.
Counterfactual exercises allow me to quantify the loss in expected payoff derived from the
presence of incorrect beliefs.



1 Introduction

First-price sealed-bid auctions are widely used to sell objects ranging from drilling and logging

rights, to contracts for constructing roads, etc. By the nature of these auctions, optimal bidding

strategies –and their observable implications– depend crucially on the assumptions made on

bidders’ beliefs about opponents’ behavior. By far, most of the identification results in the

literature have been obtained under the assumption of Bayesian Nash equilibrium (BNE), which

presupposes correct beliefs for bidders. As a result, identification results have been derived under

BNE and they have enabled estimation and inference in first-price auction models under a variety

of assumptions regarding the distribution of bidders’ values (Paarsch (1992), Laffont et al. (1995),

Donald and Paarsch (1996), Guerre et al. (2000), Li et al. (2000), Li et al. (2002), Hubbard et al.

(2012)). However, having methods to identify and test the true underlying behavioral model is a

crucial first-step to obtaining credible results. While the experimental literature has developed

alternative models to BNE, these typically rely on very precise assumptions about how different

types of behavior deviate from BNE.

This paper is motivated by the need for robust econometric methods that can identify and

test bidding behavior in auctions without making specific assumptions about how bidders may

deviate from BNE. My goal is to frame the econometric problem within a general class of

behavioral models that nests BNE and rationalizability (arguably, the most important solution

concepts in the literature) as special cases. To this end, while I maintain the assumption that

bidders are expected-utility maximizers, I allow for incorrect beliefs and assume only that these

are consistent with certain rationality requirements but are otherwise unrestricted. Specifically,

following theoretical results from Battigalli and Siniscalchi (2003), I assume that beliefs are

consistent with k iterated steps of elimination of bidding strategies that are never best-responses.

Otherwise, beliefs are left unrestricted.

This behavioral model is called k-rationalizability and it includes BNE and rationalizability

(common knowledge of expected-profit maximazing behavior) as special cases. Importantly,

it also includes cognitive hierarchy models (often called “Level-k” models), developed in the

experimental literature as alternatives to BNE, as special cases (Crawford and Iriberri (2007),

Gillen (2009), Crawford et al. (2013), Kagel and Levin (2014), An (2017), Hortacsu et al. (2017)).

This paper develops econometric techniques that identify and test where the underlying behavior

in the data falls within the range of k-rationalizable bidding. Specifically, I identify the largest

value of k that is consistent with the observed bidding behavior by testing an inequality involving

transformations of conditional distributions. As a byproduct, such a procedure tests, e.g, whether

the data is consistent with BNE (rejecting any finite k rejects BNE) but, more generally, it allows

me to identify bidders’ degree of strategic sophistication as measured by k. This, in turn, can
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be used to undertake credible counterfactual analysis.

All existing nonparametric identification results in first-price auctions are immediately inval-

idated in the very general behavioral setting considered here. However, my goal is not to identify

the distribution of values from the observed first-price auction data (an infeasible task given my

behavioral assumptions), but rather to infer where the observed bidding behavior falls within

the class of k-rationalizable bidding. In this paper I show that if the distribution of values is non-

parametrically identified from an outside source, a test for the largest value of k consistent with

k-rationalizability in the first-price auction data can be conducted nonparametrically. To this

end, I develope an econometric procedure focused on the case where the researcher observes auc-

tions for the same objects from first-price as well as ascending auctions, since bidding one’s own

valuation remains a weakly dominant strategy in the latter regardless of higher-order beliefs and,

consequently, existing identification results for value distributions in ascending auctions (Athey

and Haile (2002), Haile and Tamer (2003)) remain valid and are not affected by k-rationalizable

behavior in first-price auctions. While combining data from ascending and first-price auctions

of the same type of object has been done before, e.g, in Lu and Perrigne (2008) (to estimate risk

aversion) and in Athey et al. (2011) (to study bidders participation and auction design). To my

knowledge this is the first paper that proposes a nonparametric test for bidding behavior and

rationality.

The paper proceeds as follows. Section 2 describes the model of k-rationalizable bidding.

Section 3 develops an nonparametric test for k-rationalizability that assumes the existence of

auxiliary data from ascending auctions. Section 4 discusses the case where no auxiliary data

is available. An empirical illustration for USFS timber auction data is included in Section 5.

Classifying firms into small and large according to the number of workers, my test shows that

values of k as low as 2 are rejected in two-bidder auctions with asymmetric types, while larger

values of k are consistent with the data in symmetric auctions. Counterfactual analysis then

quantifies the economic cost of incorrect beliefs. Section 6 summarizes results from several

extensions of my main assumptions, including correlation in values, risk aversion and the case

of “ambiguity”, where the distribution of values is unknown to bidders. Section 7 concludes.

Econometric proofs and other supplemental materials are in the Appendix.

2 A Model of k-rationalizable Bidding

My goal is to develop a method for inference in first-price auctions with independent private

values (IPV) under the assumption that bidders are profit maximizers and risk-neutral. Nash

equilibrium behavior in auctions assumes that players hold correct beliefs about the strategies
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of other players. I relax this assumption: I require that beliefs are strategically sophisticated (in

a way that is described below) but not necessarily correct. Furthermore, I allow unobserved

heterogeneity in bidders’ beliefs and I allow for beliefs to be (possibly) dependent on bidders’

values. I consider a weaker solution concept than BNE, but which includes BNE as a special

case. At the same time, the notion of strategically sophisticated beliefs implies that beliefs

must be justified by a well-founded rationalizability criterion. To achieve these goals, I use

the results of Battigalli and Siniscalchi (2003) (henceforth B-S) about rationalizable bidding

in first-price auctions. B-S impose a minimal requirement on the space of allowable beliefs.

The characterization of rationalizable bids is based on the iterative deletion of bids that cannot

be justified by beliefs consistent with progressively higher degrees of strategic sophistication.

Rationalizable bids are those that survive arbitrarily many steps of iterative deletion, but the

B-S framework also characterizes bids that survive only finitely many steps of iteration, giving

rise to a well–defined notion of k-rationalizable bids.

Under conditions I describe below, the space of k-rationalizable bids are completely described

by a (sharp) upper bound Bk(·) on bidding functions (mappings from bidders’ values to bids).

A bidding function b(·) is consistent with k-rationalizability if and only if ∀ v b(v) ≤ Bk(v) .

These bounds turn out to have useful properties: for each k the upper bound Bk(·) is a strictly

increasing function, bounds are monotonically decreasing in k, so that Bk(·) ≥ Bk+1(·) for all

k, and if I define B∞(v) = lim
k→∞

Bk(v), then B∞(·) is a sharp upper bound for the space of

rationalizable bids. Since every BNE is rationalizable, each BNE bidding function is below the

bound B∞(·) and there is a gap between them. The lower bound for k-rationalizable bids is zero

for any k. Thus, all bids below BNE and some bids above BNE are k−rationalizable.
Based on these properties, I provide econometric tools to test whether observed bidding

behavior is consistent with k−rationalizability. This has important implications since rejecting

any finite k would immediately reject BNE bidding behavior and (full) rationalizability.

2.1 Rationalizable bids

All results presented in this section come from B-S.

2.1.1 Basic setup

Consider a single-object first-price auction. There are n risk-neutral players with independent

private values.1 Private values are drawn from a commonly known distribution2 F0, with compact
1The analysis in B-S allows for common values under affiliation and symmetry restrictions. I focus on IPV

because the nonparametric inferential method I propose in Section 3.2 relies on the IPV assumption. The
parametric approach outlined in Section 6.3 can allow for common values under affiliation.

2I extend the results to a setting with asymmetric bidders in Section 2.3.
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support [v, v], where 0 ≤ v < v. Like B-S, I consider a setting where there is no binding reserve

price, so I set it to zero. For simplicity I also normalize v = 0. The following assumption3 is

maintained.

Assumption 2.1. The cdf F0 is differentiable, with continuous density f0 bounded away from

zero over the support [0, v]. F0 is common knowledge.

Each bidder i observes vi, her value of the good, and chooses a bid b ≥ 0. The object is

assigned to the bidder with the highest bid, ties are broken at random. The winner pays her bid

and losers do not pay anything.

2.1.2 Beliefs and best responses

Bidders treat competitors’ bids as random variables. More precisely, a particular conjecture

of bidder i about the bidding behavior of player j is viewed as a function bj : [0, v] → R+.

Let B denote the set of all positive bounded functions with domain [0, v]. The set of possible

conjectures for bidder i about her competitors is B−i =
∏

j 6=i Bj, where each Bj ⊆ B. A belief

of player i is a probability measure µi on ∆(B−i). I focus on beliefs that assign probability zero

to ties. The expected payoff4 of bidding b conditional on the private value vi and a given belief

µi ∈ ∆(B−i) is

π(b, vi;µi) ≡ (vi − b)
∫
B−i

P[b−i ≤ b] µi(db−i) ≡ (vi − b)P[b−i ≤ b|µi]. (2.1)

Let π∗(vi;µi) ≡ supb≥0 π(b, vi;µi). If bid b is such that π(b, vi;µi) = π∗(vi;µi), it is called a best

response to the belief µi.

A restriction on the space of beliefs

As in B-S, I rule out cases where bidders submit completely non-informative or trivial bids

because they are certain they will not win the good. Therefore, I restrict attention to the space

of beliefs where every player assumes that any positive bid yields a positive probability of winning

the good.

Assumption 2.2. Let

∆+(B−i) =

{
µ ∈ ∆(B−i): ∀ b > 0,

∫
B−i

Pv−i [b−i(v−i) ≤ b|vi]µ(db−i) > 0 ∀ vi ∈ [0, v]

}
.

Then beliefs for each player i belong to ∆+(B−i).
3In the econometric inference section I impose further smoothness restrictions on F0.
4I focus throughout on interim rationalizability, that is, bids are rationalizable for i conditional on observing

vi and a belief µi can depend on the private value vi.
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Focusing attention to ∆+(B−i) rules out cases where bidder i submits a bid above her private

value vi or a bid equal to zero simply because she is certain she will not win the good. Assuming

that bidders are expected profit maximizers and (2.2) rules out weakly dominated bids5. This

also yields a natural upper bound on rationalizable bids which will be the starting point of the

iterative method described below.

2.1.3 Rationalizable bids for a given upper bound on opponents’ bidding functions

Let B : [0, v] → R+ be a nondecreasing function such that B(v) > 0 for all v 6= 0. Suppose

bidder i believes that B is an upper bound for the opponents’ bids, i.e., bj(v) ≤ B(v) for all

v ∈ [0, v] and j 6= i. Denote B−i =
{
B,B, . . . , B

}
. Accordingly, let

∆+(B−i;B−i) =
{
µ ∈ ∆+(B−i): µ

({
b−i: b−i < B−i

})
= 1
}
.

Which bids can be rationalized as best responses to some beliefs in ∆+(B−i;B−i)? For a given

bid b∗, compare vi − b∗ (the highest possible value of bidder i’s expected payoff for bid b∗ when

he wins with probability 1) against infµ∈∆+(B−i;B−i) π
∗(vi;µ) (the worst possible expected payoff

for beliefs in ∆+(B−i;B−i)). From Theorem 6 in B-S it follows that:

1. If vi − b∗ < infµ∈∆+(B−i;B−i) π
∗(vi;µ), then b∗ is not a best response to any belief µ ∈

∆+(B−i, B−i) given vi.

2. If vi − b∗ > infµ∈∆+(B−i;B−i) π
∗(vi;µ), then b∗ is a strict best response to some belief µ ∈

∆+(B−i, B−i) given vi.

3. The upper bound B produces a least upper bound on the best response function of bidder

i. For each vi, this upper bound is given by vi − infµ∈∆+(B−i;B−i) π
∗(vi;µ).

4. If B is increasing, then infµ∈∆+(B−i;B−i) π
∗(vi;µ) = π∗(vi;B−i), where π∗(vi;B−i) represents

the optimal expected payoff for player i if her opponents’ bidding functions correspond to

the upper bound B−i.

2.1.4 An iterative characterization of rationalizable bids

The previous section presents results for a given upper bound on opponents’ bids. Thus, one

might wonder whether a description of rationalizable bids requires one to specify a nontrivial

“initial” upper bound B. Given minimal assumptions (2.1) and (2.2), this is not the case: starting

with arbitrarily large upper bounds B, one can arrive at the set of rationalizable bids through

an iterative process of deletion of bids that are never best response.
5In the second-price auctions it implies that players bid their private values.
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For bidder i and a given set of beliefs ∆i ⊆ ∆+(B−i), let

ρi(vi,∆i) = {b ≥ 0: ∃µ ∈ ∆i, π(b, vi;µ) = π∗(vi;µ)} ,

denote the set of bids that can be rationalized as best-responses for bidder i with private value

vi to some beliefs in ∆i. Next, for a collection of set-valued functions {Cj: [0, v] ⇒ R+}j 6=i, let
denote the set of beliefs allowed by the assumption (2.2) with the support in C−i ≡

∏
j 6=i Cj by

∆+(C−i) =
{
µ ∈ ∆+(B−i): µ ({bj(vj) ∈ Cj(vj), ∀ vj ∈ [0, v], ∀ j 6= i}) = 1

}
.

Definition 2.1. [k-rationalizable and rationalizable6 bids] For each i = 1, . . . , n and each

vi ∈ [0, v], let:

Ri,0(vi) = R+, Ri,k(vi) = ρi
(
vi,∆

+(R−i,k−1)
)
, k = 1, 2, . . .

1. A bid b∗ is k−rationalizable for bidder i given vi if b∗ ∈ Ri,k(vi).

2. A bid b∗ is rationalizable for bidder i given vi if there exists an n−tuple (C1, . . . , Cn) such

that Cj(vj) ⊆ ρj(vj,∆(C−j)) for each j = 1, . . . , n, and b∗ ∈ Ci(vi).

Under assumptions (2.1), (2.2), rationalizable bids for each vi can be obtained from the set

of k−rationalizable bids by letting k →∞.

Upper bounds for k−rationalizable bids

Given the assumptions (2.1), (2.2), a key property of the set of k−rationalizable bids is that this
set is completely characterized by a corresponding upper bound Bk(·). For every vi ∈ [0, v], let

B1(vi) = vi, Bk+1(vi) = vi − inf
µ∈∆+(R−i,k(·))

π∗(vi;µ), k = 1, 2, . . .

Theorem 12 in B-S shows that the upper bound Bk(·) is strictly increasing, continuous and

positive for every k ≥ 1. This increasing property in turn implies that

inf
µ∈∆+(R−i,k(·))

π∗(vi;µ) = π∗(vi;Bk(·)) = sup
b≥0

{
(vi − b)P

[
Bk(vj) ≤ b ∀ j 6= i

]}
6Rationalizability is defined in terms of best-response properties (see Bernheim (1984), Pearce (1984), Fuden-

berg and Tirole (1998) (Section 2.3.1)) independently of the sets of k−rationalizable bids.
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And one can re-express these bounds simply as

B1(vi) = vi, Bk+1(vi) = vi − π∗(vi;Bk(·)), k = 1, 2, . . . . (2.2)

Result 2.1. (Properties of the upper bounds for k−rationalizable bids) From the results

in Theorem 12 and Proposition 13 in B-S I have the following:

1. Bk(·) ≥ Bk+1(·) for all k.

2. For all k ≥ 1 and vi ∈ (0, v], the set of k−rationalizable bids Ri,k(vi) is an interval with

interior (0, Bk(vi)). The upper bound Bk(·) is strictly increasing, continuous, concave and

positive.

3. For all vi ∈ (0, v], the set of rationalizable bids is an interval with interior (0, B∞(vi)); the

upper bound B∞(·) is continuous, concave, nondecreasing and positive.

2.2 Behavior and stylized facts consistent with k-rationalizable bid-

ding

The range of possible behavioral models encompassed within k−rationalizability is significant.

Basically, the only initial restriction placed on beliefs is Assumption 2.2, i.e. bidders assume that

any nonzero bid may win with positive probability. Thus, k−rationalizability includes Bayesian

Nash equilibrium (symmetric or asymmetric) as a special case. It is also consistent with “level-

k” or “cognitive hierarchy” models which have been used in experimental economics to explain

deviations from equilibrium behavior7 (see Crawford and Iriberri (2007), Crawford et al. (2013),

Kline (2015)). Rationalizable bidding defined via best-response properties ( Bernheim (1984),

Osborne and Rubinstein (1994)) is also a special case of k−rationalizable bidding and in fact it

is the limiting case as k →∞.

As B-S point out, k−rationalizability is also compatible with the following stylized facts that

have been observed in experimental auctions:

Overbidding relative to risk-neutral BNE: The limiting bounds B∞(·) include bids above the

risk-neutral BNE bids.

Underbidding relative to risk-neutral BNE: Any bid in the interval (0, Bk(vi)) is k− rational-

izable. This includes bids strictly below BNE. While overbidding above risk-neutral BNE can

be explained by risk-aversion (strictly concave payoff functions), bids below risk-neutral BNE

cannot be originated by risk-aversion (see Section 4.1 in Krishna (2010)).
7If the anchor beliefs of the L0 type are consistent with Assumption 2.2 then k−rationalizable bounds are

valid for each Lk−level type.
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Heterogeneity in bidding functions and beliefs: k−rationalizability only describes a sharp

upper bound for rationalizable bids. A population of k−rationalizable bidders can present a

very rich heterogeneity in bidding functions; for instance, some of them may be using the BNE

bidding functions while others may be bidding at the boundary. Heterogeneity in biding functions

arises from heterogeneity in beliefs.

2.3 Extensions to asymmetric bidders

The setting considered in B-S assumes a collection of n symmetric bidders, but their approach

can be extended to allow for asymmetries. Of particular interest would be an environment

with a finite number R of observable types. Suppose bidders of type r have a distribution of

private values Fr : [0, v] → [0, 1] (with common support across all types) and that IPV holds.

Maintain the assumption that each Fr is common knowledge. A bidder may have different beliefs

(conjectures) about other types. Beliefs for bidder i is a collection of R measures {µir}Rr=1. The

corresponding collection of upper bounds
{
Bir,k(·)

}R
r=1

, where the subscript ir refers to beliefs

held by bidder i about bidders of type r. This may have the potential of generalizing the notion

of k−rationalizability to something I call (k1, . . . , kR)−rationalizability, described by an R × R
matrix of cross-type conjectures about k.

While a full extension of the results in B-S to this general setting is beyond the scope of

my paper, I can consider the simple case of auctions with two players (n = 2) drawn from

two possible types8: s (for a small firm) and ` (for a large firm). The distributions of private

values of different types can be different (Fs is not necessarily equal F`). Fs and F` are common

knowledge9. I do not impose any assumptions on stochastic dominance between Fs and F`.

Consider type s player. Her private value vs is independently drawn from the distribution Fs.

Her beliefs can be type-specific, denoted as µss when her opponent is of type ss and µs` when her

opponent is of type `. Suppose µss and µs` are consistent with kss and ks` steps of elimination of

bids that are never best response (define v`, F`, µ``, µ`s, k`` and k`s similarly). I still maintain the

assumption that bidders assume that nonzero bids can win with positive probability. My setup

allows for different types of players to have misaligned higher-order beliefs about their opponents

even in terms of the number of steps they perform, i.e. ks` 6= k`s − 1. This inconsistency of

beliefs can become an important source of profit loss for auction participants.

If there are two different types of players s and ` in the population, there can be three
8This setting is relevant to my empirical illustration with USFS Timber auctions.
9The assumptions in B-S on beliefs and behavior imply that players do not use weakly dominated bids. In a

second-price auction with private values and any number of participants, this implies that each player bids his
valuation. Thus, participating in second-price auctions for the same type of good would allow bidders to learn the
distribution of valuations across all types, but it would provide no information about the strategies and beliefs in
first-price auctions. Two-thirds of observations in the data set of my empirical illustration are ascending auctions
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configurations of types of players in an auction with n = 2 players: (s, s), (s, `) and (`, `). The

configurations (s, s) and (`, `) are just symmetric cases considered in the previous section. I

focus on the auction with two different types (s, `). As in the symmetric case, the expected

payoffs of bidding b, for bidders of type s and ` with private values vs and v` respectively are

π(b, vs;µs`) =

∫
B`

(vs − b)P[b` ≤ b]µs`(db`) for bidder s.

Also assume that Fs and F` have the same support and (2.1) is satisfied for both cdfs. Let

B`s,k(·) denote type s’s k−rationalizable belief about the upper bound for bidding functions by

the opponent `. Then,

B`s,1(v`) = v`, Bs`,k+1(vs) = vs − π∗(vs;B`s,k(·)), k = 1, 2, . . . , where

π∗(vs;B`s,k(·)) = sup
b≥0

{
(vs − b)P

[
B`s,k(v`) ≤ b

]}
= sup

b≥0

{
(vs − b)

∫
v

1
[
B`s,k(v) ≤ b

]
dF`(v)

}
.

The upper bound for bidder of type ` can be defined in the same replacing s with ` and vice

versa. The assumption that both Fs and F` have the same support would prevent the possibility

of the k−rationalizable bounds may have flat parts. All other properties would follow.

3 An Econometric test for k-rationalizability

In this section I consider symmetric case for simplicity. Since there is only one type of bidders,

their beliefs are consistent with the same.

3.1 k-rationalizability as a stochastic dominance restriction

The main goal of my paper is to test whether bidding behavior in a population is consistent

with the implications of k−rationalizable behavior. Take any bidder i and let bi(·) denote her

bidding function. Denote bi(vi) simply as bi (the actual bid submitted by i). Fix k. Under

the assumptions (2.1) and (2.2), bidding behavior is consistent with k−rationalizability only if

bi ≤ Bk(vi) w.p.1. for each bidder i10. This implies a first-order stochastic dominance condition:

P
(
Bk(vi) ≤ t

)
≤ P (bi ≤ t) ∀ t.

I focus on the setting described in Section 2. A crucial property of the k−rationalizable bounds

is that they are continuous, strictly increasing and therefore invertible. So, for all t ∈ [b, b], the

equation Bk(v) = t has a unique solution in v. Denote this solution as vk(t). Then, the above
10If all bidders have the same beliefs, the statement is "if and only if".
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inequality can be expressed as

P (vi ≤ vk(t)) ≤ P (bi ≤ t) ∀ t ∈ [b, b]11 (3.1)

I could base a test for k−rationalizable bidding in the population on the stochastic dominance

condition described in (3.1) if I knew (or could identify):

1. The distribution of values.

2. The distribution of bids

Next, I describe a testing procedure for cases where the distribution of values, F0, is nonpara-

metrically identified from auxiliary data. Specifically, I assume the existence of bidding data on

ascending auctions of the same object and the same population of bidders that participate in

the first-price auctions.

3.2 A nonparametric test for k-rationalizability with auxiliary data

from ascending auctions

The stochastic dominance restriction in (3.1) could be the basis of a nonparametric test for

k−rationalizability if the distribution of bidders’ values were nonparametrically identified. Under

the conditions I describe below, F0 is identified if I have access to transaction prices from

ascending (English) auctions for the same type of object and the same population of bidders. I

assume the following about the auctions observed.

Assumption 3.1. The same population of bidders participate in both ascending auctions and first

price auctions for the same type of object. In any auction with n participants, bidders’ private

values are independently and identically distributed conditional on a vector of observable auction

characteristics X. I assume that the number of participants, n is included in X. Denote this

parent distribution as F0(·|X) and the support12 [v, v].

Remark 3.1.

(i) While I assume that F0(·|X) is the same in both auction formats, I do not require this

for the marginal distribution of X, although my results require at least an overlap in the sup-

port of the marginal distribution of X in ascending and first-price auctions. Assumption 3.1

basically presupposes that, conditional on the observable characteristics X of the auction, bid-

ders’ valuations are not affected by the auction format, a reasonable assumption in light of the

private-values environment I focus on.
11The support of bids can depend on X and be the type [b(X), b(X)]
12In all the results that follow, the support can depend on X and be of the type [v(X), v(X)].
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(ii) A natural model of bidder participation would be the one described in Athey et al. (2011)

(see p.236-237). First, all potential bidders observe the auction characteristics X. Then they

compare expected profit of participation in the auction with the cost of entry. Potential bidders

decide whether to participate simultaneously and may use mixed strategies. Next, participating

bidders observe their private values. The equilibrium number of participants n is a function

of X and possibly some unobserved heterogeneity ξ that is independent of the private values

conditional on X (ξ can be a randomization rule or an equilibrium selection mechanism). This

results in a model of exogenous participation where v and n are independent conditional on X.

(iii) Since X can potentially contain information about other bidders’ values, I assume that

in the first-price auctions (where beliefs are relevant), bidders condition their beliefs on X.

Assumptions (2.1) and (2.2) rule out weakly dominated bids and pin down bidding behavior

in second-price auctions. The following result holds (see p.40 in Battigalli and Siniscalchi (2003)):

Result 3.1. In the second-price auctions bidders submit their private values.

In my data set, I observe ascending auctions not second-price auction. Thus, I have to make

an assumption on the outcome in ascending auctions.

Assumption 3.2. The transaction price observed in the ascending auctions corresponds to the

maximum between the reserve price and the second-highest bidder’s valuation.

Assumption 3.2 corresponds to the dominant-strategy equilibrium of a button auction version

of an ascending auction, but it would also hold (within one bid increment) in the incomplete

model of ascending auctions considered in Haile and Tamer (2003) as long as “jump bids” are

not observed at the end of an auction13.

Assumption 3.3.

1. The econometrician observes a sample of L2 ascending auctions: iid draws (Pi, Xi)
L2
i=1,

where Pi denotes the transaction price (winning bid) in the ith auction and Xi is the vector

of observable auction characteristics described in Assumption 3.1. Let F2,P |X(·|X) denote the

conditional cdf of P given X in the ascending auctions and let S2,X denote the support of X.

2. The econometrician observes a sample of L1 first-price sealed-bid auctions of the same

type of good with the same population of bidders. (Xj)
L1
j=1 denotes the corresponding iid sample

of observable auction characteristics (Xj includes nj, the number of participants). Denote S1,X

the support of X in first-price auctions. For the jth auction I observe
(
bij
)nj
i=1

, the collection of

all bids submitted14 by the nj bidders. Conditional on Xj = x (with nj = n ≥ 1), bids
(
bij
)nj
i=1

13Jump bidding occurs when observed changes in bids are above the minimal allowed increment. The presence
of jump bids is studied empirically by comparing the relative difference between the two highest bids. I did not
find evidence of jump bidding in my data

14Under the assumption of symmetric bidders, it is enough to observe transaction price (or a randomly drawn
bid) for each auction.
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are assumed to be identically distributed15, with cdf G1(·|X). Specifically,

E

[
1

nj

nj∑
i=1

1
[
bij ≤ t

] ∣∣∣∣∣Xj = x

]
= E

[
1
[
bij ≤ t

] ∣∣Xj = x
]
≡ G1(t|x) ∀ j = 1, . . . , L1.

Remark 3.2. 1. Under the assumption of symmetric bidders, it is enough to observe transaction

price (or a randomly drawn bid) for each sealed-bid auction.

2. The most natural way to interpret the restriction that bids
(
bij
)nj
i=1

are identically dis-

tributed conditional on Xj is that bids can be written as bij = b(vij;Xj, µ(vij;Xj, ξ
i
j))

16, where the

function b(·) is the same across bidders17, vij denotes i’s valuation, ξij is unobserved heterogeneity

that determines i’s beliefs and (vij, ξ
i
j)
nj
i=1 are identically distributed conditional on Xj. Note that

this allows heterogeneous beliefs as well as correlation between values and beliefs.

Notation: From now on, I use the subscripts ‘1’ and ‘2’ to denote functionals derived from the

population of first-price auctions and ascending auctions respectively. For instance, F1,X(·) and

F2,X(·) denote the cdf of X in first-price and asceding auctions, respectively. Then E1,X [g(X)] =∫
g(x)dF1,X(x), E2,X [g(X)] =

∫
g(x)dF2,X(x), etc.

Consider an ascending auction with n bidders. Let V1:n ≤ V2:n ≤ · · · ≤ Vn−1:n ≤ Vn:n denote

the order statistics of their values. Assumption 3.2 implies that, in the absence of a reserve price,

the transaction price in this auction corresponds to Vn−1:n. For s, t ∈ [0, 1] and n ≥ 2, let

Ωn(s; t) = t− nsn−1 + (n− 1)sn.

Take n ≥ 2 and x ∈ S2,X (with the component in x corresponding to number of bidders fixed at

n). Using the properties of order statistics of iid random variables (David and Nagaraja (2003)),

Assumption 3.1 implies that, for any v, the cdf F0(v|x) is given by the solution, in s, to the

equation

Ωn

(
s;F2,P |X(v|x)

)
= 0

I focus the following analysis on the case with no binding reserve price, so F0(v|x) is nonpara-

metrically identified from FP |X(v|x) through the relationship

Ωn

(
F0(v|x);F2,P |X(v|x)

)
= 0, ∀ v ∈ [v, v], x ∈ S2,X (3.2)

15I do not allow for unobserved heterogeneity at the auction level. Bids
(
bij
)nj

i=1
can be correlated conditional on

Xj , because they are function not only of iid private values, but also of beliefs that can be correlated conditional
on X, perhaps through a publicly observed signal that affects beliefs but not values.

16Apart from v, the only source of unobserved heterogeneity is beliefs µ. ξ can be of any dimension, even a
function.

17In the asymmetric case with more than one type of players, bidding function b and belief µ can be indexed
by the type t, i.e. bij,t = bt(v

i
j ;Xj , µt(v

i
j ;Xj , ξ

i
j)), where (vij , ξ

i
j) is drawn from the distribution that can depend

on t.
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Also, with bidders’ beliefs conditioned on X, the k−rationalizable bids, conditional on vi and

X = x become18

B1(vi|x) = vi, Bk+1(vi|x) = vi − π∗(vi;Bk(·|x), x), k = 1, 2, . . . , where (3.3)

π∗(vi;Bk(·|x), x) = sup
b≥0

{
(vi − b)PPP

[
Bk(vj|x) ≤ b ∀ j 6= i

∣∣∣X = x
]}

=

= sup
b≥0

{
(vi − b)

(∫ v

v

1
[
Bk(v|x) ≤ b

]
f0(v|x)dv

)n−1
}

= sup
b≥0

{
(vi − b)

(
F0

(
vk(b|x)

∣∣x))n−1
}
,

where, for any t ∈ [b, b], vk(t|x) is the (unique) solution, in v, to Bk(v|x) = t.

The stochastic dominance condition in (3.1) becomes

F0(vk(t|x)|x) ≤ G1(t|x) ∀ t ∈ [b, b], x ∈ S2,X ∩ S1,X (3.4)

3.2.1 An econometric test

In this section, I describe an econometric procedure to test k−rationalizability based on the

stochastic dominance condition (3.4). To construct a test that is not conservative, it is useful to

have a procedure that takes into account the properties of the contact sets (the regions of (t, x)

where the inequalities (3.4) are binding). This helps to avoid conservative tests that use critical

values based on so-called “least-favorable configurations” (typically corresponding to the case

where the inequalities are binding w.p.1). The procedures in Lee et al. (2014), and Aradillas-

Lopez et al. (2016) explicitly take into account the properties of contact sets. Furthermore,

both approaches are computationally attractive because they are based on easy-to-compute

Lp−statistics, and they have asymptotically pivotal features. However, while Lee et al. (2014)

require a direct estimator of the contact sets. The approach in Aradillas-Lopez et al. (2016)

relies on a tuning parameter which produces test-statistics that asymptotically adapts to the

properties of the contact sets without the need to estimate them. I describe the details of my

testing procedure next.

Testing range

Estimating the contact sets directly can be a computationally challenging task especially in

the presence of conditioning variables with rich (and unknown) support. Furthermore, since the

contact sets themselves are not the object of interest, I will use the type of approach in Aradillas-
18With a nonbinding reserve price (i.e, r ≤ v), w.p.1
sup
b≥0

{
(vi − b)P

[
Bk(vj |x) ≤ b ∀ j 6= i

∣∣∣X = x
]}

= sup
b≥r

{
(vi − b)P

[
Bk(vj |x) ≤ b ∀ j 6= i

∣∣∣X = x
]}

.
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López et al. (2016) for my testing procedure, by using a tuning parameter that produces a test-

statistic that adapts to the properties of the contact sets asymptotically without the need to

estimate them. My test relies on nonparametric estimators of the functionals in (3.4). Since

I need these estimators to have certain uniform asymptotic properties, I first choose a testing

range for the values of (x, t) over which I test (3.4).

Assumption 3.4. Denote the support of bids as [b, b]. Let int(A) denote the interior of the set A.

Let SX = S1,X ∩ S2,X and assume that int(S1,X) ∩ int(S2,X) is nonempty. Let X be a compact

subset of int(S1,X) ∩ int(S2,X), and let B be a compact subset of int([b, b]). Define

Vk = {v: v = vk(b|x) for some b ∈ B and x ∈X .} .

These sets are assumed to satisfy the following conditions:

(i) 0 < c ≤ G1(b|x) ≤ c < 1 for all b ∈ B, x ∈X . Also, f2,X(x) ≥ f > 0 and f1,X(x) ≥ f > 0

for all x ∈ X , where f2,X(·) and f1,X(·) denote the densities of X in the population of

ascending and first-price auctions respectively.

(ii) 0 < c ≤ F0(v|x) ≤ c < 1 and 0 < c ≤ F2,P |X(v|x) ≤ c < 1 for all v ∈ Vk, x ∈X .

I rewrite restriction (3.4) in terms of a mean-zero condition. For a given t ∈ [b, b], x ∈ S2,X

and k ≥ 1, define

φk(t|x) ≡ F0(vk(t|x)|x)−G1(t|x).

Recall that G1(·|X) denotes the conditional cdf of bids given X in first-price auctions. If bids

are k−rationalizable, one must have φk(t|x) ≤ 0 for all x ∈ S1,X ∩ S2,X and all t ∈ [b, b]; in

particular φk(t|x) ≤ 0 for all (x, t) such that x ∈ X and t ∈ B(x). This is the basis of my

test.

Denote (V )+ ≡ max {V, 0}. For each x ∈ X , let B(x) ⊆ B, and let Q be a pre-specified

probability measure for t conditional on x satisfying
∫
t∈B(x)

dQ(t|x) = 1 for all x ∈ X . Let

WX be a nonnegative weighting function that satisfies WX (x) > 0 if x ∈ X and WX (x) = 0

otherwise. Let
Λk(x) ≡

∫
t∈B(x)

(φk(t|x))+ dQ(t|x),

Tk ≡ E2,X [Λk(X) ·WX (X)] + E1,X [Λk(X) ·WX (X)]

(3.5)

Note that Tk ≥ 0. Bidders are using k−rationalizable bids in first-price auctions only if Tk = 0.

On the other hand, Tk > 0 implies necessarily a violation of k−rationalizability. My test

will be a one sided test for the null hypothesis H0 : Tk = 0H0 : Tk = 0H0 : Tk = 0 against the alternative

H1 : Tk > 0H1 : Tk > 0H1 : Tk > 0.
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A nonparametric estimator for Tk

I propose a nonparametric test-statistic along the lines of Lee et al. (2013), Lee et al. (2014)

and Aradillas-Lopez et al. (2016). For this reason I need to add restrictions that ensure that

the proposed nonparametric estimators have the desired asymptotic properties. The following

assumption describes the main features about the data.

Assumption 3.5. The vector of auction characteristics X is partitioned as X ≡
(
Xc, Xd

)
, where

Xc are those components assumed to be continuously distributed and Xd are discrete (the

number of participants in the auction is included in Xd). Let c ≡ dim(Xc) denote the num-

ber of continuously distributed elements in X. Let f2,Xc(·) and f1,Xc(·) denote the density of

Xc in the population of ascending and first-price auctions, respectively with p2,Xd|Xc(xd|xc) =

PPP 2,X(Xd = xd|Xc = xc) and p1,Xd|Xc(xd|xc) = PPP 1,X(Xd = xd|Xc = xc). Then f2,X(x) =

p2,Xd|Xc(xd|xc)f2,Xc(xc) and f1,X(x) = p1,Xd|Xc(xd|xc)f1,Xc(xc) describes the joint density of X

in each case.

I treat bids b (in first-price auctions), transaction price P (in ascending auctions) and Xc

(the continuous components in X) as continuously distributed. I use kernel-based nonparamet-

ric estimators with a multiplicative kernel of the type K(ψ) =
∏c

i=1 k(ψi) for Xc, where the

individual kernel k : R→ R is a symmetric function around zero with additional properties that

are described below. I use separate sets of bandwidths for xc, b and P . These are denoted as

hx,L1 (for Xc) and hb,L1 (for b) in the sample of first-price auctions, and as hx,L2 (for Xc) and

hp,L2 (for P ) in the sample of ascending auctions. The exact properties of the kernel function k

and the bandwidths are explained in Assumption 3.9.

3.2.2 Nonparametric estimators from the sample of ascending auctions

The distribution of values F0 and the k−rationalizable bounds are nonparametrically estimated

from the ascending auctions sample. For a given x ≡ (xc, xd) and p ∈ R let

H(Xi − x;hx,L2) = K

(
Xc
i − xc

hx,L2

)
1
[
Xd
i = xd

]
, f̂2,X(x) =

(
L2h

c
x,L2

)−1
L2∑
i=1

H(Xi − x;hx,L2),

f̂2,(P,X)(p, x) =
(
L2h

c
x,L2

)−1
L2∑
i=1

1

hp,L2

k

(
Pi − p
hp,L2

)
H(Xi − x;hx,L2), f̂2,P |X(p|x) =

f̂2,(P,X)(p, x)

f̂2,X(x)
,

F̂2,P |X(p|x) =

∫ p

−∞
f̂2,P |X(t|x)dt =

(
L2h

c
x,L2

)−1∑L2

i=1

(∫ p
t=−∞

1
hp,L2

k
(
Pi−t
hp,L2

)
dt
)
· H(Xi − x;hx,L2)

f̂2,X(x)
.
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My choice of estimator for F̂2,P |X(·|x) helps simplify the asymptotic analysis because its argument

is itself a nonparametric estimator. Note that using Leibniz rule,

dF̂2,P |X(p|x)

dp
=

(
Lhcx,L2

)−1∑L2

i=1
1

hp,L2
k
(
Pi−p
hp,L2

)
· H(Xi − x;hx,L2)

f̂2,X(x)
= f̂2,P |X(p|x).

For a given (v, x) and an ascending auction with n bidders (the component in xd corresponding

to number of bidders is therefore fixed at n), I estimate conditional distribution of private values

F0(v|x) using (3.2) after I replace F2,P |X(v|x) with F̂2,P |X(v|x). My estimator F̂0(v|x) is the

solution, in s, to the equation Ωn

(
s; F̂2,P |X(v|x)

)
= 0. Therefore F̂0(v|x) is defined implicitly

by the equation

Ωn

(
F̂0(v|x); F̂2,P |X(v|x)

)
= 0. (3.6)

Estimation of the k−rationalizable bounds

I estimate the bounds with sample of ascending auctions analogs to the construction in (3.3).

For a given v and x, I have

B̂1(v|x) = v, B̂k+1(v|x) = v − π̂∗(v;Bk(·|x), x), k = 1, 2, . . . , where (3.7)

π̂∗(v; B̂k(·|x), x) = sup
b≥0

{
(v − b)

(
F̂0

(
v̂k(b|x)

∣∣x))n−1
}
,

where v̂k(t|x) solves (in v) the condition B̂k(v|x) = t (with t ∈ [b, b]). The least-favorable

k−rationalizable estimated expected payoff π̂∗(v; B̂k(·|x), x) is constructed as follows. Let

b̂∗k(v|x) = argmax
b≥0

{
(v − b)

(
F̂0

(
v̂k(b|x)

∣∣x))n−1
}
, v̂

∗
k(v|x) ≡ v̂k (̂b

∗
k(v|x)|x),

Then, π̂∗(v; B̂k(·|x), x) = (v − b̂∗k(v|x))
(
F̂0

(
v̂
∗
k(v|x)

∣∣x))n−1

.

3.2.3 Nonparametric estimators from the sample of first-price auctions

The distribution of bids G1 in first-price auctions is estimated nonparametrically from this

sample. Fix x and let n denote the element in x corresponding to the number of bidders. I

estimate G1(·|x) as follows.

f̂1,X(x) =
(
L1h

c
x,L1

)−1
L1∑
j=1

H(Xj − x;hx,L1),
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ĝ1,(b,X)(b, x) =
(
L1h

c
x,L1

)−1
L1∑
j=1

H(Xj − x;hx,L1) · (n · hb,L1)
−1

n∑
i=1

k

(
bij − b
hb,L1

)
,

ĝ1,b|X(b|x) =
ĝ1,(b,X)(b, x)

f̂1,X(x)
,

Ĝ1(b|x) =

∫ b

−∞
ĝ1,b|X(t|x)dt =

(
L1h

c
x,L1

)−1∑L1

j=1H(Xj − x;hx,L1) · (n · hb,L1)
−1∑n

i=1

(∫ b
−∞ k

(
bij−t
hb,L1

)
dt
)

f̂1,X(x)
.

3.2.4 Estimation of TkTkTk

To construct the estimator of Tk, I combine the nonparametric estimators obtained from both

samples, as follows. First, for a given k and (t, x), let

φ̂k(t|x) = F̂0(v̂k(t|x)|x)− Ĝ1(t|x).

Let γL1 → 0 and γL2 → 0 be two tuning parameters (positive bandwidth sequences) indexed by

the sample sizes L1 and L2, respectively. Let

Λ̂k,q(x) =

∫
t∈B(X)

φ̂k(t|x) · 1
[
φ̂k(t|x) ≥ −γLq

]
dQ(t|x), q = 1, 2.

The rate-of-convergence restrictions for γL1 and γL2 are described in Assumption 3.9, below. For

a testing range X , B and for the weighting functions Q and WX , I estimate

T̂k =
1

L2

L2∑
i=1

Λ̂k,2(Xi)WX (Xi) +
1

L1

L1∑
j=1

Λ̂k,1(Xj)WX (Xj), (3.8)

The use of the tuning parameters γL1 and γL2 generates asymptotic properties for T̂k that

automatically adapt to the properties of the so-called contact sets, which for a given k are

defined as

{(t, x): x ∈X , t ∈ B(x), φk(t|x) = 0} .

The contact sets would correspond to regions of X where bidders bid at the boundary of the

k−rationalizable bids.

Assumption 3.6. For some integer M ≥ 1 (restrictions on it are described below), the following

holds: evaluated at any v ∈ (v, v), b ∈ (b, b) and x ∈X , f0(v|x), f2,P |X(v|x), g1,b|X(b|x), f2,X(x)

and f1,X(x) are M−times differentiable with respect to xc (the continuous elements of x) with

bounded derivatives.

An additional assumption is needed regarding the stochastic properties of φk(t|X). Obviously,

I must allow the possibility for φk(t|X) to have a point-mass at zero at least over some range
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of values t ∈ B(X) (which occurs if some bidders in the population are bidding exactly at the

k−rationalizable upper bound), but I need to impose a reasonably mild restriction on the density

of φk(t|X) to the left of zero (in an interval of the type [−b, 0)). Basically the only restriction

I impose is that the density is finite over such interval (conditional on X ∈ X ). I describe the

condition next.

Assumption 3.7. There exists γ > 0 and D <∞ such that, for all t ∈ B,

Pq,X

(
−c ≤ φk(t|X) < 0

∣∣X ∈X
)
≤ D · c ∀ 0 < c ≤ γ, q = 1, 2.

The asymptotic properties of my proposed test-statistic are partially influenced by those of two

empirical processes νL2(·) and νL1(·) indexed over B, where

νLq(t) =
1√
Lq

Lq∑
i=1

(
1
[
−2γLq ≤ φk(t|Xi) < 0

]
WX (Xi)− Eq,X

[
1
[
−2γLq ≤ φk(t|Xi) < 0

]
WX (Xi)

])
, q = 1, 2.

The following condition suffices to ensure that these processes are manageable in the sense of

Pollard (1990). Let C be a class of subsets of a set X . For any set X0 of n points in X let

C(X0) = {X0 ∩ C: C ∈ C}. Notice that #C(X0) corresponds to the number of subsets of X0

that can be picked out by some C in C. It is said that the class C shatters X0 if #C(X0) = 2n.

The Vapnik-Cervonenkis dimension (or VC dimension) (V (C)) of C is defined as the largest n

such that there exists some X0 with n points that is shattered by C. Class C is a VC-class of

sets if V (C) <∞ (see Section 9.1.1 in Kosorok (2008)).

Assumption 3.8. There exists a b > 0 such that

{
{x ∈X : − γ ≤ φk(t|x) < 0} : t ∈ B, 0 < γ ≤ b

}
is a VC class of sets.

Next I describe the restrictions governing rates of convergence of the tuning parameters, as

well as the kernel function and a condition related to how L1 and L2 grow asymptotically.

Assumption 3.9.

1. The multivariate kernel K is multiplicative, with K(u) =
∏c

j=1 k(uj) for u = (u1, . . . , uc).

The marginal kernel k is a bounded function, symmetric around zero and it has support

over a compact interval [−S, S]. It is a bias-reducing kernel of order M (where M is

introduced in Assumption 3.6), meaning that it satisfies

∫ S

−S
k(u)du = 1,

∫ S

−S
ujk(u)du = 0, j = 1, . . . ,M − 1,

∫ S

−S
|u|M k(u)du <∞.

18



k(·) is differentiable almost everywhere on [−S, S] with bounded first derivative k′(·).

2. The sample sizes L1 and L2 satisfy a proportionality condition in the limit,

lim
L1→∞
L2→∞

(
L2

L1 + L2

)
= d2 > 0, lim

L1→∞
L2→∞

(
L1

L1 + L2

)
= d1 > 0

3. The bandwidths hb,L1 (for b in first-price auctions) and hp,L2 (for transaction price P in

ascending auctions) satisfy:

(i) L1hb,L1 −→∞ and L1/2
1 hb,L1 −→ 0.

(ii) L2hp,L2 −→∞ and L1/2
2 hp,L2 −→ 0.

4. For both q = 1, 2, the following conditions are satisfied. The convergence rates of the

bandwidths hx,Lq −→ 0 and γLq −→ 0 satisfy the following:

(i) L1/2
q hcx,LqγLq −→∞.

(ii) L1/2+δ
q γ2

Lq
−→ 0 for some δ > 0.

(iii) For the M and δ > 0 described above, L1/2+δ
q hMx,Lq −→ 0

Note that I require that the auxiliary bandwidth γLq converge to zero slower than the rate of

convergence of the nonparametric estimators (Lqhx,Lq)
−1/2, but fast enough that the square of

γLq go to zero faster than L
−1/2
q . Taken together, my assumptions require that γLq converge

to zero faster than hLq (the conditions described imply that (γLq/h
c
x,Lq

) −→ 0). I also assume

essentially that the sample sizes L1 and L2 grow at a proportional rate, meaning that I rule

out L2/L1 −→ 0 and L1/L2 −→ 0. I also impose smoothness restrictions (with respect to the

continuous elements in X) that are commonly present in the nonparametric literature, where

the degree of smoothness required increases with c (the dimension of Xc). The smallest value of

M that can be consistent with my assumptions is M = 2c+ 1. Finally, note that both hb,L1 and

hp,L2 converge to zero faster than hx,L1 and hx,L2 . The only purpose of the first two bandwidths

is to “smooth out” the indicator function in the construction of the cdf estimators Ĝ1 and F̂2,P |X .

The main result for T̂k is the following.

Theorem 3.1. Let L ≡ L1 + L2. If Assumptions 3.1-3.9 are satisfied, then for some ∆ > 1
2
,

T̂k = Tk +
1

L1

L1∑
j=1

ψ1,k(bbbj, Xj;hb,L1 , hx,L1) +
1

L2

L2∑
i=1

ψ2,k(Pi, Xi;hp,L2 , hx,L2) + op
(
L−∆

)
.

where ψ1,k and ψ2,k are two influence functions satisfying the following conditions:
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(i) E1,(X,b) [ψ1,k(bbb,X;hb,L1 , hx,L1)] = E2,(X,P ) [ψ2,k(Pi, Xi;hp,L2 , hx,L2)] = 0.

(ii) If φk(t|x) < 0 for almost every x ∈ X , t ∈ B(x) (i.e, if bids are strictly below the

k−rationalizable bounds almost everywhere over the testing range), then

ψ1,k(bbb,X;hb,L1 , hx,L1) = ψ2,k(Pi, Xi;hp,L2 , hx,L2) = 0 w.p.1

(iii) Let E1,(X,b)

[
(ψ1,k(bbb,X;hb,L1 , hx,L1))

2] ≡ σ2
1k,L1

and E2,(X,P )

[
(ψ2,k(Pi, Xi;hp,L2 , hx,L2))

2] ≡
σ2

2k,L2
. Then, if φk(t|x) ≥ 0 with positive probability over our testing range, then

lim
L→∞

σ2
1k,L1

≡ σ2
1k
> 0 and lim

L→∞
σ2

2k,L2
≡ σ2

2k
> 0.

Proof: A step-by-step proof is included in Econometric Appendix A (the exact expressions for

ψ1,k(bbbj, Xj;hb,L1 , hx,L1) and ψ2,k(Pi, Xi;hp,L2 , hx,L2) can be found in Equation (A.41)). A sketch

of the proof is the following. The first part of the proof is to show that, under the assumptions

of the theorem, φ̂k(t|x) has a linear representation of the form

φ̂k(t|x)− φk(t|x) =
1

L2hcx,L2

L2∑
i=1

ϕF0,k (Pi, Xi, t, x;hp,L2 , hx,L2)−

1

L1hcx,L1

L1∑
j=1

ϕG1 (bbbj, Xj, t, x;hb,L1 , hx,L1) + ξ
F0,k

L2
(t, x)− ξG1

L1
(t, x),

E2,(P,X)

[
ϕF0,k (Pi, Xi, t, x;hp,L2 , hx,L2)

]
= 0,

E1,(bbb,X)

[
ϕG1 (bbbj, Xj, t, x;hb,L1 , hx,L1)

]
= 0

for all t ∈ B, x ∈X .


sup
t∈B
x∈X

∣∣∣ξF0,k

L2
(t, x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
,

sup
t∈B
x∈X

∣∣ξG1
L1

(t, x)
∣∣ = Op

(
L
−1/2−ε
1

)
.

for some ε > 0.

The expression for ϕF0,k is derived inductively, starting with k = 2. From here, the next step is

to show that

1

L1

L1∑
i=1

Λ̂k,1(Xi)WX (Xi) = E1,X [Λk(Xi)WX (Xi)] +
1

L1

L1∑
i=1

(
Λk(Xi)WX (Xi)− E1,X [Λk(Xi)WX (Xi)]

)
+

1

L1L2hcx,L2

L1∑
i=1

L2∑
`=1

∫
t∈B(Xi)

ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi)
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− 1

L2
1h

c
x,L1

L1∑
i=1

L1∑
m=1

∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi) + $̂k,1,

1

L2

L2∑
i=1

Λ̂k,2(Xi)WX (Xi) = E2,X [Λk(Xi)WX (Xi)] +
1

L2

L2∑
i=1

(
Λk(Xi)WX (Xi)− E2,X [Λk(Xi)WX (Xi)]

)
+

1

L2
2h

c
x,L2

L2∑
i=1

L2∑
`=1

∫
t∈B(Xi)

ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi)

− 1

L2L1hcx,L1

L2∑
i=1

L1∑
m=1

∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi) + $̂k,2,

where $̂k,1 = Op

(
L−1/2−ε) and $̂k,2 = Op

(
L−1/2−ε) for some ε > 0. Note that if φk(t|x) < 0 al-

most surely over the testing range (i.e, if the stochastic dominance inequalities from k−rationalizability
hold strictly w.p.1), then 1

L1

∑L1

i=1 Λ̂k,1(Xi)WX (Xi) = Op

(
L−1/2−ε) and 1

L2

∑L2

i=1 Λ̂k,2(Xi)WX (Xi) =

Op

(
L−1/2−ε) for some ε > 0. The final step of the proof comes from the Hoeffding decomposi-

ton (see Lemma 5.1.A in Serfling (1980)) of the (generalized) U-statistics that appear on the

right-hand side of the above expressions. �

A test based on Theorem 3.1

I test the null hypothesis that bids by every bidder in the population are consistent with

k−rationalizability against the alternative that, with positive probability, there exist bidders

who submit bids that violate the k−rationalizable bounds. My test is based on the stochastic-

dominance implications of k−rationalizability described in (3.4). The result in Theorem 3.1

guides the construction of a test of k−rationalizability:

1. If bids violate the k−rationalizable bounds, then

√
L · T̂k =

√
L · Tk +Op(1),

and therefore
√
L · T̂k −→ +∞ w.p.1.

2. If bids satisfy the k−rationalizable bounds, then:

(a) If bidders bid strictly below the k−rationalizable bounds everywhere over the testing

range X ×B(x), then
√
L · T̂k = op(1).

(b) If bidders bid at the k−rationalizable bounds with positive probability over the testing
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range and the stochastic dominance inequalities are binding, then

T̂k
σk,L1,L2

d−→ N (0, 1) ,

where

σ2
k,L1,L2

≡
σ2

1k,L1

L1

+
σ2

2k,L2

L2

. (3.9)

Since I can have σ2
k,L1,L2

= 0 if bids are strictly below the k−rationalizable bounds a.e over the

testing range, in order to construct a test I need to regularize σ2
k,L1,L2

. This can be done in several

ways, but I do it in a way that does not lead to overrejection and allow to avoid estimation of

the contact sets that results in a conservative test. Let λL → 0 be a positive sequence converging

to zero very slowly. Specifically, suppose λL · Lε −→ ∞ for any ε > 0 (this is true, for example,

if λL ∝ (logL)−1). Let

tk =
T̂k√

max
{
σ2
k,L1,L2

, λL
L

}
Then,

1. If bids violate the k−rationalizable bounds,

tk =
1√

max
{((

L
L1

)
σ2

1k,L1
+
(
L
L2

)
σ2

2k,L2

)
, λL

}
︸ ︷︷ ︸

−→ 1√
( 1
d1

)σ21k+( 1
d2

)σ22k
, where σ2

1k
> 0 and σ2

2k

×
√
L · T̂k︸ ︷︷ ︸

p→+∞ w.p.1.

Then, tk
p−→ +∞ in this case.

2. If bids satisfy the k−rationalizable bounds,

(a) If bidders bid strictly below the bounds over the testing range,

tk = op

(
L1/2 · L−∆

λ
1/2
L

)
= op(1), since ∆ > 1/2 and λLLε →∞ ∀ ε > 0.

Then, tk
p−→ 0 in this case.

(b) If bidders bid at the k−rationalizable bounds with positive probability over the testing

range, then
√
L · T̂k

d−→ N
(

0, 1
d1
σ2

1,k + 1
d2
σ2

2,k

)
, and

tk =
1√

max
{((

L
L1

)
σ2

1k,L1
+
(
L
L2

)
σ2

2k,L2

)
, λL

} ×√L · T̂k d−→ N(0, 1)

22



Let σ̂2
k,L1,L2

be a consistent estimator of σ2
k,L1,L2

(i.e,
∣∣σ̂2
k,L1,L2

− σ2
L1,L2

∣∣ p−→ 0). This can be

obtained, for example, with

σ̂2
k,L1,L2

=

(
1

L1

)
·

[
1

L1

L1∑
j=1

ψ̂k,1(bbbj, Xj;hb,L1 , hx,L1)
2

]
+

(
1

L2

)
·

[
1

L2

L2∑
i=1

ψ̂k,2(Pi, Xi;hp,L2 , hx,L2)
2

]
.

Given the linear representation asymptotic properties, a bootstrap estimator for σ2
k,L would also

have consistency properties. My test-statistic is

t̂k =
T̂k√

max
{
σ̂2
k,L1,L2

, λL
L

} . (3.10)

Rejection rule: The null and alternative hypotheses are:

H0 : Bids satisfy the restrictions of k−rationalizability w.p.1.

H1 : Bids violate the restrictions of k−rationalizability with positive probability.

For a target significance level α, let Φ(z1−α) = 1 − α, where Φ(·) is the Standard Normal

distribution. In view of the asymptotic properties of t̂k, the rejection rule is:

Reject H0 if and only if t̂k > z1−α.

From the asymptotic properties of t̂k, this rejection rule has the following features:

1. lim
L→∞

Pr (Falsely rejecting H0) ≤ α.

2. lim
L→∞

Pr (Falsely rejecting H0) = α if bids lie at the k−rationalizable upper bound with

positive probability and the stochastic dominance inequalities are binding over our testing

range.

3. lim
L→∞

Pr (Rejecting H0) = 1 if bids violate the k−rationalizable upper bounds and the

stochastic dominance inequalities are violated with positive probability over our testing

range.

Using Standard Normal critical values yields a testing procedure that is computationally easy to

implement. However, the linear representation result in Theorem 3.1 also facilitates the analysis

of resampling-based methods; in particular, the fact that my results produce exact analytical

expressions for the functions ψk,1 and ψk,2 immediately implies that the Multiplier Bootstrap

can be used (see Section 10.1 in Kosorok (2008)).
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4 A semi-parametric model of first-price auctions with in-

dependent private values without auxiliary data

A nonparametric approach in the k–rationalizability model is not available any more if there is

no auxiliary data from ascending auctions. In other words, for any given k, any distribution of

bids can be rationalized for some distribution of private values. So, without any assumptions

on the distribution of private values k–rationalizability can not be rejected for any finite k. The

following result proves this assertion. I omit conditioning on the observable characteristics of the

object X for simplicity of notation. I consider a first-price sealed-bid auction with n symmetric

bidders. Private values are independent and distributed according to cdf F0 : [0, 1]→ [0, 1].

Result 4.1. Any distribution of bids G(t) such that g(t) = G′(t) exists and is positive and

continuous can be rationalized for any given k by some distribution of private values F0, such

that f0(t) = F ′0(t) exists and is positive.

Result 4.119 shows that if there is no auxiliary data from ascending or second-price auctions,

the only way to test k–rationalizability is to assume some parametric form for the distribution

of private values.

Assume that the distribution of private value F0 is a member of a parametric family F =

{Fθ : θ ∈ Θ}, such that all Fθ have the same support [0, 1] (for simplicity). In the IPV

model, as I showed in the extension section, we can focus on a lower-envelope for this family,

F 0(v) ≡ infF∈F F (v). This lower envelope can be used to construct an upper envelope for

the bound Bk(v) (denoted as Bk(v)). The features of F will determine whether Bk(v) will be

nontrivial (i.e, whether it will be bounded away from the 45-degree line) and also whether this

bound is sharp. Under technical conditions on the parametric family F , F 0 is a distribution

function with density f
0
. In addition, C1 ≤ f

0
≤ C2 on its support [0, 1] (See Lemma 1 in Aryal

et al. (2016)).

Remark 4.1. If the lower envelope F 0 is a member of the parametric family F , then the upper

envelope Bk will be a sharp bound for Bk. More generally, this will be the case if, ∀ ε > 0,

there exists F ∈ F such that sup
v∈[0,1]

∣∣∣Bk(v)−BF

k (v)
∣∣∣ < ε. Sharpness can result even if F 0 /∈ F .

The following three examples illustrate the importance of the choice of the parametric family:

1. If F = {Fθ(t) = tθ, s.t. θ > 0}, the lower envelope is F 0(t) = 0 for t ∈ [0, 1) and

F 0(1) = 1. As I showed in the proof of Result 4.1, k–rationalizability can not be rejected for

any finite k for this family.

2. If F is a family of truncated exponential distributions on [0, 1].
19Prove by induction of the Result 4.1 can be find in the supplementary material.
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F =

{
Fθ(t) =

e−θt − 1

e−θ − 1
, where θ > 0

}
.

In this case the lower envelope is F 0(t) = t (the U [0, 1] distribution). It is not a member of the

family F , but it is a limiting case when θ → 0, i.e. F 0(t) = limθ→0 Fθ(t), for all t ∈ [0, 1]. Thus,

the resulting bounds Bk are sharp and informative. This example is illustrated in supplementary

materials.

3. If F is a family of truncated normal distributions in [0, 1], with mean µ = 0.5 and variance

σ2 ≥ δ > 0, then the lower envelope is

F 0(t) =

Fδ(t), if t ∈ [0, 0.5],

t, if t ∈ [0.5, 1].

In this case the bounds are meaningful but not sharp.

If Bk is not a sharp bound, or if we want to conduct inference both on θ and k, we can use

the conditional moment inequalities implied by k−rationalizability and proceed as described in

extensions for the parametric approach.

5 Empirical illustration: testing k−rationalizability in USFS

timber auctions

As an illustration I apply my testing methodology to USFS timber auctions. The advantage

of existing data is the ability to combine information from ascending and sealed-bid auctions

of timber tracts in a way that is compatible with the assumptions of the nonparametric test

developed in Section 3.2. Combining information from both auction formats in timber auctions

has been done before, for example in Lu and Perrigne (2008) (to estimate risk aversion) and

in Athey et al. (2011) (to study bidders participation and auction design). An overview of the

data and the results of reduced-form tests for the presence of collusion (which is ruled out in

the k−rationalizable model) of the type proposed in Porter and Zona (1993) are provided in

the supplementary material. Based on those diagnostic tests, competitive bidding cannot be

rejected at a 1% significance level.

Following Athey et al. (2011) I classify bidders into two types: “small” (s) and “large”(`)

according to the number of workers, with the threshold being 150 workers. To make things

tractable, I focus on auctions with two bidders. In this case, there are three possible configu-

rations of auctions: two symmetric and one mixed. I test for k separately for each one of the
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three possible auction configurations ((s, s), (s, `), (`, `)). In the data, the proportion of obser-

vations according to configuration is the following (s, s) is 44%, (s, `) is 28% and (`, `) is 27%. I

allow for k to be potentially different for each type, and to also vary depending on the type of

the opponents. This provides greater flexibility and a more realistic approximation of bidding

behavior.

My results show that values of k as low as 2 can be rejected in asymmetric auctions, while

bidding behavior is consistent with larger values of k in symmetric auctions. The results indicate

that large bidders underestimate the degree of rationality of small bidders (as measured by ks`).

I perform counterfactual analysis to quantify the economic losses that large bidders incur as

a result of their incorrect beliefs. Direct tests for BNE of the type described in Section 5.4

also reject this behavior, as I find evidence of overbidding and underbidding relative to BNE, a

pattern that cannot be explained by risk aversion or by the usual models of collusion.

5.1 Data description

My data set includes all US Forest Service (USFS) timber sales in Region 6 (Oregon and Wash-

ington) in period 1994-2007. Timber tracts are sold by the USFS using both sealed-bid first-price

and ascending auctions. My sample includes 3484 observations in total: 902 sealed-bid first-price

auctions and 2359 ascending (second-price) auctions. For each auction I observe the format of the

auction, the number of participants, their identity and characteristics such as number of workers

and manufacturing class. For each auction there is a rich collection of characteristics of the

timber tract: geographical characteristics (state, county, national forest, acres to be harvested),

total volume of timber in thousand of board feet (mbf), species (I calculate Herfindahl index for

the concentration of species of the tract to take into account the diversity of the species), road

construction costs, logging costs, manufacturing costs, total costs, the USFS advertised value

(reserve price), the date of the auction and the contract length. In first-price auctions I ob-

serve all bids submitted, and in ascending auctions I observe the highest bid of each participant.

However, the test is carried out by focusing on transaction price (highest bid) in the ascending

auctions, as the econometric test in Section 3.2 describes. Summary statistics for all auctions

and for the subpopulation of ascending and sealed-bid auctions are given in the supplementary

material.

My test allows the observable characteristics X to have different distributions in different

types of auctions, as long as their support has a nonempty intersection. There appear to be

some systematic differences between ascending and sealed-bid auctions. The reserve price per

mbf is higher in sealed-bid auctions than in ascending auctions ($188.21 vs. $152.06), but the

standard deviation is large in both cases. A similar pattern is observed for transaction price,
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which is highly correlated (0.71) with the advertised price. The volume of timber is on average

two and a half times larger in ascending auctions. The average Herfindahl index is similar in

both types of auctions. The average of 0.75 indicates that the timber tracts are homogeneous in

terms of species, which makes it easier to compare different sales. There is no obvious difference

in competition (based on the number of participants), since the average number of participants

are equal in both types of auctions. Costs of road construction, logging and manufacturing

are higher in ascending auctions. To summarize, the observable sale characteristics and auction

outcomes differ in a number of variables that have large variation in both types. This discrepancy

is perfectly compatible with the assumptions of my econometric test as long as the support of the

conditioning variables chosen for X has a nonempty intersection between both auction formats.

It is also worthwhile to study the question of what affects the USFS choice of the auction

type. To address this question, I consider a logit regression where the dependent variable equals

one for the sealed-bid auctions and zero for the ascending auctions. Among the explanatory

variables I include: reserve price, volume, three types of costs and the Herfindahl index. I also

control for the state variable and include dummies for years and quarters of the sale. The results

of the logit regression are represented in the supplementary material. Sealed-bid auctions appear

to be chosen more frequently for tracts with higher appraisal value (per unit of timber), where

the distribution of species is relatively more homogeneous. Ascending auctions appear to be

chosen more frequently for large-volume tracts. Nonrandom assignment of an auction format is

entirely consistent with the assumptions of my test, which only require that, for a given (fixed)

vector of tract observable characteristics X, the distribution of bidders’ values is not affected by

the auction format (i.e, F0(·|X) is the same whether the tract is sold through an ascending or a

sealed-bid auction).

The total number of unique bidders is 932. Out of these, 454 participated in at least two

auctions. If I split these figures across auction formats, 551 unique bidders participated in first-

price auctions and 623 in ascending auctions. A total of 242 bidders participated in both auction

formats. This represents approximately 25% of all bidders in the sample, but 53% of those who

participated in at least two auctions. It is important to compare the characteristics of bidders

across both auction formats. p-value for the test of equality of the distributions of bidders size

in two auction formats is 0.21. Thus, there is no evidance of sorting of bidder according to the

auction format.

5.1.1 Selection of XXX, the vector of conditioning variables

As I mentioned above, the test focuses on auctions with two bidders, so the analysis is conducted

conditional on n = 2. More precisely, I condition on the specific configuration of types ((s, s),
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(`, s), (`, `)). However, I still need to consider which additional conditioning variables to include

in X. Ideally, all relevant observable auction characteristics would be included in X; however

because my test is nonparametric this would create curse of dimensionality in a relatively small

sample size like mine. For this reason I have to choose X carefully. A reduced-form exploratory

analysis of the determinants of the transaction price per volume in auctions with two players

reveals that the only auction characteristic that has explanatory power in both types of auctions

is the reserve price per volume. For this reason and to mitigate the effect of the curse of

dimensionality, reserve price is the only conditioning variable I include in X20.

My test requires that the supports of the corresponding distributions of the reserve price

have a nonempty intersection. In fact, while the distributions are not necessarily the same (they

are not assumed to be), the supports appear to be the same. Moreover, Kolmogorov-Smirnov

test for the equality of the distributions has a p-value = 0.0389. The validity of that assumption

appears to be supported by the data in my empirical illustration.

5.2 Collusion

Patterns of bidding behavior consistent with collusion in ascending timber auctions in the Pacific

Northwest (Region 6) have been econometrically documented, for the period 1975-1981, by

Baldwin et al. (1997). Even though this is the same region in my sample, those results correspond

to a much earlier time period. Baldwin et al. (1997) document significant changes to the USFS

sales program after 1982. Notably, a shortening of the time allowed to complete the clear cut of

the tract as well as a substantial increase in bid bonds required from winners at the time of the

sale. These changes can be argued to have fundamentally changed the incentives for collusion.

Nevertheless, the methodology and approach in this paper can be robust to the presence of

collusion in the auxiliary sample of ascending auctions. If all drop-out bids are observed in the

sample of ascending auctions, the distribution of bidders’ values can still be nonparametrically

identified even in the presence of collusive behavior as long as collusion is efficient (i.e, the cartel

leader is the bidder with the highest valuation and the researcher knows at least one competitive

bidder) as in Kaplan et al. (2017).

Since, in my empirical application, I focus only on auctions with two players, the questions

about collusion in ascending auctions is easy to address. Assume there is a set of colluding

bidders. Note, that in contrast to Kaplan et al. (2017) and Schurter (2017), in my case the

set of bidders in an auction is not fixed, i.e. different players may participate in a two bidders
20The dependent variable is the transaction price. The regression was estimated over the subsample of auctions

that were run and had the transaction price reported. The estimation method is Nonlinear Least Squares with
a sample-selection correction term that assumes a mean-zero normally distributed error term (whose variance is
estimated along with the parameters reported)
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auction. So, there are three possible cases: both bidders are competing; one is competing, the

other is colluding (Since there are only two bidders in an auction and only one member of cartel

decided to participate, there is no one to collude with! In this case, both players compete and

the transaction price equals the second highest private value); both bidders are colluding (Since

there is no one to compete with, the transaction price equals the reserve price).

I exclude those ascending auctions where the transaction price is only 1% higher than the

reserve price. Those auctions are the most suspicious for collusion and may effect the consistent

estimator of the distribution of private values. The remaining observations in the ascending

auctions are consistent with competitive bidding and using this data I consistently estimate the

distribution of private values.

Collusion in first-price auctions is less likely than in the ascending auctions because bidding

ring is not self-enforcing in this case. However, the k−rationalizable bounds in first-price auctions

presuppose non-cooperative bidding behavior in those auctions. Therefore, it is worthwhile

exploring whether there is significant evidence of collusion in the sample of first-price auctionsIn

Supplementary materials, I carry out the type of reduced-form exploratory tests for collusion

proposed by Porter and Zona (1993). The analysis splits all bidders into two groups: competitive

and potential colluders and specifies a functional form for bidding functions. Under the null

hypothesis of competitive behavior, the features of the bidding functions should be the same for

both groups. Tests are carried out for bid-levels as well as bid-rankings (to detect the presence

of “phantom bids”). After running several tests for different subsets of potential colluders, my

results cannot reject the hypothesis of competitive bidding at a 1% significance level.

5.3 Implementation of the test

I apply the test described in Section 3.2 for auctions with n = 2, conditional on X =reserve price

(per unit of timber) and conditional on the configuration of bidder types observed ((s, s), (s, `), (`, `)).

This allows me to test separately four potentially distinct values of kij, i ∈ {s, `}, j ∈ {s, `} the
number of iterated steps a firm of type i performs to submit its bid against a firm of type `.

I treat the reserve price as a continuous variable. So, the number of continous conditioning

variables is c = 1 and the order of bias-reducing kernel must be at least M = 2c + 1 = 3. I use

bias-reducing kernel of order 3, symmetric around zero with bounded support [−1, 1].

k(u) =
(
C1(1− u2)2 + C2(1− u2)4

)
1(|u| ≤ 1),

where C1 and C2 are chosen in such way that
∫ 1

−1
k(u)du = 1 and

∫ 1

−1
u2k(u)du = 0 for j = 2.

Symmetry around zero ensures that
∫ 1

−1
ujk(u)du = 0 for any odd j. The bandwidths used in
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Table 1: Results from the tests for k−rationalizability

kss ks` k`` k`s
t̂L p-value t̂L p-value t̂L p-value t̂L p-value

k = 2 0.009 0.496 1.118 0.132 0.503 0.307 2.108 0.018
k = 3 0.118 0.453 2.060 0.020 0.904 0.183 2.326 0.010
k = 4 0.158 0.437 2.095 0.018 1.099 0.136 2.354 0.009
k = 5 0.162 0.434 2.096 0.018 1.134 0.129 2.358 0.009
k = 6 0.166 0.434 2.096 0.018 1.138 0.128 2.358 0.009

the nonparametric estimators are normalized to 0.5 · σ̂(·) for reserve price X, for bids b and for

transaction price P respectively, where σ̂(·) is a standard deviation in the corresponding sample.

The tuning parameters γLl and γL2 are set to be 0.004. The tuning parameter λL is set below

machine precision.

The test is constructed for a fixed value of k. A naïve way to find the largest value of k

consistent with data would be to start with k = 2 and increase k till the first rejection. This ap-

proach has two problems: first, if bidders follow a rationalizable strategy, the process never stops;

second, even in the process stops at some finite k, the procedure can have size distortion because

of the sequential testing. While T̂k is monotone with respect to k, monotonicity of t̂k is unclear.

Thus, I proceed in the following way: first, I calculate T̂k starting from k = 2 and increasing k.

Since upper bounds Bk monotonically converge and calculation is numerical, T̂k converges fast.

In my data set, T̂k converges in k = 6 steps for all configurations of bidder types. I denote this

k as kmax21. Next, the variance σ2
k,L1,L2

described in Equation (3.9) is estimated by bootstrap

with 1000 bootstrap draws for k = 2, . . . , kmax and t̂k = T̂k/
√

maxk=2,...,kmax{λL/L, σ̂2
k,L1,L2

} to
insure monotonicity of the corresponding p-values. Table 1 summarizes the results of the test.

At a 5% significance level, ks` ≥ 3 is rejected and k`s ≥ 2 is also rejected, while I cannot reject

any k ≤ kmax for kss or k``. The results appear to indicate a fundamental difference in beliefs

when bidders face an opponent of their type compared to the case when they face an opponent

of a different type. Furthermore, there is a misalignment in beliefs across types: when they

face each other, large bidders think that small ones bid above the k = 2 rationalizable bounds

with positive probability; however, my results indicate that this is not true, since k = 2 was not

rejected for small bidders. A counterfactual exercise below attempts to quantify the monetary

loss in expected payoff that results from large bidders’ incorrect beliefs.

21A theoretical result for the choice of kmax and the rate of convergence of T̂k is beyond the scope of this paper
and left for the future research.
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5.4 Tests for risk-neutral BNE

The presence of auxiliary data from ascending auctions facilitates the construction of a direct

test for risk-neutral BNE. Moreover, I can test the form in which risk-neutral BNE is violated

by performing inequality-tests to see if bidders bid above or below BNE (or both). This can

help to rule out, for example, risk aversion as the source behind those violations since risk-averse

BNE bids cannot be below risk-neutral BNE bids in my setting (see Section 4.1 in Krishna

(2010)). On the other hand, k−rationalizability is consistent with both types of violations of

risk-neutral BNE. For simplicity, my BNE tests focus on auctions where both bidders are of

the same type. Those are the auctions where no value of k between 2 and 6 could be rejected;

therefore it is relevant to investigate if these bidders are playing a risk-neutral BNE. Symmetry

yields a straightforward closed-form expression for the BNE bidding function (see Section 2.3 in

Krishna (2010)). These are given by

bııBNE(v|x) =
1

F0,ı(v|x)

∫ v

v

t · f2ı,P |X(t|x)

2 · (1− F0,ı(t|x))
dt, for ı = s, `.

where, as before, ss and `` refer to two-bidder auctions involving two small and two large bidders,

respectively. These BNE bidding functions are strictly increasing and invertible in v conditional

on x and vııBNE(·|x), ı = s, ` their respective inverse functions. Let Gıı
1 (·|x), ı = s,� denote the

conditional cdf of bids in two-bidder first-price auctions given x. For a given t ∈ (b, b) denote

φııBNE(t|x) = F0,ı (v
ıı
BNE(t|x)|x)−Gıı

1 (t|x), for ı = s, `.

One-sided violations of risk-neutral BNE can be tested via stochastic dominance restrictions,

using the above functionals.

5.4.1 A test for no overbidding above risk-neutral BNE

I test the null hypothesis that bidders never bid above the risk-neutral BNE in two-player

auctions involving bidders of the same type and do this separately for small and large bidders.

Framing it as a stochastic-dominance restriction, this is a test of the null hypotheses

H0 : φııBNE(t|x) ≤ 0, for all x ∈X , t ∈ B(x) and ı = s, ` separately.

The conditions leading to Theorem 3.1 produce an analogous result in this case. A test can

be constructed in the same way as the test for k−rationalizability. Rejecting H0 indicates

the presence of bids above risk-neutral BNE, which indicates a violation of BNE that cannot

be explained by the usual models of collusive behavior that predict bids bounded above by
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competitive (i.e, BNE).

5.4.2 A test for risk-averse BNE

Testing the null hypothesis that bidders never bid below the risk-neutral BNE can be framed as

a test for

H0 : φııBNE(t|x) ≥ 0, for all x ∈X , t ∈ B(x) and ı = s, ` separately.

That is, the reverse inequality as above. Rejecting H0 indicates the presence of bids below

BNE, which rejects equilibrium behavior but it also rejects risk-averse BNE as the true model.

5.4.3 Two-sided BNE test

Testing the null hypothesis that all bidders play according to the risk-neutral BNE is equal to

testing

H0 : φııBNE(t|x) = 0, for all x ∈X , t ∈ B(x) and ı = s, ` separately.

In this case, I use similar statistics. The only difference is in the step of constructing

Λıı
BNE(x), ı = s, ` in (3.5):

Λ``
BNE(x) =

∫
t∈B(X)

[(
φ``BNE

)
+

+
(
−φ``BNE

)
+

]
dQ(t|x), for ı = s, `.

5.4.4 Results for BNE tests

I implement the BNE tests described previously using the same kernels and bandwidths described

above for the k−rationalizability tests. Results are shown in Table 2

Table 2: Results of BNE tests in auctions with bidders of the same type.

Small firms Large firms
H0H0H0 statistic p-value statistic p-value

No overbidding above risk-neutral BNE 1.56 0.059 2.39 0.008
Risk-averse BNE 2.23 0.013 0.77 0.221
Risk-neutral BNE 2.41 0.008 2.39 0.008

At a significance level of 5%, the results in Table 2 reject risk-neutral BNE in all kinds of

two-bidder symmetric auctions. However, they suggest that violations to equilibrium behavior

are different in nature across the two types of bidders. Small bidders appear to depart from

equilibrium behavior by submitting bids below risk-neutral BNE, while large bidders overbid

BNE. Thus, the inability to reject k−rationalizability in symmetric auctions for the range [2, 6]
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is not owed to the presence of BNE behavior in those auctions. However, I cannot rule out

that bids are rationalizable (i.e, consistent with k → ∞) in those types of auctions, since the

estimated bounds in the data are indistinguishable for k ≥ 6.

5.5 A counterfactual exercise to estimate the economic losses from

incorrect beliefs

The results from the k−rationalizability tests in Table 1 describe a misalignment in beliefs.

In asymmetric auctions with two participants, large bidders appear to believe that small ones

violate the k = 2 bounds with positive probability; but our results indicate that small bidders

in fact bid below the k = 2 bounds with probability one. Therefore, large bidders are using

conjectures that are too pessimistic given the actual bidding strategies of small bidders. This can

lead to losses in expected payoff and overbidding for large bidders in those auctions. In this

section I perform counterfactual analysis to estimate these effects.

To perform this exercise I construct an estimator for large bidders’ current bidding functions

under the assumption that, conditional on the realization of X, bidding functions are strictly

increasing transformations of bidders’ values (BNE bidding functions is a special case). Let

b`,s` (·|x) =the bidding functions of large firms in two-bidder asymmetric auctions.

Gı,s
1,ı(·|x) =cdf of bids for bidders of type ı in two-bidder asymmetric first-price auctions, ı = s, `.

F0,ı(·|x) =cdf of values for bidders of type ı (assumed to be the same in first-price and in

ascending auctions), ı = s, `

For a given t, under the invertibility assumption described above these functions can be

nonparametrically estimated as the solution to the following equation,

Ĝ`,s
1,` (t|x) = F̂0,`

(
b̂`,s

−1

` (t|x)
∣∣x) (5.1)

5.5.1 Three measures of expected payoffs

To analyze the impact on expected payoffs I focus on three measures of expected payoffs (as

functions of values v and reserve price x) for large bidders:

Benchmark case. This is intended to be a measure of large bidders’ current expected payoffs

given the bidding strategies estimated in (5.1). It is a measure of the status-quo given by

π`benchmark(v|x) = (v − b`,s` (v|x)) ·PPP
(
b`,ss ≤ b`,s` (v|x)

∣∣x) = (v − b`,s` (v|x)) ·G`,s
1,s

(
b`,s` (v|x)

∣∣x).
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Benchmark expected payoffs for large bidders are therefore estimated as

π̂`benchmark(v|x) = (v − b̂`,s` (v|x)) · Ĝ`,s
1,s

(̂
b`,s` (v|x)

∣∣x).
Boundary case. Given the results in Table 1, the most conservative assessment of expected

payoffs for large bidders that is consistent with small bidders’ actual behavior corresponds to the

conjecture that small bidders bid at the upper bound for k = 2 rationalizable bids. Let B`,s

s,2(·|x)

denote these bounds and let v`,ss,2(·|x) denote its inverse function. The “boundary case” measures

large bidders’ optimal expected payoff for the most pessimistic conjectures that are consistent

with the results. Boundary expected payoffs are therefore given by

π`boundary(v|x) = max
b≥v

{
(v − b) ·PPP

(
B
`,s

s,2(vs|x) ≤ b
∣∣x)} = max

b≥v

{
(v − b) · F0,s

(
v`,ss,2(b|x)

∣∣x)}
They can be estimated as

π̂`boundary(v|x) = max
b≥v

{
(v − b) · F̂0,s

(
v̂
`,s

s,2(b|x)
∣∣x)} .

Optimal case. Finally, I consider the case where large bidders best-respond to the current

bidding strategies of small bidders, as indicated by their bidding functions b`,ss (·|x). This measure

of expected payoffs is given by

π`optimal(v|x) = max
b≥v

{
(v − b) ·G`,s

1,s(b|x)
}

These payoffs can be estimated as

π̂`optimal(v|x) = max
b≥v

{
(v − b) · Ĝ`,s

1,s(b|x)
}

The goal in this counterfactual exercise is to estimate the economic impact for large bidders

of having incorrect beliefs about small bidders.

5.5.2 Results from comparing current expected payoffs against counterfactuals

Current bidding strategies by large firms can lead to substantial losses in expected payoff for

a wide range of reserve prices. A simple switch to the boundary case –which uses the most

pessimistic assessment consistent with the test results– can lead to substantial improvements.

Naturally, optimal expected payoffs dominate both the benchmark and boundary cases, but the

latter is very close to optimal for a wide range of reserve price values in the data. For some values

of the reserve price expected payoff in the benchmark scenario is higher than in the boundary
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Table 3: Counterfactual results: Difference in large bidders’ expected payoffs (in 2010 real
dollars).

Difference in expected profits Difference in expected profits
per-unit of timber by total volume of timber

Boundary Optimal Optimal Boundary Optimal Optimal
minus minus minus minus minus minus

benchmark benchmark boundary benchmark benchmark boundary
All auctions with two asymmetric bidders

Median $692 $1,728 $506 $302,973 $609,928 $379,682
75th percentile $6,919 $8,377 $2,167 $5,929,771 $7,629,625 $1,538,886

Auctions with two asymmetric bidders won by large bidders
Median $324 $1,726 $463 $152,177 $501,003 $234,728
75th percentile $7,089 $7,681 $1,906 $2,109,349 $2,302,707 $1,174,922
Note: The median, 75th and 90th percentiles for advertised value (in total volume) in this sample are $81,325,
$282,961 and $781,137, respectively.

scenario which indicates that for these values of the reserve price current beliefs of large firms

is closer to the true bidding behavior of small firms that the most pessimistic one. The model

makes no predictions about how bids, value distributions and, therefore, expected payoffs, shift

with x (reserve price).

I compare the difference in expected payoffs, conditional on reserve price, at the level of each

individual auction. Tables 3-5 describe the median and the 75th quantiles, for the auctions in the

sample. They include results for all auctions with two asymmetric bidders, and for the specific

auctions that were won by large bidders.

The main findings can be summarized as follows.

1. The median improvement in expected payoff from correcting beliefs towards the most

pessimistic case consistent with the data raises expected payoffs in approximately 5%. This

amounts to a median gain per auction of approximately $300K (2010 dollars), which corresponds

to approximately 3.75 times the median advertised value (reserve price) of these tracts.

2. A simple improvement in beliefs towards the boundary case can lead to substantial eco-

nomic improvements in expected payoff. For 25% of the auctions in the sample, the improvement

is at least six million 2010 dollars, which corresponds to approximately a 260% improvement

relative to the current expected payoff.

3. Gains in expected payoff from using boundary beliefs for the subsample of auctions

that were won by large bidders are comparatively smaller, but still substantial: the median

gain is about 2% (approximately 2 times the median advertised value) but the 75th percentile

corresponds to an improvement of about 160%.

4. Responding optimally to small bidders’ actual bidding strategies is naturally the best case

scenario, but the improvements over the boundary-beliefs case are relatively minor (between

35



Table 4: Counterfactual results: Percentage difference in large bidders’ expected payoffs.

All auctions with two asymmetric bidders
Boundary
Benchmark (%) Optimal

Benchmark (%) Optimal
Boundary (%)

Median 104% 112% 108%
75th percentile 258% 265% 124%
Auctions with two asymmetric bidders won by large bidders

Boundary
Benchmark (%) Optimal

Benchmark (%) Optimal
Boundary (%)

Median 102% 105% 107%
75th percentile 150% 157% 122%

Table 5: Counterfactual results: Evidence of overbidding. Summary statistics for b`benchmark(·)
b`boundary(·) (in

% terms) in auctions won by large bidders.

High-value auctions
All Auctions with Auctions with Auction with

auctions reserve price in reserve price in highest reserve
upper 25th percentile upper 10th percentile price in the sample

Median 102% 113% 141% 145%
75th percentile 127% 142% 145% 149%

20%-25%). This suggests that small bidders’ actual bidding strategies are not very far from the

k = 2 bounds when they play against large competitors.

5. Large bidders’ incorrect beliefs lead to overbidding, and the proportion of overbidding is

substantially larger in high-value auctions. Table 5 focuses on auctions won by large bidders

(where they actually had to pay the bids they submitted). Let us focus on the 25% most valuable

tracts. Comparing the observed bids against the counterfactual optimal bids in the boundary

case, the median proportional amount of overbidding is 13% and the 75th percentile is 42%.

Moving to the 10% most valuable tracts, these proportions are 42% and 45%, respectively.

5.6 Robustness check

I check how sensitive my results to the choice of tunning parameters. The magnitude of φ(t|x)

is bounded between -1 and 1. Results do not change at 5% significance level if I halve or double

the tunning parameters γL1 and γL2 . Results change slightly (see Table 6) for γL1 = γL2 = 0.001,

i.e. 4 times smaller than in the main specification.

5.6.1 Linear index

Ideally, I would like to use all observable characteristics of the auction as conditional variables.

Since, the approach is nonparametric, I have a “curse of dimantionality” even with a small number

of continuous conditioning variables. In my data set, advertising price is a natural candidate for
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Table 6: Results from the tests for k−rationalizability conditioning only on the reserve price
(γ = 0.001)

kss ks` k`` k`s
t̂L p-value t̂L p-value t̂L p-value t̂L p-value

k = 2 0.107 0.458 1.116 0.132 0.522 0.301 2.149 0.016
k = 3 0.216 0.415 1.548 0.061 0.924 0.178 2.366 0.009
k = 4 0.256 0.399 1.572 0.058 1.120 0.131 2.395 0.008
k = 5 0.263 0.396 1.573 0.058 1.154 0.124 2.400 0.008
k = 6 0.264 0.396 1.573 0.058 1.159 0.123 2.400 0.008

the unique conditioning variable that contains all needed information about the timber tract for

sale. But in other application, the choice of the conditioning variable is not as straight forward.

Thus, I explain how to use estimated linear index as a conditioning variable. The detail analysis

of this extension is the supplemental materials.

Tables 7 and 8 represent results of testing k-rationalizability conditioning on the estimated

linear index. Linear index is estimated with Tobit 1 model of the transaction price in both first

price and ascending auctions. I take into account those auctions where no bidders decided to

participate in an auction. Thus, for those auctions I do not observe the transaction price. I

include advertising price, HHI of the species, roads, loggind and manufacturing costs, state, size

of the tract, volume, contract duration and different time dummy variables. More results can

be found in the supplementary materials.

Table 7: Results from the tests for k−rationalizability conditioning on the linear index (γ =
0.004)

kss ks` k`` k`s
t̂L p-value t̂L p-value t̂L p-value t̂L p-value

k = 2 0.412 0.340 0.724 0.235 0.303 0.381 1.606 0.054
k = 3 0.582 0.280 1.476 0.070 0.948 0.172 1.950 0.026
k = 4 0.640 0.261 1.574 0.058 1.147 0.126 2.506 0.006
k = 5 0.654 0.257 1.583 0.057 1.191 0.117 2.661 0.004
k = 6 0.656 0.256 1.584 0.057 1.197 0.116 2.687 0.004

Table 8: Results from the tests for k−rationalizability conditioning on the linear index (γ =
0.001)

kss ks` k`` k`s
t̂L p-value t̂L p-value t̂L p-value t̂L p-value

k = 2 0.478 0.316 0.787 0.216 0.322 0.374 1.631 0.051
k = 3 0.649 0.258 1.542 0.062 0.967 0.167 1.974 0.024
k = 4 0.707 0.240 1.641 0.050 1.166 0.122 2.530 0.006
k = 5 0.721 0.236 1.651 0.049 1.210 0.113 2.687 0.004
k = 6 0.724 0.235 1.651 0.049 1.217 0.112 2.707 0.003
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6 Extensions

6.1 A nonparametric test when the distribution of private values is

only partially identified.

A test for k−rationalizability can still be constructed if F0 is not identified as long as a lower

bound F 0 for it can be identified. The resulting test would be less powerful but it would be

robust to a much wider range of formats of ascending auctions. Suppose F 0(·) is a lower bound

for F0(·) , so that F 0(·|x) ≤ F0(·|x) for a.e x. Suppose F0 is not identified but F 0(·) is. This

will be enough to identify an upper bound for Bk, the k−rationalizable bounds, which I denote

as Bk(·|x).

B1(·|x), Bk(v|x) = v −max
b≥0

(v − b)F n−1
0 (B

−1

k−1(b|x)|x), k = 2, ·.

If F 0 is a cdf for some distribution and pdf f
0
exists and positive, the upper bounds Bk(·|x)

remain strictly increasing functions that monotonically converge to some limit. Denote the

inverse of Bk(·|x) by vk(·|x). Then the stochastic dominance condition in (3.4) holds only if,

F 0(vk(t|x)|x) ≤ G1(t|x) ∀ t ∈ [b, b], x ∈ S2,X (6.1)

Given my data assumptions, a nonparametric lower bound for F0(·) can be obtained using the

results from Haile and Tamer (2003) that allows jump bidding, absence of bidding and the

possibility of transaction price being smaller than the second highest bidder valuation. It also

allows for a nonnegligible required bid-increment. All details are in supplementary material. In

this case the test would be based on

φ
k
(t|x) = F 0

(
vk(t|x)|x

)
−G1(t|x)

instead of φk(t|x) = F0(vk(t|x)|x)−G1(t|x). It has less power because φ
k
(t|x) only detects larger

violations of k−rationalizability, but the results are robust to a wider range of behavior in the

population of ascending auctions.

6.2 k-rationalizability with ambiguity

The assumption that the true distribution of private values is known by bidders can be replaced

by the assumption of common prior set F .

Assumption 6.1. (i) the prior set F is the same for all bidders (ii) true distribution of private

values F0 is a member of the common prior set F
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Denote F 0(t) ≡ inff∈FF (t).22 Now, there are two sources of ambiguity for bidders: the

distribution of private values and beliefs about opponents’ strategies. The following three ways

of solving ambiguity lead to different upper bounds for k–rationalizable bids or even to point

prediction of bidding strategies. In what follows, assume F 0 is identified but perhaps F0 is not.

Assumption 6.2. Bidders solve ambiguity related to the distribution of private values by best-

responding to the most pessimistic belief given by the lower envelope F 0

If assumptions 6.1 and 6.2 are satisfied then bidder i solves the following maximization

problem given beliefs µi (see p.6 in Aryal et al. (2016)):

π∗(vi;µi) = max
b≥0

(vi − b)PF 0
(b−i < b|µi)

Under technical conditions:

B1(v) =v, Bk(v) = v −max
b≥0

(v − b)F n−1
0 (B

−1

k−1(b)), k = 2, . . . . (6.2)

Remark 6.1. In contrast to the semi-parametric approach in section 4, with ambiguity under

Assumption 6.2, Bk(·) is always a sharp upper bound for k–rationalizable bids.

The main first-order stochastic dominance inequality has the form:

F0(B
−1

k (t)) ≤ G(t), ∀t ∈ [b, b].

If F0 is not identified23 , the only testable implication is:

F 0(B
−1

k (t)) ≤ G(t), ∀t ∈ [b, b].

Assumption 6.2′. Bidders solve ambiguity about opponents’ strategies by best-responding to the

most pessimistic beliefs, but they do not necessarily know how other bidders solve this source

of ambiguity.

If assumptions 6.1, 6.2 and 6.2′ are satisfied then for any fixed k players bid according to the

bidding function:

b̌∗k(v) = argmaxb≥0(v − b)F n−1
0 (B

−1

k−1(b)),

22One example of common prior could correspond to Haile and Tamer (2003) incomplete model of ascending
auctions. In this case the true distribution of private values F0 is not identified but F is. It is common for all
bidders and the econometrician. Similar to semi-parametric approach in Section 4, it is enough to have common
lower envelope F 0.

23In contrast to Aryal et al. (2016) the distribution of private values F0 and the lower envelope of the prior set
F 0 can not be identified from the sample of first-price auctions since I do not assume equilibrium behavior.
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where Bk is defined by the iterative procedure (6.2).

In this case the model implies the following equality:

F0(b̌∗k
−1(t)) = G(t), ∀t ∈ [b, b].

If only the lower envelope F 0 is identified, I can only test the inequality:24

F 0(b̌∗k
−1(t)) ≤ G(t), ∀t ∈ [b, b].

Assumption 6.2′′. Bidders solve ambiguity about opponents’ strategies by best-responding to

the most pessimistic beliefs and they know that other bidders solve this source of ambiguity in

the same way.

If assumptions 6.1, 6.2 and 6.2′′ are satisfied then for any fixed k players bid according the

bidding function defined iteratively:

ˇ̌b∗1(v) =v, ˇ̌b∗k(v) = argmaxb≥0(v − b)F n−1
0 (ˇ̌b∗

−1

k−1(b)), k = 2, . . . .

Similar to the previous cases, the only testable implication is the inequality:25

F 0(ˇ̌b∗k
−1

(t)) ≤ G(t), ∀t ∈ [b, b].

The implications in all three cases can be tested similarly to (3.4).

6.3 A semi-parametric model of first-price auctions with interdepen-

dent values and affiliated signals

Nonparametric analysis of first-price auctions with interdependent values has been done, for

example, in Haile et al. (2004), Pinkse and Tan (2005) and Somaini (2015) (in affiliated values

models), and in Hendricks and Porter (1988), Hendricks et al. (2003) and Li et al. (2000) (in

common values models). These, and all existing nonparametric identification results in first-

price auctions rely on the assumption that bidders use BNE bidding strategies, which could be

an invalid in my model26. As a result, existing nonparametric identification results in first-price

auctions cannot be applied here.
24If an upper bound F 0 is also identified, as it is in Haile and Tamer (2003). Then another testable implication

is G(t) ≤ F 0(b̌∗k
−1(t)),∀t ∈ [b, b]. The test for the inequalities F 0(b̌∗k

−1(t)) ≤ G(t) ≤ F 0(b̌∗k
−1(t)),∀t ∈ [b, b] can

be constructed similar to the one in Section 5.4.3.
25An upper bound can also be used as described in Footnote 24.
26Nonparametric identification results in first-price auctions have also been obtained in nonequilibrium models

but under very specific assumptions concerning bidding behavior, such as cognitive-hierarchy or Level-k models
(e.g, An (2017)). Once again, these models are too restrictive and only a special case of k-rationalizability.
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Inference based on k−rationalizability can be carried out parametrically, which would be

particularly useful in two cases:

(i) When there is no auxiliary data from ascending auctions.27

(ii) When I want to allow for interdependent values and affiliation.

Consider an auction with n bidders. Bidder i draws a signal si which is privately observed.

Bidder i’s valuation is given by a value function v(si, s−i), which is strictly increasing in the first

argument and assumed to be symmetric and nondecreasing in its last n − 1 arguments. This

function v is the same for all bidders. To simplify the exposition assume that the value function

v does not depend on X. The joint distribution of signals is denoted as Fs(s1, . . . , sn), assumed

to be symmetric in all its arguments. Let F s
0 (·) denote the marginal cdf of each signal (the

same for all bidders given the above symmetry condition). B-S require signals to be affiliated

(Milgrom and Weber (1982)), which is equivalent to the supermodularity of log fs. Beliefs and

k−rationalizable bounds are now described conditional on the signal si observed by bidder i.

Let X denote the vector of observable auction characteristics, and let Fs|X(·|X) and F s
0 (·|X)

denote the joint cdf of signals conditional on X.

If I impose an additional restriction that bidders assume increasing bidding functions b−i(·)
of their opponents (a requirement that was not imposed with private values), the key result

(winner’s curse) is that E [v(si, s−i)|si, b−i ≤ b] ≤ E [v(si, s−i)|si] (the expected valuation con-

ditional on the signal and the event of winning the object is bounded above by the expected

valuation conditional on the signal only). Under these conditions, Theorem 6 in B-S shows

that the k−rationalizable bounds are constructed in the same iterative way described in (3.3),

replacing bidders’ unobserved values with their conditional expectations given the signals. The

iterative construction in (6.3) now becomes

B1(si|X) = E [v(si, s−i)|si, X] ,

Bk+1(si|X) = E [v(si, s−i)|si, X]− π∗(si;Bk(·|X), X), k = 1, 2, . . . , where

π∗(si;Bk(·|X), X) =

sup
b≥0

{( ∫
max
j 6=i

Bk(sj |X)≤b

(E[v(si, s−i|si)]− b) dFs−i|si,X(s−i|si, X)

)
·P
(

max
j 6=i

Bk(sj|X) ≤ b
∣∣∣si, X)}

(6.3)

Consider a parametric model conforming to the above requirements, where both the value func-

tion and the distribution of signals (conditional on X) are parameterized, respectively, as v(·; θ1)

and Fs|X(·|X, θ2). The vector of parameters is θ ≡ (θ1, θ2), which belongs in a parameter space

27Result 4.1 shows that it is impossible to reject the k–rationalizability model for any given k without auxiliary
data and any assumptions on the form of the distribution of private values.
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Θ that satisfies the symmetry and affiliation requirements described above. For a given θ, a

parametric expression for Bk(si|X; θ) for the corresponding bounds is given by (6.3). Under

the affiliation, symmetry and monotone beliefs assumptions described above, the invertibility

properties of the bounds (with respect to the signals si) are still satisfied (Theorem 12 in B-S).

Let sk(·|x, θ) denote the inverse function of Bk(·|x, θ), and for a given t ∈ Supp(S) define

φsk(t|x, θ) = F s
0 (sk(t|x, θ)|x, θ2)−G1(t|x),

where, as before, G1(·|X) represents the (nonparametrically specified) cdf of bids conditional on

X. k−rationalizability requires that φsk(t|x, θ) ≤ 0 for all (t, x). Similar to (3.5), I can carry out

inference based on these stochastic dominance conditions implied by the model.

Denote φs
k
(t|x) ≡ infθ∈Θ F

s
0 (sk(t|x, θ)|x, θ2)−G1(t|x). The following inequality:

φs
k
(t|x) ≤ 0, ∀(t, x) (6.4)

is a necessary condition for k–rationalizability, i.e. if there exists such θ̃ ∈ Θ that φsk(t|x, θ̃) ≤
0 then the inequality (6.4) is satisfied. It can be tested similarly to (3.4)28.

Figure 1: Truncated exponential family example. Distribution, lower envelope and
k−rationalizable bounds (for k = 6).
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28For a fixed k, the set of parameters ΘI can be identified as in Aradillas-Lopez and Tamer (2008), where they
also combine a parametric model with a nonparametric conditional functional through conditional inequalities.
Corresponding confidence sets can be estimated using existing methods for conditional moment inequalities in
Andrews and Shi (2011), Andrews and Shi (2013) or Chernozhukov et al. (2013). An empty confidence set
corresponds to rejection of k.
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6.4 Risk-aversion

In an IPV ascending auction with risk-averse bidders, bidding one’s private value is still a

weakly dominated strategy. Thus, the distribution of private values F0 can still be identified

and nonparametrically estimated from ascending auctions. However, identifying bidders’ risk-

aversion in a k–rationalizability model in first-price auctions is not possible even if auxiliary data

from ascending auctions is available.

Risk aversion shifts the k−rationalizable bounds upwards. And if bidders are allowed to be

arbitrarily risk-averse, these bounds can become arbitrarily close to the 45-degree line, making

it impossible to test or reject any k ≥ 2. In this case, the only fact that can be tested is whether

players bid lower than their private value or not. This can be illustrated in the following example.

Consider a constant relative risk-averse utility function:

u(x) = xα, α ∈ (0, 1],

α = 1 corresponds to risk-neutral utility function.

The upper bound for k = 1 is B1(v) = v. To find the upper bound for k = 2, I need to

compare the best case scenario given by winning the good w.p.1, and the worst case scenario

given by beliefs that the opponents are bidding on the upper bound B1(v). If a player with a

private value v bids b and wins w.p.1, the expected payoff is u(v − b) = (v − b)α. In the worst

case scenario a bidder solve the maximization problem:

π∗(v) = max
b≥0

u(v − b)F0(b) = max
b≥0

(v − b)αF0(b).

The best response b∗(v) is a solution to the equation:

v − b∗(v) = α
F0(b∗(v))

f0(b∗(v))
.

Thus, the upper bound for k = 2 is:

B2(v) = v − αF
1
α

+1

0 (b∗(v))

f0(b∗(v))
. (6.5)

When α decreases to 0, bidders become more risk-averse, and their best-response to the worst

case scenario b∗(v) converges to the private value v while the upper bound B2(v) converges to

45-degree line29. So, if the parameter of relative risk-aversion r = 1 − α is not bounded away
29It is a well-known fact that risk-averse players overbid in equilibrium with respect to risk-neutral equilibrium

bidding function (see Krishna (2010)). The intuition is that risk-averse bidder buy “insurance” from losing the
auction. The same logic is true in case of k–rationalizable bounds, i.e. bounds for a fixed k is larger if bidders
are more risk-averse.
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from 1, bounds for any fixed k can be arbitrary close to 45-degree line and the only fact that

can be tested is that players bid lower than their private value, i.e.:

F0(t) ≤ G(t).

If no auxiliary data is available and no assumptions on the bidders risk-aversion is imposed

then, k–rationalizability model can not be rejected for any given k. Consider an example with

the distribution of private values F0(v) = vθ, θ > 0. Plugging it in (6.5):

B2(v) = v − αθ
θ
α

(θ + α)
α+θ
α

v
α+θ
α .

When α decreases to zero and θ increases to infinity, the upper bound converges to 45-degree

line. Similar to the result 4.1, it can be shown that for any distribution of bids G(t) there exist

α ∈ (0, 1] and θ > 0 large enough such that bidders behavior can be k-rationalizable for any

given k. This is shown in Figure 2.

Figure 2: k−rationalizable bounds with risk-aversion (for k = 6). An illustration with CRRA
utility function and U [0, 1] valuations.
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6.5 Inference when there is collusion in ascending auctions

Recent results by Kaplan et al. (2017) show conditions under which the marginal distribution of

bidders’ values can be nonparametrically identified from ascending auctions data when there is

collusion. Their maintained assumptions are the following:

1. Bidders draw their values independently (asymmetry is allowed).

2. Transaction price and all losing bids are observed.
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3. Ascending auctions have a button-auction format, so losing bids (dropout prices) corre-

spond exactly to bidders’ valuations.

4. There is at least one known competitive bidder.

5. There is a set of potential colluders, but collusion is efficient, meaning that the cartel

leader is always the one who draws the highest valuation.

Also implicit in their setup is the assumption of a nonbinding transaction price. Under these

conditions, using de-censoring techniques Kaplan et al. (2017) show that the distribution of

bidders’ values can be nonparametrically identified. If I have access to the kind of rich data

that is required, I can use their results to nonparametrically estimate the distribution of bidders’

values in a way that is robust to the presence of collusion. However, the k−rationalizable bounds
are constructed under the assumption of competitive bidding in first-price auctions.

6.6 Testing when the assumption F0,1 = F0,2 is misspecified

Let F0,1(·|x) and F0,2(·|x) denote the distribution of values in first-price and ascending auctions,

respectively. A key assumption in the construction of the nonparametric test was that F0,1(·|x) =

F0,2(·|x). However, as it was pointed out in Section 6.1, in order to construct an upper bound

for Bk(v|x), all that is needed is a valid lower bound for F0,1(·|x). Therefore, if the model is

misspecified and F0,1(·|x) 6= F0,2(·|x), a nonparametric test based on F̂0,2(·|x) would still control

for size (but may be conservative) if F0,2(·|x) ≤ F0,1(·|x) for a.e x ∈ X . This would occur if

more valuable objects are sold through ascending auctions.

Alternatively, I may relax the assumption that F0,1(·|x) = F0,2(·|x) to the weaker condition

that there exist X and X ′ such that

x ∈ X , x′ ∈ X ′ =⇒ F0,2(·|x) ≤ F0,1(·|x′). (6.6)

Let vk,2 denote the inverse of the k−rationalizable upper bound that would obtain if I plug in

F0,2 in place of F0,1 and let vk,1 correspond to F0,1. Suppose bids are k−rationalizable. The same

arguments that led to (6.1) would yield now

F0,2 (vk,2(t|x′)|x′) ≤ F0,1 (vk,1(t|x)|x) ≤ G1(t|x),

where the first inequality follows from the condition described above and the second one follows

from k−rationalizability. Define φk(t|x, x′) = F0,2 (vk,2(t|x′)|x′) − G1(t|x). The restriction of

k−rationalizability can be based on the test

φk(t|x, x′) · 1 [x ∈ X , x′ ∈ X ′] ≤ 0, ∀ (x, x′, t).
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A condition like (6.6) can arise, for example, if I make additional assumptions about how the

distribution of values shifts with particular elements in x. One instance in which this may

happen involves endogenous participation.

6.6.1 Endogenous participation

Let F0,1(·|X,n) and F0,2(·|X,n) denote the distribution of values in first-price and ascending

auctions respectively, where n is a number of participants. As was pointed out in Remark 3.1,

the most natural model of bidder participation that can be reconciled with the assumption

that F0,1(·|X,n) = F0,2(·|X,n) is that participation is exogenous. If the assumption of the

exogenous participation is violated such that more valuable objects attract more participants

and more valuable objects are sold through ascending auctions, then we can relax the assumption

F0,1 = F0,2 to the weaker condition,

F0,2(·|x, n) ≤ F0,1(·|x, n′), ∀n > n′.

To test k–rationalizability in auctions with n′ participants under this special case of endoge-

nous entry I can plug in F0,2(·|x, n) for any n > n′ instead of F0(·|x, n′) in (3.4). The test for

k–rationalizability is still valid but can be conservative.

7 Concluding remarks

In this paper I analyze testable implications of strategically sophisticated bidding in first-price

auctions without assumption of equilibrium behavior. The model of k− rationalizability I use

is consistent with many possible patterns of deviation from BNE: it allows for overbidding

or underbidding with respect to risk-neutral BNE, as well as for heterogeneity in beliefs and

for the possibility that beliefs depend on bidders’ observed signals (values). Importantly, it

includes BNE and (full) rationalizability as special cases, but it also allows for finitely many

steps of deletion of strategies that the not best responces. k−rationalizable bidding functions are

completely characterized by an upper bound, which leads to stochastic dominance implications.

I propose tests that identify the largest value of k such that bidding behavior in the population

is consistent with the properties of k−rationalizability. This can be done assuming symmetry

or by dividing bidders into “types” according to observable characteristics. Rejecting a finite k

implies that there are bidders who violate the k−rationalizable bounds with positive probability.

It automatically rejects BNE as well as full rationalizability as the true underlying models.

The test quantifies the extent of the deviation from rational bidding behavior. To the best of

my knowledge, the methodology proposed in this paper constitutes the most robust tests of
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rationalizability in first-price auctions. Relying exclusively on bounds for k−rationalizable bids,
I avoid any assumptions about the existence of “behavioral types”, which characterize models of

cognitive hierarchy or “Level-k thinking”.

I show that under the IPV assumption and with access to auxiliary data from ascending

auctions from the same population of bidders a stochastic dominance test for k− rationaliz-

ability can be performed nonparametrically. I proposed a testing procedure that adapts to the

properties of the contact sets. It leads to non-conservative results vis-a-vis methods based on

“least-favorable configurations”. The test has asymptotically pivotal features and is computa-

tionally easy to implement. I also proposed similar one-sided tests for BNE which allows to test

risk-neutral BNE and risk-averse BNE. I discuss extensions to semi-parametric models which can

be used, for example, when there is no auxiliary data from ascending auctions or when values are

interdependent in first-price auctions. In other extensions I considered cases where the distribu-

tion of values is only partially identified, where bidders have ambiguity about such distribution

or when there is presence of collusive behavior in the population of ascending auctions.

As an illustration, I apply my methodology to USFS timber auctions in the Pacific Northwest

(Oregon and Washington) during the period 1994-2007. My data combines ascending and first-

price auctions which facilitates the nonparametric implementation of my procedure. Dividing

bidders into “small” and “large” types according to the number of employees and focusing on

auctions with two participants, I find that values of k as low as k = 2 are rejected in asymmetric

auctions, whereas no value of k can be rejected in symmetric auctions. However, BNE was

rejected in all cases. In the case of asymmetric auctions, my results suggested that large bidders

routinely overestimate the bids that are submitted by small bidders, which can lead to economic

losses in expected profits. Using counterfactual analysis I find that the median improvement in

large firms’ expected profits from a simple correction towards the most pessimistic reasonable

beliefs is about 4%, but this improvement was estimated to be greater than 50% in 25% of the

auctions in the sample. The counterfactual analysis also hints at the presence of substantial

overbidding by large bidders, particularly in auctions involving the most valuable tracts.
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A Econometric Appendix

A.1 Proof of Theorem 3.1. Preliminary results

Before proving Theorem 3.1, I will first characterize the relevant asymptotic properties of the

nonparametric estimators Ĝ1(t|x) and F̂0(v̂k(t|x)|x). The testing range sets X and B are those

described in Assumption 3.4.

A.1.1 An asymptotic linear representation result for Ĝ1(t|x)−G1(t|x)

Take the marginal kernel k described in Assumption 3.9. Recall that the support of the kernel

is [−S, S]. For a given u ∈ R we will denote δ(u) =
∫ u
−S k(ψ)dψ. Note that δ(u) = 1 if u ≥ S

and δ(u) = 0 if u < −S. Also note that sup
u∈R
|δ(u)| ≤

∫ S
−S |k(ψ)| dψ < ∞. Now, for bid bij in

first-price auction j and a fixed b let

m(bij, b;hb,L1) = 1
[
bji ≤ b− hb,L1 · S

]
+ δ

(
b− bij
hp,L2

)
· 1
[
b− hb,L1 · S < bij < b+ hb,L1 · S

]
.

Note that

m(bij, b;hb,L1) =
1

hb,L1

∫ b

−∞
k

(
b− bij
hb,L1

)
db,
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and under the conditions in Assumptions 3.6 and 3.9,

sup
b∈B(x)

x∈X

∣∣∣E [m(bij, b;hb,L1)|Xj = x
]
−G1(b|x)

∣∣∣ = O (hb,L1) .

As in the main text, group all the bids submitted in the jth first-price auction as bbbj, and in an

auction with n bids submitted, define

mn (bbbj, b;hb,L1) =
1

n

n∑
i=1

m(bij, b;hb,L1).

Fix x and, as always, let n denote the element in x corresponding to number of participating

bidders. Fix b, and define

R̂1(b|x) =
1

L1hcx,L1

L1∑
j=1

H(Xj − x;hx,L1) ·mn (bbbj, b;hb,L1) .

The estimator Ĝ1(b|x) described in Section 3.2.3 can be expressed as Ĝ1(b|x) = R̂1(b|x)/f̂1,X(x).

Fix x and, once again, let n denote the element in x corresponding to number of participating

bidders. Fix b, and define

ϕR1 (bbbj, Xj, b, x;hb,L1 , hx,L1) =H(Xj − x;hx,L1) ·mn(bbbj, b;hb,L1)− E [H(Xj − x;hx,L1) ·mn(bbbj, b;hb,L1)] ,

ϕf1,x(Xj, x;hx,L1) =H(Xj − x;hx,L1)− E [H(Xj − x;hx,L1)] ,

ϕG1 (bbbj, Xj, b, x;hb,L1 , hx,L1) =
1

f1,X(x)
· ϕR1 (bbbj, Xj, b, x;hb,L1 , hx,L1)−

G1(b|x)

f1,x(x)
· ϕf1,x(Xj, x;hx,L1)

Note that E
[
ϕG1 (bbbj, Xj, b, x;hb,L1 , hx,L1)

]
= 0. Let B be any compact subset of int([b, b]). A

second-order approximation along with the conditions in Assumptions 3.6 and 3.9 produce the

following result,

Ĝ1(b|x)−G1(b|x) =
1

L1hcx,L1

L1∑
j=1

ϕG1 (bbbj, Xj, b, x;hb,L1 , hx,L1) + ξG1
L1

(b, x), (A.1)

where sup
b∈B
x∈X

∣∣ξG1
L1

(b, x)
∣∣ = O (hb,L1) +O

(
hMx,L1

)
= O

(
L
−1/2−ε
1

)
for some ε > 0.

The linear representation in (A.1) is the first key result for the analysis of my test. In the

following section I will describe an analogous result for F̂0(v̂k(t|x)|x)− F0(vk(t|x)|x)).
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A.1.2 An asymptotic linear representation result for F̂0(v̂k(t|x)|x)− F0(vk(t|x)|x))F̂0(v̂k(t|x)|x)− F0(vk(t|x)|x))F̂0(v̂k(t|x)|x)− F0(vk(t|x)|x))

Take the marginal kernel k described in Assumption 3.9. Recall that the support of the kernel

is [−S, S]. For a given u ∈ R we will denote δ(u) =
∫ u
−S k(ψ)dψ. Note that δ(u) = 1 if u ≥ S

and δ(u) = 0 if u < −S. Now, for a given v let

m(Pi, v;hp,L2) = 1 [Pi ≤ v − hp,L2 · S] + δ

(
v − Pi
hp,L2

)
· 1 [v − hp,L2 · S < Pi < v + hp,L2 · S] .

Note that

m(Pi, v;hp,L2) =
1

hp,L2

∫ v

−∞
k

(
t− Pi
hp,L2

)
dt.

And since the kernel k is symmetric around zero, we can express

F̂2,P |X(v|x) =

∫ v

−∞
f̂2,P |X(t|x)dt =

1

f̂2,X(x)
· 1

L2hcx,L2

L2∑
i=1

m(Pi, v;hp,L2) · H (Xi − x;hx,L2) .

For a given (v, x), define

ϕR2,P |X (Pi, Xi, v, x;hp,L2 , hx,L2) = m(Pi, v;hp,L2) · H(Xi − x;hx,L2)− E [m(Pi, v;hp,L2) · H(Xi − x;hx,L2)] ,

ϕf2,x (Xi, x;hx,L2) = H(Xi − x;hx,L2)− E [H(Xi − x;hx,L2)] ,

ϕF2,P |X (Pi, Xi, v, h;hp,L2 , hx,L2) =
1

f2,x(x)
· ϕR2 (Pi, Xi, v, x;hp,L2 , hx,L2)−

F2,P |X(v|x)

f2,x(x)
· ϕf2,x (Xi, x;hx,L2)

Note that E
[
ϕF2,P |X (Pi, Xi, v, h;hp,L2 , hx,L2)

]
= 0. Let V be any compact subset of int([v, v]).

A second-order approximation along with the conditions in Assumptions 3.6 and 3.9 yield

F̂2,P |X(v|x)− F2,P |X(v|x) =
1

L2hcx,L2

L2∑
i=1

ϕF2,P |X (Pi, Xi, v, x;hp,L2 , hx,L2) + ξ
F2,P |X
L2

(v, x), (A.2)

where sup
v∈V
x∈X

∣∣∣ξF2,P |X
L2

(v, x)
∣∣∣ = O (hp,L2) +O

(
hMx,L2

)
= O

(
L
−1/2−ε
2

)
for some ε > 0.

sup
v∈V
x∈X

∣∣∣F̂2,P |X(v|x)− F2,P |X(v|x)
∣∣∣ = Op

 1√
L1−δ

2 hcx,L2

 ∀ δ > 0.

Therefore, from our bandwidth convergence restrictions we get

sup
v∈V
x∈X

∣∣∣F̂2,P |X(v|x)− F2,P |X(v|x)
∣∣∣ = Op

(
L
−1/4−ε/2
2

)
for some ε > 0.

Next, fix x and let n denote the value that corresponds to number of participating bidders in x.
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Let
Γ(1)

(
F2,P |X(v|x)

)
=

1

n(n− 1)F2,P |X(v|x)n−2
(
1− F2,P |X(v|x)

) (A.3)

ϕF0 (Pi, Xi, v, x;hp,L2 , hx,L2) = Γ(1)
(
F2,P |X(v|x)

)
· ϕF2,P |X (Pi, Xi, v, x;hp,L2 , hx,L2) .

Note that E
[
ϕF0 (Pi, Xi, v, x;hp,L2 , hx,L2)

]
= 0. By the definition of F̂0(v|x) and the result in

(A.2),

F̂0(v|x)− F0(v|x) =
1

L2hcx,L2

L2∑
i=1

ϕF0 (Pi, Xi, v, x;hp,L2 , hx,L2) + ξF0
L2

(v, x),

where sup
v∈V
x∈X

∣∣ξF0
L2

(v, x)
∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.4)

Asymptotic properties of F̂0

(
v̂k(t|x)|x

)
− F0 (vk(t|x)|x)F̂0

(
v̂k(t|x)|x

)
− F0 (vk(t|x)|x)F̂0

(
v̂k(t|x)|x

)
− F0 (vk(t|x)|x) for k = 2k = 2k = 2

Fix x and let n the value that corresponds to number of participating bidders in x. Let

πk=2(v, b, x) = (v − b)F n−1
0 (b|x).

Denote ∇bπk=2(v, b, x) ≡ ∂πk=2(v,b,x)
∂b

. We have,

∇bπk=2(v, b, x) = −F n−1
0 (b|x) + (n− 1) · (v − b)F n−2

0 (b|x)Γ(1)
(
F2,P |X(b|x)

)
f2,P |X(b|x).

Let b∗k=2(v|x) = argmax
b≥0

πk=2(v, b, x). Under our assumptions, b∗k=2(v|x) is characterized by the

first-order conditions

∇bπk=2 (v, b∗k=2(v|x), x) = 0. (A.5)

By definition of the k−rationalizable bounds, Bk=2(v|x) = v − πk=2 (v, b∗k=2(v|x), x) .

My estimator for Bk=2(v|x) is B̂k=2(v|x) = v − π̂k=2

(
v, b̂∗k=2(v|x), x

)
,

where b̂∗k=2(v|x) = argmax
b≥0

π̂k=2(v, b, x), with π̂k=2(v, b, x) = (v − b)F̂ n−1
0 (b|x).

By the design of my estimator F̂ n−1
0 (b|x), the derivative ∇bπ̂k=2(v, b, x) ≡ ∂π̂k=2(v,b,x)

∂b
has the

exact sample-analog structure of ∇bπk=2(v, b, x). Namely,

∇bπ̂k=2(v, b, x) = −F̂ n−1
0 (b|x) + (n− 1) · (v − b)F̂ n−2

0 (b|x)Γ(1)
(
F̂2,P |X(b|x)

)
f̂2,P |X(b|x),

and b̂∗k=2(v|x) satisfies the sample-analog first order conditions

∇bπ̂k=2

(
v, b̂∗k=2(v|x), x

)
= 0. (A.6)

The primary goal is to characterize the asymptotic properties of B̂k=2(v|x) − Bk=2(v|x). Let
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V be any compact subset of int([v, v]) and let B be any compact subset of int([b, b]). Us-

ing our previous results and bandwidth convergence conditions in Assumption 3.9, we have

sup
v∈V ,b∈B

x∈X

|∇bπ̂k=2(v, b, x)−∇bπk=2(v, b, x)| = Op

(
L
−1/4−ε/2
2

)
for some ε > 0. Combining this with

(A.5) and (A.6), we also obtain sup
v∈V
x∈X

∣∣∣̂b∗k=2(v|x)− b∗k=2(v|x)
∣∣∣ = Op

(
L
−1/4−ε/2
2

)
for some ε > 0.

From a second-order approximation we get

π̂k=2 (v, b∗k=2(v|x), x) = π̂k=2

(
v, b̂∗k=2(v|x), x

)
+∇bπ̂k=2

(
v, b̂∗k=2(v|x), x

)
︸ ︷︷ ︸

=0 from (A.6)

·
(
b∗k=2(v|x)− b̂∗k=2(v|x)

)

+Op

(∣∣∣̂b∗k=2(v|x)− b∗k=2(v|x)
∣∣∣2) .

Therefore,

sup
v∈V
x∈X

∣∣∣π̂k=2

(
v, b̂∗k=2(v|x), x

)
− π̂k=2 (v, b∗k=2(v|x), x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0. (A.7)

And from here,

B̂k=2(v|x) = Bk=2(v|x) +
(
π̂k=2 (v, b∗k=2(v|x), x)− πk=2 (v, b∗k=2(v|x), x)

)
+ %Bk=2

L2
(v, x), (A.8)

where sup
v∈V
x∈X

∣∣∣%Bk=2
L2

(v, x)
∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

Let ϕF0 be as defined in (A.3). Now for a given v, x let

ϕBk=2 (Pi, Xi, v, x;hp,L2 , hx,L2) =

(n− 1) · F n−2
0 (b∗k=2(v|x)|x) · (v − b∗k=2(v|x)) · ϕF0 (Pi, Xi, b

∗
k=2(v|x), x;hp,L2 , hx,L2)

(A.9)

Note that E
[
ϕBk=2 (Pi, Xi, v, x;hp,L2 , hx,L2)

]
= 0. Combining (A.4) and (A.8) obtains,

B̂k=2(v|x)−Bk=2(v|x) =
1

L2hcx,L2

L2∑
i=1

ϕBk=2 (Pi, Xi, v, x;hp,L2 , hx,L2) + ξBk=2
L2

(v, x), (A.10)

where sup
v∈V
x∈X

∣∣∣ξBk=2
L2

(v, x)
∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

Fix x. As in the main text, let vk(·|x) and v̂k(·|x) denote the inverse functions of Bk(·|x) and

B̂k(·|x), respectively. That is, for a given t, vk=2(·|x) and v̂k=2(·|x) are given, respectively, by
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the solution (in v) to the equations

v − (v − b∗k=2(v|x))F n−1
0 (b∗k=2(v|x)|x)︸ ︷︷ ︸

Bk=2(v|x)

= t, v −
(
v − b̂∗k=2(v|x)

)
F̂ n−1

0

(
b̂∗k=2(v|x)|x

)
︸ ︷︷ ︸

B̂k=2(v|x)

= t.

By the first-order conditions (A.5) and (A.6), the Envelope Theorem yields

∇vBk=2(v|x) = 1− F n−1
0 (b∗k=2(v|x)|x) , ∇vB̂k=2(v|x) = 1− F̂ n−1

0

(
b̂∗k=2(v|x)|x

)
.

By construction, B̂k=2

(
v̂k(t|x)|x

)
= Bk=2 (vk(t|x)|x) (both expressions are equal to t). A

second-order approximation on the left-hand side combined with the expressions for∇vBk=2(v|x)

and ∇vB̂k=2(v|x) and (A.10) yield the following. Fix t and x. Let ϕBk=2 be as described in (A.9)

and define

ϕvk=2 (Pi, Xi, t, x;hp,L2 , hx,L2) = − 1

1− F n−1
0 (b∗k=2(vk=2(t|x)|x)|x)

· ϕBk=2 (Pi, Xi, vk=2(t|x), x;hp,L2 , hx,L2)

(A.11)

Note that E
[
ϕBk=2 (Pi, Xi, t, x;hp,L2 , hx,L2)

]
= 0. Our previous results yield,

v̂k=2(t|x)− vk=2(t|x) =
1

L2hcx,L2

L2∑
i=1

ϕvk=2 (Pi, Xi, t, x;hp,L2 , hx,L2) + ξvk=2
L2

(t, x),

where sup
t∈B
x∈X

∣∣ξvk=2
L2

(t, x)
∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.12)

Fix t and x. Let ϕF0 and ϕvk=2 be as described in (A.3) and (A.11) and define

ϕF0,k=2 (Pi, Xi, t, x;hp,L2 , hx,L2) = ϕF0 (Pi, Xi, vk=2(t|x), x;hp,L2 , hx,L2)

+ Γ(1)
(
F2,P |X(vk=2(t|x)|x)

)
· f2,P |X(vk=2(t|x)|x) · ϕvk=2 (Pi, Xi, t, x;hp,L2 , hx,L2) .

(A.13)

Note once again that E
[
ϕF0,k=2 (Pi, Xi, t, x;hp,L2 , hx,L2)

]
= 0. Using the previous results and a

second-order approximation, we obtain

F̂0

(
v̂k=2(t|x)|x

)
− F0 (vk=2(t|x)|x) =

1

L2hcx,L2

L2∑
i=1

ϕF0,k=2 (Pi, Xi, t, x;hp,L2 , hx,L2) + ξ
F0,k=2

L2
(t, x),

(A.14)
where sup

t∈B
x∈X

∣∣∣ξF0,k=2

L2
(t, x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

For the purposes of my econometric test, the linear representation in (A.14) is the most important

result. Next I will describe inductively how it extends to k ≥ 3.
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Asymptotic properties of F̂0(v̂k(t|x)|x)− F0 (vk(t|x)|x)F̂0(v̂k(t|x)|x)− F0 (vk(t|x)|x)F̂0(v̂k(t|x)|x)− F0 (vk(t|x)|x) for k ≥ 3k ≥ 3k ≥ 3

The steps will be analogous to the case k = 2. We now have

πk(v, b, x) = (v − b)F n−1
0 (vk−1(b|x)|x) , π̂k(v, b, x) = (v − b)F̂ n−1

0

(
v̂k−1(b|x)|x

)
,

with b∗k(v|x) = argmax
b≥0

πk(v, b, x), b̂∗k(v|x) = argmax
b≥0

π̂k(v, b, x).

Suppose the estimator v̂k−1 is such that sup
b∈B
x∈X

∣∣∣v̂k−1(b|x)− vk−1(b|x)
∣∣∣2 = Op

(
L
−1/2−ε
2

)
for some ε > 0,

note that this is true for k = 3 by the result in (A.12). As we defined in Assumption 3.4, let

Vk = {v: v = vk(b|x) for some b ∈ B and x ∈X .} .

Then, by the conditions described in Assumption 3.4, a second-order approximation coupled

with the first-order conditions of b∗k and b∗k and the Envelope Theorem yield a generalization of

the result in (A.7). Namely,

sup
v∈Vk
x∈X

∣∣∣π̂k (v, b̂∗k(v|x), x
)
− π̂k (v, b∗k(v|x), x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0. (A.15)

This, in turn, leads to a generalization of (A.8),

B̂k(v|x) = Bk(v|x) +
(
π̂k (v, b∗k(v|x), x)− πk (v, b∗k(v|x), x)

)
+ %BkL2

(v, x),

where sup
v∈Vk
x∈X

∣∣∣%BkL2
(v, x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0. (A.16)

Next, suppose the estimator v̂k−1 satisfies a linear representation result of the form,

v̂k−1(t|x)− vk−1(t|x) =
1

L2hcx,L2

L2∑
i=1

ϕvk−1 (Pi, Xi, t, x;hp,L2 , hx,L2) + ξ
vk−1

L2
(t, x),

where sup
t∈B
x∈X

∣∣∣ξvk−1

L2
(t, x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.17)

With E [ϕvk−1 (Pi, Xi, t, x;hp,L2 , hx,L2)] = 0. Note that this has been established for k = 3 in

(A.12). Let us go back to (A.16) and focus on the term π̂k (v, b∗k(v|x), x)−πk (v, b∗k(v|x), x). This

is given by
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π̂k (v, b∗k(v|x), x)− πk (v, b∗k(v|x), x) = (v − b∗k(v|x))×
[
F̂ n−1

0

(
v̂k−1(b∗k(v|x)|x)|x

)
− F n−1

0 (vk−1(b∗k(v|x)|x)|x)
]

= (v − b∗k(v|x))×

{[
F̂ n−1

0

(
v̂k−1(b∗k(v|x)|x)|x

)
− F̂ n−1

0 (vk−1(b∗k(v|x)|x)|x)
]

+
[
F̂ n−1

0 (vk−1(b∗k(v|x)|x)|x)− F n−1
0 (vk−1(b∗k(v|x)|x)|x)

]}
(A.18)

Notice that the term
[
F̂ n−1

0

(
v̂k−1(b∗k(v|x)|x)|x

)
− F̂ n−1

0 (vk−1(b∗k(v|x)|x)|x)
]
was equal to zero

in the case k = 2 because v̂1(t|x) = vk−1(t|x) = t, since B̂k=1(v|x) = Bk=1(v|x) = v (the upper

bound for k = 1 is simply the 45-degree line and so is its inverse, neither of which has to be

estimated). Let ϕF0 and ϕvk−1 be as described in (A.3) and (A.17), respectively. Fix v and x. As

always, let n denote the value that corresponds to number of participating bidders in x. Define

ϕBk (Pi, Xi, v, x;hp,L2 , hx,L2) = (A.19)

(n− 1) · F n−2
0 (vk−1(b∗k(v|x)|x)|x) · (v − b∗k(v|x))×

{
ϕF0 (Pi, Xi, vk−1(b∗k(v|x)|x), x;hp,L2 , hx,L2)

+ Γ(1)
(
F2,P |X (vk−1(b∗k(v|x)|x)|x)

)
· f2,P |X (vk−1(b∗k(v|x)|x)|x) · ϕvk−1 (Pi, Xi, b

∗
k(v|x), x;hp,L2 , hx,L2)

}

Note that E
[
ϕBk (Pi, Xi, v, x;hp,L2 , hx,L2)

]
= 0, as in all previous cases. The expression in (A.19)

is a generalization of (A.9). Note that the second term on the right-hand side of (A.19) is absent

in (A.9) because, as we pointed out above, v̂1(t|x) = v1(t|x) = t (since the k = 1 bound is just

the 45-degree line).

A second-order approximation to the first term in (A.18), combined with the results in (A.4)

and (A.17) yield the following generalization of (A.10),

B̂k(v|x)−Bk(v|x) =
1

L2hcx,L2

L2∑
i=1

ϕBk (Pi, Xi, v, x;hp,L2 , hx,L2) + ξBkL2
(v, x),

where sup
v∈Vk
x∈X

∣∣∣ξBkL2
(v, x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.20)

By the Envelope Theorem and the first-order conditions satisfied by b∗k(v|x) and b̂∗k(v|x), from the

definition of Bk(v|x) and B̂k(v|x) we obtain ∇vBk(v|x) = 1−F n−1
0 (b∗k(v|x)|x) and ∇vB̂k(v|x) =

1 − F̂ n−1
0

(
b̂∗k(v|x)|x

)
. Once again, let vk(·|x) and v̂k(·|x) denote the inverse functions of

Bk(·|x) and B̂k(·|x), respectively. By construction, for any t we must have B̂k

(
v̂k(t|x)|x

)
=
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Bk (vk(t|x)|x) (since both expressions are equal to t, by definition). From here, we get

B̂k

(
v̂k(t|x)|x

)
− B̂k (vk(t|x)|x) = Bk

(
v̂k(t|x)|x

)
− B̂k (vk(t|x)|x) .

The right-hand side of the above expression can be analyzed using (A.20). Combining this

with a first-order approximation to the left hand side we obtain the following results, which are

generalizations of (A.11) and (A.12). Let

ϕvk (Pi, Xi, t, x;hp,L2 , hx,L2) = − 1

1− F n−1
0 (b∗k(vk(t|x)|x)|x)

· ϕBk (Pi, Xi, vk(t|x), x;hp,L2 , hx,L2)

(A.21)

Note once again that E
[
ϕBk (Pi, Xi, t, x;hp,L2 , hx,L2)

]
= 0. We have

v̂k(t|x)− vk(t|x) =
1

L2hcx,L2

L2∑
i=1

ϕvk (Pi, Xi, t, x;hp,L2 , hx,L2) + ξvkL2
(t, x),

where sup
t∈B
x∈X

∣∣ξvkL2
(t, x)

∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.22)

From here we can study the properties of F̂0

(
v̂k(t|x)|x

)
− F0 (vk(t|x)|x) straightforwardly. Fix

t and x. Let ϕF0 and ϕvk be as described in (A.3) and (A.21) and define

ϕF0,k (Pi, Xi, t, x;hp,L2 , hx,L2) = ϕF0 (Pi, Xi, vk(t|x), x;hp,L2 , hx,L2)

+ Γ(1)
(
F2,P |X(vk(t|x)|x)

)
· f2,P |X(vk(t|x)|x) · ϕvk (Pi, Xi, t, x;hp,L2 , hx,L2) .

(A.23)

Note once again that E
[
ϕF0,k (Pi, Xi, t, x;hp,L2 , hx,L2)

]
= 0 as in all previous cases. Using the

previous results and a second-order approximation, we obtain

F̂0

(
v̂k(t|x)|x

)
− F0 (vk(t|x)|x) =

1

L2hcx,L2

L2∑
i=1

ϕF0,k (Pi, Xi, t, x;hp,L2 , hx,L2) + ξ
F0,k

L2
(t, x),

where sup
t∈B
x∈X

∣∣∣ξF0,k

L2
(t, x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.24)

The linear representation in (A.24) extends the result in (A.14) to the case k ≥ 3 and is key for

the analysis of my test.

A.1.3 An asymptotic linear representation result for φ̂k(t|x)− φk(t|x)φ̂k(t|x)− φk(t|x)φ̂k(t|x)− φk(t|x)

Combining our previous characterizations we obtain the result that will allow us to prove The-

orem 3.1. Recall that
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φ̂k(t|x) = F̂0(v̂k(t|x)|x)− Ĝ1(t|x).

Also recall that I denoted L ≡ L1 +L2 as the combined sample sizes for first-price and ascending

auctions. Let ϕG1 and ϕF0,k be as described in (A.1) and (A.24), respectively. From the results

obtained there, we get

φ̂k(t|x)− φk(t|x) =
1

L2hcx,L2

L2∑
i=1

ϕF0,k (Pi, Xi, t, x;hp,L2 , hx,L2)

− 1

L1hcx,L1

L1∑
j=1

ϕG1 (bbbj, Xj, t, x;hb,L1 , hx,L1) + ξ
F0,k

L2
(t, x)− ξG1

L1
(t, x)

where


sup
t∈B
x∈X

∣∣∣ξF0,k

L2
(t, x)

∣∣∣ = Op

(
L
−1/2−ε
2

)
,

sup
t∈B
x∈X

∣∣ξG1
L1

(t, x)
∣∣ = Op

(
L
−1/2−ε
1

)
.

for some ε > 0.

(A.25)

A.2 Proof of Theorem 3.1. Final steps

Recall that

T̂k =
1

L2

L2∑
i=1

Λ̂k,2(Xi)WX (Xi) +
1

L1

L1∑
i=1

Λ̂k,1(Xi)WX (Xi).

Let us focus on the second term (the first term will have analogous properties using the same

steps we will take next). We can decompose

1

L1

L1∑
i=1

Λ̂k,1(Xi)WX (Xi) =
1

L1

L1∑
i=1

∫
t∈B(Xi)

φ̂k(t|Xi) · 1
[
φ̂k(t|Xi) ≥ −γL1

]
dQ(t|Xi) ·WX (Xi)

=
1

L1

L1∑
i=1

∫
t∈B(Xi)

φ̂k(t|Xi) · 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi)

+
1

L1

L1∑
i=1

∫
t∈B(Xi)

φk(t|Xi) · 1
[
φ̂k(t|Xi) ≥ −γL1

]
· 1 [φk(t|Xi) < −2γL1 ] dQ(t|Xi) ·WX (Xi)

+
1

L1

L1∑
i=1

∫
t∈B(Xi)

φk(t|Xi) · 1
[
φ̂k(t|Xi) ≥ −γL1

]
· 1 [−2γL1 ≤ φk(t|Xi) < 0] dQ(t|Xi) ·WX (Xi)

− 1

L1

L1∑
i=1

∫
t∈B(Xi)

φk(t|Xi) · 1
[
φ̂k(t|Xi) < −γL1

]
· 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi)

+
1

L1

L1∑
i=1

∫
t∈B(Xi)

(
φ̂k(t|Xi)− φk(t|Xi)

)
· 1
[
φ̂k(t|Xi) ≥ −γL1

]
· 1 [φk(t|Xi) < −2γL1} dQ(t|Xi) ·WX (Xi)

(A.26)
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+
1

L1

L1∑
i=1

∫
t∈B(Xi)

(
φ̂k(t|Xi)− φk(t|Xi)

)
· 1
[
φ̂k(t|Xi) ≥ −γL1

]
· 1 [−2γL1 ≤ φk(t|Xi) < 0] dQ(t|Xi) ·WX (Xi)

− 1

L1

L1∑
i=1

∫
t∈B(Xi)

(
φ̂k(t|Xi)− φk(t|Xi)

)
· 1
[
φ̂k(t|Xi) < −γL1

]
· 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi)

≡ 1

L1

L1∑
i=1

∫
t∈B(Xi)

φ̂k(t|Xi) · 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi) +
1

L1

L1∑
i=1

∫
t∈B(Xi)

εk,1(t|Xi)dQ(t|Xi),

Recall that
∫
t∈B(x)

dQ(t|x) = 1 for all x. Also note that |φk(t|x)| ≤ 1 for all t, x. Therefore,

1

L1

L1∑
i=1

∫
t∈B(Xi)

εk,1(t|Xi)dQ(t|Xi) ≤
1

L1

L1∑
i=1

∫
t∈B(Xi)

∣∣εk,1(t|Xi)
∣∣dQ(t|Xi)

≤ 2× 1

sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ ≥ γL1

+ 2γL1 × sup
t∈B

1

L1

L1∑
i=1

1 [−2γL1 ≤ φk(t|Xi) < 0] ·WX (Xi)

(A.27)

+ 2 · sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ · 1

sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ ≥ γL1


+ sup

t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ · sup

t∈B

1

L1

L1∑
i=1

1 [−2γL1 ≤ φk(t|Xi) < 0]WX (Xi)

I will analyze each term on the right-hand side of (A.27). First, notice that the regularity

and smoothness conditions in Assumptions 3.4 and 3.6, combined with the bounded-variation

properties of the kernel described in Assumption 3.9 imply, via Lemmas 2.4, 2.12, 2.13, 2.14 and

Example 2.10 in Pakes and Pollard (1989), that the following classes of functions are Euclidean

(see Definition 2.7 in Pakes and Pollard (1989)) for a constant envelope,

Fk =
{
ϕF0,k(·, ·, t, x;h1, h2): t ∈ B, x ∈X , h1 > 0, h2 > 0

}
,

G =
{
ϕG1(·, ·, t, x;h1, h2): t ∈ B, x ∈X , h1 > 0, h2 > 0

}
Define the following two empirical processes νL1(·) and νL2(·) indexed over B ×X as

νL1(t, x) =
1

L1

∑
i=1

ϕG1 (bbbi, Xi, t, x;hb,L1 , hx,L1) , νkL2
(t, x) =

1

L2

∑
i=1

ϕF0,k (Pi, Xi, t, x;hb,L1 , hx,L1) .

The Euclidean property of the above classes of functions, combined with Corollary 4 and the

Main Corollary in Sherman (1994) imply that there exists a constant D such that, for any δ > 0,
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Pr

sup
t∈B
x∈X

∣∣∣L1/2
1 νL1(t, x)

∣∣∣ ≥ δ

 ≤ D

δ
, Pr

sup
t∈B
x∈X

∣∣∣L1/2
2 νL2(t, x)

∣∣∣ ≥ δ

 ≤ D

δ
.

Next, note that we can express

φ̂k(t|x)− φk(t|x) =
1

hcx,L2

· νL2(t, x)− 1

hcx,L1

+ ξ
F0,k

L2
(t, x)− ξG1

L1
(t, x),

where by the uniform asymptotic properties of these remainder terms, there exists a constant C

such that, for any δ > 0,

Pr

sup
t∈B
x∈X

∣∣ξG1
L1

(t, x)
∣∣ > δ

 ≤ C

δ · L1/2+ε
1

, and Pr

sup
t∈B
x∈X

∣∣∣ξFo,kL2
(t, x)

∣∣∣ > δ

 ≤ C

δ · L1/2+ε
2

,

for some ε > 0. Combining these results, we have

Pr

sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ > γL1

 ≤ Pr

sup
t∈B
x∈X

∣∣∣∣∣ 1

hcx,L1

νL1(t, x)

∣∣∣∣∣ > γL1

4

+

Pr

sup
t∈B
x∈X

∣∣∣∣∣ 1

hcx,L2

νL2(t, x)

∣∣∣∣∣ > γL1

4

+ Pr

sup
t∈B
x∈X

∣∣ξG1
L1

(t, x)
∣∣ > γL1

4

+ Pr

sup
t∈B
x∈X

∣∣∣ξF0,k

L2
(t, x)

∣∣∣ > γL1

4


≤ 4D

γL1h
c
x,L1

L
1/2
1

+
4D

γL1h
c
x,L2

L
1/2
2

+
4C

γL1L
1/2+ε
1

+
4C

γL1L
1/2+ε
2

−→ 0 as L1 →∞, L2 →∞.

Where the last result follows from the bandwidth convergence conditions in Assumption 3.9.

Now let us go back to the indicator function 1

sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ ≥ γL1

 which appears in

(A.27). Fix any ∆ > 0 and δ > 0. Then,

Pr

L∆
1 1

sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ ≥ γL1

 > δ

 ≤ Pr

sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ > γL1

 −→ 0.

Therefore,

1

sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ ≥ γL1

 = op
(
L−∆

1

)
for any ∆ > 0. (A.28)

Lastly, the above conditions also imply
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sup
t∈B
x∈X

∣∣∣φ̂k(t|x)− φk(t|x)
∣∣∣ = Op

(
1

L
1/2
1 hcx,L1

)
+Op

(
1

L
1/2
2 hcx,L2

)
. (A.29)

Next, define the following empirical process νφkL1
(·) indexed over B,

νφkL1
(t) =

1

L1

L1∑
i=1

(
1 [−2γL1 ≤ φk(t|Xi) < 0] ·WX (Xi)− E [1 [−2γL1 ≤ φk(t|Xi) < 0] ·WX (Xi)]

)
.

By Assumption 3.8, Lemma 2.12 in Pakes and Pollard (1989) and the Main Corollary in Sherman

(1994), this process satisfies sup
t∈B

∣∣∣νφkL1
(t)
∣∣∣ = Op

(
L
−1/2
1

)
. Combined with Assumption 3.7, this

obtains

sup
t∈B

1

L1

L1∑
i=1

1 [−2γL1 ≤ φk(t|Xi) < 0] ·WX (Xi)

≤ sup
t∈B

E [1 [−2γL1 ≤ φk(t|Xi) < 0] ·WX (Xi)] + sup
t∈B

∣∣∣νφkL1
(t)
∣∣∣ = O (γL1) +Op

(
L
−1/2
1

)
= Op (γL1) .

(A.30)

Plugging in the results from (A.28), (A.29) and (A.30) into (A.26) and (A.27), for any ∆ > 0

we obtain

1

L1

L1∑
i=1

Λ̂k,1(Xi)WX (Xi) =
1

L1

L1∑
i=1

∫
t∈B(Xi)

φ̂k(t|Xi) · 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi) + ϑ̂k,1,

where ϑ̂k,1 = Op

(
γ2
L1

)
+ op

(
L−∆

1

)
+Op

(
γL1

L
1/2
1 hcx,L1

)
+Op

(
γL1

L
1/2
2 hcx,L2

)
= Op

(
L
−1/2−ε
1

)
+Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.31)

The same steps can be used to show the equivalent result for Λ̂k,1. Namely,

1

L2

L2∑
i=1

Λ̂k,2(Xi)WX (Xi) =
1

L2

L2∑
i=1

∫
t∈B(Xi)

φ̂k(t|Xi) · 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi) + ϑ̂k,2,

where ϑ̂k,2 = Op

(
γ2
L2

)
+ op

(
L−∆

2

)
+Op

(
γL2

L
1/2
1 hcx,L1

)
+Op

(
γL2

L
1/2
2 hcx,L2

)
(A.32)

= Op

(
L
−1/2−ε
1

)
+Op

(
L
−1/2−ε
2

)
for some ε > 0.

Recall that Λk(x) =
∫
x∈B(x)

(φk(t|x))+ dQ(t|x). Combining (A.25) and (A.31),
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1

L1

L1∑
i=1

Λ̂k,1(Xi)WX (Xi) = E1,X [Λk(Xi)WX (Xi)] +
1

L1

L1∑
i=1

(
Λk(Xi)WX (Xi)− E1,X [Λk(Xi)WX (Xi)]

)
+

1

L1L2hcx,L2

L1∑
i=1

L2∑
`=1

∫
t∈B(Xi)

ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi)

− 1

L2
1h

c
x,L1

L1∑
i=1

L1∑
m=1

∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi) + $̂k,1,

where $̂k,1 = Op

(
L
−1/2−ε
1

)
+Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.33)

Similarly, combining (A.25) and (A.32),

1

L2

L2∑
i=1

Λ̂k,2(Xi)WX (Xi) = E2,X [Λk(Xi)WX (Xi)] +
1

L2

L2∑
i=1

(
Λk(Xi)WX (Xi)− E2,X [Λk(Xi)WX (Xi)]

)
+

1

L2
2h

c
x,L2

L2∑
i=1

L2∑
`=1

∫
t∈B(Xi)

ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi)

− 1

L2L1hcx,L1

L2∑
i=1

L1∑
m=1

∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi) + $̂k,2,

where $̂k,2 = Op

(
L
−1/2−ε
1

)
+Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.34)

The result in Theorem 3.1 will follow from the Hoeffding decompositions of the U-statistics (see

Lemma 5.1.A in Serfling (1980)) that appear on the right-hand sides of Equations (A.33) and

(A.34). I will examine each term at a time. Let

Ua
L1

=
1

L2
1h

c
x,L1

L1∑
i=1

L1∑
m=1

∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi)

Note first that E1,(bbb,X)

[∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1)
∣∣∣Xi

]
= 0 (see the paragraph pre-

ceding Equation (A.1)). Fix bbb and x and let

ΞG1
1 (bbb, x,Xc;hb,L1 , hx,L1) = E1,Xd|Xc

[ ∫
t∈B(X)

ϕG1 (bbb, x, t,X;hb,L1 , hx,L1) 1 [φk(t|X) ≥ 0] dQ(t|X)WX (X)

∣∣∣∣∣Xc

]
,

λG1
1 (bbbi, Xi;hb,L1 , hx,L1) =

∫
ψ∈[−S,S]c

ΞG1
1 (bbbi, Xi, hx,L1ψ +Xc

i ;hb,L1 , hx,L1) f1,Xc(hx,L1ψ +Xc
i )dψ.

Notice that E1,(bbb,X)

[
λG1

1 (bbbi, Xi;hb,L1 , hx,L1)
]

= 0 since, by iterated expectations,
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E1,(bbb,X)

[
λG1

1 (bbbi, Xi;hb,L1 , hx,L1)
]

=

E1,X

[
E1,(bbb,X)

[∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1)
∣∣∣Xi

]
︸ ︷︷ ︸

=0

1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi)

]
= 0.

The Hoeffding decomposition of Ua
L1

yields the following result,

Ua
L1

=
1

L1

L1∑
i=1

λG1
1 (bbbi, Xi;hb,L1 , hx,L1) + ν̂a, where ν̂a = Op

(
1

L1hcx,L1

)
= Op

(
L
−1/2−ε
1

)
for some ε > 0.

(A.35)

Where the last result follows from the bandwidth convergence conditions in Assumption 3.9.

Next, let

U b
L2

=
1

L2
2h

c
x,L2

L2∑
i=1

L2∑
`=1

∫
t∈B(Xi)

ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi).

And note (from (A.23)) that E2,(P,X)

[
ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2)

∣∣Xi

]
= 0. Fix p and x and

let

Ξ
F0,k

2 (p, x,Xc;hp,L2 , hx,L2) = E2,Xd|Xc

[ ∫
t∈B(X)

ϕF0,k (p, x, t,X;hp,L2 , hx,L2) 1 [φk(t|X) ≥ 0] dQ(t|X)WX (X)

∣∣∣∣∣Xc

]
,

λ
F0,k

2 (Pi, Xi;hp,L2 , hx,L2) =

∫
ψ∈[−S,S]c

Ξ
F0,k

2 (Pi, Xi, hx,L2ψ +Xc
i ;hp,L2 , hx,L2) f2,Xc(hx,L2ψ +Xc

i )dψ

Note that E2,(P,X)

[
λ
F0,k

2 (Pi, Xi;hp,L2 , hx,L2)
]

= 0 since, by iterated expectations,

E2,(P,X)

[
λ
F0,k

2 (Pi, Xi;hp,L2 , hx,L2)
]

=

E2,X

[
E2,(P,X)

[ ∫
t∈B(Xi)

ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2)

∣∣∣∣∣Xi

]
︸ ︷︷ ︸

=0

1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi)

]

The Hoeffding decomposition of U b
L2

yields the following result,

U b
L2

=
1

L2

L2∑
i=1

λ
F0,k

2 (Pi, Xi;hp,L2 , hx,L2) + ν̂b, where ν̂b = Op

(
1

L2hcx,L2

)
= Op

(
L
−1/2−ε
2

)
for some ε > 0.

(A.36)
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Once again the last line results from the bandwidth properties described in Assumption 3.9.

Next let us analyze the generalized U-statistic30 (see Section 5.1.3 in Serfling (1980)) ,

U c
L1,L2

=
1

L2L1hcx,L1

L2∑
i=1

L1∑
m=1

∫
t∈B(Xi)

ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi).

Note that E1,(bbb,X)

[
ϕG1 (bbbm, Xm, t, Xi;hb,L1 , hx,L1) |Xi

]
= 0 (again, see the paragraph preceding

Equation (A.1)). Fix bbb and x and let

ΞG1
2 (bbb, x,Xc, hb,L1 , hx,L1) = E2,Xd|Xc

[ ∫
t∈B(X)

ϕG1 (bbb, x, t,X;hb,L1 , hx,L1) 1 [φk(t|X) ≥ 0] dQ(t|X)WX (X)

∣∣∣∣∣Xc

]
,

λG1
2 (bbbi, Xi;hb,L1 , hx,L1) =

∫
ψ∈[−S,S]c

ΞG1
2 (bbbi, Xi, hx,L1ψ +Xc

i , hb,L1 , hx,L1) f2,Xc(hx,L1ψ +Xc
i )dψ

As in the previous cases, the last functional satisfies E1,(bbb,X)

[
λG1

2 (bbbi, Xi;hb,L1 , hx,L1)
]

= 0. This

can be shown by iterated expectations, since

E1,(bbb,X)

[
λG1

2 (bbbi, Xi;hb,L1 , hx,L1)
]

=

E2,X

[
E1,(bbb,X)

[ ∫
t∈B(X)

ϕG1 (bbb`, X`, t, Xi, hb,L1 , hx,L1)

∣∣∣∣∣Xi

]
︸ ︷︷ ︸

=0

1 [φk(t|Xi) ≥ 0] dQ(t|Xi)WX (Xi)

]
= 0

A Hoeffding decomposition result for the generalized U-statistic U c
L1,L2

results in the following,

U c
L1,L2

=
1

L1

L1∑
i=1

λG1
2 (bbbi, Xi;hb,L1 , hx,L1) + ν̂c,

where ν̂c = Op

(
1√

L1L2hcx,L1

)
=

 Op

(
L
−1/2−ε
1

)
Op

(
L
−1/2−ε
2

) for some ε > 0.

(A.37)

The last result being a consequence of Assumption 3.9. The last term left to simplify the

asymptotic properties of expressions (A.32) and (A.33) is the following generalized U-statistic,

Ud
L1,L2

=
1

L1L2hcx,L2

L1∑
i=1

L2∑
`=1

∫
t∈B(Xi)

ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2) 1 [φk(t|Xi) ≥ 0] dQ(t|Xi) ·WX (Xi)

30The extension of Hoeffding’s decomposition results (Hoeffding (1948)), from one sample U-statistics to the
general case of combining data from k samples, dates back to Lehmann (1951) and Dwas (1956). See Section
5.1.3 in Serfling (1980).
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As it was the case with the statistics Ua
L1
, U b

L2
and U c

L1,L2
, from Equation (A.23) we have in this

case that E2,Xd|Xc

[
ϕF0,k (P`, X`, t, Xi;hp,L2 , hx,L2)

∣∣Xi

]
= 0. Fix p, x and let

Ξ
F0,k

1 (p, x,Xc;hp,L2 , hx,L2) = E1,Xd|Xc

[ ∫
t∈B(X)

ϕF0,k(p, x, t,X;hp,L2 , hx,L2)1 [φk(t|X) ≥ 0] dQ(t|X)WX (X)

∣∣∣∣∣Xc

]
,

λ
F0,k

1 (Pi, Xi;hp,L2 , hx,L2) =

∫
ψ∈[−S,S]c

Ξ
F0,k

1 (Pi, Xi, hx,L2ψ +Xc
i ;hp,L2 , hx,L2)f1,Xc(hx,L2ψ +Xc

i )dψ

The last functional satisfies E2,(P,X)

[
λ
F0,k

1 (Pi, Xi;hp,L2 , hx,L2)
]

= 0 since, by iterated expecta-

tions,

E2,(P,X)

[
λ
F0,k

1 (Pi, Xi;hp,L2 , hx,L2)
]

=

E1,X

[ ∫
t∈B(X`)

E2,(P,X)

[
ϕF0,k(Pi, Xi, t, X`;hp,L2 , hx,L2)

∣∣X`

]︸ ︷︷ ︸
=0

1 [φk(t|X`) ≥ 0] dQ(t|X`)WX (X`)

]
= 0.

The Hoeffding decomposition expression for Ud
L1,L2

is,

Ud
L1,L2

=
1

L2

L2∑
i=1

λ
F0,k

1 (Pi, Xi;hp,L2 , hx,L2) + ν̂d,

where ν̂d = Op

(
1√

L1L2hcx,L2

)
=

 Op

(
L
−1/2−ε
1

)
Op

(
L
−1/2−ε
2

) for some ε > 0.

(A.38)

Combining the previous results with (A.33),

1

L1

L1∑
i=1

Λ̂k,1(Xi)WX (Xi) = E1,X [Λk(Xi)WX (Xi)] +
1

L1

L1∑
i=1

(
Λk(Xi)WX (Xi)− E1,X [Λk(Xi)WX (Xi)]

)

+
1

L2

L2∑
i=1

λ
F0,k

1 (Pi, Xi;hp,L2 , hx,L2)−
1

L1

L1∑
i=1

λG1
1 (bbbi, Xi;hb,L1 , hx,L1) + ν̂1,

where ν̂1 = Op

(
L
−1/2−ε
1

)
+Op

(
L
−1/2−ε
1

)
for some ε > 0.

(A.39)

And Equation (A.34) becomes,

1

L2

L2∑
i=1

Λ̂k,2(Xi)WX (Xi) = E2,X [Λk(Xi)WX (Xi)] +
1

L2

L2∑
i=1

(
Λk(Xi)WX (Xi)− E2,X [Λk(Xi)WX (Xi)]

)
+

1

L2

L2∑
i=1

λ
F0,k

2 (Pi, Xi;hp,L2 , hx,L2)−
1

L1

L1∑
i=1

λG1
2 (bbbi, Xi;hb,L1 , hx,L1) + ν̂2,

(A.40)

67



where ν̂2 = Op

(
L
−1/2−ε
1

)
+Op

(
L
−1/2−ε
1

)
for some ε > 0.

Let

ψ1,k(bbbj, Xj;hb,L1 , hx,L1) = (Λk(Xj)WX (Xj)− E1,X [Λk(Xj)WX (Xj)])

− λG1
1 (bbbj, Xj;hb,L1 , hx,L1)− λG1

2 (bbbj, Xj;hb,L1 , hx,L1),

ψ2,k(Pi, Xi;hp,L2 , hx,L2) = (Λk(Xi)WX (Xi)− E [Λk(Xi)WX (Xi)])

+ λ
F0,k

1 (Pi, Xi;hp,L2 , hx,L2) + λ
F0,k

2 (Pi, Xi;hp,L2 , hx,L2).

(A.41)

Let L ≡ L1 + L2. Then, for some ∆ > 1
2
,

T̂k = Tk +
1

L1

L1∑
j=1

ψ1,k(bbbj, Xj;hb,L1 , hx,L1) +
1

L2

L2∑
i=1

ψ2,k(Pi, Xi;hp,L2 , hx,L2) + op
(
L−∆

1

)
+ op

(
L−∆

2

)
(A.42)

T̂k = Tk +
1

L1

L1∑
j=1

ψ1,k(bbbj, Xj;hb,L1 , hx,L1) +
1

L2

L2∑
i=1

ψ2,k(Pi, Xi;hp,L2 , hx,L2) + op
(
L−∆

)
.

This proves Theorem 3.1. �
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