How Much Does Your Boss Make? The Effects of Salary Comparisons

Zoë Cullen
Harvard Business School

Ricardo Perez-Truglia*
University of California, Los Angeles

This Draft: August 2018. First Draft: December 2017.

Abstract

We study how employees learn about the salaries of their peers and managers and how their beliefs about those salaries affect their own behavior. We conducted a field experiment with a sample of 2,060 employees from a multi-billion dollar corporation. We combine rich data from surveys and administrative records with data from the experiment, which provided some employees with accurate information about the salaries of others. First, we document large misperceptions about salaries and identify some of their sources. Second, we find that perceived peer and manager salaries have a significant causal effect on employee behavior. These effects are different for horizontal and vertical comparisons. While higher perceived peer salary decreases effort, output, and retention, higher perceived manager salary has a positive effect on those same outcomes. We provide suggestive evidence for the underlying mechanisms. We conclude by discussing implications for pay inequality and pay transparency.

JEL Classification: J31, J38, M12, M52, Z13.
Keywords: salary, comparisons, inequality, transparency.

[^0]
1 Introduction

Employees may take an interest in the salaries of others inside their firm, such as their peers and managers. For example, employees may have concerns about their relative standing, or they may use this information to form expectations about their own future salary. As a result, changing the salary of one employee can affect the behavior of other employees in the firm. These externalities can have important implications for the provision of incentives within the firm and for pay transparency. In this paper, we study salary comparisons using a large-scale, high-stakes field experiment in collaboration with a multi-billion dollar corporation.

The first part of the research design allows us to explore how employees learn about the salaries of others inside the firm. We distinguish between horizontal comparisons (i.e., learning about the salaries of peers) and vertical comparisons (i.e., learning about the salaries of superiors). We use incentivized questions to elicit beliefs about the average salary among one's peers, defined as the employees with the same position title in the same unit. We also elicit beliefs about the average salary among one's managers. Then, we can measure salary misperceptions by comparing the perceptions reported in the survey to the actual salaries from the firm's administrative records.

Additionally, the research design explores some potential sources of information frictions. First, we test whether individuals have misperceptions due to lack of interest in the salaries of their peers and managers. For that, we use an incentive-compatible method to elicit the willingness to pay for information about peer and manager salaries. Second, we measure the degree of information diffusion. To do so, we deployed the survey gradually over the course of two months. As a result, we can measure if the information provided to one employee affects the future beliefs of the employee's peers.

The second part of the research design measures the effects of perceptions about peer and manager salaries on behavior. Our methodology provides causal estimates of the cross-salary elasticities: that is, the elasticities between own behavior and the perceived salaries of other employees. This methodology relies on the combination of three sources of data: a tailored survey, information experiments, and administrative data on the behavior of the employees. For each employee, we flipped a coin to decide whether the employee would receive a piece of information about the average salary among peers. We flipped another coin to decide if the employee would receive a piece of information about the average salary among managers. This information experiment generates exogenous variation in the employees' salary perceptions at the end of the survey. We measure whether these exogenous shocks to salary perceptions translate into differences in behavior in the months after survey completion. Moreover, we introduce a simple instrumental-variables model that exploits the experimental variation in
beliefs to estimate the cross-salary elasticities.
We conducted the field experiment with a sample of 2,060 employees from a large commercial bank with thousands of employees, millions of customers, and billions of dollars in revenues. This firm is typical in key aspects such as pay transparency and pay inequality. The close collaboration with the firm, along with its rich technological infrastructure, allowed us to collect unique survey, experimental, and behavioral data. For example, the administrative records include high frequency data on all the swipes in and out of the office, emails sent and received, products sold, and career outcomes such as internal transfers, exits, promotions, and raises.

In the first set of results, we show that employees have large and systematic misperceptions about the salaries of their peers and managers. Even though the perceived peer salary is centered around the truth, its mean absolute error is substantial (11.5\%). The misperceptions are even higher for manager salary, with an average underestimation of 14.1% and a mean absolute error of 28%. Moreover, we provide suggestive evidence on the sources of these misperceptions. We show that most of these misperceptions are not the product of lack of interest: most employees are willing to pay days' and even weeks' worth of salary for a piece of information about the salary of peers or managers. And we show a lack of information diffusion: when employees are randomly assigned to a signal about the salary of peers or managers, they incorporate such information in their own posterior beliefs, but the information does not travel to other individuals in the employee network. Additionally, we provide non-experimental evidence about the lack of information diffusion: employees who gossip more and those who are more central in the network do not have more accurate beliefs about the average peer salary; and perceptions about average peer salary are not more accurate than what would be expected if employees only knew their own salary.

In the second set of results, we document large effects of salary perceptions on employee behavior. The cross-salary elasticities are statistically and economically significant. For horizontal comparisons, a higher perceived peer salary has negative effects on all of our measures of effort and performance: hours worked, number of emails sent, and sales performance. For example, a 1% increase in perceived peer salary decreases the number of hours worked by 0.94%, implying a behavioral elasticity of -0.94 (p -value $=0.04$). Vertical comparisons also have a significant effect, but in the opposite direction: a higher perceived manager salary has positive effects on effort and performance. For instance, a 1% increase in perceived manager salary increases the hours worked by 0.15%, implying a behavioral elasticity of 0.15 (p-value $=0.04) .{ }^{1}$ Moreover, we can confidently reject the null hypothesis that the peer elas-

[^1]ticity is equal to the manager elasticity: p -value $=0.026$ for hours worked, p -value $=0.007$ for emails sent, and p-value <0.001 for sales performance.

These behavioral elasticities are robust to a number of checks. We find effects of similar magnitude across our three measures of effort and performance. The peer elasticity is -0.943 , -0.431 , and -0.731 , respectively, for hours worked, emails sent, and sales performance, and the manager elasticity is $0.150,0.130$, and 0.106 , respectively, for hours worked, emails sent, and sales performance. We show that the results are similar regardless of whether we measure the effects of the information on the behavior at 90 or 180 days post treatment. And we conduct falsification regressions in an event-study fashion: as expected, we find no "effects" of the information treatments on pre-treatment behavior.

We provide suggestive evidence about two traditional mechanisms highlighted in the theoretical and the empirical literature. The first mechanism, salary expectations, posits that employees are motivated by higher perceived peer and manager salaries because they act as a positive signal of the employees' own future salary. The second mechanism, social comparisons, posits that employees are discouraged by higher perceived peer and manager salaries because employee morale depends on their relative compensation. To disentangle these mechanisms, we measure the effects of peer and manager salaries on a series of survey outcomes. We find that both peer salary and manager salary have a positive effect on expected future salary. This finding suggests that the salary expectations mechanism is at play in both horizontal and vertical comparisons. We find that perceived peer salary has a large effect on pay satisfaction, job satisfaction, and preferences for within-firm redistribution; in contrast, perceived manager salary has no effect on any of these three outcomes. This evidence suggests that while social comparisons are at play in horizontal comparisons, they do not have a role in vertical comparisons. As complementary evidence, we exploit heterogeneity in the distance between the employee's own position and the managerial position. Consistent with the salary expectations channel, we find that the effects of perceived manager salary are stronger for managerial positions that are closer to the employee's own position. In addition, consistent with the absence of social comparisons, a higher manager salary does not decrease effort or performance even when the managerial position is far above the employee's own position.

Our main finding about the differential effects between horizontal and vertical comparisons has several implications. First, firms may want to refrain from rewarding peers differently, because the reward to one employee has a negative externality on the effort of peers. This externality can help explain why firms provide most of the financial incentives vertically instead of horizontally (Baker et al., 1988). Second, our evidence suggests that female employees may be able to tolerate being paid less than male employees as long as that the male
employees hold a different position. This phenomenon may explain why the gender wage gap is large in the vertical margin but small in the horizontal margin (Barth et al., 2017). Third, our findings run counter to the widespread view that social forces tend to compress pay inequality within the firm (Frank, 1984): while this channel may force firms to reduce horizontal inequality, firms do not face resistance to increasing vertical inequality. Fourth, our findings suggest that transparency policies, such as disclosure of CEO pay, may be less effective at curbing inequality than previously thought (Mas, 2016; Mueller, Ouimet, and Simintzi, 2017).

Our paper is related to several strands of literature. While long-standing theoretical literature exists on social comparisons (Frank, 1984; Romer, 1984; Summers, 1988; Lazear, 1989; Akerlof and Yellen, 1990) and salary dynamics (Hirschman and Rothschild, 1973; Lazear and Rosen, 1981; Gibbons and Murphy, 1992; Holmstrom, 1999), the empirical evidence has lagged behind. In a landmark study, Card, Mas, Moretti, and Saez (2012) conducted a field experiment to explore the effects of salary transparency at the University of California. A random sample of employees was sent an email with a link to a public website that listed the salaries of all employees at that university. One week later, the researchers sent another email, this time with a link to an online survey. The authors find that, for workers who had salaries below the peer average, receiving the link to the salary website decreased their job satisfaction and increased their stated intent to find another job.

Other studies have focused on pay transparency and pay inequality using natural experiments (Perez-Truglia, 2015; Rege and Solli, 2015; Dube, Giuliano, and Leonard, 2015; Mas, 2017), laboratory experiments (Charness and Kuhn, 2007; Clark, Masclet, and Villeval, 2010; Gächter and Thöni, 2010; Bracha, Gneezy, and Loewenstein, 2015; Huet-Vaughn, 2017), and field experiments (Cohn, Fehr, Herrmann, and Schneider, 2014; Cullen and Pakzad-Hurson, 2017; Breza, Kaur, and Shamdasani, 2018). ${ }^{2}$ For example, Cohn et al. (2014) provide evidence that effort is more affected by cuts in pay relative to peers than by cuts in absolute pay, and that these effects persist over a period of six hours. In addition, Breza et al. (2018) present evidence of aversion to peer inequity: in a month-long experiment with Indian manufacturing workers, the authors estimate that workers give up 9.3% of their earnings to avoid a workplace where they are paid differently than their peers.

Our study makes three contributions to the existing literature. First, while the existing evidence focuses on horizontal salary comparisons, we extend the analysis to include vertical comparisons as well. This extension is important because vertical inequality accounts for

[^2]the vast majority of the within-firm inequality (Medoff and Abraham, 1980; Baker et al., 1988). For example, in the firm where our experiment was conducted, less than 5% of the inequality in base salaries is horizontal. We find that, since individuals react to horizontal and vertical comparisons in opposite ways, distinguishing between these two types of comparisons is crucial for understanding the causes and consequences of pay inequality. Our second contribution is methodological. Rather than estimating the reduced-form effects of transparency, our novel research design identifies cross-salary elasticities by combining an information provision experiment, survey data, and behavioral data. Our third contribution lies in the unique scope of the field experiment - the setting is a high-stakes environment, with thousands of careers and billions of dollars in revenues at stake. Moreover, our close collaboration with the firm allowed us to provide measurements that would have been impossible otherwise, such as the willingness to pay for information and the degree of information diffusion.

This paper is also related to a broader literature on the effects of relative income on outcomes such as happiness (Senik, 2004; Luttmer, 2005) and job satisfaction (Godechot and Senik, 2015; Clark, Frijters, and Shields, 2008). We contribute to this literature by providing novel revealed-preference evidence of relative concerns. This paper is also related to literature showing that individuals have substantial misperceptions of their relative income (Cruces, Perez-Truglia, and Tetaz, 2013; Karadja, Mollerstrom, and Seim, 2017). We contribute to this literature by providing new evidence on the sources of those misperceptions and by showing that such misperceptions can be consequential for economic behavior.

The rest of the paper proceeds as follows. Sections 2 and 3 describe the research and survey designs. Section 4 presents the implementation details and the administrative data. Section 5 presents the results about the formation of salary perceptions. Section 6 presents the results on the effects of salary perceptions on behavior. The last section concludes.

2 Research Design

In this section, we introduce the conceptual framework, hypotheses and the econometric model used to identify the behavioral elasticities.

2.1 Conceptual Framework and Hypotheses

Let subscript i index employees. Let O_{i} be i 's own salary - in the remainder of the paper, we always refer to the base salary (i.e., the salary without any commissions or bonuses). Let Y_{i} be a form of employee i 's behavior, such as the number of hours worked. The most
elementary framework would allow the employee's own behavior $\left(Y_{i}\right)$ to be a function of the employee's own salary $\left(O_{i}\right)$:

$$
\begin{equation*}
\log \left(Y_{i}\right)=\eta_{0}+\eta_{\text {own }} \cdot \log \left(O_{i}\right) \tag{1}
\end{equation*}
$$

The parameter $\eta_{\text {own }}$ denotes the own-salary elasticity. For instance, if O_{i} is the hourly wage and Y_{i} is the number of hours worked, then $\eta_{\text {own }}$ would be the typical labor supply elasticity. However, an employee's behavior may also depend on the salary of other employees. For instance, an employee may use the salaries of her peers and managers in forming expectations about her own future salary. Also, an employee's morale may depend on the comparison of her own salary to that of peers and managers.

In a fully saturated model, we would allow the right-hand side of equation (1) to depend on the salaries of every other employee in the corporation. Since the estimation of such a model would be unfeasible, we focus on a stylized model that allows behavior to depend on two additional terms: the average salary among peers (i.e., employees who share the same position title and organizational unit) and the average salary among managers (i.e., employees who hold positions at a higher level, supervising the employee, and whose position the employee could aspire to be promoted to). For example, in the case of a teller, these beliefs would be about the average salary among all the other tellers in the same branch, and the average salary among the teller supervisors.

We focused on these two groups of individuals, peers and managers, based on interviews with employees and with managers from the Human Resources division. Indeed, we validated this design choice using survey data. ${ }^{3}$ Another design choice was to focus on group averages, instead of other moments of the distribution such as the median, minimum, or maximum. This design choice was also based on interviews with employees and Human Resources managers. If anything, to the extent that our choice of specification missed other important characteristics of the salary distribution, our baseline model would underestimate the effects of salary comparisons.

Let P_{i} be i 's perception about the average salary of i 's peers. Let M_{i} be i 's perception of the average salary among i 's managers. The following equation establishes the potential relationship between behavior and salaries:

$$
\begin{equation*}
\log \left(Y_{i}\right)=\eta_{0}+\eta_{\text {own }} \cdot \log \left(O_{i}\right)+\eta_{\text {peer }} \cdot \log \left(P_{i}\right)+\eta_{\text {mgr }} \cdot \log \left(M_{i}\right) \tag{2}
\end{equation*}
$$

[^3]In addition to the own-salary elasticity $\left(\eta_{\text {peer }}\right)$, this framework allows employees to react to their perceptions of the salaries of other employees through $\eta_{p e e r}$ and $\eta_{\text {mgr }}$. We denote these two parameters as the cross-salary elasticities.

Cross-salary elasticities may be significant for multiple reasons. On the one hand, career concerns posit that employees use their perceptions about the salaries of others to update beliefs and expectations about their own careers. For example, employees may use the salaries of peers and managers to form expectations about their own future salary (Lazear and Rosen, 1981; Gibbons and Murphy, 1992; Holmstrom, 1999). According to the "tunnel effect" (Hirschman and Rothschild, 1973), the expected own future salary should increase with perceived peer and manager salaries. As a result, this mechanism would predict positive crosssalary elasticities $\left(\eta_{\text {peer }}>0\right.$ and $\left.\eta_{m g r}>0\right)$. On the other hand, social concerns posit that individuals care directly about the salaries of others. For example, higher perceived salaries of peers may demoralize employees (Frank, 1984; Romer, 1984; Summers, 1988; Akerlof and Yellen, 1990; Lazear, 1989; Card et al., 2012). As a result, this mechanism predicts negative cross-salary elasticities ($\eta_{\text {peer }}<0$ and $\eta_{m g r}<0$).

In the results section we discuss the potential mechanisms in more detail and provide suggestive evidence about them. The results section also discusses and relaxes two implicit functional form assumptions from the stylized model: (log-log) linearity and symmetry.

2.2 Econometric Model

In this section, we present the empirical framework used for identification.
Obtaining causal estimates of the cross-salary elasticities $\eta_{\text {peer }}$ and $\eta_{\text {mgr }}$ is challenging, because a simple regression of behavior on perceived salaries would be subject to the usual concerns about omitted variable biases. For instance, individuals with lower perceived peer salary may have lower ability, which would create a spurious elasticity $\eta_{\text {peer }}<0$. Our empirical framework exploits the random variation in beliefs induced by the information provision experiments to estimate the cross-salary elasticities.

To understand the intuition behind this model, consider a pair of employees who have the same bias about perceived peer salary: both of them underestimate the actual peer salary by 10%. Then, we randomly assign information about the true peer salary to one of these two employees. The first stage of the regression measures the effect of the information provision on beliefs. Assume that, relative to the individual who does not get the information, the individual who receives the information ends up with perceived peer salary that is (say) 5% higher. The reduced form regression follows the behavior of these two individuals after they complete the survey. Assume that, relative to the individual who does not get the information, the individual who receives the information ends up exerting 2.5% lower effort.

The instrumental variables model yields the elasticity by putting these two results together. In this example, the information provision increases perceived peer salary by 5% and reduces effort by 2.5%, which implies a cross-salary elasticity of $-0.5\left(=\frac{-2.5}{5}\right)$.

The above example centered on a pair of individuals who underestimate their peer salary by 10%. The following instrumental variables model generalizes this logic. Let $P_{i}^{\text {prior }}$ denote the prior belief about the average salary of peers - that is, the belief right before the individual reaches the information-provision experiment. Let $P_{i}^{\text {signal }}$ be the value of the signal on average peer salary that is randomly assigned in the information-provision experiment. Let T_{i}^{P} be a dummy variable that takes the value 1 if the individual is shown the signal about peer salary and 0 if not. Denote $P_{i}^{\text {post }}$ as the corresponding posterior belief - that is, the perceived peer salary after the information-provision experiment was completed.

The first stage of the instrumental variables model corresponds to belief updating. When priors and signals are normally distributed, Bayesian learning implies that the mean of the posterior belief should be a weighted average between the signal and the mean of the prior belief. In the case of perceived peer salary, Bayesian learning can be summarized as follows:

$$
\begin{equation*}
P_{i}^{p o s t}=\alpha \cdot\left(P_{i}^{\text {signal }}-P_{i}^{\text {prior }}\right)+P_{i}^{\text {prior }} \tag{3}
\end{equation*}
$$

This simple Bayesian model or slight variations of it have been found to fit the data well in several contexts, such as inflation expectations (Armantier et al., 2016; Cavallo et al., 2017) and perceptions of relative income (Bottan and Perez-Truglia, 2017). We can introduce the information provision experiment to this learning specification:

$$
\begin{equation*}
P_{i}^{\text {post }}=\alpha \cdot\left(P_{i}^{\text {signal }}-P_{i}^{\text {prior }}\right) \cdot T_{i}^{P}+\beta \cdot\left(P_{i}^{\text {signal }}-P_{i}^{\text {prior }}\right)+P_{i}^{\text {prior }} \tag{4}
\end{equation*}
$$

The parameter α represents the learning rate, which ranges from 0 (individuals ignore the signal) to 1 (individuals fully adjust to the signal). In turn, the parameter β controls for any spurious reversion to the signal. ${ }^{4}$ Moreover, let $M_{i}^{\text {prior }}, M_{i}^{\text {signal }}, T_{i}^{M}, M_{i}^{\text {post }}$ be defined as $P_{i}^{\text {prior }}, P_{i}^{\text {signal }}, T_{i}^{P}, P_{i}^{\text {post }}$, but for perceived manager salary instead of perceived peer salary. Then, we can apply the same Bayesian learning model to the beliefs about manager salary.

Equation (4) captures the effects of the information provision experiment on the posterior beliefs. The instrumental variables regression simply exploits that exogenous variation in beliefs for the identification of causal effects. Let $Y_{i}^{\text {post }}$ denote some average behavior in the period beginning with the information provision experiment and ending some time later. For instance, $Y_{i}^{\text {post }}$ could be the average number of hours spent in the office in the 90 days after

[^4]the information provision. The instrumental-variables model is the following:
\[

$$
\begin{align*}
& \log \left(Y_{i}^{\text {post }}\right)=\pi_{0}+\eta_{\text {peer }} \cdot \hat{P}_{i}^{\text {post }}+\eta_{m g r} \cdot \hat{M}_{i}^{\text {post }}+ \\
& \quad+\pi_{1} \cdot\left(P_{i}^{\text {signal }}-P_{i}^{\text {prior }}\right)+\pi_{2} \cdot\left(M_{i}^{\text {signal }}-M_{i}^{\text {prior }}\right)+\pi_{3} \cdot P_{i}^{\text {prior }}+\pi_{4} \cdot M_{i}^{\text {prior }}+\epsilon_{i} \tag{5}\\
& P_{i}^{\text {post }}= \\
& \tag{6}\\
& \quad \nu_{0}+\nu_{1} \cdot\left(P_{i}^{\text {signal }}-P_{i}^{\text {prior }}\right) \cdot T_{i}^{P}+\nu_{2} \cdot\left(M_{i}^{\text {signal }}-M_{i}^{\text {prior }}\right) \cdot T_{i}^{M}+ \\
& \tag{7}\\
& \\
& M_{i}^{\text {post }}= \\
& \left.\quad+\mu_{0}+\mu_{1} \cdot\left(P_{i}^{\text {signal }}-P_{i}^{\text {prior }}\right)+\nu_{4} \cdot\left(M_{i}^{\text {signal }}-M_{i}^{\text {prior }}\right)+\nu_{5}^{\text {prior }} \cdot P_{i}^{\text {prior }}+\nu_{6}^{\text {signal }}-M_{i}^{\text {prior }}+P_{i}^{\text {prior }}\right)+\mu_{4}^{1} \cdot\left(M_{i}^{\text {signal }}-\left(M_{i}^{\text {signal }}-M_{i}^{\text {prior }}\right)+\mu_{5} \cdot P_{i}^{\text {prior }}+\mu_{6}^{M}+M_{i}^{\text {prior }}+\xi_{i}^{2}\right.
\end{align*}
$$
\]

The relevant exclusion restrictions for the identification of $\eta_{\text {peer }}$ and $\eta_{\text {mgr }}$ are the following:

$$
\begin{equation*}
E\left[\left(P_{i}^{\text {signal }}-P_{i}^{\text {prior }}\right) \cdot T_{i}^{P} \cdot \epsilon_{i}\right]=0 \text { and } E\left[\left(M_{i}^{\text {signal }}-M_{i}^{\text {prior }}\right) \cdot T_{i}^{M} \cdot \epsilon_{i}\right]=0 \tag{8}
\end{equation*}
$$

The random assignment of $\left\{T_{i}^{P}, T_{i}^{M}\right\}$ satisfies these exclusion restrictions. In practice, we include a set of additional control variables to reduce the variance of the error term and thus improve the precision of the estimates: own income (in logs), tenure (in logs), dummies for performance evaluations in the previous year, and, following the standard practice in field experiments (McKenzie, 2012), the pre-treatment outcomes.

Last, we can exploit the timing of the intervention to provide a falsification test in an event-study fashion. Let $Y_{i}^{\text {prior }}$ denote the average behavior in the period prior to the information-provision experiment (rather than the period after it, as in $Y_{i}^{\text {post }}$). We can estimate the same instrumental variables model from above, but using $Y_{i}^{\text {prior }}$ instead of $Y_{i}^{\text {post }}$ as dependent variable. Intuitively, the information-provision experiment should not affect the behavior in the pre-treatment period, because the individuals have not yet been exposed to the information. Thus, we expect the cross-salary elasticities to be zero in this falsification regression.

3 Survey Design

A sample of the full online survey is included in Appendix C - to protect the identity of the firm, we removed identifying information, including formatting. In this section, we discuss the most important aspects of the survey design.

3.1 Training

The first survey module was designed to provide the respondents with an understanding of the rest of the survey. It begins with an explanation of how the incentivized questions work and why responding honestly is in the respondent's best interest. To cement this knowledge, we included some practice questions on topics that are unrelated to salaries.

This module also provides the definition of salary used in the rest of the survey. We focus on monthly base salary, that is, the salary before any additions or deductions, such as taxes, allowances, commissions, or bonuses. According to interviews with administrators from the Human Resources department and employees who were not participating in the experiment, base salary is the part of the employee compensation that is most salient for them. For example, when a new employee joins the bank, the monthly base salary is the most important figure written in the contract. Moreover, the base salary accounts for nearly all of the total compensation for the subjects in our sample. ${ }^{5}$

To confirm that respondents understood the definition of salary, we asked them to estimate their own salary for the month of March 2017. Subjects were told that they would receive a reward for accuracy. All the accuracy rewards in the survey were set up using the traditional quadratic loss function calibrated to award up to $\$ 2.61$ per question - this and all other amounts reported in the paper are expressed in 2017 USD PPP. In the following screen we showed their guess and the truth side-by-side. If the respondent's guess was not within 5% of the truth, we showed them an additional screen explaining the definition again. ${ }^{6}$

3.2 Salary Perceptions

We start with the module on perceived peer average, which followed the structure below:

- Step 1 (Elicit Prior Belief): We asked respondents about the average monthly base salary among their peers. The survey instructions are explicit about the group definitions: we stated the full position title, the full name of the unit, and the number of employees currently working in that peer group. To elicit truthful responses, we offered a reward for accuracy. We did not inform subjects whether they got any of the specific questions right or wrong to prevent them from inferring any information about

[^5]the average salaries from the rewards. Furthermore, the rewards were paid jointly with other participation fees that were randomly determined, so that the total payment received was a weak signal of the overall accuracy of the responses during the survey. After the subject provided the mean belief about the average salary, we elicited the probability beliefs over a series of bins around the respondent's guess - this question was also incentivized.

- Step 2 (Elicit Willingness to Pay): We offered respondents the opportunity to buy the following piece of information: the average salary over a random sample of five peers. To elicit this information in an incentive-compatible way, we employed the multiple price list variation of Becker-DeGroot-Marschak (Andersen et al., 2006). This method consists of having respondents make choices in five hypothetical scenarios. In each scenario, the respondent can choose to either see the piece of information or add a certain amount to their survey rewards (i.e., the "price" of the information). Since all employees must have accounts in the bank where they work, the monetary rewards could be deposited directly into a respondent's bank account. The five scenarios differ in the information price: $\$ 1.3, \$ 6.5, \$ 26.1, \$ 130.5$, and $\$ 652.3 .^{7}$ We explained to subjects that choosing truthfully was in their best interest because there was a 1% probability that one of the five scenarios would be randomly selected to be executed. For the 2% of respondents who had their scenarios executed (1% for the peer salary and 1% for the manager salary), the survey was automatically terminated; thus, they are excluded from the subject pool. The other 98% of respondents continued with the next step.
- Step 3 (Information-Provision Experiment): With a 50% probability, subjects were shown the average salary among a random sample of five peers. To avoid individuals making inferences from the act of receiving information, we made the randomization explicit. In a first screen, we let the respondents know that a group of individuals participating in this survey would be randomly chosen to receive some information about the average salary of peers for free. In the following screen, we let the subjects know whether they were chosen to receive the information or not.
- Step 4 (Elicit Posterior Belief): We gave the subjects the opportunity to revise their guess about the average salary among peers. To avoid subjects making inferences based on the opportunity to re-elicit their guesses, we explicitly noted that all survey participants automatically had this opportunity, regardless of their initial guesses.

[^6]After the module on peer perceptions was over, subjects were shown a module on manager perceptions - that is, this module had the same four steps as the previous module, except it was about the average manager salary instead of the average peer salary. For this step, we assigned each employee to a specific managerial position using multiple sources of administrative data and based on the following criteria: i. The managerial position must be higher than the respondent's position; ii. There must be at least one manager in that position in the respondent's unit; iii. That manager must have oversight over the respondent, such as conducting performance evaluations or approving leaves of absence. ${ }^{8}$ The distance between the respondent and the managerial position can be important for understanding the mechanisms at play. For this reason, before eliciting the perceived manager salary, we included two questions to assess the employee's perceived distance to the manager: the number of promotions needed to reach that position, and the likelihood of being promoted to that position within five years.

With respect to the information-provision experiment, we cross-randomized the two pieces of information, which resulted in four treatment groups that were equally likely: one group received a signal about the average salary of peers but no salary information about their manager; one group received a signal about the salary of their manager but not peers; one group received information about both their peers' and manager's salary; and one group received no salary information.

3.3 Survey Outcomes

The main outcomes of interest consist of actual behavior based on administrative data. Additionally, we study some survey outcomes to provide complementary evidence on the potential mechanisms at play. With that goal, we included a few questions after the perception module.

The first three questions provide suggestive evidence of social concerns. First, we follow a literature that uses self-reported employee satisfaction to proxy for employee morale (Clark and Oswald, 1996; Card et al., 2012). We included one question about pay satisfaction: "How satisfied are you with your current salary?" Responses to this question used a 5 -point scale from very dissatisfied (1) to very satisfied (5). Additionally, we included a question on overall job satisfaction: "Taking all the aspects of your job into account, how satisfied are you with your current job?" This question used the same 5-point response scale. The third question corresponded to an adaptation of a question that is widely used in the literature on preferences for redistribution (Perez-Truglia, 2015). Redistribution Preferences elicited preferences for within-firm redistribution, rather than the usual within-country redistribution: "Across the

[^7]thousands of [Bank Name] employees, salaries vary with the nature of work, education, experience, responsibilities, etc. What do you think of wage differentials in the company today?" The possible answers were (1) they are too small, (2) they are adequate, and (3) they are too large. As a result, higher values of this outcome indicate higher preferences for redistribution inside the firm.

The second set of three questions provided suggestive evidence about some career concerns. The first two questions were intended to assess whether individuals use the salaries of other employees to form expectations about their own future salary. For that, we elicited each employee's expected future salary 1 year and 5 years ahead using an incentivized method. ${ }^{9}$ The third question was intended to assess whether individuals use the salaries of other employees to infer their relative productivity. At the end of every year, each employee is given a productivity rating on a scale from D to $\mathrm{A}+$. We elicited the individual's perception about the share of employees for each rating during the last yearly review. We incentivized this question by rewarding individuals for accurate responses. With these perceived shares and the employee's own rating, we can infer the employee's perceived productivity rank.

4 Institutional Context, Data, and Subject Pool

4.1 Institutional Context

We conducted the experiment in collaboration with a private commercial bank in Asia. To keep the identity of the bank secret, we refrain from providing exact information about its characteristics. This bank has millions of customers, billions of dollars in assets and in revenues, and thousands of employees. These employees are based in two headquarter offices and hundreds of branches around the country.

This bank is comparable to large firms around the world in two key respects: pay inequality and pay transparency.

Regarding pay inequality, we start by comparing overall level of pay inequality. For example, the ratio between the 10th and 90th percentile of salaries is 0.21 in this firm and, in comparison, it is 0.19 for the average medium-sized U.S. firm (Bloom et al., 2015). The inequality in this firm is also typical in that only a minority of it is horizontal (Medoff and Abraham, 1980; Baker et al., 1988). ${ }^{10}$ For instance, a simple inequality decomposition sug-

[^8]gests that less than 5% of the pay inequality is horizontal - the details for this calculation are reported in Appendix A.1, where we also show that the contribution of horizontal inequality to be in the same order of magnitude for other organizations that have been studied in the literature. Moreover, we find similar salary differentials when we compare salaries across specific positions and firms. ${ }^{11}$

Regarding pay transparency, the bank does not disclose information about the salaries of other employees, and discourages employees from discussing their salaries with coworkers. These policies are typical in firms around the world. For example, in a survey of private sector employees from the United States, more than 60% report that their employer discourages or prohibits employees from discussing salaries with coworkers (Hegewisch et al., 2011). And in a survey of 7,100 managers from the United States and other countries, around 6% have open salary policies (PayScale, 2018). ${ }^{12}$ A complementary measure of pay secrecy is given by the reported frequency with which employees discuss salaries with coworkers. According to a 2017 survey of Americans 18-36 years old, around 30% of them discuss their salaries with coworkers. ${ }^{13}$ According to a different but related question from our own survey, 55% of employees report discussing salaries with coworkers. ${ }^{14}$

4.2 Survey Implementation

We started with the universe of thousands of employees. ${ }^{15}$ We were asked to focus on the two main units of the company. Some of these employees were disqualified from participating in the subject pool. For instance, a small minority of employees have quite unique position titles and thus would not have peers according to our definition. Similarly, it was difficult to identify a managerial position for some employees. After accounting for employees who were ineligible to participate, we were left with 3,841 individuals who could be invited to take the
productivity, other employees may qualify because they flatter their managers. Similarly, employees who attract job offers from other firms may receive raises as part of retention packages. While some employees may attract outside offers due to their innate talent, others may be just good at gaming the system.
${ }^{11}$ For example, in the firm where the experiment was conducted, the ratio between the salary of a senior relationship manager and its subordinate, a personal retail banker, is around 1.5. According to 2017 data from Glassdoor, the corresponding ratio for Bank of America is also 1.5.
${ }^{12}$ Like in other firms, the company where we conducted the experiment discloses some information about pay but this information is too vague to form a decent guess for the average salaries of peers and managers. For instance, the firm discloses the existence of a 10 -point payband scale, but the minimum and maximum salaries across these paybands are overlapping and kept secret.
${ }^{13}$ Source: "Ask Me How Much Money I Make," The Wall Street Journal, Oct. 26, 2017. Note that, to the extent that it is frowned upon by the employer, this type of behavior is probably under-reported in surveys.
${ }^{14}$ More precisely, 45% of employees reported never talking about salaries; 16%, once a year; 31%, a few times a year; 6%, once a month; and the remaining 2%, once a week or more often.
${ }^{15}$ This universe excludes recent hires - that is, employees who had been hired less than 6 months prior to the time of the data collection.
survey.
A sample of the invitation email (stripped of formatting and identifying information) is presented in Appendix A.2. The invitation email did not provide any details about the content of the survey. The invitation email listed the endorsement from three executives from the bank, and advertised that survey participants would receive, on average, $\$ 30$ as participation rewards. The survey was not compulsory, but employees were encouraged to participate - indeed, the unit heads reached out to their employees by email to encourage participation in our survey.

The email invitations were sent gradually over the course of two months: the survey responses span from the first week of April 2017 to the first week of June 2017. This staggered timing was designed with two goals in mind: first, we wanted to smooth the burden of the survey over time; second, surveying subjects at different points in time allows us to study information diffusion. Of the 3,841 invitations sent out, 2,060 individuals completed the main module of the survey, corresponding to a 53.6% response rate. ${ }^{16}$

4.3 Descriptive Statistics and Randomization Balance

Table 1 presents some descriptive statistics about the subject pool. Column (1) corresponds to the entire sample of 2,060 survey respondents: 73% of them are female, 86% finished college or a higher degree, and on average they are 29 years old and have been working at the firm for the last 5 years. The last rows of Table 1 report the averages for the own, peer, and manager salaries - due to the sensitive nature of this data, we use an arbitrary unit of measurement that we do not disclose.

The salary data indicate that the degree of horizontal inequality is small: the mean absolute difference between one's own salary and the average peer salary is 11.7% of the own salary. In contrast, the degree of vertical inequality is large: the mean absolute difference between one's own salary and the average manager salary is 315% of the own salary. We chose managerial positions that are relatively close to the employee's own position: the average employee expects to need 3.65 promotions to reach the managerial position and thinks there is a probability of 60.4% of being promoted to that position within the following five years. If we had chosen managerial positions that are more distant, then the degree of vertical inequality would be even higher.

[^9]Subjects were cross-randomized to receive information about peers and managers, which resulted in four treatment groups. In columns (2) through (5) of Table 1, we break down the descriptive statistics within each of the four treatment groups. The last column reports p-values for the null hypothesis that the average characteristics are the same across all four treatment groups. The results show that, consistent with successful random assignment, the observable characteristics are balanced across the four treatment groups.

The subject pool spans employees from different pay bands and employees with different roles such as tellers, sellers, clerks, and receptionists. The subject pool includes employees from the two headquarter offices and from hundreds of branches located all over the country. In Appendix A.2, we provide more details about the subject pool - for instance, we show that the subject pool is representative of the universe of employees in many observable characteristics.

4.4 Behavioral Outcomes

We collaborated with the different units of the organization to create a centralized and anonymous database covering many forms of employee behavior. The main outcomes are the effort and performance of employees. We have two measures of effort. First, for employees working in the headquarter offices (29% of the sample), they must clock-in and -out from the office using an electronic card-swipe system, which is strictly enforced by security personnel. We use these time stamps to calculate the hours in the office on a daily basis. The second measure of effort is based on email data. We collect real-time data on the emails sent and received by all employees, which we use to create the variable number of emails sent on a daily basis. The advantage of this measure over the alternative of hours worked is that it is available for 100% of the employees. While the number of emails may not be a good measure of effort in other contexts, it seems to be a good proxy in our context and possibly even better than the numbers of hours worked. For security reasons, employees can only access their work email account from their office computers, implying that they can only send emails while at the office. Employees are strongly discouraged from using their work email account for matters unrelated to work. Last but not least, employees need to send emails to clients or coworkers for most of their duties, such as contacting clients, obtaining information about clients, or getting approval for a new loan, credit card or mortgage. Consistent with this suggestive evidence, the number of emails is positively correlated to our alternative measure of effort, the number of hours spent in the office (correlation coefficient of 0.24 , p-value <0.001).

Measuring performance in an objective and standardized manner is quite challenging for
many positions within the bank. ${ }^{17}$ However, for the 38% of employees who have a sales role, we can measure performance based on their sales revenues. The bank uses a sophisticated formula to aggregate an employee's sales over all products (e.g., credit cards, loans, mortgages). We use this data to construct a sales performance index on a monthly basis.

In addition to effort and sales performance, information about peer and manager salaries may affect some career outcomes - for instance, an employee may react by quitting her job or renegotiating her salary. Using multiple sources of administrative data, we constructed four main career outcomes. The dummy variable quit takes the value 1 if the employee leaves the firm. The variable transfer takes the value 1 if the employee transfers to another unit inside the firm. The variable salary is equal to the salary of the employee at the end of the corresponding period. Similarly, the variable changed title takes the value 1 if the individual's position title changed. ${ }^{18}$

The baseline specification defines the post-treatment outcomes as the average outcome in the period starting from the survey date and ending 90 days later - in the results section, we consider alternative time windows. ${ }^{19}$ We began collecting data on these behavioral outcomes three months before launching the survey. As a result, in addition to post-treatment outcomes, we can compute the corresponding pre-treatment outcomes, which can be used as control variables to improve precision as well as for falsification tests.

5 Results: Formation of Perceptions about Peer and Manager Salary

In this section, we document the accuracy of perceptions about peer and manager salaries and provide evidence about the potential sources of misperceptions.

[^10]
5.1 Accuracy of Prior Beliefs

Figure 1 shows the basic evidence about misperceptions of peer and manager salaries. As a benchmark, Figure 1.a shows the misperceptions about own salary, that is, the difference between the individual's perceived own salary and actual own salary. There are little misperceptions about own salary: more than 80% of respondents provide a guess of own salary that is within 5% of the truth. This outcome confirms our prior belief that this definition of salary is salient. The remaining employees probably misunderstood the definition of base salary. To make sure that these misunderstandings do not extend to the rest of the survey, these employees were retrained about the definition of base salary. After this stage, we asked these employees if they agreed with our measure of own salary, and 87% of them responded affirmatively.

Figure 1.b shows misperceptions about average peer salary. Only 32% of subjects have perceptions that are within 5% of the truth. The mean absolute difference between the perceived average and the actual average (i.e., the mean absolute error) is 11.5%. These misperceptions are economically significant, but they are not skewed: approximately as many people overestimate the average peer salary as the number of people who underestimate it, resulting in an average overestimation of peer salary of just 2.5% (p -value <0.01).

Figure 1.c shows misperceptions about average manager salary. Only a small share (12\%) of respondents guess the average manager salary within 5% of the truth. The mean absolute error for perceived manager salary (28%) is substantially higher than that of peer salary (11.5\%). Also, while there was not a systematic bias in peer salary, the average employee underestimates the manager salary by roughly $14.1 \% .{ }^{20}$ These misperceptions about peer and manager salaries are similar across different segments of the population, such as by gender, tenure, and payband. ${ }^{21}$

Probably because of the sensitive nature of the exercise, we are unaware of other studies that can assess the accuracy of salary perceptions inside a corporation. A notable exception is Lawler (1965), who collected survey data on 326 employees from four privately owned U.S. companies. His findings are qualitatively consistent with ours - for example, he finds that employees tend to systematically underestimate the salary of their superiors but he does not find such underestimation for peer salary. Our finding that employees under-estimate manager salaries is also consistent with the evidence from Kiatpongsan and Norton (2014): according to survey data from 16 countries, individuals under-estimate the average pay ratio

[^11]between Chief Executive Officers and unskilled workers.
One potential explanation for these misperceptions is that individuals have little information besides their own salary history. We know that most individuals do not report exactly their own salary as their guess for average peer salary: only 35% of them report a guess for average peer salary within 5% of their own salary. However, whatever extra information they use, it does not seem to improve their accuracy: if individuals reported their own salary as guess for the average peer salary, the mean absolute error would be 11.4% (vs. 11.5% in reality), and the bias would be -0.4% (vs. 2.5% in reality). ${ }^{22}$

5.2 Willingness to Pay for Salary Information

To assess whether employees are self-aware of their misperceptions, we use data on the probability distribution of beliefs. This data suggest that, even though they are somewhat optimistic, individuals are mostly aware of how inaccurate their beliefs about peer salaries are. The average individual thinks that there is a 75% probability that their guess for average peer salary falls within 10% of the truth, while the actual share of guesses falling that close to the truth is 55%. In comparison, individuals are largely over-optimistic about the accuracy of their guesses of manager salary. They expect a 74% probability of guessing within 10% of the truth, but the actual share of guesses in this neighborhood is just 24%.

Individuals having misperceptions and being aware of them could have one of the following two explanations. Individuals may not care about these peer and manager salaries, and therefore they choose not to incur costs to acquire information. Alternatively, individuals may care a lot about the salaries, but they don't know where to acquire the information or the acquisition costs are too high. The results from the willingness-to-pay exercise can help to distinguish between these two sources of misperceptions.

When buying information about peer salary, the majority (85%) of respondents made selections that are consistent across scenarios (i.e., their demand functions are non-increasing in price). ${ }^{23}$ Following the standard practices (Andersen et al., 2006), the following results focus on subjects with consistent responses - the results are similar under alternative approaches.

Figure 2.a shows the distribution of willingness to pay for the signal about peer salary (i.e., the average salary among a sample of five peers). This willingness to pay has substantial dispersion. On the one hand, some individuals are willing to pay next to nothing for this

[^12]information: the bottom- 25% is willing to pay less than $\$ 6.5$, which is less than an hour's worth of salary. ${ }^{24}$ On the other hand, some employees are willing to pay a significant amounts for the information: the top- 24% is willing to pay more than $\$ 652$, which for most employees constitutes over a weeks' worth of salary. Following the usual methods, we estimate a mean WTP of around $\$ 338 .{ }^{25}$

Figure 2.b shows the distribution of willingness to pay for the signal about manager salary. The distribution of WTP seems quite similar for manager salary (Figure 2.b) than for peer salary (Figure 2.a). Using the same methodology, we estimate a mean WTP of about $\$ 328$. Even though the distribution of WTP for peer and manager information are similar on aggregate, Figure 2.c shows that they are not perfectly correlated at the individual level (correlation coefficient of 0.28 , p-value <0.01). That is, some individuals value the peer information but not the manager information, and vice versa.

To illustrate how large these valuations are, it is useful to compare our results to those from other studies that elicit willingness to pay for other types of information. Relative to the mean WTP for peer and manager information (\$328 and \$338), these other studies find valuations that are orders of magnitude smaller: the average WTP is $\$ 0.40$ for travel information (Khattak et al., 2003), $\$ 0.80$ for food certification information (Angulo et al., 2005), $\$ 3$ for home energy reports (Allcott and Kessler, 2015), and $\$ 4.75$ for housing price information (Fuster et al., 2018). ${ }^{26}$

One potential concern is that our estimates of willingness to pay may be sensitive to the elicitation method - for example, the lists of prices given in the hypothetical scenarios may act as a signal for what the employees "should" pay for the information. However, evidence from a follow-up study (available upon request) suggests that the methodology is not a source for concern: when measuring willingness to pay for information about peer salary using the open-ended method, instead of the multiple price list method, we find a similar distribution of valuations. This finding is consistent with prior evidence that measures of willingness to pay are largely similar across different elicitation methods (Brebner and Sonnemans, 2018).

The substantial willingness to pay for salary information suggests that a great deal of the misperceptions arise because acquiring information is difficult rather than because individuals are disinterested. Additionally, the large valuations for some individuals suggest that they may need the information to make high-stakes decisions such as whether to take an outside job offer or request a raise or a promotion. For instance, suppose that you want to buy

[^13]information about peer salary for use in your salary negotiations. If the information is expected to translate into a salary increase of just 5% and for just one year, then you should be willing to pay more than two weeks' worth of salary for this information (Stigler, 1962). Employees may plan to use the information for a variety of decisions, so the value of the information can add up quite rapidly across all of these different margins.

5.3 Learning

Given that employees had inaccurate beliefs and they were aware of their inaccuracies, we should expect them to learn significantly from the signals provided in the informationprovision experiment. In this section, we estimate the simple Bayesian learning model from Section 2.2.

Figure 3 presents a binned scatterplot representation of the Bayesian learning model (equation (4) from section 2.2). Panel (a) corresponds to peer salary, while panel (b) corresponds to manager salary. The y-axis corresponds to the belief updating (i.e., the difference between the posterior and prior belief), while the x -axis corresponds to the information treatment. ${ }^{27}$ If individuals incorporated the feedback into their prior beliefs, we should observe a positive association in Figure 3; that is, respondents who overestimated salaries would revise their beliefs downwards when shown the signal, while those who underestimated salaries would revise their beliefs upwards when shown the signal. Moreover, the slope of this regression provides a direct estimate of the learning rate (i.e., the weight that the average subject attaches to the signal provided, relative to the weight attached to the prior belief). ${ }^{28}$ Note that the learning rates are expected to be below 1 because the signal provided by the experimenter is based on a sample of five salaries and thus it is subject to sampling variation.

Figures 3.a and 3.b indicate that individuals reacted to the information provision significantly and as predicted by Bayesian learning - indeed, the fit of the linear relationship is almost perfect. According to the slope reported in Figure 3.a, when forming posterior beliefs about peer salary, employees put a weight of 0.51 (SE 0.06) on the signal provided by the experimenter and the remaining weight of 0.49 on their prior belief. In turn, the slope from Figure 3.b suggests that, when forming posterior beliefs about manager salary, employees put a weight of 0.69 (SE 0.03) on the signal provided by the experimenter and the remaining 0.31 on their prior beliefs. ${ }^{29}$ The fact that employees gave substantial weight to the information

[^14]provided by the experimenter is consistent with the prior evidence that, according to the subjective probability beliefs, individuals are not fully confident about their prior beliefs. Additionally, the learning rate being lower for peer salary than for manager salary (0.51 vs . 0.69 , p-value <0.001) suggests that individuals had stronger priors about the peer salary than about the manager salary. ${ }^{30}$

5.4 Information Diffusion

Even if the firm did not disclose any information about salaries, employees could form accurate beliefs by sharing salary information. For instance, if all individuals in a peer group shared their own salary with each other, everyone in the group could form an exact guess for the average peer salary. One potential explanation for the large misperceptions seen in the data is that there is not much information diffusion. Our information-provision experiment provides an opportunity for measuring information diffusion, by measuring whether the information provided to an employee affects the beliefs of other individuals that are close in the employee network.

The regression results are presented in Table 2. The dependent variables in this regression are the degree of misperceptions in posterior beliefs, measured as the percent absolute error. ${ }^{31}$ Columns (1)-(4) correspond to misperceptions about average peer salary, while columns (5)(8) correspond to misperceptions about average manager salary. The regressors correspond to information treatments, such as whether the employee received information herself or whether someone close to the employee received information. ${ }^{32}$

In column (1) of Table 2, the regressor Received Own is a dummy for whether the individual was randomly chosen to receive a signal about peer salary. If individuals incorporated the feedback in their posterior beliefs, the treatment assignment should reduce misperceptions. Indeed, receiving the information about peer salary reduces the absolute error by 4.4 percentage points. This effect is not only highly statistically significant (p -value <0.001), but also large in magnitude - it accounts for almost half of the mean of the dependent variable (8.9 percentage points). This finding is consistent with Figure 3, which shows that individuals incorporated the accurate feedback into their posterior beliefs.

For the first test of information diffusion, we try to identify a peer who works in close

[^15]interaction with the employee and thus may be most likely to share salary information. We define "closest peer" as the peer who has the highest total of emails exchanged (sent and received) over the three months previous to the start of the experiment. Even though this measure is based on email data, it is plausible that it is also correlated to face to face interactions. To provide supporting evidence, we use the swipe data to calculate a proxy for whether a given pair of employees have lunch together - these are employees who, during lunch time, swipe in and out of the building within 30 seconds of each other. We find that, relative to her other peers, an employee is 53% more likely to grab lunch with the "closest peer." ${ }^{33}$

Column (2) of Table 2 introduces Closest Peer Received as additional regressor. This dummy variable indicates whether the respondent's closest peer had already received a signal about peer salary by the time the respondent started the survey. ${ }^{34}$ If employees always share the information received in the survey with their closest peer, we would expect this coefficient to be similar to the coefficient on Received Own. Instead, we find a coefficient that is close to zero (0.6 percentage points), statistically insignificant, and precisely estimated. We can confidently reject that the coefficient on Closest Peer Received is equal to the coefficient on Received Own (p-value<0.001). In other words, when we provide information about peer salary to one employee, that information affects her own subsequent perceptions but does not affect the perceptions of her closest peer.

Columns (3) and (4) of Table 2 show two alternative specifications of information diffusion. Share of Peers Received measures the share of peers who received information prior to the respondent, while No. Peers Received measures the number of peers who received information prior to the respondent. ${ }^{35}$ The results are similar: the information spillovers are close to zero and statistically insignificant. Last, columns (5)-(8) reproduce the analysis from columns (1)-(4), except with a focus on beliefs about manager salary instead of beliefs about peer salary. Again, we find no evidence of information diffusion.

As complementary evidence, we present non-experimental tests of information diffusion. The theory and evidence indicate that, in presence of social learning, individuals who are most central in a network are the ones who are best informed (Alatas et al., 2016; Banerjee et al., 2013). We can test this hypothesis in our data by comparing the misperceptions

[^16]in prior beliefs between individuals with above-median and below-median centrality in the email network. ${ }^{36}$ Contrary to the hypothesis of social learning, we find that, if anything, misperceptions increase slightly with network centrality. For peer salary, the mean absolute error is 10.7% for individuals below median eigenvalue centrality vs. 12.3% for individuals above median centrality (p -value of difference $=0.002$); for perceived manager salary, the corresponding values are 28.0% vs. 28.2% (p-value $=0.91$).

Similarly, in presence of social learning, individuals who gossip more about salaries should have lower misperceptions (Alatas et al., 2016). To the contrary, we find misperceptions to be statistically indistinguishable between employees who gossip about salaries and those who do not. For peer salary, the mean absolute errors of prior beliefs are 11.5% for individuals who gossip vs. 11.6% individuals who do not gossip (p -value $=0.88$); for manager salary, the corresponding values are 27.8% vs. 28.5% (p-value $=0.49$).

Our evidence suggests that, even if employees may sometimes discuss salaries with coworkers, they may be sharing noisy or misleading information. We can speculate about potential explanations for the lack of significant information diffusion. Maybe employees do not want to share salary information with others because they see it as a rivalrous asset; for instance, if one employee shares salary information with a peer, this peer may use the information to get a raise that the first employee could have gotten instead. Employees may also want to conceal or misrepresent their own salary because they care directly about what others think of them; for example, an employee may feel ashamed to reveal that she gets paid less than a peer.

6 Results: The Effects of Perceived Peer and Manager Salaries on Behavior

In the previous section, we presented evidence about the formation of beliefs about the salaries of others. In this section, we study the effects of those perceptions on the employee's behavior.

6.1 Main Results: Effects on Effort and Performance

Table 3 presents the causal effects of perceived peer and manager salaries on behavior. These effects are estimated with the instrumental variables model outlined in section 2.2. Each

[^17]column of Table 3 uses a different form of behavior as the dependent variable. The main outcomes of interest are effort and performance, which are presented in columns (1) through (3). Since the right-hand-side and left-hand-side variables are defined in logs, the coefficients can be interpreted directly as behavioral elasticities.

Column (1) of Table 3 corresponds to our first measure of effort: the average number of hours worked in the days from the completion of the survey until 90 days later. Recall that this measure is only available for 29% of the sample (i.e., employees based in headquarter offices). The coefficient on \log (Peer-Salary) is negative (-0.943) and statistically significant at the 5% level. This coefficient is also economically substantial, implying a peer elasticity of -0.943; that is, increasing the perceived peer salary by 1% would decrease the hours worked by nearly 0.943%. However, the coefficient on Log (Manager-Salary) is positive (0.150), statistically significant at the 5% level, and economically significant. This coefficient implies a behavioral peer elasticity of 0.150 ; that is, increasing the perceived manager salary by 1% would increase the number of hours worked by 0.150%. Note that the manager elasticity is more precisely estimated than peer elasticity because the information-provision experiment induced larger shocks to beliefs about manager salary than to beliefs about peer salary. The main reason for this outcome is that the prior misperceptions about manager salary are more substantial than the prior misperceptions about peer salary; therefore, there is more room to shift beliefs by correcting misperceptions. ${ }^{37}$

Column (2) of Table 3 uses our alternative measure of effort: the average number of emails sent, which is available for the entire subject pool. The peer elasticity is negative (-0.431) and significant at the 5% level, and the manager elasticity is positive (0.130) and significant at the 1% level. The elasticities from column (1) are also quantitatively consistent with the elasticities from column (2). We cannot reject that the peer elasticity for hours worked (-0.943) is equal to the peer elasticity for emails (-0.431) - p-value $=0.271$; and we cannot reject that the manager elasticity for hours worked (0.150) is equal to the manager elasticity for emails sent (0.130) - p-value $=0.816$.

Column (3) of Table 3 uses as dependent variable our only measure of performance: the sales performance index. This outcome is available only for 38.4% of employees, that is, those who have a sales role. Again, the peer elasticity is negative (-0.731), statistically significant at the 5% level, and on the same order of magnitude as the effort elasticities. The manager elasticity is positive (0.106) and on the same order of magnitude as the effort elasticities, but it is slightly smaller and less precisely estimated; thus, it becomes statistically insignificant (p-value $=0.383$).

[^18]One of the most important and robust findings is that the peer and manager elasticities have opposite signs. A higher perceived peer salary has negative effects on effort and performance, while a higher perceived manager salary has positive effects on effort and performance. To provide a more rigorous comparison, the bottom of each column of Table 3 reports the p-value of the test of the null hypothesis that the peer-elasticity is equal to the manager-elasticity. We always reject this null hypothesis, with p-values of 0.026 for hours worked, 0.007 for emails sent, and <0.001 for sales performance.

6.2 Effects on Career Outcomes

One unique aspect of our setting is that subjects are in a continuing contract with the firm, and thus we can follow what happens to this relationship going forward, such as through exits or salary negotiations.

The effects on these career outcomes are reported in columns (4)-(7) of Table 3. Columns (4) and (5) explore two forms of retention. Column (4) uses a dummy variable for whether the employee leaves the firm as the dependent variable. The results suggest that a 1% increase in perceived peer salary increases the probability of leaving the company by 0.235 percentage points, which is statistically significant at the 5% level. Even though this elasticity is not as large as the corresponding elasticities for effort and performance, its direction is consistent: a higher perceived peer salary demotivates employees to the extent that they are more likely to leave the firm. With regard to vertical comparisons, a 1% increase in perceived manager salary decreases the probability of leaving the company by 0.015 percentage points, but the effect is economically and statistically insignificant. In column (5), the dependent variable is a dummy indicating whether the individual is transferred to another unit within the same firm. Even though the signs of the cross-salary elasticities are consistent with those from column (4), the coefficients are closer to zero and statistically insignificant. In column (6), the dependent variable is the logarithm of the base salary three months after the completion of the survey. Both the peer and manager elasticities are close to zero, statistically insignificant, and precisely estimated. These results imply that changes in salary perceptions did not materialize into salary negotiations in just 3 months. Similarly, column (8) uses a dummy for change in position title as dependent variable. Again, both the peer and manager elasticities are close to zero and statistically insignificant. However, it is important to note that these perceptions could possibly affect career outcomes with longer horizons, such as years into the future - we return to this discussion in section 6.4, where we present the effects on salary expectations.

6.3 Robustness Checks

The third and fourth rows of Table 3 present the event-study falsification tests. These coefficients are estimated using the same specification as the first two rows, but using pretreatment outcomes instead of post-treatment outcomes as the dependent variables. Intuitively, we expect these coefficients to be close to zero and statistically insignificant, because the information that was randomly provided on the date of the survey could not have possibly affected the behavior prior to the survey date. The estimates are consistent with this robustness check. For instance, the pre-treatment coefficients from column (1) are close to zero (-0.205 for peer elasticity and 0.001 for manager elasticity) and statistically insignificant at conventional levels.

When using instrumental variables regressions, one potential concern pertains to weak instruments. According to the evidence from Section 5.3, the information provision experiment has large effects on the posterior beliefs, which is suggestive of a strong first stage. For a more formal assessment of weak instruments, the bottom of Table 3 reports the CraggDonald F statistic. In column (1), this statistic takes a value of 29.8, which is substantially above the rule of thumb used to detect weak instruments (Stock and Yogo, 2005). Moreover, this statistics is even larger in the rest of the specifications: 98.2 in column (3) and over 200 in each of the five remaining columns.

We also test the sensitivity of the results to the event window. Table 4 presents these results. The first pair of rows correspond to the baseline specification, looking at the effects 90 days after the survey completion - by construction, they are identical to the first pair of rows from Table 3. In the second pair of rows, we use an alternative window: 180 days after the survey completion. The effects are slightly less precisely estimated in the longer time window, which is to be expected, given that the outcomes become less predictable as we move further into the future. Regarding peer elasticity, the results are qualitatively and quantitatively similar across the two specifications. Regarding the manager elasticity, the coefficients are quantitatively similar, although there are some differences in statistical significance. ${ }^{38}$ The bottom rows of Table 4 report difference tests between the elasticities computed in the 90-day and 180-day windows. We cannot reject the null hypothesis of equal coefficients across the two time windows in any of the 14 tests. However, because of the precision of the estimates, we cannot rule out that the effects diminished somewhat over time.

In Appendix A.5, we explore a number of additional tests. First, we split the cross-salary elasticities by subgroups of the population, such as females versus males or higher versus lower

[^19]pay bands. We do not find any statistically significant evidence of heterogeneity. We also relax some of the assumptions from the baseline model. First, the model assumes a (log-log) linear relationship between perceived salaries and behavior. Using binned scatterplots, we show that this linear assumption is a reasonable approximation. Second, our baseline model assumes symmetric effects. If there were assymetries, that could lead to an underestimation of the importance of salary comparisons. We find that, for the exit outcome, the peer elasticity is asymmetrical with respect to whether the own salary is below or above the peer average. This result is consistent with the asymmetry reported in Card et al. (2012) for a similar outcome (stated intent to find a new job). However, we do not find any robust evidence of asymmetric effects for the main outcomes (effort and performance).

We must note that the regressions for instrumental variables identify local average treatment effects - that is, weighted averages of the elasticities, with a higher weight given to employees whose beliefs are more affected by the information-provision experiment. By construction, this weight will be higher for individuals who have larger prior misperceptions and, conditional on the misperceptions, for individuals who react more to feedback. We provide evidence that the degree of misperceptions in prior beliefs and the learning rates are largely unrelated to observable characteristics such as gender, tenure, and occupation. ${ }^{39}$ As a result, our estimated elasticities are plausibly representative of the entire subject pool.

6.4 Preferred Interpretation of the Evidence

In this section, we discuss some potential interpretations of the findings and provide suggestive evidence for them. While several potential mechanisms may be used to rationalize the cross-salary elasticities, we focus on two mechanisms that have played a prominent role in the theoretical and empirical literatures: expected future salary and social comparisons. ${ }^{40}$ Indeed, the interplay between these two mechanisms plays a central role in some models of employee compensation (Lazear, 1989; Ederer and Patacconi, 2010).

The first mechanism, salary expectations, posits that employees use the salaries of peers and managers to form expectations about their own future salary (Lazear and Rosen, 1981; Gibbons and Murphy, 1992; Holmstrom, 1999). An individual who discovers that peers are getting paid more may see a positive signal of own future salary, as in the "tunnel effect" (Hirschman and Rothschild, 1973). This change in expectations should motivate employees to work harder to keep the current job at the firm. Similarly, an increase in the perceived

[^20]manager salary could also increase the expected own future salary, if the employee expects to be promoted to the managerial position. This expectation should also incentivize the individual to work harder in order to get promoted. As a result, this salary expectations mechanism predicts $\eta_{p e e r}>0$ and $\eta_{m g r}>0$. The second mechanism, social comparisons, posits that employee morale depends on employees' compensation relative to other employees (Frank, 1984; Romer, 1984; Summers, 1988; Akerlof and Yellen, 1990; Lazear, 1989) - indeed, a similar argument is used to explain wage rigidities (Solow, 1979; Bewley, 1999). Holding own salary constant, a higher perceived peer salary (or a higher perceived manager salary) worsens the employee's relative standing and thus leads to lower effort. ${ }^{41}$ As a result, this mechanism predicts $\eta_{\text {peer }}<0$ and $\eta_{\text {mgr }}<0$.

The signs of the elasticities contain some suggestive information about which of these two mechanisms dominates. The negative sign of the peer-elasticity suggests that the social comparisons channel dominates over the salary expectations channel. In contrast, the positive sign of the manager-elasticity suggests that the salary expectations channel dominates over the social comparisons channel.

To provide suggestive evidence about these and other mechanisms, Table 5 reports the effects of salary perceptions on the different survey outcomes. Each of the six columns corresponds to a different dependent variable, based on the six questions included in the end of the survey. Some of these dependent variables are not expressed in logs or in percentage points, and they should be interpreted as semi-elasticities instead of elasticities. All coefficients are estimated with the same instrumental variables specification used for the behavioral outcomes, except that we do not observe pre-treatment survey outcomes, so we cannot use them for falsification tests or include them as control variables. We include the following additional control variables as substitutes: dummies for sales role, pay band, unit, and position title.

Column (1) and (2) of Table 5 uses pay satisfaction and job satisfaction as dependent variables. Finding effects on these outcomes would suggest that the behavioral effects operate through employee morale (Clark and Oswald, 1996). In column (1), the coefficient on peer salary (-0.762) is negative and statistically significant at the 10% level. This effect is economically large, implying that a 1% higher peer salary decreases pay satisfaction by roughly 0.83% of a standard deviation. In contrast, the coefficient on perceived manager salary is close to zero (-0.015), statistically insignificant, and precisely estimated. Indeed, we can reject the null hypothesis that the coefficients for peer salary and manager salary are equal (p -value $=0.084$). The results for job satisfaction are somewhat consistent with the results for pay satisfaction. The coefficient on peer salary changes from -0.762 in column

[^21](1) to -0.444 in column (2), which is consistent with the expectation that salary is a more important determinant of pay satisfaction than of overall job satisfaction. Even though the peer coefficient becomes statistically insignificant in column (2), we cannot rule out large negative effects. Also consistent with the results from column (1), the coefficient on peer salary is close to zero (-0.086), statistically insignificant, and precisely estimated.

Column (3) provides a complementary test of the social comparisons channel by using preferences for within-firm redistribution as dependent variable. The coefficient on peer salary (0.373) is statistically significant at the 10% level and economically significant: increasing the perceived peer salary by 1% increases preferences for redistribution by 0.65% of a standard deviation. In comparison, the coefficient on manager salary is close to zero (0.008), statistically insignificant, and precisely estimated. In summary, the evidence from columns (1) through (3) suggests that social comparisons are a mediating factor for the peer elasticities but play no role in the manager elasticities.

Next, we provide a test of the salary expectations channel. Columns (4) and (5) of Table 5 measure the effects of salary expectations on the (log) expected future salaries 1 year and 5 years ahead, respectively. First, we focus on the effects of vertical comparisons. Column (4) suggests an elasticity between perceived manager salary and 1-year-ahead expected own salary that is close to zero (0.025), statistically insignificant, and precisely estimated. This null effect should not be surprising given that employees would almost never be promoted to their manager's position in just one year. In turn, column (5) shows that the effect of perceived manager salary on 5 -year-ahead salary is positive (0.166), precisely estimated, and statistically significant at the 1% level. Indeed, we can demonstrate that, under a reasonable assumption, the effects on expected salary could fully account for the elasticity between hours worked and manager salary (0.150). The 0.166 elasticity suggests that a 1% increase in perceived manager salary would increase expected own salary by 0.166%. Now assume an elasticity between hours worked and future salary of 0.9 . As a result, the 0.166% increase in expected own salary would translate into a $0.150 \%(=0.166 \cdot 0.9)$ increase in hours worked.

Second, we focus on the effects of horizontal comparisons on expected future salary. The peer elasticity is 0.071 with respect to 1-year-ahead salary (column (4) of Table 5) and 0.280 with respect to 5 -year-ahead salary (column (5)). Although these two coefficients are statistically insignificant at conventional levels (p-values of 0.431 and 0.111 , respectively), they are on the same order of magnitude as the corresponding coefficients for perceived manager salary. This outcome is suggestive, although weaker, evidence that employees become more optimistic about their own future salary when they find out that their peers earn more - just like in the "tunnel effect" (Hirschman and Rothschild, 1973).

In summary, the findings from columns (4) and (5) of Table 5 suggest that the salary
expectations channel is present both in horizontal and vertical comparisons. Additionally, these findings provide suggestive evidence on why the employees are willing to pay substantial amounts for the salary information: this information may allow them to pursue career paths with higher future salaries, and they may plan to use the salary information in their future salary negotiations.

To provide further evidence on the mechanisms underlying the manager elasticities, we can exploit variation in the distance between the employee's position and the managerial position. ${ }^{42}$ Consider the case of an employee learning about the salary of a manager that is several promotions away - that is, a position she will probably not be promoted to. We would not expect this employee to extrapolate from information about the manager salary to her own future salary, or at least not to a great extent. As a result, the corresponding manager elasticity should be either zero - if the social comparisons are absent - or negative - if the social comparisons are at play.

The results from the heterogeneity analysis are presented in Table 6. The manager elasticities are broken down into two groups: Closer corresponds to managerial positions that are within the reach of the individual, while Farther corresponds to managerial positions that are outside the reach of the individual. We present results from two models, based on the two survey measures of the distance to the manager. In the first panel (Model 1), Closer and Farther are defined based on the subjective probability of reaching the managerial position. In the second panel (Model 2), these groups are defined based on the expected numbers of promotions needed to reach the managerial position.

In columns (1) through (3), the dependent variables are the three measures of effort and performance. The results suggest that for hours worked and emails sent (columns (1) and (2)), and regardless of the measure of distance that we use (Models 1 and 2), the manager elasticity is positive and significant when the employee is closer to the managerial position, but close to zero and insignificant when the employee is farther from the managerial position. For instance, in Model 1 and column (1), the manager elasticity is 0.212 for the closer managers and -0.074 for the ones farther away, with a p-value of the difference of 0.040 . However, the rest of the differences, while economically substantial, are imprecisely estimated and thus statistically insignificant (p -values of $0.170,0.243$, and 0.212). The elasticities for sales performance (column (3)) are quite imprecisely estimated for the managers that are farther away, and thus the results are uninformative. In columns (4) and (5), the dependent variables are the survey measures of expected future salary. Column (4) indicates that the perceived manager salary does not affect expectations about the 1-year-ahead salary, regardless of the distance to the manager. Column (5) suggests that the perceived manager salary affects the

[^22]5 -year-ahead salary expectations, and it does so more strongly when the managerial position is closer than when it is farther away. However, this result must be taken with a grain of salt because the differences are statistically insignificant (p -values of 0.229 and 0.560).

In summary, the evidence from Table 6 makes two points. First, because of the higher effects for managerial positions that are closer, it provides supportive evidence that the salary expectations channel is present for vertical comparisons. Second, because of the lack of negative effects in positions that are farther away, it provides further suggestive evidence that the social comparisons channel is not at play in the vertical comparisons.

6.5 Alternative Interpretations of the Evidence

In this section, we discuss some alternative mechanisms that could potentially explain our findings.

One possible explanation for the peer elasticities is that, in the spirit of career concerns, employees use their relative salary to infer their relative productivity. ${ }^{43}$ Column (6) of Table 5 provides a test of this hypothesis, by looking at the effects of peer and manager salaries on perceived productivity rank. This outcome, which is based on an incentivized question, can take values from 0 (least productive) to 1 (most productive). The coefficients on peer and manager salaries are close to zero, precisely estimated, and statistically insignificant: a 1% increase in peer salary decreases perceived productivity rank by just 0.044 percentage points, and a 1% increase in manager salary increases perceived productivity rank by less than 0.001 percentage points. This constitutes suggestive evidence that the effect of salary information does not operate through changes in beliefs about relative productivity. ${ }^{44}$

A related explanation for the effects of perceived peer salary is that individuals use those perceptions to form beliefs about the returns to effort. According to this mechanism, when getting a signal that their peers are doing better, the least productive individuals should infer that the returns on effort are higher and should therefore work harder; on the contrary, the most productive individuals should infer that the returns on effort are lower and should then work less hard. Using the survey data on perceived productivity rank, we show that the evidence is inconsistent with this type of heterogeneity. ${ }^{45}$

[^23]It is possible that employees dislike disparities in salaries regardless of where they stand in the salary distribution (Breza et al., 2018). Our information interventions were designed to shift beliefs about the relative standing rather than beliefs on the dispersion of salaries. If employees process the information rationally, then a signal about the average peer salary should have a small or no effect on the belief about the dispersion of salaries within the peer group (Hoff, 2009). As a result, it is unlikely that the effects of average peer salary operate through perceptions of peer inequity. In other words, while inequity aversion may be significant, we would need a different experiment to measure it.

Lastly, the peer elasticity could be the product of employees using the peer salary information to form beliefs about the salary that they could earn working for another firm (Shapiro and Stiglitz, 1984). While this mechanism can provide a straightforward explanation for the effects on employee retention, however, it does not provide a straightforward explanation for the negative effects on effort and performance. ${ }^{46}$

7 Conclusions

We presented evidence from a field experiment involving 2,060 employees from a multi-billion dollar corporation. The research design combines survey data, administrative data, and an information-provision experiment to shed light on how employees learn about the salaries of their peers and managers and how their beliefs about those salaries affect their behavior. We documented large misperceptions about the salaries of peers and managers and identified some of the sources of these misperceptions. Additionally, we showed that perceptions about the salaries of peers and managers have significant effects on employee effort, performance, and retention.

One of the key findings is that even though employees are discouraged when they find that their peers earn more than they thought, employees are not discouraged when they find out that their managers earn more than they thought, even when they do not expect to reach that managerial position themselves. We can speculate about the reasons for this difference. First, as has been suggested in the broader literature on concerns for relative standing (Clark and Senik, 2010), employees may only care about their standing in a specific reference group - in this case, their peers. A second possibility is that employees feel demoralized about horizontal comparisons because, given their common responsibilities, they perceive these salary differences as unfair. Instead, employees may find it easier to justify vertical inequality

[^24]- for instance, they may think that the manager deserves the higher salary because she adds more value to the firm or because she has to deal with more stress. Indeed, this finding is also related to a literature stream about preferences for redistribution, according to which some poor people do not want to tax the rich if they think the rich are deserving of their wealth (Di Tella et al., 2016).

Our findings have some implications for understanding how firms operate. We find that rewarding one employee with a higher salary has a negative externality on the effort of all peers. In contrast, increasing the salary of a group of managers has a positive externality on the behavior of all subordinates. Because of these externalities, firms may find it optimal to load rewards vertically rather than horizontally. That is, firms may want to motivate employees with the prospect of a higher salary upon promotion rather than through performance pay (Baker et al., 1994b). As a result, our evidence can explain why, as documented by Baker et al. (1988), firms provide most of the financial incentives vertically instead of horizontally. ${ }^{47}$

Similarly, this evidence may shed light on why employees tolerate pay discrimination, such as the gender-based wage gap. Our evidence suggesting that vertical discrimination may be less discouraging than horizontal discrimination could explain why the bulk of the gender pay gap is loaded vertically rather than horizontally. For instance, in the firm where the experiment was conducted, 92% of the gender pay gap comes from vertical differences and only 8% through horizontal differences - a similar decomposition has been found in firms in other countries such as the United States (Barth et al., 2017).

Lastly, the view that social comparisons put pressure to compress salary differentials within the firm is widespread (Frank, 1984). Our evidence suggests that this view is only true in a narrow sense. While this channel may force firms to reduce horizontal inequality, they are not restricted in their use of vertical inequality. Moreover, academics and policy makers have proposed pay transparency policies with the intent of reducing pay inequality. To the extent that employees are not bothered by vertical comparisons, our evidence suggests that these policies may not be as effective as previously thought.

References

Akerlof, G. A. (1982). Labor Contracts as Partial Gift Exchang. Quarterly Journal of Economics (97), 543-569.

[^25]Akerlof, G. A. and J. L. Yellen (1990). The Fair Wage-Effort Hypothesis and Unemployment. The Quarterly Journal of Economics 105(2), 255-283.

Alatas, V., A. Banerjee, A. G. Chandrasekhar, R. Hanna, and B. A. Olken (2016). Network Structure and the Aggregation of Information: Theory and Evidence from Indonesia. American Economic Review 106(7), 1663-1704.

Allcott, H. and J. B. Kessler (2015). The Welfare Effects of Nudges: A Case Study of Energy Use Social Comparisons. Working paper, National Bureau of Economic Research.

Andersen, S., G. W. Harrison, M. I. Lau, and E. E. Rutström (2006). Elicitation using multiple price list formats. Experimental Economics 9(4), 383-405.

Angulo, A. M., J. M. Gil, and L. Tamburo (2005). Food Safety and Consumers' Willingness to Pay for Labelled Beef in Spain. Journal of Food Products Marketing 11(3), 89-105.

Armantier, O., S. Nelson, G. Topa, W. van der Klaauw, and B. Zafar (2016). The Price Is Right: Updating Inflation Expectations in a Randomized Price Information Experiment. Review of Economics and Statistics 98(3), 503-523.

Baker, G., M. Gibbs, and B. Holmstrom (1994a). The Internal Economics of the Firm: Evidence from Personnel Data. The Quarterly Journal of Economics 109(4), 881-919.

Baker, G., M. Gibbs, and B. Holmstrom (1994b). The Wage Policy of a Firm. The Quarterly Journal of Economics 109(4), 921-955.

Baker, G., M. Jensen, and K. Murphy (1988). Compensation and Incentives: Practice vs. Theory. The Journal of Finance 43(3), 593-616.

Bandiera, O., I. Barankay, and I. Rasul (2010). Social Incentives in the Workplace. The Review of Economic Studies 77(2), 417-458.

Banerjee, A., A. G. Chandrasekhar, E. Duflo, and M. O. Jackson (2013). The diffusion of microfinance. Science 341 (6144), 1236498.

Barth, E., S. Kerr, and C. Olivetti (2017). The dynamics of gender earnings differentials: Evidence from establishment data. NBER Working Paper No. 23381.

Bewley, T. (1999). Why Wages Don't Fall During a Recession. Harvard University Press.
Bloom, N., F. Guvenen, D. J. Price, and J. Song (2015). Firming Up Inequality. NBER Working Paper No. 21199.

Bottan, N. and R. Perez-Truglia (2017). Choosing Your Pond: Revealed-Preference Estimates of Relative Income Concerns. NBER Working Paper No. 23615.

Bracha, A., U. Gneezy, and G. Loewenstein (2015). Relative pay and labor supply. Journal of Labor Economics 33(2), 297-315.

Brebner, S. and J. Sonnemans (2018). Does the elicitation method impact the WTA/WTP disparity? Journal of Behavioral and Experimental Economics 73(C), 40-45.

Breza, E., S. Kaur, and Y. Shamdasani (2018). The Morale Effects of Pay Inequality. The Quarterly Journal of Economics.

Card, D., A. Mas, E. Moretti, and E. Saez (2012). Inequality at Work: The Effect of Peer Salaries on Job Satisfaction. American Economic Review 102(6), 2981-3003.

Cavallo, A., G. Cruces, and R. Perez-Truglia (2017). Inflation expectations, learning, and supermarket prices: Evidence from survey experiments. American Economic Journal: Macroeconomics 9(3), 1-35.

Charness, G. and P. Kuhn (2007). Does Pay Inequality Affect Worker Effort? Experimental Evidence. Journal of Labor Economics 25(4), 693-723.

Clark, A. E., P. Frijters, and M. A. Shields (2008). Relative Income, Happiness, and Utility: An Explanation for the Easterlin Paradox and Other Puzzles. Journal of Economic Literature 46 (1), 95-144.

Clark, A. E., D. Masclet, and M. C. Villeval (2010). Effort and Comparison Income: Experimental and Survey Evidence. ILR Review 63(3), 407-426.

Clark, A. E. and A. J. Oswald (1996). Satisfaction and comparison income. Journal of Public Economics 61 (3), 359-381.

Clark, A. E. and C. Senik (2010). Who Compares to Whom? The Anatomy of Income Comparisons in Europe*. The Economic Journal 120(544), 573-594.

Cohn, A., E. Fehr, B. Herrmann, and F. Schneider (2014). Social Comparison and Effort Provision: Evidence from a Field Experiment. Journal of the European Economic Association 12, 877-898.

Cruces, G., R. Perez-Truglia, and M. Tetaz (2013). Biased perceptions of income distribution and preferences for redistribution: Evidence from a survey experiment. Journal of Public Economics 98, 100-112.

Cullen, Z. and B. Pakzad-Hurson (2017). Equilibrium effects of pay transparency. Working Paper.
Di Tella, R., J. Dubra, and A. L. Lagomarsino (2016). Meet the Oligarchs: Business Legitimacy, State Capacity and Taxation. Working paper, National Bureau of Economic Research.

Dube, A., L. Giuliano, and J. Leonard (2015). Fairness and Frictions: The Impact of Unequal Raises on Quit Behavior. IZA Discussion Papers 9149.

Ederer, F. and A. Patacconi (2010). Interpersonal comparison, status and ambition in organizations. Journal of Economic Behavior \& Organization 75(2), 348-363.

Eil, D. and J. M. Rao (2011). The Good News-Bad News Effect: Asymmetric Processing of Objective Information about Yourself. American Economic Journal: Microeconomics 3(2), 114-138.

Faleye, O., E. Reis, and A. Venkateswaran (2013). The determinants and effects of CEO-employee pay ratios. Journal of Banking \& Finance 37(8), 3258-3272.

Festinger, L. (1954). A Theory of Social Comparison Processes. Human Relations 7(2), 117-140.
Frank, R. (1984). Are Workers Paid Their Marginal Products? American Economic Review 74 (4), 549-571.

Fuster, A., R. Perez-Truglia, and B. Zafar (2018). Expectations with Endogenous Information Acquisition: An Experimental Investigation. NBER Working Paper No. 24767.

Gächter, S. and C. Thöni (2010). Social comparison and performance: Experimental evidence on the fair wageâeffort hypothesis. Journal of Economic Behavior \mathcal{B} Organization 76(3), 531-543.

Gibbons, R. and K. J. Murphy (1992). Optimal Incentive Contracts in the Presence of Career Concerns: Theory and Evidence. Journal of Political Economy 100(3), 468-505.

Godechot, O. and C. Senik (2015). Wage comparisons in and out of the firm. Evidence from a matched employer-employee French database. Journal of Economic Behavior and Organization 117, 395-410.

Hegewisch, A., C. Williams, and R. Drago (2011). Pay Secrecy and Wage Discrimination. Institute for Women's Policy Research.

Hirschman, A. O. and M. Rothschild (1973). The Changing Tolerance for Income Inequality in the Course of Economic Development. The Quarterly Journal of Economics 87(4), 544-566.

Hoff, P. D. (2009). A first course in Bayesian statistical methods. Springer Science \& Business Media.

Holmstrom, B. (1999). Managerial Incentive Problems: A Dynamic Perspective. Review of Economic Studies 66(1), 169-182.

Huet-Vaughn, E. (2017). Do social comparisons motivate workers? A field experiment on relative earnings, labor supply and the inhibitory effect of pay inequality. Working Paper.

Karadja, M., J. Mollerstrom, and D. Seim (2017). Richer (and Holier) Than Thou? The Effect of Relative Income Improvements on Demand for Redistribution. The Review of Economics and Statistics 99(2), 201-212.

Khattak, A. J., Y. Yim, and L. S. Prokopy (2003). Willingness to pay for travel information. Transportation Research Part C: Emerging Technologies 11(2), 137-159.

Kiatpongsan, S. and M. I. Norton (2014). How Much (More) Should CEOs Make? A Universal Desire for More Equal Pay. Perspectives on Psychological Science 9(6), 587-593.

Lawler, E. E. (1965). Managers' Perceptions of their Subordinates' Pay and of Their Superiors' Pay. Personnel Psychology 18(4), 413-422.

Lazear, E. P. (1989). Pay Equality and Industrial Politics. Journal of Political Economy 97(3), pp. 561-580.

Lazear, E. P. and S. Rosen (1981). Rank-Order Tournaments as Optimum Labor Contracts. Journal of Political Economy 89(5), 841-864.

Luttmer, E. F. P. (2005). Neighbors as Negatives: Relative Earnings and Well-Being. The Quarterly Journal of Economics 120(3), 963-1002.

MacLeod, W. B. (2007). Can Contract Theory Explain Social Preferences? The American Economic Review 97(2), 187-192.

MacLeod, W. B. and J. M. Malcomson (1998). Motivation and Markets. The American Economic Review 88(3), 388-411.

Mas, A. (2016). Does Disclosure affect CEO Pay Setting? Evidence from the Passage of the 1934 Securities and Exchange Act. Working Paper.

Mas, A. (2017). Does Transparency Lead to Pay Compression? Journal of Political Economy 125(5), 1683-1721.

Mas, A. and E. Moretti (2009). Peers at Work. The American Economic Review 99(1), pp. 112-145.
McKenzie, D. (2012). Beyond baseline and follow-up: The case for more T in experiments. Journal of Development Economics 99(2), 210-221.

Medoff, J. L. and K. G. Abraham (1980). Experience, Performance, and Earnings. The Quarterly Journal of Economics 95(4), 703-736.

Mueller, H. M., P. P. Ouimet, and E. Simintzi (2017). Within-Firm Pay Inequality. The Review of Financial Studies 30(10), 3605-3635.

PayScale (2018). 2018 Compensation Best Practices Report. Technical report.
Perez-Truglia, R. (2015). The Effects of Income Transparency on Well-Being: Evidence from a Natural Experiment. Working Paper.

Perez-Truglia, R. and G. Cruces (2017). Partisan interactions: Evidence from a field experiment in the United States. Journal of Political Economy 125(4).

Perez-Truglia, R. and U. Troiano (2015). Shaming Tax Delinquents. Working Paper 21264, National Bureau of Economic Research.

Pritchard, R. D., Marvin D. Dunnette, and D. O. Gorgenson (1972). Effects of perception of equity and inequity on worker performance and satisfaction. Journal of Applied Psychology 56(1), 75.

Rege, M. and I. Solli (2015). Lagging behind the joneses: The impact of relative earnings on job separation. Working Paper.

Romer, D. (1984). The Theory of Social Custom: A Modification and Some Extensions. The Quarterly Journal of Economics 99(4), 717.

Schmitt, D. R. and G. Marwell (1972). Withdrawal and reward reallocation as responses to inequity. Journal of Experimental Social Psychology 8(3), 207-221.

Senik, C. (2004). When information dominates comparison: Learning from Russian subjective panel data. Journal of Public Economics 88(9), 2099-2123.

Shapiro, C. and J. E. Stiglitz (1984). Equilibrium Unemployment as a Worker Discipline Device. The American Economic Review 74 (3), 433-444.

Solow, R. M. (1979). Another possible source of wage stickiness. Journal of Macroeconomics 1 (1), 79-82.

Stigler, G. J. (1962). Information in the Labor Market. Journal of Political Economy 70(5, Part 2), 94-105.

Stock, J. H. and M. Yogo (2005). Testing for Weak Instruments in Linear IV Regression, pp. 80-108. Cambridge University Press.

Summers, L. H. (1988). Relative Wages, Efficiency Wages, and Keynesian Unemployment. The American Economic Review 78, 383-388.

Valenzi, E. R. and I. R. Andrews (1971). Effect of hourly overpay and underpay inequity when tested with a new induction procedure. Journal of Applied Psychology 55(1), 22-27.

Figure 1: Salary Misperceptions

Notes: Histograms of the salary misperceptions, defined as the difference between the employee's prior belief about a particular salary (according an incentivized survey question) and the actual salary (according to the firm's administrative records), divided by the actual salary. Panel (a) corresponds to misperceptions about own salary. Panel (b) corresponds to misperceptions about the average peer salary. Panel (c) corresponds to misperceptions about the average manager salary.

Figure 2: Willingness to Pay for Information about Peer and Manager Salaries

Notes: Histograms of the willingness to pay (WTP) for a specific information piece, based on the responses to multiple price list questions. Panel (a) corresponds to the WTP for the average salary among a random sample of 5 peers. Panel (b) corresponds to the WTP for the average salary among a random sample of 5 managers. Panel (c) corresponds to the joint distribution of (a) and (b). The samples are restricted to the subset of respondents with consistent responses across the five price scenarios.

Figure 3: Learning from Information-Provision Experiment

Notes: Partial regression binned scatterplot of the Bayesian learning equation $\overline{(4)}$ presented in section 2.2. Panel (a) corresponds to learning about the average peer salary, while panel (b) corresponds to learning about the average manager salary. The y-axis corresponds to the respondent's update: i.e., the posterior belief minus the prior belief. The x-axis corresponds to the information treatment: the difference between the feedback chosen for the employee (e.g., the average salary among the random sample of 5 peers) and the employee's prior belief, multiplied by a dummy variable for whether the information was randomly chosen to be shown to the respondent. The regression controls for the difference between the feedback chosen for the employee and the employee's prior belief; also, it controls for the prior belief and position title dummies. The slope comes from a linear regression, with standard errors reported in parentheses (clustered at position level).

Table 1: Descriptive Statistics and Randomization Balance Test

	All	Treatment Group (by Information)				
	(1)	Peer \& Manager (2)	Peer (3)	Manager (4)	None (5)	P -value (6)
Female	$\begin{gathered} 0.73 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.74 \\ (0.02) \end{gathered}$	$\begin{gathered} \hline 0.71 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.74 \\ (0.02) \end{gathered}$	$\begin{gathered} \hline 0.74 \\ (0.02) \end{gathered}$	0.32
Age	$\begin{aligned} & 29.20 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 28.92 \\ & (0.19) \end{aligned}$	$\begin{aligned} & 29.35 \\ & (0.21) \end{aligned}$	$\begin{aligned} & 29.35 \\ & (0.22) \end{aligned}$	$\begin{aligned} & 29.19 \\ & (0.22) \end{aligned}$	0.99
College (or Higher)	$\begin{gathered} 0.86 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.86 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.87 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.86 \\ (0.02) \end{gathered}$	0.14
Tenure (Years)	$\begin{gathered} 4.99 \\ (0.08) \end{gathered}$	$\begin{gathered} 4.92 \\ (0.14) \end{gathered}$	$\begin{gathered} 5.08 \\ (0.15) \end{gathered}$	$\begin{gathered} 5.14 \\ (0.16) \end{gathered}$	$\begin{gathered} 4.79 \\ (0.16) \end{gathered}$	0.81
Own Salary (Masked)	$\begin{gathered} 0.72 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.02) \end{gathered}$	0.93
Avg. Peer Salary (Masked)	$\begin{gathered} 0.72 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.73 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.73 \\ (0.02) \end{gathered}$	0.91
Avg. Manager Salary (Masked)	$\begin{gathered} 2.84 \\ (0.05) \end{gathered}$	$\begin{gathered} 2.86 \\ (0.10) \end{gathered}$	$\begin{gathered} 2.89 \\ (0.10) \end{gathered}$	$\begin{gathered} 2.80 \\ (0.10) \end{gathered}$	$\begin{gathered} 2.80 \\ (0.11) \end{gathered}$	0.54
Observations	2,060	559	528	510	463	

Notes: Average pre-treatment characteristics of the employees, with standard errors in parentheses. Female takes the value 1 if the employee is female and 0 otherwise. Age is the employee's age (in years) as of March 2017. College takes the value 1 if the employee finished College or a higher degree, and 0 otherwise. Tenure is the number of years from the date when the employee joined the company until March 2017. Own Salary is the employee base monthly salary as of March 2017. Avg. Peer Salary and Avg. Manager Salary are the true average and peer salaries. Due to the sensitive nature of the data, we do not reveal the unit of measurement for salary variables. Column (1) corresponds to the entire subject pool, while columns (2) through (5) correspond to the four treatment groups that subjects were randomly assigned to: receiving information about both their peers' and manager's salary (column (2)); receiving information about the average salary of peers but no salary information about their manager (column (3)); receiving information about the salary of their manager but not their peers (column (4)); and receiving no salary information (column (5)).

Table 2: Information Diffusion

	Misperceptions about Peer Salary				Misperceptions about Manager Salary			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Information Assignment								
Received Own	$\begin{gathered} -0.044^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.044^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.044^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.045^{* * *} \\ (0.005) \end{gathered}$	$\begin{gathered} -0.190^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} -0.190^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} -0.189^{* * *} \\ (0.020) \end{gathered}$	$\begin{gathered} -0.190^{* * *} \\ (0.020) \end{gathered}$
Closest Peer Received		$\begin{gathered} 0.006 \\ (0.005) \end{gathered}$				$\begin{gathered} 0.008 \\ (0.014) \end{gathered}$		
No. Peers Received			$\begin{aligned} & -0.000 \\ & (0.001) \end{aligned}$				$\begin{gathered} 0.003 \\ (0.002) \end{gathered}$	
Share of Peers Received				$\begin{aligned} & -0.019 \\ & (0.014) \end{aligned}$				$\begin{gathered} 0.032 \\ (0.055) \end{gathered}$
Mean Dep. Var.	0.089				0.225			
Std. Dev. Dep. Var.	0.105				0.287			

Notes: N=2,060. Significant at ${ }^{*} 10 \%,{ }^{* *} 5 \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Each $\overline{\text { column }}$ corresponds to a different linear regression. In columns (1)-(4), the dependent variable is the absolute value of the difference between the posterior belief about average peer salary and the actual average. Received Own is a dummy variable indicating whether the employee was randomly chosen to receive a signal about peer salary. Closest Peer Received is a dummy variable indicating whether the employee's closest peer (defined as the peer with whom the employee exchanges the most number of emails in Jan-Mar 2017) received a signal about peer salary before the employee started the survey. No. Peers Received denotes the number of employees in the employee's peer group who received a signal about peer salary before the employee started the survey. Share of Peers Received denotes the share of employees in the employee's peer group who received a signal about peer salary before the employee started the survey. The regressions control for the date of survey response, the total number of employees in the peer group and position title dummies. Columns (5)-(8) are equivalent to columns (1)-(4), but using manager salary instead of peer salary.

Table 3: Effects of Salary Perceptions on Behavior

	Effort and Performance			Career Moves			
	$\log (\text { Hours })$ (1)	$\log (\text { Emails })$ (2)	$\overline{\log (\text { Sales })}$ (3)	P (Quit) (4)	P(Transfer) (5)	$\log (\text { Salary })$ (6)	$P(\Delta \text { Title })$ (7)
Post-Treatment:							
Log (Peer-Salary) ${ }^{(i)}$	$\begin{gathered} -0.943^{* *} \\ (0.472) \end{gathered}$	$\begin{gathered} -0.431^{* *} \\ (0.210) \end{gathered}$	$\begin{gathered} -0.731^{* *} \\ (0.297) \end{gathered}$	$\begin{aligned} & 0.235^{* *} \\ & (0.107) \end{aligned}$	$\begin{gathered} 0.093 \\ (0.106) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.114 \\ (0.123) \end{gathered}$
Log (Manager-Salary) ${ }^{(i i)}$	$\begin{aligned} & 0.150^{* *} \\ & (0.074) \end{aligned}$	$\begin{aligned} & 0.130^{* * *} \\ & (0.041) \end{aligned}$	$\begin{gathered} 0.106 \\ (0.122) \end{gathered}$	$\begin{aligned} & -0.015 \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.030) \end{aligned}$	$\begin{gathered} 0.002 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.029) \end{gathered}$
Pre-Treatment (Falsification):							
Log (Peer-Salary)	-0.205	-0.184	-0.191	-0.139	0.212	-0.001	-0.071^{*}
	(0.542)	(0.289)	(0.412)	(0.218)	(0.163)	(0.005)	(0.040)
Log (Manager-Salary)	0.001	-0.101	0.063	-0.022	0.029	$0.002^{* *}$	0.009
	(0.114)	(0.071)	(0.160)	(0.050)	(0.029)	(0.001)	(0.010)
P-value H_{0} : (i) = (ii)	0.026	0.007	0.000	0.015	0.398	0.963	0.424
Cragg-Donald F-Stat.	29.8	204.0	98.2	203.7	203.4	203.6	203.3
Mean Outcome	5.98	35.57	0.48	0.05	0.09	0.92	0.10
Std. Dev. Outcome	1.88	44.93	0.23	0.21	0.28	0.70	0.30
Observations	602	2,060	791	2,060	2,060	2,060	2,060

Notes: Significant at ${ }^{*} 10 \%,{ }^{* *} 5 \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Each column presents results for two sets of instrumental variables regressions, following the specification described in section 2.2: in Post-Treatment, the dependent variable is the average behavior 90 days after the completion of the survey; in Pre-Treatment (Falsification), the dependent variable is the average behavior before the completion of the survey. Peer-Salary is the posterior belief about the average peer salary, and Manager-Salary is the posterior belief about the average manager salary. The regressions control for three monthly lags of the dependent variable, (log) own salary and five productivity rating dummies. Hours is the daily number of hours worked. Emails is the daily number of emails sent. Sales is the sales performance index. $P($ Quit $), P($ Transfer $)$ and $P(\Delta$ Title $)$ are dummies for whether the employee leaves the firm, transfers inside the firm and changes position title, respectively. $\log ($ Salary $)$ is the logarithm of own salary at the end of the end (beginning) of the post-treatment (pre-treatment) period. For the dependent variables in logarithm, the mean and std. dev. reported in the bottom rows correspond to the pre-log values. Columns (1) and (3) have fewer observations because those dependent variables are only defined for a subsample.

Table 4: Sensitivity to Event Windows for Effects of Perceptions on Behavior

	Effort and Performance			Career Moves			
	$\log (\text { Hours })$ (1)	$\begin{gathered} \log (\text { Emails }) \\ (2) \end{gathered}$	$\log (\text { Sales })$ (3)	P(Quit) (4)	$\mathrm{P}(\text { Transfer })$ (5)	$\underset{(6)}{\log (\text { Salary })}$	$P(\Delta \text { Title })$ (7)
3-Months Post-Treatment:							
Log (Peer-Salary) ${ }^{(i)}$	$\begin{gathered} -0.943^{* *} \\ (0.472) \end{gathered}$	$\begin{gathered} -0.431^{* *} \\ (0.210) \end{gathered}$	$\begin{gathered} -0.731^{* *} \\ (0.297) \end{gathered}$	$\begin{aligned} & 0.232^{* *} \\ & (0.106) \end{aligned}$	$\begin{gathered} 0.093 \\ (0.106) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.114 \\ (0.123) \end{gathered}$
Log (Manager-Salary) ${ }^{(i i)}$	$\begin{aligned} & 0.150^{* *} \\ & (0.074) \end{aligned}$	$\begin{gathered} 0.130^{* * *} \\ (0.041) \end{gathered}$	$\begin{gathered} 0.106 \\ (0.122) \end{gathered}$	$\begin{aligned} & -0.016 \\ & (0.023) \end{aligned}$	$\begin{gathered} -0.003 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.029) \end{gathered}$
6-Months Post-Treatment:							
Log (Peer-Salary) ${ }^{\text {(iii) }}$	$\begin{gathered} -1.200^{* *} \\ (0.591) \end{gathered}$	$\begin{gathered} -0.437^{* *} \\ (0.209) \end{gathered}$	$\begin{gathered} -1.064^{* * *} \\ (0.347) \end{gathered}$	$\begin{gathered} 0.213^{*} \\ (0.127) \end{gathered}$	$\begin{gathered} -0.007 \\ (0.157) \end{gathered}$	$\begin{aligned} & -0.212 \\ & (0.176) \end{aligned}$	$\begin{gathered} 0.120 \\ (0.123) \end{gathered}$
Log (Manager-Salary) ${ }^{(i v)}$	$\begin{gathered} 0.112 \\ (0.091) \end{gathered}$	$\begin{gathered} 0.073 \\ (0.056) \end{gathered}$	$\begin{gathered} 0.233^{* * *} \\ (0.087) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.048) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.029) \end{gathered}$
P-value H_{0} : (i) =(iii)	0.748	0.407	0.400	0.603	0.740	0.577	0.980
P-value H_{0} : (ii)=(iv)	0.733	0.984	0.466	0.913	0.599	0.239	0.970
Mean Outcome	5.98	35.57	0.48	0.05	0.09	0.92	0.10
Std. Dev. Outcome	1.88	44.93	0.23	0.21	0.28	0.70	0.30
Observations	602	2,060	791	2,060	2,060	2,060	2,060

Notes: Significant at ${ }^{*} 10 \%,{ }^{* * 5 \%},{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. 3-Months Post$\overline{\text { Treatment shows the regression results from Table } 3 \text { - see its note for more details. 6-Months Post-Treatment is identical }}$ except that the dependent variable corresponds to the behavior between the date of survey completion and 180 days later (instead of 90 days later).

Table 5: Effects of Salary Perceptions on Survey Outcomes

	Satisfaction		Redist. Pref. (3)	$\underline{\log (E[F u t u r e ~ S a l a r y]) ~}$		Rank(Prod.)
	$\overline{\mathrm{w} / \text { Pay }}$ (1)	w/Job (2)		+1 year (4)	+5 years (5)	(6)
Log (Peer-Salary) ${ }^{(i)}$	$\begin{aligned} & -0.762^{*} \\ & (0.433) \end{aligned}$	$\begin{aligned} & \hline-0.444 \\ & (0.491) \end{aligned}$	$\begin{aligned} & \hline 0.373^{*} \\ & (0.216) \end{aligned}$	$\begin{gathered} 0.071 \\ (0.090) \end{gathered}$	$\begin{gathered} 0.280 \\ (0.176) \end{gathered}$	$\begin{gathered} 0.044 \\ (0.040) \end{gathered}$
Log (Manager-Salary) ${ }^{(i i)}$	$\begin{aligned} & -0.015 \\ & (0.125) \end{aligned}$	$\begin{aligned} & -0.086 \\ & (0.102) \end{aligned}$	$\begin{gathered} 0.008 \\ (0.075) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.025) \end{gathered}$	$\begin{gathered} 0.166^{* * *} \\ (0.055) \end{gathered}$	$\begin{gathered} 0.000 \\ (0.015) \end{gathered}$
P-Value (i) = (ii)	0.084	0.433	0.135	0.595	0.532	0.280
Cragg-Donald F-Stat.	253.6	254.3	254.3	253.5	255.3	250.5
Mean Dep. Var.	2.79	3.60	2.20	2.58	3.22	0.47
Std. Dev. Dep. Var.	0.92	0.78	0.57	0.51	0.59	0.22
Observations	2,030	2,027	2,027	2,033	2,026	1,999

Notes: Significant at ${ }^{*} 10 \%,{ }^{* *} 5 \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Each column presents results for a different instrumental variables regressions, following the specification described in section 2.2. The dependent variables are responses to survey questions elicited after the informational treatment. Peer-Salary is the posterior belief about the average peer salary, and Manager-Salary is the posterior belief about manager salary. All the dependent variables correspond to survey questions asked after the elicitation of the posterior beliefs. Satisfaction with Pay and Satisfaction with Job are measures in a 5-point scale from very dissatisfied (1) to very satisfied (5). Redist. Pref. measures preferences for within-firm redistribution in a 3-point scale from 1 (less) to 3 (more). E[Future Salary] corresponds to the expected salary 1 and 5 years in the future. Rank(Prod.) denotes the individual self-perceived position in the distribution of performance ratings in the firm. All regressions include the following control variables: the log of own salary, log of tenure, and sets of dummies for sales role, pay band, unit, productivity rating and position title.

Table 6: Effects of Perceived Manager Salary by Distance to Manager

	Effort and Performance			$\log (\mathrm{E}$ [Future Salary])	
	$\begin{gathered} \hline \log (\text { Hours }) \\ \hline(1) \end{gathered}$	$\begin{gathered} \log (\text { Emails }) \\ \hline(2) \end{gathered}$	$\log (\text { Sales })$ (3)	+1 year (4)	$+5 \text { years }$ (5)
Model 1 (Promo. Prob.):					
Log (Manager-Salary)					
Closer ${ }^{(i)}$	0.212**	0.170***	0.437***	0.041	0.204***
	(0.099)	(0.052)	(0.154)	(0.030)	(0.059)
Farther ${ }^{(i i)}$	-0.074	0.019	0.468	-0.008	0.086
	(0.093)	(0.104)	(0.755)	(0.033)	(0.092)
Model 2 (No. of Promo.):					
Log (Manager-Salary)					
Closer ${ }^{(i i i)}$	0.431*	$0.185^{* * *}$	0.437**	0.008	0.200***
	(0.226)	(0.061)	(0.200)	(0.036)	(0.059)
Farther ${ }^{(i v)}$	-0.016	0.068	0.516	0.057	0.134
	(0.135)	(0.062)	(0.526)	(0.038)	(0.096)
P-value H_{0} : (i) = (ii)	0.040	0.243	0.972	0.216	0.229
P-value H_{0} : (iii)=(iv)	0.170	0.212	0.908	0.322	0.560
Observations	602	2,060	755	2,033	2,026

Notes: Significant at ${ }^{*} 10 \%,{ }^{* *} 5 \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. In each model, Log(Manager-Salary) is interacted with dummies Closer and Farther, which denote the perceived distance between the own position and the managerial position. In Model 1, Closer indicates a probability of reaching the managerial position above 40%. In Model 2, Closer indicates managerial positions that are less than 5 promotions ahead. In columns (1)-(3), the dependent variables are the average behavior in the 90 days after the completion of the survey: Hours is the daily number of hours worked, Emails is the daily number of emails sent and Sales is the monthly sales performance - for more details about the specification, see the note to Table 3. In columns (4)-(5), the dependent variables are survey questions elicited after the posterior beliefs of manager salary: $E[$ Future Salary] corresponds to the expected salary 1 and 5 years in the future - for more details about the specification, see the note to Table 5 .

Online Appendix (For Online Publication Only)

A Additional Details and Results

A. 1 Pay Inequality

This section provides some summary statistics related to pay inequality in the firm where the experiment was conducted. We start by measuring the overall within-firm inequality. We compute a measure used in other studies (Bloom et al., 2015): the ratio of the 10th to 90th percentile of the distribution of base salary is 0.21 . This degree of inequality is quite similar to that of medium sized firms in the United States: the ratio is 0.19 for the average firm with 5,000-10,000 employees (Bloom et al., 2015). The results are similar if we use different criteria, such as the ratio between the 90th percentile earner and the median earner.

Next, we can decompose the inequality by the horizontal and non-horizontal variation. Let $S_{i, p}$ be the salary of worker i in peer group p (i.e., pair position-unit). By construction:

$$
\begin{equation*}
S_{i, p} \equiv\left(S_{i, p}-\bar{S}_{p}\right)+\bar{S}_{p} \tag{A.1}
\end{equation*}
$$

Then, we can compute the variance of both sides of the equation:

$$
\begin{equation*}
\operatorname{var}_{i}\left(S_{i, p}\right)=\operatorname{var}_{i}\left(S_{i, p} \mid i \in p\right)+\operatorname{var}_{p}\left(\bar{S}_{p}\right) \tag{A.2}
\end{equation*}
$$

The total dispersion in salaries $\left(\operatorname{var}_{i}\left(S_{i, p}\right)\right)$ is the sum of the horizontal dispersion $\left(\operatorname{var}_{i}\left(S_{i, p} \mid i \in\right.\right.$ $p)$), weighted by the share of employees in each position, plus the non-horizontal dispersion $\left(\operatorname{var}_{p}\left(\bar{S}_{p}\right)\right)$ across positions. Then, we can express the share of horizontal inequality as:

$$
\begin{equation*}
\text { Fraction of Horizontal Inequality }=\frac{\operatorname{var}_{i}\left(S_{i, p} \mid i \in p\right)}{\operatorname{var}_{i}\left(S_{i, p} \mid i \in p\right)+\operatorname{var}_{p}\left(\bar{S}_{p}\right)} \tag{A.3}
\end{equation*}
$$

Using data on the universe of employees in the firm where the experiment was conducted, we find that only 4.5% of the differences in base salary are horizontal.

We can compare the contribution of horizontal inequality with the ones reported in other organizations. We start with a comparison to Baker et al. (1994a). Using data from a large U.S. firm, they report that dummies for the eight job levels (i.e., a coarse measure of the vertical position within the firm) explain around 70% of the variation in logarithm of salary. This evidence suggests that vertical inequality probably explains the vast majority of the income differences within their firm. We used the data from our bank to estimate a regression of the logarithm of base salary on a set of dummies for the nine paybands. We
find results in the same order of magnitude: the level dummies explain 84% of the variation in salaries.

We can also look at the contribution of horizontal inequality in the context of Card et al. (2012). We obtained data on the regular pay in 2014 for all at the employees at the different campuses of University of California. We define peer groups as the combination of position title and department (e.g., one peer group could be the Assistant Professors at the Economics Department of UCLA). In our bank, we found that horizontal inequality accounts for 4.5\% of the overall pay inequality. We find estimates in the same order of magnitude across the different UC campuses, ranging from a minimum of 7.0% in UC Merced to a maximum of 19.4% in UC San Francisco.

A. 2 Characteristics of Subject Pool

Table A. 1 presents descriptive statistics about the employee data. Column (5) corresponds to the final sample of 2,060 survey respondents. Column (1) corresponds to the universe of employees. By comparing columns (1) and (5), it follows that our sample is quite representative of the universe of employees. Given the large sample size, we have enough statistical power to detect even small differences. Even though some of the differences in gender, age, education and tenure are statistically significant, they are always economically small. For instance, the subject pool is 73% female vs. 71% female in the universe, the mean ages are 29.2 vs. 30.1 years old, the shares of College graduates are 86% vs. 87%, and the mean tenures are 4.99 vs. 5.09 years. The only noticeable difference is with respect to salary: our subject pool is 28% poorer than the universe of employees.

The reason for this difference in average salary is quite simple: we did not send the survey invitation to employees in the highest paybands. These excluded employees, such as the CEO and vice-presidents, have salaries that drive up the average salary in the universe of employees quite a bit. To demonstrate this, columns (2) and (3) provide summary statistics for the sample of individuals who were not invited and were invited to the survey, respectively. The comparison of average salary across these two columns show that the bulk of the difference in mean salary between the subject pool and the universe of employees is coming from the selection of employees to be invited to the survey. For the sake of completeness, columns (4) and (5) provide statistics for employees who were invited to the survey but did not respond and individuals who responded, respectively. The average salary of the survey respondents is quite similar (just 7.5% higher) to the average salary of non-respondents.

A. 3 Further Analysis of Misperceptions and Willingness to Pay for Information

Figure A. 1 provides another look at the distribution of perceptions on average peer salary (panel a) and average manager salary (panel b). Each panel shows two histograms. Consider panel (a) first. The solid histogram corresponds to the difference between actual average peer salary and own salary, normalized by own salary. This is a measure of actual horizontal inequality. The hollow bars correspond to the difference between perceived peer salary and own salary, also normalized by own salary. This corresponds to the horizontal inequality in perceptions. The fact that these two distribution are quite similar suggests that individuals have a good sense of the degree of horizontal inequality, but do not know where in the distribution they stand. Panel (b) offers the same analysis for the perceptions on average manager salary. This shows that individuals underestimate the degree of vertical inequality. Note that this is a direct product of the systematic underestimation of the average manager salaries (i.e., there is a lot of mass in the group $0 \%-50 \%$ that should be distributed above $50 \%)$.

Table A. 2 presents evidence on the heterogeneity of the average error, absolute error and willingness to pay for information. The first set of three columns correspond to perceptions about average peer salary, while the second set of three columns correspond to perceptions about average manager salary. The first row of Table A. 2 shows the averages over the entire subject pool. The rest of the rows break down these averages by different subgroups: females vs. males, above and below 4 years of tenure, higher vs. lower paybands, sales vs. non-sales roles, and front office vs. back office roles. In each of these breakdowns, we report the pvalue of the test of the null hypothesis that the relevant average is the same across the two sub-groups.

The most important result from this table is that the patterns are qualitatively consistent across all different subgroups: the bias on peer salary is always small and positive; the bias on manager salary is always negative and large; the mean absolute error on peer salary is always substantial; the absolute error on manager salary is always more than twice as large as the one for peer salary; and the willingness to pay is always in the neighborhood of $\$ 300$. This evidence suggests that the results are not driven by any specific group of the population.

There are, however, some differences in magnitudes across the different subgroups. Due to the large sample size, we have enough statistical power to detect even small differences, and for that reason many of the differences are statistically significant. However, a large majority of the differences are economically small. We mention below some of the exceptions. Regarding the bias on peer salary, the most notable exception is the difference by tenure: a
systematic bias of 0% for employees with less than 4 years of tenure vs. 5% for employees with more than 4 years of tenure. Regarding the mean absolute error on peer salary, there are no notable differences. Regarding the bias on manager salary, the most notable difference is between front (-10%) vs. back office (-24%) roles. Regarding the mean absolute error on manager salary, the most notable difference is again between front (25%) and back office (36\%) employees, which arises mechanically from the differences in biases. Regarding the WTP for peer salary, the most notable difference is by tenure: $\$ 367.38$ for higher tenure vs. $\$ 308$ for lower tenure. Regarding the WTP for manager salary, the most notable difference is by front office (\$344.3) versus back office (\$292.5) roles.

A. 4 Further Analysis on Learning

Figure A. 2 provides more details about the estimation of the learning model. The top panels (a and b) correspond to perceptions of average peer salary, while the bottom panels (c and d) correspond to perceptions of average manager salary. In each of the four panels, the y-axis indicates the "revision" (i.e., the value of the posterior belief minus the value of the prior belief). The x-axis shows the "perception gap" (i.e., the value of the signal minus the value of the prior belief). Intuitively, the x -axis shows how much potential for revision there is, and the y-axis shows the actual revision. The gray dots correspond to the raw data. If individuals fully adjust in the direction of the signal, we would expect the gray dots to lie on the 45 -degree line; if individuals do react to the signal at all, we would expect the dots to lie on a horizontal line.

Figure A.2.a corresponds to the random sample of subjects who were randomly chosen not to be shown the signal about average peer salary. There is a small but statistically significant association between revisions and perception gaps, which represents the spurious reversion to the signal. In other words, a few individuals revised their beliefs in the direction of the signal even though they were not shown the signal. This small degree of spurious reversion to the signal is consistent with other studies (Bottan and Perez-Truglia, 2017; Fuster et al., 2018), and is easier to explain. It is possible that individuals think harder the second time they are asked about their belief. It is possible that individuals are less likely to make typos when asked a second time. Also, it is possible that some individuals searched for information about the peer salary in the time separating the elicitation of prior beliefs and posterior beliefs.

Figure A.2.b corresponds to the random sample of subjects who were randomly chosen to be shown the signal about average peer salary. There is a large and statistically significant association between revisions and perception gaps. Moreover, this association is much stronger for individuals who were shown the signal (slope of 0.68 , from panel (b)) relative to individuals who were not shown the signal (slope of 0.14, from panel (a)). Note that the
learning model that we use in the main specification purges the spurious reversion to the signal, which to a first approximation is equal to substracting the slope from panel (b) from that of panel (a) (i.e., the degree to which subjects revert to the signal because they were randomly shown the signal). Lastly, for the sake of completeness, Figures A.2.c and A.2.d are equivalent to Figures A.2.a and A.2.b, only that they correspond to beliefs about manager salary instead of peer salary. The results are similar.

The above analysis measures how signals of peer salary affect beliefs about peer salary and how signals about manager salary affect beliefs about manager salary. In principle, it is possible for the signal of peer salary to affect beliefs about manager salary, or vice-versa. We explore this possibility with A.3. Panels (a) and (b) of Figure A. 3 just reproduce panels (a) and (b) from 3 from the body of the paper (i.e., the binned scatterplot representations of the Bayesian learning model). Panel (c) of Figure A. 3 is similar to panel (a), only that the dependent variable is the revision about the manager salary: that is, this figure measures whether the signals about the average peer salary had a causal effect on the subsequent beliefs about the average manager salary. The slope is close to zero and statistically insignificant. In other words, individuals used the signal about peer salary to update beliefs about peer salary, but did not use signals about the average peer salary to update beliefs about the average manager salary. For the sake of completeness, we panel (d) of A. 3 is similar to panel (b), only that the dependent variable is the revision about the peer salary: that is, it measures whether the signal about manager salary had a causal effect on the beliefs about peer salary. Note that this should be impossible, because the posterior beliefs about peer salary are always elicited before the provision of the signal about the manager salary. As expected, Figure A.3.d shows that the signal about the manager salary does not have a causal effect on the reported beliefs on peer salary. ${ }^{48}$

We can assess whether certain subgroups of the population were more likely to incorporate the signals in their posterior beliefs. Table A. 3 measures the heterogeneity in learning rates by subgroups of the population. Each column corresponds to a different subgroup: column (1) breaks down the sample by gender, column (2) by tenure, column (3) by payband, column (4) by sales role and column (5) by front versus back office. The top and bottom halves of each column correspond to the estimated learning rates for each subgroup - e.g., in column (1), the top half corresponds to the results for females and the bottom half corresponds to the results for males. The table also reports p-values from the test of the null hypothesis that the learning rates are equal between the two subgroups. The results from Table A. 3 indicate that all the differences in learning rate are small in magnitude. For instance, the

[^26]learning rate for peer salary is 0.536 for females and 0.456 for males, with a difference p -value of 0.413 ; while the learning rate for manager salary is 0.673 for females and 0.748 for males, with a difference p-value of 0.920 . Moreover, only one of the ten differences (five for peer salary and five for manager salary) is statistically significant at conventional levels.

A. 5 Linearity and Symmetry Tests

This section discusses and relaxes some of the implicit assumptions from the baseline regression model. First, the model assumes that the relationship between behavior is (log-log) linear. To assess whether this is a reasonable approximation, we provide binned-scatterplot versions of the instrumental variables regressions. To do this, we compute the first stage of the regression, and then use a binned scatterplot for the second stage of the regression (i.e., splitting the endogenous variable in 20 bins of equal size and using the bin dummies as right hand size variables). The results are presented in Figure A.4. The three panels on the left correspond to the peer elasticities, while the three panels on the right correspond to the manager elasticities. We present results for the main three outcomes: the first row corresponds to hours worked, the second row corresponds to emails sent, and the third row corresponds to sales performance. First, these binned scatterplots show that the results do not seem to be driven by any outliers (i.e., the relationships are not driven by a single bin). Second, these binned scatterplots suggests that the linear model is a reasonable approximation.

Another potential deviation from the baseline model is that of asymmetry. For example, (Card et al., 2012) report that their transparency intervention had a large effect on individuals with salaries below the average peer salary, but had no effects on employees above the average peer salary. In principle, there are substantial differences in the nature of the data and the intervention that makes it challenging to compare directly between our results and those of (Card et al., 2012). For example, unlike in our information intervention, the intervention from Card et al. (2012) revealed to subjects that their salary could be looked up by others. This distinction between observing others and being observed by others has been shown to be quite consequential and thus could then be responsible for the asymmetries: for example, see Perez-Truglia and Cruces (2017) in the case of campaign contributions, and Perez-Truglia and Troiano (2015) in the case of tax compliance.

The first form of assymetry that we explore is the one closest to Card et al. (2012). This specification is similar to the baseline equation 2, only that it allows the effect of peer salary to have a kink around own-salary:

$$
\begin{equation*}
\log \left(Y_{i}\right)=\eta_{0}+\eta_{\text {own }} \cdot \log \left(O_{i}\right)+\eta_{\text {peer }}^{\text {below }} \cdot \mathbb{1}_{P_{i}^{\text {post }} \leq O_{i}} \cdot \log \left(P_{i}^{\text {post }}\right)+\eta_{\text {peer }}^{\text {above }} \cdot \mathbb{1}_{P_{i}^{\text {post }} \geq O_{i}} \cdot \log \left(P_{i}^{\text {post }}\right) \tag{A.4}
\end{equation*}
$$

For example, $\left\{\eta_{\text {peer }}^{\text {above }}<0, \eta_{\text {peer }}^{\text {below }}=0\right\}$ would suggest that employees care about the average peer salary but, once their own salary surpasses the peer average, they no longer care about it. ${ }^{49}$ Note that, since the perceived manager salary is always above the own salary, this form of asymmetry is not applicable to vertical comparisons.

Table A. 4 presents the results on this form of asymmetry. The first row presents the results from the original specification, which are identical to the results from Table 3. The second and third rows are from the asymmetric specification from equation (A.4). In the null hypothesis of symmetric effects, these two coefficients should be equal to each other - the bottom of the table reports the p-value of this difference test. Column (4) presents results for the form of behavior (firm exit) that is most closely related to the outcome studied in Card et al. (2012) (stated intention to leave the firm). For this outcome, we find an asymmetry that is qualitatively consistent with the asymmetry reported in Card et al. (2012): the peer elasticity is large (0.489) and highly significant when the own salary is below the peer salary, but close to zero (-0.099) and statistically insignificant when the own salary is above the peer salary - the difference between these two coefficients is statistically significant (p -value=0.047). However, when it comes to the elasticities for effort and performance, we do not find any robust evidence of this form of asymmetry. If anything, the point estimates are skewed in the opposite direction, with two of the differences being statistically insignificant (p-values 0.518 and 0.974) and one being statistically significant (p -value $=0.078$). Given the precision of the point estimates, we cannot rule out some moderate asymmetries. However, the evidence does confirm that the symmetric approach from the baseline model is a reasonable approximation.

We can also look at a second form of asymmetry that has not been explored before: individuals may respond more strongly if they update upwards (e.g., if they find that peers make more than previously thought) than if they update downwards (e.g., if they find that peers make less than previously thought). This type of asymmetry could arise for a number of reasons. They may be mechanical reasons for these asymmetries: e.g., it may be easier for individuals to respond to downward revisions by working harder than responding to upward revisions by working less hard (or vice-versa). If there is loss aversion, then the loses from upward revisions may be greater, in absolute value, than the gains from the downward revisions. On the contrary, if individuals have the ability to ignore bad news to manage their self-esteem (Eil and Rao, 2011), then we would expect the opposite: the gains from downward updates should be greater, in absolute value, than the loses from upward updates.

Unlike the previous form of asymmetry, this form of asymmetry can be estimated for horizontal as well as vertical comparisons. We can expand the baseline model as follows:

[^27]\[

$$
\begin{align*}
\log \left(Y_{i}\right)=\eta_{0} & +\eta_{\text {own }} \cdot \log \left(O_{i}\right)+\eta_{\text {peer }}^{u p} \cdot \mathbb{1}_{P_{i}^{\text {post }} \geq P_{i}^{\text {prior }} \cdot} \cdot \log \left(P_{i}^{\text {post }}\right)+\eta_{\text {peer }}^{\text {down }} \cdot \mathbb{1}_{P_{i}^{\text {post }} \leq P_{i}^{\text {prior }} \cdot} \cdot \log \left(P_{i}^{\text {post }}\right)+ \\
& +\eta_{m g r}^{u p} \cdot \mathbb{1}_{M_{i}^{\text {post }} \geq M_{i}^{\text {prior }} \cdot} \cdot \log \left(M_{i}^{\text {post }}\right)+\eta_{m g r}^{\text {down }} \cdot \mathbb{1}_{M_{i}^{\text {post }} \leq M_{i}^{\text {prior }} \cdot} \cdot \log \left(M_{i}^{\text {post }}\right) \quad \text { (A.5) } \tag{A.5}
\end{align*}
$$
\]

Table A. 5 presents the results on this second form of asymmetry. The first couple of rows correspond to the original (symmetric) specification, which are identical to the first rows of Table 3. The second and third pairs of rows correspond to the asymmetric specification from equation (A.5). In the null hypothesis of symmetric effects, the coefficients on upward and downward revisions should be equal to each other - the bottom of the table reports the p-value of this test. Regarding the horizontal comparisons, Table A. 5 shows that we reject the null hypothesis of symmetric effects in only one of the seven tests (for sales performance, with a p-value of 0.002). For this outcome, it seems like employees are more responsive to bad news (i.e., peers earning more than previously thought) than to good news. However, given the large number of tests conducted in this table and the lack of consistency in the direction of the assymetry across outcomes, we must take this result with a grain of salt. Regarding the vertical comparisons, we cannot reject the null hypothesis of symmetric effects in any of the seven tests. However, we must note that the coefficients on downward revisions are quite imprecisely estimated (e.g., in column (1), the standard errors for the downward revisions are six times larger than for the upward revisions). This difference in precision comes from the fact that only a minority of employees overestimate the manager salary and thus make downward revisions. In sum, the results from Table A. 5 do not provide robust evidence of this form of asymmetry. This result implies that the symmetric approach of the baseline model is a reasonable approximation. However, due to the precision of the estimates, we cannot rule out some moderate asymmetries.

A. 6 Effects on Other Email-Based Outcomes

The analysis from section 6 uses a measure of effort equal to the number of emails sent by the employee. Our email data is richer than that, including the date, recipient and sender of every email. In this section, we exploit the richness of this data to analyze the effects on alternative email-based outcomes.

The results are presented in Table A.6. Column (1) corresponds to the results from the baseline outcome: the number of emails sent. By construction, these coefficients are identical to the coefficients from column (2) of Table 3. In column (2) of Table A.6, the dependent variable is the number of emails received. While the number of emails sent is
more directly linked to the employee effort, there is still an indirect effect of effort on emails received. For instance, if an employee increases the number of emails sent, we would expect some of those additional emails to be replied and thus to translate into additional emails received. Additionally, if the employee takes on more responsibility while working longer hours, that could also translate into more emails received. The results suggest that the peer and manager elasticities for emails received (column (2)) are qualitatively consistent with the corresponding elasticities for emails sent (column (1)), only that smaller in magnitude - this difference is statistically significant for manager elasticity (p -value $=0.096$), but statistically insignificant for the manager elasticity (p -value=$=0.310$).

The rest of the columns from Table A. 6 break down the effects on the emails sent by the identity of the receivers. First, we break down the number of emails sent by emails sent to emails accounts inside the same firm (column (3)) and emails sent outside of the firm (column (4)). The effects on these two outcomes are qualitative consistent - moreover, we cannot reject the null hypothesis that the two effects are equal to each other (p -values of 0.650 and 0.268 for peer and manager elasticities, respectively). The last three columns of Table A. 6 break down the emails sent to other employees by the rank of those receivers: employees who are in higher paybands (column (5)), employees who are in the same payband (column (6)), and employees who are in lower paybands (column (7)). The results suggest that while the peer elasticity operates mainly through emails sent to lower-ranked employees, while the manager elasticity operates mainly through emails sent to same- and higher-ranked employees. However, these results have to be taken with a grain of salt, because we cannot reject the null hypothesis that the coefficients are the same across the three columns (p-values of 0.464 for peer elasticity and 0.161 for manager elasticity).

A. 7 Heterogeneity of Peer and Manager Elasticities

Table A. 7 presents results on the heterogeneity of the peer and manager elasticities. In all the regressions, the dependent variable is the number of emails sent. We focus on this outcome because it is available for the entire subject pool and thus it provides the most precision to detect heterogeneities. The top and bottom halves of the table present elasticities for different subgroups of the population. The first five columns use the same splits employed in the other analyses of heterogeneity: female vs. male (column (1)), higher vs. lower tenure (column (2)), higher vs. lower paybands (column (3)), sales vs. non-sales roles (column (4)), and front-office vs. back-office roles (column (5)). The bottom of Table A. 7 provides p-values for the test of the null hypothesis that the elasticity is equal across a given pair of groups. We do not find any statistically significant evidence of heterogeneity: none of the ten differences are significant at conventional levels. This evidence suggests that our results are not driven
by any specific group of the population. However, due to the precision of the coefficients, we cannot reject moderate differences either.

The last column of Table A. 7 explores an additional form of heterogeneity that is related to a potential explanation for the peer elasticity with respect to effort and performance. If individuals use the information on relative salary to infer the returns to effort, the peer elasticity should be heterogeneous with respect to the employee's perceived productivity rank. ${ }^{50}$ When an unproductive employee finds out that her peers have higher salaries, that should constitute a positive signal about the returns to effort and should incentivize the employee to work harder. On the contrary, when a productive employee finds out that her peers have higher salaries, that should constitute a negative signal about the returns to effort and should incentivize the employee to work less hard. To test for this type of heterogeneity, column (6) of Table A. 7 breaks down the peer and manager elasticities by whether the employee's perceived productivity rank is below or above the median. ${ }^{51}$ We do not find any evidence of this form of heterogeneity: for peer elasticity, the two point estimates are close to each other and statistically indistinguishable from one another (p -value=0.788); similarly, the manager elasticities are close statistically indistinguishable (p -value=0.774). This constitutes evidence that the peer and manager elasticities do not operate through beliefs about the returns to effort.

[^28]Figure A.1: Dispersion in Peer and Manager Salary, Perceptions and Reality

Notes: In panel (a), the solid histogram corresponds to the difference between perceived average peer salary and own salary as share of own salary; and the hollow histogram corresponds to the difference between actual average peer salary and own salary as share of own salary. Panel (b) is equivalent to panel (a), only that about average manager salary instead of average peer salary.

Figure A.2: Learning from Information about Peer and Manager Salaries
a. Peer: No Info Given
c. Manager: No Info Given

b. Peer: Info Given

d. Manager: Info Given

Notes: The y-axis corresponds to the respondent's update: i.e., the posterior belief minus the prior belief. The x-axis corresponds to the difference between the feedback (e.g., the average salary among the random sample of 5 peers) and the prior belief. The panels in the top row correspond to beliefs about average peer salary: panel (a) corresponds to subjects who did not receive feedback about peer salary and panel (b) corresponds to subjects who did receive it. The panels in the bottom row correspond to beliefs about average manager salary: panel (a) corresponds to subjects who did not receive feedback about manager salary and panel (b) corresponds to subjects who did receive it. The scatterplots correspond to the raw data, with binned scatterplots superimposed. The slopes reported in the graphs correspond to a linear regression, with standard errors reported in parentheses (clustered at position level).

Figure A.3: Learning from Information about Peer and Manager Salaries

c. Effect of Peer Feedback on Belief

About Managers

b. Effect of Manager Feedback on Belief About Managers

d. Effect of Manager Feedback on Belief About Peers

Notes: Panel (a) and (b) presents partial regression binned scatterplot of the $\overline{\text { Bayesian learning equation (4) presented in section 2.2. The y-axis corresponds }}$ to the respondent's update: i.e., the posterior belief minus the prior belief. The x -axis corresponds to the information treatment: the difference between the feedback chosen for the employee (e.g., the average salary among the random sample of 5 peers) and the employee's prior belief, multiplied by a dummy variable for whether the information was randomly chosen to be shown to the respondent. The regression controls for the difference between the feedback chosen for the employee and the employee's prior belief; also, it controls for the prior belief and position title dummies. The slope comes from a linear regression, with standard errors reported in parentheses (clustered at position level). Panel (a) shows how the feedback about peer salary affects posterior beliefs about peer salary; while panel (b) shows how the feedback about manager salary affects posterior beliefs about manager salary. Panel (c) shows how the feedback about peer salary affects beliefs about manager salary: it is identical to panel (a) except that the dependent variable is the update about manager salary. Panel (d) shows how the feedback about manager salary affects beliefs about peer salary: it is identical to panel (b) except that the dependent variable is the update about peer salary.

Figure A.4: Binned Scatterplots of the Effects of Salary Perceptions on Effort and Performance

Notes: Binned scatterplot versions of the regressions reported in Table 3. Each pair of panels in a row corresponds to a single instrumental variables regression following the specification described in section 2.2. The dependent variables is the average behavior in the 90 days after the completion of the survey: Hours is the daily number of hours worked; Emails is the daily number of emails sent; and Sales is the sales performance index. The independent variables are: PeerSalary (the posterior belief about the average peer salary) and Manager-Salary (the posterior belief about the average manager salary). The regressions control for the lagged dependent variable, (log) own salary and five productivity rating dummies. Each panel reports the corresponding coefficient from the instrumental variable regression, with standard errors in parentheses (clustered at position level).

Table A.1: Comparison of Average Characteristics in Subject Pool and Other Groups of Employees

	All	Invited		Responded	
	(1)	No (2)	Yes (3)	No (4)	Yes (5)
Female	$\begin{gathered} 0.71 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.65 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.76 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.79 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.73 \\ (0.01) \end{gathered}$
Age	$\begin{aligned} & 30.14 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 31.33 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 29.13 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 29.04 \\ & (0.12) \end{aligned}$	$\begin{aligned} & 29.20 \\ & (0.11) \end{aligned}$
College (or Higher)	$\begin{gathered} 0.87 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.92 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.83 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.81 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.86 \\ (0.01) \end{gathered}$
Tenure (Years)	$\begin{gathered} 5.09 \\ (0.04) \end{gathered}$	$\begin{gathered} 5.32 \\ (0.07) \end{gathered}$	$\begin{gathered} 4.90 \\ (0.05) \end{gathered}$	$\begin{gathered} 4.80 \\ (0.08) \end{gathered}$	$\begin{gathered} 4.99 \\ (0.08) \end{gathered}$
Own Salary (Masked)	$\begin{gathered} 1.00 \\ (0.01) \end{gathered}$	$\begin{gathered} 1.39 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.66 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.60 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.01) \end{gathered}$
Avg. Peer Salary (Masked)	$\begin{gathered} 1.00 \\ (0.01) \end{gathered}$	$\begin{gathered} 1.39 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.67 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.60 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.72 \\ (0.01) \end{gathered}$
Avg. Manager Salary (Masked)	$\begin{gathered} 3.38 \\ (0.04) \end{gathered}$	$\begin{gathered} 4.61 \\ (0.08) \end{gathered}$	$\begin{gathered} 2.52 \\ (0.03) \end{gathered}$	$\begin{gathered} 2.15 \\ (0.04) \end{gathered}$	$\begin{gathered} 2.84 \\ (0.05) \end{gathered}$
Observations	(Masked)	(Masked)	3,841	1,781	2,060

Notes: Average pre-treatment characteristics of the employees, with standard errors in parentheses. Female takes the value 1 if the employee is female and 0 otherwise. Age is the employee's age (in years) as of March 2017. College takes the value 1 if the employee finished College or a higher degree, and 0 otherwise. Tenure is the number of years from the date when the employee joined the company until March 2017. Own Salary is the employee base monthly salary as of March 2017. Avg. Peer Salary and Avg. Manager Salary are the true average and peer salaries. Column (1) corresponds to the entire subject pool. Columns (2) and (3) split the universe of employees by whether they were invited (or not) to participate in the survey. Columns (4) and (5) split the sample of employees invited to the survey by whether they responded to the survey or not. Due to the sensitive nature of the data, we do not report the unit of measurement for the salary variables or the total number of employees in the organization.

Table A.2: Heterogeneity in Misperceptions and Willingness to Pay for Information

All	Perceived Peer Salary			Perceived Manager Salary			Observations 2060
	$\begin{aligned} & \text { Perc.-Actual } \\ & 0.03(0.003) \end{aligned}$	$\begin{aligned} & \left\|\frac{\text { Perc. }- \text { Actual }}{\text { Actual }}\right\| \\ & 0.12(0.002) \end{aligned}$	$\begin{gathered} \text { WTP } \\ 338.28(9.550) \end{gathered}$	$\begin{aligned} & \text { Perc.-Actual } \\ & -0.14(0.008) \end{aligned}$	$\begin{aligned} & \left\|\frac{\text { Perc.- }- \text { Actual }}{\text { Actual }}\right\| \\ & 0.28(0.005) \end{aligned}$	$\begin{gathered} \text { WTP } \\ 328.68 \text { (9.788) } \end{gathered}$	
By Gender:							
Male	0.02 (0.007)	0.12 (0.005)	369.57 (18.226)	-0.14 (0.016)	0.29 (0.012)	355.27 (18.689)	554
Female	0.03 (0.004)	0.11 (0.003)	325.71 (11.192)	-0.14 (0.008)	0.28 (0.006)	317.98 (11.474)	1506
Diff p-value	0.32	0.16	0.03	0.64	0.14	0.08	
By Tenure:							
> 4ys	0.05 (0.005)	0.12 (0.004)	367.38 (13.845)	-0.16 (0.010)	0.28 (0.007)	330.01 (13.767)	1054
$\leq 4 y s$	0.00 (0.005)	0.11 (0.003)	307.96 (13.050)	-0.12 (0.011)	0.28 (0.008)	327.29 (13.927)	1006
Diff p-value	<0.01	<0.01	<0.01	<0.01	0.86	0.88	
By Payband:							
Higher Payband	0.03 (0.006)	0.12 (0.004)	355.53 (14.293)	-0.16 (0.011)	0.27 (0.008)	325.29 (14.530)	898
LowerPayband	0.02 (0.004)	0.11 (0.003)	324.29 (12.825)	-0.13 (0.011)	0.29 (0.007)	331.40 (13.247)	1162
Diff p-value	0.38	<0.01	0.10	0.01	0.25	0.75	
By Sales Role:							
Sales	0.04 (0.005)	0.11 (0.004)	328.48 (13.947)	-0.09 (0.011)	0.25 (0.007)	347.04 (14.667)	972
Non - Sales	0.02 (0.005)	0.12 (0.003)	346.69 (13.103)	-0.19 (0.011)	0.31 (0.007)	312.85 (13.113)	1088
Diff p-value	<0.01	0.75	0.34	<0.01	<0.01	0.08	
By Role:							
Front Office	0.03 (0.004)	0.11 (0.003)	338.31 (11.420)	-0.10 (0.008)	0.25 (0.006)	344.34 (11.939)	1454
Back Office	0.02 (0.007)	0.12 (0.005)	338.22 (17.435)	-0.24 (0.015)	0.36 (0.011)	292.45 (16.906)	606
Diff p-value	0.22	0.02	0.99	<0.01	<0.01	0.01	

Notes: Average error in prior beliefs, absolute error in prior beliefs, and willingness to pay (WTP) for information (the average salary among a random sample of five peers/managers). Standard errors in parenthesis. The left half of the table corresponds to average peer salary; the right half of the table corresponds to average manager salary. The first row corresponds to the full sample. The rest of the rows correspond to different splits of the sample. P-values correspond to the test of the null hypothesis that the average is equal across the two subgroups. The average WTP is computed from interval data: following Andersen et al. (2006), we assume that the average of the WTP inside each bin is equal to the midpoint of the bin and, for the highest bin, is equal to 150% of the value of the lower bound.

Table A.3: Heterogeneity in Learning Rates

	(1)	(2)	(3)	(4)	(5)
	Female	$>4 y s$	High-Band	Sales	Front-Office
$\alpha_{\text {peer }}$	$0.536^{* * *}$	$0.516^{* * *}$	$0.537^{* * *}$	$0.568^{* * *}$	$0.550^{* * *}$
	(0.080)	(0.093)	(0.110)	(0.069)	(0.059)
$\alpha_{\text {manager }}$	$0.673^{* * *}$	$0.630^{* * *}$	$0.714^{* * *}$	$0.633^{* * *}$	$0.682^{* * *}$
	(0.040)	(0.056)	(0.045)	(0.030)	(0.030)
Observations	1,506	1,054	898	972	1,454
	Male	$\leq 4 y s$	Low-Band	Non-Sales	Back-Office
$\alpha_{\text {peer }}$	$0.456^{* * *}$	$0.508^{* * *}$	$0.478^{* * *}$	$0.458^{* * *}$	$0.415^{* * *}$
	(0.054)	(0.049)	(0.033)	(0.083)	(0.128)
$\alpha_{\text {manager }}$	$0.748^{* * *}$	$0.791^{* * *}$	$0.677^{* * *}$	$0.713^{* * *}$	$0.697^{* * *}$
Observations	(0.058)	(0.036)	(0.049)	(0.047)	(0.057)
P-value Diff.:	554	1,006	1,162	1,088	606
Peer	0.413	0.940			
Manager	0.285	0.016	0.610	0.306	0.338

Notes: Significant at ${ }^{*} 10 \%,{ }^{* * 5} \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Estimation of Bayesian learning equation (4) presented in section 2.2 - for more details about the regression specification, such as outcomes, independent variables and data definitions, see the notes to Table 3. $\alpha_{p e e r}$ and $\alpha_{m g r}$ corresponds to the learning rates for peer and manager beliefs (i.e., the weight that the individual assigns to the signal relative to the weight assigned to the prior belief), which are estimated from separate regressions. Each column corresponds to a different split of the sample (e.g., females vs. males), and the p-values correspond to the test of the null hypothesis that the learning rates are equal across the two subgroups.

Table A.4: Asymmetry of Effects of Perceptions about Peer Salaries: Above vs. Below Own Salary

	Effort and Performance			Career Moves			
	$\log (\text { Hours })$ (1)	$\begin{gathered} \log (\text { Emails }) \\ (2) \end{gathered}$	$\log (\text { Sales })$ (3)	P(Quit) (4)	$\begin{gathered} \mathrm{P}(\text { Transfer }) \\ (5) \end{gathered}$	$\begin{gathered} \log (\text { Salary }) \\ (6) \end{gathered}$	$P(\Delta \text { Title })$ (7)
Symmetric Model: Log (Peer-Salary)	$\begin{gathered} -0.943^{* *} \\ (0.472) \end{gathered}$	$\begin{gathered} -0.431^{* *} \\ (0.210) \end{gathered}$	$\begin{gathered} -0.731^{* *} \\ (0.297) \end{gathered}$	$\begin{aligned} & 0.232^{* *} \\ & (0.106) \end{aligned}$	$\begin{gathered} 0.093 \\ (0.106) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.114 \\ (0.123) \end{gathered}$
Asymmetric Model: Log (Peer-Salary) Above Own-Salary ${ }^{(i)}$ Below Own-Salary ${ }^{(i i)}$	$\begin{aligned} & -0.448 \\ & (0.600) \\ & -2.357 \\ & (2.582) \end{aligned}$	$\begin{aligned} & -0.402 \\ & (0.341) \\ & -0.421 \\ & (0.392) \end{aligned}$	$\begin{gathered} -0.304 \\ (0.276) \\ -1.114^{* * *} \\ (0.388) \end{gathered}$	$\begin{gathered} 0.489^{* * *} \\ (0.184) \\ -0.099 \\ (0.179) \end{gathered}$	$\begin{gathered} -0.062 \\ (0.162) \\ 0.291 \\ (0.290) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.077) \\ 0.023 \\ (0.068) \end{gathered}$	$\begin{gathered} 0.083 \\ (0.140) \\ 0.151 \\ (0.191) \end{gathered}$
P-value Test: H_{0} : $(\mathrm{i})=(\mathrm{ii})$	0.518	0.974	0.078	0.047	0.383	0.911	0.750
Mean Outcome	5.98	35.57	0.48	0.05	0.09	0.92	0.10
Std. Dev. Outcome	1.88	44.93	0.23	0.21	0.28	0.70	0.30
Observations	602	2,060	791	2,060	2,060	2,060	2,060

Notes: Significant at ${ }^{*} 10 \%,{ }^{* * 5} \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Each column corresponds to a different pair of instrumental variables regressions. In "Symmetric Model" we use the baseline specification from Table 3 - for more details about the regression specification, such as outcomes, independent variables and data definitions, see the notes to that table. In "Asymmetric Model", we use the specification described in Appendix A.5, which differs from the baseline specification in that it allows the effect of Peer Salary to be different depending on whether Peer Salary is below or above Own-Salary.

Table A.5: Asymmetry of Effects of Perceptions about Peer and Manager Salaries: Upwards vs. Downwards Revisions

	Effort and Performance			Career Moves			
	$\log (\text { Hours })$ (1)	$\begin{gathered} \log (\text { Emails }) \\ (2) \end{gathered}$	$\begin{gathered} \log (\text { Sales }) \\ \hline(3) \end{gathered}$	P(Quit) (4)	P(Transfer) (5)	$\log (\text { Salary })$ (6)	$P(\Delta \text { Title })$ (7)
Symmetric Model:							
Log (Peer-Salary)	$\begin{gathered} -0.943^{* *} \\ (0.472) \end{gathered}$	$\begin{gathered} -0.431^{* *} \\ (0.210) \end{gathered}$	$\begin{gathered} -0.731^{* *} \\ (0.297) \end{gathered}$	$\begin{aligned} & 0.232^{* *} \\ & (0.106) \end{aligned}$	$\begin{gathered} 0.093 \\ (0.106) \end{gathered}$	$\begin{gathered} 0.004 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.114 \\ (0.123) \end{gathered}$
Log (Manager-Salary)	$\begin{aligned} & 0.150^{* *} \\ & (0.074) \end{aligned}$	$\begin{gathered} 0.130^{* * *} \\ (0.041) \end{gathered}$	$\begin{gathered} 0.106 \\ (0.122) \end{gathered}$	$\begin{aligned} & -0.016 \\ & (0.023) \end{aligned}$	$\begin{gathered} -0.003 \\ (0.030) \end{gathered}$	$\begin{gathered} 0.002 \\ (0.011) \end{gathered}$	$\begin{gathered} 0.012 \\ (0.029) \end{gathered}$
Asymmetric model: Log (Peer-Salary)							
Upwards ${ }^{(i)}$	$\begin{gathered} 0.051 \\ (0.887) \end{gathered}$	$\begin{gathered} -0.969^{* *} \\ (0.480) \end{gathered}$	$\begin{gathered} 0.081 \\ (0.257) \end{gathered}$	$\begin{gathered} 0.254^{*} \\ (0.154) \end{gathered}$	$\begin{gathered} 0.316 \\ (0.245) \end{gathered}$	$\begin{gathered} -0.064 \\ (0.086) \end{gathered}$	$\begin{gathered} 0.194 \\ (0.230) \end{gathered}$
Downwards ${ }^{(i i)}$	$\begin{gathered} -1.930^{* *} \\ (0.798) \end{gathered}$	$\begin{gathered} 0.094 \\ (0.373) \end{gathered}$	$\begin{gathered} -1.426^{* * *} \\ (0.420) \end{gathered}$	$\begin{gathered} 0.228 \\ (0.189) \end{gathered}$	$\begin{aligned} & -0.107 \\ & (0.131) \end{aligned}$	$\begin{gathered} 0.092 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.030 \\ (0.081) \end{gathered}$
Log (Manager-Salary)							
Upwards ${ }^{(i i i)}$	0.095	$0.154^{* *}$		-0.026	-0.025	-0.006	0.018
	(0.078)	(0.054)	(0.120)	(0.025)	(0.036)	(0.014)	(0.029)
Downwards ${ }^{(i v)}$	0.805	0.008	0.016	0.057	0.138	0.065	-0.042
	(0.542)	(0.255)	(0.227)	(0.075)	(0.101)	(0.048)	(0.107)
P-value Test: H_{0} : (i)=(ii)	0.144	0.153	0.002	0.921	0.179	0.164	0.482
P-value Test: H_{0} : (iii)=(iv)	0.204	0.612	0.621	0.313	0.152	0.186	0.580
Mean Outcome	5.98	35.57	0.48	0.05	0.09	0.92	0.10
Std. Dev. Outcome	1.88	44.93	0.23	0.21	0.28	0.70	0.30
Observations	602	2,060	791	2,060	2,060	2,060	2,060

Notes: Significant at ${ }^{*} 10 \%,{ }^{* *} 5 \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Each column corresponds to a different pair of instrumental variables regressions. In "Symmetric Model" we use the baseline specification from Table 3-for more details about the regression specification, such as outcomes, independent variables and data definitions, see the notes to that table. In "Asymmetric Model", we use the specification described in Appendix A.5, which differs from the baseline specification in that it allows the effects of Peer Salary and Manager Salary to be different depending on whether the individual revised her prior beliefs upwards or downwards.

Table A.6: Effects of Perceived Peer and Manager Salaries on Various Email Outcomes

	By Direction		Sent to		Sent to Pay Band		
	Sent (1)	Received (2)	Inside (3)	Outside (4)	Higher (5)	Same (6)	Lower (7)
Log (Peer-Salary)	$\begin{gathered} \hline-0.431^{* *} \\ (0.210) \end{gathered}$	$\begin{gathered} \hline-0.198^{* *} \\ (0.092) \end{gathered}$	$\begin{gathered} \hline-0.400^{*} \\ (0.207) \end{gathered}$	$\begin{gathered} \hline-0.602 \\ (0.394) \end{gathered}$	$\begin{gathered} 0.046 \\ (0.320) \end{gathered}$	$\begin{gathered} -0.061 \\ (0.276) \end{gathered}$	$\begin{gathered} -1.076 \\ (0.666) \end{gathered}$
Log (Manager-Salary)	$\begin{gathered} 0.130^{* * *} \\ (0.041) \end{gathered}$	$\begin{gathered} 0.041 \\ (0.035) \end{gathered}$	$\begin{gathered} 0.139^{* * *} \\ (0.042) \end{gathered}$	$\begin{gathered} 0.047 \\ (0.072) \end{gathered}$	$\begin{gathered} 0.249^{* * *} \\ (0.086) \end{gathered}$	$\begin{aligned} & 0.123^{*} \\ & (0.065) \end{aligned}$	$\begin{gathered} -0.047 \\ (0.145) \end{gathered}$
P-value Diff.							
Peer	0.310		0.650		0.464		
Manager	0.096		0.268		0.161		
Observations	2,060	2,060	2,060	2,060	2,060	2,060	2,060

Notes: Significant at $* 10 \%, * * 5 \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Each column corresponds to a different instrumental variables regression. We always use the baseline specification from Table 3 - for more details about this specification see the notes to that table. Each column uses a different dependent variable: the average number of emails sent in the 90 days following the survey (column (1)), the number of emails received (column (2)), the number of emails sent to email accounts inside the firm (column (3)), emails sent outside the firm (column (4)), emails sent to employees with a higher (column (5)), same (column (6)) and lower (column (7)) paybands.

Table A.7: Heterogeneity in Effects of Perceptions on Number of Emails Sent

	(1)	(2)	(3)	(4)	(5)	(6)
	Female	$>4 y s$	High-Band	Sales	Front-Office	High Rank
Log (Peer-Salary)	$-0.448^{* *}$	-0.215	-0.380	-0.548^{*}	-0.422^{*}	-0.321
	(0.224)	(0.312)	(0.277)	(0.283)	(0.231)	(0.366)
Log (Manager-Salary)	$0.155^{* * *}$	0.075	0.129^{*}	$0.196^{* *}$	$0.153^{* *}$	0.118
	(0.052)	(0.073)	(0.069)	(0.083)	(0.077)	(0.088)
Observations	1,506	1,054	898	972	1,454	750
	Male	$\leq 4 y s$	Low-Band	Non-Sales	Back-Office	Low Rank
Log (Peer-Salary)	-0.724	-0.616	-0.463	-0.135	-0.558	-0.443
	(0.707)	(0.474)	(0.342)	(0.387)	(0.613)	(0.270)
Log (Manager-Salary)	0.066	$0.205^{* * *}$	0.127^{*}	$0.130^{* *}$	0.094	$0.149^{* *}$
	(0.092)	(0.074)	(0.071)	(0.053)	(0.065)	(0.058)
Observations	554	1,006	1,162	1,088	606	1,310
P-value Diff.:						
Peer	0.710	0.479	0.851	0.389	0.835	0.788
Manager	0.394	0.213	0.991	0.505	0.559	0.774

Notes: Significant at ${ }^{*} 10 \%,{ }^{* * 5} \%,{ }^{* * *} 1 \%$. Standard errors in parentheses clustered at the position level. Each column corresponds to a different instrumental variables regression. We always use the baseline specification from Table 3 - for more details about this specification see the notes to that table. Each column corresponds to a different split of the sample (e.g., females vs. males), and the p-values correspond to the test of the null hypothesis that the learning rates are equal across the two subgroups.

B Email with Invitation to Survey

Dear [Employee's Full Name],
We would like to invite you to participate in a survey for [Bank's Name]'s employees. It takes less than 30 minutes to complete the survey and, as a token of our appreciation, you will be receiving a monetary reward - the average reward is around $\$ 30$.

Follow this link to take the survey
This survey is conducted by [Bank's Name] in collaboration with researchers from U.S. universities such as Harvard University. It will help us understand how to communicate with our employees.

You were selected at random to receive this invitation, and all your responses will be completely confidential.

If you have any difficulty responding to this survey, please reply to this email or use the following contact points:
[Bank's Contact 1]
[Bank's Contact 2]
[Bank's Contact 3]
If the link does not work, just copy and paste the following URL to your Internet browser: [Survey's URL]

Thank you for your participation. Your contribution will help to make [Bank's Name] a better place.

Sincerely,
Chief Economist, [Bank's Name]

C Survey Instrument

Dear colleagues,

You are invited to participate in a survey study conducted by [Researcher Names] from [Bank Name] in collaboration with a group of academic researchers from Harvard University and other universities from the United States. This survey is intended to teach us more about how [Bank Name] employees learn about their workplace, earnings and career prospects. The purpose is to find ways we can improve our communication about salaries and promotion, and to understand your beliefs about your future career with [Bank Name]. This study is aligned with one of three platforms in the five-year strategy of [Bank Name].

This survey should take less than 30 minutes to complete. All the information provided in this survey is 100% truthful. As a token of our appreciation for your participation, you will be able to earn a minimum of $\$ 9.75$ and up to $\$ 700$, based on your performance in a game included in this survey.

The rewards will be deposited in your payroll account by the end of Q2.

ALL SURVEY RESPONSES ARE COMPLETELY CONFIDENTIAL. Contact the Office of the Chief Economist should any issue arise.

Thank you in advance for your participation!

Sincerely,

Chief Economist, [Bank Name]

I I confirm that I am [Respondent Name] and I would like to take part in this study

To get a general picture of the people answering this survey, we need to know a few things about your background.

Where did you grow up?

Recent research on decision making shows that choices are affected by the context in which they are made. Differences in how people feel, in their previous knowledge and experience, and in their environment can influence the choices they make. To help us understand how people make decisions, we are interested in information about you, specifically whether you actually take the time to read the instructions; if you don't, some results may fail to tell us very much about decision making in the real world. To help us confirm that you have read these instructions, please select the "none of the above" option below. Thank you very much.

In this survey, you will be asked to guess the answer to some questions, and will be rewarded according to the accuracy of your answers. Take the following example:

What is the average height of women in this country (in centimeters)? [Note: we will reward you up to $\$ 2.61$ for accuracy]
0 cm

Note the message "we will reward you up to $\$ 2.61$ for accuracy." What we mean by that is that we will use a formula with the ACTUAL average height to reward you. The more accurate your answer is, the more money you will get, up to $\$ 2.61$.

Go ahead and provide your guess. This is a practice question, so it will not be scored.

Your guess was 150 cm . The truth is 153 cm . As a result, you would have been awarded $\$ 2.20$.

- If you had responded exactly the truth (153 cm), you would have been awarded $\$ 2.61$.
- If you had responded 10% above or below the truth (138 cm or 168 cm), then you would have been awarded $\$ 1.05$. - If you had responded 20% above or below the truth (123 cm or 183 cm), then you would have been awarded just $\$ 0.05$.

This formula was designed by economists. According to this formula, it is in your best interest to respond honestly.

We will reward you for guessing averages, and also for making other types of guesses. Whenever you see that there is a reward for your guess, please remember that it is in your best interest to respond what you truly believe.

Now, we want to ask you some questions related to salaries. In this survey, we always refer to the monthly basic salary: that is, your monthly salary WITHOUT specific allowances, WITHOUT bonus payments and WITHOUT tax \& other deductions. This is the salary specified in your contract.

To make sure that you understand this definition, please try to recall your basic salary and report it here, so we can show you how your answer compares to our records. Please be as exact as possible when reporting this amount, using "." for the decimal separator.

What is your current monthly basic salary from March of 2017? [Note: we will reward you up to $\$ 2.61$ for accuracy]

There is a discrepancy between the amount that you reported and our records: you reported a monthly basic salary of $\$ 782$, while the administrative records from [Bank Name] indicate an amount of $\$ 730$.

Remember, our definition of basic salary EXCLUDES specific allowances, EXCLUDES tax \& other deductions and corresponds to March of 2017.

Do you agree with the amount of $\$ 730$ shown in our records?YesNo

For the remainder of the survey, please keep in mind that all salaries correspond to this same definition: monthly basic salary for March 2017, WITHOUT specific allowances and WITHOUT tax \& other deductions.

Consider the other employees from the bank who work in your same position (Teller) and unit (Branch 10). According to our records, there are around $\mathbf{5 0}$ employees in this group.

What is the average monthly basic salary among all employees in your same position and unit as of March 2017?
[Notes: we will reward you up to $\$ 2.61$ for accuracy]

0

In the previous question, you reported to believe that the average monthly basic salary among employees similar to you was $\$ 848$ in March 2017. The next question is designed to assess how confident you feel about your response.

With what probability do you think that the real average could fall in each of the following bins? The probabilities must sum up to 100%. [Note: we will reward you up to $\$ 2.61$ for accuracy]

Below $\$ 763.20$	0
Between $\$ 763.20$ and $\$ 827.13$	0
Between $\$ 827.13$ and $\$ 868.88$	$\%$
Between $\$ 868.88$ and $\$ 932.81$	0
Above $\$ 932.81$	0
Total	0

We have taken a random sample of 5 employees who hold your same position (Teller) and work in your same unit (Branch 10), and calculated the average basic salary among them. With the following set of questions, we want to assess how much you would be willing to pay to obtain this information about average salary.

Below you are presented with 5 hypothetical scenarios. In each scenario, you will be given the choice of either seeing the information about average salary OR receiving extra money as part of your reward for responding to the survey.

We will randomly choose 20 survey respondents. If you are one of these 20 lucky respondents, one of the 5 scenarios will be randomly chosen to be implemented. As a result, it is in your best interest to respond honestly to these scenarios.

Please make your hypothetical choices below, and in the next screen you will find out if your responses will be implemented or remain hypothetical.

Scenario 1: Between the next two options, which one would you prefer?

Information about average salary	$\$ 1.30$
\bigcirc	\bigcirc

Scenario 2: Between the next two options, which one would you prefer?

Information about average salary	$\$ 6.52$

Scenario 3: Between the next two options, which one would you prefer?

Information about average salary

$\$ 26.09$

Scenario 4: Between the next two options, which one would you prefer?

Information about average salary	$\$ 130.46$

Scenario 5: Between the next two options, which one would you prefer?

You have NOT been selected among the 20 participants who will have one of their 5 scenarios implemented. As a result, your choices in the 5 scenarios remain hypothetical.

Please go to the next screen to continue with the survey.

Next, a group of individuals participating in this survey will be chosen to receive some information about the average salary in their same position and unit.

Please continue to the next screen to find out if you will be selected to receive this information.

You have been selected to receive the following information.
We have randomly chosen a random sample of 5 employees who work in your same position (Teller) and unit (Branch 10). The following is the average basic salary in this sample of 5 employees as of March of 2017: $\$ 861$.

Please take some time to read and understand this information carefully. When you are ready, proceed to the next screen.

We want to give you the opportunity to re-assess your answer to one of the previous questions. This opportunity is given automatically to all survey participants, regardless of their responses.

What is the average monthly basic salary among all employees who work in your same position (Teller) and unit (Branch 10) as of March 2017? [Notes: we will reward you up to $\$ 2.61$ for accuracy]

0

In the previous question, you reported to believe that the average monthly basic salary among employees similar to you was $\$ 913$ in March 2017. The next question is designed to assess how confident you feel about your response.

With what probability do you think that the real average could fall in each of the following bins? The probabilities must sum up to 100%. [Note: we will reward you up to $\$ 2.61$ for accuracy]

Below $\$ 821$	0
Between $\$ 821$ and $\$ 891$	0
Between $\$ 891$ and $\$ 936$	$\%$
Between $\$ 936$ and $\$ 1,004$	0
Above $\$ 1,004$	0
Total	0

Now consider the position Teller Supervisor, which is above your current position.

How many times do you think you would need to be promoted to reach that position (or another position in the same level)?
\square

What is the likelihood that you will be promoted to position Teller Supervisor (or another position in the same or higher level) in the next 5 years?

Consider all employees from the bank who hold position Teller Supervisor. What was their average monthly basic salary as of March 2017? [Note: we will reward you up to $\$ 2.61$ for accuracy]

0

In the previous question, you reported to believe that the average monthly basic salary among employees in position Teller Supervisor was $\$ 2,609$ in March 2017. The next question is designed to assess how confident you feel about your response.

With what probability do you think that the real average could fall in each of the following bins? The probabilities must sum up to 100%. [Note: we will reward you up to $\$ 2.61$ for accuracy]

Below $\$ 2,348$	0
Between $\$ 2,348$ and $\$ 2,544$	0
Between $\$ 2,544$ and $\$ 2,674$	$\%$
Between $\$ 2,674$ and $\$ 2,870$	0
Above $\$ 2,870$	0
Total	0

We have taken a random sample of 5 employees in position Teller Supervisor, and calculated the average basic salary among them. With the following set of questions, we want to assess how much you would be willing to pay to obtain this information about average salary.

Below you are presented with 5 hypothetical scenarios. In each scenario, you will be given the choice of either seeing the information about average salary OR receiving extra money as part of your reward for responding to the survey.

We will randomly choose 20 survey respondents. If you are one of these 20 lucky respondents, one of the 5 scenarios will be randomly chosen to be implemented. As a result, it is in your best interest to respond honestly to these scenarios.

Please make your hypothetical choices below, and in the next screen you will find out if your responses will be implemented or remain hypothetical.

Scenario 1: Between the next two options, which one would you prefer?
Information about average salary

Scenario 2: Between the next two options, which one would you prefer?

Information about average salary	$\$ 6.52$
\bigcirc	0

Scenario 3: Between the next two options, which one would you prefer?

Information about average salary

Scenario 4: Between the next two options, which one would you prefer?

Information about average salary	$\$ 130.46$

Scenario 5: Between the next two options, which one would you prefer?

Information about average salary
\$652.32

You have NOT been selected among the 20 participants who will have one of their 5 scenarios implemented. As a result, your choices in the 5 scenarios remain hypothetical.

Please go to the next screen to continue with the survey.

Next, a group of individuals participating in this survey will be randomly chosen to receive some information about the average salary in position Teller Supervisor.

Please continue to the next screen to find out if you will be selected to receive this information.

You have been selected to receive the following information.

We have randomly chosen a random sample of 5 employees in position Teller Supervisor. The following is the average basic salary in this sample of 5 employees as of March of 2017: $\$ 2,087$.

Please take some time to read and understand this information carefully. When you are ready, proceed to the next screen.

We want to give you the opportunity to re-assess your answer to one of the previous questions. This opportunity is given automatically to all survey participants, regardless of their responses.

Consider all employees from the bank who hold position Teller Supervisor. What was their average monthly basic salary as of March 2017? [Note: we will reward you up to \$2.61 for accuracy]

0
\square

In the previous question, you reported to believe that the average monthly basic salary among employees in position Teller Supervisor was $\$ 2,348$ in March 2017. The next question is designed to assess how confident you feel about your response.

With what probability do you think that the real average could fall in each of the following bins? The probabilities must sum up to 100%. [Note: we will reward you up to $\$ 2.61$ for accuracy]

Below $\$ 2,113$	0
Between $\$ 2,113$ and $\$ 2,289$	0
Between $\$ 2,289$ and $\$ 2,407$	0
Between $\$ 2,407$ and $\$ 2,583$	0
Above $\$ 2,583$	0
Total	0

Now, we want to ask you a few questions about your job at [Bank Name].

Recall that as of March of 2017, your monthly basic salary was $\$ 730$.
What do you expect your basic salary to be one year later, in March of 2018?
[Note: we will compare your response to our own projection of your future salary, and we will reward you up to $\$ 2.61$ if your response is close to our projection]

0

And what do you expect your basic salary to be five year later, in March of 2022?
[Note: we will compare your response to our own projection of your future salary, and we will reward you up to $\$ 2.61$ if your response is close to our projection]

How satisfied are you with your current salary at [Bank Name]?Very satisfiedSomewhat satisfiedNeither satisfied nor dissatisfiedSomewhat dissatisfiedVery dissatisfied

Across the thousands of [Bank Name] employees, salaries vary with the nature of work, education, experience, responsibilities, etc. What do you think of wage differentials in the company today?They are too largeThey are adequateThey are too small

Taking all the aspects of your job into account, how satisfied are you with your current job at [Bank Name]?
Very satisfiedSomewhat satisfiedNeither satisfied nor dissatisfiedSomewhat dissatisfiedVery dissatisfied

What percentage of employees in your same position and unit were assigned to each of the following KPI ratings as of year 2016 ?

The probabilities must sum up to 100%.
[Note: we will reward you up to $\$ 2.61$ for accuracy]

A1	0
A2	0
A3	0
B	0
C	0
Total	0

In comparison to others, are you a person who is generally willing to give up something today in order to benefit from that in the future or are you not willing to do so?

Please use a scale from 1 to 10, where a 1 means you are "completely unwilling to give up something today" and a 10 means you are "very willing to give up something today". You can also use the values in-between to indicate where you fall on the scale.

$\begin{gathered} 1 \\ \text { (Completely } \\ \text { Unwilling) } \end{gathered}$	2	3	4	5	6	7	8	9	10 (Very Willing)
$\bigcirc \bigcirc$									

The survey is almost over. Now we want to assess your attitudes towards transparency. Remember that all your responses are confidential.

How often do you talk about salaries with coworkers?Once a week or more oftenOnce a monthA few times a yearAbout once a yearNever

If the bank shared with you data on the average pay for all positions. Which positions would you be most interested to look at? Please rank the following options from 1 (most interesting) to 4 (least interesting) by moving the boxes upward or downward:

You own position
Positions right above your level
Positions two levels above of your own position
Other positions

Currently at [Bank Name], salaries are confidential information. Please consider the following two hypothetical scenarios.

Scenario A: the bank created a website showing the average salary by position/unit, for all positions within the bank.

Would you be in favor or against the creation of a website like this?Strongly in favorIn favorI would not careAgainstStrongly against

Scenario B: the bank created a website with the list of names and salaries of all its employees, including your name and your salary. As a result, you could look up the incomes of any other employee, and any employee could look up your own income.

Would you be in favor or against the creation of a website like this?Strongly in favorIn favorI would not careAgainstStrongly against

Thanks for completing the survey!

Your total reward for this survey will be the sum of three amounts:
ï \div A fixed fee of $\$ 6.52$.
$\hat{\uparrow} \div$ The total rewards for the accuracy of your responses during the survey.
$i \div$ A surprise amount, picked at random from the range \$3.26-\$14.35.

We will transfer your total reward to your [Bank Name] account after the survey collection is finalized, which may take up to 10 weeks. You do not need to contact us any further -- rest assured that we will notify you by email when the reward is deposited to your account.

Did you have any technical or language-related problems when doing the survey?YesNo

We thank you for your time spent taking this survey. Your response has been recorded.

[^0]: *Cullen: zcullen@hbs.edu, Rock Center 310, Boston, MA 02163. Perez-Truglia: ricardo.truglia@anderson.ucla.edu, 110 Westwood Plaza, Los Angeles, CA 90095. We are thankful for excellent comments from a large number of colleagues, including but not limited to seminar discussants at Berkeley, Columbia, Northwestern, Yale, UCLA-Anderson, Harvard Business School, Wharton, Caltech, Brown, the Einaudi Institute, Dartmouth, Microsoft Research, Boston University, the Luxembourg School of Finance, the Paris School of Economics, Universidad de San Andres, the NES Political Economy Workshop, the RIDGE Public Economics Workshop, the Barcelona Summer Forum and the AEA Annual Meetings. The collaborating institution provided financial support for the research being conducted. Additionally, Zoe Cullen was a full-time, salaried employee at that institution while the research was being conducted. This project was reviewed and approved by the Institutional Review Board at University of California Los Angeles (IRB\#17-001529).

[^1]: ${ }^{1}$ Consistent with our findings, Faleye, Reis, and Venkateswaran (2013) find that CEO-employee pay ratios are not negatively correlated with employee productivity.

[^2]: ${ }^{2}$ The evidence from laboratory experiments is mixed; for example, while Clark et al. (2010) show that subjects care about the compensation of peers, Charness and Kuhn (2007) find the opposite. Additionally, there is a related literature in psychology (Pritchard et al., 1972; Valenzi and Andrews, 1971; Schmitt and Marwell, 1972).

[^3]: ${ }^{3}$ At the end of the survey, we asked employees to rank how interested they would be in learning about the average salary in different positions: their same position, the positions right above their own level, two or more levels above, and other positions. The data confirm that employees were mostly interested in the average salaries among peers and managers: roughly 50% of subjects ranked their own position first, 45% of subjects ranked higher positions first, and less than 5% of respondents ranked other positions first.

[^4]: ${ }^{4}$ For example, if individuals take some additional time to think when asked a question a second time, they could update their perceptions towards the truth even if they did not actually receive any further information from the experimenter.

[^5]: ${ }^{5}$ Because of the sensitive nature of the data, we refrain from providing exact estimates. After base salary, the second source of compensation for individuals who have some form of sales role is sales commissions. Other forms of performance pay can be substantial for employees at the highest levels such as executives, but those employees were excluded from participating in the survey.
 ${ }^{6}$ This question was also intended to convey that the surveyor already knows the salary of the respondent, thus preventing any inclination to misreport salaries in an effort to avoid revealing one's own salary to the surveyor.

[^6]: ${ }^{7}$ We calibrated this scale using a small pilot survey that elicited willingness to pay for information with an open-ended and non-incentivized question.

[^7]: ${ }^{8}$ For some employees, we had to pick one manager from among multiple managerial positions that satisfied all these criteria.

[^8]: ${ }^{9}$ It was not practical to offer rewards by comparing the guesses to the actual future salaries, because we would need to wait 1 and 5 years to pay the rewards. Instead, we incentivized these two questions by comparing employees' guesses to our own predictions based on historical data.
 ${ }^{10}$ According to anecdotal evidence, the reasons for these horizontal differences in salaries seem to follow both meritocratic and non-meritocratic reasons. For example, employees may get raises after good performance reviews. While some employees may qualify for these performance raises because of their effort or

[^9]: ${ }^{16}$ This sample already excluded the individuals who were randomly assigned to have their choices in the information-shopping scenarios executed, for whom the survey was automatically terminated. This final sample also excluded 15 subjects with the most extreme prior beliefs (most likely due to typos). Last, there was a small attrition (less than 3%) between the information provision screen and the corresponding posterior beliefs. We find that this attrition is orthogonal to the instrumental variables used for the experimental analysis.

[^10]: ${ }^{17}$ For instance, a Human Resources employee is involved in various tasks such as identifying new hires, processing paperwork, and dealing with complaints from existing employees. The performance at each of those tasks is difficult to measure with objective data.
 ${ }^{18}$ The variables quit and transfer are based on daily data, while the variables salary and changed title are based on monthly data.
 ${ }^{19}$ This definition applies to variables constructed with daily data. For variables constructed with monthly data, the post-treatment period corresponds to the month of the survey and the following two months. This specification can lead to an attenuation bias because individuals who respond to the survey on the first day of the month (who were exposed to the information for a full month) would be coded the same as individuals responding on the last day of the month (who were exposed for one day). Last, for the small fraction of employees that leave the company during the relevant time window, we use the average outcome between the survey date and the exit date.

[^11]: ${ }^{20}$ If employees do not have access to more direct information, they may be forming guesses about manager salary by projecting their own salary forward, as though being promoted to the managerial position. One potential explanation for this underestimation of manager salary is that employees may be projecting their own salary forward using their past salary growth linearly instead of exponentially.
 ${ }^{21}$ The heterogeneity analysis is reported in Appendix A.3.

[^12]: ${ }^{22}$ While own salary provides a reasonable guess for average peer salary, it would be a poor guess for average manager salary. This circumstance could explain why employees fare worse at guessing manager salaries (mean absolute error of 28%) than peer salaries (mean absolute error of 11.5%).
 ${ }^{23}$ For the manager salary, the corresponding figure was 80%. These rates are in line with other studies employing similar methods; for example, in Fuster et al. (2018), 95% of respondents provided consistent responses across scenarios.

[^13]: ${ }^{24}$ To avoid revealing sensitive information about the distribution of pay in the firm, we refrain from providing more precise information.
 ${ }^{25}$ This method (Andersen et al., 2006) assumes that the average of the WTP inside each bin is equal to the midpoint of the bin (and for the highest bin, which has no upper bound, the upper bound is set equal to twice the value of the lower bound).
 ${ }^{26}$ All these amounts were converted to 2017 USD PPP to be comparable with our estimates.

[^14]: ${ }^{27}$ As shown in equation (4), this is the difference between the prior belief and the signal interacted by a treatment dummy that indicates if the individual was shown that signal - this regression controls for the difference between the prior belief and the signal without the treatment interaction.
 ${ }^{28}$ This regression already weeds out spurious reversion to the signal by controlling for the difference between the prior belief and the signal without the treatment interaction. For more details, see Appendix A.4.
 ${ }^{29}$ Additionally, we find that learning was compartmentalized. Individuals did not use the feedback about

[^15]: peer salary to form beliefs about manager salary - results reported in Appendix A.4.
 ${ }^{30}$ This evidence is also consistent with the view that individuals have little information besides their own salary history and thus they are better equipped to guess the peer salary than to guess the manager salary.
 ${ }^{31}$ That is, this outcome is the absolute value of the difference between the employee's posterior belief and the truth, divided by the truth.
 ${ }^{32}$ All regressions include the same set of control variables: a linear time trend, the number of peers, and a set of position dummies.

[^16]: ${ }^{33}$ We can calculate this lunch proxy for employees working in the headquarters offices because those are the employees for which there is available swipe data. Our proxy for the probability of grabbing lunch takes the value 18.4% for the closest peer and 12.0% for the other peers.
 ${ }^{34}$ The average of Closest Peer Received is about 0.15 . The source of exogenous variation in this regressor arises from the random assignment to information as well as from the random order in which employees were invited to fill out the survey.
 ${ }^{35}$ The average of Share of Peers Received is 0.12 , and the average of No. Peers Received is 2.77. These variables have the same types of exogenous variation as Closest Peer Received.

[^17]: ${ }^{36}$ To measure centrality, we use the directed network of emails sent by employees over the three months prior to the completion of the first survey. We exclude from this sample the emails directed outside of the institution and emails received from outsiders. These results are based on eigenvalue centrality, but the findings are similar with alternative definitions of centrality.

[^18]: ${ }^{37}$ Additionally, given a level of misperceptions, individuals reacted more to feedback about manager salary than to feedback about peer salary - presumably because they had a weaker prior belief about manager salaries.

[^19]: ${ }^{38}$ Two of the coefficients (for hours worked and number of emails) that are statistically significant in the baseline specification become borderline insignificant in the longer time period, but one of the coefficients (for sales performance) that was statistically insignificant in the baseline specification becomes highly significant with the longer time period.

[^20]: ${ }^{39}$ Results reported in Appendix A. 4 and A.7, respectively.
 ${ }^{40}$ For example, these two forces are used to explain the effects of relative income on subjective well-being (Senik, 2004) and job satisfaction (Godechot and Senik, 2015; Clark et al., 2008). These papers argue that the effect of relative income depends on the group of reference - for some groups the negative "comparison" effect dominates, while for other groups the positive "information" effect dominates.

[^21]: ${ }^{41}$ These preferences can be thought as being based on the combination of relative deprivation (Festinger, 1954; Frank, 1984; Luttmer, 2005) and reciprocity (Akerlof, 1982).

[^22]: ${ }^{42}$ This distance was not randomized, and thus the results should be interpreted with caution.

[^23]: ${ }^{43}$ Relatedly, experimental evidence suggests that employees can react to the effort or productivity of other employees (Mas and Moretti, 2009; Bandiera et al., 2010).
 ${ }^{44}$ To the extent that these productivity ratings are assigned by managers, this evidence also goes against the related mechanism that employees use their peer relative salary to infer what their managers think of them. There are other pieces of suggestive evidence against this channel. First, employees probably do not need to make this type of inferences because they get plenty of feedback from their managers, such as through their annual reviews. Second, many factors influences the employee's salary and are outside the manager's control.
 ${ }^{45}$ Results presented in Appendix A.7.

[^24]: ${ }^{46}$ For example, employees may want to work harder if they want the current firm to respond to outside offers. Similarly, employees may want to work harder if they need the current manager to recommend them for the outside jobs.

[^25]: ${ }^{47}$ For a rigorous analysis of the co-evolution of compensation schemes and social concerns, see MacLeod (2007) and MacLeod and Malcomson (1998).

[^26]: ${ }^{48}$ Due to the timing of the survey, this does not constitute evidence that individuals did not extrapolate from the signal of manager salary to the belief about peer salary. However, this seems unlikely given the above evidence that subjects did not extrapolate from peer salary to manager salary.

[^27]: ${ }^{49}$ Since the interaction with the asymmetry indicators introduces additional endogenous variables, we include additional instrumental variables by interacting the original instrumental variables with corresponding asymmetry interactions.

[^28]: ${ }^{50}$ We must note, however, that we did not randomize the employee's perceived productivity rank, and therefore this heterogeneity must be taken with a grain of salt.
 ${ }^{51}$ There is missing data on this perception variable for 52 observations. We impute those values with the employee's true position in the productivity distribution.

