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Abstract

Recent studies of microcredit find evidence of both positive and negative treatment
effects at certain quantiles of household outcome distributions, yet the findings differ
across contexts. Using a Bayesian hierarchical framework, I develop new models to
aggregate the evidence on distributional effects and assess the generalizability of the
results. For continuous variables such as consumption, I provide a limited-information
model in which information is passed across quantiles and monotonicity is enforced
using variable transformation. For partially discrete outcomes like profit for which the
sampling behaviour of quantiles is unknown, I aggregate using richly-parameterized
mixture models applied to the full data. The results show a precise and generalizable
zero effect from the 5th to 75th quantiles, then a large positive effect on the right tail
which is more imprecise and heterogeneous across contexts. There are no generalizable
negative impacts. A bounding exercise suggests that the precise zero is not due to low
take-up, contrary to common belief. Covariate analysis shows that households who
had previously operated businesses account for the majority of both the impact and
the uncertainty in the tails of the consumption and profit distributions.
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1 Introduction

Financial market expansions in the developing world have the potential to create win-
ners and losers. Increasing access to credit in particular may have heterogeneous effects
both because borrowers differ in their investment opportunities and because of general
equilibrium dynamics (Banerjee 2013, Kaboski and Townsend 2011). Proponents of finan-
cial interventions such as microcredit claim that the positive impact on high-productivity
borrowers justifies continued market expansion; detractors claim that the resulting "satu-
ration" of credit markets leads to exploitative lending practices which systematically harm
the most vulnerable borrowers (Ahmad 2003, Schicks 2013, Roodman 2012). The debate
continues despite decades of research because the microcredit literature has focused on
estimating average treatment effects which cannot evince this heterogeneity. Although
recent studies have estimated sets of quantile treatment effects in order to detect het-
erogeneous impacts, the findings differ across contexts, impeding the formulation of any
general consensus and leaving open the possibility of cherrypicking results (Banerjee et
al 2015a, Crepon et al 2015, Angelucci et al 2015). Existing meta-studies of microcre-
dit ignored these sets of quantile effects due to a lack of methodology to aggregate them
(Meager 2018, Vivalt 2017, Banerjee et al 2015b, Duvendack et al. 2014). In this paper I
develop these methods and aggregate the evidence on the distributional treatment effects
of expanding access to microcredit.

Microcredit institutions reached 132 million low-income clients with a global loan port-
folio worth 102 billion dollars in 2016, and the figure is growing yearly (Microfinance
Barometer, 2017). At this scale, even small negative impacts for a subset of borrow-
ers would be a concern, and several governments have curtailed microfinance operations
ostensibly for this reason (Microfinance Focus 2011, Banerjee 2013, Breza and Kinnan
2018). Yet even in cases where microcredit benefits all households, an unequal distribu-
tion of benefits has the potential to affect social and political institutions (Acemoglu and
Robinson 2008, Acemoglu et al 2015). Of the seven randomized trials of expanding access
to microcredit, some did find evidence of negative effects especially at lower quantiles of
household business profits, but others found zero impact on most of the distribution and
positive effects at the upper quantiles; many studies found suggestive evidence of increased
economic inequality, yet in most cases the estimates were imprecise (Augsburg et al 2015,
Attanasio et al 2015, Banerjee et al 2015a, Crepon et al 2015, Angelucci et al 2015, Tarozzi
et al 2015, Karlan and Zinman 2011). The lack of a general consensus is due to both a lack
of power to estimate distributional effects relative to average effects (Leon and Heo 2009)
and the possibility of genuine differences in the impact of microcredit across settings.

Aggregating the evidence on these distributional effects across contexts can provide a
more reliable indication of the typical impact that microcredit is likely to have in future
policy contexts. Combining information from multiple studies improves power and pre-
vents cherrypicking, that is, undue focus on the most extreme effects in the literature,
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which may be the least likely to replicate (Rubin 1981). However, this potential hetero-
geneity across sites makes it difficult to combine the microcredit studies: pooling the data
and performing one analysis is likely to underestimate the true uncertainty (Gelman et al
2004). As is common in empirical social science, the extent of true heterogeneity in the
impact of microcredit across settings is unknown, yet it influences the optimal combina-
tion of evidence. Thus, aggregation raises the question of external validity: the extent to
which the recorded impact of a policy in one setting predicts its impact in another, and
the extent to which the average of all effects predicts the next effect (Allcott 2015, Bisbee
et al 2016). If microcredit has different distributional impacts in different contexts, it may
be imprudent to use results from one context to guide policy another context (Pritchett
and Sandefur 2015). It is therefore important to use an aggregation method that does
not rely on unwarranted assumptions about the extent of heterogeneity in effects across
studies.

Bayesian hierarchical models provide a framework for evidence aggregation which esti-
mates the heterogeneity across studies and uses this information to adjust the uncertainty
about the typical impact and likely future impact in new settings. By estimating both
within-study and across-study variation within a single model, the hierarchical approach
is able to separate genuine heterogeneity in effects from the influence of sampling varia-
tion (Wald 1947, Rubin 1950, Efron and Morris 1975, Rubin 1981, Gelman et al 2004).
This structure nests both the full-pooling case in which the treatment effects are homo-
geneous, and the no-pooling case in which the effects are so heterogenous as to contain
no information about each other. Hierarchical models can also implement a range of in-
termediate "partial pooling" solutions, borrowing some power across studies to improve
inference on all unknown parameters only to the extent suggested to be appropriate by
the data (Gelman et al, 2004).1

The hierarchical approach is well established in statistics and is increasingly used for
evidence aggregation in economics (Dehejia 2003, Hsiang, Burke & Miguel 2013, Vivalt
2016, Bandiera et al 2017, Meager 2018). The implementation is typically Bayesian due to
the potential for improved performance in practice, especially when there are few studies
(Rubin 1981, Chung et al 2013). Yet within this framework there are no tools to aggregate
distributional effects such as sets of quantile treatment effects. Even outside of the hier-
archical framework, the economics literature on external validity and generalizability has
focused on different kinds of average effects (Heckman, Tobias, & Vytlacil 2001, Angrist
2004, Angrist & Fernandez-Val 2010, Bertanha & Imbens 2014, Allcott 2015, Dehejia,
Pop-Eleches and Samii 2015, Gechter 2015, Athey & Imbens 2016, Andrews and Oster
2018). This necessitates the development of new methods for aggregating evidence on
distributional treatment effects in the presence of treatment effect heterogeneity.

1Classical meta-analysis methods typically select the full-pooling solution ex-ante, and modern applied
analysis of multiple experiments in economics has tended to compute both full pooling and no pooling
models without attempting to access the range of potential solutions in between (Banerjee et al 2015c).
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Aggregation of distributional effects presents new challenges relative to average effects.
When the metric of interest is a set of quantile treatment effects, it seems intuitive to build
quantile aggregation models based on existing Bayesian hierarchical models for average
effects such as Rubin (1981). These limited-information models use the knowledge that the
within-study sampling variation of both means and quantiles is often asymptotically Gaus-
sian (Mosteller 1946). However, an aggregation model for sets of quantiles must also pass
information across the quantiles at every level of the model because neighbouring quan-
tiles typically contain information about each other and must be monotonically increasing.
Failure to incorporate this structure may result in the quantile crossing problem described
in Chernozhukov et al 2010.2 To solve this problem I exploit the fact that Bayesian in-
ference treats unknown objects as random variables: the quantile treatment effects can
be constrained to imply monotonic outcome quantiles by transforming the implied un-
conditional quantiles using functions that only have support on monotonic vectors. The
transform passes information across the neighbouring quantiles via the constraint, and
all posterior uncertainty is automatically preserved within the Bayesian framework, in
contrast to ex-post rearrangements or smoothing strategies (He 1997, Chernozhukov et al
2010).

A second problem arises in aggregating quantile effects on the microcredit data because
business outcomes contain point masses at zero. These are due to households who either do
not operate a business or only operate seasonally, and this information must remain in the
sample to capture any business creation effects of microcredit. The discrete spikes mean
that the sampling distribution of the quantiles is no longer Gaussian (Mosteller 1946). To
aggregate evidence on quantile effects in this setting, I build richly-parameterised mixture
models that capture the economic structure of the variables. My model allows microcredit
to affect all aspects of the distribution, and I aggregate by placing a hierarchy on these
effects which permits partial pooling across sites. The implied quantile effects can be
recovered using the method of Castellaci (2012). This approach automatically satisfies
the monotonicity constraints and passes information across quantiles via the functional
form assumptions. Model fit assessment and model selection will be necessary to ensure
reliable inference; I fit models using both Pareto distributions and Lognormal distributions
based on the existing literature on the tail shape of profits and earnings (Piketty 2015,
Gabaix 2008, Roy 1950) and find that the LogNormal fits the data better.

Applying these models to seven randomized trials of expanding access to microcredit,
I find a precise zero effect on household outcomes from the 5th to 75th percentiles. Above
the 75th percentile, there is substantial probability of a large positive impact on most
outcomes, but there is greater uncertainty around this effect due to greater heterogeneity
within and across studies. Thus, I find some evidence of the potential for positive effects
and no evidence of systematic harm to any group of borrowers, as there are no generalizable

2This problem can occur in the aggregation process even if it is not present in the original studies
because weighted averages of monotonic objects need not be monotonic.
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negative quantile effects at any part of the distribution. Part of the greater uncertainty
in the tails is due to the tail shape of the business variables, which are so heavy that
average treatment effect analysis and Gaussian asymptotics are likely to be unreliable on
this data (Koenker and Basset 1978, Mosteller 1946). The likelihood of large, economically
important increase in household profits and consumption is much greater than the chance
of a zero or negative impact, but there is substantial uncertainty about the specific effect
size in any context. By contrast, classical full pooling methods applied to the same data
declare "statistically significant" effects in the right tail of business variables as a result of
ignoring the heterogeneity across sites.

To better understand these results, I pursue a bounding exercise to show that the pre-
cise and generalizable impact at zero is unlikely to be due to low take-up of loans. A
covariates analysis reveals that both the majority of the right tail impact of microcredit
and the heterogeneity across studies occurs within the group of households who had pre-
vious business experience. This group of experienced households records an increase in
consumption above the 75th percentile in the general case, although there is still a precise
zero effect below this point. This overall pattern suggests that most households’ lives
are not transformed by microcredit access, and this result holds even among those who
take up the loans or have previous business experience. Expanding access to credit does
create potential improvements in consumption and profit for some of these households,
although any such improvements would be accompanied by increases in inequality within
the community; the social welfare effects of microcredit are complex.

These results demonstrate the value of analysing and aggregating evidence using ap-
propriate methodology. The models developed in this paper could be applied to study the
distributional effects of other financial interventions, trade and innovation policies, educa-
tional subsidies and local migration incentives, all of which have social welfare implications
(Borusyak and Jaravel 2018, Duflo, Dupas and Kremer 2017, Chetty, Hendren, and Katz
2016, Bryan, Chowdhury and Mobarak 2014, Autor et al 2014, Katz, Kling and Leibman
2001, Autor, Katz and Krueger 1988). Quantile regression and heavy-tailed parametric
models can accommodate the heavy tails found in many economic data sets, particularly
for earnings and assets (Bazzi 2016, Pancost 2016, Gabaix 2008, Fama 1965). By contrast,
common implementations of average treatment effects analysis and even subgroup anal-
ysis such as ordinary least squares regression are not robust to heavy tails and typically
provide inaccurate results when applied to such distributions (Koenker and Basset 1978).
Recent evidence that inequality can persist or even worsen in equilibrium due to spillover
effects on social cohesion or even scientific innovation suggests that understanding these
distributional effects is a first-order concern (Folgi and Guerrieri 2018, Chetty and Hen-
dren 2018, Bell et al 2017). In these settings, multi-study aggregation of quantile effects
using the methods I provide here can deliver inference that is both more informative and
more reliable than analyses of average treatment effects alone, or of the heterogeneous
effects in any single study.
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2 Data and Context

The rapid increase in the scale of microcredit operations over the past 30 years has lead to
a large academic literature studying credit market interventions in the developing world
(Banerjee, 2013). I consider seven of these studies which meet the following inclusion
criteria: the main intervention must be an expansion of access to microcredit either at
the community or individual level, the assignment of access must be randomized, and
the study must be published before February 2015 (the period of my literature search).
The selected studies are: Angelucci et al. 2015, Attanasio et al. 2015, Augsburg et al.
2015, Banerjee et al. 2015b, Crepon et al. 2015, Karlan and Zinman 2011, and Tarozzi
et al. 2015, six of which were published in a special issue of the American Economics
Journal: Applied Economics.3 I focus on expanding access to microcredit because this is
the intervention closest to the policy of subsidizing microfinance institutions (MFIs) or
promoting interventions under the general umbrella of "microcredit". I restrict the sample
to randomized controlled trials (RCTs) because they typically have high internal validity
for estimating causal effects, and because as yet there is no established methodology
designed to aggregate both RCTs and observational evidence in a single framework.4

I focus on the economic outcomes most directly implicated by the theoretical bene-
fits of microfinance. These include: household business expenditures, business revenues,
and business profits, household consumption, consumer durables spending and temptation
goods spending. All six of these outcomes are linked to the core claim that offering house-
holds more credit on more favourable terms should stimulate entrepreneurship (Morduch
1999, Yunus 2006, Roodman 2012). Because microfinance insitutions (MFIs) offer lower
interest rates relative to informal moneylenders, poor entrepreneurs may be able to start
new businesses or grow their existing businesses, increasing their business expenditures,
revenues and ultimately profits (Yunus 2006). Greater economic prosperity should en-
able households to increase their consumption in the medium and long run. Yet even
households without business investment opportunities may use microloans to shift spend-
ing away from temptation goods and towards durable goods (Roodman 2012, Banerjee
2013). Such consumption transformation might arise if access to microcredit increases
a household’s expectation of escaping poverty in the future, or if microcredit solves a
self-control problem (Banerjee and Mullainathan 2010, Banerjee 2013). Thus, these six
variables should capture the main channels through which relaxing credit constraints for
households in the developing world may have positive consequences.

3Other RCTs of microfinance tend to randomly vary certain characteristics of the loans themselves,
which allows researchers to understand the impact of these features of the loans but complicates the
inference on the general impact of the standard microcredit model (Field et al 2013). Karlan and Zinman
2009 expands access to consumer credit, but microcredit is often considered categorically different to
consumer credit; see Banerjee 2013 for a deeper discussion of this.

4Existing meta-analyses and other evidence aggregation exercises have either cherrypicked certain ob-
servational studies deemed "good enough", or thrown all types of studies into a single analysis, a strategy
which is likely to violate exchangeability assumptions on the treatment effects discussed in section 3.
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Yet even for these outcome variables, there is potential for microcredit to have differ-
ent effects on different households. When a new MFI enters a community, households
differentially select into loan take-up, and those who do take up are likely to experience
heterogeneous consequences depending on how they use the loan or whether they experi-
ence shocks (Banerjee 2013). Microcredit may not have any impact for certain households
because the amount they can borrow may be too small relative to a lumpy investment
opportunity, or the terms of the loan may be restrictive and undesirable for investment
purposes, or the term to maturity may be too short (Banerjee 2013). But even when bor-
rowers do benefit on average, there may be the potential for winners and losers in general
equilibrium due to effects on wages or displacement of informal lending by local savers
who now receive lower returns on their savings (Kaboski and Townsend 2011, Morduch
1999). It may be that multiple microlenders into a community can lead to predatory lend-
ing practices and "overlending" to households who cannot feasibly repay the loan (Shicks
2013, Ahmad 2003). This concern underlay the "No Paygo" movement against microcre-
dit in Nicaragua and was ostensibly part of why the government of Andhra Pradesh shut
microcredit down during the crisis of 2010 (Microfinance Focus 2011, Banerjee 2013). It is
therefore plausible that microcredit access could have zero impact, large positive or large
negative impacts for different types of households. Even if the groups of households who
experience large effects are small, the social welfare consequences could be substantial,
particularly if economic inequality across households is affected.

Motivated by these concerns, six of the seven selected studies reported sets of quantile
treatment effects for the main outcomes. Some studies did find evidence that microcredit
interventions help some households and harm others: many studies found large, positive
yet imprecisely estimated impacts on the upper tail, and a few also recorded imprecise
negative effects at the lower tail (Angelucci et al. 2015, Augsburg et al. 2015, Banerjee
et al. 2015b, Crepon et al. 2015). Yet certain studies recorded noisy positive effects at
the lower tail of some outcomes (such as profit in Banerjee et al 2015b) or negative effects
at the upper tails (household business income in Angelucci et al 2015). In many of these
same cases the quantile treatment effects recorded exact zeroes, estimated with relatively
high precision, for the central quantiles. While certain studies, such as Crepon et al 2015,
recorded "statistically significant" tail effects on both ends, almost all studies recorded
imprecise estimates at the upper tails. In this setting, the gains from aggregating evidence
across these studies may be considerable in both precision and an improved understanding
of the general pattern of quantile treatment effects.

Although estimating sets of quantile effects is not the only way to detect heterogeneous
effects, it serves as a reasonable first pass at the problem (Banerjee et al 2015). It is often
sensible to estimate the quintile or decile effects regardless of the underlying proposed
source of the heterogeneity, because this provides an estimate of the causal impact on the
entire distribution of outcomes. This approach prevents cherrypicking of subgroups and
allows little room for selective reporting. Although the set of quantile treatment effects
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does not estimate the quantiles of the distribution of individual treatment effects, hetero-
geneity in the effects on different quantiles is evidence of heterogeneity in these individual
effects. The quantiles approach also permits the detection of heterogeneity not predicted
by observables, which is particularly important for microcredit, an intervention for which
even households which are closely matched on covariates could have considerably different
treatment effects (Kaboski and Townsend, 2011). Moreover, the presence of general equi-
librium effects make it important to assess the impact of treatment on the overall shape
of the distribution and to characterise heterogeneity based on relative position (ranks or
quantiles) rather than absolute values of covariates. The quantile strategy also permits
detection of changes to economic inequality within a community, without having to refer-
ence baseline data which may not be available (indeed, it is not available for many of the
microcredit studies). Sample quantiles also have desirable robustness properties relative
to sample means, particularly in the presence of heavy-tailed underlying data (Koenker
and Basset 1978).

Despite the restrictive inclusion criteria, the selected studies still differ substantially
in their implementations and local contexts (table 1). They cover seven different coun-
tries, they have different partner NGOs, offering similar but not identical loan contract
structures with different interest rates and loan sizes, and they differ in terms of their
randomization units - five randomized at the community level and two at the individual
level - with various encouragement and sampling designs. Given this heterogeneity across
studies, there is little justification for assuming homogeneous average effects or quantile
treatment effects. However, the 95% confidence intervals of the quantile effects do overlap
across most of the studies, suggesting there may be meaningful similarities in the underly-
ing effects. This pattern was also observed in the average treatment effects in these studies,
which turned out to have only moderate underlying heterogeneity despite these contextual
differences (Meager 2018). However, similarities in the average treatment effects may be
uninformative about the true generalizability of the effects if indeed these averages are
composed of heterogeneous quantile effects. In this context, where the generalizability of
the evidence across settings is unclear ex-ante, the Bayesian hierarchical framework is an
appropriately cautious way to proceed with evidence aggregation.

The open data policies of the American Economics Journal: Applied Economics and
Science allow me access to the microdata from all of these experiments, such that I can
standardize which quantiles I compute across studies and can construct each underlying
variable in a uniform manner across studies. The variables were measured in different
currencies, in different years, and over different time periods (this matters because these
are all flow variables). I standardize all measurements to be USD PPP in 2009 dollars
over a two-week period, which is the shortest time period recorded in any study. Busi-
ness variables require further standardization: to capture the potential for microcredit to
allow individuals to open new businesses or to switch to operating any existing seasonal
businesses throughout the year, households with no business or missing business data have
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profits imputed as zero. This was the decision made by the original authors of many of the
seven studies, although not all of them. Because the business creation channel is closely
tied to Yunus’ claims about the Grameen Bank, I employ this strategy throughout and
apply it to business expenditures and revenues as well. Household consumption variables
do not require imputation within sites, but unfortunately were not measured in all sites.
However, as consumption behaviour is relevant to the welfare impact of microcredit, these
variables must be analyzed regardless (Banerjee 2013). The six variables selected here are
measured in reasonably comparable ways across sites. While it would be ideal to exam-
ine effects on other variables such as income and assets, the measurement and definition
of those variables differed across the studies to such an extent that it is unclear how to
aggregate them.5 While many NGOs are interested in microcredit as a tool for women’s
empowerment, this was measured using localized site-specific indices of variables which
differed substantially across sites and thus are similarly challenging to aggregate.

It would be useful to understand the role of household and study-level covariates in
determining both the observed outcomes and the quantile treatment effects, but there
are limitations to pursuing a covariates analysis in this literature. Only three of the
microcredit RCTs collected comprehensive individual-level baseline surveys, and many
household covariates recorded in the endlines could plausibly have been affected by credit
access. However, one pre-treatment variable was recorded at endline in all studies due to
its theoretical importance: a binary indicator that a household had previous experience
operating a business (Banerjee et al 2015). Although each study also recorded a binary
indicator of whether a household takes up a loan, this decision is downstream of loan access
and therefore cannot be entered as a simple control (Acharya, Blackwell and Sen 2016).
The network links between households, the potential for general equilibrium effects, and
the impact of the mere expectation of taking up credit in the future even if one does not
take it up today means that the Stable Unit Treatment Value Assumption (SUTVA) is
likely to be violated within a community that experiences any increase in access (Banerjee
2013, Kinnan and Townsend 2012, Breza 2012). Hence I analyse the effect of expanding
access itself, which was often called the Intention to Treat Effect in the original studies
(Banerjee et al 2015b). To investigate the role of take-up in this context, I pursue a bounds
analysis explained further in section 4.3. Although covariates at the study level may also
predict variation in effects across context, there at least seven such covariates and only
seven studies, so conventional regression analysis will be overfitted and misleading.6 It is
still useful to aggregate the evidence without conditioning on covariates, as this permits
an understanding how much unconditional heterogeneity there is; if there is little or no
variation across settings, further analysis becomes a less pressing concern for future work.

Other than standardizing the definition and construction of variables as much as pos-
5This issue was noted in Meager (2018) and in my pre-registration accessible on the OSF website at

https://osf.io/tdvc8/ .
6In Appendix E I provide the results of a Ridge regression analysis on this question, but caution against

interpreting these results too strongly.
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sible, in most other respects I have attempted to conform to the decisions made by the
original authors themselves. Certain potential issues such as attrition or sample selection
were left as they were in the studies themselves and in most cases I have used the en-
tire sample available in the online data sets.7 I do however analyse the impact of prior
business experience on outcomes even in those studies which did not report it, because
they all recorded the necessary underlying information; replicating and standardizing this
subgroup exploration mitigates the risk of selective analysis leading to false positives. I do
not winsorize any of the variables because most of the studies did not do so, and Augsburg
et al (2015) found that winsorizing outliers sometimes made results statistically significant
when they were not significant in the full sample. If the extreme values do not change the
point estimate but increase the uncertainty, winsorising them may underestimate the true
uncertainty. As my analysis shows, the behaviour of the upper tails turn out to play an
important role in determining the impact of microcredit.

3 Methodology

3.1 Bayesian Hierarchical Models

3.1.1 Hierarchical Models

Consider a body of evidence consisting of K studies indexed by k, each of which provides
some k-specific data Yk about a given policy intervention. Together, the K data sets
contain all the evidence relevant to evaluating the impact of this intervention, denoted
Y = {Yk}Kk=1. Each study has a site-specific parameter of interest θk ∈ Θk, which could
be the average treatment effect of microloan access on household business expenditures,
or the entire set of quantile treatment effects. The full data in each site k consists of Nk

households, summing to N households in the total combined sample of all studies. In
some cases, analysts will not have access to the full underlying data, only to the estimated
effects and their standard errors from each of the K papers, denoted {θ̂k, ŝek}Kk=1. The
general structure and intuition in the aggregation problem is the same in both cases and
I consider models applicable to both situations.

The premise of evidence aggregation is that there are often benefits to conducting
inference on all the unknown θk parameters together and borrowing information across
the K studies (Rubin 1981, James and Stein 196, Stein 1956). This can be expressed
by positing the potential existence of some general parameter θ ∈ Θ which is common
across study sites at the population level. Typically, θ is specified as the expected value

7Ethiopia is the only exception: this study contained a cross-randomized family planning treatment. I
use only the pure control and the pure microcredit samples, which is the conservative choice given that
we do not know how microcredit interacts with family planning (the study estimates a very imprecise
interaction).
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of any θk in the set of studies before the outcome is known, so θ = E[θk].8 One can learn
about this θ using the evidence on {θk}Kk=1, but the optimal learning procedure depends
on the heterogeneity or dispersion of {θk}Kk=1 around θ, denoted Σθ (Rubin 1981). This
Σθ describes the signal strength of any θk for inference about the general effect θ, and thus
the signal strength of θ as a predictor of θK+1 if the sites are sufficiently comparable.9

Hence, Σθ parameterizes a notion of generalizability of the evidence contained in Y to
external settings, which captures the definition of external validity in Allcott (2015) and
Dehejia et al. (2015). If Σθ = 0, then θ is a perfect predictor of θK+1; if not, there will be
some extrapolation error which grows large as the parameter Σθ grows large. Hence, this
Σθ determines the optimal aggregation method and the relevance of θ for policy purposes.

Joint estimation of θ and Σθ is the core challenge of aggregation across studies. Before
aggregation occurs, the data has been analyzed separately in each study: this constitutes
a "no pooling" model, where each effect θk is estimated using only the data from its own
site, Yk. The resulting estimates, denoted {θ̂k}Kk=1, are only optimal for the set {θk}Kk=1
if K < 3 and if indeed no general common parameter θ exists.10 The heterogeneity of
{θ̂k}Kk=1 is generally biased upwards for Σθ because it includes the sampling variation
of each θ̂k around its θk (Stein 1951, James and Stein 1961). These estimates or the
underling data must be combined in some way to estimate θ, Σθ and θK+1. A "full
pooling" aggregation method is an estimation procedure for θ which uses all the data Y
and assumes that θk = θk′ ∀ k, k′. This assumption may be made explicitly or implicitly:
any estimator that does not leverage the K-site structure nor estimate Σθ is a full pooling
estimator. A "partial pooling" estimator uses the full data Y to estimate θ but does not
assume θk = θk′ ∀ k, k′. A partial pooling aggregation procedure provides estimates of θ,
Σθ as well as new estimates of {θk}Kk=1 produced by transferring some information across
sites, denoted (θ̃, Σ̃θ, {θ̃k}Kk=1).

Hierarchical modeling is a general framework for implementing partial pooling to aggre-
gate evidence across studies which jointly estimates θ and Σθ. The defining characteristic
of these models is a multi-level structure, which defines a set of parameters at the site
level, {θk}Kk=1, a set of parameters at the population level, θ, and a relationship between
them. One way to realize this structure is to use a multi-level likelihood which expresses
the dependence of the data on the entire set of parameters (Efron & Morris 1975, Ru-
bin 1981, Gelman et al. 2004). The "lower level" of the model describes the dependence
between the data and local parameters in site k:

Yk ∼ f(·|θk) ∀ k. (3.1)

The "upper level" of the model describes the potential for statistical dependence between
8If such a parameter effectively does not exist, and it is impossible to update beliefs about economic

mechanisms across settings, then much of economics is called into question.
9Technically the sites must be "exchangeable", this condition is discussed later in this section.

10If K ≥ 3 all no-pooling estimators are risk-dominated in terms of MSE by partial pooling estimators.
The formal proof of this statement is in Stein 1956, and further discussion is in Efron & Morris 1975.
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local parameters and general parameters via some likelihood function ψ(·), which contains
the parameter Σθ either implicitly or explicitly depending on the specific model. Hence,
while in general ψ(·|θ,Σθ), this second argument is often implicit and thus, for simplicity,
notationally suppressed. This upper level "parent distribution" is then denoted:

θk ∼ ψ(·|θ) ∀ k. (3.2)

A hierarchical likelihood contains both levels:

L(Y|θ) =
K∏
k=1

f(Yk|θk)ψ(θk|θ). (3.3)

This likelihood structure nests common approaches to understanding the evidence from
multiple studies, including both the no-pooling and full-pooling models. The model can
detect these cases because the parameters that govern the ψ(·) function, including its
implicit structure on Σθ, are estimated rather than imposed ex-ante. For example, the
model may estimate that θk ≈ θk′ ∀ k, k′, and hence that Σθ = 0, if that is supported by
the data. This result would recover the full-pooling model’s solution, up to a degrees of
freedom correction. Alternatively, the model can estimate very large dispersion in {θk}Kk=1
such that in fact {θ̃k}Kk=1 = {θ̂k}Kk=1, and as such recover the no-pooling model’s solution.
For applications in economics, where it is reasonable to think that neither extreme is
likely to describe the data well, the model’s main advantage is that it can recover a solution
anywhere on the spectrum between these two extremes if that intermediate solution is most
supported by the data. The model’s estimation of θ and Σθ are appropriately influenced
by the extent of this "partial pooling" (also called "shrinkage"). Hence, although some
efficiency is lost if in reality Σθ ∈ {0,∞}, the hierarchical approach is more robust than
the full pooling or no pooling approaches.

While in principle the hierarchical model could be specified with a nonparametric likeli-
hood, a parametric structure is often preferable in low-data environments, such as evidence
aggregation with a small or moderate number of studies.11 Any partial pooling model must
impose some structure to determine the extent of the pooling and how the pooling will be
informed by the data. If the analyst faces a low-data environment at the cross-study level,
this structure must not be too flexible or the model risks overfitting the scarce data that
is available. Nonparametric methods often lack the power to deliver reliable inference at
the general level. As a result, hierarchical models used for evidence aggregation of scalar
parameters often specify ψ = N(θ,Σ2

θ) due to the desirable frequentist properties of the
resulting model (Efron and Morris 1975). This functional form appears more restrictive
than the no-pooling or full-pooling models implemented using ordinary least squares re-
gression, but in fact the Normal model still nests both of these cases since it can estimate
Σθ → ∞ or Σθ = 0 respectively. The no-pooling and full-pooling models do not specify

11A similar point and a proof of the nonparametric identification is provided in Andrews and Kasy 2017.
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parametric upper-level structure only because they impose such strong assumptions about
Σθ. Parametric hierarchical likelihoods relax the assumptions on Σθ without providing
too many degrees of freedom relative to the number of studies being aggregated.

When parametric structure is needed, the key insight of Rubin (1981) is that one can
use knowledge of the sampling behaviour of certain statistics, in his case sample means
and differences in sample means, to inform this choice. Even with limited information
about the θk parameters, usually in the form of reported estimates and standard errors
{θ̂k, ŝek}k=1

K , one often knows their approximate sampling behaviour under assumptions
that seem reasonably mild. For example, sample means and by extension parameter
estimates from linear regressions estimated by ordinary least squares often satisfy the Law
of Large Numbers and the Central Limit Theorem, such that asymptotically

θ̂k ∼ N(θk, ŝe2
k). (3.4)

In the full data case, one can analogously specify the within-sample variation using the
structure imposed by the original studies. For example, if each study of a binary treatment
indicator ran linear regressions of the form ynk = µk + τkTnk for household n in site k,
then the point estimates can be analytically replicated by the model

ynk ∼ N(µk + τkTnk, σ
2
k). (3.5)

Since these functional forms reflect underlying knowledge of the data or statistics being
studied, hierarchical models based on these structures can more effectively separate the
sampling variation from the between-study variation in effects (Rubin 1981). With the
local variation specified in a particular way, the choice of the parent distribution that
governs the between-study heterogeneity in effects can now be made in view of tractability
and performance properties measured by the Mean Squared Error. These considerations
typically motivate the use of Gaussian structure at the upper level of the model because
they implement beneficial forms of shrinkage across the studies and have been shown to
perform well for a variety of problems (McCullough and Neuhaus 2011, Efron and Morris
1975, Gelman et al 2004). In particular, if one is concerned with inference on only location
and scale parameters, McCullough and Neuhaus (2011) shows that the Gaussian performs
well even if the true underlying distribution is not Gaussian.12

Hierarchical models do require that {θk}Kk=1 be “exchangeable”, such that their joint
distribution is invariant to permutation of the indices (Diaconis, 1977). This means the
analyst must have no knowledge of the ordering or any sub-clustering of the treatment ef-
fects a priori that is not specified in the model (Rubin 1981). If economic theory demands
that a particular covariate should be correlated in a certain way with the treatment effects,
that can be translated into conditional exchangeability by introducing this covariate into

12There are still important limitations to this approach, such as the restriction to single-peaked distri-
butions which prevents for example detection of subclusters in the data, but with only seven studies the
microcredit literature is unlikely to provide a fruitful setting for reliable cluster detection.

13



the model. Yet theory and prior knowledge rarely provide certainty about these relation-
ships, and building sufficiently weak structure that still permits inference on the role of
covariates is typically challenging in a low-data environment. In the absence of strong
prior knowledge about the treatment effects, exchangeability is a reasonable structure to
impose (Gelman et al 2004). Any future site for which θK+1 is used to predict the effect
must be exchangeable with the sites in the sample for this prediction to be valid, which
is generally a requirement for predicting out-of-sample effects (see for example Allcott
(2015)).

3.1.1.1 Pooling Metrics for Hierarchical Models

The hierarchical framework also provides several natural metrics to assess the extent of
pooling across sites shown in the posterior distribution (Gelman et al. 2004, Gelman and
Pardoe 2006). In the context of multi-study aggregation, the extent of pooling across
study sites has a natural interpretation as a measure of generalizability. The magnitude
of Σθ, or relatedly, the magnitude of the uncertainty interval on the predicted effect in the
next site θK+1, provides a natural metric. Yet the drawback of using |Σ̃θ| as a pooling
metric is that it may be unclear what constitutes a large or small magnitude in any given
context. Thus, while it is important to report and interpret Σ̃θ and the uncertainty on
θK+1, it is also useful to examine pooling metrics whose magnitude is easily interpretable.
Pooling metrics have only been developed for the univariate case, where θ is a scalar and
thus Σθ is a scalar, denoted σ2

θ . As I extend these metrics to apply to the multivariate
distributional effects typically computed by economists, a general overview of their scalar
counterparts is given here.

The most prevalent metric in the literature is the conventional “pooling factor” metric,
defined as follows (Gelman and Hill 2007):

ω(θk) ≡
ŝe2
k

σ̃2
θ + ŝe2

k

. (3.6)

This metric has support on [0,1] because it decomposes the potential variation in the
estimate in site k into genuine underlying heterogeneity and sampling error. It compares
the magnitude of σ̃2

θ to the magnitude of ŝe2
k, the sampling variation in the no-pooling

estimate of the treatment effect from site k. Here, ω(θk) > 0.5 indicates that σ̃2
θ is

smaller than the sampling variation, indicating substantial pooling of information and a
“small” σ̃2

θ . If the average of these K pooling metrics across sites is above 0.5, the genuine
underlying heterogeneity is smaller than the average sampling variance. In that case, the
extrapolation from θk to θ is more reliable than the signal of θ̂k for θk: a strong indicator
of cross-study generalizability.

The fact that the ω(θk) uses sampling variation as a comparison is both a strength and
a weakness of the metric. In one sense this is exactly the right comparison: it scores how
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much we learned about site K + 1 by analyzing data from site k against how much we
learned about site k by analyzing data from site k, which is captured by the sampling
variation in θ̂k. Yet in another sense, if the sampling variation is very large or small due
to an unusually small or large sample size or level of volatility or noise in the data, it may
be beneficial to use an alternative pooling metric. Meager (2015) proposed the use of the
following metric based on relative geometric proximity, defined as follows:

ω̆(θk) ≡ {ω : θ̃k = ωθ̃ + (1− ω)θ̂k}. (3.7)

This metric scores how closely aligned the posterior mean of the treatment effect in site k,
denoted θ̃k, is to the posterior mean of the general effect θ̃ versus the separated no-pooling
estimate θ̂k. Here, ω̆(θk) > 0.5 indicates that the generalized treatment effect is actually
more informative about the effect in site k than the separated estimate from site k is for
site k (since θ̃k is our best estimate of θk). This ω̆(θk) is the "brute force" version of the
conventional pooling metric because it is identical in models which partially pool on only
one parameter, but may differ in models that pool across multiple parameters. I truncate
this metric to lie on [0, 1] to preserve comparable scales across metrics, as the occasions
on which it falls outside this range are due to shrinkage on other parameters.

Another pooling metric that can be computed for these models is the “generalized
pooling factor” defined in Gelman and Pardoe (2006), which takes a different approach
using posterior variation in the deviations of each θk from θ. Let Epost[.] denote the
expectation taken with respect to the full posterior distribution, and define εk = θk − θ.
Then the generalized pooling factor for θ is defined:

λθ ≡ 1−
1

K−1
∑K
k=1(Epost[εk]− Epost[εk])2

Epost[ 1
K−1

∑K
k=1(εk − ε̄k)2]

. (3.8)

The denominator is the posterior average variance of the errors, and the numerator is the
variance of the posterior average error across sites. If the numerator is relatively large then
there is very little pooling, as the variance in the errors is largely determined by variance
across the blocks of site-specific errors. If the numerator is relatively small then there is
substantial pooling. Gelman and Pardoe (2006) interpret λθ > 0.5 as indicating a higher
degree of general or “population-level” information relative to the degree of site-specific
information.

3.1.2 Bayesian Implementation

While hierarchical models can be estimated using frequentist methods, in practice Bayesian
inference offers several advantages. The major strength of Bayesian methods is the accu-
rate characterization of the uncertainty on all parameters produced by jointly estimating
all unknowns. Commonly used maximum likelihood techniques estimate the upper level
first and then condition on the point estimates using the "empirical Bayesian" approach
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from Efron & Morris (1975). This ignores the uncertainty about the upper level pa-
rameters, θ and Σθ, when computing uncertainty intervals on the lower level parameters,
and thereby systematically underestimates the uncertainty at the lower level (Rubin 1981).
This conditioning is required for tractability in the maximum likelihood estimation (MLE)
framework as it is commonly implemented, because of the nonlinear interdependencies be-
tween {θk}Kk=1, θ, and Σθ.13 By contrast, Bayesian inference jointly and simultaneously
estimates all unknowns, accurately characterizing the uncertainty at every level of the
model and producing coherent inference across levels.

Bayesian inference proceeds by specifying a prior on all unknowns, P(θ), and combining
it with the likelihood via Bayes’ rule to generate the posterior:

f(θ|Y) = L(Y|θ)P(θ)∫
Θ L(Y|θ)P(θ)dθ . (3.9)

The joint posterior distribution f(θ|Y) characterizes all the information and uncertainty
about all the unknown parameters conditional on the data. This is one reason why the
tractability problems faced by the MLE method do not arise in Bayesian inference: the
same object that generates the point estimate also provides the joint, conditional and
marginal uncertainty intervals on all the unknowns. The specification of a proper prior dis-
tribution ensures that f(θ|Y) is a proper probability distribution with desirable decision-
theoretic properties such as admissibility, as described in Efron (1982) and Berger (2013).
All proper Bayesian posteriors are consistent in the frequentist sense under similar condi-
tions that make MLE consistent, as long as the prior has support over the true parameters,
so aggregation performed in this framework will asymptotically deliver the correct answer
(for the details of Doob’s theorem and other relevant results, see Van der Vaart 1998).

In a low-data environment, specifying informative priors can substantially improve the
performance of the hierarchical model. Priors increase the tractability and speed of the
estimation by targeting regions of the parameter space that are more likely to contain
relevant values. If the analyst only has vague knowledge of the location of this likely
region, then the priors can be made quite diffuse or “weakly informative” (Gelman et al
2008). If there is substantial expert knowledge of the likely values before seeing the data,
perhaps from economic theory or previous studies, this can be incorporated using stronger
priors. Even if the prior distributions introduce some bias due to incorrect centering,
they may still improve the mean squared error of the estimation by reducing the variance:
the prior regularizes the estimates (Chung et al. 2013, 2015). In low-data environments
such as the cross-study level of the hierarchical model, overfitting and high variance can
be the major obstacle to making reasonable inferences or predictions. Here, as in many
other statistical problems, regularization towards zero often improves performance (Hastie,
Tibshirani and Friedman 2009, section 10.2).

13While MLE methods that do not inappropriately condition on unknowns are theoretically available,
they seem to be largely unused in practice.
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Bayesian inference also provides a useful framework for decision-making about policy
and future research. The distribution of the treatment effect in a hypothetical future
site θK+1 is often the object of most interest for policymakers, but the distribution of
this object must be computed accounting for the full joint posterior uncertainty rather
than conditioning on a particular point estimate or even a particular interval estimate.
The Bayesian approach delivers the correct uncertainty interval in the form of posterior
predictive inference (Gelman et al., 2004), which averages over the posterior uncertainty
on the unknowns (θ,Σθ). Formally, the posterior predictive distribution is:

f(θK+1|Y) =
∫
ψ(θK+1|θ)f(θ|Y)dθ (3.10)

The Bayesian framework is well-suited to providing these objects because the task of
aggregating towards generalizable evidence itself is underpinned by Bayesian thinking:
we seek to update our understanding of the unknown parameters in one location using
the information about the parameters from other locations. From a decision-theoretic
perspective, if we wish to conduct cost-benefit analyses or make policy accounting for our
uncertainty about any of these unknown parameters the correct object to take expectations
over is the posterior distribution of the parameters, not the sampling distribution of some
chosen estimator.

Specifically for aggregating distributional effects, the Bayesian approach has another
advantage in incorporating knowledge about the properties of θ, because it offers a natural
mechanism for implementing constraints on parameters. If the parameter θ can only belong
to some subset of the parameter space, AΘ ⊂ Θ, this produces the following restricted
likelihood:

LAΘ(Y|θ) = L(Y|θ) · 1{θ ∈ AΘ}. (3.11)

While this is conceptually simple, implementing the restriction is not straightforward
in some cases, such as the one considered here. However, because Bayesian inference
treats unknown parameters as random variables, a statistical transformation of variables
can impose constraints throughout the entire estimation without any distortion of the
probability space. If θ is a multivariate random variable with PDF pθ(θ) then a new
random variable θ∗ = f(θ) for a differentiable one-to-one invertible function f(·) with
domain Aθ has density

p(θ∗) = pθ(f−1(θ))|det(Jf−1(θ))|. (3.12)

Therefore to implement inference using LAΘ(Y|θ), leading to the correctly constrained
posterior fAΘ(θ|Y), we specify the model as usual and then implement a transformation of
variables from θ to θ∗. We then perform Bayesian inference using L(Y|θ∗) and P(θ∗), derive
f(θ∗|Y), and then reverse the transformation of variables to deliver f(θ|Y) · 1{θ ∈ AΘ}.
Frequentist implementation of constraints typically must reckon with the constraints twice,
first in point estimation and second in interval estimation, and it can be costly to ensure
coherence between the two or to extent the consequences to other parameters; the Bayesian
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implementation ensures coherence because the constraint is imposed on the parameter
itself and is thus accounted for in both estimation and inference using the resulting joint
posterior of all unknowns.

Tractability issues can arise in Bayesian inference on hierarchical models due to the
same issues that lead frequentists to adopt Empirical Bayes, these can often be surmounted
by the use of Markov Chain Monte Carlo (MCMC) methods. These methods construct
a Markov chain which has the posterior distribution as its invariant distribution, so that
in the limit, the draws from the chain are ergodic draws from the posterior. This chain
is constructed by drawing from known distributions at each “step” and using a proba-
bilistic accept/reject rule for the draw based on the posterior distribution’s value at the
draw. While these chains always converge to the correct distribution in the limit, popular
algorithms such as the Metropolis-Hastings or Gibbs samplers can be prone to inefficient
random walk behavior when the unknowns are correlated, as with hierarchical models.
Instead, I use Hamiltonian Monte Carlo (HMC) methods, which are ideally suited to
estimating hierarchical models (Betancourt and Girolami, 2013). HMC uses discretized
Hamiltonian dynamics to sample from the posterior, which achieves excellent performance
when combined with the No-U-Turn sampling method (NUTS) to auto-tune the step sizes
in the chain (Hoffman and Gelman, 2011). This algorithm is straightforward to implement
because it has been largely automated in the software package Stan, a free statistical li-
brary which calls C++ to fit Bayesian models from R or Python (Stan Development Team,
2017).

3.2 Limited Information Asymptotic Quantile Models

I now discuss the specific modeling choices involved in the construction of a method to
aggregate sets of quantile treatment effects and assess their generalizability. The uth
quantile of some outcome is the value of the inverse CDF at u:

QY (u) = F−1
Y (u). (3.13)

Performing quantile regression for some quantile u in site k when the only regressor is the
binary treatment indicator Tnk requires estimating:

Qynk|T (u) = β0k(u) + β1k(u)Tnk (3.14)

For a single quantile u, the treatment effect is the univariate parameter β1k(u). If there
is only one quantile of interest, a univariate Bayesian hierarchical model can be applied,
as in Reich et al (2011). But in the microcredit data, researchers estimated a set of 10
quantiles U = {0.05, 0.1, 0.15, ..., 0.95} and interpolated the results to form a "quantile
difference curve". This curve is constructed by computing the quantile regression at all
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points of interest:

Qyik|T = {Qyik|T (u) = β0k(u) + β1k(u)Tik ∀ u ∈ U} (3.15)

The results of this estimation are two |U|-dimensional vectors containing intercept and
slope parameters. For the microcredit data, I work with the following vector of 10 quantile
effects:

β0k = (β0k(0.05), β0k(0.15), ...β0k(0.95))

β1k = (β1k(0.05), β1k(0.15), ...β1k(0.95))
(3.16)

The quantile difference curve is the vector β1k, often linearly interpolated. With a
binary treatment variable, the parameters in a quantile regression are simple functions of
unconditional outcome quantiles. Let Q0k(u) be the value of the control group’s quantile
u in site k, and let Q1k(u) be the value of the treatment group’s quantile u in site k. Then:

Q0k = {Q0k(u) ∀ u ∈ U}

Q1k = {Q1k(u) ∀ u ∈ U}.
(3.17)

Then the vectors of intercepts and slopes for the quantile regression curves can be
reformulated as

β0k = Q0k

β1k = Q1k −Q0k.
(3.18)

Hence, while the quantile difference curve β1k need not be monotonic, it must imply
a monotonic Q1k when combined with a monotonic β0k. The fact that any inference
done quantile-by-quantile may violate monotonicity of (Q1, Q0, {Q1k, Q0k}Kk=1) is a well-
understood problem (Chernozhukov et al. 2010). Partial pooling for aggregation can ex-
acerbate this problem because even if every lower level Q1k and Q0k satisfies monotonicity,
their "average" or general Q1 and Q0 may not do so. For binary treatment variables, the
no-pooling estimators necessarily satisfy monotonicity, but partial pooling may introduce
crossing where none existed. Yet even if quantile crossing does not arise, neighboring
quantiles contain information about each other, and using that information can improve
the estimation and reduce posterior uncertainty. Ideally, therefore, an aggregation model
should fit all quantiles simultaneously, imposing the monotonicity constraint. Aggregat-
ing the quantile difference curves, {β1k}Kk=1, requires more structure than aggregating
quantile-by-quantile, but permits the transmission of information across quantiles.

I propose a general methodology to aggregate reported information on quantile dif-
ference functions building on the approach of Rubin (1981) and a classical result from
Mosteller (1946) about the joint distribution of sets of empirical quantiles. Mosteller
shows that if the underlying random variable is continuously distributed, then the asymp-
totic sampling distribution of a vector of its empirical quantiles is a multivariate Normal
centered at the true quantiles and with a known variance-covariance structure. This im-
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plies that the difference of the empirical quantile vectors from two independent samples,
β1k = (Q1k −Q0k), is also asymptotically a multivariate Gaussian. The theorem offers a
foundation for a hierarchical quantile treatment effect aggregation model using the knowl-
edge that the sampling variation is approximately a multivariate Gaussian, and that as
a result modelling the parent distribution as Gaussian will be both tractable and have
attractive performance (Rubin 1981, Efron and Morris 1975). The resulting analysis re-
quires only the limited information reported by each study (although it can be fit to the
full data) and is applicable to any continuous distribution as long as there is sufficient
data in each of the studies to make the asymptotic approximation reasonable.

For this model, the data are the vectors of sample quantile differences {β̂1k}Kk=1 and
their sampling variance-covariance matrices {Ξ̂β1k}Kk=1. Thus, the lower level f(Yk|θk) =
f(β1k|β1k) is given by the expression:

β̂1k ∼ N(β1k, Ξ̂β1k) ∀ k (3.19)

At the upper level of the model, a Normal specification offers tractability and has
generally desirable properties (Efron and Morris, 1976). The upper level of the model
ψ(θk|θ) is therefore:

β1k ∼ N(β1,Σ1) ∀ k. (3.20)

However, the estimated (β̃1, {β̃1k}Kk=1) from this likelihood may not respect the implied
quantile ordering restriction when combined with the estimated control quantiles, even if
β̂1ks do. We need to add the relevant constraints to this model, but these difference func-
tions are not the primary objects on which the constraints operate. While (β1, {β1k}Kk=1)
need not be monotonic, they must imply monotonic (Q1, {Q1k}Kk=1) when combined with
(Q0, {Q0k}Kk=1). Since the objects (Q1, Q0, {Q1k, Q0k}Kk=1) define the constraints, they
must appear in the model.

Once the quantiles (Q1, Q0, {Q1k, Q0k}Kk=1) appear in the model, transforming them
into monotonic vectors will fully impose the relevant constraint on (β1, {β1k}Kk=1). This
strategy exploits the fact that Bayesian inference treats unknown parameters as random
variables, so applying the transformation of variables formula and then reversing the trans-
form at the end of the procedure completely preserves the posterior probability mass, and
hence correctly translates the uncertainty intervals. I proceed with a transform proposed
for use in Stan (2016), but any valid monotonizing transform will do, since it is always
perfectly reversed. For example, consider monotonizing the |U|-dimensional vector β0,
with uth entry denoted β0[u]. This is necessary in aggregation because even though un-
conditional quantiles typically do not exhibit crossing, the partial pooling exercise has the
potential to introduce crossing if the constraint is not enforced. Thus, I map β0 to a new
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vector β∗0 as follows:

β∗0 [u] =

β0[u], if u = 1

log(β0[u]− β0[u− 1]) if 1 < u < |U|
(3.21)

Any vector β0 to which this transform is applied and for which inference is performed in
the transformed space will always be monotonically increasing. For the rest of the paper,
I denote parameters for which monotonicity has been enforced by performing inference on
the transformed object as above with a superscript m. Thus, by applying the transform
above, I work with βm0 rather than an unconstrained β0, to ensure monotonicity.

Employing a monotonizing transform is an appealing alternative to other methods
used in the econometrics literature to ensure monotonicity during quantile regression.
This transformation enforces the constraint in a flexible and adaptive manner, passing
more information across quantiles in cases where the draws from the posterior are close
to violating the constraint. Restricting the Bayesian posterior to have support only on
parameters which imply monotonic quantiles means that, for example, the posterior means
are those values which are most supported by the data and prior information from the set
which satisfy the constraint. Frequentist solutions such as rearrangement, smoothing or
projection each prevent the violation of the constraint in one specific way chosen a priori
according to the analyst’s own preferences (He 1997, Chernozhukov et al. 2010). While
each strategy performs well in terms of bringing the estimates closer to the estimand (as
shown in Chernozhukov et al. 2010) the Bayesian transformation strategy can flexibly
borrow from each of the strategies as and when the data supports their use. Imposing the
constraint throughout the inference avoids the additional complications of choosing when
during aggregation one should implement the ex-post fixes proposed in the frequentist
literature; for example, in the case of rearrangement, it would be hard to interpret the
result of partially pooling information on the 25th quantile only to have some other quantile
substituted in for certain studies ex-post.

Equipped with this monotonizing transform, it is now possible to build models with re-
stricted multivariate Normal distributions which only produces monotonically increasing
vectors. I propose the following model to perform aggregation in a hierarchical frame-
work, taking in the sets of empirical quantiles {Q̂1k, Q̂0k}Kk=1 and their sampling variance-
covariance matrices {Ξ̂1k, Ξ̂0k}Kk=1 as data. The lower level f(Yk|θk) is:

Q̂0k ∼ N(βm0k, Ξ̂0k) ∀ k

Q̂1k ∼ N(Qm1k, Ξ̂1k) ∀ k

where Q1k ≡ βm0k + β1k

(3.22)
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The upper level ψ(θk|θ) is:

βm0k ∼ N(βm0 ,Σ0) ∀ k

β1k ∼ N(β1,Σ1) ∀ k

where β1 ≡ Qm1 − βm0

(3.23)

The priors P(θ) are:

βm0 ∼ N(0, 1000 ∗ I10)

β1 ∼ N(0, 1000 ∗ I10)

Σ0 ≡ diag(ν0)Ω0diag(ν0)′

Σ1 ≡ diag(ν1)Ω1diag(ν1)′

where ν0, ν1 ∼ halfCauchy(0, 20) and Ω0,Ω1 ∼ LKJCorr(1).

(3.24)

This formulation is convenient as the form of Ξ̂1k is exactly derived in the Mosteller
(1946) theorem, though the individual entries need to be estimated. The structure could
be modified to take in the empirical quantile treatment effects {β̂1k}Kk=1 and their standard
errors instead of {Q̂1k} if needed. The model imposes no structure on (Σ,Σ0), other than
the logical requirement of positive semi-definiteness. This complete flexibility is made
possible by the discretization of the quantile functions; these matrices could not take
unconstrained form if the quantile functions had been modelled as draws from Gaussian
Processes.14 Overall, this structure passes information across the quantiles in two ways:
first, by imposing the ordering constraint, and second, via the functional form of Σ̂k from
the Mosteller (1946) theorem.

3.2.0.1 Pooling Metrics for Nonparametric Quantile Treatment Effects

Conventional pooling metrics for hierarchical models are designed to be applied to uni-
variate treatment effects. For the multivariate Normal quantile curve aggregation models,
the object that governs the dispersion of β1k around β1 is the parent variance-covariance
matrix Σ1. The raw size of this matrix is the purest metric of that dispersion, but this can
only be measured in terms of a certain matrix norm, and different norms will give differ-
ent answers. I proceed using a statistical argument to determine the appropriate norm.15

Consider the idiosyncratic k-specific components ξk = β1k − β1, so that ξk ∼ N (0,Σ1).
The question of how much heterogeneity there is in the set {β1k}Kk=1 is isomorphic to the
question of how far away from 0 is the typical draw of ξk. The answer turns out to be
defined by the trace of Σ1, or the Frobenius norm of Σ1/2

1 .
14Gaussian Processes in general are too flexible to fit at the upper level of these models for this appli-

cation, and popular covariance kernels tend to have identification issues that limit their usefulness in the
current setting.

15I thank Tetsuya Kaji for his conceptualization of this approach and his major contribution to this
argument.
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To see why the trace of Σ1 is a sensible metric for the average magnitude of ξk, consider
the transformed variable zk ≡ Σ−1/2

1 ξk ∼ N (0, I). Then, considering the variance of ξk,
we have ‖ξk‖2 =

∥∥∥Σ−1/2
1 zk

∥∥∥2
= z′kΣ1zk. Thus, we can get the expected squared distance of

ξk from 0 by computing E[z′kΣ1zk]. Since zk follows a standard multivariate Normal, this
expectation is simply the trace of Σ1. To see this another way, recall that in a finite dimen-
sional Euclidean space, taking any orthonormal basis e, we have tr(A) =

∑n
i=1〈Aei, ei〉.

Thus, the trace of Σ1 determines how far away we push any orthonormal basis vector away
from itself by premultiplying by Σ1, and this defines a notion of dispersion in the space
spanned by e. In addition, because tr(Σ1) is equivalent to the Frobenius norm of Σ1/2

1 , it
is submultiplicative and unitarily invariant.

Defining tr(Σ1) as the preferred metric allows the natural extension of the univariate
pooling metrics to the multivariate Normal objects in the hierarchical likelihood. Recalling
that the model implies β̂1k ∼ N (β1, Ξ̂β1k + Σ1), we can compute the percentage of total
variation of the no-pooling quantile treatment effect curve estimates around their true
mean β that is due to sampling variation from Ξ̂β1k. Hence, I construct a matrix-valued
version of the conventional pooling metric as follows:

ω(β) = 1
K

K∑
k=1

tr(Ξ̂β1k)
tr(Ξ̂β1k + Σ)

= 1
K

K∑
k=1

tr(Ξ̂β1k)
tr(Ξ̂β1k) + tr(Σ)

(3.25)

The suitability of the trace operator here suggests a general method for constructing
pooling factors on multivariate treatment effects. Consider the Gelman and Pardoe (2006)
pooling metric which, for univariate treatment effects, compares within-variation in the
posterior draws of each β1k to the between variation in the posterior draws of {β1k}Kk=1.
The simplest generalization of this to multivariate treatment effects is to simply take the
sum of this metric evaluated at each quantile treatment effect; this is exactly what the
trace did for the conventional pooling metric. To ensure the metric retains an easily
interpretable scale, the sum must be normalized to ensure the result lies on the interval
[0,1]. Defining |U| = U and using β[u] to refer to the uth entry in the vector of effects, I
define the multivariate analogue of the Gelman & Pardoe (2006) metric for a U -dimensional
treatment effect as follows:

λβ1 = 1
K

K∑
k=1

(
1− 1

U

U∑
u=1

var(E[β1k[u]− β1[u]])
E[(var(β1k[u]− β1[u])]

)
. (3.26)

I define the multivariate analogue of the "brute force" pooling metric defined in Meager
(2015) for a U-dimensional treatment effect as follows, using β[u] to refer to the uth entry
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in the vector of effects:

ω̆(β1) = 1
K

K∑
k=1

(
1
U

U∑
u=1

β[u]1k − β̂1k[u]
β1[u]− β1k[u]

)
. (3.27)

3.3 Full Information Finite Sample Parametric Quantile Models

The strength of the model based on the Mosteller (1946) theorem is that it works for any
continuous outcome variable; its weakness is that it only works for continuous variables.
In the microcredit data, this approach will work for household consumption, consumer
durables spending and temptation goods spending. But household business profit, rev-
enues and expenditures are not continuous because many households either did not own
or did not operate their businesses in the month prior to being surveyed and therefore
recorded zero for these outcomes. This creates large "spikes" at zero in the distributions,
as shown in the histograms of the profit data for the sites (figure 1). This spike under-
mines the performance of the Mosteller theorem and of the nonparametric bootstrap for
standard error calculation. The Mexico data provides the cleanest example of this, shown
in figure 2: the first panel is the result of using the Mosteller asymptotic approximation,
and the second panel is the result of the nonparametric bootstrap applied to the standard
errors on the same data. The former produces the dubious result that the uncertainty
on the quantiles in the discrete spike is the same as the uncertainty in the tail; the latter
produces the dubious result that the standard errors are exactly zero at most quantiles.

The potential for quantile regression techniques to fail when the underlying data is not
continuous is a well-understood problem (Koenker and Hallock 2001; Koenker 2011). In
some cases, "dithering" or "jittering" the data by adding a small amount of random noise is
sufficient to prevent this failure and reliably recover the underlying parameters (Machado
and Santos Silva, 2005).16 But in the microcredit data, the complications caused by these
spikes at zero are not effectively addressed by dithering. The results in figure 3 show
that applying the Mosteller theorem to the dithered profit data leads to inference that
is too precise in the tail relative to the results of the bootstrap on the same data. An
alternative method to aggregate the quantile treatment effects must be developed for these
three outcomes, and for any outcome of interest which is not continuously distributed.

When the Mosteller (1946) approximation cannot be applied due to the presence of
discrete probability masses in the distribution of the outcome variable, the researcher
typically has some contextual or prior economic knowledge of why these masses arise.
Hence, it may be possible to explicitly model the processes that generate the probability
density functions (PDFs) of household outcomes. I pursue a flexible and richly-parametised
approach at the data level using mixtures of distributions in which treatment can affect all

16In fact, a small amount of dithering is necessary for the microcredit data on consumer durables
spending and temptation goods spending to conform to the Mosteller approximation, as this data is
actually somewhat discrete.
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aspects of the shapes of the component distributions as well as the weights on each of the
components themselves.17 While this requires substantial input from the researcher and
the aggregation model must be tailored to each specific case, this method will automatically
solve the two problems discussed with naive quantile aggregation. Directly modelling the
PDFs as proper densities, which therefore integrate to proper and thus weakly monotonic
Cumulative Density Functions, will automatically deliver monotonically increasing vectors
of quantiles. The model transfers information across neighbouring quantiles because they
are directly linked by the functional form assumptions.

For the household business variables in the microcredit data, there is sufficient contex-
tual economic information to build a parametric model. In this setting, economic theory
predicts that these variables should be mixtures of spikes at zero and continuous tails
because they are the output of a partially discrete decision process. First, a household has
an extensive margin decision to make about whether to operate a business this season or
not. This decision may be different at different times of the year depending on the out-
side options, as many households in these contexts engage in seasonal agricultural labour
or intermittent construction labour for part of the year, only operating their businesses
during the "lean season". Only those households who decide to open and operate their
businesses go on to make an intensive margin decision, the result of which manifests some
continuous expenditures, revenues and profit. This explains the spike at zero observed
in all three business variables, which is a real feature of the generating process and not
an artefact of the data collection. Economic theory and prior research suggest that the
continuous portions of business variables such as revenues and profit tend to follow power
laws or other fat-tailed laws (Stiglitz 1969, Gabaix 2008, Allen 2014, Bazzi 2016). Hence,
the outcome PDF can be modeled as a mixture of three distributions: a lower tail, a spike
at zero, and an upper tail. As Tnk may affect the mass in the components and the shape
of the tail components, I specify treatment effects on all aspects of this mixture PDF. The
model can then aggregate effect of the treatment on each of the parameters that govern
the distribution, as well as the implied quantile treatment effects.

The risk in specifying any parametric structure based on contextual and prior informa-
tion is that our knowledge may be insufficient or incorrect, leading to poor inference. It is
advisable therefore to assess the sensitivity to the choice of functional form, and if sensi-
tivity is detected, to select the model that best fits the data for the purposes of inference.
In the case of household business variables the distribution of the tails could reasonably
be modelled by a Pareto distribution, as in Piketty 2015 or Bazzi 2016. However, a Log-
Normal distribution would allow for more mass near the lower bound of the distribution
per Roy 1950 and is analogous to log transforming the positive values in the sample, a
common practice in applied microeconomics (see for example Banerjee et al 2015). I fit
both models to the microcredit data and examine the posterior fit of each model in order

17I do not use nonparametric mixtures of Gaussians because it is unclear how to apply a hierarchical
model to these infinite-dimensional PDFs.
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to select between them, and I determine what if any inferences are robust to the choice of
tail distribution.

Consider the following tailored hierarchical PDF model to aggregate the quantile effects
on household business profit. Denote the probability mass in the jth mixture component
for a household n with treatment status Tnk to be Λj(Tnk) for j = 1, 2, 3. This dependence
can be modeled using a multinomial logit specification, denoting the intercept in site k for
mixture component j as αjk and the treatment effect as πjk. For the spike at zero, the
Dirac delta function can be used as a distribution, denoted δ(x) for a point mass at x. If
using the Pareto distribution for the continuous component, the tails are governed by a
location parameter which controls the lower bound of the support and a scale parameter
which controls the thickness of the tail. The location parameter ιjk is exactly known
because I have already defined the domain of each of the components by manually splitting
the data. However the shape parameter is unknown and may be affected by treatment,
which I model using a multiplicative exponential regression specification to impose a non-
negativity constraint on the parameter. The shape parameter in mixture component j for
household n in site k is therefore exp(ρjk + κjkTnk).

The lower level of the likelihood f(Yk|θk) is specified according to this mixture distri-
bution. Let j = 1 denote the negative tail of the household profit distribution, let j = 2
denote the spike at zero, and let j = 3 denote the positive tail. Then the household’s
business profit is distributed as follows:

ynk|Tnk ∼ Λ1k(Tnk)Pareto(−ynk|ι1k, exp(ρ1k + κ1kTnk)

+Λ2k(Tn)δ(0)

+Λ3k(Tn)Pareto(ynk|ι3k, exp(ρ3k + κ3kTnk) ∀ k

where Λjk(Tnk) = exp(αjk + πjkTnk)∑
j=1,2,3 exp(αjk + πjkTnk)

(3.28)

The upper level ψ(θk|θ) is:

(α1k, α2k, π1k...)′ ≡ ζk ∼ N(ζ,Υ) ∀ k (3.29)

For tractability and simplicity I enforce diagonal Υ for the microcredit analysis. There-
fore, the model needs only weak priors P(θ) as follows:

ζ ∼ N(0, 10)

Υ ≡ diag(νΥ)ΩΥdiag(νΥ)′

νΥ ∼ halfCauchy(0, 5)

ΩΥ = I|ζ|

αmk ∼ N(0, 5)

(3.30)
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I build a similar using LogNormal tails, which are each governed by a location parameter
and a scale parameter. The latter can only be positive valued so I again employ the
exponential transform to ensure the support constraint is satisfied. I model the location
parameter using a linear regression format in which the value for the control group in site
k is µk and the value for the treatment group is µk + τk. The scale parameter is modelled
similarly to the pareto scale parameter with the control group’s value being exp(σck) and
the treatment group’s value being exp(σck + σtk). This produces the following model:

ynk|Tnk ∼ Λ1k(Tnk)LogNormal(−ynk|µ1k + τ1kTnk, exp(σc1k + σt1kTnk))

+Λ2k(Tn)δ(0)

+Λ3k(Tn)LogNormal(ynk|µ3k + τ3kTnk, exp(σc3k + σt3kTnk) ∀ k

where Λjk(Tnk) = exp(αjk + πjkTnk)∑
j=1,2,3 exp(αjk + πjkTnk))

(3.31)

The upper level of the model is also specified Gaussian as in equation 3.29 with indepen-
dence enforced for tractability, and the priors are specified in the same way. The tailored
hierarchical PDF aggregation models for revenues and expenditures are constructed as
above for both the Pareto and LogNormal cases, but with no negative tail and hence only
2 mixture components.

However, additional work is needed to recover the implied quantile treatment effects
from this model. Quantile recovery is a nontrivial challenge in this setting because mixture
distributions in general do not have analytical quantile functions. However, because the
mixture distribution in this particular model has components with disjoint supports, one
can apply the method of Castellacci (2012) to compute the quantiles analytically. Given
the profit model above I derive the quantile function using this method for each model.
The result for the Pareto model is:

Q(u) = −Pareto−1
(

1− u

Λ1(Tn) | ι1k, ρ1k(exp(κ1kTn))
)
∗ 1{u < Λ1(Tn)}

+ 0 ∗ 1{Λ1(Tn) < u < (Λ1(Tn) + Λ2(Tn)}

+Pareto−1
(
u− (1− Λ3(Tn))

Λ3(Tn) | ι3k, ρ3k(exp(κ3kTn)
)
∗ 1{u > (1− Λ3(Tn))}

(3.32)

The LogNormal model is derived analogously but with the LogNormal quantile function
taking the place of the Pareto quantile function. The full posterior distribution of the entire
set of quantiles and thus the implied quantile treatment effects is easily computed from
the posterior distribution of the unknown parameters within the Bayesian framework, by
applying the computation to every MCMC draw from the joint posterior distribution.
This method ensures that the uncertainty on the quantiles implied by the uncertainty on
the parameters that govern the tailored hierarchical PDF model is translated exactly.
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3.3.0.1 Pooling Metrics for Parametric Quantile Treatment Effects

In tailored hierarchical PDF models, the upper level variance-covariance matrix V is the
object that governs the dispersion of the treatment effects and thus the heterogeneity.
The raw size of this matrix is the purest metric of that dispersion, and as discussed above,
the trace of the matrix is the norm that captures the notion of dispersion on the set
of {θk}Kk=1. However, it is unclear in this setting what we should compare against ‖V ‖
because modelling the outcomes explicitly means we do not have recourse to a sampling
variance-covariance matrix within the model itself. In order to construct a sampling
variance-covariance matrix, I fit a no-pooling version of the tailored PDF model, omitting
the upper level of the hierarchy. I use the set of no pooling model parameters {ζ̂k}Kk=1
and their accompanying posterior variance-covariance matrix Σ̂ζ to construct the pooling
metrics of interest. Hence, the translation of the conventional pooling metric in this case
is

ωV (β) = 1
K

K∑
k=1

tr(Σ̂ζk)
tr(Σ̂ζk + V )

= 1
K

K∑
k=1

tr(Σ̂ζk)
tr(Σ̂ζk) + tr(V )

.

(3.33)

In this paper, the matrix V has been constrained to be diagonal for tractability purposes,
so I construct a comparably diagonal Σ̂ζk from each site using the marginal posteriors
for each component. The Gelman and Pardoe pooling metric and the brute force pooling
metric are extended to the tailored hierarchical PDF as in the multivariate Normal model
case.

4 Results

4.1 Main Results

4.1.1 Consumption Variables

Aggregating the quantile treatment effects for household consumption, consumer durables
spending and temptation goods spending using the Mosteller-based model shows that mi-
crocredit has a precise, generalizable zero effect below the 75th percentile. Beyond this
point there is an imprecise positive effect that exhibits high variance across sites. Figure
4 shows the posterior distribution of the generalized quantile treatment effects β1 for each
of these outcomes, with the full-pooling aggregation results shown for comparison. Each
graph has a line depicting the posterior mean of the quantiles, a shaded area showing the
central 50% posterior interval for the quantiles, and a lighter shaded area showing the
central 95% posterior interval. The results show that the full pooling model and the BHM
typically produce similar output for the 5th to 75th quantile of household outcomes, but

28



diverge in the upper tail. This difference itself signals the presence of heterogeneous ef-
fects across settings: full pooling and partial pooling differ only in the weights they apply
to the effects in each site when combining them to deliver an aggregate point estimate,
and the result can only differ if the components being weighted differ. In this setting,
the full-pooling model typically underestimates the uncertainty, particularly on the up-
per quantiles, and thus delivers inference with higher precision than is warranted by the
evidence.

While the inference on the average quantile effects across all sites are similar for the
hierarchical model and the full pooling model, the inference on the predicted effect in the
next site is more uncertain in the hierarchical context. Posterior predictive distributions
of these consumption variables are shown in figure 5 with the full-pooling model for com-
parison. The results show considerably more uncertainty about the outcomes, particularly
at the right tail, than would be suggested by taking either the full-pooling model or the
posterior distribution of β1 from the partial pooling model. Particularly for household
consumption, the model declines to make any strong prediction at the tail, with a positive
effect being only moderately more likely than a negative effect at the 90th percentile and
above. The results of calculating the pooling metrics for the multivariate quantile models
show that the level of pooling on the quantile difference curves is intermediate, around
50% on average. Results for the three consumption variables are shown in table 2. There
is almost zero pooling of the control group quantiles according to two of the three metrics,
and intermediate pooling according to the third metric. This indicates that the control
groups are substantially different in across studies, and suggests that the zero impact along
most of the distribution is indeed generalizable across heterogeneous contexts.

The site-specific results from the Bayesian hierarchical model illuminate how these
general results arise at the upper level of the model. Figures in Appendix B display these
results for each site, with the no-pooling results shown for comparison. There is moderate,
although not extensive, pooling of the functions together for these outcomes. However, the
curves are typically quite similar to each other even in the no-pooling model, with most
of their posterior mass located near zero for the majority of the quantiles. This supports
the notion of a generalizable and replicable zero effect on the shape of the distribution,
except at the upper tail where there is both more uncertainty within each site and less
apparent similarity across sites.

4.1.2 Business Variables

To analyse household business expenditures, revenues and profits, I fit both the Pareto
and LogNormal models and use posterior predictive checking to select the structure that
fits the data best (Gelman et al 2004). This requires simulating data from the posterior
distribution of each model, and then comparing the simulated data to the real data. As
table 3 shows, the LogNormal model outperforms the Pareto in terms of predicting the
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actual observed control group quantiles, particularly in the right tail. The Pareto shape
has too little mass near zero and too much mass in the tail relative to the LogNormal.
However, the broad patterns observed in the results of the LogNormal model are also
observed in the Pareto model, and are thus robust to choice of tail distribution (see
Appendix A). In particular, both models show a precise zero impact at most quantiles,
and then the potential for large increases in the right tails.

The quantile treatment effect results from the the Lognormal hierarchical PDF models
for all business outcomes are shown in figure 6 with the full pooling results shown for
comparison. The models find a precise and generalizable zero effect below the 75th per-
centile, although the lower tail of profit is an imprecise zero. Above the 75th percentile
there is a large positive point estimate, but much less precision and more uncertainty, due
to heterogeneity both within and across sites. By contrast, the full pooling models find
much larger and more precise "statistically significant" effects in the tails. The difference
is dramatic because when the tails are sparse, a little more pooling goes a long way; yet as
with consumption, the presence of different aggregate point estimates in the tails is itself
a signal of heterogeneity across settings, such that the full pooling assumption is unwar-
ranted in this setting and unlikely to produce reliable inference. In a frequentist sense, the
apparently "statistically significant" results in the upper tails "detected" in the full pooling
model are eliminated by the application of a hierarchical model. In a Bayesian sense, the
full pooling model is misleadingly precise in the upper tail, and the posterior uncertainty
we should have about these tail effects is much larger. However, there is more than a
90% probability of a positive effect on the 85th and 95th quantiles of all the distributions,
suggesting that microcredit may indeed be affecting these tails in some positive way.

The posterior predicted quantile results for future effects, again computed using the
Castellacci (2012) formula, are shown in figure 7 with the full pooling results for compar-
ison. Any detected heterogeneity in the quantile treatment effects on household business
outcomes is typically localized above the 85th percentile. Below this point, the effect is
zero and reasonably generalizable, but above this point the high variation and sparsity in
the tails means that there is great uncertainty about the exact impact microcredit will
have on the right tail of the next distribution to which it is applied. As before, the full
pooling model displays unwarranted precision and magnitude of impact relative to the
more moderate and uncertain prediction made by the hierarchical model.

Assessing the heterogeneity in the effects specified within the tailored hierarchical PDF
models across sites shows reasonable generalizability, with approximately 60% pooling on
average across all metrics. These results are computed separately for the two sets of treat-
ment effects that parameterize these tailored hierarchical PDF models: the categorical
logit switching effects, are shown in table 6 and the tail shape effects are shown in table 7.
In each table, the same pooling metrics for the control group values of the relevant param-
eters are shown for comparison. For both sets of effects, there is moderate or substantial
pooling on the treatment effects, but only mild to moderate pooling on the control group
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means. However, there is noticeable dispersion in the results across each of the metrics,
which suggests that the results should be interpreted with caution. Nevertheless there is
a reasonable amount of commonality across sites, suggesting that these results are at least
partially generalizable to other sites.

An important reason for the uncertainty in the right tail of business outcomes is that
they exhibit extreme kurtosis, that is, the tails of these variables are very heavy. The
positive tail of profit, which is less heavy than that of revenues and expenditures, has
an excess kurtosis of 811 in the Lognormal Model (see calculations in Appendix C). For
reference, the standard Laplace distribution has an excess kurtosis of 3, yet even in this
milder case the sample median is 2-3 times more efficient than the sample mean as an
estimator of the location parameter (Koenker and Bassett 1978). The Pareto models fit
to the business data find scale parameters close to zero, indicating that the tails are heavy
enough to impede the functioning of the central limit theorem and even the law of large
numbers (see Appendix A). This suggests that the average treatment effects estimated
via OLS regression in the original studies and thus the analysis in Meager (2018) may be
unreliable for these variables, both because they invoke Gaussian asymptotics which do
not hold, and because in this case the mean itself is not reliable as a summary statistic of
the underlying distribution.

4.2 The role of business experience

While the results of the hierarchical aggregation display less heterogeneity across the
experiments than the disaggregated results suggested, understanding the remaining het-
erogeneity is important. There are a number of covariates both within and across sites
which could predict these differences in the distributional effects of microcredit in theory.
At the household level, the most relevant pre-treatment covariate is the previous business
experience of the households in the sample, as measured by their operation of a business
prior to the microcredit intervention. As different study populations had differing preva-
lence of househoulds with these prior businesses, conditioning the analysis on this variable
could help to explain the remaining heterogeneity in the causal impact of microcredit. At
the site level, there are many covariates that describe differences in economic conditions
and study protocols, but as these are plausibly endogenous to the effect of microcredit in
the site their predictive power does not necessarily reflect a causal relationship. In addi-
tion, with only 7 studies, any analysis of covariates at the site-level is speculative at best
and regularization will be necessary to avoid severe overfitting: this exercise is described
in Appendix E. The remainder of this section focuses on covariate analysis within study
sites.

To assess the importance of previous business experience in modulating the causal
impact of microcredit, I split the entire sample by a binary indicator of prior business
ownership and separately analyze the two subsamples. Fitting the Bayesian hierarchical
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quantile aggregation models to each group shows that the impact of microcredit differs
across the two types of households. Figures 8 and 9 show the general distributional impact
of microcredit on the six household outcomes of interest for each of the household types.
For most outcomes, households with no prior business ownership see negligible impact of
microcredit across the entire distribution, leading to a generalizable and precise impact
of zero across all quantiles, with only a small increase in the variance in the right tail.
Households with prior businesses are responsible for the positive and large point estimates
in the right tails, but also for the noise in that tail, suggesting that they are also the
source of the heterogeneous effects. This confirms the results of Banerjee et. al. (2015)
and Meager (2018), which performed similar analyses within a single site and for the
average effects respectively, and found differences in the way households with business
experience respond to microcredit relative to those without such experience.

A closer examination of the results yields indirect evidence about the different ways
in which these two types of households respond to increased access to microcredit. For
households with business experience, there is strong evidence of a positive effect on to-
tal consumption at the 95th percentile, whereas households without experience see little
impact on total consumption at any quantile (figure 8). These experienced households
are also responsible for all of the observed activity on the business outcomes - this group
produces the large point estimates and the massive uncertainty in the tails of the profit,
revenues and expenditures distributions at the general level. However, these inexperienced
households are responsible for the imprecise yet positive point estimate at the 95th per-
centile of consumer durables spending, while the experienced households generally do not
alter their durables consumption at all (figure 8). Taken together, this suggests that some
households who don’t have prior businesses may generally use microcredit to change the
composition of their consumption bundles; but even this smaller effect occurs only in the
tail and is imprecisely estimated (figure 9).

4.3 The role of take-up

One concern about the models presented in the main analysis is that they ignore the role
of differential take-up in explaining the impact of microcredit. While the results of the
analysis stand for themselves as group-level causal impacts, the economic interpretation
of the results might differ if we knew, for example, that the zero impact along most of
the outcome quantiles was entirely due to lack of take-up by most of the households in
the sample. The main results contain suggestive evidence that the lack of impact at most
quantiles is not solely due to lack of take-up: the 2 sites that randomized loan access
rather than branch access and therefore had almost full take-up (Bosnia and the Philip-
pines) displayed the same trend as all the other sites ( Appendix B ). However, there is no
satisfactory way to identify the distributional impact only on those households who were
randomly induced to take up a loan (the "compliers" in the Rubin causal framework), be-
cause it is unlikely that the Stable Unit Treatment Value Assumption holds for individual
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households within a village.

I pursue a bounding exercise that provides additional evidence that take-up patterns
alone cannot explain the precise zero results along most of the distribution. Ideally, the
right comparison to make is between those households who took up microcredit due to
the random expansion of access, and the same group of households in the control group.
But we cannot identify those households in the control group, nor can we separate the
compliers from the always-takers in the treatment group, so we cannot estimate this effect.
Even though in the microcredit studies, there are households in the control groups who
do manage to access microcredit, presumably these are the "always takers" and not the
compliers against which the appropriate comparison can be made.

However, we can compare the outcomes of the treated households who took up the
microloans to the outcomes of the control group households who did not take up the loan.
In a simple model in which selection into treatment is positively correlated with treatment
effects, this probably overestimates the effect since this group contains both compliers
and never-takers, the latter of which are usually assumed to have zero treatment effects
(Imbens and Rubin 2015). This forms a likely lower upper on the effect for compliers.
To find a lower bound, one can compare the outcomes of the treated households who
took up the loans to the control households who took up the loans. Consider a simple
model in which selection into treatment is positively correlated with treatment effect and
households borrow if the benefits outweigh the costs, and suppose that expansion of access
to microcredit reduces the costs of taking a loan (if only because one has less far to walk
to the MFI branch). In such a world, comparing households who took up in treatment to
those who took up in control would most likely underestimate the effect on the compliers.
Therefore, computing these two comparisons gives a rough ballpark on either side of the
correct but infeasible comparison.18

I find that for almost every outcome variable, the "treatment effect" on the selected
sample is similar to the intention to treat effect, suggesting no real difference for households
who took up loans versus households who did not. Comparing the households who took
up the loans in the treatment group to households in the control group who did not take
up loans produces similar results as comparing all households, as shown in figure 10.
Consumption is an exception to this trend, and the non-zero results for this comparison
are interesting, but as an upper bound this does not overshadow the null results on the
rest of the variables. The results of comparing the households who took up the loans in
the treatment group to households who took up in the control group for all outcomes is
shown in figure 11. These effects tend to be broadly similar to the impact of mere access,
in that they are zero almost everywhere, although on average the effects are estimated

18The potential for SUTVA violations is what prevents me from pursuing the computation of the LATE
for those who take up treatment. I should note that potential SUTVA violation would also affect the
validity of the levels of the bounds provided here, but the gap between the two bounds should not be
affected by violations of SUTVA unless there are differential violations by comparison type, which seems
unlikely.
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to be smaller. While this analysis provides suggestive evidence that microcredit’s lack of
impact below the 75th quantile is not solely due to lack of take-up, it is not conclusive. A
structural analysis of this data or an additional experiment would be required to obtain
a more definitive answer to this question, yet this would require more structure than the
current analysis.

5 Discussion

The aggregated distributional effects show no evidence of any systematic harm caused by
access to microcredit. While moderately negative impacts are within the 95% posterior
interval of the effects on the upper tails of the distribution, the point estimate and vast
majority of the posterior mass is positive in those cases. The only variable with larger
uncertainty at the lower tail is profit, but the point estimate is zero and the uncertainty
is symmetric around that point. Thus, there is strong evidence against the notion that
microcredit causes substantially worse outcomes for some group of households than they
would have experienced in its absence. While the zero quantile effects do not imply
that no household experiences any harm from microcredit, they do imply that effects on
any households who do experience harm are approximately canceled out by others who
experience benefits, such that these groups are swapping ranks in the outcome distribution
rather than contributing to any change in the shape of that distribution.

The precise zero effect from the 5th to 75th percentile of most of the household out-
comes is a true zero and not a mechanical artefact of the spike at zero nor an economic
consequence of the low takeup. Consumption, consumer durables and temptation goods
do not exhibit a spike of households who record an outcome equal to zero (this is almost
true by definition, since it is hard to survive on nothing), yet microcredit still has a pre-
cisely estimated zero effect for most of the distribution. Even for profit, revenues and
consumption the spike only accounts for at most 50% of the outcome distribution, yet the
zero effect applies to 75% of the distribution. Similarly, Bosnia and the Philippines had
over 90% takeup and yet still exhibited zero effects from the 5th to 75th percentile ( see
Appendix B ). The bounding exercise pursued in section 4.3 aggregates all the data on
the question of takeup and shows that even the effects on the outcome distribution for
those who take up microloans are likely to be zero along most of the distribution.

I do find evidence of large positive effects of microcredit on the right tail of all outcome
distributions, although these effects are imprecisely estimated and heterogeneous across
contexts. Thus, the quantile analysis effectively decomposes the small and moderately
noisy average treatment effect estimates from all the papers, aggregated in Meager (2018),
into an imprecise yet large effect on the tail, and a precise zero everywhere else. These
tail effects are large enough to be economically important and are typically concentrated
among those households who have previous experience operating businesses, for whom we
can rule out a zero effect on consumption at the 95th percentile, though the estimate is still
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quite imprecise, as shown in figure 8. Thus overall the aggregated distributional analysis
provides evidence that microcredit is likely to do some good and no systemic harm. While
the models are unable to precisely predict the effect on the right tail, and thus cannot
confidently predict the impact in the next location into which microcredit expands, it is
more likely to be positive than negative. Of course, for most of the community, it appears
that no systematic change is occurring and the majority of the outcome distribution looks
the same in both treatment and control.

Understanding the economic consequences of potentially increasing the right tail of
consumption and business outcomes while leaving the rest of the distribution unchanged
is a nuanced task. This pattern means that expanding access to microcredit is likely
to cause an ex-post increase in economic inequality across households, which may be
important if inequality leads to capture of local political institutions or other adverse
social consequences (Acemoglu and Robinson 2008). However, that increase is entirely
generated by the right tail expanding rightwards: a probable improvement of economic
circumstance for some, with no corresponding systematic loss for any group of households.
A rightward expansion of the upper tail does not means that the richer households are
getting richer, because quantile effects cannot be localised to any particular households
without invoking a rank invariance assumption or some comparable structure, which is
unrealistic for credit market interventions. The interpretation of the quantile effect results
presented here must remain at the group level, and thus, we cannot infer which households
specifically benefit from the likely expansion of the right tail. More detailed baseline data
may have permitted an exploration of this question, although such households may well
look identical to others along all the covariates we can measure (as suggested in Kaboski
and Townsend 2011).

This pattern of probable yet variable expansion in the right tail, combined with the
inability to localise the effects to particular households in these data sets, highlights the
value of locating and studying these highly productive individuals. Studies such as Hus-
sam, Rigol and Roth 2017, which leverages local knowledge to lend to borrowers with high
marginal returns to capital, are valuable both because these individuals seem to be the
only households positively benefiting and because the benefits are large. My aggregated
analyses largely confirms those results, yet adds the nuance that we cannot expect the
exact results observed in such papers to replicate elsewhere, and there may be contexts
in which these positive tail effects will not materialise. However, my analysis also demon-
strates the challenges of inference on these highly productive households because - perhaps
by definition - their returns follow heavy-tailed distributions. Under such circumstances,
studies that appear to be well-powered may be underpowered to detect these effects, which
suggests that either powering studies to detect effects on heavy-tailed distributions or em-
phasising aggregated results rather than individual studies would be appropriate here.

The heavy tails (extreme kurtosis) in the household business outcomes has both method-
ological and economic implications. Ordinary least squares regressions such as those per-
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formed in the original randomized controlled trials are likely to perform poorly compared
to quantile regression techniques or parametric modelling of the heavy tail of business
variables such as profit (Koenker and Basset 1978, Koenker and Hallock 2011). More
substantively, heavy tails suggest that in these populations, certain individual households
account for large percentages of the total business activity. This suggests that it may be
challenging to understand the economies of developing countries if we trim or winsorize the
most productive households who make up a large percentage of total economic activity.
It might be more useful to study mechanisms that can produce fat-tailed outcomes, such
as multiplicative production functions, experimentation or investments with a relatively
high risk exposure and long maturation horizons. The fact that households with prior
businesses increase their consumption (figure 8) suggests they have some expectation of
future increases in profits or earnings. This highlights the potential benefits of studying
these households over longer time horizons, or perhaps taking multiple observations of
the same households as in the Townsend Thai Data (2018) and as suggested in McKenzie
(2012).

My analysis is not exhaustive, and the conclusions I can draw are limited by the con-
straints of my framework and of the original studies. It may be that if microcredit inter-
ventions were studied over a 10 or 20 year horizon, the imprecise tail effects we observe
after two years could either become precise or could lead to benefits across the entire dis-
tribution. If the studies had a richer set of baseline data, a deeper understanding of the
household-level distributional impacts of expanding access to microcredit could be gener-
ated by including baseline covariates and perhaps leveraging more economics knowledge
of the contextual microstructure to the analysis. It would be informative to apply an
individual-level structural model to this data, such that one could infer the distribution
of individual-level treatment effects, but there is currently no established methodology
for partial pooling on structural parameters. Finally, by restricting the selected set of
studies to be RCTs, there is a possibility of a sample selection bias due to the conditions
required to perform field experiments; as yet, there is no established method for combining
experimental and observational studies in a single aggregation framework. Despite these
cautions, the conclusion of the current analysis remains salient: in general, there is likely
to be no difference between the treatment and control groups below the 75th quantile in
future sites that receive more access to microcredit, and while we cannot reliably predict
the effect above the 75th percentile, the aggregated evidence suggests it is likely to be
positive.

6 Conclusion

Understanding the distributional impact of microcredit requires confronting the econo-
metric challenge of aggregating sets of quantile effects without imposing unwarranted
assumptions on the degree of external validity across studies. I develop new Bayesian hi-
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erarchical models and associated pooling metrics to estimate the distributional treatment
effects of policy interventions and assess the generalizability of the results. I approach the
problem of passing information across quantiles and ensuring quantile monotonicity using
variable transformation, and I use richly-parameterised mixture models to aggregate in-
formation on quantiles of partially discrete variables. I apply these methods to aggregate
the impact of expanding access to microcredit on the distribution of various household
economic outcomes, and find that the analysis can reveal aspects of the data occluded by
average treatment effects analyses. For the microcredit data, full-pooling methods mis-
leadingly produce "statistically significant" results unwarranted by the actual evidence for
three of the six household outcomes studied. These results illustrate the importance of
using partial pooling methods for evidence aggregation when the true generalizability of
the treatment effects is not known.

Aggregating the evidence from seven RCTs of expanding access to microcredit gener-
ates new insights about the general impact of this intervention on different parts of the
distribution of household economic outcomes. I find a precise and generalizable zero im-
pact below the 75th percentile on all outcomes, and a large positive impact above this
point which is less precisely estimated due to greater heterogeneity both within and across
studies in the right tail. Although I used different methods to aggregate consumption out-
comes and business outcomes due to the different underlying structures of the variables,
this pattern is robust to choice of methodology and to choice of parametric functional
form. Thus, although microcredit has the potential to create winners and losers, there is
no evidence that any group of households is systematically harmed. There is a high prob-
ability of positive effects on the right tail of the distribution, although these effects are less
generalizable across studies and may not manifest in all settings. The precise zero along
most of the distribution however suggests that most households’ lives are not transformed
by microcredit access, and this result holds even among those who take up the loans or
have previous business experience, for whom the right tail effects are most pronounced.
Taken together the pattern suggests a potential improvement for some, although such
improvements are likely accompanied by greater inequality across households; the welfare
effects of microcredit are likely to be complex.

These results highlight the importance of analysing distributional effects rather than
simply examining average treatment effects. Previous work aggregating the average impact
of microcredit found generalizable information, but small or even null treatment effects
(Meager 2018, Vivalt 2016). Aggregating the quantile treatment effects reveals that this
average effect is composed of a precise zero effect for most of the distribution, and a large
positive effect in the right tail which is imprecisely measured and heterogeneous across
studies. Moreover, the results highlight the inadequacy of average effects estimation in the
presence of heavy tails, which are detected in all the business variables to the extent that
the median is substantially more efficient than the mean as a measure of location. Quantile
analysis and parametric models which allow for the possibility of heavy tails will typically
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outperform average effects analysis here, particularly when Gaussian approximations are
used for inference on those averages (Koenker and Basset 1978). Heavy-tailed data is
reasonably common in economics, particularly for variables such as earnings, profits and
wealth (e.g. Bazzi 2016, Pancost 2016, Gabaix 2008, Fama 1965); the widespread use of
least squares regression may be problematic. The benefit of using robust methods such
as quantile regression apply not only to the aggregation of distributional effects across
settings but also to the analysis of economic data in general.

The models developed in this paper can be used to aggregate the evidence on a wide
range of interventions likely to have heterogeneous treatment effects across households,
such as trade policies, educational subsidies or incentives for social and geographic mobility
(Chetty and Hendren 2018, Duflo, Dupas and Kremer 2017, Chetty, Hendren, and Katz
2016, Autor et al 2014, Bryan, Chowdhury, and Mobarak 2014, Katz, Kling and Leibman
2001). The methods developed to aggregate the microcredit data here can be directly
applied to the quantile effects on outcomes such as household earnings, consumption and
educational outcomes in these literatures, delivering results which should be both more
informative and more reliable than the results of any single study. Although it may not
always be possible to extrapolate evidence across contexts, a formal assessment of the
heterogeneity in effects and the resulting uncertainty surrounding similar interventions in
new settings has the potential to improve the way that research is translated into policy
in many areas of economics.
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Table 1: Lender and Study Attributes by Country

Country Bosnia &
Herzegovina Ethiopia India Mexico Mongolia Morocco The Philippines

Study
Citation

Augsburg
et al (2015)

Tarozzi
et al (2015)

Banerjee
et al (2015)

Angelucci
et al (2015)

Attanasio
et al (2015)

Crepon
et al (2015)

Karlan and
Zinman (2011)

Treatment

Lend to
marginally
rejected
borrowers

Open
branches

Open
branches

Open
branches,
promote
loans

Open branches,
target likely
borrowers

Open
branches

Lend to
marginal
applicants

Randomization
Level Individual Community Community Community Community Community Individual

Urban or
Rural? Both Rural Urban Both Rural Rural Urban

Target
Women? No No Yes Yes Yes No No

MFI already
operates
locally?

Yes No No No No No Yes

Microloan
Liability
Type

Individual Group Group Group Both Group Individual

Collateralized? Yes Yes No No Yes No No

Any other
MFIs

competing?
Yes No Yes Yes Yes No Yes

Household
Panel? Yes No No Partial Yes Yes No

Interest Rate
(Intended
on Average)

22% APR 12% APR 24% APR 100% APR 24% APR 13.5% APR 63% APR

Sampling
Frame

Marginal
Applicants

Random
Sample

Households
with at least
1 woman
age 18-55
of stable
residence

Women
ages 18-60
who own
businesses
or wish to
start them

Women who
registered
interest
in loans
and met
eligibility
criteria

Random
Sample
plus
Likely

Borrowers

Marginal
Applicants

Study
Duration 14 months 36 months 40 months 16 months 19 months 24 months 36 months

Note: The construction of the interest rates here is different to the construction of Banerjee et al (2015a); they
have taken the maximal interest rate, whereas I have taken the average of the intended range specified by the
MFI. In practice the differences in these constructions are numerically small. This table was also printed in
Meager (2018) which used the same studies.
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Table 2: Pooling Factors for Nonparametric Quantile Models on Consumption

Outcome Treatment Effects Control Group Means
ω(β1) ω̆(β1) λ(β1) ω(β0) ω̆(β0) λ(β0)

Consumption 0.252 0.730 0.703 0.004 0.298 0.049
Consumer Durables 0.276 0.658 0.930 0.053 0.532 0.013
Temptation Goods 0.284 0.552 0.589 0.017 0.495 0.004

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1 indicating
full pooling. The ω(·) refers to the conventional pooling metric that scores signal strength at the
general level against average signal strength at the local level. The ω̆(·) refers to the
proximity-based "brute force" pooling metric that measures the geometric proximity of the partial
pooling estimate to the no-pooling and full-pooling estimates. The λ(·) refers to the Gelman and
Pardoe (2006) pooling metric that scores the posterior variation at the general level against the
average posterior variation at the local level. [Back to main]

Table 3: Posterior Predictive Comparison of LogNormal and Pareto Models

Control Group Quantiles 5% 15% 25% 35% 45% 55% 65% 75% 85% 95%

Revenues Data 0 0 0 0 0 0 4 41 154 622
Lognormal Prediction 0 0 0 0 0 12 37 77 154 408
Pareto Prediction 0 0 0 0 0 0 0 5 337 2, 793, 933

Expenditures Data 0 0 0 0 0 0 0 17 85 411
Lognormal Prediction 0 0 0 0 0 0 15 40 93 283
Pareto Prediction 0 0 0 0 0 0 0 1 94 1, 172, 324

Profit Data -29 0 0 0 0 0 0 4 49 226
Lognormal Prediction -2 0 0 0 0 0 4 21 56 173
Pareto Prediction 0 0 0 0 0 0 0 0 21 70, 170

Notes: The posterior predictive distributions are generated by drawing samples of data from the
likelihood averaged over the posterior probability of the unknown parameters. Because this data
is itself fat tailed, I have compared the actual sample quantiles from the fully pooled control
group against the posterior predicted median value of each quantile from each model. [Back to
main]
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Table 4: Pooling Factors for Categorical Logit Effects (Reference Category: Positive)

Outcome Treatment Effects Control Group Means
ω(κj) ω̆(κj) λ(κj) ω(ρj) ω̆(ρj) λ(ρj)

Profit (Negative vs Positive) 0.378 0.712 0.913 0.146 0.424 0.248
Profit (Zero vs Positive) 0.133 0.496 0.690 0.012 0.381 0.495
Expenditures (Zero vs Positive) 0.085 0.625 0.788 0.010 0.489 0.561
Revenues (Zero vs Positive) 0.137 0.695 0.881 0.010 0.503 0.566

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1 indicating
full pooling. The ω(·) refers to the conventional pooling metric that scores signal strength at the
general level against average signal strength at the local level. The ω̆(·) refers to the
proximity-based "brute force" pooling metric that measures the geometric proximity of the partial
pooling estimate to the no-pooling and full-pooling estimates. The λ(·) refers to the Gelman and
Pardoe (2006) pooling metric that scores the posterior variation at the general level against the
average posterior variation at the local level. [Back to main]

Table 5: Pooling Factors for Lognormal Parameters

Location Parameters

Outcome Treatment Effects Control Group Means
ω(τj) ω̆(τj) λ(τj) ω(µj) ω̆(µj) λ(µj)

Profit (Negative Tail) 0.422 0.786 0.938 0.294 0.252 0.274
Profit (Positive Tail) 0.185 0.711 0.870 0.009 0.019 0.002
Expenditures 0.100 0.592 0.712 0.003 0.017 0.001
Revenues 0.048 0.293 0.393 0.002 0.007 0.001

Scale Parameters

Profit (Negative Tail) 0.307 0.424 0.681 0.290 0.366 0.465
Profit (Positive Tail) 0.118 0.529 0.739 0.026 0.035 0.064
Expenditures 0.036 0.302 0.392 0.006 0.169 0.017
Revenues 0.051 0.457 0.540 0.007 0.047 0.020

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1 indicating
full pooling. The ω(·) refers to the conventional pooling metric that scores signal strength at the
general level against average signal strength at the local level. The ω̆(·) refers to the
proximity-based "brute force" pooling metric that measures the geometric proximity of the partial
pooling estimate to the no-pooling and full-pooling estimates. The λ(·) refers to the Gelman and
Pardoe (2006) pooling metric that scores the posterior variation at the general level against the
average posterior variation at the local level. [Back to main]
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Figure 1: Histograms of the profit data in each site, in USD PPP per 2 weeks. Display
truncated both vertically and horizontally in most cases. [Back to main]
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Naive application of asymptotic theorem to quantile effects on Mexico profit data

0

10

20

30

40

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 (

U
S

D
 P

P
P

 p
er

 fo
rt

ni
gh

t)

Nonparametric bootstrapped quantile effects on Mexico profit data

Figure 2: Quantile TEs for the Mexico profit data, Mosteller theorem approximation
standard errors (above) and nonparametrically bootstrapped standard errors (below). The
green line is the estimated effect, the opaque bands are the central 50% interval, the
translucent bands are the central 95% interval. The output of these estimators should be
similar if the Mosteller (1946) theorem holds, but it is not similar because profit is not in
fact continuously distributed. This is due to a discrete probability mass at zero, reflecting
numerous households who do not operate businesses. [Back to main]
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Naive application of asymptotic theorem to quantile effects on Mexico profit data (dithered)
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Nonparametric bootstrapped quantile effects on Mexico profit data (dithered)

Figure 3: Quantile TEs for the dithered Mexico profit data, Mosteller theorem ap-
proximation standard errors (above) and nonparametrically bootstrapped standard errors
(below). The green line is the estimated effect, the opaque bands are the central 50%
interval, the translucent bands are the central 95% interval. Dithering is a simple strategy
which can overcome problems associated with quantile regression on discrete distributions,
recommended in Machado & Santos Silva (2005) and Koenker (2011). It has failed in this
case. [Back to main]
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Figure 4: General Quantile Treatment Effect Curves (β1) for consumption-type variables.
The dark line is the posterior mean, the opaque color bands are the central 50% posterior
uncertainty interval, the translucent color bands are the central 95% posterior uncertainty
interval. [Back to main]
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Figure 5: Posterior Predictive Quantile Effect Curves (β1,K+1) for consumption-type
variables.The dark line is the posterior mean, the opaque color bands are the central 50%
posterior predictive uncertainty interval, the translucent color bands are the central 95%
posterior predictive uncertainty interval. [Back to main]
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Figure 6: General Quantile Treatment Effect Curves (β1) for business variables from the
LogNormal model. The dark line is the median posterior draw, the opaque bars are the
central 50% interval, the translucent bands are the central 95% interval. [Back to main]
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Figure 7: Posterior predicted quantile treatment effect curves for Business Variables from
the LogNormal model. The dark line is the median, the opaque bars are the central 50%
interval, the translucent bands are the central 95% interval. [Back to main]
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Figure 8: General Quantile Treatment Effect Curves split by prior business ownership
(β1) for consumption-type variables. The dark line is the posterior mean, the opaque color
bands are the central 50% posterior uncertainty interval, the translucent color bands are
the central 95% posterior uncertainty interval. [Back to main]

49



−200

0

200

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on profit PB=0 (cubed root) 

−200

0

200

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on profit PB=1 

−200

0

200

400

600

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on revenues PB=0

−200

0

200

400

600

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on revenues PB=1

0

200

400

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on expenditures PB=0 

0

200

400

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on expenditures PB=1

Figure 9: General Quantile Treatment Effect Curves (β1) for business variables split by
prior business ownership. The dark line is the median, the opaque bars are the central
50% interval, the translucent bands are the central 95% interval. Display is in cubed root
of USD PPP due to the scale differences in the uncertainty at the right tail versus the rest
of the distribution. [Back to main]
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Figure 10: General Quantile Treatment Effect Curves for Business Outcomes: Treated
households who took up vs Compliant control households who did not take up. This effect
should overestimate the true impact of microcredit on those who take it up in a simple
selection framework. Consumption variables are in USD PPP per two weeks, business
variables are in cubed root of USD PPP per two weeks due to the scale differences in their
uncertainty intervals. The dark line is the median, the opaque bars are the central 50%
interval, the translucent bands are the central 95% interval. [Back to main]
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Figure 11: General Quantile Treatment Effect Curves for Business Outcomes: Treated
households who took up vs Control households who took up. This effect should under-
estimate the true impact of microcredit on those who take it up in a simple selection
framework. Consumption variables are in USD PPP per two weeks, business variables are
in cubed root of USD PPP per two weeks due to the scale differences in their uncertainty
intervals. The dark line is the median, the opaque bars are the central 50% interval, the
translucent bands are the central 95% interval. [Back to main]
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Appendices

A Pareto Aggregation Model Results
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Figure 12: General Quantile Treatment Effect Curves (β1) for business variables. The
dark line is the median, the opaque bars are the central 50% interval, the translucent
bands are the central 95% interval. Display is in cubed root of USD PPP due to the scale
differences in the uncertainty at the right tail versus the rest of the distribution.
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Figure 13: Posterior distributions for the logit treatment effects (πj) on category assign-
ment. These treatment effects are specified as an exponentiated multiplicative factor on
the control group proportion of households in the category: if π̃j = 0 the effect is zero, if
π̃j < 0 the treatment increases the proportion of households in the positive tail relative to
other categories.

Table 6: Pooling Factors for Categorical Logit Parameters (Reference Category: Positive)

Outcome Treatment Effects Control Group Means
ω(κj) ω̆(κj) λ(κj) ω(ρj) ω̆(ρj) λ(ρj)

Profit (Negative vs Positive) 0.378 0.721 0.907 0.144 0.421 0.240
Profit (Zero vs Positive) 0.137 0.476 0.688 0.013 0.379 0.487
Expenditures (Zero vs Positive) 0.084 0.612 0.783 0.010 0.498 0.570
Revenues (Zero vs Positive) 0.131 0.694 0.881 0.010 0.509 0.562

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1 indicating
full pooling. The ω(·) refers to the conventional pooling metric that scores signal strength at the
general level against average signal strength at the local level. The ω̆(·) refers to the
proximity-based "brute force" pooling metric that measures the geometric proximity of the partial
pooling estimate to the no-pooling and full-pooling estimates. The λ(·) refers to the Gelman and
Pardoe (2006) pooling metric that scores the posterior variation at the general level against the
average posterior variation at the local level.
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Figure 14: Posterior distributions for the Pareto shape treatment effects (κj) in each
site. These treatment effects are specified as an exponentiated multiplicative factor on the
control group scale parameter: if κ̃j = 0 the effect is zero, if κ̃j = 0.7 the effect is a 100%
increase in the scale parameter.

Table 7: Pooling Factors for Tail Shape Parameters

Outcome Treatment Effects Control Group Means
ω(πj) ω̆(πj) λ(πj) ω(αj) ω̆(αj) λ(αj)

Profit (Negative Tail) 0.389 0.855 0.991 0.284 0.346 0.494
Profit (Positive Tail) 0.219 0.785 0.988 0.036 0.074 0.089
Expenditures 0.175 0.756 0.987 0.019 0.061 0.050
Revenues 0.169 0.692 0.977 0.014 0.036 0.029

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1 indicating
full pooling. The ω(·) refers to the conventional pooling metric that scores signal strength at the
general level against average signal strength at the local level. The ω̆(·) refers to the
proximity-based "brute force" pooling metric that measures the geometric proximity of the partial
pooling estimate to the no-pooling and full-pooling estimates. The λ(·) refers to the Gelman and
Pardoe (2006) pooling metric that scores the posterior variation at the general level against the
average posterior variation at the local level.
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Figure 15: Posterior predicted distributions for the logit treatment effects on category
assignment and tail shape effects. In each case this is the predicted treatment effect in a
future exchangeable study site, with uncertainty intervals that account for the estimated
generalizability (or lack of it).
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Figure 16: Posterior predicted quantile treatment effect Curves for Business Variables.
The dark line is the median, the opaque bars are the central 50% interval, the translucent
bands are the central 95% interval. Display is in cubed root of USD PPP due to the scale
differences in the uncertainty at the right tail versus the rest of the distribution.
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Figure 17: General Quantile Treatment Effect Curves split by prior business ownership
(β1) for consumption-type variables. The dark line is the posterior mean, the opaque color
bands are the central 50% posterior uncertainty interval, the translucent color bands are
the central 95% posterior uncertainty interval.

58



−500

0

500

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on profit PB=0 (cubed root) 

−500

0

500

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on profit PB=1 (cubed root)

−2500

0

2500

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on revenues PB=0 (cubed root)

−2500

0

2500

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on revenues PB=1 (cubed root)

−500

0

500

1000

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on expenditures PB=0 (cubed root)

−500

0

500

1000

0.25 0.50 0.75
Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 

Posterior quantile effects on expenditures PB=1 (cubed root)

Figure 18: General Quantile Treatment Effect Curves (β1) for business variables split by
prior business ownership. The dark line is the median, the opaque bars are the central
50% interval, the translucent bands are the central 95% interval. Display is in cubed root
of USD PPP due to the scale differences in the uncertainty at the right tail versus the rest
of the distribution.
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Figure 19: Upper panel: Posterior distributions for the logit treatment effects (πj)
on category assignment split by prior business ownership. These treatment effects are
specified as an exponentiated multiplicative factor on the control group proportion of
households in the category: if π̃j = 0 the effect is zero, if π̃j < 0 the treatment increases
the proportion of households in the positive tail relative to other categories. Lower panel:
Posterior distributions for the Pareto shape treatment effects (κj) in each site. These
treatment effects are specified as an exponentiated multiplicative factor on the control
group scale parameter: if κ̃j = 0 the effect is zero, if κ̃j = 0.7 the effect is a 100% increase
in the scale parameter.
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Figure 20: General Quantile Treatment Effect Curves for Business Outcomes: Treated
households who took up vs Compliant control households who did not take up. This effect
should overestimate the true impact of microcredit on those who take it up in a simple
selection framework. Consumption variables are in USD PPP per two weeks, business
variables are in cubed root of USD PPP per two weeks due to the scale differences in their
uncertainty intervals. The dark line is the median, the opaque bars are the central 50%
interval, the translucent bands are the central 95% interval.
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Figure 21: General Quantile Treatment Effect Curves for Business Outcomes: Treated
households who took up vs Control households who took up. This effect should under-
estimate the true impact of microcredit on those who take it up in a simple selection
framework. Consumption variables are in USD PPP per two weeks, business variables are
in cubed root of USD PPP per two weeks due to the scale differences in their uncertainty
intervals. The dark line is the median, the opaque bars are the central 50% interval, the
translucent bands are the central 95% interval.
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B Site-Specific Shrinkage Results from All Models

This section provides the results of the site-specific shrinkage from all the models fit in
the main body of the paper, in order of appearance in the text.

No Pooling Partial Pooling

M
exico

M
ongolia

B
osnia

India
M

orocco

0.25 0.50 0.75 0.25 0.50 0.75

0

20

40

0

100

200

−100

0

100

200

0

25

50

75

−100

−75

−50

−25

0

Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 (

U
S

D
 P

P
P

 p
er

 fo
rt

ni
gh

t)

Posterior quantile effects on consumption for each country

Figure 22: Site by site results for the consumption outcomes. [Back to main]
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Figure 23: Site by site results for the consumer durables outcomes.[Back to main]

64



No Pooling Partial Pooling

M
exico

M
ongolia

B
osnia

India
M

orocco

0.25 0.50 0.75 0.25 0.50 0.75

−1

0

1

−20

−10

0

10

20

−40

−20

0

−12

−8

−4

0

−5

0

5

Quantiles

Q
ua

nt
ile

 tr
ea

tm
en

t e
ffe

ct
 (

U
S

D
 P

P
P

 p
er

 fo
rt

ni
gh

t)

Posterior quantile effects on temptation for each country

Figure 24: Site by site results for the temptation outcomes. [Back to main]
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Figure 25: Site by site results for the Profit outcomes. [Back to main]
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Figure 26: Site by site results for the Profit outcomes. [Back to main]
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Figure 27: Site by site results for the Profit outcomes. [Back to main]
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C Tabular results for Posterior Inference on LogNormal
Models

Excess Kurtosis in LogNormal distributions is the extent to which tail indices are greater,
and thus the extent to which the tails are heavier, than those of the Gaussian. For a
LogNormal parameterised as

LogNormal(y|µ, σ) = 1√
2πσy

exp
(
−(log(y)− µ)2

2σ2

)

the excess kurtosis is

exp(4σ2) + 2 exp(3σ2) + 3 exp(2σ2)− 6.

I compute the kurtosis for the general control group based on the posterior mean values
of µ and σ for this group in the tables below. The example in the text is obtained using
µ2 and σc2.

Table 8: All General-Level Posterior Marginals for the LogNormal Profit Model

mean MCMC error sd 2.5% 25% 50% 75% 97.5% # effective draws R̂

µ1 3.200 0.008 0.732 1.722 2.784 3.200 3.615 4.698 9, 099 1.000
µ2 3.843 0.007 0.818 2.225 3.356 3.845 4.324 5.496 15, 000 1.000
τ1 0.094 0.001 0.094 -0.099 0.045 0.095 0.143 0.273 6, 719.600 1.001
τ2 0.077 0.0005 0.042 -0.007 0.054 0.078 0.102 0.157 7, 566.232 1.000
σµ1 1.659 0.008 0.654 0.867 1.227 1.514 1.923 3.302 7, 284.792 1.000
σµ2 2.033 0.006 0.677 1.153 1.574 1.889 2.332 3.711 15, 000 1.000
στ1 0.117 0.004 0.128 0.005 0.035 0.079 0.154 0.459 1, 090.338 1.003
στ2 0.055 0.001 0.052 0.002 0.020 0.043 0.075 0.183 1, 323.050 1.004
σc1 0.452 0.002 0.145 0.180 0.374 0.447 0.525 0.761 7, 205.404 1.000
σc2 0.225 0.001 0.101 0.022 0.167 0.225 0.284 0.428 10, 278.910 1.000
σt1 0.022 0.001 0.094 -0.162 -0.024 0.022 0.067 0.206 6, 128.028 1.001
σt2 0.017 0.0003 0.029 -0.043 0.001 0.017 0.032 0.072 9, 321.264 1.000
σσc

1
0.302 0.002 0.164 0.122 0.196 0.262 0.357 0.724 5, 126.273 1.001

σσc
2

0.242 0.001 0.100 0.125 0.176 0.220 0.280 0.499 9, 328.806 1.000
σσt

1
0.163 0.002 0.116 0.034 0.089 0.134 0.201 0.467 2, 860.338 1.001

σσt
2

0.046 0.001 0.037 0.002 0.020 0.038 0.062 0.140 2, 034.778 1.002
β11 -1.965 0.016 1.273 -4.525 -2.715 -1.958 -1.193 0.527 6, 334.358 1.000
β12 0.025 0.001 0.114 -0.187 -0.035 0.019 0.080 0.265 6, 957.068 1.001
β21 0.390 0.010 0.906 -1.379 -0.168 0.367 0.918 2.255 7, 964.995 1.000
β22 -0.067 0.001 0.104 -0.279 -0.124 -0.066 -0.012 0.143 8, 309.348 1.001
σβ11 2.767 0.017 1.277 0.770 1.959 2.560 3.346 5.904 5, 636.316 1.000
σβ12 0.128 0.002 0.125 0.005 0.047 0.096 0.168 0.446 5, 901.720 1.001
σβ21 1.603 0.014 0.902 0.130 0.990 1.532 2.093 3.672 3, 987.814 1.002
σβ22 0.146 0.002 0.114 0.007 0.065 0.124 0.197 0.432 5, 234.755 1.001
σβ31 1.450 0.014 0.889 0.091 0.815 1.381 1.942 3.493 3, 896.658 1.001
σβ32 0.117 0.002 0.109 0.004 0.041 0.089 0.161 0.390 5, 085.964 1.002

Note: The β3 parameters are normalized to be zero at the general level as required for
multinomial logit models. The site-specific effects still have variation around this zero anchor as
reported.
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Table 9: All General-Level Posterior Marginals for the LogNormal Revenues Model

mean MCMC error sd 2.5% 25% 50% 75% 97.5% # effective draws R̂

µ1 4.472 0.007 0.873 2.733 3.959 4.479 4.992 6.193 15, 000 1.000
τ1 0.083 0.001 0.068 -0.058 0.045 0.086 0.123 0.211 10, 482.840 1.000
σµ1 2.181 0.007 0.718 1.258 1.693 2.030 2.496 3.982 10, 285.460 1.000
στ1 ] 0.140 0.001 0.080 0.039 0.089 0.124 0.171 0.329 5, 189.630 1.001
σc1 0.213 0.001 0.136 -0.063 0.134 0.214 0.292 0.485 11, 190.950 1.000
σt1 -0.010 0.0003 0.031 -0.071 -0.028 -0.011 0.008 0.052 9, 554.774 1.000
σσc

1
0.331 0.001 0.135 0.171 0.241 0.301 0.383 0.668 8, 452.406 1.001

σσt
1

0.062 0.0004 0.033 0.020 0.040 0.055 0.075 0.146 6, 447.524 1.000
β11 0.011 0.008 0.734 -1.464 -0.424 -0.004 0.443 1.521 8, 107.184 1.001
β12 -0.063 0.001 0.081 -0.235 -0.101 -0.058 -0.020 0.091 6, 772.048 1.001
σβ11 1.209 0.010 0.760 0.064 0.637 1.164 1.645 2.912 5, 305.339 1.001
σβ12 0.095 0.001 0.091 0.003 0.032 0.071 0.129 0.327 5, 418.020 1.001
σβ21 1.192 0.010 0.762 0.062 0.615 1.147 1.631 2.894 5, 341.343 1.001
σβ22 0.095 0.001 0.091 0.003 0.033 0.071 0.130 0.328 5, 944.329 1.000

Note: The β3 parameters are normalized to be zero at the general level as required for
multinomial logit models. The site-specific effects still have variation around this zero anchor as
reported. Note also that σt

1 can be negative as this is the effect specified on the exponential level.

Table 10: All General-Level Posterior Marginals for the LogNormal Expenditures Model

mean MCMC error sd 2.5% 25% 50% 75% 97.5% # effective draws R̂

µ1 4.042 0.006 0.733 2.563 3.593 4.047 4.483 5.528 15, 000 1.000
τ1 0.103 0.001 0.048 0.005 0.076 0.104 0.132 0.198 8, 840.624 1.000
σµ1 1.867 0.005 0.624 1.061 1.449 1.735 2.135 3.449 15, 000 1.001
στ1 0.078 0.001 0.060 0.004 0.035 0.067 0.106 0.226 1, 919.668 1.002
σc1 0.303 0.002 0.171 -0.037 0.204 0.304 0.401 0.649 8, 974.738 1.001
σt1 -0.008 0.001 0.045 -0.092 -0.033 -0.009 0.016 0.082 5, 069.866 1.000
σσc

1
0.421 0.002 0.171 0.218 0.309 0.382 0.489 0.845 8, 374.404 1.001

σσt
1

0.094 0.001 0.051 0.035 0.062 0.082 0.111 0.217 3, 164.881 1.001
β11 0.234 0.009 0.694 -1.177 -0.180 0.233 0.653 1.645 6, 027.909 1.000
β12 -0.116 0.001 0.117 -0.349 -0.177 -0.114 -0.053 0.112 7, 262.210 1.000
σβ11 1.148 0.011 0.712 0.062 0.613 1.102 1.565 2.729 4, 414.652 1.001
σβ12 0.157 0.002 0.125 0.007 0.071 0.132 0.209 0.465 5, 601.528 1.000
σβ21 1.119 0.011 0.707 0.056 0.580 1.075 1.535 2.714 4, 076.193 1.001
σβ22 0.159 0.002 0.124 0.007 0.074 0.136 0.212 0.463 5, 427.373 1.001

Note: The β3 parameters are normalized to be zero at the general level as required for
multinomial logit models. The site-specific effects still have variation around this zero anchor as
reported.Note also that σt

1 can be negative as this is the effect specified on the exponential level.
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For visual ease, the figures below graph the treatment effects and posterior predicted effects for each of the
dimensions of change permitted in the model.

Expenditure 
 (Spike vs Positive)

Profit 
 (Negative vs Positive)

Profit 
 (Spike vs Positive)

Revenue 
 (Spike vs Positive)

−0.50 −0.25 0.00 0.25 0.50
Posterior mean, 50% interval (box), and 95% interval (line) 

 for each exponentiated multiplicative Treatment Effect

BHM Posterior Full Pooling Model

Category Allocation Effects (Reference category: positive tail) 
 Posterior distribution of treatment effects on Logit Scale

Figure 28: Posterior distributions for the logit treatment effects (πj) on category assign-
ment. These treatment effects are specified as an exponentiated multiplicative factor on
the control group proportion of households in the category: if π̃j = 0 the effect is zero, if
π̃j < 0 the treatment increases the proportion of households in the positive tail relative to
other categories. [Back to main]
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Figure 29: Posterior distributions for the location treatment effects (τj) and the scale
treatment effects (σtj). [Back to main]
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Figure 30: Posterior predicted distributions for the logit treatment effects on category
assignment and tail shape effects. [Back to main]
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D Variance Effects

D.1 Dispersion Treatment Effects

In a previous version of this paper, and as specified in my pre-analysis plan, I carried out evidence aggregation on the
impact of microcredit on the variance of the outcome distributions. However, the detection of extreme kurtosis in
the variables rendered the results of this analysis somewhat questionable. As a result, I attempted to fit aggregation
models to the Median Absolute Deviations as my alternative measure of dispersion for these distributions. The
methods and results of all of these analyses are shown below.

First consider the specific modeling choices involved in my development of a model to aggregate the treatment
effects of an intervention on the dispersion of a distribution, within the general framework of section ??. In the
case of microcredit, we have access to data on economic outcomes such as household business profit or consumption
measured at the household level. Any particular scalar outcome is denoted ynk for household n in site k. These
outcomes may be continuous, discrete or mixture variables. Treatment is a binary indicator Tnk ∈ {0, 1} throughout.
Consider a decomposition of any household outcome ynk into a control group mean µk and an additive treatment
effect of microcredit τk. Similarly, decompose the standard deviation of ynk into the control group’s standard
deviation and a treatment effect. To impose the constraint that standard deviation must be non-negative for each
group at every level of the model, I specify these effects on the exponentiated scale rather than on the raw scale.19

Hence, the standard deviation for a household n in site k with treatment status Tnk is:

σyk = exp(ηk + γkTnk). (D.1)

In this specification, γk captures the treatment effect on the standard deviation. If γk = 0, then there is no
treatment effect on the variance. If γk < 0 then the standard deviation in the treatment group is reduced by a factor
of exp(γk) relative to the control group standard deviation. If γk > 0 then the standard deviation in the treatment
group is increased’ by a factor of exp(γk). For example if γk = 1 then the treatment group standard deviation is
2.7 times the size of the control group standard deviation.

I propose the following hierarchical model to aggregate the effects on the mean and standard deviation of
household outcomes. The lower level f(Yk|θk) describing the data’s dependence on the local parameters, is:

ynk ∼ N(µk + τkTnk, (exp(ηk + γkTnk))2) ∀ k. (D.2)

This specifies a linear regression on the outcome’s mean and on the log of its standard deviation. Estimating a
model with this level alone would provide the same point estimates as a simple ordinary least squares regression, with
standard errors adjusted for any difference in the standard deviation between the treatment and control groups.20

Adding the upper level of the model then shrinks these site-level parameters together jointly towards the upper-level
parameters, both allowing and estimating correlations between them. The upper level ψ(θk|θ) for this model is:

 µk

τk

ηk

γk

 ∼ N

 µ

τ

η

γ

 , V

 ∀ k (D.3)

Together, equations D.2 and D.3 form the hierarchical likelihood. To perform Bayesian inference via the full joint
posterior distribution, I use weakly informative priors P(θ). I pursue the strategy from Lewandowski et al.(2009) of
decomposing the variance-covariance matrix V on the upper level into a scale parameter ν and a variance-covariance
matrix Ω. In this case however the ν parameter’s prior needs to be split up in order to reflect the differing scales
of these parameters: (µ, τ) are in USD PPP per fortnight, while (η, γ) are on the multiplicative exponential scale.
These priors are diffuse except for the prior on Ω which pushes the posterior towards detecting independence across

19I thank Anna Mikusheva for her contribution to the development of this idea.
20This is not the same as the White or Eicker-Huber-White generalized correction for heteroskedasticity.

It has more in common with the Welch adjustment to the t-test under the Behrens-Fisher problem (which
is the problem that arises if γk 6= 0).
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parameters. Because economic theory predicts two possible countervailing relationships between baseline wealth
and the impact of microcredit - microcredit may have diminishing marginal returns, or perhaps it only works on
relatively rich households, or both - with only 7 data points we should temper the conclusion in the data if it suggests
an extreme correlation in either direction. The priors are: µ

τ

η

γ

 ∼ N

 0

0
0
0

 ,

 10002 0 0 0
0 10002 0 0
0 0 1002 0
0 0 0 1002




V ≡ diag(ν)Ωdiag(ν)

where ν[1, 2] ∼ Cauchy(0, 50)

ν[3, 4] ∼ Cauchy(0, 5)

Ω ∼ LKJcorr(3)

(D.4)

The results of this model are sensitive to the prior on Ω, as pointed out in Giordano et al.(2016), precisely
because there is so little cross-sectional data at the upper level. Therefore, as a robustness check, I also fit an
alternative model with an “independent” specification, which does not display sensitivity to the upper level variance
priors. While this restrictive functional form cannot exploit correlations which are very likely to exist, its resulting
lack of sensitivity makes this model a useful check against researcher degrees of freedom. The derivation and results
from this independent version of the model are not substantially different.

Standard deviation is not the only metric of dispersion relevant to household outcomes. In fact, standard
deviation can be an unreliable or unstable measure of spread in fat-tailed distributions; in cases with extremely high
kurtosis, the standard deviation may not even exist in the underlying population distribution. A more robust metric
of dispersion is the mean absolute deviation (MAD) of the outcome values from their mean, or from their median
value (Fama 1965, Pham-Gia and Hung 2001). Therefore, I propose a hierarchical model to jointly aggregate the
results on the MAD and the mean for a given household outcome. Because it can be challenging or even analytically
impossible to specify an outcome distribution entirely as a function of its mean and MAD, I propose a model which
takes in as data the no-pooling estimates of these parameters and their standard errors {θ̂, ŝek}Kk=1, in the tradition
of Rubin (1981).

The following model works for any metric of dispersion, but for my application I consider the mean absolute
deviations from the sample mean, defined

MAD(Yk) ≡
1
Nk

Nk∑
n=1

|ynk − ȳk|. (D.5)

I split the MAD for any given outcome in site k into a control group MAD, defined by exp(∆k), and a treatment
group MAD defined by exp(∆k + Γk). These may be estimated using any consistent and asymptotically Normal
no-pooling estimator of choice. For this application I use frequentist plug-in estimators (i.e. the analogous sample
statistics) and nonparametrically bootstrapped standard errors. This generates the objects {∆̂k, Γ̂k, ŝe∆, ŝeΓ}Kk=1.
Because the model should adjust the uncertainty on the average treatment effects for the detected effects on the
MAD, the no-pooling estimates on the mean {µ̂k, τ̂k, ŝeµ, ŝeτ}Kk=1 should also be computed and incorporated into
the model as data. To do this, I propose the following model. The lower level now describes the dependency of θ̂k
on θk, so f(Yk|θk) = f(θ̂k|θk) for this case as follows:

τ̂k ∼ N(τk, ŝe2τ ) ∀ k

µ̂k ∼ N(µk, ŝe2µ) ∀ k

∆̂k ∼ N(∆k, ŝe
2
∆) ∀ k

Γ̂k ∼ N(Γk, ŝe2Γ) ∀ k.

(D.6)

The upper level of the model is conceptually identical to the full data case, and describes the relationship ψ(θk|θ)

75



as follows:  µk

τk

Γk
∆k

 ∼ N

 µ

τ

∆
Γ

 , V

 ∀ k (D.7)

To complete this model, I use the same priors as specified in equations D.4. In addition, the pooling metrics developed
for average treatment effects {τk}Kk=1 can be directly applied to the dispersion effects {γk}Kk=1 or {Γk}Kk=1. This is
possible because all the models above specify the effect on the dispersion using a single scalar parameter.

D.2 Dispersion Treatment Effects Results

The results of fitting the dispersion models to the 6 household outcomes in the microcredit data show some evidence
for a generalizable increase in the dispersion, particularly in the household business outcomes. Yet the findings
differ substantially across the different dispersion metrics. The more robust metric, the effect on the MAD (Γ),
shows on average a 15% increase in the dispersion on the household business outcomes but no conclusive movement
on the consumption outcomes (see table 11 for full results). The less robust metric, the effect on the standard
deviation (γ), shows much larger point estimates with an average increase of 40%, but the posterior intervals on γ
are much wider than the intervals on Γ, and always include zero (see table 12). The difference is most salient for
household business outcomes, which show evidence of a small but generalizable increase in the MAD, and evidence of
a potentially large yet non-generalizable increase in the standard deviation. In all cases the full-pooling aggregation
is shown to severely underestimate the uncertainty in comparison; imposing the full-pooling assumption can be
highly misleading in cases where it is not warranted.

This pattern is confirmed by examining the local effects on each metric for each site: there is essentially zero
shrinkage across sites for the standard deviation, but there is moderate shrinkage on the MAD effects (see the figures
in Appendix ??). Many of the local effects on the standard deviation are large, even more than 100% in some cases,
but they do not aggregate to any generalizable information. It may seem incongruous that in the case of profit, 6
out of 7 γk effects are large and precisely estimated and yet the aggregate γ for profit is imprecisely estimated. But
that is exactly what it means for a result to lack generalizability: the effects are so heterogeneous that the model
cannot infer that the effect in the next site will be similar to any one of them nor to their average value. By contrast
the site-specific effects on the MAD are smaller and closer together, providing strong evidence of a moderate but
generalizable increase in the dispersion of business outcomes and weak evidence of a general increase in dispersion
of consumption outcomes.

These models also produce new results on the average treatment effects which adjust the inference for the effects
on the dispersion, which in this case substantially revises the treatment effects downwards towards zero. This is
shown in table 13, which compares the results on the location effect from the joint location/MAD model in equations
D.6 and D.7 to the results in Meager (2015) which did not correct for any dispersion effects, and to the full pooling
aggregation. The results suggest that some of the upper tails of the posterior distributions of the average effects in
Meager (2015) were due to increases in dispersion that were misattributed to changes in the mean. But overall the
new results strengthen the conclusion of Meager (2015), suggesting that the average effect of microcredit is smaller
than previously estimated, and in general may be zero or close to it. The new results also have tighter posterior
intervals, indicating the model performs at least as much pooling as the model in Meager (2015), and thus that the
results on the average household outcomes are reasonably generalizable.

D.2.1 Pooling Metrics for Dispersion Treatment Effects

Examining the three pooling metrics for the two metrics of dispersion effects confirms that the MAD effects exhibit
substantial generalizability, while the standard deviation effects exhibit virtually zero generalizability. The results
for the effect on the MAD (Γ) are shown in table 14 with the pooling results on the average MAD in the control
group (∆) shown for comparison. The model displays substantial pooling on Γ, around 60% averaged across all
three metrics, but little pooling on ∆ with an average of 10% across all metrics. The detected similarity in the Γks
across sites is therefore not due to similar baseline dispersion across sites: it is the mechanism, not the context,
which appears to be similar here. As expected, however, the results for the variance tell a different story: all pooling
metrics for both the control group’s standard deviation (η) and the effect (γ) are less than 5% (see table 15). The
Bayesian hierarchical model effectively selects the no-pooling model on the variances, but chooses substantial pooling
on the MAD, confirming the results of section D.2.
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This result is reflected in the relatively tight 50% and 95% posterior predictive intervals on the distribution of
ΓK+1 relative to γK+1, which are in both cases the forecasted results of the hypothetical next experiment. These
intervals are shown in figure 31. Although the posterior predictive intervals should be larger than the posterior
intervals on Γ or γ because Σ̃θ 6= 0, in this case the intervals on ΓK+1 are more than twice as precise as the intervals
on γK+1. For example, there is a 25% chance that γK+1 < 0 on profit, and a 25% chance of an effect of 1 or larger,
which would create a 300% increase in the dispersion of profit across households relative to the control group. By
contrast, the posterior predictive inference on ΓK+1 displays more than a 50% chance of seeing a result between
0 and 30% on most outcomes. In all cases, the full-pooling aggregation results underestimate the uncertainty by
several orders of magnitude, and are thus inappropriate tools for the prediction of θK+1.

Interpreting these results together is challenging because the two metrics of dispersion provide different conclu-
sions about the magnitude of the effect and its generalizability, particularly for the business outcomes. While both
of the dispersion metrics display more evidence of a real impact on the outcomes than the mean treatment effects
did, only the MAD shows similar generalizability to the means. Moreover, while the MAD is more robust in general,
it is not immediately clear why the variance metric results should be so different; this may indicate an issue with
the modeling assumptions underlying the computation of the variance, or it may be that the two metrics are simply
using different aspects of the data. As it turns out, the results of the quantile aggregation will be able to illuminate
the origin of these differences.
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Table 11: Dispersion Treatment Effects: Mean Absolute Deviation (effect specified as
exp(Γ))

Outcome Model Effect Estimate SE Posterior Quantiles
Γ̃ 2.5th 25th 75th 97.5th

Profit BHM 0.168 0.079 0.021 0.123 0.210 0.346
Full Pooling 0.138 0.040 0.061 0.112 0.165 0.216

Expenditures BHM 0.166 0.073 0.033 0.121 0.206 0.325
Full Pooling 0.151 0.047 0.060 0.120 0.183 0.243

Revenues BHM 0.142 0.074 0.013 0.096 0.182 0.306
Full Pooling 0.113 0.038 0.038 0.087 0.138 0.188

Consumption BHM 0.064 0.126 -0.165 0.011 0.105 0.351
Full Pooling 0.044 0.023 -0.001 0.029 0.059 0.089

Consumer Durables BHM 0.234 0.187 -0.134 0.165 0.307 0.559
Full Pooling 0.246 0.062 0.123 0.204 0.287 0.368

Temptation Goods BHM -0.034 0.056 -0.141 -0.057 -0.012 0.078
Full Pooling -0.024 0.016 -0.056 -0.035 -0.013 0.007

Notes: These treatment effects are specified as an exponentiated multiplicative factor on the
control group dispersion: if Γ̃ = 0 the effect is zero, if Γ̃ = 0.7 the effect is a 100% increase in the
dispersion (i.e. the treatment group is twice as dispersed as the control group). [Back to main]
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Table 12: Dispersion Treatment Effects: Standard Deviation (effect specified as exp(γ))

Outcome Model Effect Estimate SE Posterior Quantiles
γ̃ 2.5th 25th 75th 97.5th

Profit BHM 0.547 0.323 -0.100 0.368 0.732 1.181
Full Pooling 0.589 0.007 0.575 0.584 0.594 0.604

Expenditures BHM 0.262 0.229 -0.188 0.137 0.391 0.713
Full Pooling 0.188 0.007 0.173 0.183 0.192 0.202

Revenues BHM 0.279 0.280 -0.284 0.119 0.436 0.843
Full Pooling 0.197 0.007 0.183 0.192 0.202 0.211

Consumption BHM 0.286 0.346 -0.386 0.123 0.451 0.951
Full Pooling 0.226 0.008 0.211 0.221 0.231 0.241

Consumer Durables BHM 0.374 0.367 -0.340 0.219 0.515 1.117
Full Pooling -0.003 0.011 -0.025 -0.010 0.005 0.019

Temptation Goods BHM 0.036 0.361 -0.684 -0.135 0.211 0.744
Full Pooling -0.067 0.008 -0.082 -0.072 -0.062 -0.052

Notes: These treatment effects are specified as an exponentiated multiplicative factor on the
control group dispersion: if γ̃ = 0 the effect is zero, if γ̃ = 0.7 the effect is a 100% increase in the
dispersion (i.e. the treatment group is twice as dispersed as the control group). [Back to main]
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Table 13: Average Treatment Effect of Microcredit Intervention (τ)

Outcome Model Effect Estimate Posterior Distribution Quantiles
τ̃ 2.5th 25th 75th 97.5th

Profit BHM (Joint) 2.565 -2.923 0.018 4.775 10.235
BHM (NC) 6.809 -3.029 1.819 10.381 24.492
Full Pooling 7.245 -1.780 4.139 10.351 16.270

Expenditures BHM (Joint) 4.177 -0.939 2.021 5.993 11.334
BHM (NC) 6.717 -2.304 2.565 9.702 22.065
Full Pooling 13.011 -2.581 7.645 18.376 28.602

Revenues BHM (Joint) 6.033 -1.521 3.236 8.631 15.056
BHM (NC) 14.453 -1.397 6.577 19.934 43.527
Full Pooling 22.481 4.608 16.330 28.631 40.354

Consumption BHM (Joint) 2.609 -4.303 0.733 4.579 9.255
BHM (NC) 3.436 -6.275 0.825 5.927 13.211
Full Pooling 4.626 -1.138 2.642 6.609 10.389

Consumer Durables BHM (Joint) 1.628 -2.002 0.700 2.490 5.603
BHM (NC) 1.826 -3.903 0.675 2.880 8.290
Full Pooling 2.288 -23.916 -6.729 11.306 28.493

Temptation Goods BHM (Joint) -0.705 -3.057 -1.150 -0.167 1.151
BHM (NC) -0.790 -3.332 -1.263 -0.218 1.279
Full Pooling -0.637 -1.065 -0.784 -0.490 -0.209

Notes: All effects are in USD PPP per fortnight. The BHM(Joint) refers to the model that
estimates effects on both the mean (location) and dispersion of the outcome distribution, in this
case the dispersion is measured by the mean absolute deviations. The BHM (NC) is
"non-corrected" as it only estimates effects on the mean and does not adjust for effects on the
dispersion. The Full Pooling Model in both papers was computed with Eicker-Huber-White
standard errors, which are generally robust to heteroskedasticity but which do not exploit the
specific knowledge of the structure of the heteroskedasticity in this problem. [Back to main]
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Table 14: Pooling Factors for MAD Effects: Joint Model

Outcome Treatment Effects Control Group Means
ω(Γ) ω̆(Γ) λ(Γ) ω(∆) ω̆(∆) λ(∆)

Profit 0.469 0.339 0.705 0.003 0.007 0.005
Expenditures 0.514 0.739 0.817 0.003 0.004 0.004
Revenues 0.459 0.641 0.743 0.002 0.003 0.003
Consumption 0.127 0.267 0.559 0.114 0.277 0.542
Consumer Durables 0.199 0.476 0.838 0.001 0.002 0.002
Temptation Goods 0.314 0.452 0.791 0.005 0.003 0.012

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1 indicating
full pooling. The ω(·) refers to the conventional pooling metric that scores signal strength at the
general level against average signal strength at the local level. The ω̆(·) refers to the
proximity-based "brute force" pooling metric that measures the geometric proximity of the partial
pooling estimate to the no-pooling and full-pooling estimates. The λ(·) refers to the Gelman and
Pardoe (2006) pooling metric that scores the posterior variation at the general level against the
average posterior variation at the local level. [Back to main]
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Table 15: Pooling Factors for Variance Effects: Joint Model

Outcome Treatment Effects Control Group Means
ω(γ) ω̆(γ) λ(γ) ω(η) ω̆(η) λ(η)

Profit 0.002 0.002 0.004 0 0.001 0
Expenditures 0.003 0.030 0.007 0 0.001 0
Revenues 0.002 0.007 0.005 0 0 0
Consumption 0.002 0.011 0.006 0.006 0.023 0.020
Consumer Durables 0.002 0.043 0.013 0 0.001 0
Temptation Goods 0.002 0.005 0.006 0 0.005 0.001

Notes: All pooling factors have support on [0,1], with 0 indicating no pooling and 1 indicating
full pooling. The ω(·) refers to the conventional pooling metric that scores signal strength at the
general level against average signal strength at the local level. The ω̆(·) refers to the
proximity-based "brute force" pooling metric that measures the geometric proximity of the partial
pooling estimate to the no-pooling and full-pooling estimates. The λ(·) refers to the Gelman and
Pardoe (2006) pooling metric that scores the posterior variation at the general level against the
average posterior variation at the local level. [Back to main]
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Figure 31: Marginal posterior predictive distribution of ΓK+1, and of γK+1 from the joint
model. This is the predicted treatment effect in a future exchangeable study site, with
uncertainty intervals that account for the estimated generalizability (or lack of it). [Back
to main]
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E Examining the Role of Study-Level Covariates

This section discusses the role of site-level covariates in predicting the remaining heterogeneity in the impact of
microcredit across different studies. For a full discussion of the issues involved in this analysis, see section 5.2 of
Meager (2016). I consider a model with many site-level contextual variables, although this is not exhaustive. In
the order in which they appear in the Xk vector, they are: the site’s average value of the outcome in the control
group, a binary indicator on whether the unit of study randomization was individuals or communities, a binary
indicator on whether the MFI targeted female borrowers, the interest rate (APR) at which the MFI in the study
usually lends, a microcredit market saturation metric taking integer values from 0-3, a binary indicator on whether
the MFI promoted the loans to the public in the treatment areas, a binary indicator on whether the loans were
supposed to be collateralized, and the loan size as a percentage of the country’s average income per capita. Table
16 displays the values taken by each of these variables in each site, although of course they must be standardized
for any sparsity estimation procedure:

Contextual Variables (Pre-Standardization)
Rand unit Women APR Saturation Promotion Collateral Loan size

Mexico (Angelucci) 0 1 100.00 2 1 0 6.00
Mongolia (Attanasio) 0 1 120.00 1 0 1 36.00

Bosnia (Augsburg) 1 0 22.00 2 0 1 9.00
India (Banerjee) 0 1 24.00 3 0 0 22.00

Morocco (Crepon) 0 0 13.50 0 1 0 21.00
Philippines (Karlan) 1 0 63.00 1 0 0 24.10
Ethiopia (Tarozzi) 0 0 12.00 1 0 0 118.00

Table 16: Contextual Variables: Unit of randomization (1 = individual, 0 = community), Women (1= MFI
targets women, 0 = otherwise), APR (annual interest rate), Saturation metric (3 = highly saturated, 0 = no other
microlenders operate), Promotion (1 = MFI advertised itself in area, 0 = no advertising), Collateral (1 = MFI
required collateral, 0 = no collateral required), Loan size (percentage of mean national income). [Back to main]

For unidimensional treatment effects, the protocol is to proceed with a regularized regression of the treatment
effect in each site on the standardized covariates as in Meager (2016). But for the multidimensional distributional
treatment effects, there is no comparable established procedure to my knowledge. Therefore, the results of this
appendix should be interpreted with caution, and future work on this topic is necessary to provide confidence in
any of the conclusions presented here. Because the results of the main analysis in the consumption data have shown
negligible impact of microcredit except in the right tail, and most notably at the 95th percentile, I have pursued a
cross-site covariance analysis strategy that leverages this by performing a standard ridge procedure on the effects
at this quantile. Similarly, for the business variables, the main variation across sites occured in the logit coefficients
governing the category switching effect, so I focus the site-level covariate analysis on these coefficients.

The results of these selected ridge regressions at the study level are shown in figure E, which displays the
absolute magnitude of the coefficients on the various contextual variables for each of the 6 outcomes. The larger the
magnitude, the more important is the variable as a predictor of the treatment effects for that outcome (Hastie et
al, 2009). In this case the results are not as clear as in Meager (2016), perhaps reflecting weaknesses in the selected
ridge analysis strategy employed in this section. However, even here the results appear to favour the economic
variables over the study protocol variables. In particular, the logit switching effects are most strongly predicted by
the loan size, and collateralisation seems to play a role in most cases. Although the randomization unit is almost
as predictive as collateralization for the consumption variables, none of these variables are strongly predictive for
these outcomes; note the difference in the absolute magnitude of the ridge coefficients shown in the two panels of the
figure. This contrasts to the results of the means analysis in Meager (2016) which typically found the interest rate
to have the highest predictive power, followed by the loan size. This may reflect weaknesses in the means analysis,
especially in the case of the business variables which we now know to be fat tailed. However, as noted above, it may
also reflect methodological issues with the ridge procedure chosen here.
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Figure 32: Absolute Magnitude of the Ridge Regression Coefficients for all outcomes and
covariates [Back to main]
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