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Abstract

I introduce a new discrete choice model of demand, the Ordered Nested Generalized

Extreme Value (ONGEV) model. This model allows for segmentation in markets with

di¤erentiated products where consumers are likely to substitute to neighboring seg-

ments. The model represents a tractable extension of the nested logit model, in which

substitution patterns across all segments, neighboring or not, are instead symmetric. I

apply the model to the automobile market where segments are ordered from small-size

to luxury. The nested logit model is rejected against the ONGEV model. The implied

substitution patterns illustrate the presence of relevant neighboring segment e¤ects

when consumers substitute outside their segment.
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1 Introduction

Discrete choice models are frequently used in empirical industrial organization to estimate

demand for di¤erentiated products. Because of their strong theoretical properties they can

be �exibly adapted to capture various settings. McFadden (1978) has proposed a family

of discrete choice models known as the Generalized Extreme Value (GEV) model, which

is consistent with random utility theory and yields to a tractable closed-form for choice

probabilities. Berry (1994) has provided a framework to estimate, using market-level data,

two special members of this family: the logit and the nested logit model. Apart from these

two models, only a few other members of the GEV model family have been exploited so far,

especially with market-level data. One notable exception is the principle of di¤erentiation

model by Bresnahan et al. (1997).

In this paper I present a new member of the GEV model family that captures a particular

feature of di¤erentiated product markets. The starting point is the fact that often these

markets present a form of segmentation which can be ordered in a natural way. I consider

here the car market. It can be naturally ordered from subcompact to luxury according

to important product characteristics, such as price, size, engine performance, comfort and

prestige. Products belonging to the same segment tend to share similar characteristics and

be closer substitutes to each other than products belonging to other segments. At the same

time, these characteristics gradually increase from one segment to the other, such that a

premium subcompact car can be a potential substitute for a cheap compact car. Thus,

segments tend to overlap with their neighbors. A price shock to a compact car may raise

the desirability, �rst, of other compact cars and, next, of subcompact and intermediate cars

rather than luxury cars.

Is asymmetric substitution towards neighboring segments captured by the demand mod-

els we use? In the nested logit model (Williams, 1977; Daly and Zachary, 1977; McFadden,

1978), often used to estimate the degree of segmentation in a market because of its compu-

tational simplicity, neighboring segment e¤ects are ruled out by construction. The model

requires the stochastic components of utility attached to the segment choice to be inde-

pendent. Therefore, while preferences can be correlated across products within the same

segment (or nest), substitution outside a segment is symmetric to all other segments.

In contrast, the random coe¢ cients logit model by Berry et al. (1995) has the potential

to generate more �exible substitution patterns, where products tend to be closer substitutes

as they share similar observed continuous characteristics. For example, in the �rst essay I

simulate the e¤ect of a joint 1% price increase of all cars in a given segment and show that

the random coe¢ cients logit model yields to more intense substitution towards neighboring
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segments. However, the model does not yield to a closed-form for choice probabilities and

requires the use of computationally demanding techniques. Problems related to its numerical

performance have been studied by several papers; see Knittel and Metaxoglou (2012); Dubé

et al. (2012); Judd and Skrainka (2011).

I specify a new application of the GEV class of models denominated Ordered Nested

Generalized Extreme Value (ONGEV) model. The ONGEV model explicitly recognizes the

natural segment ordering by allowing correlation in unobserved utility between neighboring

segments. It is a combination of the ordered generalized extreme value (OGEV) by Small

(1987) and the nested logit model. Small�s (1987) OGEV model has been developed in

settings where a limited number of alternatives have a natural order so that correlation in

unobserved utility between two alternatives depends on their proximity in the ordering. The

ONGEV model extends the OGEV model to a framework with numerous alternatives where

the grouping of these alternatives, rather than the alternatives as such, can be naturally

ordered. In the car market, for example, ordering around 170 car models would prove

impossible, while ordering grouping of cars, the segments, is a sensible strategy to obtain a

tractable model and �exible substitution patterns.

The ONGEV model is appealing for three reasons. First, it provides a modeling theory

that is more consistent with the particular structure of choices in some segmented mar-

kets, such as cars or hotels, than a simple nested logit model. It creates the potential for

neighboring segment e¤ects, or, more precisely, asymmetric substitution patterns across seg-

ments. Second, the ONGEV model permits the presence of overlapping nests in a closed

form solution. It relaxes the hierarchical nesting structure imposed by the nested logit model

while avoiding the burdensome simulation techniques and numerical problems of the ran-

dom coe¢ cients logit model. As every random utility model, the ONGEV model could be

approximated by a random coe¢ cients logit model (McFadden and Train, 2000), but doing

so would imply the use of simulation techniques and a consequent reduction in tractability.

Third, the ONGEV model has the nested logit and the logit as special cases. It can thus

serve as a test for the validity of the constraints imposed by the nested logit and, a fortiori,

the logit model.

I implement the ONGEV model using a unique dataset on the car market that covers

nine European countries between 1998 and 2009. I model and estimate car demand in three

ways: (i) a one-level nested logit model where consumers choose one of �ve segments and

then the speci�c car; (ii) a two-level nested logit where consumers choose between �small�and

�large�segments, then the speci�c segment and car; (iii) an ONGEV model where consumers

choose one of �ve segments, as in model (i), but segments can overlap with the neighboring

ones. The �rst model, the one-level nested logit, is the simplest model to capture market
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segmentation but imposes restrictions that rule out neighboring segment e¤ects. The second

model, the two-level nested logit, is an approximation of the ONGEV model where segments

are grouped into two arbitrary nests (small and large), such that correlation between pairs

of segment within a nest is not zero. But the segment grouping is arbitrary and can only

partially solve the problem of estimating neighboring segment e¤ects because it does not

allow correlation between all neighboring segments. The third model is the ONGEV model

embodying correlation between all neighboring segments.

The demand estimates of the ONGEV model clearly indicate a rejection of the one-level

nested logit model: correlation in car choices is present not only within a segment, but also

between neighboring segments. Robustness checks using di¤erent instrument sets indicate

that the between e¤ect is always present. The demand estimates have striking implications

for the substitution patterns. I examine the e¤ect of a 1% price increase of all cars in a given

segment on the demand in the various segments. The cross-price elasticities substantially

di¤er across the three speci�cations. The ONGEV model shows a large substitution e¤ect to

the neighboring segments. The one-level nested logit model yields to symmetric substitution

across segments, where the amount of substitution towards other segments is very low. The

two-level nested logit model only partially captures neighboring segment e¤ects but not the

full pattern of between segment correlation.

The ONGEV model is a closed-form discrete choice model that enhances the �exibility of

the nested logit model. Several authors have noticed the limitation of the nested logit model

consisting of unambiguous assignment of alternatives to only one nest. Small�s (1987) OGEV

model was probably the �rst closed-form GEV model that allows overlapping nests. Other

closed-form models have been developed, especially in the transportation literature; see Chu

(1989); Vovsha (1997); Ben-Akiva and Bierlaire (1999). Small (1994) and Bhat (1998) have

extended the OGEV model to a nested logit model for the higher-level choice decision and

the OGEV model formulation for the lower choice decision. The most �exible model in this

literature is the generalized nested logit model by Wen and Koppelman (2001), where an

alternative can be a member of more than one nest to varying degrees. Finally, Bresnahan

et al. (1997) develop a principle of di¤erentiation model which is an example of closed-form

GEV model applied to market-level data and a numerous number of alternatives.

The remainder of the paper is organized as follows. Section 2 discusses the ONGEV

model. Section 3 describes the dataset and the econometric procedure, including the iden-

ti�cation issues. Section 4 shows the empirical results and the implied price elasticities.

Section 5 concludes.
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2 The ordered nested generalized extreme value model

I estimate the demand for cars at product level within the random utility framework as

developed in the GEV class of models proposed by McFadden (1978).

There are T markets, t = 1; ::; T . In each market t there are Lt potential consumers. I

suppress the market subscript t for the moment, since consumers are assumed to purchase

the car only in the market where they are located. Consumer i chooses the speci�c car j,

j = 0; : : : J . The outside good includes only the option �do not buy a car�, j = 0, for which

consumer i�s indirect utility is ui0 = "i0. For cars j = 1; : : : ; J , consumer i�s indirect utility

is:

Uij = xj� + �pj + �j + "ij

� �j + "ij;

where xj is a vector of observed product characteristics, including size, horsepower, fuel

e¢ ciency and country of origin; pj is the price; �j is the unobserved product characteristic,

including style, image or comfort.1 The coe¢ cient of price, �; is speci�ed as �=y, where

y is equal to income per capita.2 Following Berry (1994), I decompose Uij into two terms:

�j, the mean utility term common to all consumers and "ij, the utility term speci�c to each

consumer.

In particular, "ij is an individual realization of the random variable ". The distribution of

" is determinant for the shape of demand and the implied substitution pattern. I assume that

segments are ordered from the outside good segment (the �inferior quality�good) to the luxury

segment according to observable characteristics, such as price, size, engine performance and

fuel e¢ ciency, and other unobservable characteristics, such as comfort, prestige or safety.

The modeling strategy takes into account that if cars j and k belong to the same segment

or to a neighboring segment, a consumer�s draw of "ij can be correlated with "ik.

McFadden (1978) has proposed a GEV class of random utility model in which such

correlation can be modeled in di¤erent ways. A GEV model is derived from a function

G = G(e�0;:::;�J ) which is a di¤erentiable function de�ned on RJ+ which is: (i) non-negative;
(ii) homogeneous of degree 1; (iii) tending toward +1 when any of its arguments tend

toward +1; (iv) whose nth cross-partial derivatives with respect with respect to n distinct
1Since my data are at the annual level, I also add controls for the number of months each car is available

in a country within a given year (for cars introduced or dropped within a year).
2This utility speci�cation approximates Berry et al.�s (1995) Cobb-Douglas speci�cation � ln(y�pj) when

the price is small relative to (capitalized) income. It is convenient when studying countries with di¤erent
exchange rates, since local price is simply expressed relative to local income; see Goldberg and Verboven
(2001).
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e�j are non-negative for odd n and non-positive for even n.

According to the GEV postulate, the choice probability of buying car j is:

sj =
e�j �Gj(e�0;:::;�J )
G(e�0;:::;�J )

; (1)

where sj if the equation for the market share of car j and Gj is the partial derivative of G

with respect to e�j .

To make the logic of the modeling strategy more clear, consider the G function associated

with a traditional speci�cation, the nested logit model, in which the ordering of the segments

is not explicitly modeled. I present �rst a one-level nested logit model, in which correlation

between segments is ruled out by construction. Then I present a two-level nested logit model,

in which correlation between segments is partially modeled. Finally I turn to the ONGEV

model. The three models are represented in Figure 1.

One-level nested logit model In the one-level nested logit model, the segment ordering

does not matter. The model incorporates potential correlation among products only within

a nest (segment), not between (panel a of Figure 1). The J alternatives are grouped into S

nests (segments) labeled S1; :::; SS. The G function takes the form:

G = e�0 +
SX
r=1

 X
j2Sr

e
�j

1��s

!1��s
; (2)

where �s captures correlation among products within the same nest. Consistency with

random utility maximization requires �s to lie in the unit interval. As �s goes to 0, the

expression in (2) simpli�es to the G function associated with a logit model, where each

element of " is independent. As �s goes to 1, the error term becomes perfectly correlated, so

that the probability of choosing an alternative dominated by another alternative (j�jj > j�kj)
in the same nest is 0.

Two-level nested logit model One could think about more complicated nesting struc-

tures to capture neighboring substitution e¤ects within the modeling framework of tradi-

tional nested logit models. For example, a two-level nested structure could combine the

segments into two nests: a �small�nest, including subcompact and compact segments and a

�large�nest, including intermediate, standard and luxury segments (panel b of Figure 1). In

practice, the J alternatives are grouped into 2 nests, small and large, labeled B1(small) and

B2;(large) and S sub-nests (segments), labeled S1; :::SS.The two-level nested logit formula
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of the G function is the following:

G = e�0 +

SX
r=1

8><>:
24 X

j2B1;Sr

e
�j

1��g

! 1��g
1��s

+

 X
j2B2;Sr

e
�j

1��g

! 1��g
1��s

351��s
9>=>; ; (3)

where �s captures the correlation of preferences within a speci�c sub-nest (segment) and

�g the correlation of preferences within a grouping of segments (B1, small and B2, large).

A price shock to a compact car would determine, �rst, substitution within the compact

segment and, next, within the small group, towards the subcompact segment. But this

speci�cation assumes away potential correlation in " towards the other neighboring segment,

the intermediate one. Segments could be grouped in di¤erent ways, but no two-level nested

logit speci�cation can fully parameterize the neighboring segment e¤ects. I turn to the

ONGEV model to better accommodate this e¤ect.

The ONGEV model Assume that the 5 + 1 segments are ordered as follows: S0, the

outside good; S1, subcompact; S2, compact; S3, standard; S4, intermediate; S5, luxury. The

ordering corresponds to an increasing value of important characteristics such as price. The

outside good segment is, thus, the segment with the �inferior quality�good.

Assume the following G function within the GEV class:

G =
S+1P
r=0

2641
2

0@ X
j2Sr�1

e
�j

1��s

1A
1��s
1��n

+
1

2

 X
j2Sr

e
�j

1��s

! 1��s
1��n

375
1��n

; (4)

where �s captures correlation of preferences within a speci�c nest (segment) and �n corre-

lation of preferences between neighboring segments. Consistency with random utility max-

imization requires 0 � �n � �s < 1. These restrictions on the values of �n and �s are

necessary to satisfy the four conditions for function G to belong to the GEV family. The

Appendix provides the proof in paragraph A.1.

The shape of the demand function crucially depends on the two parameters, �s and

�n, that parameterize the cumulative distribution of the error term ". The �rst one, �s,

corresponds to a pattern of dependence in " across products sharing the same segment. The

second one, �n, corresponds to a pattern of dependence in " across products belonging to

neighboring segments. Consider the e¤ect of a price shock to a speci�c compact car. The

dependence in " measured by �s determines that a share of consumers, who had initially

chosen a compact car, will switch to another compact car. The dependence in " measured by
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�n determines that a share of consumers will switch to a subcompact or an intermediate car

(the neighboring segments). In other words, if the values of �s and �n are su¢ ciently high,

products belonging to the same segment or to neighboring segments will be closer substitutes

compared to products belonging to further segments (panel c of Figure 1). I formalize the

argument by looking at the correlation between "�s for two cars that (i) belong to the same

segment; (ii) belong to neighboring segments; (iii) belong neither to the same segment nor

to neighboring segments. The Appendix in paragraph A.2 provides these expressions.

If the random components follow the G function in (4), by GEV postulate in (1) the

choice probability of buying car j is:

sj =

e
�j

1��s �
�P

j2Sr e
�j

1��s

��n��s
1��n

�
"�P

j2Sr�1 e
�j

1��s

� 1��s
1��n

+

�P
j2Sr e

�j
1��s

� 1��s
1��n

#��n
PS+1

r=0

"�P
j2Sr�1 e

�j
1��s

� 1��s
1��n

+

�P
j2Sr e

�j
1��s

� 1��s
1��n

#1��n : (5)

If �n = 0, the expression boils down to the one-level nested logit choice probability:

sj =

e
�j

1��s �
�P

j2Sr e
�j

1��s

���s
PS

r=0

"�P
j2Sr e

�j
1��s

�1��s# : (6)

Compare the market shares of the ONGEV model in (5) with the corresponding shares

of the one-level nested logit model in (6). Similarly to the one-level nested logit model, in

the ONGEV model sj is diminished by the presence of attractive alternatives within a nest.

Di¤erently from the nested logit model, sj is also diminished by the presence of attractive

alternatives in neighboring nests, because the denominator will increase. Ceteris paribus,

this e¤ect is increasing in �n.

Compare the ONGEV model with the two-level nested logit model. In the two-level

nested logit model, segments can be paired in di¤erent ways, but no speci�cation can fully pa-

rameterize the neighboring segment e¤ects as in the ONGEV model. Note that the ONGEV

model does not imply the estimation of a greater number of parameters with respect to the

two-level nested logit, but simply accommodates neighboring e¤ects in a more appropriate

way.
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Figure 1: The nested logit models versus the ONGEV model

(a) One-level nested logit

(b) Two-level nested logit

(c) ONGEV

This �gure represents the three model speci�cations based on McFadden�s (1978) GEV model: the
one-level nested logit that ignores neighboring segments, the two-level nested logit that partially
models neighboring segments, and the ONGEV model, that �exibly models neighboring segments.
Note that in the ONGEV model each segment overlaps with two neighbors, apart from the extreme
segments (outside good and luxury).
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3 Data and identi�cation

3.1 Data

I use a unique dataset on the automobile market maintained by JATO. The data are at the

level of the car model (e.g. VW Golf ) and include essentially all passenger cars sold between

1998 and 2009 in nine West-European countries, which include Belgium, France, Germany,

Greece, Italy, the Netherlands, Portugal, Spain and the UK. For each model/country/year,

I build a dataset including information on sales and list prices and various characteristics

such as vehicle size (curb weight, width and height), engine attributes (horsepower and

displacement) and fuel consumption (liter/100 km or e/100 km). I assign each model to

the brands�speci�c perceived country of origin. Models sold under the brand of Citroën,

Peugeot and Renault are perceived as French cars, even though the production can take place

in di¤erent locations. The dataset is augmented with macro-economic variables including the

number of households for each country, the population size and GDP. The resulting dataset

consists of 18,624 model/country/year observations or, on average, about 172 models per

country/year. A more detailed description of the dataset for a shorter number of years (1998-

2006) is provided by Grigolon and Verboven (2011). Table 1 provides summary statistics

for sales, price and the other product characteristics used in our empirical demand model.

In my counterfactual I report substitution patterns for one country, Germany, so I report

summary statistics for that country as well.

Starting from JATO�s classi�cation, I attribute each model to a marketing segment.

There are �ve marketing segments: subcompact, compact, standard, intermediate, luxury.3

Since my empirical analysis focuses on the ordering of the segments from subcompact to

luxury, I provide more details on how the characteristics relate to neighboring segments.

Table 2 presents, on the top panel, the mean for each characteristic per segment. The mean

values of price, horsepower, fuel consumption and width increase from subcompact to luxury.

Height shows neither a clearly increasing nor a clearly decreasing trend. Segment averages of

price, horsepower and fuel consumption vary more widely with respect to width and height

between segments. On the bottom panel, the table presents a non-parametric test on the

probability that a randomly-chosen value of, say, horsepower from the subcompact segment

has a higher value than a randomly-chosen value of horsepower of the compact segment.

The test is useful to illustrate both the segment ordering and the extent of overlap of the

characteristics between neighboring segments. Results con�rm that all characteristics tend

to increase when switching from one segment to the neighboring one (probability < 50%)

3Other segments that are present in the car market, such as SUV, sports and minivan, are not considered
here because di¤erent characteristics would suggest di¤erent ordering of the segments.
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Table 1: Summary Statistics

All countries Germany

Mean St. Dev. Mean St. Dev.

Sales (units) 6,759 16,048 13,872 23,299
Price/Income 1.01 0.76 0.79 0.47
Horsepower (in kW) 81.3 35.4 82.7 36.6
Fuel e¢ ciency (e/100 km) 8.8 2.5 9.0 2.2
Width (cm) 172.4 8.2 172.6 8.2
Height (cm) 146.2 6.8 146.4 6.9
Foreign (0-1) 0.9 0.3 0.7 0.4
Months present (1-12) 9.7 2.6 9.7 2.5

The table reports means and standard deviations of the main variables. The total number of
observations (models/markets) is 18,624, where markets refer to the 9 countries and 12 years.

with the exception of height. This partial measure of size should not be taken into account

in the ordering because smaller cars often tend to compensate their reduced size in terms of

width and length with height.

Neighboring segments also present di¤erent degrees of overlap depending on the charac-

teristic. Fuel e¢ ciency tends to overlap across neighboring segments more than price and

horsepower. For example, while the average fuel e¢ ciency increases from the intermediate

(9:2) to the standard segment (9:9), the probability that a randomly chosen value of fuel

e¢ ciency from the intermediate segment has a higher value than a randomly-chosen value

of fuel e¢ ciency of the standard segment is very high (42%). Probabilities across all charac-

teristics suggest that the border between compact-intermediate and intermediate-standard

is less de�ned compared to the border between subcompact-compact and standard-luxury.

3.2 The estimation procedure

The estimation procedure for the ONGEV model follows the methodological lines of Berry

(1994), Berry et al. (1995) and the subsequent literature. Following Grigolon and Verboven

(2011), I exploit the panel features of the dataset to specify the error term capturing un-

observed product characteristics. For this purpose, I reintroduce the market subscript t.

Speci�cally, I model the product-related error term as follows: �jt = �j + �t + ��jt, where

�j is a �xed-e¤ect for each car model, �t is a �xed-e¤ect for each country interacted with a

time trend and squared time trend. ��jt is the remaining product-related error term.

I follow a two-step procedure. First, I numerically solve for the error term ��jt as a
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Table 2: Summary Statistics by Segment

Segment Subc Comp Interm Stand Lux

Mean of the characteristics xjt
Price/Income 0.528 0.792 1.023 1.378 2.162
Horsepower (in kW) 50.1 71.7 87.5 102.8 142.1
Fuel e¢ ciency (e/100 km) 7.2 8.3 9.2 9.9 12.0
Width (cm) 163.2 172.5 176.5 176.0 183.1
Height (cm) 149.4 145.2 145.6 142.9 145.8

% overlap between neighboring segments

Price/Income - 20 26 25 24
Horsepower (in kW) - 8 17 25 16
Fuel e¢ ciency (e/100 km) - 33 36 42 29
Width (cm) - 7 23 54 9
Height (cm) - 65 46 70 26

Number of observations 5,165 5,352 3,572 2,159 2,376

The top panel of the table reports means of the �ve continuous characteristics (i.e. price/income,
horsepower, fuel e¢ ciency, width and height) by segment. The bottom panel of the table reports
a non-parametric test on the probability that a randomly-chosen value of a characteristic from
segment r � 1 has a higher value than a randomly-chosen value of the characteristic from segment
r. Subc=subcompact, Comp=compact, Interm=intermediate, Stand=standard, Lux=Luxury.
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function of the vector of parameters. Second, I interact ��jt with a set of instruments to

form a generalized method of moments (GMM) estimator.

Consider the solution of��jt �rst. In the nested logit model��jt has an analytic solution.

In the ONGEVmodel��jt is the numerical solution of the system s = s(�(�; �s; �n); �; �s; �n).

In contrast with the random coe¢ cients logit model, the numerical procedure is well-behaved

because the market share function is expressed in closed-form.4

Let c�� be the sample analogue of the vector ��, and Z the matrix of instruments. The
GMM estimator is de�ned as:

min
�;�s;�n

d��0(Z
Z 0
)c��;

where 
 is the weighting matrix. To minimize the GMM objective function with respect

to the parameters �; �s; �n, I �rst concentrate out the linear parameters �. Also, I do

not directly estimate the more than 150 car model �xed e¤ects �j, but instead use a within

transformation of the data (Baltagi, 1995). Standard errors are computed using the standard

GMM formulas for asymptotic standard errors.

3.3 Identi�cation

The GMM estimator requires an instrumental variable vector Z with a rank of at least K+3

(K is the dimension of the � vector; the price parameter �; the two nesting parameters �s
and �n). The interpretation of ��jt as unobserved product quality disquali�es price pjt as

an instrument since it could imply a positive correlation with ��jt. There are two main

reasons for this positive correlation. First, if an unobservable characteristic, for example

comfort, rises with price, consumers will avoid expensive cars less than they would without

that characteristic. Second, if adding comfort is costly for the manufacturer, the price of

the car is expected to re�ect this cost. A similar argument holds for the correlation between

the shares within a segment (or within neighboring segments) and ��jt. This calls for

instrumentation of the share terms to avoid an upward bias on the parameters �s and �n.

Following Berry et al. (1995), I assume that the observed product characteristics xjt are

uncorrelated with the unobserved product characteristics ��jt. Note that this assumption is

weaker than the often adopted assumption that xjt is uncorrelated with �jt. We can therefore

include xjt in the matrix of instruments. I also use functions of these characteristics as

instruments to estimate the K +3 parameters. Speci�cally, I include: (i) counts and sum of

4I use a modi�ed version of Berry et al.�s (1995) contraction mapping: �k+1 = �k + [1 � max(c�s;c�n)]
�[ln(s) � ln(s(�k))]. If one does not weigh the second term by [1 � max(c�s;c�n)] the procedure may not
lead to convergence; see Brenkers and Verboven (2006). Following the insights of the literature on random
coe¢ cients logit models, particularly by Dubé et al. (2012), I use a tight tolerance level of 1e� 14 to invert
the shares using Berry et al.�s (1995) contraction mapping.
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the characteristics of other products of competing �rms by segment; (ii) counts and sum of

the characteristics of other products of the same �rm by segment; (iii) counts and sum of the

characteristics of other products of competing �rms by neighboring segments; (iv) counts

and sum of the characteristics of other products of the same �rm by neighboring segments.

These instruments originate from supply side considerations, where I assume that �rms set

prices according to a Bertrand-Nash game. When the number of products in one segment, or

in the neighboring segments increases, demand should become more elastic and this should

a¤ect prices and shares. Similarly, if one �rm produces a large share of the products in one

segment or in neighboring segments, sales and prices for each product of that particular �rm

should be higher.

4 Results

4.1 Demand estimates

Table 3 shows the parameter estimates for the three alternative demand models. The �rst

one is the one-level nested logit model, which imposes �n = 0. The second one is the two-

level nested logit model, which is an approximation of the ONGEV model which assumes

away potential correlation between " among compact and intermediate segments. Again in

this model �n = 0, but two ��s are estimated: �s corresponding to the speci�c segment

(sub-nest) and �g corresponding to the higher level in which segments are grouped into two

nests, small and large. The third one is the ONGEV model, where both �s and �n are

estimated.

In all three models, the price parameter (�) and the parameters of the characteristics

(�) have the expected sign and are all signi�cantly di¤erent from zero. Most parameter

estimates have also roughly the same magnitude.

I now examine the nesting parameters. In the �rst model, the nesting parameter for the

segment is estimated very precisely: �s = 0:84. The magnitude is consistent with random

utility maximization (0 � �s < 1) and implies that consumer preferences are strongly corre-
lated within a segment. This is consistent with earlier �ndings by Goldberg and Verboven

(2001) and Brenkers and Verboven (2006).

In the second model, the two nesting parameters are again very precisely estimated:

�s = 0:89 and �g = 0:69. Their magnitude is also consistent with random utility maximiza-

tion (0 � �g � �s < 1). They imply that consumer preferences are more strongly correlated
across cars from both the same segment grouping (small and large) and sub-grouping (seg-

ment) rather than merely from the same grouping. However, correlation within a grouping
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of segments (small and large) is still important. Neighboring segment e¤ects are therefore

present.

In the third model, the ONGEV model, we estimate both �s and �n signi�cantly di¤er-

ent from zero. The parameter measuring correlation within segments, �s, is very precisely

estimated, �s = 0:85. The parameter measuring correlation between neighboring segments,

�n, is less precisely estimated, �n = 0:72. Nevertheless, correlation between neighboring

segments is strongly supported by the data since �n is signi�cantly higher than zero and has

a high magnitude: the one-level nested logit assuming �n = 0 is rejected against the ONGEV

model. The magnitude of the parameters is consistent with random utility maximization

(0 � �n � �s < 1).
Table 4 presents alternative estimations on the ONGEV model with di¤erent instrument

sets to check the robustness of the parameter estimates. The �rst column reports the baseline

ONGEV. In the second column I remove half of the instruments, speci�cally the ones based

on the neighboring segments. In the third column I remove the other half of the instruments,

the ones based on the segments. The magnitude of the parameters is stable, where the

hypothesis that �n = 0 is always rejected. Note a reduction in the measured precision of the

important parameters, �, �s and especially �n, which is, however, not dramatic.

Table 3: Parameter Estimates for Alternative Demand Models

One-level Nested Logit Two-level Nested Logit Ordered Nested Logit

Param. St. Er. Param. St. Er. Param. St. Er.

Mean valuations for the characteristics in xjt (�)

Price/income -1.26 0.02 -0.94 0.02 -1.08 0.05
Horsepower (kW/100) 1.24 0.04 0.91 0.03 1.04 0.06
Fuel (e/10,000 km) -3.06 0.34 -1.93 0.25 -2.28 0.29
Width (cm/100) 7.01 1.78 5.42 1.30 7.16 1.49
Height (cm/100) 11.70 1.32 9.39 0.97 10.24 1.11
Foreign (0/1) -0.27 0.03 -0.16 0.02 -0.24 0.03

Nesting parameters (�s; �n; �g)

Segment �s 0.84 0.02 0.89 0.02 0.85 0.02
Neighboring segment �n n/a n/a 0.72 0.21
Group of segments �g n/a 0.69 0.02 n/a

Model �xed e¤ects Yes Yes Yes
Market �xed e¤ects Yes Yes Yes

The table shows the parameter estimates and standard errors for the three di¤erent demand models.
The nested logit models assume �n = 0, while the ONGEV model estimates �n. The total number of
observations (models/markets) is 18,624, where markets refer to the 9 countries and 12 years.
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Table 4: Alternative Treatment of the Instrument Matrix

Baseline ONGEV No neighboring seg. IV No segment IV

Param. St. Er. Param. St. Er. Param. St. Er.

Mean valuations for the characteristics in xjt (�)

Price/income -1.08 0.05 -1.02 0.06 -1.24 0.05
Horsepower (kW/100) 1.04 0.06 0.98 0.08 1.23 0.07
Fuel (e/10,000 km) -2.28 0.29 -2.14 0.30 -3.00 0.32
Width (cm/100) 7.16 1.49 9.27 1.73 7.82 1.74
Height (cm/100) 10.24 1.11 11.04 1.20 11.00 1.25
Foreign (0/1) -0.24 0.03 -0.31 0.04 -0.24 0.03

Nesting parameters (�s; �n)

Segment �s 0.85 0.02 0.80 0.03 0.84 0.02
Neighboring segment �n 0.72 0.21 0.73 0.24 0.71 0.26

Model �xed e¤ects Yes Yes Yes
Market �xed e¤ects Yes Yes Yes

The table shows the parameter estimates and standard errors for the ONGEV model with di¤erent
instrument sets. The �rst model is the baseline one. The second model excludes: (i) counts and sum of
the characteristics of other products of competing �rms by neighboring segments; (ii) counts and sum
of the characteristics of other products of the same �rm by neighboring segments. The third model
excludes: (i) counts and sum of the characteristics of other products of competing �rms by segment; (ii)
counts and sum of the characteristics of other products of the same �rm by segment. The total number
of observations (models/markets) is 18,624, where markets refer to the 9 countries and 12 years.

4.2 Substitution patterns: segment-level price elasticities

The implications of the ONGEV model are clearly illustrated by the substitution patterns. I

consider own- and cross-price elasticities at the level of an entire segment. These elasticities

represent the e¤ect of a joint 1% price increase of all cars in a given segment on the demand

in the various segments. Table 5 shows the segment-level own- and cross-price elasticities.

The table reports both the point estimates and the bootstrapped 95% con�dence interval.

The own-price elasticities across the three models are very similar in terms of magni-

tude and often overlap in the con�dence intervals. The own-price elasticities of the second

model, the two-level nested logit model, tend to be higher, especially for the most-expensive

classes. This proportional relationship between own-price elasticity and price is a result of

the functional form assumption of the nested logit model, since price enters utility linearly.

The proportionality is a common feature of all three models, but the higher values of the

nesting parameters for the second model make it more evident.

The cross-price elasticities are the most interesting. By construction, the one-level nested
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logit model implies a fully symmetric substitution pattern, namely identical cross-price elas-

ticities in each row. The two-level nested logit model retains the same feature, but within

each sub-nest. Thus, a 1% price increase to the intermediate segment raises the demand in

the standard and luxury segments by the same amount, 0.73%. In addition, a price increase

in the intermediate segment implies a very small increase in the demand of compact cars, a

segment that belongs to another grouping (small). This counterintuitive result is the con-

sequence of the inability of the model to represent the overlapping segments. Similarly, a

price increase in the compact segment implies a strong substitution e¤ect to the subcompact

segment, but not to the intermediate one, which attracts demand in the same proportion of

the luxury segment.

By contrast, the ONGEV model seems to capture substitution to neighboring segments

well. Taking the same example, i.e. a price increase in the compact segment, note the

high e¤ect on the demand of the two neighboring segments, subcompact (+0.14%) and

intermediate (+0.13%). These numbers are lower, but comparable to the ones reported

by Grigolon and Verboven (2011) in the analysis of the segment-level price elasticities for

the random coe¢ cients logit model. The fact that between segment correlation, �n, is less

precisely estimated than within segment correlation, �s, leads to larger con�dence intervals

for the point estimates of the cross-price elasticities compared to the own-price elasticities.

Note that the distribution of the elasticities tends to be skewed to the left, so that the point

estimates are higher than their expected value.

The ONGEV model is parsimonious in the number of parameters, so that only the imme-

diately proximate segments (on the left and on the right) are the neighboring ones. Outside

the neighboring segments, the ONGEV model still retains the modeling assumptions of the

nested logit model. Thus, substitution patterns are symmetric outside the neighboring seg-

ments. This constitutes a limitation of the model which is especially evident for the segments

allocated at the beginning and at the end of the ordering. For example, one could imagine

that a price increase to luxury cars would imply higher substitution e¤ects towards standard

cars and, to a lesser extent, towards intermediate cars. Now substitution towards the inter-

mediate segment is very small and identical to the one towards the compact and subcompact

segments. Modeling further neighboring segments could be an interesting extension of this

work.

5 Conclusion

I present a new member of the GEV model family denominated ordered nested generalized

extreme value (ONGEV) model. The ONGEV model is particularly suitable for markets of
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Table 5: Segment-level Price Elasticities in Germany for Alternative
Demand Models

One-level Nested Logit
Subcompact Compact Intermediate Standard Luxury

Subcompact -0.50 0.02 0.02 0.02 0.02
-0.51;-0.48 0.02;0.02 0.02;0.02 0.02;0.02 0.02;0.02

Compact 0.02 -0.76 0.02 0.02 0.02
0.02;0.02 -0.79;-0.74 0.02;0.02 0.02;0.02 0.02;0.02

Intermediate 0.01 0.01 -1.07 0.01 0.01
0.01;0.01 0.01;0.01 -1.11;-1.04 0.01;0.01 0.01;0.01

Standard 0.01 0.01 0.01 -1.36 0.01
0.01;0.01 0.01;0.01 0.01;0.01 -1.40;-1.32 0.01;0.01

Luxury 0.01 0.01 0.01 0.01 -1.99
0.01;0.01 0.01;0.01 0.01;0.01 0.01;0.01 -2.05;-1.92

Two-level Nested Logit
Subcompact -0.70 0.53 0.01 0.01 0.01

-0.76;-0.65 0.46;0.61 0.01;0.01 0.01;0.01 0.01;0.01

Compact 0.56 -1.35 0.01 0.01 0.01
0.49;0.64 -1.47;-1.23 0.01;0.01 0.01;0.01 0.01;0.01

Intermediate 0.03 0.01 -1.89 0.73 0.73
0.02;0.03 0.01;0.01 -2.06;-1.73 0.63;0.84 0.63;0.84

Standard 0.03 0.01 0.86 -2.46 0.86
0.02;0.03 0.01;0.01 0.74;0.99 -2.68;-2.25 0.74;0.99

Luxury 0.03 0.01 0.77 0.77 -4.05
0.02;0.03 0.01;0.01 0.66;0.88 0.66;0.88 -4.43;-3.68

Ordered Nested Logit
Subcompact -0.52 0.14 0.01 0.01 0.01

-0.56;-0.44 0.02;0.19 0.01;0.01 0.01;0.01 0.01;0.01

Compact 0.14 -0.86 0.13 0.01 0.01
0.02;0.19 -0.96;-0.68 0.01;0.21 0.01;0.02 0.01;0.02

Intermediate 0.01 0.05 -1.49 0.48 0.01
0.01;0.01 0.01;0.08 -1.75;-1.07 0.11;0.85 0.01;0.01

Standard 0.01 0.01 0.53 -1.94 0.37
0.01;0.01 0.01;0.01 0.13;0.87 -2.36;-1.28 0.01;0.56

Luxury 0.01 0.01 0.01 0.32 -2.19
0.01;0.01 0.01;0.01 0.01;0.01 0.01;0.48 -2.52;-1.74

The table reports the segment-level own- and cross-price elasticities (when all prod-
ucts in the same segment raise their price by 1%), together with the percent con�-
dence intervals, based on a bootstrapping procedure. The elasticities are based on
the parameter estimates in Table 3. They refer to Germany in 2009.
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di¤erentiated products that present a form of segmentation which can be ordered in a natural

way. The model relaxes the assumption of independent and identically distributed random

errors between segments of the nested logit. In the nested logit framework, the assumption

implies symmetric elasticities outside a segment. In contrast, the ONGEV model allows

for asymmetric elasticities, where consumers subject to a price increase for alternatives in

one segment favor alternatives in neighboring segments rather than in further segments.

Flexibility in substitution patterns is accomplished with a closed-form solution that avoids

the numerical problems of the random coe¢ cients logit model.

I apply the ONGEV model to the car market which is classi�ed into segments that are

naturally ordered from subcompact to luxury. Results show that neighboring segment e¤ects

are strongly supported in the data.

The speci�c modeling strategy I adopt here seems to be a promising starting point to cap-

ture neighboring segment e¤ects. One could extend the model to capture further neighbors,

rather than just the proximate ones. Also, other industries could bene�t from this modeling

strategy when ordering a high number of alternatives would prove impossible, but ordering

grouping of these alternatives represents a sensible way to obtain �exible substitution pat-

terns in a tractable setting. Take for example the hotel market, where hotel categories are

naturally ordered from motel to luxury according to several characteristics such as price,

comfort or number of available facilities (Venkataraman and Kadiyali, 2005).
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A Appendix

A.1 Proof GEV

Proof. I show that under the assumption 0 � �n � �s < 1, the G function in (4) veri�es

the four properties of GEV generating functions. To simplify the notation, let e�j = Yj.

1. G is obviously non-negative since Yj 2 R+8j.

2. G is homogeneous of degree 1, that is G(�Y0; :::; �YJ) = �G(Y0; :::; YJ). Indeed:
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= �G(Y0; :::; YJ):

3. The limit property obviously holds.

4. The property of the sign of the derivatives holds if 0 � �n � �s < 1. The �rst

cross-derivative Gj is given by:
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where Ar and � are de�ned as follows:
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Gj � 0 as required.

The second cross-derivative is given by:
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Gji � 0 as required. Higher cross-partials are calculated similarly.

A.2 The error term "

I formally show that the ONGEV model implies correlation among unobserved random

utility components for segments that are close on the ordering. I look at the bivariate

marginal cumulative distribution function (CDF) and, if possible, at the correlation of any

two stochastic elements (") for two cars that (i) belong to the same segment; (ii) belong to

neighboring segments; (iii) belong neither to the same segment nor to neighboring segments.

The following function represents the cumulative extreme-value distribution of ":

F ("11; :::; "1J ; :::; "I1; :::; "IJ) = exp

8>><>>:
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The marginal CDF of each stochastic element "ij is univariate extreme-value as follows:

F ("ij) = exp

�
�2�n
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1��s

�1��s�
:

The bivariate marginal CDF for two cars j and k belonging the same segment is the following:

H("ij; "ik) = exp

�
�2�n

�
e�

"ij
1��s + e�
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1��s

�1��s�
: (7)
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CDF (7) generates correlation between utilities that corresponds to the nested logit

model:

Cor("ij; "ik) = �s

The bivariate marginal CDF for two cars j and k0 belonging to neighboring segments but

not to the same segment depends on �s and �n as follows:

H("ij; "ik0) = exp

(
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(8)

Correlation between cars belonging to neighboring segments computed from the CDF (8)

cannot be written in closed-form, but it is di¤erent from 0 and intuitively increasing in �n.

The bivariate marginal CDF for two cars j and k00 that do not belong to the same segment

or to neighboring segments is the product of the corresponding univariate CDF�s because

the random elements attached to di¤erent segments are independent:

H("ij; "ik00 ) = exp

�
�2�n

��
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"ij
1��s

�1��s
+
�
e�

"ik00
1��s

�1��s��
: (9)

Correlation between cars that do not belong to the same segment or to neighboring

segments computed from CDF (9) is simply 0:

Cor("ij; "ik00) = 0:
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