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Abstract

The relationship between risk and return is one of the most studied topics
in finance. The majority of the literature is based on a linear, parametric re-
lationship between expected returns and conditional volatility. However, there
is no theoretical justification for the relationship to be linear. This paper mod-
els the contemporaneous relationship between market excess returns and realized
variances nonparametrically with an infinite mixture representation of their joint
distribution. With this nonparametric representation, the conditional distribution
of excess returns given realized variance will also have a infinite mixture repre-
sentation but with probabilities and arguments depending on the value of realized
variance. Our nonparametric approach allows for deviation from Gaussianity by
allowing for higher order non-zero moments. It also allows for a smooth nonlinear
relationship between the conditional mean of excess returns and realized variance.
Parsimony of our nonparametric approach is guaranteed by the almost surely dis-
crete Dirichlet process prior used for the mixture weights and arguments. We
find strong robust evidence of volatility feedback in monthly data. Once volatility
feedback is accounted for, there is an unambiguous positive relationship between
expected excess returns and expected log-realized variance. This relationship is
nonlinear. Volatility feedback impacts the whole distribution and not just the
conditional mean.
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1 Introduction

This paper investigates the relationship between risk, return and volatility feedback

by using a Bayesian nonparametric joint model for market excess returns and realized

variance. A contemporaneous model for excess returns and realized variance is used to

study volatility feedback effects which simultaneously impact prices.

The early literature found conflicting results on the sign and significance of the condi-

tional variance from GARCHmodels in the conditional mean of market excess returns. A

good summary of these results is found in Lettau & Ludvigson (2010). The recent litera-

ture has helped to resolve some of the issues. Scruggs (1998) and Gui & Whitelaw (2006)

show that additional priced factors can affect the sign and significance of risk. Lundblad

(2007) argues that longer samples are necessary to find a significant relationship between

the market risk premium and expected volatility with GARCH specifications. Bandi &

Perron (2008) document a long-run relationship between expected excess market returns

and past market variance while Maheu & McCurdy (2007) find the long-run component

of realized variance is priced in annual data. Ghysels et al. (2013) find a positive risk

and return relationship over sample periods that exclude financial crises.1 Using daily

data Maheu et al. (2013) find the conditional variance and conditional skewness due to

jumps is significantly priced. Ignoring higher order moments may confound the evidence

for a positive risk and return relation.

Despite this little has been done to study the contemporaneous relationship between

returns and realized variance while making no assumptions about their distribution and

using it to investigate the role of volatility feedback. Our approach is related to Brandt

& Kang (2004) and Harvey (2001) in that we jointly model returns and log-volatility

contemporaneously, except we follow the advice of Harvey (2001) and dispense with

parametric assumptions for conditional expectations and model the conditional expec-

tation of returns nonparametrically, and like Ludvigson & Ng (2007), replace conditional

volatilities with observed realized variances. This provides additional flexibility in mod-

elling the joint distribution and provides a better signal on the variance by using daily

data to estimate monthly ex post variance.

Harrison & Zhang (1999) use a seminonparametric approach (Gallant & Tauchen

1989) based on a Hermite polynomial expansion to estimate the conditional distribution.

The leading term in the expansion is a Gaussian ARCH model for excess returns. They

find a positive risk and return relation at long holding intervals of one and two years.

1This paper updates the results in Ghysels et al. (2005) which had a coding error.
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In contrast, we use an infinite mixture of distributions with a flexible Dirichlet process

prior to jointly model excess returns and log-realized variance. From this the nonpara-

metric conditional distribution of returns given realized variance consists of an infinite

mixture representation whose unknown probabilities and arguments depend on the value

of realized variance. This allows for general types of dependence in which the condi-

tional mean of excess returns is a function of the contemporaneous realized variance. A

Dirichlet process prior is assumed for the unknown distribution governing the mixture

parameters; i.e., the distribution of mixture locations and probabilities are unknown

and the Dirichlet process is the prior for this unknown distribution (see Ferguson (1973)

and Lo (1984)). Our work extends Muller et al. (1996) and Taddy & Kottas (2010) to

slice sampling (Walker 2007) methods to accommodate non-Gaussian data densities and

nonconjugate priors. The Dirichlet process mixture (DPM) is the standard approach to

Bayesian nonparametrics and performs well in practise.2 A Markov chain Monte Carlo

(MCMC) procedure delivers posterior samples from which estimates are obtained that

account for model and distributional uncertainty.

Volatility feedback refers to a causal relationship between the variance and price

changes. If volatility is priced and a positive volatility shock arrives, then all things

equal, the required rate of return increases which discounts all future cash flows at a

higher rate. This results in a simultaneous drop in the current price so as to deliver a

higher future return consistent with the increase in risk. The importance of volatility

feedback and its relationship to risk and return is discussed in French et al. (1987) and

Campbell & Hentschel (1992).

Campbell & Hentschel (1992) show that volatility feedback is significant and impor-

tant in finding a positive risk and return relationship. Ignoring it will tend to obscure

any risk and return relationship. Moreover, volatility feedback can be an important

source of return asymmetry. For instance, when good (bad) news arrives volatility in-

creases and volatility feedback implies a drop in current prices which mutes (amplifies)

the price increase (decrease). Therefore, volatility feedback amplifies the effect of bad

news on prices and dampens positive news. This is why it is a leading explanation

for asymmetric volatility.3 Therefore, price increases from good news with be less than

what would occur without volatility feedback while price decrease from bad news will

2For example, see Burda et al. (2008), Conley et al. (2008), Delatola & Griffin (2013), Griffin & Steel
(2004) and Chib & Greenberg (2010), Jensen & Maheu (2010, 2013a, 2013b) for recent applications of
the DPM model.

3Papers by Bekaert & Wu (2000) and Wu (2001) find that volatility feedback is an important
determinant of asymmetric volatility.
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be steeper.

Campbell & Hentschel (1992) derive their model by imposing economic restrictions

that linearly relate log-returns to log-prices and log-dividends.4 From this the impact of

different sources of return shocks can be derived. Additional papers that build on this

approach and find empirical support for volatility feedback include Turner et al. (1989),

Kim et al. (2004), Kim et al. (2005), Bollerslev et al. (2006) and Calvet & Fisher (2007).

Our paper differs in several important ways from the existing literature. First, while

almost all the literature has studied volatility feedback from a tightly parametrized

model we use a flexible approach with no economic restrictions. Second, we use realized

variance which is an accurate ex post measure of the variance of returns and permits

the joint modelling of returns and variance. Third, we nonparametrically model the re-

lationship between contemporaneous excess returns and log-realized variance. Volatility

feedback implies an instantaneous causal relationship between volatility innovations and

price levels or returns and our contemporaneous model is designed to investigate this

relationship directly. Fourth, our nonparametric approach allows for conditioning on

predetermined conditioning variables.

Using a long calender span of monthly data we find strong robust evidence of volatility

feedback in monthly data. Expected excess returns are always positive when volatility

shocks are small, however, they become negative once the volatility shock becomes

larger. This relationship is very nonlinear and depends on the current level of expected

volatility. Ignoring these dynamics will result in confounding evidence for risk and return.

Once volatility feedback is accounted for, there is an unambiguous positive relationship

between expected excess returns and expected log-realized variance. This relationship

is nonlinear.

Conditional quantile and contour plots support these findings and display significant

deviations from the monotonic changes in the conditional distribution of the parametric

model. We show that the volatility feedback effect impacts the whole distribution and

not just the conditional mean.

This paper is organized as follows. The data and construction of realized variance

are discussed in the next section followed by the nonparametric model for excess market

returns and realized variance in Section 3. Section 4 discusses estimation of the condi-

tional distribution and conditional mean of excess returns given log-realized variance.

Empirical results are found in Section 5 followed by the Conclusion.

4The approximation is based on Campbell & Shiller (1988).
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2 Return and realized variance data

Using high frequency daily returns permits the construction of monthly realized variance

– an ex post, observable variance that is the focus of our study. Although realized

variance has been used in empirical finance for some time (French et al. 1987) there exists

a strong theoretical foundation for using it as an essentially nonparametric measure of

ex post volatility (for recent reviews see Andersen & Benzoni (2008) and McAleer &

Medeiros (2008)).

To compute realized variance, daily price data is obtained from Bill Schwert5 for

1885/2-1925/12, and from CRSP for 1926/1-2011/12 on the value-weighted portfolio

with distributions for the S&P500. The data is converted to continuously compounded

daily returns. If rt,i denotes the continuously compounded return for day i in month t

then we compute realized variance according to

RV q
t = γ0 + 2

q∑
j=1

(1− j/(q + 1))γ̂j, γ̂j =

Nt−j∑
i=1

rt,irt,i+j (1)

where Nt denotes the number of daily returns in month t. This estimate of realized

variance contains a bias adjustment of order q to account for market microstructure

dynamics and stale prices and follows Hansen & Lunde (2006). The Bartlett weights in

(1) ensure that RV q
t is always positive. In our work we set q = 1 and let RVt ≡ RV q

t for

the remainder of the paper.

Monthly returns are taken from the associated monthly files from Schwert and CRSP

S&P500. The risk-free rate is obtained from Amit Goyal’s website for 1885/2-1925/12,

and after this time period the risk-free rate equals the 1 month rate from the CRSP

Treasury bill file.

Our return-risk analysis dataset, thus, consists of monthly excess returns rt and

realized variance RVt from 1885/1-2011/12 for a total of 1519 monthly observations.

Returns are scaled by 12 and RVt by 144 in order for our findings to be interpreted in

terms of annual returns. When estimating the model we reserve the first 22 observations

as conditioning variables. The information set is denoted by It = {r1, RV1, . . . , rt, RVt},
for t = 1, . . . , T .

Table 1 reports various summary statistics for monthly excess returns and realized

variance. Compared to squared returns, realized variance is less noisy. Returns stan-

dardized by realized variance are approximately normal with sample skewness of 0.003

5For details on the construction of these data see Schwert (1990).

5



and sample kurtosis of 2.6856. Log-realized variance is closer to being bell-shaped than

the levels of RVt. Figure 1 displays a scatter plot of market excess returns and log(RVt)

which is the basis of our time-series models.

3 Nonparametric model of market excess returns

and realized variance

In this section we provide some intuition on the nonparametric model we will use to

specify the joint relationship between excess returns and realized variance and the im-

plied conditional expectation of the return given realized variance. Since no theoretical

reason exists for a particular parametric relationship to hold between the conditional

mean and variance (Brandt & Kang 2004), we model the joint distribution nonpara-

metrically by assuming the following infinite mixture representation for the conditional,

joint, probability density function of excess returns and log-realized variance,

p(rt, log(RVt)|It−1,Ω,Θ) =
∞∑
j=1

ωjf(rt, log(RVt)|θj, It−1), (2)

where Ω = (ω1, ω2, . . . , ) and Θ = (θ1, θ2, . . .), and ωj ≥ 0, for all j such that
∑∞

j=1 ωj =

1, and f(·, ·|θj, It−1) is a smooth bivariate density kernel given the parameter θj and

information set It−1. This is a nonparametric model in the sense that there is an infinite

number of parameters. It can approximate any continuous bivariate distribution to

arbitrary accuracy by selecting the appropriate weight ωj and parameter θj for the jth

cluster. To reduce the clutter from carrying around the conditional mixture arguments,

Θ and Ω, we drop them from p(rt, log(RVt)|It−1,Ω,Θ), when it is clear to do so.

In the next section we will discuss how a model containing of an infinite number of

unknowns can be estimated with Bayesian methods, but for the moment we will consider

how to obtain a nonparametric representation of the conditional distribution of excess

returns that depends on log-realized variance from Eq. (2). From the mixture model

above the conditional probability density function can be derived as

p(rt| log(RVt), It−1) =
p(rt, log(RVt)|It−1)

p(log(RVt)|It−1)
=

∑∞
j=1 ωjf(rt, log(RVt)|θj, It−1)∑∞
j=1 ωjf(log(RVt)|θj, It−1)

(3)

=
∞∑
j=1

qj(log(RVt))f(rt| log(RVt), θj, It−1) (4)

where f(rt| log(RVt), θj, It−1) ≡ f(rt, log(RVt)|θj, It−1)/f(log(RVt)|θj, It−1) is the condi-

tional density kernel for the jth cluster and f(log(RVt)|θj, It−1) is the associated marginal
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density kernel for log(RVt). The weights of this mixture have the particular form,

qj(log(RVt)) =
ωjf(log(RVt)|θj, It−1)∑∞
i=1 ωif(log(RVt)|θi, It−1)

(5)

so that they sum to 1. From (5) we see that clusters that provide a better fit to log(RVt)

will receive more weight in the mixture representation (4). Varying log(RVt) will produce

smooth changes in the conditional distribution.

Our object of interest is the conditional expectation of market excess returns given

log-realized volatility. Since the expectation of a mixture is equivalent to a mixture of

the expectation, the expectation of (4) is the desired conditional expectation

E[rt| log(RVt), It−1] =
∞∑
j=1

qj(log(RVt))E[rt| log(RVt), θj, It−1], (6)

where E[rt| log(RVt), θj, It−1] is the jth cluster specific conditional expectation. A plot

of the conditional expectation as a function of log(RVt) will be a smoothly changing

function that weights each of the cluster specific conditional expectations according to

how the weight function qj(log(RVt)) changes as log(RVt) changes. This is true even if

each cluster’s expectation, E[rt| log(RVt), θj, It−1], is constant. In this way we can see the

contemporaneous relationship of log-volatility on the conditional mean of excess returns.

As mentioned above, volatility feedback occurs simultaneously and this specification is

designed to shed light on it.

3.1 A Bayesian model

The Dirichlet process prior has a long history, beginning with Ferguson (1973), of use in

Bayesian nonparametric problems. It was used as a prior in countable infinite mixtures

for density estimation in Ferguson (1983) and Lo (1984) but applications were limited

until modern computational techniques. The seminal paper by Escobar & West (1995)

show how to perform Bayesian nonparametric density estimation with Gibbs sampling.

Our approach is similar in that we place a Dirichlet process prior on ωj and θj. In

direct analogy to (2), according to Sethuraman (1994), the model can be represented as

p(rt, log(RVt)|It−1,Ω,Θ) =
∞∑
j=1

ωjf(rt, log(RVt)|θj, It−1), (7)

where

ω1 = v1, ωj = vj

j−1∏
i=1

(1− vi), vj
iid∼ Beta(1, κ) (8)

θj
iid∼ G0. (9)
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The weights are generated by a stick breaking process since the unit interval is succes-

sively broken into smaller pieces by random draws from the beta distribution. Each

cluster has a unique parameter θj independently drawn from the base distribution G0.

The positive scalar κ controls the dispersion of the unit mass over the set Ω. A small

value will put most of the weight on a few clusters while larger values will spread the

weight over many clusters.

Another representation of (7)-(9) is in terms of the hierarchical model

rt, log(RVt)|θ∗t , It−1 ∼ f(rt, log(RVt)|θ∗t , It−1), t = 1, . . . , T, (10)

θ∗t |G
iid∼ G, t = 1, . . . , T, (11)

G|G0, κ ∼ DP (G0, κ) (12)

where the distribution of the mixture parameters, G, is unknown and modeled with the

Dirichlet process distribution, DP (G0, κ), with precision parameter κ and base distri-

bution G0.

The key quantity of interest is G – the unknown distribution of θ∗t . Given the stick

breaking definition of the Dirichlet process in (8)-(9), the prior distribution for G is

G(θ∗t ) =
∞∑
j=1

ωjδθj(θ
∗
t ), (13)

where δθj(·) denotes a point mass at θj and ωj and θj are defined above. Hence, G will

almost surely be a discrete distribution which means the θ∗t s will contain repeats over

t = 1, . . . , T . This clustering feature is one of the reasons the DP prior is so attractive.

Several data observations can share the same mixture parameter vector. A set of θ∗t s all

having the same unique mixing parameter θst , where st = j when θ∗t = θj.

The DP prior is centered around G0 in the sense that for any measurable set A,

we have E[G(A)] = G0(A) while κ controls the precision Var(G(A)) = G0(A)(1 −
G0(A))/(1 + κ). As κ → ∞ then G → G0. In this case, we have a mixture model with

mixing measure G0. On the other hand, as κ → 0 the mixture model is lost6 and is

replaced by a parametric specification with parameter θ which has a fixed prior G0.

Based on theoretical considerations (Andersen et al. 2003), the empirical distribution

of log(RVt) being bell-shaped, and standardized excess returns being approximately

normally distributed, we assume the joint kernel density, f , in (10) is,

f(rt, log(RVt)|θ, It−1) ≡ f(rt| log(RVt), θ, It−1)f(log(RVt)|θ, It−1) (14)

6The mixture collapses to a single cluster since ω1 = 1 and ωj = 0 for all j > 1.
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where

f(rt| log(RVt), θ, It−1) ≡ fN
(
rt|α0 + α1RVt, η

2
1RVt

)
(15)

f(log(RVt)|θ, It−1) ≡ fN

(
log(RVt)

∣∣∣∣∣γ0 + γ1 log(RVt−1) + γ2
1

6

6∑
i=1

log(RVt+1−i)

+ γ3
rt−1√
RVt−1

+ γ4

∣∣∣∣ rt−1√
RVt−1

∣∣∣∣ , η22) (16)

with fN(·|µ, σ2) defined as the normal density kernel centered at µ with variance σ2 and

θ = {α0, α1, η1, γ0, . . . , γ4, η2}.
Note, that although both excess returns and log-realized variance following condi-

tional normal distributions their joint distribution is non-Gaussian since RVt enters the

variance of rt. All of the elements in θ are permitted to differ over each cluster pro-

viding the maximum flexibility in modelling. For excess returns, RVt can impact the

conditional mean and the variance. Note that under certain conditions RVt will be an

unbiased estimate of the variance of returns but we allow for deviations that are cap-

tured by η1 in the mixture model. The specification for log(RVt) is along the lines of

the models in Andersen et al. (2007), Corsi (2009) and the joint models of Maheu &

McCurdy (2007, 2011), adapted to monthly data. It features a 6 month component to

capture persistence beyond one month as well as asymmetric terms from lagged returns.

3.2 Posterior simulation

To sample the posterior density of this model we will exploit the mixture representation

in (7) and a slice sampler based on Walker (2007), Kalli et al. (2011) and Papaspiliopou-

los (2008).7 This Markov chain Monte Carlo (MCMC) approach introduces a random

auxiliary, latent, variable, ut ∈ (0, 1), that slices away any mixtures clusters with a

weight ωj less that ut. In this way the infinite mixture model is reduced to a finite

mixture.

Introducing the latent variable ut, we define the joint conditional density of the

observed variables (rt, log(RVt)) and ut as,

p(rt, log(RVt), ut|Ω,Θ, It−1) =
∞∑
j=1

1(ut < ωj)f(rt, log(RVt)|θj, It−1). (17)

This infinite mixture is truncated to only include alive clusters with ut < ωj while dead

clusters have a weight of 0 and can be ignored. If ut has a uniform distribution then

7Alternative methods (Escobar & West 1995) based on the hierarchical form of the model in (10)
are more difficult as our model and prior are non-conjugate.
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integration of p(rt, log(RVt), ut|Ω,Θ, It−1) with respect to ut gives back the original model

p(rt, log(RVt)|Ω,Θ, It−1). On the other hand, the marginal density of ut is
∑∞

j=1 1(ut <

ωj).

Let st = j assign observation (rt, log(RVt)) to the data density with parameter θj.

We will augment the parameter space to include estimation of S = (s1, . . . , sT ). Let

U = (u1, . . . , uT ), ΩK = (ω1, . . . , ωK) and ΘK = (θ1, . . . , θK), then the full likelihood is

T∏
t=1

p(rt, log(RVt), ut, st|ΩK ,ΘK , It−1) =
T∏
t=1

1(ut < wst)f(rt, log(RVt)|θst , It−1) (18)

and the joint posterior is

p(ΩK)

[
K∏
i=1

p(θi)

]
T∏
t=1

1(ut < wst)f(rt, log(RVt)|θst , It−1), (19)

where K is the smallest natural number that satisfies the condition
∑K

j=1 ωj > 1 −
min{U}. This value of K ensures that there are no ωk > ut for k > K. In other words,

we have the set of all clusters that are alive, {j : ut < wj}.
Posterior simulation consists of sampling from the following densities:

1. π(θj|IT , S) ∝ g0(θj)
∏

{t:st=j} f(rt, log(RVt)|θj, It−1), j = 1, . . . , K.

2. π(vj|S) ∝ Beta(vj|aj, bj), j = 1, . . . , K, with aj = 1 +
∑T

t=1 1(st = j), bj =

κ+
∑T

t=1 1(st > j).

3. π(ut|ΩK , S) ∝ 1(0 < ut < wst), t = 1, . . . , T .

4. Find the smallest K such that
∑K

j=1 wj > 1−min{U}.

5. P (st = j|IT ,ΘK , U,ΩK) ∝
∑K

j=1 1(ut < ωj)f(rt, log(RVt)|θst , It−1).

The first step depends on the model and the density g0(·) to the DP priors base

measure, G0. For the kernel densities in (15)-(16), specifying a normal prior for the re-

gression coefficients and an independent inverse gamma prior for the variance, in other

words, defining G0 ≡ N(b, V ) × G(v/2, s/2), we can employ standard Gibbs sampling

techniques in Step 1 (see Greenberg (2013) for details on the exact form of these con-

ditional distributions). Step 2 results from the conjugacy of the generalized Dirichlet

distribution and multinomial sampling (Ishwaran & James 2001). Given ΩK and S each

ut is uniformly distributed on (0, ωst). The next step updates the truncation parameter

K. If K is incremented, Step 4 will also involve drawing additional ωj and θj from the
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DP prior. The final step is a multinomial draw of the cluster assignment variable st

based on a mixture with equal weights.

Repeating all these steps forms one iteration of the sampler. The MCMC sampler

yields the following set of variables at each iteration i,

{(θi,j, vi,j), j = 1, 2, . . . , Ki; (si,t, ui,t), t = 1, . . . , T}. (20)

Note that vi,j, j = 1, 2, . . . , Ki implies ωi,j, j = 1, 2, . . . , Ki through (8). After dropping

the burnin phase from the above sampler, we collect i = 1, . . . , N samples. Each iteration

of the algorithm produces a draw of the unknown mixing distributionG from its posterior

[G|IT ] as

Gi =

Ki∑
j=1

ωi,jδθi,j +

(
1−

Ki∑
j=1

ωi,j

)
G0(θ). (21)

We will make use of this to form the predictive density and conditional expectations

based on this.

4 Nonparametric conditional density estimation

To flexibly estimate the conditional density p(rt| log(RVt), It−1) found in (4), or the con-

ditional mean in (6), we use the method of Muller et al. (1996). This is an elegant

approach to nonparametric estimation that allows the conditional density and expec-

tation of excess returns to depend on covariates, in this case log(RVt). The method

requires the joint modelling of the predictor variable and its covariates and uses well

know estimation methods for Dirichlet process mixture models. We extend Muller et al.

(1996) to the slice sampler to accommodate the non-Gaussian data densities and non-

conjugate priors found in our nonparametric model of market excess returns and realized

variances.8

Based on the previous section, and given the history It−1, and Gi, the ith realization

from the posterior of the joint predictive density for (rt, log(RVt)) is

p(rt, log(RVt)|Gi, It−1) =

∫
f(rt, log(RVt)|θ, It−1)Gi(dθ). (22)

8Additional papers that also build on Muller et al. (1996) are Rodriguez et al. (2009), Shahbaba &
Neal (2009) and Taddy & Kottas (2010).
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Substituting in the stick breaking representation for Gi found in (21), the posterior draw

of the predictive density has the equivalent representation

p(rt, log(RVt)|Gi, It−1) =

Ki∑
j=1

wi,jf(rt, log(RVt)|θi,j, It−1)

+

(
1−

Ki∑
j=1

wi,j

)
p(rt, log(RVt)|G0, It−1) (23)

where p(rt, log(RVt)|G0, It−1) =
∫
f(rt, log(RVt)|θ, It−1)G0(dθ) is the expectation of (10).

To integrate out the uncertainty associated with G, one averages (23) over the posterior

realizations, Gi ∼ [G|IT ], i = 1, . . . , N , to obtain the posterior predictive density

p(rt, log(RVt)|IT ) ≈ 1

N

N∑
i=1

p(rt, log(RVt)|Gi, It−1). (24)

Now, the conditional predictive density of rt given log(RVt) can be estimated as well.

For each Gi draw, we have

p(rt| log(RVt), Gi, It−1) =
p(rt, log(RVt)|Gi, It−1)

p(log(RVt)|Gi, It−1)

=
p(rt, log(RVt)|Gi, It−1)∑Ki

j=1 wi,jf(log(RVt)|θi,j, It−1) + (1−
∑Ki

j=1 wi,j)f(log(RVt)|G0, It−1)

=

Ki∑
j=1

qi,j(log(RVt))f(rt| log(RVt), θi,j, It−1)

+

(
1−

Ki∑
j=1

qi,j(log(RVt))

)
f(rt| log(RVt), G0, It−1) (25)

where f(rt| log(RVt), θi,j, It−1) is the conditional density of (15), f(log(RVt)|θi,j, It−1) is

the marginal density of (16) and

qi,j(log(RVt)) = wi,jf (log(RVt) |θi,j, It−1 )

/[
Ki∑
l=1

wi,lf (log(RVt)|θi,l, It−1)

+

(
1−

Ki∑
l=1

wi,l

)
f(log(RVt|G0, It−1)

]
. (26)

The denominator of qi,j(log(RVt)) is the marginal of (23) obtained by integrating out

rt. f(log(RVt)|θi,j, It−1) is the marginal data density of log(RVt) for the jth cluster with

the marginal cluster parameter θj and f(log(RVt)|G0, It−1) is the marginal data density
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with mixing over the base measure. The terms in (25) and (26) involving G0 are defined

as follows

f(rt| log(RVt), G0, It−1) =

∫
f(rt, log(RVt)|θ, It−1)G0(dθ)∫
f(log(RVt)|θ, It−1)G0(dθ)

(27)

f(log(RVt)|G0, It−1) =

∫
f(log(RVt)|θ, It−1)G0(dθ). (28)

Assuming the marginal data density f(log(RVt)|θ, It−1) is available in analytic form

both of these expressions can be approximated by the usual MCMC methods. For in-

stance, f(log(RVt)|G0, It−1) ≈ N−1
∑N

i=1 f(log(RVt)|θ(i), It−1), θ
(i) ∼ G0, with a similar

expression for the numerator of (27).

The predictive conditional density is estimated by averaging (25) over the posterior

simulations of Gi as

p(rt| log(RVt), IT ) ≈ 1

N

N∑
i=1

p(rt| log(RVt), Gi, It−1). (29)

Using this result, features of the conditional distribution such as conditional quantiles

can be derived.

4.1 Nonparametric conditional mean estimation

Our focus will be on the conditional expectation which can be estimated from these

results. First, the conditional expectation of rt given log(RVt) and Gi is

E[rt| log(RVt), Gi, It−1] =

Ki∑
j=1

qi,j(log(RVt))E[rt| log(RVt), θi,j, It−1]

+

(
1−

Ki∑
j=1

qi,j(log(RVt))

)
E[rt| log(RVt), G0, It−1] (30)

where E[rt| log(RVt), G0, It−1] is taken with respect to (27). Note that this final term is

only a function of G0 and can be computed once, at the start of estimation, for a grid

of values of log(RVt). It is estimated as9

E[rt| log(RVt), G0, It−1] =

∫
E[rt| log(RVt), θ, It−1]f(log(RVt)|θ, It−1)G0(dθ)∫

f(log(RVt)|θ, It−1)G0(dθ)
(31)

≈ M−1
∑M

i=1 E[rt| log(RVt), θ
(i), It−1]f(log(RVt)|θ(i), It−1)

M−1
∑M

i=1 f(log(RVt)|θ(i), It−1)
(32)

9This result makes use of expressing the numerator as
∫
xp(x, y|θ)p(θ)dθdx =∫

xp(x|y, θ)p(y|θ)p(θ)dθdx =
∫
E[x|y, θ]p(y|θ)p(θ)dθ.
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for θ(i) ∼ G0, i = 1, . . . ,M .

Given Gi, equation (30) shows the conditional expectation of rt is a convex combi-

nation of cluster specific conditional expectations E[rt| log(RVt), θj, It−1], j = 1, . . . , Ki,

along with the expectation taken with respect to the base measure G0. The weighting

function changes with the conditioning variable log(RVt), which in turn changes for each

It−1.

Finally, with this we can obtain the predictive conditional mean estimate by averaging

over (30) as follows

E[rt| log(RVt), IT ] ≈ 1

N

N∑
i=1

E[rt| log(RVt), Gi, It−1], (33)

to integrate out uncertainty concerning G.10 Point-wise density intervals of the condi-

tional mean can be estimated from the quantiles of E[rt| log(RVt), Gi, It−1].

We evaluate the predictive conditional mean for a grid of values over log(RVt). This

will produce a smooth curve for date t and we will have a unique curve for every obser-

vation in our sample t = 1, . . . , T .

5 Results

For our analysis we specify the following priors. The base measure G0 contains priors

for each regression parameter in (15) and (16) as independent N(0, 1) while η−2
1 ∼

G(5/2, 5/2) and η−2
2 ∼ G(6/2, 3/2) where G(a, b) denotes a gamma distribution with

mean a/b. Note that we expect η21 to be close to 1 and the prior reflects this with

E[η−2
1 ] = 1 but allows for deviations from this. The precision parameter of the Dirichlet

process is estimated and has a prior G(2, 10). Each cluster contains 9 parameters in θj.

We use 5000 initial iterations of the posterior sampler for burn-in and then collect the

following 20000 for posterior inference. The Markov chain mixes well and the posterior

mean (0.95 density interval) for κ is 0.2046, (0.0439, 0.4831) and the posterior mean

(0.95 density interval) for the number of alive clusters is 2.6, (2, 4). In other words,

about 2.6 components are used to fit the joint model of rt and log(RVt).

Before we turn to the nonparametric estimates a parametric version of the model is

reported in Table 2. This is a one state model. The coefficient α1 on RVt in the excess

return equation is significantly negative. η21 is close to 1 and indicates no systematic

10Note that the quantity E[rt| log(RVt), It−1] in (6) assumes parameters are known. In our case they
need to be estimated by the posterior density using the full sample of data IT . Therefore our estimate
includes the conditioning argument IT in E[rt| log(RVt), IT ].
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bias in RVt. The estimates of γ1 and γ2 indicate persistence in log(RVt). The lagged

standardized excess return terms entering the log-volatility equation show asymmetry.

A negative return shock results in a larger conditional mean for log-volatility next period

compared to a positive shock.

The conditional expectation of excess returns given log-realized variance is computed

for a grid of 100 values over -4.0 to 2.0. We interpolate with a straight line between each

of the grid values to approximate the smooth curve E[rt| log(RVt), IT ] as a function of

log(RVt). This is done for every observation t, in our sample.

Figure 2 displays the relationship between expected excess returns and log(RVt) for

the parametric model. Although the model specifies a linear relation between excess

returns and RVt, this yields a nonlinear relation with log(RVt). Note that this curve

holds for every time t in our sample and is not affected by low or high volatility periods.

In contrast, Figure 3 displays the conditional expectation of excess returns as a

function of log-realized variance for every information set in our dataset for the non-

parametric model. Overall there is a general increase in the conditional mean of excess

returns as log-realized variance increases from low levels to a point in which expected

returns become negative. This is a general pattern that is found in all the plots. How-

ever, the point of decrease in the conditional expectation differs. It is clear that if one

averaged over these expectations you could obtain a positive value for expected excess

returns or a negative value.11 To really see what is happening we need to consider the

conditional expectation and the innovation of log-volatility as well.

To better understand what is happening we isolate three typical periods of low, aver-

age and high volatility periods from our sample and report the conditional expectations

in Figure 4-6. Each figure contains the conditional expectation of market excess returns

given a range of log-realized variance values as well as the conditional expectation of log-

realized variance (blue) and the resulting realized value of log-realized variance (black).

Point wise 0.9 probability density intervals are included for the expected excess return.

Recall the discussion of volatility feedback in Section 1. Only if the log-variance happens

to occur on the expected value of log-realized variance is the volatility feedback effect 0.

Values of log-realized variance above (below) the expected value are positive (negative)

shocks to volatility. As was discussed, this will have a simultaneous impact on current

prices, if volatility risk is priced, and result in a decrease (increase) in prices.

This is exactly what these figures show for a positive volatility shock. For instance,

11In fact averaging the curves from the nonparametric model would give something close to the
parametric model in Figure 2.
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consider Figure 4 which conditions on a low period of volatility, 1964:10.12 Expected

log-realized variance is −3.158. The expected excess return is positive before and briefly

after this value but eventually becomes negative. Before −3.158 there is a gentle increase

in the expectation of rt but after it there is a strong decrease to negative values. In other

words, if the volatility shock is positive and sufficiently large we expect a contempora-

neous decrease in prices from volatility feedback.

Figure 5 displays a similar pattern for an average value of volatility from 1996:2.

Here expected log(RVt) is −2.117. As before, the expected excess return is positive

before this and to the right remains positive but eventually become negative. If the

log-volatility shock is sufficiently large (about +0.68) then the expected excess return is

negative and decreases as the shock increases. For this time period the realized log(RVt)

was −1.43. Finally, notice that the whole E[rt| log(RVt), IT ] curve has shifted rightward

as the expected log(RVt) has increased from Figure 4 to 5 (low to average log(RVt)).

This suggest an increase in compensation for the higher perceived risk.

A high volatility period corresponding to 2008:12 is found in Figure 6. Just as

before, E[rt| log(RVt), IT ] is essentially linear and flat as log(RVt) is increased prior to

E[log(RVt)|IT ] but after this point the expectation of excess returns become negative.13

This is consistent with a volatility feedback effect. Note that in each of the three figures

the effect of volatility feedback on returns appears to be stronger with an increased slope

in moving from expected low to average to high volatility periods.

Figure 7 plots E[rt| log(RVt), IT ] for each of the 3 episodes of expected log(RVt). As

E[log(RVt)|IT ] increases the conditional expectation of excess returns shifts rightward

and up. This is consistent with a positive and increasing reward for baring higher levels

of risk.

In summary, we find a robust volatility feedback effect which is most notable for

positive shocks to volatility. Expected excess returns are positive below E[log(RVt)|IT ]
but after this value eventually become negative. This suggests that risk is priced and

the previous figure was consistent with this.

12From Table 1, average log(RVt) is −1.5602 with a minimum of −4.4595 and maximum of 2.4245.
13E[log(RVt)|IT ] denotes the in-sample Bayesian estimate of the expectation of log(RVt) given It−1.

This conditions on regressors in the information set t − 1 but uses the full posterior density based on
t = 1, ..., T for the model parameters to integrate out parameter uncertainty.
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5.1 Risk and return

To focus on risk and return we need to account for the volatility feedback effect. In each

of our figures the point in the E[rt| log(RVt), IT ] line which corresponds to log(RVt) =

E[log(RVt)|IT ] is exactly the point with no volatility feedback. This point is where the

investor receives exactly the reward for risk with no adjustment for volatility feedback

because the volatility shock is 0. This will be at a different place in each of our curves of

E[rt| log(RVt), IT ]. Using interpolation between each of the grid values we can estimate

the value of E[rt| log(RVt), IT ] at log(RVt) = E[log(RVt)|IT ] for each time period t. This

represents a pure risk and return relationship which nets out volatility feedback.

Figure 8 displays the pure risk and return relationship. It shows the expected excess

return as a function of expected log-realized variance according to our model estimates

when volatility feedback is removed. Each dot represents the point of E[rt| log(RVt), IT ]

in which volatility feedback is zero for date t. The relationship is unambiguously positive

and increasing in log(RVt) which accords with theory. The relationship is nonlinear. It

is approximately linear for small value of log-volatility but increases sharply as expected

log-volatility surpasses 0.

In contrast to Campbell & Hentschel (1992) and the subsequent literature on volatil-

ity feedback, we find evidence of a positive risk and return relationship and a volatility

feedback effect without imposing any economic restrictions. The key is flexibly modelling

the contemporaneous distribution of market excess returns and log-realized variance and

accounting for the volatility shock.

5.2 Conditional quantiles and contour plots

Figures 9 - 12 display conditional quantile plots of the distribution of excess returns

given different levels of log(RVt) for the parametric model and several cases of the

nonparametric model. In each figure the green line is the conditional mean that was

discussed above.

For the parametric model, as before, the conditional quantiles do not change for

different information sets. However, the estimated weights and component densities in

the mixture model of (4) are sensitive to the information set and result in very different

conditional distributions. Each of the conditional quantile plots show a highly nonlinear

distribution that is at odds with the parametric model.

Recall from the previous discussion that the conditional expectations of the low,

average and high levels of log(RVt) were −3.158, −2.117 and 0.509, respectively. At
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each of these points in Figures 10 - 12 the bulk of the distribution is above 0. At these

points the investor is most likely to receive a positive excess return from the market.

As log(RVt) increases and the volatility shock becomes larger, most of the mass in each

conditional density is over a negative range of excess returns. Here the investor is likely

to have a loss from investing in the market. Volatility feedback has an impact on the

whole distribution and not just the conditional mean. The changes in the density, as

log(RVt) increases, are non-monotonic. In Figures 10 and 11 there is an increase in

the spread of the density followed by a decrease and final increase. The point of these

changes in the conditional density is to the right of the conditional mean of log(RVt).

The parametric quantile plot is inconsistent with these features.

Contour plots of the predictive density for (rt, log(RVt)), over the selected time peri-

ods discussed above, are found in Figure 13-15. Each of the figures are consistent with

deviations from Gaussian behaviour in the conditional bivariate distribution. It is clear

that the conditional distribution changes a great deal over time and is not a result of

changes in location and/or scale. There is a thick tail for small values of rt and larger

values of log(RVt) in each figure but the shape of this tail is very different depending

on t. These important changes in the conditional density are the features that our non-

parametric model are designed to capture. Conventional parametric approaches cannot

accommodate these features.

5.3 Parameter estimates and robustness

Figures 16 and 17 display the posterior mean of each of the model parameters as a

function of the drawn state st over the sample period. A one state model would be

a straight line. We see considerable switching between clusters in all plots and the

changes between states is often large. This shows that multiple states in the mixture

is a significant feature of the data. Compared to the parametric model in Table 2,

α1 the coefficient on RVt, is negative and positive over different time periods. The

variability of the parameters in the figures is well beyond the 0.95 density intervals for

the parametric model reported in Table 2. Although the parametric model estimate of

η21 is about 1 the nonparametric estimate varies between 0.4 to 0.85. This is due to the

significantly improved fit that the nonparametric model offers in the conditional mean

which contributes to a lower innovation variance.

Our results are robust to changes in the priors and the model for the data density.

For instance, we obtain the same qualitative results for E[rt| log(RVt), IT ] if we omit RVt
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(α1 = 0) in (15) or drop the lagged return terms in log(RVt), (γ3 = γ4 = 0). Although

our priors are quite diffuse and provide a wide range of empirically realistic parameter

values, making them more diffuse produces similar results but the density intervals for

E[rt| log(RVt), IT ] are generally larger.

6 Conclusion

This paper nonparametrically models the contemporaneous relationship between market

excess returns and realized variances. An infinite mixture of distributions is given a

flexible Dirichlet process prior. From this the nonparametric conditional distribution

of returns given realized variance consists of an infinite mixture representation whose

probabilities and arguments depend on the value of realized variance. This allows for

a smooth nonlinear relationship between the conditional mean of market excess returns

and realized variance. The model is estimated with MCMC techniques based on slice

sampling methods that extends the posterior sampling methods in the literature.

Applied to a long span of monthly data we find strong robust evidence of volatility

feedback. Once volatility feedback is accounted for, there is an unambiguous positive

relationship between expected excess returns and expected log-realized variance. In con-

trast to the existing literature, we find evidence of a positive risk and return relationship

and a volatility feedback effect without imposing any economic restrictions. We show

that the volatility feedback impacts the whole distribution and not just the conditional

mean.
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mean variance skewness kurtosis min max

rt 0.0514 0.3884 -0.4047 10.0461 -4.0710 4.1630
r2t 0.3907 1.3474 9.7037 119.5948 0.0000 17.3300
RVt 0.3790 0.5611 7.0305 69.4529 0.0116 11.3000
log(RVt) -1.5602 0.8846 0.8051 4.2910 -4.4595 2.4245
z = rt/

√
RVt 0.2296 1.0789 0.0030 2.6856 -2.4080 2.8580

Table 1: Summary statistics
This table reports summary statistics for the monthly data on excess returns rt and monthly realized
volatility RVt. Data is from 1885/1-2011/12 giving 1519 observations.

mean 0.95 density interval

α0 0.1922 ( 0.1672, 0.2171 )
α1 -0.2801 (-0.3895,-0.1748 )
η21 1.0177 ( 0.9460, 1.0962 )
γ0 -0.3319 (-0.4151,-0.2470 )
γ1 0.3766 ( 0.3179, 0.4329 )
γ2 0.4505 ( 0.3817, 0.5180 )
γ3 -0.1518 (-0.1842,-0.1170 )
γ4 0.1258 ( 0.0680, 0.1861 )
η22 0.3981 ( 0.3702, 0.4278 )

Table 2: Parametric Model Estimates
This table reports posterior summary statistics for the parametric model:

rt = α0 + α1RVt + η1
√
RVtzt, zt ∼ NID(0, 1)

log(RVt) = γ0 + γ1 log(RVt−1) + γ2
1

6

6∑
i=1

log(RVt+1−i)

+γ3
rt−1√
RVt−1

+ γ4

∣∣∣∣∣ rt−1√
RVt−1

∣∣∣∣∣+ η2vt, vt ∼ NID(0, 1).
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Figure 2: Expected excess return given log(RVt) for the parametric model
This figure displays the expected excess return and 0.90 density intervals as a function of log(RVt) for
the parametric model
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Figure 3: Expected return given log(RVt) for each t in the sample
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Figure 4: Expected excess return given log(RVt) for low volatility
This figure displays the expected excess return and 0.90 density intervals as a function of log(RVt)
conditional on regressors taken t = 1964 : 10 which is an average volatility period. The expected log-
realized volatility based on the model is blue while the actual log-realized volatility for t = 1964 : 10 is
the black vertical line.
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Figure 5: Expected excess return given log(RVt) for average volatility
This figure displays the expected excess return and 0.90 density intervals as a function of log(RVt)
conditional on regressors taken t = 1996 : 2 which is an average volatility period. The expected log-
realized volatility based on the model is blue while the actual log-realized volatility for t = 1996 : 2 is
the black vertical line.
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Figure 6: Expected excess return given log(RVt) for high volatility
This figure displays the expected excess return and 0.90 density intervals as a function of log(RVt)
conditional on regressors taken t = 2008 : 12 which is a high volatility period. The expected log-
realized volatility based on the model is blue while the actual log-realized volatility for t = 2008 : 12 is
the black vertical line.
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Figure 7: Expected excess return given log(RVt) for various periods
This figure displays the expected excess return as a function of log(RVt) conditional on regressors taken
from t = 1964 : 10 “Low Log-RV”, t = 1996 : 2, “Average Log-RV” and t = 2008 : 12 “High Log-RV”.
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Figure 8: Expected excess return when volatility feedback is zero
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Figure 9: Quantiles of excess returns given log(RVt) for the parametric model
This figure displays the quantiles of the distribution of excess returns conditional on log(RVt) for the
parametric model. The green dotted line is the expected excess return given log(RVt).
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Figure 10: Quantiles of excess returns given log(RVt) for low volatility
This figure displays the quantiles of the distribution of excess returns conditional on log(RVt) for
t = 1964 : 10. The green dotted line is the expected excess return given log(RVt).

30



-2

-1.5

-1

-0.5

 0

 0.5

 1

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

[r t | 
Lo

g(
RV

t)]

Log(RVt)

0.025

0.05

0.1

0.5

0.75

0.9

0.975

Figure 11: Quantiles of excess returns given log(RVt) for average volatility
This figure displays the quantiles of the distribution of excess returns conditional on log(RVt) for
t = 1996 : 2. The green dotted line is the expected excess return given log(RVt).
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Figure 12: Quantiles of excess returns given log(RVt) for high volatility
This figure displays the quantiles of the distribution of excess returns conditional on log(RVt) for
t = 2008 : 12. The green dotted line is the expected excess return given log(RVt).

31



r

log
(RV

)

 0.1  0.2  0.3 

 0.4  0.7 

 1.2 

 1.
4 

−1.0 −0.5 0.0 0.5 1.0

−5
.0

−4
.5

−4
.0

−3
.5

−3
.0

−2
.5

−2
.0

Figure 13: Predictive density for rt, log(RVt) for low volatility t = 1964 : 10
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Figure 14: Predictive density for rt, log(RVt) for average volatility t = 1996 : 2
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Figure 15: Predictive density for rt, log(RVt) for high volatility t = 2008 : 12
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Figure 16: Posterior means of α0,st , α1,st and η21,st .
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Figure 17: Posterior means of γ0,st , . . . , γ4,st and η22,st .
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