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Abstract

This paper analyzes identi�cation in dynamic discrete choice models of single agents and nonco-

operative games. We extend previous work by providing new conditions for identifying �ow payo¤s in

stationary settings, and in nonstationary settings when the data is sampled every period respondents

make decisions. These results are also a benchmark for investigating identi�cation when the relevant

time horizon extends beyond the length of the data. We show that in short panels the utility �ows

of models with �nite dependence are partially identi�ed for particular normalizations. Finally, when

�nite dependence does not hold, or when the required normalizations are unattractive, we show how

exclusion restrictions or stability of the �ow payo¤ function over time can be used to recover �ow

payo¤s.

1 Introduction

Dynamic discrete choice models in both single agent and games settings are increasingly used to explain

panel data in labor economics, industrial organization and marketing.1 It is widely recognized that

the interpretation of structural models and their accuracy in predicting the e¤ects of policy innovation
�We thank Jean-Marc Robin and seminar participants at Sciences Po and Toulouse for helpful comments. We acknowledge

support from National Science Foundation Grant Awards SES0721059 and SES0721098.
1For surveys of this literature see Eckstein and Wolpin (1989), Rust (1994), Pakes (1994), Miller (1997), Aguirregabiria

and Mira (2010) and Arcidiacono and Ellickson (2012).

1



depend critically on the assumptions needed to identify the models. The central role identi�cation plays

in determining the value of estimating structural models has motivated a small but growing literature on

the identi�cation of dynamic discrete choice models in both single-agent and multi-agent settings.

Research in this area dates back to Rust (1994), who showed that solutions to stationary in�nite hori-

zon dynamic discrete choice models are invariant to a broad class of utility transformations. Magnac and

Thesmar (2002) later established that the �ow payo¤s for a two period model are identi�ed in discrete

choice optimization problems when the econometrician knows the joint probability distribution of the

choice speci�c idiosyncratic disturbances and the discount fact, subject to a normalization on the �ow

payo¤s in each of the periods. Pesendorfer and Schmidt-Dengler (2008) proved that their Magnac and

Thesmar�s result does not extend to games because the expected �ow payo¤s embed state-speci�c �ow

payo¤s that depend on the actions of the other players, implying that the number of parameters exceeds

the number of equations that characterize the empirical content of the game. Absent parametric restric-

tions, the state-speci�c utility �ows in games are not identi�ed. Still more recently, Norets and Tang

(2012) provide conditions for identifying the probability distribution of the choice speci�c disturbance in

stationary binary choice environments in the pretense of exclusion restrictions whereby a set of variables

a¤ects the transitions of the states but not the utility �ows themselves.2 In addition, empirical work

using dynamic discrete choice models with fully parametric formulations often includes a discussion of

identi�cation as a preface to estimation.

This research has focused on cases where the model is either stationary or where the data covers the

full time horizon. Yet many data sets are short panels: they do not cover the full lifetime of the sampled

�rms, individuals and products, and the sample respondents are often subjected to aggregate shocks

that cannot be averaged out in the cross section. These features pose serious challenges to inference.

Conventional wisdom holds that accommodating nonstationarities within dynamic structures complicates

inference, explaining why most applied work in this area assumes the data generating process is stationary,

or impose other very strong restrictions on the aggregate processes. But nonstationarity and aggregate

shocks arise naturally in the human life cycle through aging, business cycles and the general equilibrium

2Most work in this area, including ours, focus on the case when all the unobserved variables are independently distrib-

uted over time, but Kasahara and Shimotsu (2009) and Hu and Shum (2012) relax this assumption in their analyses of

identi�cation.

2



e¤ects of evolving demographics, in industries because of innovation and growth within and external to the

market under consideration, and in marketing through the di¤usion of new products and more generally

over the product life cycle.

This paper extends previous work by deriving new conditions on identi�cation for dynamic discrete

choice models of individual optimization problems and multi-agent noncooperative games, applicable to

both stationary and nonstationary settings. In the latter case we distinguish between panels that are short

versus, for want of a better descriptor, long.

Our �rst set of results applies to stationary settings and nonstationary �nite horizon settings where the

data covers the full time horizon. We extend the results of Magnac and Thesmar (2002) to settings that

last beyond two periods by building on Arcidiacono and Miller (2011), which provides a representation

of the value function as a mapping of future streams of conditional choice probabilities and �ow payo¤s

associated with any sequence of future choices. Under the standard assumptions that the distribution of

the choice speci�c idiosyncratic disturbances and subjective discount factor are known, we show that the

�ow payo¤s associated with the other choices are identi�ed up to any normalization on the �ow payo¤

for one of the choices. The normalized choice can vary by state and, in non stationary settings, by time

period. A corollary of this result is that when the time horizon extends beyond the length of the data,

in the absence of further restrictions, the degree of underidenti�cation is directly comparable to the size

of the state space upon which the continuation value is de�ned at the end of the sample. The corollary

shows why the results of Magnac and Thesmar cannot be interpreted as applying to models lasting more

than two periods without making assumptions about the value function, an endogenous mapping de�ned

on the state space. This �rst set of results provides a launch pad for analyzing short panels.

For short panels, we provide three ways of restoring identi�cation. The �rst, �nite dependence, arises

naturally out of the structure of many models. Finite dependence is a testable restriction on state tran-

sitions that is developed in Altug and Miller (1998), Arcidiacono and Miller (2011), Gayle (2013) and

Aguirregabiria and Magesan (2013). Intuitively, �nite dependence means that the long term e¤ects of

a current choice can be obliterated within a �nite number of periods by following certain choice paths

that may be optimal but typically are not. This property e¤ectively bounds the number of future periods

dynamic considerations are important for a current choice. We show that in the �nite dependence case the
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utility �ows a �nite number of periods from the end of the sample models are identi�ed up a normalization

on the utility �ows of the choices that establish �nite dependence, normalizations that are consistent with

normalizations that could be made to achieve identi�cation in the long panel case. For example the utility

�ows from not renewing in a renewal problem or not exiting in a game with an exit decision are identi�ed

as mappings from the states and periods up until one period before the sample ends precisely because the

utility from renewing or exiting in the last period is normalized.

This leaves three other reasons why a nonstationary discrete choice model cannot be identi�ed o¤ a

short panel for a given disturbance structure. The normalization necessary for identifying a model with

�nite dependence might be at odds with knowledge emanating from beyond the data. The model might

not exhibit �nite dependence, a property that we show is testable. Finally, in multiagent games, the

underlying payo¤ primitives are a multivalued correspondence from the expected �ows identi�ed from the

equilibrium best response functions. In these three cases point identi�cation requires exclusion restrictions

that reduce the size of the parameter space, or functional form restrictions on the preferences embodied

in the utility �ows. In the latter parts of the paper we focus on two important cases in the literature

by dropping the time dependence of utility �ows, implying the nonstationarity is driven by the state

transitions or the time horizon, and including a set of state variables that a¤ect the state transitions but

do not directly a¤ect current utility �ows.

The rest of the paper proceeds as follows. In the next section we lay out the dynamic optimization

models and noncooperative games with private information to be studied. Then in Section 3 we analyze

identi�cation in stationary settings and nonstationary environment with complete histories. Section 4

provides a necessary and su¢ cient condition for restoring partial identi�cation of �ow payo¤s, that is

identifying some or all of the utility �ows, when there is �nite dependence. Then in Sections 5 and

6 we explore ways of achieving identi�cation by replacing that assumption on the state transitions with

assumptions on the functional form of utility and exclusion restrictions in we provide several new examples

to illustrate when �nite dependence holds, and adding further structure to a identify the primitives in

games. We brie�y conclude with some comments on the implications of this analysis for model speci�cation

and estimation methods.
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2 Framework

This section lays out a general class of dynamic discrete choice models. Drawing upon our previous work

in Arcidicacono and Miller (2011), we extend our representation of the conditional value functions which

plays an overarching role in our analysis. Finally, we modify our framework to accommodate games with

private information and explain the additional complications that identi�cation in dynamic games pose.

2.1 Dynamic optimization discrete choice

In each period until T , for T � 1, an individual chooses among J mutually exclusive actions. Let djt

equal one if action j 2 f1; : : : ; Jg is taken at time t and zero otherwise. The current period payo¤ for

action j at time t depends on the state xt 2 f1; : : : ; Xg. If action j is taken at time t, the probability of

xt+1 occurring in period t+ 1 is denoted by fjt(xt+1jxt).

The individual�s current period payo¤ from choosing j at time t is also a¤ected by a choice-speci�c

shock, �jt; which is revealed to the individual at the beginning of the period t. We assume the vector �t �

(�1t; : : : ; �Jt) has continuous support and is drawn from a probability distribution that is independently

and identically distributed over time with density function g (�t). We model the individual�s current period

payo¤ for action j at time t by ujt(xt) + �jt:

The individual takes into account both the current period payo¤ as well as how his decision today

will a¤ect the future. Denoting the discount factor by � 2 (0; 1), the individual chooses the vector

dt � (d1t; : : : ; dJt) to sequentially maximize the discounted sum of payo¤s:

E

8<:
TX
t=1

JX
j=1

�t�1djt [ujt(xt) + �jt]

9=; (1)

where at each period t the expectation is taken over the future values of xt+1; : : : ; xT and �t+1; : : : ; �T .

Expression (1) is maximized by a Markov decision rule which gives the optimal action conditional on t, xt,

and �t. We denote the optimal decision rule at t as dot (xt; �t), with jth element d
o
jt(xt; �t). The probability

of choosing j at time t conditional on xt, pjt(xt), is found by taking dojt(xt; �t) and integrating over �t:

pjt(xt) �
Z
dojt (xt; �t) g (�t) d�t (2)

We then de�ne pt(xt) � (p1t(xt); : : : ; pJt(xt)) as the vector of conditional choice probabilities.
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Denote Vt(xt), the (ex-ante) value function in period t; as the discounted sum of expected future

payo¤s just before �t is revealed and conditional on behaving according to the optimal decision rule:

Vt(xt) � E

8<:
TX
�=t

JX
j=1

���tdoj� (x� ; �� ) (uj� (x� ) + �j� )

9=;
Given state variables xt and choice j in period t; the expected value function in period t+1; discounted

one period into the future is �
PX

xt+1=1
Vt+1(xt+1)fjt (xt+1jxt). Under standard conditions, Bellman�s

principle applies and Vt(xt) can be recursively expressed as:

Vt(xt) = E

8<:
JX
j=1

dojt (xt; �t)

24ujt(xt) + �jt + � XX
xt+1=1

Vt+1(xt+1)fjt (xt+1jxt)

359=;
=

JX
j=1

Z
dojt (xt; �t)

24ujt(xt) + �jt + � XX
xt+1=1

Vt+1(xt+1)fjt (xt+1jxt)

35 g (�t) d�t (3)

where the second line integrates out the disturbance vector �t:We then de�ne the choice-speci�c conditional

value function, vjt(xt); as the �ow payo¤of action j without �jt plus the expected future utility conditional

on following the optimal decision rule from period t+ 1 on:3

vjt(xt) = ujt(xt) + �
XX

xt+1=1

Vt+1(xt+1)fjt (xt+1jxt) (4)

Our analysis of identi�cation is based on a representation of vjt(xt) that slightly generalizes Theorem

1 of Arcidiacono and Miller (2011). Both results are based on their Lemma 1, that for every t 2 f1; : : : ; Tg

and p 2 �J , the J dimensional simplex, there exists a real-valued function  j (p) such that:

 j [pt(x)] � Vt(x)� vjt(x) (5)

To interpret (5), note that the value of committing to action j before seeing �t is vjt(xt)+E [�jt] : Therefore

the expected loss from precommitting to j versus waiting until �t is observed and only then making an

optimal choice, Vt(xt), is the constant E [�jt] plus  j [pt(xt)]; a composite function that only depends xt

through the conditional choice probabilities. This result leads to the following theorem, proved using an

induction.

Theorem 1 For each choice j 2 f1; : : : ; Jg and � 2 ft; : : : ; Tg ; let any d�� (x� ; j) denote any mapping from

the state space f1; : : : ; Xg to RJ satisfying the constraints that i) d�kt(xt; j) = 1 and ii)
PJ

k=1 d
�
k� (x� ; j) =

3For ease of exposition we refer to vjt(xt) as the conditional value function in the remainder of the paper.
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1. Recursively de�ne ��� (x�+1jxt; j) as:

��� (x�+1jxt; j) �

8>><>>:
fjt(xt+1jxt) for � = tPX

x�=1

PJ
k=1 d

�
k� (x� ; j) fk� (x�+1jx� )����1(x� jxt; j) for � = t+ 1; : : : ; T

(6)

Then:

vjt(xt) = ujt(xt) +
TX

�=t+1

JX
k=1

XX
x�=1

���t [uk� (x� ) +  k[p� (x� )]] d
�
k� (x� ; j)�

�
��1(x� jxt; j) (7)

Arcidiacono and Miller (2011) prove the theorem when d�k� (x� ; j) � 0 for all k and � : In that case

��� (x�+1jxt; j) is the probability of reaching x�+1 by following the sequence de�ned by d�� (x� ; j);. Here we

relax the constraint that 0 � d�k� (x� ; j) � 1 in order to demonstrate that negative weights, and weights

that exceed one, or pseudo-choices, can sometimes be useful in establishing identi�cation.4

2.2 Extension to dynamic games

This framework extends naturally to dynamic game. In the games setting, we assume that there are I

players making choices in periods [1; : : : ; T ], T � 1. The systematic part of payo¤s to the ith player not

only depends on his own choice in period t; denoted by d(i)t �
�
d
(i)
1t ; : : : ; d

(i)
Jt

�
; the state variables xt, but

also the choices of the other players, which we now denote by d(�i)t �
�
d
(1)
t ; : : : ; d

(i�1)
t ; d

(i+1)
t ; : : : ; d

(I)
t

�
.

Denote by U (i)jt
�
xt; d

(�i)
t

�
+ �

(i)
jt the current utility of agent i in period t; where �

(i)
jt is an identically and

independently distributed random variable that is private information to the �rm. Although the players all

face the same observed state variables, these state variables will a¤ect each of the players in di¤erent ways.

For example, a characteristic of player i may a¤ect the payo¤ for player i di¤erently than a characteristic

of player i0. Hence, the payo¤ function is superscripted by i.

Players make simultaneous choices in each period. We denote Pt
�
d
(�i)
t jxt

�
as the joint conditional

choice probability that the players aside from i collectively choose d(�i)t at time t conditional on the state

variables xt. Since �
(i)
t is independently distributed across all the players, Pt

�
d
(�i)
t jxt

�
has the product

representation:

Pt

�
d
(�i)
t jxt

�
=

IY
i0=1
i0 6=i

0@ JX
j=1

d
(i0)
jt p

(i0)
jt (xt)

1A (8)

4This extension is also noted in Gayle (2013).
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We assume each player acts like a Bayesian when forming his beliefs about the choices of the other players

and that a Markov-perfect equilibrium is played. Hence, the beliefs of the players match the probabilities

given in equation (8). Taking the expectation of U (i)jt
�
xt; d

(�i)
t

�
over d(�i)t , we de�ne the systematic

component of the current utility of player i as a function of the state variables as:

u
(i)
jt (xt) =

X
d
(�i)
t 2JI�1

Pt

�
d
(�i)
t jxt

�
U
(i)
jt

�
xt; d

(�i)
t

�
(9)

The values of the state variables at period t+ 1 are determined by the period t choices by all the players

as well as the values of the period t state variables. Denote Fjt
�
xt+1

���xt; d(�i)t

�
as the probability of xt+1

occurring given action j by player i in period t; when its state variables are xt and the other players choose

d
(�i)
t : From the perspective of player i the probability of transitioning from xt to xt+1 given action j is:

f
(i)
jt (xt+1 jxt ) =

X
d
(�i)
t 2JI�1

Pt

�
d
(�i)
t jxt

�
Fjt

�
xt+1

���xt; d(�i)t

�
(10)

The expressions for the conditional value functions for player i are the same as we described in Subsec-

tion 2.1. Loosely speaking, player i solves a dynamic optimization problem treating the other player�s

equilibrium actions as nature that help determine both the �ow payo¤s and the state transitions.

As in Subsection 2.1, consider for all � 2 ft; : : : ; Tg any sequence of pseudo-choices:

d�(i)� (x� ; j) �
�
d
�(i)
1� (x� ; j); : : : ; d

�(i)
J� (x� ; j)

�
subject to the constraints

PJ
k=1 d

�(i)
k� (x� ; j) = 1 and starting value d�(i)jt (xt; j) = 1: Using the pseudo-

choices, and taking the equilibrium actions of the other players as given, recursively de�ne ��(i)� (x�+1jxt; j)

in a similar manner to equation (6) as:

��(i)� (x�+1jxt; j) �

8>><>>:
f
(i)
jt (xt+1jxt) for � = tPX
x�=1

PJ
k=1 d

�(i)
k� (x� ; j) f

(i)
k� (x�+1jx� )�

�(i)
��1(x� jxt; j) for � = t+ 1; : : : ; T

(11)

Adding i superscripts to (7) ; it now follows that Theorem 1 applies to this multiagent setting in exactly

the same way as in a single agent setting.

Two critical di¤erences distinguish noncooperative discrete choice dynamic games from their single

agents counterparts, and both are relevant for studying identi�cation. Whereas ujt(xt) denotes the prim-

itive utility �ow term in single agent optimization problems, u(i)jt (xt) de�ned by (9) is a reduced form

parameter that depends on the actions of the other players. In dynamic games, the �ow payo¤ u(i)jt (xt)
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is not a primitive but an expected utility found by integrating U (i)jt
�
xt; d

(�i)
t

�
over the joint probability

distribution Pt
�
d
(�i)
t jxt

�
induced by the current actions of the other players simultaneously making their

equilibrium choices that are partly determined by their private information.

Similarly, fjt (xt+1 jxt ) is the primitive de�ning the state transition probabilities in single agent op-

timization problems, but f (i)jt (xt+1 jxt ) ; de�ned by (10) ; is a reduced form parameter that depends

on the conditional choice probabilities of the other players, Pt
�
d
(�i)
t jxt

�
; as well as the primitive

Fjt

�
xt+1

���xt; d(�i)t

�
. While it is easy to interpret restrictions placed directly on the primitive fjt (xt+1 jxt )

in single agent problems, placing restrictions on Fjt

�
xt+1

���xt; d(�i)t

�
complicates matters in dynamic

games because of the endogenous e¤ects arising from Pt

�
d
(�i)
t jxt

�
on f (i)jt (xt+1 jxt ).

3 Three Theorems on Identi�cation

The objects of identi�cation in the optimization model are the utility �ows, the discount factor, the transi-

tion matrix of the observed state variables, and the distribution of the unobserved variables,5 summarized

with the notation (u; �; F;G) : In this section we build upon Rust (1994) and Magnac and Thesmar (2002)

in single agent settings and Pesendorfer Schmidt-Dengler (2008) in games settings, by considering identi-

�cation when (�; F;G) are known.6 First we show that u is identi�ed up to a normalization on the �ow

payo¤s for one of the choices in each state when either the environment is stationary or when T = T:

Finally, we analyze the degree of under-identi�cation when T < T .

3.1 Normalizing utility �ows

Rust (1994, Lemma 3.2 on page 3127) showed that the solution to a stationary in�nite horizon discrete

choice optimization problem is invariant to a broad class of utility transformations. His result can be simply

5Often the distribution of unobserved variables is assumed to be extreme value for tractability. However, Arcidiacono

and Miller (2011) showed how generalized extreme value distributions can easily be accommodated within a CCP estimation

framework, and recently Chiong, Galichon, and Shum (2013) have proposed simple estimators for a broad range of error

distributions.
6The assumption that (�; F;G) is known is standard. Typically F is identi�ed from the transitions alone by assuming

that all the state variables are observed, estimates of �; that calibrate a person�s subjective discount factor in a stationary

model are obtained from other data, and G is selected largely on the basis of tractability.
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extended to nonstationary optimization problems and dynamic games, but leaves unanswered the question

of how to partition the identi�ed sets of utility speci�cations, so that speci�cations belonging to di¤erent

partitions are associated with di¤erent decision rules, while those in the same partition are observationally

equivalent. As a �rst step towards deriving this partition, we now show there is an observationally

equivalent dynamic optimization problem to (u; �; F;G), which we denote by (u�; �; F;G) ; where for each

(t; x) we arbitrarily select any one choice l(x; t) 2 f1; : : : ; Jg and set the �ow utility associated with that

choice, u�l(x;t);t(x); to an arbitrary real value we denote by ct (x). Similarly in the in�nite horizon analogue

we select for each x any one choice l(x) 2 f1; : : : ; Jg and set the �ow utility associated with that choice,

u�l(x)(x); to an arbitrary real value denoted by c (x).
7

Theorem 2 In the �nite horizon case let l (x; t) 2 f1; : : : ; Jg and ct (x) 2 < respectively denote any

arbitrarily de�ned normalizing action and benchmark �ow utility the associated with (x; t) ; and de�ne for

all j 2 f1; : : : ; Jg:

u�jT (x) � ujT (x)� ul(x;t);T (x) + cT (x)

and:

u�jt(x) = ujt(x)+ct (x)�ul(x;t);t(x)+
TX

�=t+1

XX
x�=1

���t [u�1� (x� )� u1� (x� )]
�
����1(x� jxt; l(x; t))� ����1(x� jxt; j)

�
When the environment is stationary, de�ne:

uj �

26666664
uj(1)

...

uj(X)

37777775 ; u�j �

26666664
u�j (1)

...

u�j (X)

37777775 ; ~u �

26666664
ul(1) (1)

...

ul(X) (X)

37777775 ; Fj �

26666664
fj(1j1) : : : fj(Xj1)
...

. . .
...

fj(1jX) : : : fj(XjX)

37777775 ; c �

26666664
c (1)

...

c (X)

37777775
Then [I � �F1] is invertible. De�ne for all j 2 f1; : : : ; Jg:

u�j = uj + c� ~u+ � (F1 � Fj) [I � �F1]�1 (u�1 � u1)

Then (u�; �; F;G) is observationally equivalent to (u; �; F;G) :

A common normalization in empirical work is to set u�1t(x) = 0 for all (t; x) in the �nite horizon case

and u�1(x) = 0 for all x in the stationary case. Theorem 2 demonstrates that a normalization like that is

7Analogously for the dynamic games de�ned in Section 2, there is an observationally equivalent dynamic game in which

U
(i)
jt

�
xt; d

(�i)
t

�
= ct(x) for all

�
l; t; xt; d

(�i)
t

�
, where again j can vary with the time period and the state. Note that while

ct(x) varies with the state and the time period, it does not vary with the decisions of the other players.
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necessary to identify the remaining utility parameters. The next section provides conditions under which

it is su¢ cient.

3.2 Data is sampled from the whole population

Magnac and Thesmar (2002, Theorem 2 and Corollary 3 on pages 807 and 808) establish identi�cation

of the �ow payo¤ for T = 2 �nite when G (�t) and � are known, u1(x) is normalized for all x, and the

continuation value for one of the actions is also normalized. We extend their results to the case where

data on the full time horizon is observed as well as to stationary environments.

Let d�1� (x� ) = 1 for all � in equation (7) and subtract v1t(xt) from vjt(xt) to obtain:

vjt(xt)� v1t(xt) = ujt(xt) +
TX

�=t+1

XX
x�=1

���t 1[p� (x� )]
�
����1(x� jxt; j)� ����1(x� jxt; 1)

�
(12)

An alternative expression for this di¤erence can be obtained by di¤erencing the expressions for  1(xt)

and  t(xt) given in equation (5):

vjt(xt)� v1t(xt) =  1[pt(xt)]�  j [pt(xt)] (13)

As shown in Theorem 3 below, the two expressions for vjt(xt) � v1t(xt) can then be used to form

expressions for ujt(xt) as a function of the transition probabilities, the conditional choice probabilities,

and the discount factor. Further, Theorem 3 shows how the problem simpli�es in the stationary case

where the time subscripts are dropped from the �ow payo¤s and the transition functions and when the

time horizon is in�nite.8

Theorem 3 For all j, t, and xt, the �ow payo¤ ujt(xt) can be expressed as:

ujt(xt) =  1[pt(xt)]�  j [pt(xt)] +
TX

�=t+1

XX
x�=1

���t 1[p� (x� )]
�
����1(x� jxt; 1)� ����1(x� jxt; j)

�
(14)

When the environment is stationary, let I denote the X dimensional identity matrix and de�ne:

uj �

26666664
uj(1)

...

uj(X)

37777775 ; Fj �

26666664
fj(1j1) : : : fj(Xj1)
...

. . .
...

fj(1jX) : : : fj(XjX)

37777775 ; 	j �

26666664
 j [p(1)]

...

 j [p(X)]

37777775
8This theorem, �rst presented in a section on identi�cation in Arcidiacono and Miller (2010), was omitted from the

published version (Arcidiacono and Miller, 2011), which focuses on estimation in the presense of unobserved heterogeneity.
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Then [I � �F1] is invertible and for all j:

uj = 	j �	1 + � (F1 �Fj) [I � �F1]�1 	1 (15)

Given the assumptions made at the beginning of this section regarding the state transitions, conditional

choice probabilities, the discount factor, and the distribution of the structural errors, everything on the

right hand side of both (14) and (15) is known and, therefore, both systems are exactly identi�ed. These

equations yield asymptotically e¢ cient estimators of the unrestricted utility �ows. They are de�ned by

substituting sample analogues for the conditional choice probabilities into the closed form mappings that

represent the utility �ows; they are e¢ cient because the mapping of the conditional choice probabilities

on to the current utility �ows is the one to one.

Note that in the �nite horizon case, intertemporal preferences are fully accounted for by subscripting

the utility �ow terms by t; and the appearance of � is purely cosmetic, which without loss of generality can

be set to one. Therefore the intertemporal features of �nite models are identifed by the data generating

process in long panels. In contrast the trade o¤ between current and future preferences in the stationary

model is not identi�ed at all, and the interpretation of the parameters hinges critically on the value of �

assigned from outside the data generating process.

3.3 Observational equivalence in short panels

Given that we do not see state transitions and conditional choice probabilities after T , we express ujt as

in (14) relative to choice 1 (the normalized choice) for the �rst T periods and then use the value function

at T + 1. This leads to the following expression for ujt:

ujt(xt) =  1[pt(xt)]�  j [pt(xt)] +
TX

�=t+1

XX
x�=1

���t 1[p� (x� )]
�
����1(x� jxt; 1)� ����1(x� jxt; j)

�
+

X�1X
xT+1=1

�T �tVT+1(xT+1)] [�
�
T (xT+1jxt; 1)� ��T (xT+1jxt; j)] (16)

This expression provides the basis for the following theorem giving the degree of under-identi�cation. Note

that is is the last term that leads to under-identi�cation, the degree of which is speci�ed in Theorem 4

below. Given the choice probabilities, ujt(xt) is a linear mapping of VT+1(xT+1): Let XT+1 denote the

number states that can be reached at time T +1:
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Theorem 4 Given �, G(�) and u1t(xt) = 0 for all t and xt, the degree of under-identi�cation for the �rst

T �ow payo¤s is at most XT+1 � 1.

Theorem 4 shows that the degree of under-identi�cation is less than or equal to the number of di¤erent

states that can be reached in the last period of the data. In order to achieve identi�cation, we could

normalize the value functions in the last period to zero. At that point we would treat the sample as

if the time horizon was T rather than T . The crippling limitation of this approach is that all the �ow

utilities can only be interpreted relative to the arbitrary normalization adopted in the �nal period of an

endogenous mapping, a mapping that would change with the length of the panel. However, progress can

be made when the transitions of the state variables satisfy certain properties (�nite dependence), when

there are exclusion restrictions, or when the �ow payo¤s are assumed to be independent of time. In the

last case, the non-stationarity would then be driven either by the �nite time horizon or non-stationarity

in the state transitions.

4 Finite dependence

In this section we show that if the state transitions satisfy a �nite dependence property de�ned below, then

a subset of the �ow payo¤s are identi�ed even when the time horizon extends beyond the sample period

with no normalizations made on the continuation values. Identi�cation of this subset, however, does come

at a cost. As Theorem 2 showed, there are a set of normalizations that are observationally equivalent.

Identi�cation in the short panel case is restored under particular normalizations but not others.

To �x ideas we �rst consider dynamic optimization problems with terminal choices (that end the

problem) and renewal problems (that restart a cycle) to show how the inversion that recovers utility �ows

from the conditional choice probabilities simpli�es under certain normalizations but not under others.

Then after de�ning the �nite dependence property, we formally state the identi�cation result, further

illustrate its application in single agent problems and dynamic games, and provide an algorithm for

showing how �nite dependence is established.
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4.1 Terminal and renewal choices

To see how �nite dependence aids identi�cation we �rst consider two special cases: when there is a terminal

or renewal choice. Terminal choices are named that way because they end the optimization problem or

game by preventing any future decisions; irreversible sterilization against future fertility, (Hotz and Miller,

1993) and �rm exit from an industry (Aguirregabiria and Mira 2007) are examples. The de�ning feature

of a renewal choice is that it resets the states that were in�uenced by past actions. Turnover and job

matching (Miller, 1984), or replacing a bus engine (Rust,1987), are illustrative of renewal actions. Let

the �rst choice denote the terminal or renewal choice. In such models, following any choice j 2 f1; : : : ; Jg

with the �rst one leads to same value of state variables after two periods. Thus for all t < T and xt the

probability distribution of xt+2 conditional on xt does not depend on the choice made in period t if the

terminal or renewal choice is taken in period t+ 1:

XX
xt+1=1

f1;t+1(xt+2jxt+1)fjt(xt+1jxt) =
XX

xt+1=1

f1;t+1(xt+2jxt+1)f1t(xt+1jxt) (17)

Normalizing the utility for the terminal or renewal choice to zero in all states greatly simpli�es the

inversion embedded in Theorem 2. The formulas in the theorem give the utility from taking any other

action j 2 f2; : : : ; Jg in period t < T � 1 as:

ujt(xt) =  1[pt(xt)]�  j [p1(xt)]�
XX

xt+1=1

� 1[pt+1(xt+1)]fjt(xt+1jxt) (18)

when there is a terminal choice and as:

ujt(xt) =  1[pt(xt)]�  j [p1(xt)] +
XX

xt+1=1

� 1[pt+1(xt+1)] [f1t(xt+1jxt)� fjt(xt+1jxt)] (19)

when there is a renewal choice.

Notice that in either case only the current conditional choice probabilities and those one period into the

future are used to identify current utility under this normalization. Now suppose there are three periods

of data in a model with terminal or renewal choices, and select any normalization for choices made in the

�rst two periods, but retain the normalization of the �rst choice in the third. Appealing to Theorem 2,

we write:

u�j1(x) = uj1(x)+c1 (x)�ul(x;1)1(x)+
3X

�=2

XX
x�=1

���1 [u�1� (x� )� u1� (x� )]
�
����1(x� jx1; l(x; 1))� ����1(x� jx1; j)

�
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To amplify, every normalization of the utility �ows is identi�ed, except for the utilities in last sampled

period, subject to a proviso that in the second last period of the sample the utility of the terminal or

renewal action is the normalization. Finally we note that the condition of normalizing the terminating or

renewal action in the last period for which data is available is necessary.

4.2 De�ning �nite dependence

Consider two sequences of decision weights that begin at date t in state xt, one with choice j and the

other with choice k. We say that the pair of choices fj; j0g exhibits �-period dependence if there exists

sequences of decision weights from j and j0 such that:

��t+�(xt+�+1jj) = ��t+�(xt+�+1jj0) (20)

for all xt+�+1. That is, the weights associated with each state are the same across the two paths after �

periods.

The equation de�ning �-period �nite dependence is then a multi-period generalization of (17) : More

generally �-period �nite dependence requires � future periods of future conditional choice probabilities

to identify the utility �ows in the �rst period of the data. If there are more than � periods of data,

identi�cation requires the �nal � periods to be normalized in a way dictated by the �nite dependence

property. Under �nite dependence, di¤erences in current utility ujt(xt)� ukt(xt) can be expressed as:

ujt(xt)� uj0t(xt) =  j0 [pt(xt)]�  j [pt(xt)] (21)

+

t+�X
�=t+1

JX
k=1

XX
x�=1

���t fuk� (x� ) +  k[p� (x� )]g
�
d�k� (x� jj)����1(x� jj)� d�k� (x� jj0)����1(x� jj0)

�
This result follows directly from Theorem 1. For the �rst � periods, we se the decision sequences such

that �nite dependence holds. After � periods we set the two decision sequences to be the same, implying

the di¤erenced term in the second line is zero at t+ 1 + �.

4.3 Finite dependence and identi�cation

Theorem 4 established the degree of under-identi�cation when the panel does not cover the relevant

time horizon. The under-identi�cation resulted from decisions made in the observed panel depending

on expectations beyond the sample period. Finite dependence o¤ers some respite. When this property
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holds, di¤erences in the distribution of state variables that arise from making di¤erent current choices

can be obliterated within a �nite number of periods through a judicious weighting of future decisions in

the interim phase. While the choice probabilities associated with the interim decisions do not correspond

to the CCPs generated by optimal behavior, and not all of them are necessarily positive, the correction

factor between the conditional valuation function and the ex-ante continuation value rebalances di¤erences

in lifetime utility arising from non-optimizing and possibly infeasible behavior. In this way the role of

future consequences from current choices is captured by a relatively small number of future utility �ow

and correction factors even though the decision horizon of the individual is much longer.

A caveat limits the role of �nite dependence in restoring identi�cation. As is evident from Equation

(21) ; future utility �ow terms of the form ui� (x� ) appear in the �nite dependence representation of the

current utility di¤erence between ujt(xt) and ukt(xt). Thus none of the utility �ow terms for the periods

immediately preceding the last sampling period are identi�ed. It now follows by an induction that the

assumption of �nite dependence does not su¢ ce to identify any of the utility �ow terms when the paths

de�ning �nite dependence that determine Equation (21) involve �ow utilities. At �rst glance this argument

seems to doom �nite dependence as a device for achieving identi�cation. However whether future utility

�ow terms explicitly appear in the �nite dependence representation implied by (20) depends on which

normalization is adopted. Theorem demonstrates that all normalizations benchmarking one choice for

each period and state are observationally equivalent. In other words the theorem gives provisional licence

to judiciously pick a normalization that makes the �ow utilities in the interim periods on the second line

of the right side of (21) drop out, simplifying the equation to:

ujt(xt)� ukt(xt) =  k[pt(xt)]�  j [pt(xt)] (22)

+

t+�X
�=t+1

JX
i=1

XX
x�=1

���t i[p� (x� )]
�
d�i� (x� jj)����1(x� jj)� d�i� (x� jk)����1(x� jk)

�
Theorem 5 below states the required set of normalizations for identifying utility �ows in a nonstationary

environment with panels of limited length when there is �nite dependence.

Theorem 5 If there exist decision sequences for a pair of choices f1; jg such that (20) holds for some

� < T and xt , then there exists a set of normalizations consistent with Theorem 2 for the �ow payo¤s

between t and t+ � so that (21) simpli�es to (22).
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One can prove by induction that no restrictions on the normalization adopted in periods preceding T

�� � 1 are necessary to identify the utility �ows in those periods. In some settings, the normalizations

along the �nite dependence path are in concordance with prior beliefs formed from outside sources about

the current value of taking certain benchmark actions, that is natural. In other cases, the normalizations

given in Theorem 5 are unnatural even though they are observationally equivalent to those preferred by

the researcher. In these cases, discussed in Sections 5 and 6, identi�cation can be achieved under more

plausible normalizations by imposing exclusion or functional form restrictions on the utility �ows that

e¤ectively shrink the parameter space.

4.4 Establishing �nite dependence in single agent settings

In the previous section we established identi�cation conditional on �nite dependence holding. Here we

establish conditions under which �nite dependence holds for a pair of choices fj; j0g. In the process, we also

show simple ways of checking for �nite dependence. We derive su¢ cient conditions for one-period-ahead

�nite dependence to hold with two choices and then prove the more general case for �-period dependence.

For �nite dependence to hold, there must exist weights d�2t+1(xt+1; 1) and d
�
1t+1(xt+1; 1) such that the

probability of being in each state at t+ 2 is the same given the two di¤erent initial decisions. Using (6),

the probability of state xt+2 resulting from choice j 2 f1; 2g in state xt at time t and a decision rule

d�t+1(xt; j) can be written as:

��t+1(xt+2jxt; j) =
X
xt+1

d�2t+1(xt+1; j) [f2t+1(xt+2jxt+1)� f1t+1(xt+2jxt+1)] fjt(xt+1jxt) (23)

+
X
xt+1

f1t+1(xt+2jxt+1)fjt(xt+1jxt)

Given choice j at time t only a subset of the state space may be reached from state xt where we refer

to this subset as the attainable states. Denote N�
t+1(j; xt) as the number of attainable states in period

t + 1 given the choice j in state xt at time t. Now consider all the possible states that could be reached

two-periods-ahead given either choice j or j0 which we denote as N�
t+2(xt). It the weights on each of these

states that need to be aligned across the two choice paths.

We now look to express the �nite dependence condition in matrix form. De�ne F �t (j; xt) as a vector

containing the probabilities of transitioning to each of the N�
t+1(j; xt) attainable states given the choice
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sequence beginning with j and state xt. Note that by de�nition all the elements of F �t (j; xt) are greater

than zero. Denote D�
2t+1(j; xt) as a vector giving the weight placed on choice 2 for each of the N

�
t+1(j; xt)

attainable states at t + 1. Finally, denote Fkt+1(j; xt) as an N�
t+1(j; xt) � (N�

t+2(xt) � 1) which gives

the probability of transitioning from each of the N�
t+1(j; xt) attainable states given initial choice j to

N�
t+2(xt)� 1 of the attainable states at t + 1 given choice k at t+ 1. The �nite dependence condition is

then:

�
FT2t+1(2; xt)� FT1t+1(2; xt)

� �
D�
2t+1(2; xt) � F �t (2; xt)

�
+ FT1t+1(2; xt)F

�
t (2; xt)

=
�
FT2t+1(1; xt)� FT1t+1(1; xt)

� �
D�
1t+1(2; xt) � F �t (1; xt)

�
+ FT1t+1(1; xt)F

�
t (1; xt) (24)

where � refers to element-by-element multiplication.

There are then N�
t+2(x) � 1 equations with N�

t+1(1; xt) +N�
t+1(2; xt) unknowns. We can rewrite this

system as:

�
FT2t+1(2; xt)� FT1t+1(2; xt) FT1t+1(1; xt)� FT2t+1(1; xt)

�2664 D�
2t+1(2; xt) � F �t (2; xt)

D�
1t+1(2; xt) � F �t (1; xt)

3775
= FT1t+1(1; xt)F

�
t (1; xt)� FT1t+1(2; xt)F �t (2; xt) (25)

implying that if the rank of

�
FT2t+1(2; xt)� FT1t+1(2; xt) FT1t+1(1; xt)� FT2t+1(1; xt)

�
(26)

is N�
t+2(x)� 1 then �nite dependence holds. Note that the size of the matrix for which we need to check

the rank condition may be quite small in practice. Because the decision weights can depend on the initial

state, the size of the matrix is determined by the number of states that are attainable in two periods from

a particular initial state.

For the general case, where there are more than two choices and when �nite dependence cannot be

achieved in one period, we can derive a similar result. Namely, suppose we wanted to see if the problem

exhibited � period dependence given prescribed decision sequences up through ��1 (� > 1). Let � = t+�.

As before, denote N�
�+1(j; xt) as the number of attainable states given the prescribed decision sequence

up through � that begins with choice j and denote N�
�+2(xt) given either prescribed decision sequence.

Denote Fk�+1(j; xt) as an N�
�+1(j; xt)� (N�

�+2(xt)� 1) which gives the probability of transitioning from
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each of the N�
�+1(j; xt) attainable states given initial choice j to the N

�
�+2(xt) � 1 attainable states at

� + 2 given either initial choice j or j0. De�ne F�+1(j; xt) as an (N�
�+2(xt) � 1) � ((J � 1)N�

�+1(j; xt))

matrix given by:

F�+1(j; xt) =

2666666666666664

F2�+1(j; xt)� F1�+1(j; xt)
...

Fk�+1(j; xt)� F1�+1(j; xt)
...

FJ�+1(j; xt)� F1�+1(j; xt)

3777777777777775

T

which is the analog to (26). We then have the following result:

Theorem 6 If the rank of
�
F�+1(j; xt) �F�+1(j0; xt)

�
is N�

�+2(x+1)� 1 then �nite dependence can

be achieved in � � t+ 1 periods.

Example 1: A nonstationary search model

To illustrate how negative weights are useful in obtaining �nite dependence, we consider a simple

search model in which jobs last only one period.9 Each period t 2 f1; : : : ; Tg an individual may stay

home by setting d1t = 1, or apply for temporary employment setting d2t = 1: Job applicants are successful

with probability �t, and the value of the position depends on the experience of the individual denoted by

x 2 f1; : : : ; Xg. If the individual works his experience increases by one unit, and remains at the current

level otherwise. The preference primitives are given by the current utility from staying home, denoted by

U1t (xt) ; and the utility from working, U2t (xt) : Thus the dynamics of the model come strictly through

experience, and the nonstationarities arising through o¤er arrival weights, �t, and through wages varying

over time, as indicated by subscripting utilities with the time period.

To demonstrate this model satis�es �nite dependence with � = 1, we construct two paths, one starting

with stay home decision, d1t = 1; and the other beginning with an employment application, d2t = 1.

These two paths have di¤erently weighted decisions in period t + 1 that generate the same probability

distribution of xt+2 conditional on xt. Following either the two period sequence work, d2t = 1, home,

9The example can easily be extended to the case where the individual can choose to stay with his current job. We focus

on the simpler case here for ease of exposition, at the same time noting that a sizable fraction of the Spanish workforce gain

experience through a sequence of temporary jobs before �nding a permanent position.
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d1t+1 = 1, or the two period sequence home, d1t = 1, work with weight d2t+1 = �t=�t+1, home with weight

1��t=�t+1 generates the same distribution for xt+2. Namely xt+2 = xt with probability f2t(xtjxt) = 1��t;

and xt+2 = xt + 1 with probability f2t(xt + 1jxt) = �t: Notice that if �t < �t+1 then d2;t+1 > 1 and

d2;t+1 = 1� �t=�t+1 < 0:

This search model has �nite dependence, and is therefore identi�ed by Theorem 5. It is nevertheless

instructive to directly establish identi�cation, because it yields an expression for the utility primitives in

terms of the conditional choice, job o¤er and experience transition probabilities in terms of the normaliza-

tion. The current utility from staying home is just u1t(xt) � U1t (xt) ; and the (expected) current utility

from applying for a temporary position in period t is:

u2t(xt) � (1� �t)U1t (xt) + �tU2t (xt) (27)

Since staying at home does not increase working experience f1t(xtjxt) = 1, and conditional on applying

for a position f2t(xt + 1jxt) = �t; Equation (21) simpli�es to:

u2t(x)� u1t(x) =  1[pt(x)]�  2[pt(x)]� � fu1t+1(x) +  1[pt+1(x)]g (1� �t+1)
�t
�t+1

�� fu1t+1(x+ 1) +  1[pt+1(x+ 1)]g�t + � fu2t+1(x) +  2[pt+1(x)]g
�t
�t+1

(28)

for all x 2 f1; : : : ; t+ 1g : To solve for the normalization, we require all the utility �ow terms on the right

side of (28) to cancel. After factoring out ��t /�t+1 we obtain:

0 = u2t+1(x)� u1t+1(x) (1� �t+1)� u1t+1(x+ 1)�t+1

=) u2t+1(x)� u1t+1(x) = �t+1 [u1t+1(x+ 1)� u1t+1(x)] (29)

Appealing to (29) we substitute �t [u1t(x+ 1)� u1t(x)] for u2t(x) � u1t(x) in (28) to obtain a recursive

expression for u1t(x+ 1) that implies:

u1t(x+1) = u1t(1)+
xX
y=1

 1[pt(y)]�  2[pt(y)]
�t+1

� � 1[pt+1(y)] (1� �t+1)
�t+1

�� 1[pt+1(y+1)]+
� 2[pt+1(y)]

�t+1

where u1t(1) can take any real value because expected utility is invariant to additive constants applied to

the kernel functions u1t(x): Hence from (28):

u2t(x) = u1t(x) +  1[pt(x)]�  2[pt(x)]� � 1[pt+1(x)] (1� �t+1)
�t
�t+1

�� 1[pt+1(x+ 1)]�t + � 2[pt+1(x)]
�t
�t+1

(30)

from which expressions for U1t (xt) = u1t(xt) and U2t (xt) = ��1t [u2t(xt)� (1� �t)u1t(xt)] directly follow.
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4.5 Establishing �nite dependence in games

Showing a model exhibits �nite dependence becomes complicated in games because the decisions of a

player today a¤ects the decisions of the other players tomorrow. However, for many games settings the

structure of the game gives a natural way of obtaining �nite dependence. The structure we have considered

is one in which the current action of the player does not a¤ect the choices of the other players. The basic

idea for games is to �rst line up the states of the other players through the period t+ 1 action and then

line up the agent�s state at t+ 2, assuming the agent can line up his own state in one period.

Note that F (i)t+1(j) contains transition probabilities from t+1 to t+2 given initial choice j by player i.

Note also that the choice of one�s competitors at t+2 does not depend on the player�s choice at t+2 except

through expectations over the choice conditional on the state. What we would like is that the choice at

t+2 of one�s competitors lines up the competitors�states at t+3. Denote N�i
t+3 as all possible competitor

states that can result from choice sequences beginning with j or j0. Denote P�it+2 as the transpose of the

transition matrix from N�
t+2 feasible period 2 states to the N

�i
t+3 � 1 competitor states at t+ 3.

P�it+2
�
F (i)t+1(j) �F (i)t+1(j0)

�2664 D(i)t+1(j)

D(i)t+1(j0)

3775 = P�it+2 hF (i)1t+1(j0TF (i)j0t (xt)� F (i)1t+1(j)TF (i)jt (xt)i (31)

This leaves us with an N�i
t+3 � 1 system of equations. If the rank of P�it+2

�
F (i)t+1(j) �F (i)t+1(j0)

�
=

N�i
t+3� 1, then we have a su¢ cient condition for competitor states lining up at t+2. If we further assume

that one�s own state can be lined up with the period t+ 2 decision, we are done.

Example 2: A coordination game

To illustrate how �nite dependence can be applied in games, we consider a simple coordination game.

Each player i 2 f1; 2g choose to whether or not to compete in a market at time t by setting d(i)2t = 1 if

competing and setting d(i)1t = 1 if not. The dynamics of the game arise purely from the e¤ect of decisions

made by both players in the previous period on current payo¤s; in this model xt = fd(1)2t�1; d
(2)
2t�1g. The non-

stationarity occurs through the �ow payo¤s and corresponding choice probabilities rather than through

the transitions on the state variables.

This model exhibits two period �nite dependence. To prove this claim we �nd two sequences of choices

by the �rst player, which di¤er in their initial choice at t, such that when the second player makes his
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equilibrium choices, the joint distribution of
�
d
(1)
t+2; d

(2)
t+2

�
is the same for both sequences.

Per the discussion above, the �rst step in establishing �nite dependence is choosing weights on the

decisions at t+ 1 such that after the t+ 2 distribution of competitor�s states will be the same across the

two choice paths. In this case, there is only one competitor state variable which is whether or not the

competitor will be in the market at t + 2. Hence, the number of rows in P(2)t+2 is one, implying that as

long as the one of the columns of P(2)t+2

�
Ft+1(1) �Ft+1(2)

�
is not zero, there exists a choice path such

that the expected probability of the competitor being in the market after the period t+ 2 decision in the

same across the initial choice of being in or out of the market at period t. Further, we can ensure that

player 1�s state is the same after the t+ 2 decision by setting the t+ 2 choice for player 1 to be the same

across the two paths. This has no e¤ect on player 2�s choice at t+ 2 since it is not one of player 2�s state

variables at t+2. The following theorem then establishes that a �nite dependence path does indeed exist.

Theorem 7 Finite dependence can be achieved after two periods for all xt,

5 Exclusion Restrictions and Functional Form Restrictions

The previous section showed that, when the problem is non-stationary and the sampling period is shorter

than the time horizon, identi�cation of some of the �ow payo¤s can be achieved when the problem exhibits

�nite dependence. In this section we consider how to restore identi�cation in cases where �nite dependence

does not hold within the sample period or when the �nite dependence normalizations are unattractive.

The next two subsections show identi�cation conditions when there are exclusions restrictions, variables

that a¤ect the state transitions but do not enter the �ow payo¤s, or when the the �ow payo¤s are stable.

By stability of the �ow payo¤s we mean that the �ow payo¤s depend on on the state and the choice but

not time itself.

5.1 Exclusion restrictions and identi�cation of �ow payo¤s

When �nite dependence does not hold or the number of periods necessary to achieve �nite dependence

is shorter than T � 1, the model is under-identi�ed. One means of restoring identi�cation is to impose

exclusion restrictions Assuming that some variables a¤ect the state transitions but do not enter current
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utility provides a means of restoring identi�cation of the �ow payo¤s as well as the ex-ante value function

at T . Indeed, with exclusion restrictions, only one period of data followed by one set of transitions may

result in identi�cation of the �ow payo¤s in that period.

For example in the non-stationary case with three choices, we have the following system of equations:2664 u2t

u3t

3775 =
2664 	1t �	2t

	1t �	3t

3775+ �
2664 F1t �F2t

F1t �F3t

3775
2664 Vt+1

Vt+1

3775 (32)

Absent exclusion restrictions, we have a system of 2X equations with 3X � 1 unknowns. Now suppose X

can be partitioned into X1 and X2 where X2 contains two values and where x2 a¤ects the state transitions

but not the �ow payo¤s:

ujt(x1; x2) = ujt(x1)

Letting superscripts indicate the value of x2 at time t, we have the following system of equations:266666666664

u
(1)
2t

u
(2)
2t

u
(1)
3t

u
(2)
3t

377777777775
=

266666666664

	
(1)
1t �	

(1)
2t

	
(2)
1t �	

(2)
2t

	
(1)
1t �	

(1)
3t

	
(2)
1t �	

(2)
3t

377777777775
+ �

266666666664

F (1)1t �F
(1)
2t

F (2)1t �F
(2)
2t

F (1)1t �F
(1)
3t

F (2)1t �F
(2)
3t

377777777775

2664 Vt+1

Vt+1

3775 (33)

which now has 4X1 equations and 4X1�1 unknowns. Since u(1)jt = u
(2)
jt , taking di¤erences and rearranging

terms yields: 2664 	
(1)
2t �	

(1)
1t +	

(2)
1t �	

(2)
2t

	
(1)
3t �	

(1)
1t +	

(2)
1t �	

(2)
3t

3775 = �

2664 F (1)1t �F
(1)
2t �F

(2)
1t + F

(2)
2t

F (1)1t �F
(1)
3t �F

(2)
1t + F

(2)
3t

3775Vt+1 (34)

Hence if the rank of the 2X1 � 2X1 matrix:2664 F (1)1t �F
(1)
2t �F

(2)
1t + F

(2)
2t

F (1)1t �F
(1)
3t �F

(2)
1t + F

(2)
3t

3775
is at least 2X1 � 1, we can solve for the value functions. Given the value functions, we obtain the �ow

payo¤s using (1) and (2).

5.2 Stable utility functions and identi�cation of �ow payo¤s

When the panel is su¢ ciently short such that �nite dependence cannot be achieved, stability of the �ow

payo¤s can also restore identi�cation. We de�ne stability of the �ow payo¤s as ujt(x) = ujt0(x) for all
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ft; t0g and for all j 2 [1; : : : ; J ]. In this case the non-stationarity comes from either the state transitions

or the time horizon. Identi�cation is achieved by solving for both the �ow payo¤s and the value functions

in the last period, similar to Section 5.1.

To illustrate the nature of identi�cation in the case where there are incomplete histories, suppose

there are only two choices each period, and the data covers two periods, t and t + 1. We now assume

u2t(x) = u2t+1(x) = u2(x) for all x 2 f1; : : : ; Xg and adopt the normalization u1t(x) = u1t+1(x) = 0:

We can express u2, the vector of �ow payo¤ for action 2 in every state, relative to choosing action 1

in the next period. Similarly, we can also express u2 relative to choosing action 1 in the next period and

in the period after that. Hence, given conditional choice probabilities in two periods, t and t+ 1, we can

express u2 as:

u2 = 	1t+1 �	2t+1 + �(F1t+1 �F2t+1)Vt+2 (35)

u2 = 	1t �	2t + �(F1t �F2t)	1t+1 + �2(F1t �F2t)F1t+1Vt+2 (36)

Taking di¤erences and rearranging terms yields:

	1t �	2t �	1t+1 +	2t+1 + �(F1t �F2t)	1t+1 = �(F1t+1 �F2t+1 � �F1tF1t+1 + �F2tF1t+1)Vt+2 (37)

Since adding a constant to the future value terms does not a¤ect choice probabilities, we only need to

identify Vt+2 up to a constant, implying we need the rank of

(F1t+1 �F2t+1 � �F1tF1t+1 + �F2tF1t+1)

to be X�1 to identify the X�1 di¤erenced value functions. Note that the rank condition is on di¤erences

in state transition matrices�it does not depend on the conditional choice probabilities or the �ow payo¤s�

implying that the rank condition is straightforward to check given reasonably-sized problems.

5.3 Alternative normalizations

Even when the problem satis�es �nite dependence, the normalizations required to achieve identi�cation

may be unattractive. Clearly imposing exclusion restrictions or stability of the �ow payo¤s shrinks the

number of parameters that need to be identi�ed. In the latter case, standard normalizations such as

normalizing the payo¤s for one of the choices to be zero in all states can be used to achieve identi�cation
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of (J�1)�X �ow payo¤s. Note that the problem may still be non-stationary through the state transitions

or through the time horizon. Here we are working in a middle ground between the fully non-stationary case,

where both the state transitions and the �ow payo¤s vary with time, and the in�nite horizon stationary

case, where both the state transitions and �ow payo¤s are constant over time.

Example 3: Revisiting non-stationary search

To illustrate how stability allows us to use normalizations on the �ow payo¤s besides those dictated

by the �nite dependence path, we return to the non-stationary search example in Section 4.4. Recall that

one of the �nite dependence paths entailed searching for work in the �rst period and not searching in the

second, while the other entailed not searching for work in the �rst period and mixing in the second such

that the expected accumulation of human capital was the same across the two paths. Substituting in for

u2t(x) with (27) in (28) and simplifying yields:

�t[U2t(x)� U1t(x)] =  1[pt(x)]�  2[pt(x)] + ��t [U2t+1(x)� U1t+1(x+ 1)] (38)

+
��t
�t+1

f 2[pt+1(x)]�  1[pt+1(x)]g+ ��t f 1[pt+1(x)]�  1[pt+1(x+ 1)]g

If we assume that i) the �ow payo¤s do not depend on t and that ii) the �ow payo¤ for not working

is zero in all states, U1(x) = 0 for all x, then the (38) simpli�es to:

U2t(x) =
 1[pt(x)]�  2[pt(x)]

�t(1� �)
+

�

(1� �)�t+1
f 2[pt+1(x)]�  1[pt+1(x)]g (39)

+
�

(1� �) f 1[pt+1(x)]�  1[pt+1(x+ 1)]g

Note that U2(x) is heavily over-identi�ed as (39) must hold for all t.

6 Unbundling

In the games context, the previous sections focused on the assumptions necessary to identify ex-ante �ow

payo¤s. But these are not the primitives of the game and hence the assumptions made in order to achieve

identi�cation may also not be on the primitives. As in Bajari et al. (2009), we focus on recovering ex-post

�ow payo¤s, the primitives of the game. Here, however, we focus on how non-stationarity aids in the

recovery of the ex-post �ow payo¤s. We �rst consider a case where non-stationarity occurs through the
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state transitions but the �ow payo¤ function is stable. Next, we provide an example where the �ow payo¤

function is non-stationary but where unbundling can still be achieved.

6.1 Stable utility functions and unbundling in games

By de�nition utility functions are stable over time in stationary environments, so assuming a stationary

environment automatically eliminates the prospect of identifying game primitives through technological

change. An alternative approach is to maintain the assumptions that utility functions are stable over time,

but relax the assumption that state transition probabilities are stationary. For example innovation and

growth in technology might reveal features of �rms�payo¤ functions through their responses to evolving

business conditions.

Example 4: An entry/exit game

To illustrate how nonstationarity aids in the recovery of �ow payo¤s, we consider an entry/exit game.

The example exploits the terminal state property to recover u(i)jt (xt), normalize the utility from the exit

choice as U (i)1
�
xt; d

(�i)
t

�
= 0 and identify utility from the entry choice U (i)2t

�
xt; d

(�i)
t

�
by assuming the

�ow utility from entry (and remaining in the industry) does not depend on time; formally U (i)2t
�
xt; d

(�i)
t

�
=

U
(i)
2

�
xt; d

(�i)
t

�
for t < T . Markets can have at most two �rms. An incumbent �rm can choose to remain

in the market or exit. Exit is a terminal choice. An exiting �rm is replaced by a potential entrant in the

next period who faces the choices: remain in the market (enter) or exit. Let d(i)jt = 1 if action j is taken

by player i at time t and is zero otherwise. Label exit as action 1 and entry as action 2. The time horizon

is in�nite.

The �ow payo¤ of exiting is normalized to �(i)1t , a transitory shock that is private information to player

i. Since it is a terminal choice, there are no future payo¤s for exiting. Current period payo¤s for entering

or remaining in the market depend on three state variables: (i) whether there is another �rm in the market

d
(�i)
2t , (ii) whether the �rm is an incumbent and therefore does not have to pay the entry cost, di2t, and (iii)

a discrete market state variable x1t 2 X with state transitions given by ft(x1t+1jx1t)>0 for all x1t+1 2 X.

Note that the transitions on the market state variable depends on time which is what makes the model

non-stationary.
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Conditional on the other player�s action, the �ow payo¤ for i at time t for entering the market is

U
(i)
2 (d

(�i)
2t ; d

(i)
t�1; x1t). The expected payo¤s of entering depends on the xt �

n
d
(�i)
2t�1; d

(i)
2t�1; x1t

o
. It is then

de�ned as:

u
(i)
2t (xt) =

X
j

p
(�i)
jt (xt)U

(i)
2 (j; d

(i)
2t�1; x1t) (40)

The total expected payo¤ for taking action 2 are then given by u(i)2t (xt) + �
(i)
2t where �

(i)
2t is a transitory

shock to the payo¤ for action 2 that is private information to player i.

Given exit is a terminal choice, we can express the conditional value function for entering the market

as:

v
(i)
2t (xt) = u

(i)
2t (xt) + �

X
j

X
x1t+1

p
(�i)
jt V

(i)
t+1(j; 1; x1t+1)ft(x1t+1jx1t)

= u
(i)
2t (xt) + �

X
j

X
x1t+1

p
(�i)
jt  2

h
p
(i)
t+1(j; 1; x1t+1)

i
ft(x1t+1jx1t) (41)

implying we can express u(i)2t (xt) as:

u
(i)
2t (xt) =  1t

h
p
(i)
t (xt)

i
�  2t

h
p
(i)
t (xt)

i
� �

X
j

X
x1t+1

p
(�i)
jt  2

h
p
(i)
t+1(j; 1; x1t+1)

i
ft(x1t+1jx1t) (42)

Note that under our assumptions everything on the right hand side of (42) is known. Substituting in

on the left hand side with (40) yields:

X
j

p
(�i)
jt (xt)U

(i)
2 (j; d

(i)
2t�1; x1t) =  1t

h
p
(i)
t (xt)

i
� 2t

h
p
(i)
t (xt)

i
��
X
j

X
x1t+1

p
(�i)
jt  2

h
p
(i)
t+1(j; 1; x1t+1)

i
ft(x1t+1jx1t)

(43)

There are then two unknowns on the left hand side of equation (43). By evaluating this expression at

a particular value of xt and then using those same values just in a di¤erent time period, we obtain two

equations and two unknowns. The following theorem then establishes identi�cation of the U (i)2 �s:

Theorem 8 Given a known distribution for � where � is independent across players and time, �, u(i)1 (x) =

�
(i)
1t , and p

(i)
2t (xt) 6= p

(i)
2t+1(xt), then U

(i)
2

�
j; d

(i)
2t�1; x1t

�
is identi�ed for all j if T � 2.

6.2 Exclusion restrictions and alternative normalizations

While allowing complete �exibility regarding the role of non-stationarity in ex-post payo¤s makes un-

bundling impossible, some structure on how time a¤ects ex-post �ow payo¤s can be incorporated. By
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placing structure on the model, we are also able to relax normalizations that were required in the �nite

dependence case but might seem undesirable. For example, if we have information from another source on

the value of particular alternatives at particular points in time and this information may not correspond to

the �nite dependence normalizations needed for identi�cation. The next example illustrates how exclusion

restrictions permit identi�cation of non-stationary �ow payo¤s as well as achieving identi�cation of the

�ow payo¤s under an alternative normalization.

Example 5: Revisiting the coordination game

To see how exclusion restrictions can be used in conjunction with �nite dependence to recover ex-post

payo¤s, we return to the coordination game described in Example 2. We showed that this model exhibited

�nite dependence so by Theorem 5 we can recover ex-ante �ow payo¤s given a particular normalization

using three periods of data. Here we work with a di¤erent set of normalizations and use exclusion

restrictions to unbundle the ex-ante payo¤s to recover the ex-post payo¤s.

We normalize the systematic �ow payo¤ from not competing to zero. Thus U (i)1t (xt; d
(�i)
t ) = 0 for all

four values of xt, both choices of the rival player d
(�i)
t ; and all time periods t:We also impose the exclusion

restriction:

U
(i)
2t (xt; d

(�i)
t ) � U (i)(xt; d

(�i)
t ) + �t (44)

such that the e¤ect of time on the �ow payo¤s of action 2 does not depend on the state or the other

player�s action. The ex-ante payo¤ is then given by:

u
(1)
2t (x) �

1X
j=0

p
(2)
jt (x)U

(1)
2 (x; j) + �t (45)

with u(i)1t (x) � 0:

Given values of p(i)jt (x) and u
(i)
2t (x) observed over T di¤erent time periods for the 4 values of the state

variables
�
d
(1)
t�1; d

(2)
t�1

�
; Equation (45) represents a a linear system of 4T equations for each player, with

T + 8 unknown variables comprising the time e¤ects �t plus the 8 values U (1)2 (x; j) can take for di¤erent

combinations of (x; j): We then have the following result:

Theorem 9 Subject to a rank condition, the ex-post payo¤s absent the �t�s can be recovered for T � 3:

Further, the �t�s can be recovered up until period T � 1.
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7 Conclusion

This paper establishes conditions for identifying dynamic discrete choice models, both for long panels

where the sample period covers the full time horizon or the model is stationary, and for short panels

where the sample period is shorter than the time horizon. For a known disturbance structure and discount

factor, dynamic discrete choice models of individual optimization are identi�ed up to any normalization

of one choice-speci�c �ow payo¤ for each period in each state when the model is non-stationary and the

panel is long.10 We also show that, with one signi�cant exception, the same models are not identi�ed

from short panels without imposing exclusion and functional form restrictions on preferences that reduce

the size of the parameter space. The exception to this rule is that a subset of the �ow payo¤s may be

identi�ed in the class of models that exhibit �nite dependence. This class is, however, identi�ed only for

particular normalizations, not all normalizations. When the panel is short and �nite dependence fails, or is

associated with a unacceptable normalization, the models of individual optimization are under-identi�ed

by the number of elements in the state space. Our analysis carries over directly to ex-ante payo¤s in

noncooperative games.

Identi�cation precedes consistency. Thus our results on identi�cation provide a set of general conditions

that �ll a gap in the literature for proving maximum likelihood estimators of dynamic discrete choice

models are consistent.11 As we have explained in the text, the equations characterizing identi�cation

also yield asymptotically e¢ cient estimators of the unrestricted utility �ows in models exhibiting �nite

dependence that are surprisingly easy to compute.

Our analysis has rami�cations for the empirical implementation of structural models of discrete choice

dynamic optimization and equilibrium strategies. Our results suggest that in nonstationary settings

relatively few restrictions on the role of time dependence, such as assuming just two periods in the life-

cycle have the same utility �ow as a mapping from the state variables, su¢ ce to identify the remaining �ows

10 In the stationary case, �ow payo¤s are identi�ed given a normalization of one choice-speci�c �ow payo¤ where the

normalization can vary by state.
11The conditions also apply to simulation and indirect inference estimators that are based on the score, Aguirregaberia

and Mira (2002) swapping nested �xed point estimators that are asymptotically equivalent to maximum likelihood, as well

as the estimator of Keane and Wolpin (1994), subject to the proviso that approximation errors introduced for computational

tractability are eliminated as the sample grows.
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in the sample as well as the continuation value for sample respondents at the end of the panel. Equivalently

�nite dependence coupled to an appropriate normalization can achieve the same ends. The upshot is that

almost all empirical models of life-cycle behavior in labor economics are overidenti�ed by many degrees

of freedom, because of strong stability assumptions made on utility both during and after the sample

ends. For example, all full solution and nested estimation methods assume the same functional form for

the utility �ows in every period. The overidentifying restrictions o¤er scope for speci�cation testing and

relaxing the assumption of a constant subjective discount factor as well as permitting �exibility of the

disturbance structure.

The implications for model speci�cation in industrial organization are just as striking. Structural

empirical work in this �eld leans heavily on the assumption of stationarity, primarily because the panel is

necessarily short with in�nitely-lived �rms. By exploiting �nite dependence, however, much can still be

recovered. Time dependent state transition processes arise very naturally in industrial organization and,

rather than being a barrier to identi�cation and estimation, may actually be useful in unbundling ex-post

�ow payo¤s.

A Proofs

Proof of Theorem 1. The proof follows directly from Arcidiacono and Miller (2011) since there is no

use of the fact that the weights are probabilities.

Proof of Theorem 2.

It is convenient to prove the �nite horizon and stationary cases separately, the nonstationary case �rst.

Let l(x; t) 2 f1; : : : ; Jg and ct(x) respectively denote the normalizing action and benchmark �ow utility

the associated with (t; x) : We set u�l(x;t);t(x) = ct(x) and for all j 6= l(x; t) de�ne:

u�jT (x) � ujT (x)� ul(x;T );T (x) + cT (x) (46)

and:

u�jt(x) = ujt(x)+ct(x)�ul(x;t)t(x)+
TX

�=t+1

XX
x�=1

���t [u�1� (x� )� u1� (x� )]
�
����1(x� jxt; l(x; t))� ����1(x� jxt; j)

�
(47)
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In the �nal period T; supposing xT = x the agent optimally sets djT = 1 if:

ujT (x) + �jT � max
k2f1;:::;Jg

fukT (x) + �kT g

inequalities that are satis�ed if and only if:

u�jT (x) + �jT � max
k2f1;:::;Jg

fu�kT (x) + �kT g

as required by the theorem, and establishing the result for T = 1:

For the representation of vjt(xt) provided by (7), set d�1� (x� ; k) = 1 for all � = ft+ 1; : : : ; Tg k 2

f1; : : : ; Jg and x� 2 f1; : : : ; Xg : Supposing xt = x in period t; the decision maker optimally sets djt = 1

if:

j = argmax
k2f1;:::;Jg

(
ukt(x) + �kt +

TX
�=t+1

XX
x�=1

���t [u1� (x� ) +  1[p� (x� )]]�
�
��1(x� jxt; k)

)
Subtracting the constant:

ul(x;t)t(x) +

TX
�=t+1

XX
x�=1

���tu1� (x� )�
�
��1(x� jxt; l(x; t))

does not change the optimal choice, so djt = 1 is optimal if:

j = argmax
k2f1;:::;Jg

8>><>>:ukt(x)� ul(x;t)t(x) + �kt +
TX

�=t+1

XX
x�=1

���t

8>><>>:
u1� (x� )

�
����1(x� jxt; k)� ����1(x� jxt; l(x; t))

�
+ k[p� (x� )]�

�
��1(x� jxt; k)

9>>=>>;
9>>=>>;

(48)

From (47):

ujt(x)� ul(x;t)t(x)�
TX

�=t+1

XX
x�=1

���tu1� (x� )
�
����1(x� jxt; l(x; t))� ����1(x� jxt; j)

�
= u�jt(x)� ct(x)�

TX
�=t+1

XX
x�=1

���tu�1� (x� )
�
����1(x� jxt; l(x; t))� ����1(x� jxt; j)

�
Substitute the second line into the maximand of (48) : Then djt = 1 is optimal if:

j = argmax
k2f1;:::;Jg

8>><>>:u�kt(x)� ct(x) + �kt +
TX

�=t+1

XX
x�=1

���t

8>><>>:
u�1� (x� )

�
����1(x� jxt; k)� ����1(x� jxt; l(x; t))

�
+ k[p� (x� )]�

�
��1(x� jxt; k)

9>>=>>;
9>>=>>;

= argmax
k2f1;:::;Jg

(
u�kt(x) + �kt +

TX
�=t+1

XX
x�=1

���t [u�1� (x� +  k[p� (x� )]]�
�
��1(x� jxt; k)

)

as required, where the last line follows because the dropped terms do not depend on the choice. This

proves the result for all �nite T:
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We now turn to in�nite horizon stationary models. We start by de�ning a cx an ix and a uix for each

x analogously to the �nite horizon case and set:

u�j (x) = uj(x) + cx � uix(x) +
1X
�=1

XX
x�=1

�� [u�1(x� )� u1(x� )]
�
����1(x� jxt; l(x; t))� ����1(x� jxt; j)

�
or in matrix notation:

u�j = uj + c� ~u+ � (F1 � Fj) [I � �F1]�1 (u�1 � u1)

which is the result in the text.

Proof of Theorem 3. Substituting in for vjt(zt)� v1t(zt) in (12) with the corresponding expression in

(13) implies:

 1[pt(zt)]�  j [pt(zt)] = ujt(zt) +

TX
�=t+1

ZX
z�=1

���t 1[p� (z� )]
�
����1(z� jzt; j)� ����1(z� jzt; 1)

�
Solving for ujt(zt) completes the �rst part of the theorem:

ujt(zt) =  1[pt(zt)]�  j [pt(zt)] +
TX

�=t+1

ZX
z�=1

���t 1[p� (z� )]
�
����1(z� jzt; 1)� ����1(z� jzt; j)

�
(49)

To prove the second part, note that the two decision sequences set the initial choices such that djt = 1 or

d1t = 1 and then both decision sequences set d1t0 = 1 for all t0 > t. From the de�nition of F1, the columns

of F �1 gives the probabilities of being in each state after � periods conditional choosing alternative 1 in

each of those periods. The rows indicate how these probabilities di¤er given the initial state. Hence, for

� � 1, the (z; z0) element of F �1 is ��t+��1(z0jz; 1). Similarly, the (z; z0) element of FjF � is ��t+��1(z0jz; j).

Using the matrix notation de�ned in the theorem, we can express uj as:

uj = 	j �	1 +
1X
�=1

�� (F1 � Fj)F ��11 	1 = 	j �	1 + � (F1 � Fj)
 1X
�=0

��F �1

!
	1 (50)

Noting that �fj(z0jz) > 0 for all (j; z; z0) and �
PZ

z0=1 fj(z
0jz) = � < 1 for all (j; z) ; the existence of

[I � �F1]�1 follows from Hadley (page 118, 1961) with:

Q �
1X
�=0

��F �1 = I + �QF1 = [I � �F1]
�1

Substituting the expression for Q into (50) we obtain:

uj = 	j �	1 + � (F1 � Fj) [I � �F1]�1 	1

which proves the theorem.
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Proof of Theorem 4. Note that if the V�s were known we would be exactly identi�ed.

Proof of Theorem 5. First we demonstrate by backwards induction that the equations characterizing

�nite dependence, (20) and (21) ; fully capture the empirical content of the model. That is, if the sample

was drawn from whole population then, given F and G repeatedly applying (21) can be used to identify

u up to a normalization.

Next we de�ne bu; an element in the parameter space, which induces the same behavior as the data
generating process from u as:

bu1t(x) =
8>><>>:

 1[pt(x)]�  j [pt(x)]

�
Pt+�

�=t+1

PJ
i=1

PX
x�=1

���t i[p� (x� )]�d
�
i� (x� jj)����1(x� jj)

9>>=>>;
�d�j� (xjj)����1(xjj)

�d�1� (xjj)����1(xjj) + �d�j� (xjj)����1(xjj)

(51)

and:

bu�jt(x) = u�1t(x) +  1[pt(xt)]�  j [pt(xt)]

+

t+�X
�=t+1

JX
i=1

XX
x�=1

���t i[p� (x� )]�d
�
i� (x� jj)����1(x� jj) (52)

where:

�d�i� (x� jj)����1(x� jj) = d�i� (x� jj)����1(x� jj)� d�i� (x� jk)����1(x� j1)

First we show that bu satis�es the equations characterizing �nite dependence.
Substituting (52) into (51) we obtain:

bu1t(x) = �
u�jt(x)� u�1t(x)

�
�d�j� (xjj)����1(xjj)

�d�1� (xjj)����1(xjj) + �d�j� (xjj)����1(xjj)

which upon rearrangement, and then summing over � and x� yields:

t+�X
�=t+1

JX
i=2

XX
x�=1

���t [ui� (x� )� u1� (x� )]�d�i� (x� jj)����1(x� jj) =

t+�X
�=t+1

XX
x�=1

���tu1� (x� )
�
�d�1� (x� jj)����1(x� jj) + �d�2� (x� jj)����1(x� jj)

�
Appealing to the de�nition of �nite dependence given by (20) it follows from (21) that for all parame-
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terizations u generating the data:

ujt(xt)� u1t(xt) =  1[pt(xt)]�  j [pt(xt)] +
t+�X
�=t+1

JX
i=1

XX
x�=1

���t i[p� (x� )]�d
�
i� (x� jj)����1(x� jj)

+

t+�X
�=t+1

JX
i=2

XX
x�=1

���t [ui� (x� )� u1� (x� )]�d�i� (x� jj)����1(x� jj)

+

t+�X
�=t+1

XX
x�=1

���tu1� (x� )
�
�d�1� (x� jj)����1(x� jj) + �d�2� (x� jj)����1(x� jj)

�
=  1[pt(xt)]�  j [pt(xt)]

+

t+�X
�=t+1

JX
i=1

XX
x�=1

���t fui� (x� ) +  i[p� (x� )]g�d�i� (x� jj)����1(x� jj)

This demonstrates the existence of a normalization bu satisfying the equations that characterize �nite
dependence for the data generating process.

Proof of Theorem 6. De�ne K� (j; xt) as an N�
�+1(j; xt) vector containing the probabilities of transi-

tioning to each of the N�
�+1(j; xt) attainable states given the choice sequence beginning with j and state

xt. Denote D�
k�+1(j) as a vector giving the weight placed on choice k 2 [1; : : : ; J ] for each of the N�+1(j)

possible states at t+ 1. Let D�+1(j) be a (J � 1)N�+1(j; xt) vector de�ned by:

D�+1(j) =

2666666666666664

D�
2�+1(j; xt) � K� (j; xt)

...

D�
k�+1(j; xt) � K� (j; xt)

...

D�
J�+1(j) � K� (j; xt)

3777777777777775
where � refers to element-by-element multiplication.

Denote Fk�+1(j) as an N�+1(j)� (N�
�+2 � 1) which gives the probability of transitioning from each of

the N�+1(j) attainable states given initial choice j to the N�
�+2 � 1 attainable states at � +2 given either

initial choice j or j0. De�ne F�+1(j) as an (N�
�+2 � 1)� ((J � 1)N�+1(j)) matrix given by:

F�+1(j) =

2666666666666664

F2�+1(j)� F1�+1(j)
...

Fk�+1(j)� F1�+1(j)
...

FJ�+1(j)� F1�+1(j)

3777777777777775

T
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The N�
�+2 � 1 system of equations we need to solve can be expressed as:

�
F�+1(j; xt) �F�+1(j0; xt)

�2664 D�+1(j; xt)

D�+1(j0; xt)

3775 = F1�+1(j
0; xt)

TK� (j0; xt)� F1�+1(j; xt)TK� (j; xt)

(53)

implying that if the rank of
�
F�+1(j; xt) �F�+1(j0; xt)

�
is N�

�+2 � 1 then �nite dependence holds at

period � � t+ 1.

Proof of Theorem 7. We can establish that a �nite dependence path exists by showing that the rank

of:

P2t+2
�
F (1)t+1(2) �F (1)t+1(1)

�
is one.

We begin by de�ning the terms in the above expression:

P(2)t+2 =

�
p
(2)
2t+2(2; 2) p

(2)
2t+2(2; 1) p

(2)
2t+2(1; 2) p

(2)
2t+2(1; 1)

�
(54)

�
F (1)t+1(2) �F (1)t+1(1)

�
=

266666666664

p
(2)
2t+1(2; 2) p

(2)
2t+1(2; 1) �p(2)2t+1(1; 2) �p(2)2t+1(1; 1)

p
(2)
1t+1(2; 2) p

(2)
1t+1(2; 1) �p(2)1t+1(1; 2) �p(2)1t+1(1; 1)

�p(2)2t+1(2; 2) �p(2)2t+1(2; 1) p
(2)
2t+1(1; 2) p

(2)
2t+1(1; 1)

�p(2)1t+1(2; 2) �p(2)1t+1(2; 1) p
(2)
1t+1(1; 2) p

(2)
1t+1(1; 1)

377777777775
(55)

These terms will then multiply:

2664 D
(1)
t+1(2; xt)

D
(1)
t+1(1; xt)

3775 =

266666666664

D�
2t+1(2; 2)p

(2)
2t (xt)

D�
2t+1(2; 1)p

(2)
1t (xt)

D�
2t+1(1; 2)p

(2)
2t (xt)

D�
2t+1(1; 1)p

(2)
1t (xt)

377777777775
(56)

Since the D�
2t+1�s are weights on choices, we can set the weights on D

�
2t+1(1; 2) and D

�
2t+1(1; 1) to zero.

Now consider the other two weights. Multiplying the matrices and rearranging terms yields the following

expression:

D�
2t+1(2; 2)p

(2)
2t (xt)

�
p
(2)
2t+2(2; 1)� p

(2)
2t+2(1; 1) + p

(2)
2t+1(2; 2)

h
p
(2)
2t+2(2; 2) + p

(2)
2t+2(1; 1)� p

(2)
2t+2(2; 1)� p

(2)
2t+2(1; 2)

i�
+D�

2t+1(2; 1)p
(2)
2t (xt)

�
p
(2)
2t+2(2; 1)� p

(2)
2t+2(1; 1) + p

(2)
2t+1(2; 1)

h
p
(2)
2t+2(2; 2) + p

(2)
2t+2(1; 1)� p

(2)
2t+2(2; 1)� p

(2)
2t+2(1; 2)

i�
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Note that the expression multiplying each of the D�
2t+1�s are the same except for the weights on the terms

in brackets. Since we have assumed all the states are relevant for the decision, then the term multiplying

D�
2t+1(2; 2) and the term multiplying D�

2t+1(2; 1) cannot both be zero. Hence, there exist decision weights

at t+1 such that the probability of each of player 2�s states is the same on both choice paths. Since player

1�s state will be the same if the same action is chosen on each path at period t+2, the theorem is proved.

Proof of Theorem 8. Denote P (�i) as a 2� 2 matrix given by:

P (�i) =

2664 p
(�i)
1t (x) p

(�i)
2t (x)

p
(�i)
1t+1(x) p

(�i)
2t+1(x)

3775 (57)

Noting that xt provides all the relevant state variables expect for the choice of the competitors, de�ne

U
(i)
2 as:

U
(i)
2 =

2664 U
(i)
2 (1; x)

U
(i)
2 (2; x)

3775 (58)

Finally, de�ne A as:

A =

2664  1t

h
p
(i)
t (x)

i
�  2t

h
p
(i)
t (x)

i
� �

P
j

P
x1t+1

p
(�i)
jt  2

h
p
(i)
t+1(j; 1; x1t+1)

i
ft(x1t+1jx)

 1

h
p
(i)
t+1(x)

i
�  2

h
p
(i)
t+1(x)

i
� �

P
j

P
x1t+2

p
(�i)
jt+1 2

h
p
(i)
t+2(j; 1; x1t+2)

i
ft+1(x1t+2jx)

3775 (59)

The system of equation is then:

P (�i)U
(i)
2 = A (60)

Since by assumption the choice probabilities vary between t and t+ 1, the rank of P (�i) is two, implying

we can invert P (�i) and solve for U (i)2 .

Proof of Theorem 9. Set all D�
2t+1�s to zero except for D

�
2t+1(2; 2). Using the proof for Theorem 9, we

can solve for D�
2t+1(2; 2) such that �nite dependence results under a certain restriction. If this restriction

is violated, then we can solve for D�
2t+1(2; 1) and proceed accordingly.

D�
2t+1(2; 2jxt) is then given by:

??D�
2t+1(2; 2jxt) =

P(2)2t+2(F1t+1(1)F1t(xt)� F1t+1(2)F2t(xt))

p
(2)
2t (xt)

�
p
(2)
2t+2(2; 1)� p

(2)
2t+2(1; 1) + p

(2)
2t+1

h
p
(2)
2t+2(2; 2) + p

(2)
2t+2(1; 1)� p

(2)
2t+2(2; 1)� p

(2)
2t+2(1; 2)

i�
(61)

The restriction is then that the denominator in (??) is non-zero. But if it is zero, then it will not be zero

if we instead set all D�
2t+1�s to zero except for D

�
2t+1(2; 1).
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The numerator of (??) is:�
p
(2)
2t+2(2; 2) p

(2)
2t+2(2; 1) p

(2)
2t+2(1; 2) p

(2)
2t+2(1; 1)

�

�

0BBBBBBBBBB@

266666666664

0 0

0 0

p
(2)
2t+1(1; 2) p

(2)
2t+1(1; 1)

p
(2)
1t+1(1; 2) p

(2)
2t+1(1; 1)

377777777775

2664 p
(2)
2t (xt)

p
(2)
1t (xt)

3775�

266666666664

0 0

0 0

p
(2)
2t+1(2; 2) p

(2)
2t+1(2; 1)

p
(2)
1t+1(2; 2) p

(2)
2t+1(2; 1)

377777777775

2664 p
(2)
2t (xt)

p
(2)
1t (xt)

3775

1CCCCCCCCCCA
=

2X
j=1

p
(2)
2t+2(1; j)

�
p
(2)
2t (xt)

h
p
(2)
jt+1(1; 2)� p

(2)
jt+1(2; 2)

i
+ p

(2)
1t (xt)

h
p
(2)
jt+1(1; 1)� p

(2)
jt+1(2; 1)

i�
Now consider the expression for u(1)2t (2; 2) which can be written as:

u
(1)
2t (2; 2) =  1(pt(2; 2)) + �p

(2)
1t [ 1(pt+1(1; 1))�  1(pt+1(2; 1))] + �p2t(2; 2) 1(pt+1(1; 2))

+�p
(2)
2t (2; 2)D

�
2t+1(2; 2j2; 2)

h
 2(pt+1(2; 2)) + u

(1)
2t+1(2; 2)

i
+ �p

(2)
2t (2; 2)(1�D�

2t+1(2; 2j2; 2)) 1(pt+1(2; 2))

Note that we can normalize one of the ��s to zero. Normalizing �t+1 to zero, substituting in for u2�s, and

rearranging terms yields:

2X
j=1

�
p
(2)
jt (2; 2)� �p

(2)
2t (2; 2)D

�
2t+1(2; 2j2; 2)p

(2)
jt (2; 2)

�
U
(1)
2 (2; j) + �t =

 1(p
(1)
t (2; 2)) + �p

(2)
1t (2; 2)

h
 1(p

(1)
t+1(1; 1))�  1(p

(1)
t+1(2; 1))

i
+ �p

(2)
2t (2; 2) 1(p

(1)
t+1(1; 2))

+�p
(2)
2t (2; 2)D

�
2t+1(2; 2j2; 2) 2(p

(1)
t+1(2; 2)) + �p

(2)
2t (2; 2)(1�D�

2t+1(2; 2j2; 2)) 1(p
(1)
t+1(2; 2))

The analogous expression when the initial state is (2,1) is:

2X
j=1

�
p
(2)
jt (2; 1)� �p2t(2; 1)D�

2t+1(2; 2j2; 2)p
(2)
jt (2; 2)

�
U
(1)
2 (2; j) + �t =

 1(p
(1)
t (2; 1)) + �p

(2)
1t (2; 1)

h
 1(p

(1)
t+1(1; 1))�  1(p

(1)
t+1(2; 1))

i
+ �p

(2)
2t (2; 1) 1(p

(1)
t+1(1; 2))

+�p
(2)
2t (2; 1)D

�
2t+1(2; 2j2; 1) 2(p

(1)
t+1(2; 2)) + �p

(2)
2t (2; 1)(1�D�

2t+1(2; 2j2; 1)) 1(p
(1)
t+1(2; 2))

The system above has two equations and three unknowns. Rolling back one period gives us two more

equations with one more unknown, �t�1:

2X
j=1

�
p
(2)
jt�1(2; 2)� �p2t�1(2; 2)D�

2t(2; 2j2; 2)p
(2)
jt�1(2; 2)

�
U
(1)
2 (2; j) + �t�1 =

 1(p
(1)
t�1(2; 2)) + �p

(2)
1t�1(2; 2)

h
 1(p

(1)
t (1; 1))�  1(p

(1)
t (2; 1))

i
+ �p2t�1(2; 2) 1(p

(1)
t (1; 2))

+�p
(2)
2t�1(2; 2)D

�
2t(2; 2j2; 2)

h
 2(p

(1)
t (2; 2)) + �t

i
+ �p

(2)
2t�1(2; 2)(1�D�

2t(2; 2j2; 2)) 1(p
(1)
t (2; 2))
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2X
j=1

�
p
(2)
jt�1(2; 1)� �p2t�1(2; 1)D�

2t(2; 2j2; 1)p
(2)
jt�1(2; 1)

�
U
(1)
2 (2; j) + �t�1 =

 1(p
(1)
t�1(2; 1)) + �p

(2)
1t�1(2; 1)

h
 1(p

(1)
t (1; 1))�  1(p

(1)
t (2; 1))

i
+ �p2t�1(2; 1) 1(p

(1)
t (1; 2))

+�p
(2)
2t�1(2; 1)D

�
2t(2; 2j2; 1)

h
 2(p

(1)
t (2; 2)) + �t

i
+ �p

(2)
2t�1(2; 1)(1�D�

2t(2; 2j2; 1)) 1(p
(1)
t (2; 2))

implying we now have four equations and four unknowns.
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