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Abstract

A wide variety of choice behavior inconsistent with preference maxi-

mization can be explained by Manzini and Mariotti’s Rational Shortlist

Methods. Choices are made by sequentially applying a pair of asym-

metric binary relations (rationales) to eliminate inferior alternatives.

Manzini and Mariotti’s axiomatic treatment elegantly describes which

behavior can be explained by this model. However, it leaves unanswered

what can be inferred, from observed behavior, about the underlying ra-

tionales. Establishing this connection is fundamental not only for ap-

plied and empirical work but also for meaningful welfare analysis. Our

results tightly characterize the surprisingly rich relationship between

behavior and the underlying rationales. (JEL D01)
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I. Introduction

Manzini and Mariotti [2007] study a choice procedure, called Rational Shortlist

Methods (RSM), where the decision-maker maximizes in stages using a pair

(P1, P2) of rationales (i.e. asymmetric but not necessarily transitive prefer-

ences). Faced with a menu of alternatives, the decision-maker first eliminates

any option which is dominated by another alternative according to the ratio-

nale P1 before selecting, from the remaining alternatives, the option which

maximizes the rationale P2.

While they provide an axiomatization of the model, Manzini and Mariotti

do not address the important issue of identification: to what extent and how

does choice pin down the underlying rationales? In this paper, we provide

six results related to identification in the RSM model. Together, our results

show that identification in this model is at once relatively straightforward and

surprisingly rich.

In the spirit of Samuelson’s [1938] revealed preference, Proposition 1 defines

“revealed rationales” for choice behavior consistent with the RSM model. In

contrast to the standard model of preference maximization, the revealed ratio-

nales are only partial estimates of the underlying rationales. Indeed, Propo-

sition 2 establishes that the revealed rationales can be used to construct a

uniquely “most cautious” and a uniquely “least cautious” estimate for each

rationale. This result has significant implications (discussed in Section IV

below) for welfare analysis based on the RSM model.

In turn, Propositions 3 and 4 use the revealed rationales to provide, for

any choice function consistent with the RSM model, an exact characterization

of all rationale pairs that lead to the same choice behavior. As a general

rule, multiple pairs of rationales induce the same behavior. Effectively, these

results pin down the set of valid “completions” of the partial estimates derived

in Proposition 1.

Proposition 5 establishes a systematic way to modify a given pair of ratio-

nales without affecting the associated choice behavior. Like the “uniqueness

up to affine transformations” result for models with cardinal utility representa-

tions, this result provides a simple way—which does not involve considering be-

2



havior directly—to determine whether two different representations (i.e. pairs

of rationales) induce the same behavior. Interestingly, this useful “uniqueness

result” has no analog in the literature (discussed in Section V below) related

to identification in models of procedural decision-making.

Finally, Proposition 6 provides necessary and sufficient conditions for lim-

ited choice data to be consistent with the RSM model. Much like the Strong

Axiom of Revealed Preference (Houthakker [1950]; Samuelson [1950]) does for

the standard model of preference maximization, this result provides a straight-

forward way to test the RSM model against the kind of limited choice data

that is frequently encountered in the real world.

Identification results like the ones established in this paper are critical

for understanding models of decision-making. Intuitively, they determine the

extent to which meaning can be inferred from choice data and, conversely, the

extent to which the representation can be given meaning in terms of behavior

(Dekel and Lipman [2011]). While this connection is clearly central to the

goal of decision theory, it is equally important for empirical and applied work

(Spiegler [2008]).

Some Motivating Examples

Some examples will help to illustrate the importance of our results for

empirical and applied work on the RSM model. At this point, our goal is

simply to highlight the practical significance of our six results. In Section IV,

we revisit these examples and discuss, at greater length, the implications of

our identification results for welfare analysis and policy making.

The first three examples examine situations where the objective of the

“analyst” (whether an economist, a policy maker, or a market participant) is

to develop a better understanding of decision-makers who choose according to

rational shortlist methods.

Example I (Multi-Criterial Choice) In many choice situations, a variety of
product dimensions are important to consumers. Evidence suggests that, instead
of aggregating these criteria, consumers tend to evaluate the dimensions lexico-
graphically (Tversky et al. [1988]; Dulleck et al. [2011]). After eliminating options
which are inferior on the most important product dimension, the consumer selects
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the product which is most preferred on the second most important dimension.
Given purchasing data consistent with this model of choice, what can the analyst
infer about the criteria used by consumers?

The multi-criterial choice procedure described in this example is a rational

shortlist method where the two rationales reflect the consumer’s ranking of

alternatives along the most important product dimensions. In some cases, it is

fairly straightforward for the analyst to determine which dimensions are most

important to consumers. In the experiment of Tversky et al., for instance, the

choice scenarios were framed in a way that naturally led subjects to view one of

the two specified product dimensions as being more important. In Dulleck et

al.’s study of online purchasing behavior, the dimensions likely to be important

were limited by the particular structure of the choice environment. Specifically,

the shopping website considered in the study only provided information about

price, seller reputation, and shipping costs of the products offered for sale.

Even when the analyst cannot directly observe the dimensions that are

most important to consumers, Propositions 1 and 2 establish that it is possible

to draw inferences about these dimensions from choice behavior. Proposition 1,

which defines revealed rationales for choice behavior consistent with the RSM

model, establishes lower bounds on the content of each rationale. Proposition

2, in turn, uses the revealed rationales to establish upper bounds for each

rationale. Effectively, the lower bounds determine which preference pairs must

belong to each rationale while the upper bounds determine which preference

pairs may belong to each rationale (and, consequently, which preference pairs

cannot belong to each rationale). Although these bounds do not necessarily

pin down the two rationales exactly, they do provide a simple way for the

analyst to limit the criteria that the consumer might consider important.

For the situation described in Example I, the analyst is interested in both

rationales. In other circumstances, the analyst may be more interested in one

of the rationales. For example:

Example II (Forced Choice) Decision-makers are frequently “forced” to pick a
single alternative. Surveys of consumer preferences, for example, generally require
respondents to choose a single product from each of the proposed choice sets.
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When preference alone is not sufficient to discriminate among all of the feasible
alternatives, the respondent must employ a tie-breaking rule to choose among the
preference-maximizing alternatives. Provided that respondents use a tie-breaking
rule to answer (some of) the survey questions, what can the analyst infer about
their “true” (first stage) preferences?

Forced choice is by no means limited to the scenario considered in the

example. Indeed, it arises anytime the decision-maker must make a choice

but is either indecisive or indifferent among some of the options (see Eliaz

and Ok [2006] for the choice-theoretical distinction between indecisiveness and

indifference). For a wide range of deterministic (as opposed to random) tie-

breaking rules, the choice procedure described in Example II is a rational

shortlist method.1

A different example of forced choice consistent with the RSM model in-

volves a policy maker whose only criterion is efficiency. Since the Pareto rela-

tion is generally incomplete and it is only possible to implement a single policy,

the policy maker must use a different criterion, such as fairness, to break ties

among the Pareto optimal policies (see Houy and Tadenuma [2009]).

Alternatively, the analyst may be more interested in the second rationale.

For example:

Example III (Limited Consideration) In a variety of choice situations, con-
sumers focus on a subset of the alternatives before selecting the most preferred
alternative among those considered (see e.g. Wright and Barbour [1977]). If
the consumer’s first stage consideration set is the product of a process where
alternatives “compete” for the consumer’s attention, it is reasonable that:

- an option that is considered on some menu continues to be considered
when some of the other options are removed; and,

- an option considered on two different menus is also considered when the
two menus are “merged” (into a menu consisting of the options available
on one of the original menus).2

1Interestingly, Danan [2010] provides an economic justification for decision-makers to
favor a deterministic rules.

2If the options considered on A are denoted by Γ(A), (i) is equivalent to Γ(A)∩B ⊆ Γ(B)
for B ⊂ A, and (ii) to Γ(A) ∩ Γ(B) ⊆ Γ(A ∪ B). In the choice theory literature, these
properties are known as α and γ (Sen [1971]).
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What can the analyst infer about consumers’ “true” (second stage) preferences?

It is straightforward to show that the choice procedure described above

is a rational shortlist method.3 While consideration sets have a long history

in the marketing literature (see Roberts and Lattin [1997] for a survey), they

are only now being studied in economics (Masatlioglu, Nakajima, and Ozbay

[2012]; their joint paper with Lleras [2011]; and, Eliaz and Spiegler [2011a]).

Formally, the model in Example III is most closely related to the model of

Lleras et al. [2011] (see Theorem 4 of their paper), the key difference being

that it does not require either rationale to be transitive. With respect to the

first rationale, at least, transitivity seems ancillary to the interpretation of the

model given in Example III: if product A “outcompetes” another product B

for the consumer’s attention and B outcompetes a third product C, it is not

clear why A must outcompete C.

The common feature of Examples II and III is that one of the rationales

acts as a nuisance parameter which interferes with the analyst’s ability to

determine the decision-maker’s “true” preference (i.e. the other rationale).4

Proposition 1 establishes simple revealed preference tests for both rationales

that are based on the decision-maker’s choices from nested sets. These tests

provide an easy way for the analyst to identify which preference pairs must be

part of the decision-maker’s “true” preference (in circumstances where “true”

preference coincides with one of the two rationales).

While the examples above highlight the importance of Propositions 1 and

2 for empirical questions related to the RSM model, the next three examples

illustrate the importance of Propositions 3 to 6 for applications of the model

in the growing field of behavioral industrial organization (see Spiegler [2011]

for a recent survey).5 Each examines a situation where the objective of the

analyst is to determine the impact of a proposed policy change on the behavior

of consumers who choose according to rational shortlist methods.

3Any choice correspondence satisfying α and γ can be rationalized by an asymmetric
preference (Sen [1971]).

4In Example II, the nuisance parameter is the tie-breaking rule. In Example III, it is the
consideration set.

5Some additional applications of the RSM model are discussed in Section IV.b below.
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Examples IV and V are concerned with a common advertising practice,

known as comparative advertising, whose sole purpose is to communicate to

consumers that one product is inferior to another. Although comparative

advertising has been studied extensively in marketing (see Grewal et al. [1997]

for a survey), very few papers in economics (with the exception of Anderson-

Renault [2009] and Emons-Fluet [2012]) have examined this practice.

Example IV (Advertising) A firm asks their advertising agency to conduct a
market survey in order to determine why the sales of their new laundry detergent
are lagging. The agency finds that many consumers are ignorant of the fact that
the new product compares favorably with some of its competitors. Based on their
findings, the agency recommends an aggressive comparative advertising strategy
that targets these competitors. Should the firm follow their recommendation?

When consumers choose by rational shortlist methods, a firm may become

more competitive not only by making its product more appealing but also by

affecting the composition of the rationales used by consumers. If the first ra-

tionale contains the product comparisons which are more salient to consumers

and the second rationale contains those which are less salient, a firm may

be able to “promote” comparisons to the first rationale with more aggressive

advertising or, conversely, “demote” comparisons by obfuscating the relation-

ship with competing products. In order to devise a profitable advertising

strategy, the firm must have a good idea of the rationales used by consumers.

Propositions 3 and 4 provide a straightforward way to determine, directly from

consumer choice data, every pair of rationales that is consistent with behavior.

Example V (Advertising, continued) Another producer of laundry detergent
has an accurate picture of the rationales used by consumers (perhaps because it
understands how advertising has made certain product comparisons more salient
to consumers). Assuming the strategies of its competitors are fixed in the short
run, can the firm cut advertising costs without affecting consumer choices?

In the RSM model, different pairs of rationales may lead to the same be-

havior. Effectively, the firm’s problem is to choose the rationale pair which

minimizes advertising expenditures among those that leave choice behavior un-

changed. In order to carry out this cost minimization exercise, the firm must

7



first identify all rationale pairs which give rise to the same choice behavior

as the original pair. Given an RSM-representation of behavior, Proposition 5

provides a simple way for the analyst to determine all pairs of rationales which

lead to the same choice behavior.

Example VI is concerned with a different marketing practice, known as

decoy marketing, that is related to the attraction effect (Huber, Payne, and

Puto [1982]). The idea is to introduce a “decoy” product whose sole purpose

is to attract the consumer to purchase a different product.

Example VI (Marketing) After losing market share to their competitor Pep, a
soft-drink company decided to replace their Kola with a sweeter version called New
Kola. Since the new product unanimously beat Pep and Kola in a blind taste test,
the producer was confident that the strategy would increase sales. Unexpectedly,
Pep customers instead switched to a different brand, Regal, after the product
swap. Desperate to boost sales, the producer is now considering the possibility of
re-introducing Kola under the brand Kola Klassic. Will this strategy be effective?

Unlike the model of preference maximization, the RSM model accommo-

dates the attraction effect: the addition of a relatively unappealing product

may induce the consumer to change her choice. In terms of the example, the

model admits the possibility that consumers select a Kola product when both

versions are available although neither is selected in the absence of the other.

While the behavior of the Pep customers who switched to Regal is inconsis-

tent with preference maximization6 and there is evidence to suggest that soft-

drink purchasing involves lexicographic multi-criterial decision-making (Leven

and Levine [1996]), these factors alone are not enough to recommend the

proposed decoy marketing strategy. At a minimum, the producer must also

determine that the behavior of former Pep customers is consistent with a ra-

tional shortlist method which leads them to choose one of the Kola products

when both are available. Otherwise, there is little to suggest that these con-

sumers might be inclined to switch to a Kola product when Kola Klassic is

re-introduced. In circumstances like these where the analyst has limited access

6They violate WARP by choosing only Pep in the presence of Regal and only Regal in
the presence of Pep.
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to consumer choice data, Proposition 6 provides a simple way to determine

whether the available data is nonetheless consistent with the RSM model.

The remainder of this paper is structured as follows. After presenting

the RSM model more formally and illustrating the task of identification with

an example in Section II, we detail our six results in Section III. Section IV

revisits the examples above and discusses the implications of our results for

policy making. Section V concludes with a discussion of related models and

extensions.

II. The RSM Model and an Example

A rationale is an asymmetric binary relation over a finite choice domain X.

A Rational Shortlist Method (RSM) is a choice function c(P1,P2) : 2X \ ∅ → X

induced by a pair (P1, P2) of rationales. For any menu A ⊆ X, the choice

induced by (P1, P2) is given by

c(P1,P2)(A) ≡ max(max(A;P1);P2)

where max(B;P ) = {a ∈ B : no b ∈ B s.t. bPa} denotes the set of P -maximal

alternatives in B. Conversely, a choice function c is RSM-representable if there

exists a pair of rationales (P1, P2) such that c(A) = c(P1,P2)(A) for any menu

of alternatives A ⊆ X.

Manzini and Mariotti [2007] provide an axiomatic characterization of the

RSM model (restated in the Appendix).7 To establish sufficiency, Manzini

and Mariotti show that any choice function c satisfying their axioms can be

represented by a rationale pair (P ∗1 , P
c) where:

- P ∗1 is the binary relation defined by aP ∗1 b if c(A) 6= b for all A ⊇ {a, b};
and,

- P c is the pairwise revealed preference defined by aP cb if c(x, y) = a.

7Rubinstein and Salant [2008] call the model Post-Dominance Rationality and give a
different axiomatization.
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In passing, they observe that there may be additional RSM-representations

of behavior (see Remark 1 of their paper). A simple example will serve to

illustrate this feature of the RSM model and help provide some intuition for

the identification results in Section III below.

Example 1 Consider a choice function c on X = {w, x, y, z} with P c (pair-

wise choice) given by:

x y

w z

P c

In addition, suppose that c(w, x, y) = w and c(x, y, z) = x.8

While P c contains cycles, the choices are consistent with the RSM model

(see Remark 4 of the Appendix). As a preliminary point, note that the two

rationales (i.e. P1 ∪ P2) must contain P c. Otherwise, the choices induced by

(P1, P2) will differ from c on some two-element set(s). To say something more

about identification, suppose that (P1, P2) represents c.

Consider the task of assigning the revealed preferences in Table 1 to the

rationales P1 and P2:

z

yx

Table 1: Revealed preferences P c on {x, y, z}

8For {w, y, z} and {w, x, z}, P c is transitive. To be consistent with the RSM
model, the P c-maximal alternative must be chosen. So, it must be that c(w, y, z) =
max({w, y, z};P c) = y and c(w, x, z) = max({w, x, z};P c) = z.
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Since c(x, y, z) = x, it follows that yP1z. Otherwise, z cannot be eliminated in

the first stage. This, in turn, precludes c(x, y, z) = x. Moreover, c(x, y, z) = x

implies that zP1x cannot occur. Otherwise, x is eliminated in the first stage

which again precludes c(x, y, z) = x. Since P1 and P2 must together contain

P c however, it follows that zP2x.

Similar reasoning establishes that xP1y and yP2w for the 3-cycle {w, x, y}.
This exhausts the inferences that can be drawn from the data provided. By

observing the choice from X however, it is possible to draw inferences about

how to assign the revealed preference pairs wP cx and zP cw. In order for

behavior to be consistent with the RSM model, the only possible choices are

(i) c(X) = w and (ii) c(X) = x (see Remark 4 of the Appendix).

For (i), it must be that zP2w. The reasoning is similar to that given for

3-cycles. Because w is chosen in the presence of an alternative z which is

revealed preferred, zP1w cannot occur. Otherwise, w is eliminated from X in

the first stage which, in turn, precludes the choice c(X) = w. Since P1 and

P2 must together contain P c however, it follows that zP2w. In this case, the

choice data cannot help resolve how to assign the revealed preference wP cx.

For (ii), no such indeterminacy arises. By the same reasoning as the pre-

vious case, the fact that x is chosen in the presence of w (which is revealed

preferred) implies that wP2x. To see that that zP1w, note that c(X) = x

requires w to be eliminated from X in the first stage. Otherwise, w eliminates

x in the second stage. Since c(w, x, y) = w precludes yP1w, it must be that

zP1w.

Table 2 summarizes the features of the rationales (P1, P2) identified by the

analysis above:

Choices \ Rationales P1 P2

c(x, y, z) = x y z z x
c(w, x, y) = w x y y w

(i) c(X) = w - - z w

(ii) c(X) = x z w w x

Table 2: Inferences drawn from Example 1
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An interesting feature of the analysis is that any preference pair which must

belong to the second rationale cannot also belong to the first. In fact, the

only reason to assign a pair to P2 is that it induces choices different from

c when assigned to P1. In contrast, the second rationale may repeat any

comparison carried out by the first rationale. For c(X) = x, this observation, in

combination with Table 1, suggests a class of representations R = {(P1, P
i
2)}i

defined by:

R : P1 ≡ {(y, z), (x, y), (z, w)} and P i
2 ⊇ P2 ≡ {(z, x), (y, w), (w, x)}

It is straightforward to show that any pair (P1, P
i
2) is an RSM-representation

of c (provided that P i
2 is asymmetric). An appealing feature of (P1, P2) is that

it is the unique minimal representation of c in the sense that P i
2 ⊃ P2 for any

other pair (P1, P
i
2) that represents c.

For c(X) = w, there are two distinct classes of representations

R̂ : P̂1 ≡ {(y, z), (x, y), (w, x)} and P̂ i
2 ⊇ P̂2 ≡ {(z, x), (y, w), (z, w)}

R̃ : P̃1 ≡ {(y, z), (x, y)} and P̃ i
2 ⊇ P̃2 ≡ {(z, x), (y, w), (z, w), (w, x)}

which differ only in terms of how they attribute wP cx. Because of the in-

determinacy related to wP cx, there are multiple minimal representations of

behavior. In particular, both (P̂1, P̂2) and (P̃1, P̃2) represent c. Any other pair

(P1, P2) that represents c must contain one (or even both) of these represen-

tations. However, neither (P̂1, P̂2) nor (P̃1, P̃2) contains the other.

III. Identification

In this section, we present six results related to identification in the RSM

model. After defining revealed rationales for behavior consistent with the

RSM model in part (a), we show in part (b) that these revealed rationales

can be used to describe the class of RSM-representations. Part (c) tackles

the issue of uniqueness by providing a systematic way to go between RSM-
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representations without considering the associated choice behavior. Finally,

part (d) addresses the issue of identification with limited choice data.

a. Revealed Rationales

Example 1 suggests that the RSM model is amenable to a simple revealed

preference exercise. To fix ideas, suppose that some choice function c is RSM-

representable. First, consider the task of identifying the features of the second

rationale. Generalizing the analysis from the example, a is revealed preferred

to b by the second rationale if a is revealed preferred to b (i.e. aP cb) and there

exists a menu A ⊃ {a, b} such that c(A) = b. The idea is that b can only

be chosen in the presence of a more preferred alternative a if the comparison

between a and b occurs after there is an opportunity to eliminate a in the first

stage.

Next, consider the task of identifying the features of the first rationale.

Generalizing the intuition from the example, a necessary condition for a to

be revealed preferred to b by the first rationale is that a is revealed preferred

to b (i.e. aP cb) and there is some menu A ⊃ {a, b} such that bP cc(A). The

reasoning is similar to that given in the previous paragraph. For c(A) to be

chosen in the presence of a more preferred alternative b, the more preferred

alternative must actually be eliminated in the first stage. However, this con-

dition alone is not sufficient. In particular, a must also be the “only way” to

eliminate b in the first stage on A. In other words, the comparison between b

and any other alternative a′ in the upper contour set of b

UCP c(b;A) ≡ {a′ ∈ A : a′P cb}

must be carried out in the second stage. Formalizing these observations gives

the following:

Definition 1 Let the revealed 2-rationale P c
2 be defined by aP c

2 b if:

(i) aP cb; and,

(ii) there exists some A ⊃ {a, b} such that c(A) = b.

Given P c
2 , let the revealed 1-rationale P c

1 be defined by aP c
1 b if:
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(i) aP cb; and,

(ii) there exists some A ⊃ {a, b} such that bP cc(A) and a′P c
2 b for all a′ ∈

UCP c(b;A \ {a}).

Although both revealed rationales are sub-relations of the revealed preference

(i.e. P c
i ⊆ P c for i = 1, 2), it is also possible to define them without reference

to pairwise choices. In particular:

Proposition 1 Suppose c is RSM-representable. Then:

(i) aP c
1 b if and only if c(A) = b and c(A ∪ {a}) /∈ {a, b} for some A ⊆ X.

(ii) aP c
2 b if and only if c(A) = b and c(B) = a for some A,B ⊆ X such

that {a, b} ⊆ B ⊂ A.

This result shows that both revealed rationales may be defined in terms of

choice on a pair of nested menus. The revealed 1-rationale is identified with

the choice of a “third alternative” when a is added to a menu where b is

chosen. In turn, the revealed 2-rationale is identified with a “choice reversal”

when options are added to a menu where b is chosen in the presence of a.

Proposition 1 also establishes the connection with some other preference

relations defined in prior work on the RSM model. In particular, P c
1 coincides

with the dominance relation defined by Rubinstein and Salant [2008] while P c
2

coincides with the progressive knowledge relation defined by Houy [2008] (see

also Cherepanov, Feddersen, and Sandroni [2013] who study the same relation

for a model generalizing the RSM model). Interestingly, P c
2 also coincides with

the revealed preference pairs in P c that are not part of the rationale P ∗1 defined

by Manzini and Mariotti [2007].

This last observation motivates the following definition. Given a choice

function c, define the c-complement of a binary relation P to be the binary

relation P ≡ P c \ P that contains the revealed preference pairs not in P .

In other words, P ∗1 is the c-complement of P c
2 . For concordance, denote the

c-complement of P c
1 by P ∗2 . The next result establishes that the revealed

rationales and their c-complements act as bounds on the RSM-representations

of behavior. To state the result, let P−1 ≡ {(b, a) ∈ X2 : (a, b) ∈ P} denote

the inverse of the binary relation P .
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Proposition 2 Suppose (P1, P2) is an RSM-representation of c. Then:

(i) P1 is bounded below by the revealed rationale P c
1 and P2 is bounded

below by the revealed rationale P c
2 ; and

(ii) P1 is bounded above by the c-complement P ∗1 and P2 \ (P1 ∪ P−11 ) is

bounded above by the c-complement P ∗2 .

Part (i) of the result shows that the revealed rationales capture features which

are common to every RSM-representation of behavior. To see this, suppose

there are n different rationale pairs R(c) ≡ {(P 1
1 , P

1
2 ), ..., (P n

1 , P
n
2 )} that can

be used to represent c. Then, Proposition 2(i) implies that P c
1 ⊆ ∩n

j=1P
j
1 and

P c
2 ⊆ ∩n

j=1P
j
2 . In words, the revealed rationales serve as “lower bounds” for

the rationales which can be used to represent behavior.

Conversely, the “upper bounds” P ∗1 and P ∗2 capture features which may

be part of some RSM-representation. For the first rationale, Proposition 2(ii)

implies ∪nj=1P
j
1 ⊆ P ∗1 . Since P ∗1 ≡ P c \ P c

2 by definition, the upper bound also

describes revealed preference pairs which are not necessarily part of the second

rationale. The upper bound of the second rationale has a similar interpreta-

tion. The only difference is that second rationale may contain more than the

preference pairs in P ∗2 . In particular, it may repeat any comparison carried out

in the first stage. Since these repeat comparisons are never actually carried

out (one of the alternatives involved must be eliminated in the first stage),

they may be resolved differently by the second rationale.

b. Representations of Behavior

The first result concerns minimal representations of behavior. An RSM-

representation (P1, P2) is said to be minimal if the two rationales: (i) avoid

duplication in the sense that aP1b and aP2b for no alternatives a, b ∈ X; and,

(ii) avoid conflict in the sense that aP1b and bP2a for no a, b ∈ X. Formally:

Definition 2 An RSM-representation (P1, P2) of c is minimal if

(P1 ∪ P−11 ) ∩ (P2 ∪ P−12 ) = ∅.
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To state the result, let Pi(c) ≡ {P : P c
i ⊆ P ⊆ P ∗i } denote the collection

of ith rationales nested between the revealed i-rationale and the c-complement

of the other revealed rationale. Given a rationale Pi which is part of an RSM-

representation (P1, P2), let P−i denote the other rationale.

Proposition 3 Suppose c is RSM-representable. Then, for i = 1, 2:

(i) P c
i ⊆ P ∗i so that the interval of rationales Pi(c) is non-empty; and

(ii) (P1, P2) is a minimal representation of c if and only if Pi ∈ Pi(c) and

P−i = Pi.

Consequently, any RSM-representable c has a minimal representation—which

is unique if and only if P c
1 ∪ P c

2 = P c.

The result establishes that there are minimal representations of behavior,

namely (P c
1 , P

∗
2 ) and (P ∗1 , P

c
2 ), whose rationales coincide with the bounds iden-

tified in Proposition 2. This observation has two implications.9 For one, it

shows that the revealed rationales do indeed capture all of the features shared

by the representations and, thus, embody all of the inferences that might be

drawn from the data. Formally, P c
1 = ∩n

j=1P
j
1 and P c

2 = ∩nj=1P
j
2 (where, recall,

R(c) ≡ {(P j
1 , P

j
2 )}nj=1 denotes the collection of rationale pairs that represent

c).10 Practically, it also establishes that the revealed rationales can be used

directly to construct representations of behavior.

More broadly, Proposition 3 establishes that there is a range of minimal

representations between the extremes (P c
1 , P

∗
2 ) and (P ∗1 , P

c
2 ). To clarify, con-

sider the case where P c is a linear order. Then, c has a variety of minimal

representations ranging from (∅, P c) to (P c, ∅). In particular, any bi-partition

(P1, P2) of P c defines a minimal representation. The situation is analogous

when the revealed preference is not a linear order. Between (P c
1 , P

∗
2 ) and

(P ∗1 , P
c
2 ), any assignment of the “indeterminate” revealed preference pairs

9Incidentally, this observation also has implications for the special case of the RSM model
with acyclic rationales. For that model, it is equally clear that (P ∗1 , P

c
2 ) represents behavior.

As such, the revealed 2-rationale P c
2 must be acyclic. Houy [2008] leverages this observation

about P c
2 to give an axiomatization of the acyclic RSM model.

10Similarly, P ∗1 = ∪nj=1P
j
1 . In other words, P ∗1 captures all of the features that are part

of some representation.
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not assigned to either revealed rationale defines a representation.11 In other

words, (P c
1 ∪ P in

1 , P
c
2 ∪ P in

2 ) represents c for any bi-partition {P in
1 , P

in
2 } of

P in ≡ P c
1 ∪ P c

2 . Intuitively, P in captures the indeterminacy in how to assign

the pairs in P c. Naturally, c has a unique minimal representation if and only

if there is no indeterminacy (P in = ∅) or, equivalently, the revealed rationales

exhaust the revealed preference (P c
1 ∪ P c

2 = P c).

Example 1 illustrates behavior which has a unique minimal representation.

Even when this is the case, there exist additional representations where the

second rationale duplicates or conflicts with the first rationale. In fact, any

RSM-representation may be described as a minimal representation with some

amount of duplication and/or conflict “added” to the second rationale:

Proposition 4 The pair (P1, P2) is an RSM-representation of c if and only if

(i) (P1, P1) is a minimal representation of c, and

(ii) P2 = P1 t P as
1 for some rationale P as

1 ⊂ P1 ∪ P−11 .

This generalizes Proposition 3 by establishing that any ith rationale (that

can be used to represent behavior) defines a range of representations. At

one extreme is a representation involving minimal duplication and conflict.

At the other, there is a variety of representations involving maximal duplica-

tion and/or conflict. The representation (P ∗1 , P
c) proposed by Manzini and

Mariotti [2007], for instance, involves maximal duplication. Put in terms of

Proposition 4, their representation adds P ∗1 = P c \ P c
2 to the second rationale

of the minimal representation (P ∗1 , P
c
2 ). Likewise, the representation (P c

1 , P
c)

proposed by Rubinstein and Salant [2008] also involves maximal duplication

since (P c
1 , P

∗
2 ) is a minimal representation and, moreover, P c = P ∗2 t P c

1 .

c. Uniqueness

Given a pair of rationales (P1, P2), the induced choice behavior c(P1,P2) may

be altered by transformations that move preference pairs from one rationale

11The reader may suspect that there is even more structure here than indicated. Indeed,
it is straightforward to show that the collection of minimal representations Pc forms a
lattice with meet and join operations defined by (P1, P2)∧ (P̃1, P̃2) ≡ (P1 ∩ P̃1, P2 ∪ P̃2) and

(P1, P2) ∨ (P̃1, P̃2) ≡ (P1 ∪ P̃1, P2 ∩ P̃2) for any (P1, P2), (P̃1, P̃2) ∈ Pc.
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to the other, add preference pairs to the rationales, or even remove prefer-

ence pairs. The next result identifies transformations of the representation

that leave choice behavior unchanged. The appeal of this result is that these

choice-invariant transformations can be characterized entirely in terms of the

rationales. Effectively, this is a uniqueness result for representations in the

RSM model.

Let P denote the collection of rationale pairs (P1, P2) such that P1 ∪ P2 is

a total asymmetric binary relation12 on X and P1 ∩ P2 = ∅. By Proposition

3, any RSM-representable choice function c is minimally represented by some

pair (P1, P2) ∈ P .13 Indeed, P contains every minimal representation of every

choice function consistent with the RSM model.

Now, suppose (P1, P2) ∈ P is a minimal RSM-representation of c such

that aP2b. When can (a, b) be moved to the first rationale without affecting

behavior? The following condition captures those circumstances where it is

“redundant” to include (a, b) in the second rationale:

Definition 3 (Redundancy Condition) Given (P1, P2) ∈ P, (a, b) ∈ P2 is

(P1, P2)-redundant if, for all {ai}ni=1 ⊆ X such that an = a and (ai, ai+1) ∈
P1 for i = 1, ..., n− 1:

(aj, b) 6∈ P1 for j = 2, ..., n implies (a1, b) ∈ P1 ∪ P2.

More plainly, the pair (a, b) ∈ P2 is (P1, P2)-redundant if, for any P1-chain

(a1, ..., a), the fact that b is not eliminated in the first stage by any member of

the sub-chain (a2, ..., a) implies that b is not preferred to a1 by either rationale.

A simple example will help to illustrate this condition:

Example 2 Consider the following minimal representation (P1, P2) of a choice

function c:

12A binary relation P on X is total if aPb or bPa for all a, b ∈ X.
13It is straightforward to see that P1 ∪P2 is a total asymmetric binary relation such that

P1 ∩ P2 = ∅ if and only if (P1, P2) is a minimal rationale pair. This establishes the formal
connection with Proposition 3.
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P1 P2

y z v z
y v w z
x v w x
v w w y

y x
z x

For this representation of c, the pair (z, x) is redundant. To see this, observe

that the only P1-chain ending in z is (y, z). Since (y, x) ∈ P2, the redundancy

condition is satisfied. Another redundant pair is (y, x). Since there is no P1-

chain that terminates in y, (y, x) vacuously satisfies the redundancy condition.

In fact, these are the only redundant pairs in P2. With (w, z), for instance, the

P1-chain (x, v, w) satisfies the premise of the redundancy condition. Since it is

not true that (x, z) ∈ P1∪P2 however, the redundancy condition is violated.14

For this example, it is easy to check that a pair in P2 can be moved to P1

without affecting choice behavior if and only if the pair satisfies the redundancy

condition. In particular, choice behavior is unaffected by moving the pairs

(z, x) and (y, x) to P1. Conversely, choice is affected by moving any other pair

in P2.

An appealing feature of the redundancy condition is that it also determines

which preference pairs can be moved in the other direction. To move a pair

(a, b) from P1 to P2 without affecting choice, it must be that, once moved to

P2, the pair (a, b) would leave choice behavior unchanged when it is moved

back to P1. In other words, (a, b) must be (P1 \ (a, b), P2 ∪ (a, b))-redundant.15

In fact, the only other requirement is that (P1 \ (a, b), P2∪ (a, b)) represents

a choice function. In general, there are rationale pairs in P which induce

“empty choice” for some menus. Intuitively, this occurs when there are cycles

in P1 or cycles in P2 among the alternatives which survive P1. To rule out

14The pair (v, z) is not redundant since (x, v) ∈ P1 but (x, z) /∈ P1 ∪ P2. The same kind
reasoning establishes that neither (w, y) nor (w, x) is redundant. For both, simply consider
the sequence (v, w).

15To avoid cluttered notation, we use P1 \ (a, b) and P2 ∪ (a, b) to denote P1 \ {(a, b)} and
P2 ∪ {(a, b)}, respectively.
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empty choice, it is enough that P1 is acyclic and, moreover, that P1 “breaks”

any cycle in P2. Formally, P2 is said to be P1-acyclic if, for every cycle {ai}ni=1

in P2, there exist alternatives aj, ak ∈ {ai}ni=1 such that ajP1ak. Let PRSM ≡
{(P1, P2) ∈ P : P1 is acyclic and P2 is P1-acyclic} denote the sub-collection of

P consisting of pairs (P1, P2) where P1 is acyclic and P1 breaks any P2-cycle.

Lemma 7 of the Appendix shows that these are precisely the pairs in P which

induce choice functions.

Applying the observations above to the representation in Example 2, it is

easy to see that (y, z) is (P1 \ (y, z), P2∪ (y, z))-redundant and (P1 \ (y, z), P2∪
(y, z)) ∈ PRSM . The only other pair in P1 for which this is true is (y, v).

Moreover, it is easy to check that the induced choice behavior is unaffected by

moving (y, z) and/or (y, v) to P1 but not by moving either (x, v) or (v, w).

Proposition 5 Suppose (P1, P2) is a minimal representation of c. Then:

(i) For (a, b) ∈ P2, the rationale pair (P1 ∪ (a, b), P2 \ (a, b)) is an RSM-

representation of c if and only if (a, b) is (P1, P2)-redundant.

(ii) For (a, b) ∈ P1, the rationale pair (P1 \ (a, b), P2 ∪ (a, b)) is an RSM-

representation of c if and only if (a, b) is (P1 \ (a, b), P2∪ (a, b))-redundant and

(P1 \ (a, b), P2 ∪ (a, b)) ∈ PRSM .

For minimal representations, this result establishes when a preference pair

can be moved without affecting the induced choice behavior. The appeal is

that this condition is stated directly in terms of the representation without ex-

plicitly referring to behavior. Effectively, the result is the analog of Proposition

3 expressed in the “language” of representations.

To illustrate, consider the example above. The preference pairs in P2 that

cannot be moved without affecting choice behavior are precisely the pairs in

the revealed 2-rationale of the induced choice function c(P1,P2). Likewise, the

pairs in P1 that cannot be moved are the pairs in the revealed 1-rationale.

In other words, P c
1 = {(x, v), (v, w)} and P c

2 = {(v, z), (w, z), (w, y), (w, x)}.
The connection between choice-invariance and the revealed rationales high-

lighted by this example is by no means particular. In fact, it is the combined

implication of Propositions 3 and 5.
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The preceding analysis addresses only transformations of minimal rep-

resentations that leave choice behavior unchanged. In general, one might

be interested in the choice-invariant transformations of RSM-representations

that involve duplication and conflict. It turns out that Proposition 5 can be

used to determine the invariant transformations associated with any RSM-

representation. The basic idea is to exploit the minimal representation de-

scribed in Proposition 4.

To illustrate, consider the task of moving (a, b) ∈ P2 \ P1 to the first

rationale. Given an RSM-representation (P1, P2), the minimal representation

(P1, P1) induces the same choice behavior (by Proposition 4). The idea of

P1 = P2 \ (P1 ∪ P−11 ) is to strip away from P2 any pair that duplicates or

conflicts with P1.
16 Intuitively, the choice-invariance of moving the preference

pair (a, b) to P1 cannot depend on which conflicts and duplications arise in the

second rationale. In other words, it is choice-invariant to move (a, b) to P1 in

(P1, P2) if and only if (a, b) ∈ P1 and it is choice-invariant to move (a, b) to P1

in (P1, P1). For the same reason, this condition is necessary and sufficient for

the choice-invariance of adding (a, b) /∈ P1 to the first rationale.

In fact, similar reasoning shows that moving (respectively, deleting) from

the first rationale in (P1, P2) is linked to moving to the second rationale in

(P1, P1). Provided (b, a) /∈ P2 (respectively, (a, b) ∈ P2), each of these trans-

formations is choice-invariant for (P1, P2) if and only if it is choice-invariant

to move (a, b) to P1 in (P1, P1). The only other transformations are additions

and deletions involving the second rationale. For these, it is easy to see that

adding (a, b) to P2 is choice-invariant if and only if it preserves the asymmetry

of P2 (i.e. (b, a) /∈ P2) and deleting (a, b) from P2 is choice-invariant if and

only if (a, b) ∈ P1 or (b, a) ∈ P1.

d. Partial Data

Instead of having access to choice data for all possible subsets of alternatives

(i.e. 2X \∅), the analyst may only observe choices on a sub-domain D ( 2X \∅.
Given limited data, can the analyst determine whether the observed choice

16Since P2 = P1 t P as
1 , P as

1 ⊂ P1 ∪ P−11 , and P1 ∩ (P1 ∪ P−11 ) = ∅, P1 = P2 \ (P1 ∪ P−11 )
follows by set difference.
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behavior is consistent with the RSM model? To answer this question, we first

list the set of restrictions that the data imposes on the set of rationale pairs

that might be used to represent behavior. Consistency with the RSM model

can then be determined by verifying whether there exists a pair of rationales

which satisfies these restrictions and, moreover, has the structure necessary to

represent some choice function.

Proposition 1 describes the inferences about the rationales that can be

drawn when the choice function is RSM-representable. With partial choice

data, the same inferences now serve as restrictions on the possible rationale

pairs that can be used to represent observed behavior. If, for instance, the

analyst observes that adding an alternative a to a menu Di leads to neither

a nor c(Di) being chosen from the expanded menu, then aP1c(Di) for any

pair (P1, P2) that might be used to represent the choice data. Similarly, if the

analyst observes that b is chosen in the presence of a on some menu Di but a is

chosen from a larger menu Dj ⊃ Di, then aP2b for any pair (P1, P2) that might

be used to represent the choice data. This motivates the following definition,

which is analogous to the notion of revealed rationales in Proposition 1:

Definition 4 Let PD
1 be defined by aPD

1 b if

c(Di) = b and c(Dj) 6∈ {a, b} for some Di, Dj ∈ D such that Dj = Di ∪ {a}.

Let PD
2 be defined by aPD

2 b if

c(Di) = b and c(Dj) = a for some Di, Dj ∈ D such that {a, b} ⊆ Dj ⊂ Di.

Nested menus where a and b are chosen allow the analyst to make a strong

inference about the relationship between a and b. When the two menus are

non-nested, the analyst can only draw a somewhat weaker inference about

relationship between the two alternatives. In particular, this kind of choice

data rules out the possibility that either alternative is preferred to the other

according to the first rationale. This observation motivates the next definition:
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Definition 5 Let Q be defined by aQb if (a, b), (b, a) /∈ PD
2 and

c(Di) = b and c(Dj) = a for some Di, Dj ∈ D such that {a, b} ⊆ Dj, Di.

Define a Q-selection to be a rationale Q2 such that (i) Q2 ⊂ Q and (ii)

for all (a, b) ∈ Q, either (a, b) ∈ Q2 or (b, a) ∈ Q2 but not both. Denote the

collection of all Q-selections by Q.

A third possibility is that the data only involves menus where a is some-

times chosen in the presence of b while b is never chosen in the presence of

a. Intuitively, this kind of data makes it impossible for b to be preferred to a

according to the first rationale:

Definition 6 Let H be defined by aHb if (a, b) /∈ PD
2 ∪Q and

c(D) = a for some D ∈ D such that {a, b} ⊆ D.

Define an H-selection to be a disjoint pair of rationales (H1, H2) such that

(i) H1 ∪H2 ⊂ H ∪H−1 and (ii) for all (a, b) ∈ H, either (a, b) ∈ H1 ∪H2 or

(b, a) ∈ H2 but not both. Denote the collection of all H-selections by H.

The last possibility is that neither a nor b is ever observed to be chosen in

the dataset. Intuitively, this type of data imposes no direct restriction on the

relationship between a and b.17

Definition 7 Let I be defined by aIb if

c(D) 6= a, b for all D ∈ D

Define an I-selection to be a disjoint pair of rationales (I1, I2) such that (i)

I1 ∪ I2 ⊂ I and (ii) for all (a, b) ∈ I, either (a, b) ∈ I1 ∪ I2 or (b, a) ∈ I1 ∪ I2
but not both. Denote the collection of all I-selections by I.

17Having said this, it is not the case that every relationship between the two alternatives
need be consistent with some RSM-representation.
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The four cases above outline the restrictions, which are directly imposed by

the choice data, on the relationship between any pair of alternatives. In order

for the data to be RSM-representable, there must be some pair of rationales

which respects these restrictions and, moreover, represents a choice function.

Proposition 3 establishes that any RSM-representable choice function has a

minimal representation. By Lemma 7, any minimal representation must be in

PRSM . In order to find a pair of rationales that RSM-represents the partial

data, it then follows that the analyst must identify a pair of minimal rationales

in PRSM that is consistent with the four restrictions identified above. In light

of the preceding discussion, it is straightforward to show the following:

Proposition 6 The choice data < c,D > is RSM-representable if and only if

there exist selections Q2 ∈ Q, (H1, H2) ∈ H, and (I1, I2) ∈ I with rationales

P1 ≡ PD
1 ∪H1 ∪ I1 and P2 ≡ PD

2 ∪Q2 ∪H2 ∪ I2 such that:

(i) (P1, P2) ∈ PRSM ; and,

(ii) if (a, b) ∈ P2 and c(D) = b for some D ∈ D such that {a, b} ⊂ D,

then (d, a) ∈ P1 for some d ∈ D.

For the standard model of preference maximization, consistency of limited

choice boils down to a simple condition, known as the Strong Axiom of Re-

vealed Preference (SARP), which requires the revealed preference to be acyclic

(Houthakker [1950]; Samuelson [1950]).18 By comparison, the consistency con-

dition for the RSM model is considerably more involved. This is due to the fact

that, unlike the standard model, the RSM model imposes very little structure

on the rationales. By comparison with SARP, even the consistency condition

for maximization with one rationale (i.e. asymmetric preference) is rather

involved (see e.g. Theorem 2 of Bossert, Sprumont, and Suzumura [2005]).

IV. Implications: Inferences and Policy

In this section, we examine the implications of our results for drawing infer-

ences from behavior and for using these inferences to evaluate policy. To keep

18While the formulations due to Houthakker and Samuelson are slightly different, both
are equivalent to the acyclicity of the revealed preference for (single-valued) choice functions.
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the discussion relatively brief, we focus on the issues raised by Examples I-VI

of the Introduction.

a. Inferences from Identification

Examples I to III deal with situations where the analyst is interested in

drawing inferences about the rationales consistent with RSM-representable

behavior. If the analyst is an economist or a market participant, the objective

may simply be to develop a better understanding of a decision-maker who is

believed to follow a rational shortlist method. For a policy maker, the exercise

is likely to be motivated by welfare concerns.

If there is “good reason” to believe that the decision-maker follows a ra-

tional shortlist method and, moreover, that one of the rationales reflects the

decision-maker’s “true” preference (as posited in Examples II and III), identi-

fying the features of this rationale should help the policy maker to make better

policy judgments.19 Broadly, this is the model-based approach to welfare ad-

vocated in several recent papers (see e.g. Rubinstein and Salant [2012]). In

sharp contrast, others have advocated a model-free concept of welfare. One

widely discussed proposal, suggested by Bernheim and Rangel [2007, 2009],

is to adopt a welfare criterion based on Pareto-dominance. Given the sub-

domain DW ⊆ 2X \ ∅ of choice situations judged relevant for welfare analysis,

the B-R welfare relation W is defined by aWb if and only if c(A) 6= b for all

A ∈ DW such that a ∈ A.

Recently, there has been considerable debate about which is the more ap-

propriate approach to welfare in situations where the choice data is incon-

sistent with preference maximization (see e.g. Rubinstein-Salant [2012] and

Bernheim [2009] for a discussion of the relevant papers). The debate involves

subtle issues that extend far beyond the scope of our work and it is not our

intention to argue the position on either side. We merely wish to illustrate

how identification results, like those derived in Section III, can help inform the

discussion. From Proposition 2:

19The quotation marks are meant to emphasize that we take no position on what should
count as good reason to hold these beliefs.
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Remark 1 (Welfare) Fix any RSM-representation (P1, P2) of c and suppose

DW = 2X \ ∅. Then:

(i) P1 ⊆ W = P ∗1 so that the B-R welfare relation over-estimates P1; and

(ii) P c
2 ∩W = ∅ so that the B-R welfare relation need not overlap with P2.

Part (ii) illustrates that there may be no relationship between the B-R

welfare relation and the “true” preference parameter of a plausible model con-

sistent with observed behavior. Several papers (see e.g. Manzini and Mari-

otti [2012b]; Masatlioglu, Nakajima, and Ozbay [2012]; Rubinstein and Salant

[2012]) provide examples of choice behavior which illustrate a similar point

for models related to rational shortlist methods. The novelty of Remark 1(ii)

is to show that this disconnect is not limited to carefully contrived examples

for the RSM model. Indeed, there is no connection between the B-R welfare

relation and the revealed 2-rationale for any RSM-consistent choice data.

Part (i) makes a related point. One criticism of the model-based approach

is that it relies on a particular interpretation of what constitutes the decision-

maker’s “true” preference in the chosen model (Bernheim [2009]). As illus-

trated by Examples II and III, there are plausible interpretations of the RSM

model, for instance, which support the view that either rationale may reflect

“true” preference. While this observation is a word of warning against the

model-based approach, it should not, in our opinion, be viewed as a tacit en-

dorsement of the model-free approach. To the contrary, Remark 1(i) illustrates

that the model-free approach cannot simply escape questions of interpretation

by avoiding them. For choice data consistent with the RSM model, using the

B-R relation for policy is tantamount to attaching welfare significance to the

first rationale.

Setting aside the difficult issue of welfare, Examples I to III suggest that

the analyst may have good reason to be interested in the rationales underlying

RSM-representable behavior. Even with the identification results in Section

III, there is an issue of what inferences the analyst can be justified in drawing

from behavior. As is implicit from our analysis of these examples, we ad-

vocate a conservative approach. In our view, the analyst should be cautious
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about inferring more than what is directly revealed by behavior. The following

definition formalizes this conservative view:

Definition 8 Given alternatives a, b ∈ X, a is said to be Pi-superior to b if

aP c
i b for i = 1, 2. Moreover, a is said to be RSM-superior to b if aP cb.

Given Proposition 1, a is Pi-superior to b if and only if a is revealed preferred

to b by the ith rationale or, equivalently, (a, b) ∈ Pi for any RSM-representation

(P1, P2) of behavior. Similarly, a is RSM-superior to b if and only if (a, b) ∈ P1

or (a, b) ∈ P2 \ (P1∪P−11 ) for any RSM-representation (P1, P2) of behavior. In

other words, a is RSM-superior to b exactly when choice behavior reveals that

a decision-maker following a rational shortlist procedure “uses” the preference

of a over b to discriminate between the two alternatives.

While we generally favor making cautious inferences from behavior, there

are situations where the analyst may be justified in taking a more liberal ap-

proach. One situation is when the analyst believes that “boundedly rational”

distortions play only a minimal role in explaining the decision-maker’s behav-

ior (see e.g. Cherepanov, Feddersen, and Sandroni [2013]). For example, the

analyst in Example II may be confident that the tie-breaking rule has only a

limited influence on the survey respondent’s behavior. In that case, it might

be argued that the upper bound P ∗1 provides a more complete understanding

of the decision-maker’s “true” preference than the revealed rationale P c
1 . Sim-

ilarly, an analyst who takes a dim view of the role played by consideration sets

(in Example III) might favor the upper bound P ∗2 over the more cautious P c
2 .

The value of Proposition 2 is that it characterizes the range of choice-based

inferences that can be drawn for either rationale.

b. Policy from Identification

Examples IV to VI address situations where a seller is interested in deter-

mining the impact of a certain marketing or advertising strategy on consumer

behavior. The discussion of these examples illustrates how identification re-

sults help the seller gain some insight into the potential value of these strate-

gies. Implicit in our analysis was the assumption that the behavior of com-
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peting sellers remained fixed. To account for competitive behavior, the con-

ventional approach is to consider an applied theory model where the strategic

interaction of sellers and the choice behavior of consumers are modeled ex-

plicitly. While this type of exercise is far beyond the scope of the paper,

it is nonetheless possible to show how identification results are essential for

evaluating behavior and policy in applied theory models.

To illustrate, consider the model of decoy marketing in Example VI (which

is a little more straightforward than the model of comparative advertising).

To simplify, suppose the consumer’s “true” preferences are captured by the

second rationale and the “distortionary” effect of decoy marketing by the first

rationale. If a seller can successfully induce consumers to switch products in

equilibrium, what conclusions might the analyst draw about decoy marketing?

Given Proposition 1, it is straightforward to establish the following:

Remark 2 (Decoy Marketing) Suppose the consumer chooses according to

a choice function c which is RSM-representable and the seller successfully

changes the consumer’s choice from c(A) by marketing a decoy product d /∈ A.

Then:

(i) c(A∪{d}) = d if and only if c(A∪{d}) is RSM-superior to c(A); and,

(ii) c(A ∪ {d}) 6= d if and only if c(A) is P2-superior to c(A ∪ {d}).

When building an applied theory model, the analyst has flexibility in how

to represent the behavior of consumers. As shown by Propositions 3 and 4, a

variety of rationale pairs can be used to represent the same behavior. Remark

2 establishes the extent to which the impact of decoy marketing is independent

of the representation chosen by the analyst.

In particular, Remark 2(ii) shows that successful decoy marketing which

induces the consumer to switch to a “third” option must be welfare reducing.20

Indeed, it is the only change in behavior due to decoy marketing that has un-

ambiguous welfare implications. Remark 2(i) shows that the implications of

20Manzini and Mariotti [2012b] establish a somewhat weaker result for a generalization
of the RSM model.
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switching to the decoy alternative d depends, in general, on the decoy alter-

native in question and how the analyst decides to represent the consumer’s

behavior. If (d, c(A)) ∈ P c
2 , then the addition is welfare enhancing. If, on the

other hand, (d, c(A)) ∈ P c
1 ∪P in, then the welfare implications depend on how

the analyst decides to represent the consumer’s behavior.21

Identification allows the analyst to draw similar conclusions about the

model of competitive advertising from Examples V-VI. To simplify the pre-

sentation, suppose the analyst decides to represent a consumer who chooses

according to the choice function c by the rationale pair (P1, P2). Then, as

noted in the introduction, comparative advertising could either be used to

promote a comparison (x, y) ∈ P2 to the first rationale or to demote a com-

parison (x, y) ∈ P1 to second rationale. Let c(x,y)(A) ≡ c(P1∪(x,y),P2\(x,y))(A)

denote the product chosen from A when (x, y) ∈ P2 is promoted. Analogously,

let c(x,y)(A) ≡ c(P1\(x,y),P2∪(x,y))(A) denote the product chosen when (x, y) ∈ P1

is demoted.22

Suppose the consumer initially chooses a from A and a seller is interested in

changing the consumer’s choice to another alternative b through comparative

advertising. Regardless of the rationale pair used to represent behavior, it

is not difficult to see that the seller cannot achieve this goal by advertising

which directly compares b to a. However, the seller may successfully change

the consumer’s choice to b by comparative advertising with a third alternative

e. Given Propositions 2 and 3, it is straightforward to show the following:

Remark 3 (Comparative Advertising) Suppose the consumer chooses ac-

cording to (P1, P2) and the seller successfully changes the consumer’s choice

from c(A) = a to b by doing comparative advertising with a third alternative

e ∈ A \ {a, b}. Then:

(i) If c(e,a)(A) = b, then a is P2-superior to b or (a, b) ∈ P in \ P1.

(ii) If c(e,b)(A) = b, then b is P2-superior to a.

21This analysis is broadly consistent with the wisdom in marketing and psychology which
suggests that enlarging the menu may, in some cases, induce the consumer to make a poorer
choice (see e.g. Schwartz [2004]).

22Technically speaking, the choices c(x,y)(A) and c(x,y)(A) may be empty even though c
is RSM-representable.
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Remark 3(ii) shows that “obfuscation” has clear implications that do not

depend on how the analyst chooses to represent consumer behavior. In the

event that obfuscation is successful, (b, a) must be part of the second rationale

(and, moreover, neither (b, a) nor (a, b) can be part of the first rationale). On

the other hand, Remark 3(i) shows that successful “promotion” has ambiguous

implications. While (a, b) must be part of the second rationale used to repre-

sent the consumer’s behavior, it might not be part of every second rationale

that represents behavior. Depending on the interpretation given to the ratio-

nales, this result leads to the somewhat surprising conclusion that obfuscation

must be welfare enhancing while promotion may be welfare reducing.

In light of Remarks 2 and 3, we feel that the two applications discussed

merit further investigation. In fact, Examples II and III also suggest applica-

tions of the RSM model that may be worth analyzing more extensively. For

these examples, the tie-breaking rule and the consideration set were viewed as

nuisance parameters. For the analyst interested in making inferences about

the decision-maker’s “true” preference, this is certainly the case. However,

sellers may take a more positive view. Like comparative advertising and decoy

marketing, both are non-price mechanisms that might be leveraged to “nudge”

consumers into making product choices that are more profitable to the seller

(Thaler and Sunstein [2008]; Manzini, Mariotti, and Tyson [2011]).

The forced choice model in Example II might be used to study seller be-

havior in markets where consumers have a limited ability to compare different

products. In the proposed model, sellers would influence the tie-breaking rules

that consumers use to choose among incomparable products. In our view,

the model nicely complements the approach of Piccione and Spiegler [2012]

who consider markets where sellers influence consumers’ ability to compare

products but cannot affect their tie-breaking rules.23 Likewise, the limited

consideration model in Example III might be used to study aspects of com-

petitive advertising not captured by the model discussed in Examples IV-V or

the models studied by Eliaz and Spiegler [2011a, 2011b].

23In their model, the tie-breaking rule is determined by the random assignment of con-
sumers to different sellers.
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V. Conclusion

In this paper, we study identification in a model of procedural decision-making

first proposed by Manzini and Mariotti [2007]. For this model, we provide

simple definitions of revealed preference (Propositions 1-2), a straightforward

characterization of choice-equivalent representations (Propositions 3-5), and a

complete characterization of testable implications with limited data (Proposi-

tion 6). Each of these results corresponds to a standard identification result

in the more traditional setting of utility maximization. Part of our broader

goal was to show that some models of procedural decision-making, like rational

shortlist methods, permit the same kind of identification results as models of

decision-making based on utility maximization.

Our work is part of a small but growing literature concerned with identifica-

tion in models of procedural decision-making (see e.g. Au and Kawai [2011]; de

Clippel and Rozen [2012]; Llerars, Masatlioglu, Nakajima, and Ozbay [2011];

Horan [2012]; Masatlioglu, Nakajima, and Ozbay [2012]; and, Tyson [2012]).

Similar to our work, each of the cited papers establishes identification results

for a model of two-stage choice.24 At the same time, none of these papers

provides analogs for all of the identification results established in our paper.

One important difference is that none of these papers contains a result

like Proposition 5. For models of decision-making with cardinal utility repre-

sentations, the standard “uniqueness up to affine transformations” result pro-

vides a clear understanding of the representations which are consistent with

behavior and the transformations of representations which leave behavior un-

changed. For two-stage models (like rational shortlist methods), the range of

representations consistent with behavior (Propositions 3 and 4) provides lit-

tle insight into the choice-invariant transformations of a given representation.

This suggests the need for an additional result which characterizes the class

of choice-invariant transformations in models of procedural decision-making.

Of the papers cited above, the most closely related is Horan [2012] (see also

Au and Kawai [2011]), who axiomatizes the special case of the RSM model

24Each of these models is distinct from the RSM model. For the technical details, see
Remark 5 of the Appendix.
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where both rationales are transitive. Following the same approach taken here,

he shows that the addition of transitivity at once simplifies the definition

of the revealed rationales and leads to sharper identification of the minimal

representations. At the same time, transitivity makes it makes it more difficult

to characterize the range of general representations.

Also closely related are the recent paper by Masatlioglu, Nakajima, and

Ozbay (MNO) [2012] and their joint work with Lleras [2011]. These papers

study two-stage procedures (Γ1,�2) where the decision-maker first “filters”

the feasible set using the correspondence Γ1 : 2X → 2X before maximizing

the linear order �2 on the alternatives in Γ1(A) which survive the first stage.

They focus on axiomatizing a variety of procedures where the filter satisfies

a particular “choice contraction property” (relating Γ1(B) to Γ1(A) for B ⊂
A). Similar to our approach, the authors first define a second-stage revealed

preference P c
2 . They then construct, for every menu A, a lower bound Γc

1(A) of

alternatives that must survive the first stage and an upper bound Γ∗1(A) that

might survive the first stage. However, the authors do not use these bounds

to characterize the class of filter representations. Technically, the difficulty is

that, unlike the RSM model, there may be no representations which attain the

bounds Γc
1 and Γ∗1.

25

Another paper related to ours is Tyson [2012], who studies (possibly multi-

valued) procedures (Γ1, P2) where (i) the filters Γj
1 consistent with behavior

form a lattice, and (ii) the second-stage rationale P2 is negative transitive. For

these procedures, he constructs a revealed filter Γc
1 and a revealed rationale

P c
2 .26 For the RSM model, the filters Γj

1(·) ≡ max(·;P j
1 ) (induced by first

rationales P j
1 consistent with behavior) form a lattice. Thus, Tyson’s result

shows how to define the lower bounds Γc
1(·) ≡ max(·;P c

1 ) and P c
2 when the

25One issue is that the lower bound Γc
1 ≡ ∩nj=1Γj

1 need not satisfy the required choice

contraction properties even though each filter Γj
1 associated with a representation does.

In particular, some choice contraction properties are not preserved under intersection (see
Aizerman and Aleskerov [1995]; Aizerman [1985]). Another issue is that there may be no
preference �2 so that (Γ∗1,�2) represents c. In particular, the upper bound Γ∗1 ≡ ∪nj=1Γj

1

may be too inclusive to rule out “preference cycles” in the second stage even though each
filter Γj

1 does.
26Tyson also shows how to use these objects to provide an axiomatization of the procedure.
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second rationale has the structure of a linear order. Because the minimal

representations form a lattice (footnote 11), it is possible to characterize, as

we do, the revealed rationales and the class of RSM-representations in general.

Incidentally, it is easy to see that the lattice structure of minimal RSM-

representations does not depend on the fact that choice is single-valued. Ac-

cordingly, our results can be extended to the RSM model with multi-valued

choice (Alcantud and Garćıa-Sanz [2010]). A natural question is whether our

approach can be adapted to any other models. Two natural candidates are the

RSM model with acyclic rationales (Houy [2008]) and the extension to more

than two rationales (Apesteguia and Ballester [2010]; Manzini and Mariotti

[2012a]). For both models, there appear to be technical issues which might

preclude a straightforward application of our approach.

A final paper worth noting is de Clippel and Rozen [2012], who study

identification for two-stage choice models in circumstances where choice data

is limited. They provide testable implications for an extension of the RSM

model, called Categorize then Choose (CTC), which has been studied by Spears

[2011], Manzini and Mariotti [2012b], and Cherepanov, Feddersen, and San-

droni [2013].27 Although the conditions which they identify are also necessary

for choice data to have an RSM-representation, the applicability of their re-

sult is somewhat limited. Unlike Proposition 6 (which applies to any dataset),

their result only applies to datasets that are “sufficiently rich” in terms of

behavior.28 While they also show that a simple acyclicity property is sufficient

to ensure that “sparse” choice data (that is not sufficiently rich) is consistent

with the CTC model, this condition does not guarantee that the data is con-

sistent with the RSM model. Indeed, it is easy to construct sparse datasets

which satisfy their acyclicity condition but fail to be RSM-representable.

27They also show that the testable implication of the filter procedure proposed by MNO
is an acyclicity property.

28In particular, they require that the data is rich enough to ensure that PD
2 ∪PD is total

(where the “revealed preference” PD is defined by xPDy if c(x, y) = x and {x, y} ∈ D).
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V. Mathematical Appendix

For convenience, we restate the main result of Manzini and Mariotti [2007]:

Theorem 1 (Manzini and Mariotti) A choice function c is RSM-representable

if and only if it satisfies:

Expansion If c(A) = x = c(B), then c(A ∪B) = x; and

WWARP If c(A) = x = c(x, y) for A ⊃ {x, y}, then c(B) 6= y for any B

such that {x, y} ⊂ B ⊂ A.

To establish some claims made in the discussion of Example 1:

Remark 4 (i) The choice behavior in Example 1 is consistent with the RSM

model. (ii) For the choice c(X) to be consistent with the RSM model, c(X) = x

or c(X) = w.

Proof. (i) WWARP is trivially satisfied because the only observed choices are

from sets of two and three alternatives. To see that c also satisfies Expansion,

observe that c(a, a′) = a = c(a, a′′) if and only if P c is transitive on {a, a′, a′′}.
By Expansion, it follows that c(a, a′, a′′) = a = max({a, a′, a′′};P c). This only

pins down the specified choices on {w, x, z} and {w, y, z}.

(ii) First, suppose that c(X) = y. Since c(w, x, y) = w and c(w, y) = y, this

choice violates WWARP. Next, suppose that c(X) = z. Since c(x, y, z) = x

and c(x, z) = z, this choice likewise violates WWARP. As such, the only

possibilities are c(X) = x and c(X) = w. It is straightforward to check that

neither of these possibilities violates WWARP or Expansion.

To establish the claim made in the first footnote of the conclusion:

Remark 5 (i) The procedures studied by MNO and MNO (with Lleras) are

distinct from the RSM model. (ii) The transitive RSM model is a special case

of the acyclic RSM model. (iii) The acyclic RSM model is a special case of

the RSM model. (iv) The RSM model is a special case of the model with an

arbitrary number of rationales.
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Proof. (i) See MNO and MNO (with Lleras) for examples. (ii)-(iv) Each

of the stated inclusions follows by definition. For examples establishing that

each is strict: (ii) see Example 1; (iii) see Appendix C of Houy [2008]; and,

(iv) see Proposition 2 of Apesteguia and Ballester [2010].

Proof of Proposition 1. Since c is RSM-representable, c satisfies WWARP

and Expansion.

(i) (⇒) Suppose xP c
1y. By definition of the revealed 1-rationale, xP cy and

there is a B ⊃ {x, y} such that yP cc(B) ≡ w and zP c
2y for any z ∈ UC ≡

UCP c(y;B \ {x}). By way of contradiction, suppose that c(A ∪ {x}) ∈ {x, y}
for any A such that c(A) = y. By definition of the revealed 2-rationale, zP c

2y

implies that there is a Bz such that {y, z} ⊂ Bz and c(Bz) = y. Define

B∗ ≡ [
⋃

z∈UC

Bz]
⋃

[B \ UCP c(y;B)].

Since c(y, z′) = y for all z′ ∈ B \ UCP c(y;B) and c(Bz) = y for all z ∈
UCP c(y;B \ {x}), Expansion implies c(B∗) = y. First, observe that B ⊆
B∗ ∪ {x} by construction. Next, observe that x /∈ B∗. Otherwise, c(y, w) =

y = c(B∗) and c(B) = w violate WWARP (since {y, w} ⊂ B ⊂ B∗). Since

c(A ∪ {x}) ∈ {x, y} for any A such that c(A) = y, c(B∗ ∪ {x}) ∈ {x, y}.
Finally, observe that c(B∗ ∪ {x}) = x. Otherwise, c(B∗ ∪ {x}) = y violates

WWARP (by the argument given above).

To complete the proof, observe that c(x,w) = w. Otherwise, c(x,w) = x =

c(B∗ ∪ {x}) and c(B) = w violate WWARP (since {x,w} ⊂ B ⊂ B∗ ∪ {x}).
Combining this observation with the assumptions c(x, y) = x and c(y, w) = w

establishes that c(x, y, w) = w. This follows from the fact that c(x, y, w) = x

and c(x, y, w) = y both violate WWARP (by similar arguments to those given

above). But, c(x, y, w) = w contradicts the assumption that c(A ∪ {x}) ∈
{x, y} for any A such that c(A) = y (by setting A = {y, w}) which, in turn,

establishes the result.

(⇐) Suppose that c(B) = y and c(B ∪ {x}) /∈ {x, y} for some B. First,

observe that c(x, y) = x. Otherwise, c(x, y) = y and c(B) = y imply c(B ∪
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{x}) = y by Expansion, which contradicts the assumption that c(B ∪ {x}) /∈
{x, y}. Next, define c(B ∪ {x}) ≡ z /∈ {x, y} and observe that c(y, z) = y.

Otherwise, the choices c(y, z) = z = c(B∪{x}) and c(B) = y violate WWARP

(since {y, z} ⊂ B ⊂ B∪{x}). The result then follows by defining A ≡ B∪{x}.
Combining the two observations above with the definition of the revealed 2-

rationale and the revealed preference, it follows that xP cy, yP cz, and z′P c
2y

for any z′ ∈ UCP c(y;A \ {x}). Thus, xP c
1y as required.

(ii) (⇒) Suppose that xP c
2y. By definition of the revealed 2-rationale, it

follows that c(x, y) = x and c(A) = y for some A. The result then follows

by defining B ≡ {x, y}. (⇐) Suppose c(A) = y and c(B) = x for some

{x, y} ⊆ B ⊂ A. If c(x, y) = y, the choices c(x, y) = y = c(A) and c(B) = x

violate WWARP (since {x, y} ⊂ B ⊂ A). But, this contradicts the assumption

that c is RSM-representable. So, c(x, y) = x which establishes that xP c
2y.

Proof of Proposition 2. Suppose (P1, P2) is an RSM-representation of c.

(i) The inclusions P c
1 ⊆ P1 and P c

2 ⊆ P2 follow from the discussion in the

text.

(ii) To establish P1 ⊆ P ∗1 : Suppose, by way of contradiction, that xP1y

and ¬(xP ∗1 y). From the first relation, it follows that c(x, y) = x so that xP cy.

In combination with ¬(xP ∗1 y), xP cy implies that xP c
2y (since P c

2 = P c \ P ∗1 ).

By definition of P c
2 , there exists a menu A ⊃ {x, y} s.t. c(A) = y. Since xP1y

however, it follows that c(A) 6= y which is the desired contradiction.

To establish P2 \ (P1 ∪ P−11 ) ⊆ P ∗2 : Suppose, by way of contradiction, that

xP2y, ¬(xP ∗2 y), ¬(xP1y), and ¬(yP1x). From the second and third relations,

it follows that yP cx. Otherwise, xP cy implies xP ∗2 y or xP c
1y. In the first

case, there is a direct contradiction with the assumption that ¬(xP ∗2 y). In

the second case, the fact that P c
1 ⊆ P1 (proved in part (i) above) establishes

a contradiction with the assumption that ¬(xP1y). Since yP cx, either yP2x

or yP1x must hold. Otherwise, (P1, P2) cannot induce the choice c(x, y) = y.

Since P2 is asymmetric and xP2y, it must be that yP1x. But, this contradicts

the assumption that ¬(yP1x).
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Lemma 1 If c is RSM-representable, then xP c
1y implies ¬[xP c

2y].

Proof. Since c is RSM-representable, c satisfies WWARP and Expansion.

By way of contradiction, suppose that xP c
1y and xP c

2y. By definition, xP c
1y

implies that there is a B ⊃ {x, y} such that yP cc(B) ≡ w and zP c
2y for any

z ∈ UCP c(y;B \ {x}). Define B∗ as in the proof of Proposition 1(i). By

construction, c(B∗) = y. Moreover, xP c
2y implies that there is a Bx ⊃ {x, y}

such that c(Bx) = y. By Expansion, c(B∗ ∪ Bx) = y. Finally, observe that

c(B∗ ∪ Bx) = y = c(w, y) and c(B) = w contradict WWARP (since {w, y} ⊂
B ⊂ B∗ ∪Bx), which completes the proof.

Lemma 2 If c is RSM-representable, then: (i) xP c
1y implies xP ∗1 y; and, (ii)

xP c
2y implies xP ∗2 y.

Proof. Since c is RSM-representable, P c
1 ∩ P c

2 = ∅ by Lemma 1. Since

(P c
1 tP c

2 ) ⊆ P c by construction, it then follows that P c
1 ⊆ (P c \P c

2 ) ≡ P ∗1 . By

a similar argument, P c
2 ⊆ P ∗2 .

Lemma 3 Given a binary relation P , x ∈ max(A;P ) implies:

(i) x ∈ max(B;P ) for any B such that {x} ⊆ B ⊆ A; and

(ii) x ∈ max(A; P̃ ) for any P̃ such that P̃ ⊆ P .

Proof. Both implications follow directly from the definition of max(·; ·).

Lemma 4 If c is RSM-representable, then it can be represented by (P c
1 , P

∗
2 )

and (P ∗1 , P
c
2 ).

Proof. First note that c(P c
1 ,P
∗
2 )

and c(P ∗1 ,P c
2 )

are not multi-valued. To see this,

fix a menu A and suppose that {a, a′} ⊆ c(P c
1 ,P
∗
2 )

(A) for aP ca′. By definition,

{a, a′} ⊆ max(A;P c
1 ). In particular, ¬(aP c

1a
′). By definition of P ∗2 , it follows

that aP ∗2 a
′. But, this contradicts {a, a′} ⊆ c(P c

1 ,P
∗
2 )

(A) and establishes that

c(P c
1 ,P
∗
2 )

is not multi-valued. A similar argument holds for c(P ∗1 ,P c
2 )

.

Now, fix a menu A and suppose that c(A) = y. Define A ≡ max(A;P c
1 )

and A ≡ max(A;P ∗1 ). The result follows by establishing that: (i) y ∈ A; and,
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(ii) max(A;P ∗2 ) = y. To see that (i) and (ii) are sufficient, observe that: (i)

implies (i′) y ∈ A; and, given (i), (ii) implies (ii′) max(A;P c
2 ) = y. Clearly,

(ii) and (ii′) establish the result.

To see (i′), note that P c
1 ⊆ P ∗1 by Lemma 2. By Lemma 3(ii), it follows

that A ⊆ A so that y ∈ A implies y ∈ A. To see (ii′), first observe that

y ∈ A ⊆ A [which follows from (i) and the argument above]. By Lemma 3(i),

max(A;P ∗2 ) = y implies y ∈ max(A;P ∗2 ). Since P c
2 ⊆ P ∗2 by Lemma 2, the

fact that y ∈ max(A;P ∗2 ) implies y ∈ max(A;P c
2 ) by Lemma 3(ii). Finally,

y ∈ max(A;P c
2 ) implies max(A;P c

2 ) = y because c(P ∗1 ,P c
2 )

is not multi-valued.

To complete the proof, it suffices to establish claims (i) and (ii):

Proof of Claim (i): By way of contradiction, suppose that xP ∗1 y for some

x ∈ A. By definition, it follows that ¬(xP c
2y) so that c(B) 6= y for any

B ⊃ {x, y}. But, this contradicts c(A) = y. �

Proof of Claim (ii): As a preliminary observation, note that y ∈ A by (i′).

The proof is by induction on |A|. For the base case |A| = 2, suppose A = {x, y}
and c(x, y) = y. If A = {y}, then max(A;P ∗2 ) = y trivially. If A = {x, y},
then yP ∗2 x by definition so that max(A;P ∗2 ) = y.

Suppose that the claim is true for A such that |A| = n. Now, consider

some A s.t. |A| = n + 1 and c(A) = y. First, note that there must be some

x ∈ A \ {y} such that c(A \ {x}) = y. Otherwise, by the pigeonhole principle,

there is an a ∈ A \ {y} such that c(A \ {z}) = a = c(A \ {z′}) for distinct

z, z′ ∈ A. Then, c(A) = c([A \ {z}] ∪ [A \ {z′}]) = a 6= y by Expansion, a

contradiction.

There are several cases to consider: (1) there are distinct x, x′ ∈ A \ {y}
such that c(A \ {x}) = y = c(A \ {x′}); or, (2) there is a single x ∈ A \ {y}
such that c(A \ {x}) = y where (a) c(x, y) = y or (b) c(x, y) = x. To simplify

the notation, define A−z ≡ max(A \ {z};P c
1 ) for any z ∈ A.

Case (1): By the induction step, max(A−x;P ∗2 ) = y = max(A−x′ ;P
∗
2 ). By

construction, it follows that A = [A−x ∩ A−x′ ] ∪ Z where Z = {z ∈ {x, x′} :

aP c
1z for no a ∈ A}. If c(x, y) = x, then x /∈ Z. Otherwise, max(A−x′ ;P

∗
2 ) 6=

y. Similarly, x′ /∈ Z if c(x′, y) = x′.
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Given these observations, there are four possibilities: (a) A = A−x ∩A−x′ ;
(b) A ⊆ A−x, c(x, y) = y, and A \A−x′ = {x}; (c) A ⊆ A−x′ , c(x

′, y) = y, and

A \ A−x = {x′}; and, (d) A \ A−x = {x′}, A \ A−x′ = {x}, and c(x, y) = y =

c(x′, y). For each, it is a straightforward to check that max(A−x;P ∗2 ) = y =

max(A−x′ ;P
∗
2 ) implies y ∈ max(A;P ∗2 ).

Case (2.a): By the induction step, max(A−x;P ∗2 ) = y. By construction,

A ⊆ A−x∪{x}. Since c(x, y) = y and max(A−x;P ∗2 ) = y, then y ∈ max(A−x∪
{x};P ∗2 ) so that y ∈ max(A;P ∗2 ).

Case (2.b): First, observe that c(A \ {w}) = x for some w ∈ A \ {y}.
Otherwise, an argument relying on the pigeonhole principle and Expansion

(similar to that given above) leads to a contradiction.29 Next, observe that

c(w, x) = w. Otherwise, c(A) = c([A \ {w}] ∪ {w, x}) = x 6= y by Expansion

which again yields a contradiction. By definition, c(A \ {w}) = x entails zP c
2x

for any z ∈ UCP c(x;A \ {w}). Then, by definition, it follows that wP c
1x.

Consequently, A ⊆ A−x. Since max(A−x;P ∗2 ) = y by the induction step,

y ∈ max(A;P ∗2 ) by Lemma 3(i).

In cases 1, 2.a, and 2.b, y ∈ max(A;P ∗2 ). Since c(P c
1 ,P
∗
2 )

is not multi-valued,

max(A;P ∗2 ) = y.

Lemma 5 For i = 1, 2, Pi ∈ Pi(c) implies Pi ∈ P−i(c).

Proof. Since Pi ∈ Pi(c), P
c
i ⊆ Pi ⊆ P ∗i ⊆ P c. Taking the complement with

respect to P c gives P c
−i ≡ (P c \ P ∗i ) ⊆ (P c \ Pi) ⊆ (P c \ P c

i ) ≡ P ∗−i. Thus,

Pi ≡ (P c \ Pi) ∈ P−i(c) as required.

Lemma 6 If c is RSM-representable, (P1, P1) and (P2, P2) represent c for

Pi ∈ Pi(c) and i = 1, 2.

Proof. Suppose c is RSM-representable and fix any P1 ∈ P1(c) and P2 ∈
P2(c). As a preliminary observation, note that (P c

1 , P
∗
2 ) and (P ∗1 , P

c
2 ) represent

29If w = y, then c(A) = c([A \ {y}]∪ {x, y}) = x 6= y by Expansion, which is a contradic-
tion.
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c by Lemma 4. We show that (P1, P1) represents c. The reasoning is similar

for (P2, P2).

Consider any A ⊆ X and suppose that c(A) = y. From the fact that

c(P ∗1 ,P c
2 )

(A) = y, it follows that y ∈ A. By Lemma 3(ii), P1 ⊆ P ∗1 implies y ∈
max(A;P1) ≡ A1. Since P c

1 ⊆ P1, Lemma 3(ii) implies A1 ⊆ A. Combining

these last two results establishes that y ∈ A1 ⊆ A. The result then follows

by repeated application of Lemma 3. Since max(A;P ∗2 ) = c(P c
1 ,P
∗
2 )

(A) = y and

y ∈ A1 ⊆ A, it follows that y ∈ max(A1;P
∗
2 ). Since P1 ⊆ P ∗2 , this last inclusion

establishes that y ∈ max(A1;P1) = c(P1,P c\P1)(A). By the same argument given

in Lemma 4, c(P1,P c\P1)(A) is not multi-valued. So, c(P1,P c\P1)(A) = y.

Proof of Proposition 3. (i) This is established by Lemma 2. (ii) (⇐)

By Lemma 6, (P1, P1) and (P2, P2) represent c for P1 ∈ P1(c) and P2 ∈ P2(c).

By construction, these representations are minimal. (⇒) Suppose (P1, P2)

is a minimal representation of c. By definition of minimality, P1 ∩ P2 = ∅.
Moreover, since (P1, P2) represents c, it must be that P1∪P2 ⊇ P c. If P1∪P2 6=
P c, it must be that there are x, y ∈ X s.t. (a) xP1y and yP1x, (b) xP2y and

yP2x, or (c) xP1y and yP2x. Since (a)-(b) contradict asymmetry and (c)

contradicts minimality, it must be that P1 ∪ P2 = P c. Thus, P2 = P1 and

P1 = P2. This, in turn, delivers the desired result.

Proof of Proposition 4. (⇐) Suppose conditions (i) and (ii) are satisfied.

Since the repeat comparisons in P as
1 are never carried out, it follows that

c(P1,P2)(A) = c(P1,P1)
(A) for any A ⊆ X. Since P as

1 and P1 are asymmetric, it

follows that P2 is asymmetric. Combined with (i), these observations establish

that (P1, P2) is an RSM-representation of c.

(⇒) Suppose (P1, P2) represents c. By Proposition 2, P1 ∈ P1(c). By Propo-

sition 3, it follows that (P1, P1) is a minimal representation of c. This estab-

lishes (i). To establish (ii), first note that the asymmetry of P2 implies that

P as
1 ≡ P2 \ P1 is asymmetric. The fact that xP1y or yP1x for any (x, y) ∈ P as

1

follows from P1 t P1 = P c. If xP cy, then (x, y) ∈ P as
1 implies ¬[xP1y]. Con-

sequently, xP1y. If yP cx, then (x, y) ∈ P2 implies ¬[yP1x] by the asymmetry

of P2. Consequently, yP1x.
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Lemma 7 If c is RSM-representable, then (P1, P2) is a minimal representa-

tion of c for some (P1, P2) ∈ PRSM . Conversely, c(P1,P2) is an RSM for any

(P1, P2) ∈ PRSM .

Proof. (⇒) Fix some RSM-representable choice function c. It follows directly

from Proposition 3 that c has a minimal representation in P , say (P1, P2).

Therefore (P1, P2) never induces empty choice. From the argument in the

text, it follows that (P1, P2) must belong to PRSM .

(⇐) Fix some (P1, P2) ∈ PRSM . From the argument in the text, we know

that c(P1,P2)(A) is non-empty for any menu A ⊆ X. It therefore suffices to

show that c(P1,P2) is single-valued. Since PRSM ⊆ P , it follows that P1 ∪ P2

is, by definition, a total binary relation on X. To see that this rules out the

possibility of multi-valued choice, suppose {x, y} ⊆ c(P1,P2)(A) for some A ⊆ X

and x 6= y. Then, it must be that (x, y) 6∈ P1 ∪ P2 and (y, x) 6∈ P1 ∪ P2 which,

in turn, contradicts the fact that P1 ∪ P2 is total.

Proof of Proposition 5. (i) Suppose that (P1, P2) is a minimal represen-

tation of c.

(⇐) By assumption, (x, y) is (P1, P2)-redundant. Let P̃1 = P1 ∪ {(x, y)} and

P̃2 = P2 \ {(x, y)}. Since (P1, P2) is minimal, it follows that (P̃1∪ P̃−11 )∩ (P̃2∪
P̃−12 ) = ∅. To prove the result, it suffices to show that (P̃1, P̃2) represents c.

For any A ⊆ X such that {x, y} 6⊂ A, it is easy to see that c(P̃1,P̃2)
(A) =

c(P1,P2)(A) = c(A). Next, consider any A such that {x, y} ⊆ A. Then, it must

be that max(A; P̃1) = max(A;P1) \ {y}. We now show that c(A) 6= y. To see

this, suppose instead that c(A) = y.

First, consider the situation where there is a sequence of n distinct elements

{ai}ni=1, with an = x such that ai ∈ A and ai 6= y for 1 ≤ i ≤ n where,

moreover, (ai, ai+1)1≤i≤n−1 ∈ P1 and (aj, y)2≤j≤n ∈ P2.
30 Let a sequence that

satisfies these properties be called an α sequence.

Since P1 ∩ P2 = ∅, (aj, y)2≤j≤n ∈ P2 implies (aj, y)2≤j≤n 6∈ P1. Since (x, y)

is (P1, P2)-redundant, the sequence {ai}ni=1 implies that (a1, y) ∈ P1 ∪ P2. If

30To simplify, let (ai, ai+1)j≤i≤k ∈ P (resp. /∈ P ) denote that (ai, ai+1) ∈ P (resp. /∈ P )
for all j ≤ i ≤ k.
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(a1, y) ∈ P1, then clearly y 6∈ max(A;P1). Since c(A) = y by assumption,

it must be that (a1, y) ∈ P2. Then, for c(P1,P2)(A) = y to hold, it must

be that a1 6∈ max(A;P1). In turn, this implies that there is some z ∈ A

s.t. (z, a1) ∈ P1. Note that z must be distinct from the elements of the α

sequence. If, instead, z = ai for some 3 ≤ i ≤ n then c(P1,P2)({aj}ij=1) = ∅,
which contradicts the fact that (P1, P2) represents c. This implies the existence

of an α sequence of n + 1 elements, where the new sequence is {bi}n+1
i=1 with

bi = ai−1 for all 2 ≤ i ≤ n+ 1 and b1 = z.

The argument in the previous paragraph establishes that, if c(A) = y for

some A ⊇ {x, y}, the existence of an α sequence of n elements in A implies

the existence of an α sequence of n + 1 elements in A. Since A is finite, the

existence of an α sequence in A yields a contradiction. The proof that c(A) 6= y

concludes by showing the existence of an α sequence in A. In fact, this follows

by the same argument given in the previous paragraph with x = a1. In

particular, there is an α sequence {z, x} such that (z, x) ∈ P1 and (x, y) ∈ P2

for some z ∈ A \ {x, y}. This yields the required contradiction. Therefore,

c(A) 6= y for all A ⊇ {x, y}.
Since (P1, P2) is a minimal representation of c, Proposition 3 implies that

P2 ∈ Pc
2. Since we have established that c(A) 6= y for all A ⊇ {x, y}, the

definition of P c
2 implies that (x, y) 6∈ P c

2 . Therefore, P c
2 ⊆ P̃2 ⊂ P2 ⊆ P ∗2 .

Moreover, P̃1 = P c \ P̃2 (since P̃1 ∪ P̃2 = P1 ∪ P2 = P c). Given Proposition 3,

this implies that (P̃1, P̃2) is a minimal representation of c.

(⇒) We prove the contrapositive. In particular, assume that (P1, P2) is a

minimal representation of c. Fix (x, y) ∈ P2 such that (x, y) is not (P1, P2)-

redundant. It suffices to show that (P̃1, P̃2) with P̃1 = P1 ∪ {(x, y)} and

P̃2 = P2 \ {(x, y)} does not represent c.

Since (x, y) is not (P1, P2)-redundant, there is a sequence {ai}ni=1 of minimal

length n s.t. an = x, (ai, ai+1)1≤i≤n−1 ∈ P1 and (aj, y)2≤j≤n ∈ P2 but (a1, y) 6∈
P1 ∪ P2. Since (P1, P2) is a minimal representation, (a1, y) 6∈ P1 ∪ P2 implies

(y, a1) ∈ P1 ∪ P2. The relevant parts of the rationales are depicted in Table 3:
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P1 P2

a1 a2 x y
a2 a3 a2 y
a3 a4 a3 y
· ·
· ·

an−1 x an−1 y
· ·
· ·

Table 3: A smallest sequence violating the redundancy condition

Notice that (y, a1) has to be added to one of the rationales. Consider the menu

A = {ai}ni=1 ∪ {y}. Then, max(A;P1) must be {a1, y} or {y} (depending on

whether (y, a1) is in P1 or P2). In either case, c(P1,P2)(A) = y. Since (P1, P2)

represents c, it must be that c(A) = y. On the other hand, y 6∈ max(A; P̃1)

since x ∈ A and (x, y) ∈ P̃1. Therefore, (P̃1, P̃2) does not represent c.

(ii) Suppose (P1, P2) is a minimal representation of c. Let P̃1 = P1 \ {(x, y)}
and P̃2 = P2 ∪ {(x, y)}.

(⇐) By Lemma 7, (P̃1, P̃2) ∈ PRSM implies that (P̃1, P̃2) represents some RSM,

say c′. Since (x, y) is (P̃1, P̃2)-redundant, by part (i), it must be that (P1, P2)

represents the same choice function as (P̃1, P̃2). Therefore, (P̃1, P̃2) represents

c = c′. (⇒) Suppose that c is represented by (P̃1, P̃2). By Lemma 7, it must be

that (P̃1, P̃2) ∈ PRSM . It remains to show that (x, y) is (P̃1, P̃2)-redundant. By

way of contradiction, suppose not. Then, by part (i), it must be that (P1, P2)

does not represent c, which contradicts our initial premise.

Proof of Proposition 6. Denote generic menus in D by Di, Dj. Without

loss of generality, the relevant domain for the analysis is X̃ = ∪DDi. (The

alternatives in X\X̃ can be made to play no part by supposing that c(x, y) = x

for any x ∈ X̃ and y ∈ X \ X̃.)

(⇒) By assumption, there exists a pair of rationales that is consistent with

the observed data < c,D >. By Proposition 3, any RSM-representable choice

function has a minimal representation. By Lemma 7, any rationale pair that is
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a minimal representation of some choice function belongs to PRSM . So, there

exists a pair (P1, P2) ∈ PRSM such that c(P1,P2)(Di) = c(Di) for all Di ∈ D.

It suffices to show that there exist selections Q2 ∈ Q, (H1, H2) ∈ H, and

(I1, I2) ∈ I such that P1 = PD
1 ∪H1∪I1 and P2 = PD

2 ∪Q2∪H2∪I2. Recall that

(P1, P2) ∈ PRSM implies that, for all a, b ∈ X̃, {(a, b), (b, a)} ∩ (P1 ∪ P2) 6= ∅,
P1 ∩ P2 = ∅, P1 is acyclic and P1 breaks any P2-cycle.

First observe that if (a, b) ∈ PD
1 , then (a, b) ∈ P

c(P1,P2)

1 so that PD
1 ⊂

P
c(P1,P2)

1 . By similar reasoning, PD
2 ⊂ P

c(P1,P2)

2 . By Proposition 2(i), it then

follows that PD
1 ⊂ P1 and PD

2 ⊂ P2.

Next, consider some (a, b) ∈ Q. By definition, there exist Di, Dj ∈ D with

{a, b} ⊂ Di, Dj such that c(Di) = a and c(Dj) = b. Moreover, {(a, b), (b, a)}∩
PD
2 = ∅. Since c(P1,P2)(Di) = c(Di) = a with b ∈ Di, it must be that (b, a) 6∈ P1.

Similarly, c(P1,P2)(Dj) = c(Dj) = b with a ∈ Dj implies (a, b) 6∈ P1. Since

(P1, P2) ∈ PRSM and a, b ∈ X̃, it must be that {(a, b), (b, a)} ∩ (P1 ∪ P2) 6= ∅.
As such, either (a, b) ∈ P2 or (b, a) ∈ P2 but not both. Since (a, b) was chosen

arbitrarily, this establishes that Q2 ⊂ P2 for some Q2 ∈ Q.

Third, consider some (a, b) ∈ H. By definition, there exists a Di ∈ D
with {a, b} ∈ Di such that c(Di) = a. Moreover, (a, b) 6∈ PD

2 ∪ Q. Since

c(P1,P2)(Di) = c(Di) = a with b ∈ Di, it must be that (b, a) 6∈ P1. Again,

(P1, P2) ∈ PRSM implies that one and only one of (a, b) ∈ P1, (a, b) ∈ P2, or

(b, a) ∈ P2. Since (a, b) was chosen arbitrarily, this establishes that H1 ⊂ P1

and H2 ⊂ P2 for some (H1, H2) ∈ H.

Finally, consider some (a, b) ∈ I. By definition c(Di) 6∈ {a, b} for all

Di ∈ D. In this case, a, b ∈ X̃ and (P1, P2) ∈ PRSM implies that one and only

one of (a, b) ∈ P1, (a, b) ∈ P2, (b, a) ∈ P1, or (b, a) ∈ P2. In other words, there

exists a selection (I1, I2) from I such that I1 ⊂ P1 and I2 ⊂ P2.

The four previous paragraphs show that if (P1, P2) ∈ PRSM represents a

choice function that coincides with observed data, then there exist selections

Q2 ∈ Q, (H1, H2) ∈ H, and (I1, I2) ∈ I such that (PD
1 ∪ H1 ∪ I1) ⊂ P1 and

(PD
2 ∪Q2 ∪H2 ∪ I2) ⊂ P2.

To establish equality, note that for any a, b ∈ X̃ if {(a, b), (b, a)} ∩ (PD
1 ∪

PD
2 ∪Q2∪H) = ∅, then (a, b) ∈ I. It follows that if (a, b) ∈ P1\(PD

1 ∪H1∪I1),
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then either (b, a) ∈ (PD
1 ∪H1 ∪ I1) ⊂ P1 or {(a, b), (b, a)}∩ (H2 ∪Q2 ∪ I2) 6= ∅.

Either possibility violates (P1, P2) ∈ PRSM (which requires that P1 ∪ P2 is a

total binary relation on X̃ and P1∩P2 = ∅). A similar argument rules out the

possibility that P2 \ (PD ∪H2 ∪ Q2 ∪ I2) 6= ∅. Therefore, P1 = PD
1 ∪H1 ∪ I1

and P2 = PD
2 ∪ Q2 ∪H2 ∪ I2. Combined with the fact that (P1, P2) ∈ PRSM ,

this completes the proof for part (i).

The proof of (ii) is by contradiction. Suppose that (d, a) 6∈ P1 for all d ∈ Di

and some (a, b) ∈ P2 such that {a, b} ⊂ Di ∈ D and c(Di) = b. By definition,

it follows that a ∈ max(Di;P1). Since (a, b) ∈ P2, b 6= c(P1,P2)(Di) = c(Di) = b

which delivers the required contradiction.

(⇐) By assumption, there exist selections Q2 ∈ Q, (H1, H2) ∈ H, and

(I1, I2) ∈ I which define a pair of rationales (P1, P2) where P1 ≡ PD
1 ∪H1 ∪ I1

and P2 ≡ PD
2 ∪Q2 ∪H2 ∪ I2 such that:

(i) (P1, P2) ∈ PRSM ; and,

(ii) if (a, b) ∈ P2 and {a, b} ⊂ Di ∈ D with c(Di) = b, then (d, a) ∈ P1 for

some d ∈ Si.

Given (P1, P2) ∈ PRSM , Lemma 7 implies that (P1, P2) represents some choice

function. It suffices to show that c(P1,P2)(Di) = c(Di) for all Di ∈ D. Since

c(P1,P2) is single valued, it suffices to show that c(Di) = a implies a ∈ c(P1,P2)(Di).

Fix any menu Di ∈ D and suppose c(Di) = a. By way of contradiction,

suppose there exists some b ∈ Di such that (b, a) ∈ P1 (so that a 6∈ c(P1,P2)(Di)).

Since {a, b} ⊂ Di, (a, b) 6∈ I. Since c(Di) = a, either (a, b) ∈ PD
2 ∪Q, (b, a) ∈

PD
2 ∪Q, or (a, b) ∈ H. If {(a, b), (b, a)}∩(PD

2 ∪Q) 6= ∅ then {(a, b), (b, a)}∩P2 6=
∅. Given (b, a) ∈ P1, this contradicts the assumption that (P1, P2) ∈ PRSM . If

instead (a, b) ∈ H, then by construction one and only one of (a, b) ∈ H1 ⊂ P1,

(a, b) ∈ H2 ⊂ P2, or (b, a) ∈ H2 ⊂ P2. Given (b, a) ∈ P1, any of these

possibilities contradicts the assumption that (P1, P2) ∈ PRSM . Therefore,

c(Di) = a implies (b, a) 6∈ P1 for any b ∈ Di so that a ∈ max(Di;P1).

Now suppose there exists some b ∈ max(Di;P1) such that bP2a. Again,

this would imply that a 6∈ c(P1,P2)(Di). Since {a, b} ⊂ Di and c(Di) = a, part

(ii) implies that dP1b for some d ∈ Di. But, this contradicts the claim that

b ∈ max(Di;P1) and establishes that a ∈ c(P1,P2)(Di).
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Proof of Remark 1. (i) By definition, P ∗1 ≡ P c
2 = P c \ P c

2 . Thus, W = P ∗1

by definition. By Proposition 2, P1 ⊆ P ∗1 which establishes the desired result.

(ii) First, suppose xP c
2y. By definition, there is some A ∈ DW such that

c(A) = y and x ∈ A. So, ¬(xWy). Next, suppose xWy. By definition, there

is no A ∈ DW = 2X \ ∅ such that c(A) = y and x ∈ A. So, ¬(xP c
2y).

Proof of Remark 2. To simplify, suppose c(A) = x and c(A∪{d}) = y 6= x.

(i) (⇒) If y = d, then c(x, d) = d. Otherwise, c(x, d) = x = c(A) implies

c(A ∪ {d}) = x by Expansion which, in turn, contradicts the assumption that

c(A∪{d}) 6= x. Thus, c(x, d) = d which, by definition, gives the desired result

that dP cx. (⇐) By definition of RSM-superiority, c(x, y) = y. If y 6= d, then

c(x, y) = y = c(A ∪ {d}) and c(A) = x violate WWARP (since {x, y} ⊂ A ⊂
A ∪ {d}). So, y = d as required.

(ii) (⇒) By Proposition 1(ii), c(A) = x and c(A ∪ {d}) = y for y ∈ A

imply xP c
2y. (⇐) By way of contradiction, suppose that y = d. Then, by

definition of P2-superiority, c(x, y) = x. Since c(x, y) = x = c(A), Expansion

implies c(A∪ {d}) = x which contradicts the assumption that c(A∪ {d}) 6= x

and establishes the result.

Proof of Remark 3. Suppose c is RSM-representable and c(A) = x.

(i) Suppose c(e,x)(A) = y 6= x for some e ∈ A \ {y}. There are four cases

to consider: (a) xP1y; (b) xP2y; (c) yP1x; and, (d) yP2x. Case (a) contradicts

c(e,x)(A) = y, case (c) contradicts c(A) = x, and case (d) contradicts the joint

choices c(A) = x and c(e,x)(A) = y (since c(e,x)(A) = y implies that y must

survive P1 ∪ (e, x) on A and, hence, P1 as well). Thus, (x, y) ∈ P2 \ (P1 ∪P−11 )

or, equivalently, (x, y) ∈ P c
2 t P in by Proposition 2. This delivers the desired

result.

(ii) Suppose c(e,y)(A) = y 6= x for some e ∈ A \ {x}. As in part (i), there

are four cases. Cases (a)-(b) contradict c(e,y)(A) = y (for case (b), c(A) = x

implies that x must survive the first stage) while case (c) contradicts c(A) = x.

Thus, (y, x) ∈ P2 \ (P1∪P−11 ) or, equivalently (y, x) ∈ P c
2 tP in by Proposition

2. If yP inx, then c(A) 6= x by Proposition 3. So, yP c
2x as required.
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