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document two new facts: there has been convergence in adoption lags between rich and
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1 Introduction

There is increasing evidence that cross-country di↵erences in technology are key to account for

existing cross-country di↵erences in productivity. Rich countries tend to adopt new technolo-

gies faster than poor countries. Faster adoption allows rich countries to enjoy the productivity

gains that new technologies bring, leading to higher TFP and labor productivity. Comin and

Hobijn (2010) have quantified these e↵ects and concluded that they account for at least 25%

of observed cross-country di↵erences in productivity.

The rate of arrival of technologies to countries has evolved over the last two centuries.

Adoption lags have declined dramatically.1 Technologies invented in the nineteenth century

such as telegrams or railways often took many decades to first arrive to countries. In contrast,

new technologies such as computers, cellphones or the internet have arrived on average within

a few decades (in some cases less than one) after their invention. The decline in adoption

lags has surely not been homogeneous across countries. Anecdotal evidence suggests that the

reduction in adoption lags has been particularly significant in developing countries, where

technologies have traditionally arrived with longer lags.2 This evidence would imply that

adoption lags have converged across countries.

The convergence of adoption lags seems at odds with the observed cross-country income

dynamics. Cross-country di↵erences in per-capita income have increased dramatically over

the last 200 years. A phenomenon known as the Great Divergence (Pritchett, 1997, and

Pomeranz, 2000). Maddison (2004) shows that the income gap between countries at the

technology frontier, which he labeled as Western, and the rest of the world was seven-fold in

2000, and that around 75% of this gap emerged in the last 180 years.3 If we focus just on

the last 50 years for which we have more precise estimates of income, it is well known that

cross-country income di↵erences have not declined and probably they have increased. How is

that possible given the evolution of the distribution of adoption lags across countries?

In this paper, we explore the cross-country dynamics of technology and income over the

last two centuries. In particular, we investigate two questions. First, how have the relevant

dimensions of technology di↵usion evolved across countries over the last 200 years. Second,

how has the cross-country evolution of technology a↵ected the evolution of income growth in

di↵erent countries over the last 200 years. And, do they help us explain the Great Divergence.

The contribution of technology to a country’s productivity growth can be decomposed

in two parts. One part is related to the range of technologies used in the country. New

technologies embody higher productivity. Therefore, an acceleration in the rate at which new

1See Comin and Hobijn (2010).
2Khalba (2007); Dholakia and Kshetri (2003).
3Maddison (2004) defines Western countries as the following 17 countries: Austria, Belgium, Denmark,

Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, Untied Kingdom, Australia, New
Zealand, Canada and the United States of America. To be more precise, the relative median income per-capita
Western to non-Western countries was 1.85 in 1820 and 7 in 2000.
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(a) Di↵usion of Steam and motorships for the UK and
Indonesia.

(b) Di↵usion of PCs for the US and Vietnam.

Figure 1: Examples of di↵usion curves

technologies arrive in the country raises aggregate productivity growth. Productivity is also

a↵ected by the penetration rate of new technologies. The more units of any new technology

(relative to income) a country uses, the higher the number of workers or units of capital that

can benefit from the productivity gains brought by the new technology. It follows then that

increases in the penetration of technology (or as we call it below, the intensive margin of

adoption) raise the growth rate of productivity.

To identify adoption lags (extensive margin) and penetration rates (intensive margin) of

technology, we follow Comin and Hobijn (2010) and Comin and Mestieri (2011). To illustrate

their strategy, consider Figures 4a and 4b which plot respectively the (log) of the tonnage

of steam and motor ships over real GDP in the UK and Indonesia and the (log) number

of computers over real GDP for the U.S. and Vietnam. One feature of these plots is that

the di↵usion curves for di↵erent countries have similar shapes, but displaced vertically and

horizontally. Comin and Hobijn (2010) show that, to a first approximation, this is a general

property for the di↵usion curves of a given technology across countries. Given the common

curvature of di↵usion curves, the relative position of a curve can be characterized by only

two parameters. The horizontal shifter informs us about when the technology was introduced

in the country. The vertical shifter captures the penetration rate the technology will attain

when it has fully di↵used.

These intuitions are formalized with the help of a simple model of technology adoption and

growth. The model features both adoption margins, and has predictions about how variation

in these margins a↵ect the curvature and level of the di↵usion curve of specific technologies.

Using the CHAT data set,4 we identify the extensive and intensive adoption margins for

4Comin and Hobijn (2004) and Comin, Hobijn and Rovito (2008)
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twenty significant technologies invented over the last 200 years in an (unbalanced) sample

that covers over 150 countries.

The inspection of figures 4a and 4b illustrates the two main findings we uncover on the

evolution of adoption patterns. First, the horizontal gap between the di↵usion curves for

steam and motor ships in the UK and Indonesia is much larger than the horizontal gap

between the U.S. and Vietnam for computers (131 years vs. 11). More generally, we show

that cross-country di↵erences in adoption lags have narrowed over the last 200 years. That

is, adoption lags have declined more in poor/slow adopter countries than in rich/fast adopter

countries. Second, the vertical gap between the curves for ships in the UK and Indonesia

are smaller than the vertical gap between the di↵usion curves of computers in the U.S. and

Vietnam (0.9 vs. 1.6). This observation broadly corresponds with the evolution of cross-

country di↵erences in the long-run penetration rate between rich and poor countries for old

and new technologies. That is, the gap in penetration rates has widened over the last 200

years inducing a divergence in the intensive margin of technology adoption.

After characterizing the dynamics of technology, we explore their consequences for the

cross-country dynamics of income in two complementary ways. First, we take advantage

of the simple aggregate representation of our model to study analytically its transitional

dynamics. In section 4.1 we derive two main results. (i) The changes in the dynamics of

technologies countries have experienced over the last 200 years (e.g. acceleration of frontier

growth, reduction in adoption lags, trends in the intensive margin) lead to S-shaped evolutions

for the growth rate of productivity. (ii) Furthermore, despite not having physical capital,

habit formation or other mechanisms used in macroeconomics to generate slow transitions,

our model produces transitional dynamics that are close to an order of magnitude larger than

standard models.5

To evaluate quantitatively the model’s ability to reproduce the observed cross-country

income dynamics over the last 200 years, we simulate the dynamics of income in two repre-

sentative economies (one rich and another poor) that experience the technology dynamics we

have observed in the data. After feeding in the estimated dynamics of technology adoption,

we find that the model generates cross-country patterns of income growth that resemble very

much those observed in the data over the last two centuries. In particular, in developed

economies, it took approximately one century to reach the long-run growth rate of productiv-

ity (2%) while in developing economies it takes twice as much, if not more. As a result, the

model generates an increase in the income gap between rich and poor countries by a factor

of 2.9 which is approximately three-fourths of the actual increase observed over the last two

centuries.
5For example, after a one-time permanent shift in the growth rate of invention of new technologies (which

captures the industrial revolution) the half-life for income is approximately 80 years while the half-life for the
growth rate in income is 100 years. By way of comparison, the equivalent numbers in the neoclassical growth
model are 14 and 1 year.
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This paper is related to several lines of research. One key motivation is the inability of

existing growth models to account for the evolution of productivity growth across countries

over long time intervals. In particular, factor accumulation, emphasized by the neoclassical

growth model, has been shown to contribute little to observed cross-country growth di↵erences

over the periods 1960-85 (Klenow and Rodŕıguez-Clare (1997)) and 1850-2000 (Clark and

Feenstra (2003)). These analyses suggest, by default, that technology dynamics – our focus

in this paper– should play a key role in explaining productivity dynamics over these periods.

Though our model of growth and adoption belongs to the class of models developed by

Comin and Hobijn (2010) and Comin and Mestieri (2011), our analysis makes, at least,

three substantial contributions. First, we are the first to study the evolution of the adoption

margins across countries and document the convergence in adoption lags and the divergence

in the intensive margins of adoption over the last 200 years. Second, this is the first paper

that studies analytically the model transitional dynamics, while the previous analyses of the

model focused only on the steady state. Third, this paper evaluates quantitatively the role of

technology dynamics for cross-country income dynamics, while previous quantitative analysis

just explored how technology levels a↵ected cross-country income levels in steady state.

This paper is also related to the literature that has explored the drivers of the Great

Divergence. One stream of the literature has emphasized the role of the expansion of inter-

national trade during the second half of the nineteenth century. Galor and Mountford (2006)

argue that trade a↵ected asymmetrically the fertility decisions in developed and developing

economies, due to their di↵erent initial endowments of human capital, leading to di↵erent

evolutions in productivity growth. O’Rourke et al. (2012) elaborate on this perspective and

argue that the direction of technical change, in particular the fact that after 1850 it became

skilled bias (Mokyr, 2002), also contributed to the increase in income di↵erences across coun-

tries. Trade-based theories of the great divergence, however, need to confront two facts. Prior

to 1850, the technologies brought by the industrial revolution were unskilled-bias rather than

skilled bias (Mokyr, 2002). Why did incomes diverge also during this period? Furthermore,

the trade boom ended abruptly in 1913 with WWI, world trade declined and did not reached

the pre 1913 levels until the 1970s. In contrast, the great divergence continued throughout

the 20th century.

Probably motivated by these observations, another strand of the literature has studied the

cross-country evolution of Solow residuals and has found that they account for the majority

of the divergence (Easterly and Levine, 2000, Clark and Feenstra, 2003). These authors have

interpreted this finding as evidence of the importance of technology di↵erences for the great

divergence. Our paper evaluates this hypothesis by measuring the dynamics of technology

across countries and directly assessing their importance for the dynamics of the cross-country

income distribution.6

6Our analysis is also related to a strand of the literature that has studied the productivity dynamics after
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The rest of the paper is organized as follows. Section 2 presents the model. Section 3

presents and implements the identification of the extensive and intensive margins of adoption,

and describes the trends we observe in the cross-country evolution of both adoption margins.

Section 4 characterizes key features of the model transitional dynamics. Section 5 simulates

the model to quantify the e↵ect of the technology dynamics on the cross-country growth

dynamics. Section 6 conducts some robustness checks, and section 7 concludes.

2 Model

Next we present a simple model of technology adoption and growth. Our model serves four

purposes. First, it precisely defines the intensive and extensive margins of adoption. Second,

it illustrates how variation in these margins a↵ect the evolution of the di↵usion curves for

individual technologies. Third, it helps develop strategies to identify the extensive and in-

tensive margins of adoption in the data. Fourth, because ours is a general equilibrium model

with a simple aggregate representation, it can be used to study the dynamics of productivity

growth. In particular, we use it to understand what factors account for the di↵erent evolutions

of productivity growth we have observed in rich and poor countries over the last 200 years.

Given our goals, we simplify the analysis by treating adoption lags as exogenous parameters.7

2.1 Preferences and Endowments

There is a unit measure of identical households in the economy. Each household supplies

inelastically one unit of labor, for which they earn a wage w. Households can save in domestic

bonds which are in zero net supply. The utility of the representative household is given by

U =

Z 1

t0

e�⇢t ln(Ct)dt (1)

where ⇢ denotes the discount rate and c, consumption. The representative household, maxi-

mizes its utility subject to the budget constraint (2) and a no-Ponzi game condition (3)

Ḃt + Ct = wt + rtBt, (2)

lim
t!1

Bte
R t
t0

�rsds � 0, (3)

the industrial revolution. Galor and Weil (2000), Hansen and Prescott (2002), Tamura (2003), Crafts (1997),
among others, provide di↵erent reasons why there was a slow growth acceleration in productivity after the
industrial revolution. The mechanisms in these papers are complementary to ours.

7See Comin and Hobijn (2010) and Comin and Mestieri (2011) for straightforward ways to enodegnize these
adoption margins.
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where b denotes the bond holdings of the representative consumer, Ḃ is the increase in bond

holdings over an instant of time, and rt its return on bonds.

2.2 Technology

World technology frontier.– At a given instant of time, t, the world technology frontier is char-

acterized by a set of technologies and a set of vintages specific to each technology. To simplify

notation, we omit time subscripts, t, whenever possible. Each instant, a new technology, ⌧ ,

exogenously appears. We denote a technology by the time it was invented. Therefore, the

range of invented technologies is (�1, t].

For each existing technology, a new, more productive, vintage appears in the world frontier

every instant. We denote vintages generically by v. The productivity of a technology-vintage

pair has two components. The first component, Z(⌧ , v⌧ ), is common across countries and it is

purely determined by technological attributes. In particular,

Z(⌧ , v) = e(�+�)⌧+�(v⌧�⌧) (4)

e�⌧+�v⌧ , (5)

where (�+ �)⌧ is the productivity level associated with the first vintage of technology ⌧ and

�(v⌧ � ⌧) captures the productivity gains associated with the introduction of new vintages

(v⌧ � ⌧).8

In addition, we allow for a technology-country specific productivity term, a⌧ .

Adoption lags.– Economies typically are below the world technology frontier. Let D⌧

denote the age of the best vintage available for production in a country for technology ⌧ .

D⌧ reflects the time lag between when the best vintage in use was invented and when it was

adopted for production in the country; that is, the adoption lag. The set of technology-⌧

vintages available in this economy is V⌧ = [⌧ , t � D⌧ ].9 Note that D⌧ is both the time it

takes for an economy to start using technology ⌧ and its distance to the technology frontier

in technology ⌧ .

Intensive margin.– New vintages (⌧ , v) are incorporated into production through new

intermediate goods that embody them. Intermediate goods are produced competitively using

one unit of final output to produce one unit of intermediate good.

Intermediate goods are combined with labor to produce the output associated with a given

vintage, Y⌧ ,v. In particular, let X⌧ ,v be the number of units of intermediate good (⌧ , v) used

8In what follows, whenever there is no confusion we shall omit the subscript ⌧ from the vintage notation
and simply write v.

9Here, we are assuming that vintage adoption is sequential. Comin and Hobijn (2010) provide a micro-
founded model in which this is an equilibrium result rather than an assumption.
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in production, and L⌧ ,v be the number of workers that use them to produce services. Then,

Y⌧ ,v is given by

Y⌧ ,v = a⌧Z(⌧ , v)X↵
⌧ ,vL

1�↵
⌧ ,v (6)

The term a⌧ in (6) represents factors that reduce the e↵ectiveness of a technology in a

country. These may include di↵erences in the costs of producing the intermediate goods asso-

ciated with a technology, taxes, relative abundance of complementary inputs or technologies,

frictions in capital, labor and goods markets, barriers to entry for producers that want to

develop new uses for the technology, etc.10 As we shall see below, a⌧ determines the long-run

penetration rate of the technology in the country. Hence, we refer to a⌧ as the intensive

margin of adoption of a technology.

Production.–The outputs associated with di↵erent vintages of the same technology can be

combined to produce competitively sectoral output, Y⌧ , as follows

Y⌧ =

✓Z t�D⌧

⌧
Y

1
µ
⌧ ,v dv

◆µ

, with µ > 1. (7)

Similarly, final output, Y, results from aggregating competitively the sectoral outputs {Y⌧} as

follows

Y =

✓Z ⌧̄

�1
Y

1
✓
⌧ d⌧

◆✓

, with ✓ > 1. (8)

where ⌧̄ denotes the most advanced technology adopted in the economy, that is the technology

⌧ for which ⌧ = t�D⌧ .11

2.3 Factor Demands and Final Output

We take the price of final output as numeraire. The demand for output produced with a

particular technology is

Y⌧ = Y p
� ✓

✓�1
⌧ (9)

where p⌧ is the price of sector ⌧ output. Both the income level of a country and the price of

a technology a↵ect the demand of output produced with a given technology. Because of the

homotheticity of the production function, the income elasticity of technology ⌧ output is one.

Similarly, the demand for output produced with a particular technology vintage is

Y⌧ ,v = Y⌧

✓
p⌧
p⌧ ,v

◆� µ
µ�1

, (10)

10Comin and Mestieri (2012) discuss how a wide variety of distortions result in wedges in technology adoption
that imply a reduced form as in (6).

11For notational simplicity, we assume that older vintages are adopted earlier than newer ones. Our simula-
tions do not impose this constraint.
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where p⌧ ,v denotes the price of the (⌧ , v) intermediate good.12 The demands for labor and

intermediate goods at the vintage level are

(1� ↵)
p⌧ ,vY⌧ ,v
L⌧ ,v

= w (11)

↵
p⌧ ,vY⌧ ,v
X⌧ ,v

= 1 (12)

Perfect competition in the production of intermediate goods implies that the price of

intermediate goods equals their marginal cost,

p⌧ ,v =
w1�↵

Z(⌧ , v)a⌧
(1� ↵)�(1�↵)↵�↵ (13)

Combining (10), (11) and (12), the total output produced with technology ⌧ can be ex-

pressed as

Y⌧ = Z⌧L
1�↵
⌧ X↵

⌧ , (14)

where L⌧ denotes the total labor used in sector ⌧ ,

L⌧ =

Z t�D⌧

⌧
L⌧ ,vdv, (15)

X⌧ is the total amount of intermediate goods in sector ⌧ ,

X⌧ =

Z t�D⌧

⌧
X⌧ ,vdv, (16)

and the productivity associated to a technology is

Z⌧ =

 Z max{t�D⌧ ,⌧}

⌧
Z(⌧ , v)

1
µ�1dv

!µ�1

=

✓
µ� 1

�

◆µ�1

a⌧|{z}
Intensive Mg

e(�⌧+�max{t�D⌧ ,⌧})
| {z }
Embodiment E↵ect

⇣
1� e

��
µ�1

(max{t�D⌧ ,⌧}�⌧)
⌘µ�1

| {z }
Variety E↵ect

(17)

This expression is quite intuitive. The productivity of a technology, Z⌧ , is determined by

the intensive margin, the productivity level of the best vintage used (i.e., embodiment e↵ect),

and the productivity gains from using more vintages (i.e., variety e↵ect). Adoption lags have

two e↵ects on Z⌧ . The shorter the adoption lags, D⌧ , the more productive are, on average, the

vintages used. In addition, because there are productivity gains from using di↵erent vintages,

the shorter the lags, the more varieties are used in production and the higher Z⌧ is.

12Even though older technology-vintage pairs are always produced in equilibrium, the value of its production
relative to total output is declining over time.
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The price deflator of technology-⌧ output is

p⌧ =

✓Z t�D⌧

⌧
p
� 1

µ�1
⌧ ,v dv

◆�(µ�1)

=
w1�↵

Z⌧
(1� ↵)�(1�↵)↵�↵ (18)

There exists an aggregate production function representation in terms of aggregate labor

(which is normalized to one),

Y = AX↵L1�↵ = AX↵ = A1/(1�↵)(↵)↵/(1�↵), (19)

with

A =

✓Z ⌧̄

�1
Z

1
✓�1
⌧ d⌧

◆✓�1

(20)

where ⌧̄ denotes the most advanced technology adopted in the economy.

2.4 Equilibrium

Given a sequence of adoption lags and intensive margins {D⌧ , a(⌧)}1⌧=0, a competitive equi-

librium in this economy is defined by consumption, output, and labor allocations paths

{Ct, L⌧ ,v(t), Y⌧ ,v(t)}1t=0 and prices {p⌧ (t), p⌧ ,v(t), wt, rt}1t=0, such that

1. Households maximize utility by consuming according to the following Euler equation:

Ċ

C
= r � ⇢ (21)

2. Firms maximize profits taking prices (equation 13) as given. This optimality condition

gives the demand for labor and intermediate goods for each technology and vintage,

equations (11) and (12) , for the output produced with a vintage (equation 10) and for

the output produced with a technology (equation 9).

3. Labor market clears

L =

Z v̄

�1

Z v̄

⌧
L⌧ ,vdvd⌧ = 1 (22)

4. The resource constraint holds:

Y = C +X (23)

C = (1� ↵)Y (24)
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Combining (22) and (11), it follows that the wage rate is given by

w = (1� ↵)Y/L (25)

Combining the Euler equation (21) and the resource constraint (24) we obtain that the

interest rate depends on output growth and the discount rate

r =
Ẏ

Y
+ ⇢.

Equation (19) implies that output dynamics are completely determined by the dynamics

of aggregate productivity, A. Below, we explore in depth how productivity has evolved in

response to changes in �, �, adoption lags, and the intensive margin. For the time being, it is

informative to understand the growth rate of the economy along the balanced growth path.

To this end, suppose that D⌧ and a⌧ are constant across technologies. Further, let’s make the

simplifying (and empirically relevant)13 assumption that ✓ = µ. Then, omitting technology

subscripts,

A =

✓
(✓ � 1)2

(� + �)�

◆✓�1

a e(�+�)(t�D). (26)

Naturally, a higher intensity of adoption, a, and shorter adoption lags (D) lead to higher

aggregate productivity. Along this balanced growth path, productivity and output grow at

rate (�+ �)/(1� ↵).

3 Technology Dynamics

To assess the e↵ect of changes in technology adoption on income dynamics first it is necessary

to uncover the evolution of the extensive and the intensive margin. In this section, we describe

the estimation procedure we use to measure the intensive and extensive margins of adoption

for each technology-country pair. This is not the main goal of the paper, as a similar exercise

has already been done (albeit with less technologies) in Comin and Hobijn (2010) and Comin

and Mestieri (2012). Then, we explore the novel question of whether there are any significant

trends in the evolution of these adoption margins across countries.

3.1 Estimation strategy

As in Comin and Hobijn (2010), we derive our estimating equation by combining the demand

for sector ⌧ output, (9), the sectoral price deflator (18), the expression for the equilibrium

13As we show below, this is what we observe in our estimation.
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wage rate (25), and the expression for Z⌧ , (17). Taking logs we obtain

y⌧ = y +
✓

✓ � 1
[z⌧ � (1� ↵) (y � l)] (27)

where lowercase letters denote logs.

It is easy to see from expression (17) that, to a first order approximation � only a↵ects y⌧

through the linear trend. As we show in the appendix, this allows us to approximate the log

of Z⌧ , to a second order around the starting adoption date, as follows:

z⌧ ⇡ ln a⌧ + (�+ �)⌧ + (µ� 1) ln (t� ⌧ �D⌧ ) +
�

2
(t� ⌧ �D⌧ ) . (28)

Substituting (28) in (27) gives us the following estimating equation

yc⌧ t = �c
⌧1 + yct + �⌧2t+ �⌧3 ((µ� 1) ln(t�Dc

⌧ � ⌧)� (1� ↵)(yct � lct )) + "c⌧ t, (29)

where yc⌧ t denotes the log of the output produced with technology ⌧ , yct is the log of output,

yct � lct is the log of output per capita, "c⌧ t is an error term, and the country-technology specific

intercept, �c
1, is equal to

�c
⌧1 = �⌧3

⇣
ln ac⌧ +

⇣
�+

�

2

⌘
⌧ � �

2
Dc

⌧

⌘
. (30)

It is clear from (29) that the adoption lag is the only determinant of the curvature of the

di↵usion curve. In particular, longer lags imply that fewer vintages available for production

and, because of the diminishing gains from variety, the steepness of the di↵usion curve declines

faster than if more vintages had been already adopted. It is also clear that, for a given adoption

lag, the only driver of cross-country di↵erences in the intercept �c
⌧1 is the intensive margin,

ac⌧ . Intuitively, a lower level ac⌧ generates a downward shift of the di↵usion curve which, ceteris

paribus, leads to lower output associated with technology ⌧ throughout its di↵usion and, in

particular in the long-run.

Formally, we can identify di↵erences in the intensive margin relative to a benchmark,

which we take to be the average value for Western countries, as

ln ac⌧ =
�c
1,⌧ � �Western

1,⌧

�3,⌧

+
�

2
(Dc

⌧ �DWestern
⌧ ). (31)

We take the definition of Western countries from Maddison (2004) as the 17 countries that

are closest to the frontier (see Section 3.3).

When bringing the model to the data, we shall see that some of the technology measures

we have in our data set correspond to the output produced with a specific technology, and

therefore equation (29) is the appropriate model counterpart. Other technology measures,
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instead, capture the number of units of the input that embody the technology (e.g. number of

computers). The model counterpart to those measures is X⌧ . Towards deriving an estimating

equation for these measures, we can integrate (12) across vintages, take logs and obtain

xc⌧ = yc⌧ + pc⌧ + ln(↵).

Substituting in for equation (29), we obtain the following expression which we use to estimate

the di↵usion of the inputs that embody technology14

xc⌧ t = �c
⌧1 + yct + �⌧2t+ �⌧3 ((µ� 1) ln(t�Dc

⌧ � ⌧)� (1� ↵)(yct � lct )) + "c⌧ t. (32)

The procedure we use to estimate (29) and (32) consists in two parts. For each technology,

we first estimate the equation jointly for the U.S., the U.K. and France, which are the countries

for which we have the longest time series. From this estimation, we take the technology-specific

parameters we obtain from the estimation, �̂2 and �̂3. Then, we re-estimate the di↵usion

equation for each technology-country pair, imposing the technology specific estimates of �̂2

and �̂3.
15

In section 6.2, we relax the homotheticity in production implied by equation (8) and

allow the elasticity of yc⌧ t with respect to income to di↵er from one. Our two-step estimation

procedure allows to estimate the income elasticity, �⌧y, (along with �2 and �3) from the

di↵usion curve in the baseline countries and then to impose these estimates when estimating

the equation for all the technology-country pairs. E↵ectively, what this means is that we

estimate �⌧y from the time series variation in technology and output for the baseline countries

and then assume that the slope of the Engel curve is constant across countries. Given that

the baseline countries have long time series that for many technologies cover much of its

development experience, we consider this to be a reasonable approximation.

3.2 Data and estimation results

We implement our estimation procedure using data on the di↵usion of technologies from the

CHAT data set (Comin and Hobijn, 2009), and data on income and population from Maddison

14Note that there are two minor di↵erences between (29) and (32). The first di↵erence is that in the first
�⌧3 is ✓/ (✓ � 1) , while in the second it is 1/(✓ � 1). The second di↵erence is that in the second the intercept
�

c
⌧1 has an extra term equal to �⌧3 ln(↵).
15Note that the coe�cients �2 and �3 in (29) are functions of parameters that common across countries (✓

and �. Therefore their estimates should be independent of the sample used to estimate them. Our procedure is
less computationally intensive than estimating simultaneously the system of di↵usion equations for all countries
imposing the restriction that �2 and �3 are common across countries. An additional for using this two-step
procedure, is that in a system estimation method, data problems from one country contaminate the estimation
of the common parameters and the estimates for all countries. Thus, using a small set of countries for which the
data is most reliable to identify the common technological parameters circumvents this problem. Reassuringly,
Comin and Hobijn (2010) show that for a large majority of technology-country pairs, it is not possible to reject
the null that �3 is common across countries.
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(2004). The CHAT data set covers the di↵usion of many technologies for 171 countries over

the last 200 years. Because of the unbalanced nature of the data set we focus on a sub-sample

of technologies that have a wider coverage over rich and poor countries and for which the data

captures the initial phases of di↵usion. The 25 technologies that meet these criteria are listed

in the Appendix and cover a wide range of sectors in the economy. Their invention dates

also span quite evenly over the last 200 years. It is worthwhile remarking that the specific

measures of technology di↵usion in CHAT match the dependent variables in specification (29)

or (32). In particular these measures capture either the amount of output produced with the

technology (e.g., tons of steel produced with electric arc furnaces) or the number of units of

capital that embody the technology (e.g. number of computers per capita).

The value added of this paper is not the estimation of the two adoption margins, as we

have done this elsewhere (Comin and Hobijn, 2010; Comin and Mestieri, 2012)–albeit with

fewer technologies. Accordingly, we describe the fit and summary statistics of the margins

briefly. As in Comin and Hobijn (2010), we use the plausibility and precision of the estimates

of the adoption lags from equation (29) as a pre-requisite to utilize the technology-country

pair in our analysis. We find that these two conditions are met for the majority of the

technology country-pairs (62%).16 For these technology country-pairs, we find that equation

(29) provides a very good fit for the data with a detrended R2 of 0.80 across countries and

technologies (Table 8).17

Tables 1 and 2 report summary statistics for the estimates of the adoption lags and

the intensive margin for each technology. The average adoption lag across all technologies

(and countries) is 45 years. We find significant variation in average adoption lags across

technologies. The range goes from 8 years for the Internet to 128 years for spindles. There

is also considerable cross-country variation in adoption lags for any given technology. The

range for the cross-country standard deviations goes from 2 years for the Internet to 51 years

for steam and motor ships.

We also find significant cross-country variation in the intensive margin. The intensive

margin is reported as log di↵erences relative to the average adoption of Western countries.

To compute the intensive margin we follow Comin and Mestieri (2012) and calibrate � = 1%,

↵ = 0.3, and use a value of �3,⌧ that results from setting the elasticity across technologies ✓

to be the mean across our estimates, which is ✓ = 1.28. The average intensive margin is -.6,

which implies that the level of adoption of the average is 55% of the Western countries. More

generally, there is significant cross-country dispersion in the intensive margin. The range

16Plausible adoption lags are those with an estimated adoption date of no less than ten years before the
invention date. Precise are those with an standard error smaller than

p
2003� invention date. This allows for

older technologies to be more imprecisely estimated. If we were to impose only that our estimates are plausible
and significant at 5% (when compared against the null of being zero) we would have that 67% of the country
pairs satisfy these condition.

17To compute the detrended R

2
, we partial out the linear trend �t and compute the R

2 of the de-trended
data.
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Table 1: Estimated Adoption Lags

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 28 111 55 38 102 171 105
Ships 1788 41 122 54 47 144 179 104
Railways Freight 1825 39 77 33 31 75 123 56
Railways Passengers 1825 29 74 41 15 80 123 70
Telegraph 1835 38 50 31 18 42 96 44
Mail 1840 43 44 38 8 33 108 59
Steel (Bessemer, Open Hearth) 1855 39 67 33 14 78 108 45
Telephone 1876 49 51 31 8 54 91 51
Electricity 1882 74 51 22 18 56 72 33
Cars 1885 61 41 21 15 37 65 33
Trucks 1885 54 38 21 14 35 64 32
Tractor 1892 114 66 11 57 68 69 5
Aviation Freight 1903 36 43 14 28 44 63 19
Aviation Passengers 1903 40 30 15 16 25 53 18
Electric Arc Furnace 1907 39 49 19 22 56 78 35
Fertilizer 1910 85 47 9 39 48 54 7
Harvester 1912 56 40 15 20 42 52 16
Synthetic Fiber 1924 48 38 4 34 39 41 2
Blast Oxygen Furnace 1950 37 15 8 8 13 26 11
Kidney Transplant 1954 24 13 7 3 13 25 5
Liver Transplant 1963 20 19 4 15 18 25 3
Heart Surgery 1968 17 13 4 9 13 20 4
Cellphones 1973 79 13 4 9 14 18 5
PCs 1973 66 17 3 13 16 20 3
Internet 1983 57 7 3 2 7 11 3

Total 1213 45 35 10 39 85 47

goes from 0.3 for railways and mail to 1.2 for the Internet. These summary statistics for the

estimates of adoption lags and the intensive margin of adoption are very consistent with those

in Comin and Hobijn (2010) and Comin and Mestieri (2012) which use smaller technology

samples and estimate other versions of the di↵usion equation (29).

3.3 Evolution of adoption lags and intensive margin

One key goal of our analysis consists in studying the evolution of the cross-country dispersion

of the adoption lags and the intensive margins. To do that, we divide the countries in our

sample in two groups. Following Maddison, we split the sample of countries in two. Seventeen

15



Table 2: Estimated Intensive Margin

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 28 0.0 0.7 -1.0 0.0 1.1 0.8
Ships 1788 41 -0.1 0.7 -0.8 -0.1 0.8 0.8
Railways Freight 1825 39 -0.1 0.4 -0.5 -0.1 0.5 0.5
Railways Passengers 1825 29 0.0 0.3 -0.5 -0.1 0.4 0.3
Telegraph 1835 38 -0.2 0.5 -1.0 -0.2 0.4 0.5
Mail 1840 43 -0.1 0.3 -0.7 -0.1 0.2 0.4
Steel (Bessemer, Open Hearth) 1855 39 -0.2 0.5 -0.7 -0.1 0.3 0.6
Telephone 1876 49 -0.8 0.9 -1.9 -0.6 0.2 0.9
Electricity 1882 74 -0.5 0.6 -1.2 -0.4 0.1 0.8
Cars 1885 61 -1.1 1.1 -2.2 -1.0 0.1 1.6
Trucks 1885 54 -0.8 1.0 -1.7 -0.8 0.2 1.2
Tractor 1892 114 -0.9 0.8 -2.0 -0.9 0.1 1.3
Aviation Freight 1903 36 -0.3 0.6 -1.3 -0.1 0.3 0.6
Aviation Passengers 1903 40 -0.4 0.7 -1.3 -0.3 0.3 0.7
Electric Arc Furnace 1907 39 -0.2 0.5 -1.1 -0.1 0.4 0.7
Fertilizer 1910 85 -0.9 0.8 -2.0 -0.8 0.1 1.3
Harvester 1912 56 -1.2 1.1 -3.0 -1.1 0.1 1.7
Synthetic Fiber 1924 48 -0.6 0.8 -1.8 -0.5 0.3 1.0
Blast Oxygen Furnace 1950 37 -0.8 1.0 -2.3 -0.4 0.1 1.3
Kidney Transplant 1954 24 -0.2 0.4 -0.9 -0.1 0.1 0.4
Liver Transplant 1963 20 -0.4 0.7 -1.7 -0.1 0.1 0.5
Heart Surgery 1968 17 -0.4 0.8 -1.8 -0.1 0.2 0.4
Cellphones 1973 79 -0.8 0.7 -1.9 -0.6 0.1 1.2
PCs 1973 66 -0.6 0.6 -1.4 -0.6 0.1 0.9
Internet 1983 57 -1.0 1.2 -2.2 -0.9 0.1 1.6

Total 1213 -0.6 0.8 -1.7 -0.4 0.2 1.0

Western nations which are closer to the frontier18 and the rest which he labels “Rest of the

World.” To study the convergence of adoption patterns between rich and poor countries, we

estimate trends in the adoption margins for each of the two samples.

Figure 2 plots, for each technology in our sample, the median adoption lag among the

western countries and among the rest of the countries in the world. The Figure suggests that

cross-country di↵erences in adoption lags have narrowed. Table 3 formalizes this intuition by

regressing (log) adoption lags on their year of invention (and a constant). Column (1) reports

the unconditional trend, that is, for the whole sample of countries. We confirm the finding

in Comin and Hobijn (2010) that it is downward sloping. That is, newer technologies have

18These are the following: Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Nor-
way, Sweden, Switzerland, Untied Kingdom, Australia, New Zealand, Canada and the United States of America.
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Figure 2: Convergence of Adoption Lags.

di↵used faster. Then, we run the same regression separately for the two groups of countries.

We find that the rate of decline in adoption lags is almost a 50% higher in poor than in rich

countries. In particular the annual rate of decline is around .9% for rich countries (see column

(3)) versus a 1.3% for poor countries (column (2)). Hence, there has been convergence in

adoption lags between rich and poor countries.

Figure 3 shifts the attention to the cross-country evolution of the penetration rates. In

particular, it plots for each technology the median intensive margin among the western and

non-western countries. This figure suggests that the gap between rich countries and the rest

of the world in the intensive margin of adoption was smaller for technologies invented at the

beginning of the nineteenth century than for technologies invented at the end of the twentieth

century. Table 4 provides econometric evidence for this finding. Column (3) shows that, for

non-Western countries, the intensive margin has declined at a .62% annual rate. Recall that

we define the intensive margin in equation (31) relative to the Western countries. Therefore,

as one would expect, column (2) shows that, indeed, for Western countries there is no trend

in the intensive margin. Hence, Table 4 documents the divergence in the intensive margin of

adoption between Western and non-Western countries over the last 200 years.
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Figure 3: Divergence of the Intensive Margin

4 Income dynamics: Analytic Results

The ultimate goal of this paper is to explore how the technology dynamics we have uncovered

a↵ect the evolution of productivity growth across countries. Given the novelty of the model,

we first provide some analytic intuitions about the growth dynamics in the model. Then, in

the next section, we evaluate quantitatively its ability to generate the observed cross-country

income growth dynamics over the last 200 years with the help of simulations.

In our model, the relevant transitional dynamics are driven by three variables: adoption

lags, intensive margins and the growth of the technology frontier. We start by analyzing the

sources of growth in the model when the technology frontier advances at a constant rate.

Then we turn to the study of the transitional dynamics from one balanced path to another.

As described in Section 2, at each instant of time, it appears the first vintage of a new

technology and a new vintage for all past technologies. Thus, the set of technologies available

to an economy at time t is given by [�1, t � Dt), and that the set of vintages of a given

technology is [⌧ , t�D⌧ ) where ⌧ is time of invention of the technology and D⌧ the adoption

lag. Let’s denote a time derivative using a dot and growth rates by g. Taking the time
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Table 3: Evolution of the Adoption Lag

(1) (2) (3)
Dependent Variable is: Log(Lag) Log(Lag) Log(Lag)

World Western Countries Rest of the World

Year-1820 -0.011*** -0.0076*** -0.0113***
(0.004) (0.000441) (0.0004)

Constant 4.37*** 3.64*** 4.55***
(0.07) (0.07) (0.06)

Observations 1198 330 868
R-squared 0.44 0.33 0.59

Note: robust standard errors in parentheses,*** p<0.01. Each observation is re-weighted so that each technol-

ogy carries equal weight.

derivative of (19) and using (17) and (20), we find that

(1� ↵)gY = (✓ � 1)

✓
Zt�Dt

Y

◆ 1
✓�1

(1� Ḋt)

| {z }
New Technology

+

Z t�Dt

�1

✓
Z⌧

Y

◆ 1
✓�1

gZ⌧d⌧ ,

| {z }
Old Technologies

(33)

where

gZ⌧ = �

 
1 +

e
��
µ�1

(t�⌧�D⌧ )

1� e
��
µ�1

(t�⌧�D⌧ )

!
. (34)

The first term in (33) captures the growth imputable to a new technology being introduced

in the economy. This term has three parts. (1� Ḋt) captures the number of new technologies

introduced at instant t. If the adoption lag Dt does not change (i.e., Ḋt = 0), only one new

technology arrives in the economy at instant t. But if adoption lags decline (i.e., Ḋt < 0), the

flow of new technologies in the economy is greater than one. The e↵ect on growth of the arrival

of new technologies depends on two factors. First, the (inverse) of elasticity of substitution

between technologies (✓ � 1). The more substitutable are di↵erent technologies, the smaller

the gains from having a new technology available for production. Second, the share of the

new technologies in output (i.e. (Zt�Dt/Y )1/(✓�1)).19 The higher the productivity embodied

in a technology, the larger the impact of its arrival on GDP growth. The share of a new

technology in GDP depends both on its intensive margin and its vintage (t�Dt).

The second term in (33) captures the increases of productivity due to the introduction of

new vintages in already present technologies. The contribution to overall growth is an average

19Recall from (20) that Yt =

✓R t�Dt

�1 Z

1
✓�1
⌧ d⌧

◆✓�1
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Table 4: Evolution of the Intensive Margin

(1) (2) (3)
Dependent Variable is: Intensive Intensive Intensive

World Western Countries Rest of the World

Year-1820 -0.0034*** 0.0000 -0.0062***
(0.0005) (0.0002) (0.0006)

Constant -0.24*** -0.00 -0.30***
(0.06) (0.06) (0.08)

Observations 1213 341 872
R-squared 0.06 0 0.15

Note: robust standard errors in parentheses,*** p<0.01. Each observation is re-weighted so that each technol-

ogy carries equal weight.

of di↵erent sectoral growths gZ⌧ weighted by the sector’s share in total output. Note from

(34) that the productivity of new technologies grows faster than for older ones because of the

larger gains from variety when few vintages have been adopted (i.e., for small t � ⌧ � D⌧ ).

Eventually, gZ⌧ converges to �, the long-run growth rate of productivity embodied in new

vintages.

4.1 Transitional dynamics after an acceleration in frontier growth

To make the mechanics of the model more transparent, we introduce the dynamics generated

by each mechanism sequentially. The first parameter change we consider is a permanent,

instantaneous increase in the growth rate of the technology frontier, from gOld to � + �, that

takes place at time T . In our view, the acceleration in the growth rate of the technology

frontier is a key property of the Industrial Revolution. Thus, we study how an economy

transitions from an original balanced growth path with growth gOld coming from the usage

of pre-Modern technologies to a new balanced growth path with growth �+ �. We keep the

intensive and extensive margins constant at their pre-Industrial levels in this initial exercise.

To explore the dynamics after an acceleration in frontier growth, it is convenient to de-

compose output as follows

Y (t) = 

✓Z T

�1
Z

1
✓�1
⌧ +

Z t�D

T
Z

1
✓�1
⌧

◆ ✓�1
1�↵

⌘ 

✓
X

1
✓�1

Old +X
1

✓�1

Modern

◆ ✓�1
1�↵

, (35)

(1� ↵)gY = (1� s) gOld + s gModern, (36)
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where  = ↵
↵

1�↵ , XOld denotes the output produced with “old”, pre-Industrial Revolution,

technologies, XModern the output produced with Modern technologies. T denotes the advent

of the Industrial Revolution, s is the output share of modern technologies
⇣
XModern

Y

⌘ 1
✓�1

, and

gi denotes the growth rate of i.

It is clear from (36) that the dynamics can come from the evolution of the sectoral growth

rates, gOld and gModern, or from changes in the output share of the modern sector, s. The next

proposition characterizes the evolution of output produced with modern and pre-industrial

technologies.

Proposition 1 After the economy starts adopting Modern technologies, Modern and pre-

Industrial output are

XOld(t) = aAOlde
gOld(t�D), (37)

XModern(t) = aAModerne
(�+�)(t�D)h(t)✓�1, (38)

where a is the intensive margin, AOld, AModern are positive constants and h(t) is an S-shaped

function. It is increasing, convex for t < ✓�1
� ln

⇣
�+�
�

⌘
+ T + D and concave thereafter, its

initial value is 0 and it reaches a plateau, limt!1 h(t) = 1. Finally, it approaches smoothly

to its minimum and maximum values, h0(T +D) = limt!1 h0(t) = limt!1 h00(t) = 0.20

Note that the output produced using Old technologies grows at rate gOld. Modern output,

instead, has two components that change over time.21 First, there is a log-linear trend,

(� + �)t, and second, a transient source of growth, h(t). The log-linear trend captures the

higher productivity embodied in new technologies and vintages (embodiment e↵ect). This

term drives long-run growth. The transient term h(t) is S-shaped and eventually reaches a

ceiling, so it does not contribute to long-run output growth. This term originates from the

gains from variety of having more vintages and more technologies in production. In an initial

phase, the increment in productivity from the arrival of vintages is larger the more modern

technologies have arrived in the economy. Hence, the initial convexity of h(t). At some point,

though, the decreasing gains from variety to the number of modern technologies and to the

number of vintages within existing modern technologies kick in and h(t) becomes concave and

eventually plateaus.

20The expression for h(t) is

h(t) =
�(�+ �)

�

✓
1
�

⇣
1� e

���t
✓�1

⌘
� 1

�+ �

✓
1� e

� (�+�)�t
✓�1

◆◆
, (39)

where �t ⌘ t�D � T .
21Here we are assuming that output produced with pre-Modern technologies keeps increasing independently

from the advent of the Industrial revolution. In Section D of the Appendix, we show how to embed this in the
framework of Section 2. The di↵erences that we obtain are qualitatively minor, and quantitatively insignificant
for the relevant parameter range.
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Next we describe the shape of the transition to the new balanced growth path.

Proposition 2 The transition of the growth rate from the pre-Industrial balanced growth path

to Modern growth is S-shaped.

From (36), we know that the growth rate in the economy is a weighted average of the

growth of the modern and old sectors. The weights correspond to the output share of Modern

and pre-Modern technologies. We show in the Appendix that the share of the Modern sector

inherits the properties of the transient component h(t), so that the weight on modern output

is increasing and has an S-shape.

If growth in the modern sector was only given by the embodiment e↵ect (the log-linear

trend, � + �), modern output would grow at a constant rate. In this case, output growth

would be given by gY = (1� s)gOld + s(�+ �). It follows from this expression that aggregate

output growth would be increasing over time reaching (� + �) asymptotically. Furthermore,

gY would mimic the S-shape of the modern sector output share, s.

However, modern output grows faster than the log-linear trend. Thus, aggregate output

growth will overshoot its long-run level (� + �), as illustrated in Figure 5. Whether this

over-shooting is quantitatively important depends on whether when the weight on modern

growth becomes close to one, the growth rate of the modern sector is substantially higher

than (�+ �).

Next, we assess the protractedness of the transition to the new balance growth path.

Proposition 3 The half-life in terms of levels and growth rates are approximately

tlevel1/2 ' D +
1

�+ � � gOld
ln

✓
1

2

AOld

AModern

◆
, (40)

tgrowth1/2 ' D +
1

�+ � � gOld
ln

✓
AOld

AModern

◆
. (41)

The first terms in both equations capture the fact that there is a lag between the advent

of the Industrial Revolution and when a country starts adopting Modern technologies. The

second terms capture the evolution of the transition conditional on having started to adopt

modern technologies. In particular, the term inside the brackets reflects the ratio of the

productivity of pre-modern output at the time of the Industrial Revolution to the Modern

sector (and, hence, long-term level of output). Intuitively, if the output produced with pre-

Modern technologies is “high”, it takes longer for modern output to become the major driver

of output per capita. This slows down the transition to the new balanced growth path.
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4.2 Changes in the Adoption Lags and Intensive Margin

Next we study how changes in adoption lags and intensive margin a↵ect the transitional

dynamics. Perhaps surprisingly, we show that the qualitative results we derived in the previous

section remain.

We start by considering a one period permanent change of adoption lags and the intensive

margin from its pre-Modern levels to their average Modern levels. In the appendix we extend

the results to the case where these margins evolve linearly. Formally,

D⌧ =

8
<

:
DOld for ⌧ < T

DModern for ⌧ � T
a⌧ =

8
<

:
aOld for ⌧ < T

aModern for ⌧ � T
(42)

where T denotes the first Modern technology.

Proposition 4 Let the evolution of the adoption lag and the intensive margin be given by

(42), then pre-Industrial and Modern output are

XOld(t) = aOldAOlde
gOld(t�DOld), (43)

XModern = aModernAModerne
(�+�)(t�DModern)h(t)✓�1, (44)

where AOld, AModern are the same positive constants as in Proposition 3 and h(t) is the

same S-shaped function as in Proposition 3. h(t) is increasing, initially convex and concave

thereafter, reaching a plateau.22 Proposition 2 hold in this case. The half-lives of the system

in levels and growth rates are

tlevel1/2 ' DModern �
gOldDOld

�+ � � gOld
+

1

�+ � � gOld
ln

✓
1

2

aOldAOld

aModernAModern

◆
, (45)

tgrowth1/2 ' DModern �
gOldDOld

�+ � � gOld
+

1

�+ � � gOld
ln

✓
aOldAOld

aModernAModern

◆
. (46)

The changes in the adoption margins do not a↵ect the pre-Modern sector. Growth in the

Modern sector does not depend on whether the adoption margins are the same before and

after the industrial revolution. Hence, the shape of the transition to the Modern growth era is

not a↵ected by the changes introduced in (42). However, the changes in the adoption margins

have a quantitative impact on the transitional dynamics.

To assess the protractedness of the model’s transitional dynamics, we use Proposition 4 to

calculate the half-live during the transition to the new steady state. To this end, we calibrate

D and a using information on the averages of both margins over the Modern period (50 years

22More precisely, h(t) is increasing, convex for t < ✓�1
�

ln
⇣

�+�
�

⌘
and concave thereafter, h(T +DModern) = 0,

limt!1 h(t) = �/�(�+ �), h0(T +DModern) = limt!1 h

0(t) = limt!1 h

00(t) = 0.

23



and 40% of the US intensive margin, respectively).23 As discussed above, the first component

of the half lives is the adoption lag, D, which is 50 years. The second components reflects the

dynamics once adoption has started. Our calibrations imply a value for this second term of

60 years for the half life in levels and 100 years for the half life of the growth rate. Hence, the

resulting half-lives are on the order of a hundred years.24

5 Income Dynamics: Simulation Results

We use the expository model outlined in section 2 to evaluate quantitatively the e↵ects of

dynamics in technology di↵usion on the cross-country evolution of economic growth. In

particular we explore three issues: The significance of di↵erences in adoption for cross-country

income di↵erences in the pre-industrial balanced growth path; the protractedness of the model

transitional dynamics; and the model’s account of the great divergence. In this section, we

will focus on the two groups of countries defined by Maddison (2004) as “Western” countries

and the rest of the world .25

Calibration .– To simulate the model we need to calibrate a few parameters. First, we

need to specify the path for the world technology frontier. Prior to year T = 1765 (year in

which James Watt developed his steam engine),26 the technology frontier grows at 0.2% which

is the growth rate of western Europe according to Maddison (2004) from 1500 to 1800. After

1765, the frontier grows at 2% per year. As shown in equation (26), the growth rate along

the balanced growth is equal to (� + �)/(1 � ↵). The literature has not determined what

fraction of frontier growth comes from each of these two sources. Therefore, in our baseline

simulation, we split evenly the sources of growth in the frontier between � and � and conduct

robustness checks to show the robustness of our findings.

The level of aggregate productivity at time T, AT , a↵ects the speed of the acceleration

induced by the industrial revolution.27 We set AT to match the ratio income in 1820 over

income in 2000 in the U.S. Note, though, that this parameter is the same across countries.

23The rest of the parameters we take from our baseline calibration, which is explained in Section 5. These
parameters are � = � = 1%, ✓ = 1.45 and initial output (normalized by a productivity term) of 75.

24To derive these simple analytic expressions we have neglected the e↵ect of the evolution of the transient
component h(t), so the reader may wonder how much does it matter. In our simulations we find that the e↵ect
of the transient component is important and it almost halves the contribution of the second term. However,
even so, the contribution of the second term remains important (30 and 50 years). The half-lives that we find
for the average country in our simulation are around 80 and 100 years for the levels and the growth, respectively
–which makes the dynamics still very protracted.

25Western countries consists of 12 (northern) European countries, Austria, Belgium, Denmark, Finland,
France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom, the Western o↵-shots,
Australia, New Zealand, Canada, United States, and Japan. In Section 6.3 also explore the implications of the
model for the group of countries with income in the bottom 10th and 20th of the world income distribution.

26Alternatively, we can set, without any significant change to our findings, the beginning of the industrial
revolution at 1779, year of invention of the first technology in our sample, the mule spindle.

27See Proposition 3.
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Finally, we need to calibrate the elasticities of substitution between vintages or between

technologies, which we assume are the same and equal to 1/(✓� 1). We back out the value of

✓ from the estimates of �⌧3. The implied values for ✓ are around 1.3, which are similar to the

values implied by the estimates of price markups from Basu and Fernald (1997) and Norbin

(1993).

Initial income di↵erences .– It follows from expressions (19) and (26) that, in our model,

di↵erences in productivity in the pre-industrial balanced growth path are due to di↵erences in

adoption lags and in the intensive margin. Our estimates from Tables 3 and 4 imply that the

di↵erence between the average adoption lag in the sample of Western countries and in other

countries is 56 years in 1820. Further, the average gap in the (log) intensive margin is 0.3.

Using Maddison’s estimates of pre-industrial growth in western Europe (0.2%) to calibrate

the pre-industrial growth rate of the world technology frontier, equation (26) then yields an

income di↵erence between the western countries and the rest of 51%.28 In Maddison’s data,

the productivity gap between these countries in 1820 is 80%. Hence, the pre-industrial income

di↵erences generated by our model account for more than 60% of those observed in the data.

Protracted dynamics .– Next, we explore the protactedness of the model transitional dy-

namics. To this end, we consider the average country in our sample, and suppose that there

is a one time permanent increase in the growth of the world technology frontier (� + �) like

the one we observed in the industrial revolution (from 0.2% to 2%). The average country

is parametrized so that its adoption lag and its degree of penetration (a⌧ ) are constant and

equal to the average adoption lag and intensive margins across countries and over our sample

of technologies. In particular, the resulting D is 50 years and the intensive margin is 40%

of the U.S. level. Figure 6 plots the transition of output in this representative economy to

the new balanced growth path (normalized by the long term trend). In the figure, we can

see that the model generates a very slow convergence to the new balanced growth path. The

half-life of the output gap relative to the Modern balanced growth path is 77 years while for

output growth it is 104 years. These half-lives are almost an order of magnitude higher than

the typical half-life in neoclassical growth models (e.g., Barro and Sala-i-Martin 2003).

There are three reasons why our model generates such protracted dynamics. First, the

long adoption lags (50 years) imply that it takes this amount of time for the new technologies

(which embody the higher productivity gains) to arrive in the economy. Until then, there

is no e↵ect whatsoever in output growth. Second, for a given growth in the modern sector

output, its impact in GDP depends on the share of the modern sector. Since the modern

sector’s share increases slowly, so does aggregate output. Third, as shown in Proposition 1,

the growth of the modern sector increases progressively since it is initially convex.

Cross-country evolution of income growth .– To evaluate the model’s power to account for

the Great Divergence, we simulate the evolution of output for Western countries and the rest

28I.e., exp(.2% · 56 + .3) = 1.51.

25



of the world after feeding in a (common) one time permanent increase in frontier growth, as

well as the estimated evolutions for adoption lags and the intensive margin for each group of

countries (see Tables 3 and 4). The results from this exercise are reported in Figure 7 and

Table 9.

The model generates sustained di↵erences in the growth rates of Western and non-Western

countries for long periods of time. Output growth starts to accelerate at the beginning of the

nineteenth century in the Western economy reaching its peak around 1900 at a rate slightly

above 2%. At this point, it slowly converges to the steady state growth of 2%. For the non-

Western country, instead, growth does not increase from the pre-industrial rate until the end

of the nineteenth century. Growth in the poor country slowly accelerates, but it is still around

1.5%, by year 2000. The gap in growth between the rich and poor countries is considerable.

Annual growth rates di↵er by more than 0.6% for 80 years. The peak gap is reached at around

1900 at 1.3%. From then, the gap declines monotonically until reaching 0.5% by 2000. Table

9 reports the average growth and growth gaps of our simulation and Maddison (2004). The

patterns and levels in our data trace quite well Madison’s.

The sustained cross-country gap in growth produced by the model leads to a substantial

gap in income per capita. In particular, our model generates a 2.9 income gap between the

Western countries and the rest of the world. Maddison (2004) reports an actual income

widening by a factor of 3.9 between Western countries and the rest of the world since the

Industrial Revolution.29 Hence, most of the variation in the income gap between Western and

non-Western countries in the last two centuries is accounted for.

The role of initial conditions and changes in adoption lags .– After showing that the model

does a remarkable job in reproducing the cross-country dynamics of income growth over the

last two centuries, it is worthwhile dissecting the mechanisms at work. We start this task by

simulating the dynamics of our model after a common acceleration of the technology frontier

for both countries. To this end, we keep constant at their initial level the adoption lags

and intensive margin in each country. Figure 8 shows that these initial conditions are an

important source of cross-country income divergence. In particular, longer adoption lags in

the non-Western country imply a delay of 80 years to start benefiting from the productivity

gains of the Industrial Revolution. As a result, the income gap increases by a factor of 2.7 by

year 2000.

Of course, this estimate does not provide an accurate assessment of the contribution of

29We have computed the increase in relative output per capita from Maddison (2004). We restrict our
attention to countries for which we have data on technology adoption. In our sample, the median non-Western
countries had approximately 68% of the income per capita of the median Western country in 1700. In 2000,
this figure was 14%. If instead we looked at the ratio of the 90th to the 10th percentile in our data, we would
find that in 1700, it was 2.6 and in 2000, it was 17.9. (so the relative increase is 6.9. Lucas (2004) numbers
for English speaking countries, Japan and northern Europe relative to the rest of the world are in the same
ballpark. The Western countries increase their income from 1750 to 2000 by 20, while the rest of the word
multiplied it by around 4, which again gives a increase of the relative gap of 5.
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adoption lags to the great divergence because adoption lags did not remain constant over

the last 200 years. As we have shown in Section 3.2, cross-country di↵erences in adoption

lags have declined. To assess more precisely the role of adoption lags in cross-country growth

dynamics, we simulate the evolution of our two model economies after a common acceleration

in frontier growth allowing for the specific evolutions of adoption lags that we observe in the

data. The intensive margins are kept constant at the pre-industrial levels. Figure 9a presents

the results from this simulation. It is clear that cross-country di↵erences in adoption lags are

a key driver of income divergence during the nineteenth century. In particular, prior to the

non-Western country start adopting Modern technologies and quickly overtaking the Western

country, the income gap reaches a level of 1.5. However, after that, the faster reduction in

adoption lags in the poor country induces higher growth rates in the non-Western country.

As a result, during the twentieth century income converges, and the relative income between

the two countries is .95 by 2000.

The role of the intensive margin .– The income dynamics induced by adoption lags suggest

that the evolution of the intensive margin may be necessary to explain why the great diver-

gence continued during the twentieth century. To explore this hypothesis more rigorously,

we simulate the evolution of the two economies following the acceleration of the common

technology frontier, and feeding in the estimated dynamics of the intensive margin. In this

simulation, we keep adoption lags constant at the pre-industrial levels.

Figure 9b presents the dynamics of income growth in each country. The first observation

is that the divergence in the intensive margin of technology generates a very significant diver-

gence in income growth between the rich and the poor country. In this simulation, the growth

acceleration in the poor country starts much later than in the baseline (Figure 7). This is a

consequence of omitting the productivity gains from a reduction in adoption lags in the poor

country. Another perspective on this same issue is that the decline in the intensive margin

reduces productivity growth by a magnitude that, initially, is equivalent to the gains brought

by the industrial revolution to the poor countries.

It is also evident from Figure 9b that the rich country grows less, especially during the

nineteenth century, than in the baseline. This is a reflection of the productivity gains brought

by the reduction in adoption lags for rich countries. Furthermore, as shown in the bottom

panel of Figure 9b, the growth gap between rich and poor countries during the nineteenth

century is smaller when we omit the evolution of the adoption lags. Despite that, the poor

country’s growth rate falls behind the rich, and this gap does not begin to close until the

second half of the twentieth century. By 2000, the income gap between the rich and the poor

country would have increased by a factor of 4.7.30

30One side comment we find interesting is that, shutting down the dynamics of adoption lags leads to more
protracted dynamics transitional dynamics, as illustrated by Figure 9b. As anticipated above, this shows that
the protractedness of the transitional dynamics is related to the length of the adoption lags. One prediction
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To sum up, the findings from our simulations are as follows:

1. The model is capable of generating a Great Divergence where income per capita between

western countries and the rest increases by a factor of 2.9 over the last 200 years, which

represents almost 75% of the actual increase in the income gap observed in the data.

2. The presence of long adoption lags generates very protracted transitional dynamics.

3. Large cross-country di↵erences in adoption lags explain much of income divergence

during the nineteenth century between Western countries and the rest.

4. The Great Divergence continued during the twentieth century because of the divergence

in the penetration rates (i.e., intensive margin of adoption) between western countries

and the rest.

6 Extensions

Next we show that these findings are robust to alternative (i) calibrations, (ii) assumptions

about the income elasticity of technology, and (iii) definitions of the samples of rich and poor

countries.

6.1 Calibration of � and �

The results discussed above assumed that the productivity growth after the Industrial Rev-

olution was equally shared between the productivity growth of new technologies (�) and of

new vintages (�). Given the di�culty of calibrating the contribution of these two sources of

growth, it is necessary to study the robustness of our findings to the relative contributions of

new technologies and new varieties to balanced growth. To this end, we redo our baseline sim-

ulation under two polar assumptions. Figure 10a depicts the dynamics of productivity growth

when balanced growth comes only from the development of better vintages (i.e., � = 0), while

10b shows the polar case, in which all productivity growth comes from the adoption of new

technologies (i.e., � = 0).

We draw two conclusions from this exercise. First, the main findings of the paper are robust

quantitatively and qualitatively to the source of long-run growth. In particular, the income gap

between Western and non-Western increases by a similar magnitude as in the benchmark (2.5

when growth comes from �, 3.1 when it comes from �, and 2.9 in the benchmark). Second, the

income gap between western and non-western countries expands more when growth comes only

from the adoption of new technologies. Intuitively, in this case, a new vintage of a technology

of the model is that the reduction in adoption lags we have observed in the last 200 years should lead to faster
transitions at the (low) frequencies we are focusing on.
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Table 5: Income Elasticities by Period

Period
pre-1850 1850-1900 1900-1950 post-1950

�Ty 1.58 1.99 1.88 1.75
(.02) (.02) (.02) (.02)

is not more productive than an old one. Hence, the marginal gains from expanding the range

of varieties for a given technology are decreasing over time. This implies that the gains from

convergence in adoption lags (i.e., vintages of new technologies being adopted at the same

rate between rich and poor countries) has very little bite in this set up.

6.2 Non-homotheticities in production

Next, we explore the robustness of the dynamics of adoption margins once we allow for non-

homotheticities in the production function. Non-homotheticities alter our baseline estimating

equation (29) by introducing an income elasticity, �⌧y, potentially di↵erent from one in the

demand for technology,

yc⌧ t = �c
⌧1 + �⌧yy

c
t + �⌧2t+ �⌧3 ((µ� 1) ln(t�Dc

⌧ � ⌧)� (1� ↵)(yct � lct ))) + "c⌧ t. (47)

To estimate (47), we use the same strategy as in the main specification. We first use the time

series variation in the di↵usion curves of the United States, the United Kingdom and France

to estimate the elasticity parameter �⌧y (jointly with �⌧2, �⌧3).
31 However, by relaxing

the theoretical constraint that �⌧y 6= 1, we encounter a potential collinearity of income and

the time trend. In practice, we can identify the two elasticities if we group technologies by

their invention date in four groups: pre-1850, 1850-1900, 1900-1950 and post-1950. Then, we

perform a non-linear version of the seemingly unrelated regressions. We estimate jointly (47)

for all technologies in a given time period with the restriction that the income elasticity has to

be common across technologies of the same period. This allows us to identify four elasticity

terms, �Ty, where T denotes one of the four periods in which we have divided the sample.

Table 5 reports the elasticities we find. They range from 1.58 in the pre-1850 period to 1.99

in the 1850-1900 period.

Once we have obtained the estimates for the income elasticity, we proceed as in the baseline

estimation, but instead of using an income elasticity of one, we use the income elasticity that

we have estimated. That is, given the income elasticity of a technology �Ty, we first estimate

the common technological parameters of 47 for each technology using the U.S., the U.K. and

31As discussed earlier, depending on the availability of data, we use for some technologies data on Germany
instead one of these three countries or we have to dispense with a subset of this three countries.
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France.32 Once we have obtained these parameters, we estimate separately for each country

yc⌧ t = �c
⌧1 + �̄Tyy

c
t + �̄⌧2t+ �̄⌧3 ((µ� 1) ln(t�Dc

⌧ � ⌧)� (1� ↵)(yct � lct ))) + "c⌧ t. (48)

where �̄⌧2, �̄⌧3 and �̄⌧y are the values of �⌧2, �⌧3 and �⌧y previously estimated.

To compute the intensive margin, we proceed as in the baseline model and calibrate the

intermediate goods share to ↵ = 30% and the embodied productivity growth to be � = 1%

(i.e., half of the long-run growth). Finally, for the elasticity of substitution across technologies,

we use the average value we estimated, ✓ = 1.24.

The summary of our estimates by technology of the intensive and the extensive margin

are reported in Tables 10 and 11. The estimates obtained allowing for non-homotheticities

are similar to our baseline estimates. The correlation between the adoption lags estimated

allowing for non-homotheticities and the baseline model is 97%. For the intensive margin

the correlation is 85%. More importantly, the patterns of convergence of adoption lags and

divergence of the intensive margin remain, as figures 11 and 12 show. Tables 12 and 13

show the evolution of adoption lags and intensive margin. We see that the convergence

rate (measured as di↵erence between the coe�cients of Western and non-Western countries)

is -.44% per year, while in the baseline case it was -.37% per year. Hence, if anything,

adoption lags close faster. The divergence rate in the intensive margin is reduced by a 18

percentage points when allowing for non-homotheticities (�.44% vs �.62% in the baseline

model). However, the divergence is still very significant. When feeding these trends for the

adoption margins in our model, we observe that the productivity gap between Western and

non-Western countries increases by a factor of 2.2 over the last 200 years (vs. 2.9 in our

baseline). Therefore, all of our key findings are robust to allowing for non-homotheticities in

demand.33

6.3 Alternative definitions of non-Western

Finally, we extend the analysis to alternative country classifications to Maddison’s Western/non-

Western. We conduct two exercises. First, we focus on the countries that are today in the

bottom 20th and 10th percentile of the income distribution. We also report the model pre-

dictions for the evolution of productivity growth for various continents. Table 6 shows that

technology dynamics also account for a significant fraction of the income divergence of the

world’s poorest economies. In particular, the technology dynamics of the today’s bottom

32Note that this means that we re-estimate �⌧2, �⌧3 for each teachnology instead of using the estimates
from the joint estimation. This is to allow the estimation to be the most flexible possible.

33Another robustness check that we have performed is to group technologies by sector rather than invention
dates to compute the income elasticity. These cathegories are listed in Appendix A. The results in this case
are also very similar to our baseline results and we do not report them.
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Table 6: Evolution of the Income Gap for di↵erent groups of countries

Income gap of the West relative to . . .
Period Non-Western Bottom 20th Bottom 10th

Maddison Simulation Maddison Simulation Maddison Simulation
Prior 1820 1.8 1.5 1.8 2.8 2.8 2
1820-2000 3.9 2.9 4.2 4.3 6.5 5.6
Cumulative 7 4.4 11.4 7.5 17.9 11.2

Note: Maddison refers to the raw data provided in Maddison (2004). The data reported for each time period

is done using the maximal amount of data available to compute it. If Maddison’s data were balanced, the

accumulated value in 2000 should equal to the product of the gap generated prior to 1820 and from 1820 to

2000.

Table 7: Annual Growth rates of GDP per capita by regions.

Simulation Maddison
1820-1913 1913-2000 1820-1913 1913-2000

USA & Canada .87% 2.18% 1.63% (2) 1.90% (2)
Europe .68% 2.08% 1.05% (14) 2.12% (17)
Africa .24% .98% .10% (4) 1.20% (5)
Asia .30% 1.52% .64% (14) 1.69% (14)
Latin America .37% 1.59% .90%(3) 1.48% (7)

Note: Annual Growth rates of GDP per capita by regions. In parenthesis is the number of countries in each

sample of the data. Simulation results and growth rates from Maddison (2004). We use 1913 instead of 1900

because there are more country observations.

quintile of countries between 1820 and 2000 account, according to our model, for their full

income divergence with the Western countries (a factor of 4.3 vs. 4.2 in Maddison’s data).

Similarly, for the bottom decile of countries, we find that their technology dynamics account

for an income divergence by a factor of 5.6 which represents 85% of the divergence observed

in the data.

Table 7 splits countries by continents. It shows that the di↵erent technology dynamics in

each continent led to income dynamics that resemble closely those observed in the data over

the last two centuries. For example, the correlation between the actual growth rates across

continents between 1820 and 1913 and those predicted by the model is 0.91. For the period

1913-2000, the correlation between actual and predicted income growth is 0.92. Klenow and

Rodriguez-Clare (1997) find more informative to compute the covariance between actual and

predicted growth over the cross-country variance of growth. This statistic yields that our

model accounts for 35% of the variation in cross-continent growth for the period 1820-1913,
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and for 99% of the cross-continent growth between 1913 and 2000. Hence, the success of

technology dynamics to account for income dynamics clearly holds when looking at narrower

country groupings either based on their income levels or on their geographical locations.

7 Conclusions

In what has now become a classic paper, Klenow and Rodriguez-Clare (1997) show that factor

accumulation accounts for 10% of cross-country variation in productivity growth between 1960

and 1985 leaving for the TFP residual and staggering 90% of the variation in income growth.

What drives variation in income growth over the long-term?

In this paper we have explored one potential driver: the dynamics of technology adoption.

Using a stylized model of adoption that fits well di↵usion curves for individual technologies,

we have identified two margins of adoption: the adoption lags and the penetration rate (or

intensive margin). Analyzing the panel of intensive and extensive margins of adoption, we

have uncovered two new facts. Adoption lags have converged across countries over the last

200 years, while the intensive margin of adoption has diverged. Plugging these patterns

into the aggregate representation of our model economy we have evaluated the e↵ects of the

cross-country evolution of adoption patterns on the cross-country evolution of income growth.

The main finding of the paper is that the evolution of adoption patterns accounts for

a large majority of cross-country evolution of income growth for many country groupings.

Hence, this shows that adoption dynamics are at the core of the Great Divergence that has

taken place over the last two centuries.

Our findings motivate some new questions that we plan to pursue in future research.

Probably the key one is why has the intensive margin of adoption diverged. Future work

shall formulate hypotheses about the nature, drivers and sources of dynamics for the inten-

sive margin of adoption. These explorations will complement our analysis towards a fuller

understanding of cross-country income dynamics.
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A Data

The twenty-five particular technology measures, organized by broad category (transportation,

communication, IT, industrial, agricultural and medical) are described below.

1. Steam and motor ships: Gross tonnage (above a minimum weight) of steam and

motor ships in use at midyear. Invention year: 1788; the year the first (U.S.) patent

was issued for a steam boat design.

2. Railways - Passengers: Passenger journeys by railway in passenger-KM.

Invention year: 1825; the year of the first regularly schedule railroad service to carry

both goods and passengers.

3. Railways - Freight: Metric tons of freight carried on railways (excluding livestock

and passenger baggage).

Invention year: 1825; same as passenger railways.

4. Cars: Number of passenger cars (excluding tractors and similar vehicles) in use. Inven-

tion year: 1885; the year Gottlieb Daimler built the first vehicle powered by an internal

combustion engine.

5. Trucks: Number of commercial vehicles, typically including buses and taxis (excluding

tractors and similar vehicles), in use. Invention year: 1885; same as cars.

6. Tractor: Number of wheel and crawler tractors (excluding garden tractors) used in agri-

culture. Invention year: 1892; John Froelich invented and built the first gasoline/petrol-

powered tractor.

7. Aviation - Passengers: Civil aviation passenger-KM traveled on scheduled services

by companies registered in the country concerned. Invention year: 1903; The year the

Wright brothers managed the first successful flight.

8. Aviation - Freight: Civil aviation ton-KM of cargo carried on scheduled services by

companies registered in the country concerned. Invention year: 1903; same as aviation

- passengers.

9. Telegraph: Number of telegrams sent. Invention year: 1835; year of invention of

telegraph by Samuel Morse at New York University.

10. Mail: Number of items mailed/received, with internal items counted once and cross-

border items counted once for each country. Invention year: 1840; the first modern

postage stamp, Penny Black, was released in Great Britain.
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11. Telephone: Number of mainline telephone lines connecting a customer’s equipment

to the public switched telephone network. Invention year: 1876; year of invention of

telephone by Alexander Graham Bell.

12. Cellphone: Number of users of portable cell phones. Invention year: 1973; first call

from a portable cellphone.

13. Personal computers: Number of self-contained computers designed for use by one

person. Invention year: 1973; first computer based on a microprocessor.

14. Internet users: Number of people with access to the worldwide network. Invention

year: 1983; introduction of TCP/IP protocol.

15. Spindles: Number of mule and ring spindles in place at year end. Invention year: 1779;

Spinning Mule invented by Samuel Crompton.

16. Synthetic Fiber: Weight of synthetic (noncellulosic) fibers used in spindles Invention

year: 1924; Invention of rayon.

17. Steel: Total tons of crude steel production (in metric tons). This measure includes steel

produced using Bessemer and Open Earth furnaces. Invention year: 1855; William Kelly

receives the first patent for a steel making process (pneumatic steel making).

18. Electric Arc Furnaces: Crude steel production (in metric tons) using electric arc

furnaces. Invention year: 1907; invention of the Electric Arc Furnace.

19. Blast Oxygen Furnaces: Crude steel production (in metric tons) in blast oxygen

furnaces (a process that replaced Bessemer and OHF processes). Invention year: 1950;

invention of Blast Oxygen Furnace.

20. Electricity: Gross output of electric energy (inclusive of electricity consumed in power

stations) in Kw-Hr. Invention year: 1882; first commercial power station on Pearl Street

in New York City.

21. Fertilizer: Metric tons of fertilizer consumed. Aggregate of 25 individual types, cor-

responding to broadly Ammonia and Phosphates. Invention year: 1910; Haber-Bosch

process to produce ammonia is patented in 1910.

22. Harvester: Number of selfpropelled machines that reap and thresh in one operation.

Invention year: 1912; The Holt Manufacturing Company of California produces a self-

propelled harvester. Subsequently, a selfpropelled machine that reaps and threshes in
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one operation appears.

23. Kidney Transplant: Number of kidney transplants performed. Invention year: 1954;

Joseph E. Murray and his colleagues at Peter Bent Brigham Hospital in Boston per-

formed the first successful kidney transplant.

24. Liver Transplant: Number of liver transplants performed. Invention year: 1963; Dr.

Thomas Starzl performs the first successful liver transplant in the United States.

25. Heart Transplant: Number of heart transplants performed Invention year: 1968;

Adrian Kantrowitz performed the first pediatric heart transplant in the world on De-

cember 6, 1967 at Maimonides Hospital.

B Further analytic results on the model’s transitional dynam-

ics

In this appendix, we extend the analysis of the model’s transitional dynamics to the case

where the adoption margins change continuously. As shown in section 3, the evolution of

the intensive margin and adoption lags has been smoother than in (42). A more realistic

characterization of the evolutions of the extensive and intensive margins is given by:34

D⌧ =

8
>>><

>>>:

do for ⌧ < T,

do � d1⌧ for ⌧ 2 [T, T̄ ],

dm for ⌧ > T̄ ,

ln a⌧ =

8
>>><

>>>:

ao for ⌧ < T,

ao � a1⌧ for ⌧ 2 [T, T̄ ],

am for ⌧ > T̄ ,

(49)

where d1 = do�dm
T̄�T

and a1 = ao�am
T̄�T

are the trends in the adoption lags and intensive margin,

respectively. We conclude our analytic exploration of the transitional dynamics of the model

by characterizing the evolution of output after adoption margins change as in (49).

Proposition 5 Pre-Industrial output is described by XOld(t) = AOlde
gOldt. Modern Output is

a continuous, increasing function,

XModern(t) =

8
<

:
A0 e(�+�+ga)t h0(t)✓�1 for t 2 [T + d0, d0 + T̄ /(1 + d1)],

A1 e(�+�)t h1(t)✓�1 for t > d0 + T̄ /(1 + d1),
(50)

34The specification we have estimated in section 3 di↵ers slightly from (42) in that in section 3 we fit a linear
trend to the log adoption lag while in (42) the trend is fit to the level. Both approaches seem sensible to us
and, quantitatively, there are no significant di↵erences between them.
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where ga = d1(�+(1+ d1)�)� (1+ d1)a1, h0(t) is S-shaped in the sense that it is continuous,

increasing, convex for any t < tc and concave thereafter, reaching a ceiling value as time ap-

proaches infinity. h1(t) is a continuous function defined as the CES aggregator (with elasticity
1

2�✓ ) of e��th0(T̄ ) and h(t � T̄ ). In the case that �, � � a1, d1 and d0 < T it is S-shaped

(increasing, initially convex and eventually concave reaching a ceiling). The transition from

the old growth rate to modern growth has two S-shaped transitions.35,36

The most noticeable property of the evolution of modern output is that, the evolution

of adoption margins a↵ects trend growth in Modern sector output during the transition.

Specifically, the decline in the adoption lags accelerates the embodiment e↵ect at the rate ga

because more technologies and vintages are brought into production. This raises trend growth

by d1(� + (1 + d1)�). Similarly, an acceleration in the intensive margin of new technologies

increases the productivity embodied in new technologies increasing trend growth by �(1 +

d1)a1.37

Proposition 5 points to the sources of cross-country di↵erences in growth patterns. In

particular, it highlights, at least, three relevant dimensions. Di↵erences in the initial adoption

lag, d0, generate di↵erences in the growth acceleration brought by the arrival of modern

production technologies. Di↵erences in the trends in adoption lags, d1, and in the intensive

margin, a1, a↵ect the magnitude of the growth acceleration,ga, along the transition. As shown

in next section, these three factors are important to understand the cross-country patterns in

growth over the last two centuries.

Finally, one further implication of Proposition 5 is that the growth e↵ects of a gradual

reduction in adoption lags depend separately on � and � beyond its sum. In other words,

productivity gains embodied in new technologies and in new vintages are not isomorphic. This

is the case because productivity gains embodied in new vintages, �, lead to higher productivity

for both new and already adopted (modern) technologies, while increases in the productivity

embodied in new technologies only a↵ects output growth through the productivity of newly

adopted technologies. This observation motivates the robustness checks we perform in next

35The expression for h0(t) is very similar to h(t),

h0(t) =
1

�+ �d1 � a1


1� e

��+�d1�a1
✓�1 (1+d1)(t�d0)

�
� e

� d21�

✓�1 (t�d0)

�+ � � a1

h
1� e

��+��a1
✓�1 (1+d1)(t�d0)

i
. (51)

See the Appendix for the expression of h1. The reason for having two S-shaped transitions is that we e↵ectively
have two regimes and the transition is S-shaped for both. Hence, it can be the case that if ga is not very close
to zero (which is what happens in our calibration for the non-Western country), we observe a transition to
balanced growth �+ � in two steps. First, while we are in the regime ⌧ 2 [T, T̄ ] the growth rate converges to
�+ � + ga (in an S-shaped way), and once we enter the regime ⌧ > T̄ , the economy grows from �+ � + g0 to
gm an that transition looks again as an S-shape. In the case that � + � + g0 > � + �, we would observe an
inverse S-shape.

36The Appendix characterizes the half-lives of the model with trends in the adoption margins. (See Propo-
sition 7).

37Where a1 is teh rate of decline of the intensive margin.
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section to the calibration of � and �.

C Detailed derivation of the Equilibrium Conditions

Derivation of equation (17): This follows from

Z⌧ =

 Z max{t�D⌧ ,⌧}

⌧
Z(⌧ , v)

1
µ�1dv

!µ�1

(52)

= a⌧e
(�+�)⌧

✓Z t�D⌧

⌧
e

�
µ�1

(v�⌧)
dv

◆µ�1

=

✓
µ� 1

�

◆µ�1

a⌧e
(�+�)⌧

⇣
e

�
µ�1

(t�D⌧�⌧) � 1
⌘µ�1

(53)

Derivation of equation (26): Using the definition of the production function and inte-

grating, we have that

A =

✓Z ⌧̄

�1
Z

1
✓�1
⌧ d⌧

◆✓�1

=

✓
✓ � 1

�

◆✓�1✓Z ⌧̄

�1

h
a⌧e

(�+�)⌧e�(t�D⌧�⌧)
i 1

✓�1
⇣
1� e�

�
✓�1

(t�D⌧�⌧)
⌘
d⌧

◆✓�1

.

With a constant D and a, we find

A = a

✓
✓ � 1

�

◆✓�1✓✓ � 1

�
� ✓ � 1

�+ �

◆✓�1

e(�+�)(t�D), (54)

after rearranging, we obtain (26).

Derivation of equation (28): Start considering a second order approximation of Z⌧

around t�D⌧ � ⌧ = 0,

Z⌧ ' a⌧e
(�+�)⌧


�t

✓
1 +

1

2

�

µ� 1
�t

◆�µ�1

(55)

We can further simplify the expression of lnZ⌧ by using the first order Taylor approximation

ln(1 + x) ' x for small x, yielding

lnZ⌧ ' ln a⌧ + (�+ �)⌧ + (µ� 1) ln�t+
�

2
�t. (56)

Equation (28) is obtained then by direct substitution.
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D Description of the evolution of the output produced with

Old technologies over time

Suppose that the change in the technology frontier is an instantaneous increase in the growth

rate of the technology frontier, from �o+�o to �+�, that takes place at time T . We keep the

intensive and extensive margins constant at their pre-Industrial levels in this initial exercise.

Proposition 6 Before adoption of Modern technologies, the economy is in a balanced growth

path with growth rate �o + �o,

Y (t) = Ae(�o+�o)t. (57)

After an economy starts adopting Modern technologies, output produced with Old technologies

is

XOld(t) = Aoe
�otd(t)✓�1, (58)

where Ao is a positive constant, d(t) is an increasing, concave function, with initial value
�o

�o+�o
and limt!1 d(t) = 1.

Proof For output produced before a country starts adopting modern technologies, ⌧ < T ,

we have that equation (54) holds, and hence

Y = XOld = ao

✓
(✓ � 1)2

�o(�o + �o)

◆✓�1

e(�o+�o)(t�Do). (59)

Once the adopted technologies are ⌧ > T , the output produced with technologies with ⌧ < T

grows only due to new vintages appearing and being more productive

XOld = a

✓Z T

�1
d⌧

Z t�Do

⌧
dve

�o⌧+�ov
✓�1

◆✓�1

(60)

= a

✓
✓ � 1

�o

Z T

�1
d⌧

✓
e

�o⌧+�o(t�Do)
✓�1 � e

(�o+�o)⌧
✓�1

◆◆✓�1

(61)

= a

✓
(✓ � 1)2

�o�o

◆✓�1

e(�o+�o)T e�o(t�Do�T )

✓
1� �o

�o + �o
e

��o(t�Do�T )
✓�1

◆✓�1

. (62)

Equation (58) follows from arranging the terms appropriately. It is immediate to verify that

d(Do + T ) = �o
�o+�o

and limt!1 d(t) = 1. Taking the derivative of d(t), we have that it is

positive and the second derivative negative, which completes the proof.

Note that if we assume that pre-Modern technologies were equally productive �o = 0,

we obtain exactly equation (37). If �o > 0 then there is an adjustment after the industrial

revolution coming from the fact that only better vintages contribute to growth in the pre-
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Modern output. In any case, as �o + �o ⌧ �+ �, this transition is of no significance for the

transition to Modern growth and can be disregarded.

E Proofs and Derivations of Section 4

Proof of Proposition 1: For the output produced with pre-Modern technologies, we have

that by assumption,it grows at rate gOld, so the solution to dY/dt = gOld with the boundary

condition that at time D output is Y (D) is given (37) with Ao = Y (D). For the output

produced with modern technologies, applying (20) for only modern technologies, we have

that

XModern = a

✓Z t�D

T
d⌧

Z t�D

⌧
dve

�⌧+�v
✓�1

◆✓�1

(63)

= a

✓
✓ � 1

�

Z t�D

T
d⌧

✓
e

�⌧+�(t�D)
✓�1 � e

(�+�)⌧
✓�1

◆◆✓�1

(64)

= a


✓ � 1

�

⇢
✓ � 1

�

✓
e

�(t�D)+�(t�D)
✓�1 � e

�T+�(t�D)
✓�1

◆
� ✓ � 1

�+ �

✓
e

(�+�)(t�D)
✓�1 � e

(�+�)T
✓�1

◆��✓�1

(65)

= ae(�+�)(t�D)


✓ � 1

�

⇢
✓ � 1

�

✓
1� e

�(T�(t�D))
✓�1

◆
� ✓ � 1

�+ �

✓
1� e

(�+�)(T�(t�D))
✓�1

◆��✓�1

(66)

= ae(�+�)(t�D)


(✓ � 1)2

�

⇢
1

�

⇣
1� e�

��t
✓�1

⌘
� 1

�+ �

✓
1� e�

(�+�)�t
✓�1

◆��✓�1

(67)

where �t ⌘ t�D � T . This last expression can be identified with (38), where

h(t) =
�(�+ �)

�

✓
1

�

⇣
1� e�

��t
✓�1

⌘
� 1

�+ �

✓
1� e�

(�+�)�t
✓�1

◆◆
. (68)

It is readily verified that h(D + T ) = 0 and limt!1 h(t) = 1. The derivative of h(t) can be

expressed as
�(✓ � 1)

�(�+ �)
h0�

��t
✓�1 � e�

(�+�)�t
✓�1 , (69)

from where it is apparent that h0(D+T ) = 0 and limt!1 h0(t) = 0. The second time derivative

verifies
�(✓ � 1)2

�(�+ �)
h0�

��t
✓�1 + (�+ �)e�

(�+�)�t
✓�1 . (70)

It is readily verified that limt!1 h00(t) = 0. Algebraic manipulation shows that h(t) is convex

for �t < ✓�1
� ln

⇣
�+�
�

⌘
.

41



Proof of Proposition 2: First we show that the weights on the modern growth sectors

have an S-shape. Note that

✓
XOld

Y

◆ 1
✓�1

=
1

1 +
⇣
X1
X0

⌘ 1
✓�1

, (71)

XModern

XOld
/ e(�+��go)t


1

�

⇣
1� e�

��t
✓�1

⌘
� 1

�+ �

✓
1� e�

(�+�)�t
✓�1

◆�✓�1

. (72)

Taking the time derivative of (71) it is readily verified that this share declines over time.

Moreover, the sign of the second derivative of (71) coincides with the sign of

 
d

dt

✓
XModern

XOld

◆ 1
✓�1

!2

�
 
1 +

✓
XModern

XOld

◆ 1
✓�1

!
d2

dt2

✓
XModern

XOld

◆ 1
✓�1

. (73)

Note that in the case that
⇣
XModern
XOld

⌘ 1
✓�1

is concave, the share is unambiguously convex.

As we previously discussed for the damp factor, this occurs for su�ciently large t. To see

that, denoting by g ⌘ �+��go
✓�1 , abusing notation substituting t ⌘ �t and taking the explicit

derivatives of the share, it can be verified that the sign of (73) coincides with the sign of

egt
�
h02 � h00(t)h(t)

�
�
�
g2h(t) + 2gh0(t) + h00(t)

�
. (74)

Using the properties derived in Proposition 1 for h(t) that the first and second derivative

vanish for large t, it is immediate to verify that the limit as t approaches infinity of (74) is

positive. Similarly, when a country starts to adopt technologies of the industrial revolution

(for t = 0 after the change of variables), equation (74) simplifies to �h00(0) < 0. So we he

have that the share on pre-Modern output is initially concave and eventually becomes convex.

Hence, the share on Modern output is initially convex and eventually concave.38

From (36) we can see how the S-shape of the weights translates into an S-shape for the

growth rate of output during the transition to the new balanced growth path. If gModern =

�+�, then we would have an exact S-shape for the growth rate of aggregate output. However,

from our discussion of the damp-factor, we know that gModern can grow at a faster than �+ �

for some transient period, while the dynamics of the damp factor are relevant. Hence, this

can give rise to some over-shooting of the long-run growth rate if when the weight on modern

growth becomes close to one, the growth rate of the modern sector is substantially higher

than �+ �.

38We have not shown that there exists a t

⇤ below which a share is convex and concave thereafter, even
though out simulations suggest so.
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Proof of Proposition 3: Start with the half-life of the growth rate. The definition of the

half-life is

�+ �

2
=

✓
XM (t1/2)

Y (t1/2)

◆ 1
✓�1

gM (t1/2) +

✓
XO(t1/2)

Y (t1/2)

◆ 1
✓�1

gO, (75)

where we are shortening the subindices, M for Modern, O for Old and

gM = �+ � + (✓ � 1)
h0(t)

h(t)
. (76)

Rearranging, equation (75) becomes

(�+ � + 2(✓ � 1)gh(t1/2))XM (t1/2)
1

✓�1 = (�+ � � 2gO)XO(t1/2)
1

✓�1 . (77)

This is a transcendental equation, which cannot be solved analytically. Before proceeding, we

state the following result. The average value of the function e��t for t 2 [0, T ] is

< e��t >=
1

T

Z T

0
e��tdt =

1� e��T

�T
. (78)

We proceed by averaging h(t) and h0(t) to make (77) analytically solvable,

(�+ � + 2(✓ � 1) < gh >)XM (t1/2)
1

✓�1 = (�+ � � 2gO)XO(t1/2)
1

✓�1 . (79)

Denoting by

↵ ⌘
✓
(�+ � + 2(✓ � 1) < gh >

�+ � � 2gO

◆✓�1

, (80)

equation (79) is

↵AMe(�+�)(t�D)h(t)✓�1 = AOe
gO(t�D), (81)

where we are taking the normalization T = 0. As stated before, we proceed by averaging h(t)

to make the problem analytically solvable, which yields,

t = D +
1

�+ � � gO
ln

✓
AO

↵AM < h(t) >✓�1

◆
. (82)

Finally, note that if in the approximation of the averages we would have taken a large T , we

would have obtained that < h(t) >' 1 and that gh ' 0. In this case, ↵ ' 1 (as �+ � � gO)

and we would obtain the result reported in the paper. This shows the result for the half-life

of the growth.
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Calibration of the half-life of growth We discuss the making of the quantitative exercise

next. We take � = � = 1%, ✓ = 1.4. To approximate h(t), we take T = 80 years (which

is in line from what we obtain in the simulations for the time it takes h(t) to reach 1). If

� = �
✓�1 ⇠ 1/40, we have that �T = 2, < e��t >= 1�e�2

2 ' .43, while if � = �+�
✓�1 ⇠ 1/20

which gives �T = 4 and < e��t >= 1�e�4

4 ' .25. Thus we have that

1

�

⇣
1� e�

��t
✓�1

⌘
� 1

�+ �

✓
1� e�

(�+�)�t
✓�1

◆
' 100(1� .43)� 50(1� .25) = 19.5, (83)

1

✓ � 1

✓
e�

��t
✓�1 � e�

(�+�)�t
✓�1

◆
' 10

4
(.43� .25) = .45. (84)

This implies that gh = .45/19.5 ' 2.3%, thus

↵ =

✓
2% + 2 · .4 · 2.3%

2%� .4%

◆.4

=

✓
3.84%

1.6%

◆.4

= 1.42.

Next, we have that

AM < h(t) >✓�1= ↵a⇠

✓
(✓ � 1)2

�
<

1

�

⇣
1� e�

��t
✓�1

⌘
� 1

�+ �

✓
1� e�

(�+�)�t
✓�1

◆
>

◆✓�1

(85)

where ⇠ is a parameter in the production function that ensures that output in 1820 is consistent

with the data, its value is our baseline calibration is around 5. Quantitatively this takes the

value of

AM < h(t) >✓�1= 1.42 · 4

10
· 5
✓
.42

.01
19.5

◆.4

' 30 (86)

Finally, taking the initial average income per capita before the industrial revolution at sub-

sistence levels ($400) we can compute expression (82)

tgrowth
1/2 �D =

1

2%
ln

✓
400

30

◆
' 130 years (87)

If instead of using the averages, we would have used the approximation of a large T , we would

have obtained

AM < h(t) >✓�1= a⇠

✓
(✓ � 1)2

�(�+ �)

◆✓�1

' 30 years. (88)

Thus, this assumption seems quite innocuous as yields very similar results.

Derivation of the half-life of output Next, we derive the half-life of output. Define

Ỹ (t) =
Y (t)

aMAMe(�+�)(t�D)
. (89)
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By construction, limt!1 Ỹ (t) = 1. Hence, the definition of the half-life is

Ỹ (0) +
1

2
(1� Ỹ (0)) = Ỹ (t1/2), (90)

where we are taking the normalization T = 0. This is a transcendental equation, so to make

further progress we substitute the transient part of modern output

1

�

⇣
1� e�

��t
✓�1

⌘
� 1

�+ �

✓
1� e�

(�+�)�t
✓�1

◆
(91)

for its average value (more on this on the calibration below), which we denote by . Denoting

the left hand side of (90) by C, we can re-write as

aOAO

aMAM

⇣
C

1
✓�1 � 

1
✓�1

⌘✓�1
= e(�+��gO)(t�D). (92)

Solving for t we have that

t = D +
1

�+ � � gO
ln

0

B@
aOAO

aMAM

⇣
C

1
✓�1 � 

1
✓�1

⌘✓�1

1

CA . (93)

Note that the expression reported in the paper has a 2 instead of the constant
⇣
C

1
✓�1 � 

1
✓�1

⌘✓�1
.

To obtain the exact expression reported in the paper, see below, in which we use an alternative

normalization.

Calibration of the half-life of levels We take Y (0) to be the subsistence level in Maddison

(2004) of $400, taking � = � = 1% and ✓ = 1.3,
⇣

(✓�1)2

�(�+�)

⌘✓�1
= 14.5 which implies that

Ỹ (O) =
400

.4 · 14.5 = 69. (94)

This implies that

C = 69� .5 · 68 = 35 (95)

The average value of the transient term (91) we already calculated in (83) to be 19.5. Thus,

we have that ⇣
C

1
✓�1 � 

1
✓�1

⌘✓�1
= (35

1
.4 � 19.5

1
.4 ).4 = 31.5 (96)

Substituting into (93) we have that

t�D =
1

1.8%
ln

✓
400

.4 · 14.5 · 31.5

◆
= 40 years. (97)
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Alternative definition of half-life. If we study the half life of the output gap relative to

BGP,

Ȳ (t) =
aMAMe(�+�)(t�D)

Y (t)
, (98)

we obtain similar results, but we can obtain a sharper characterization. As before, by con-

struction, limt!1 Ỹ (t) = 1. However, now Ȳ (t) is an increasing function. The definition of

the half-life is

Ȳ (0) +
1

2
(1� Ȳ (0)) = Ȳ (t1/2), (99)

but now, using (94), we know that Ȳ (0) ' 0, which allows to further simplify the half-life

definition to
1

2
' Ȳ (t1/2). (100)

Following the previous steps and approximating the average of h(t) by its long-run level, one

obtains that
aOYO

aMAM

⇣
2

1
✓�1 � 1

⌘✓�1
= e(�+��gO)(t�D). (101)

As 2
1

✓�1 � 1, we can approximate the last equation by (40).

Proof of Proposition 4 With the definition of the evolution of the intensive and extensive

margins (42), we have that Old and Modern output is calculated as in Proposition 1. Applying

the definition of evolution of margins we just have to substitute D for DOld in the computation

for Old output and D for DModern in the computation of Modern output. The rest of the

claims in the proposition, can be derived analogously to Propositions 4, 2 and 3 replacing D

for DModern. An additional correction appears linearly, t1/2 = DModern� gO
�+�DOld+ . . . when

re-doing the algebra. Note, however that DModern � gO
�+�DOld, so this could be in principle

neglected.

Proof of Proposition 5: The derivation for output of the Old sector is as in Proposition

1. Next, we characterize Modern output. First, we analyze the case in which ⌧ < T̄ . Note

that the range of integration for a given technology that is being used goes from [⌧ , t�D⌧ ],

where t denotes current time and D⌧ is the lag of technology ⌧ . Without loss of generality,

normalize the advent of the Industrial revolution T = 0. Recall the parametrization on the

evolution of the margins of adoptions, which in this range we simply denote by D⌧ = d0�d1⌧

and ln a⌧ = a0 � a1⌧ . To map D⌧ into the time space, note that the first technology will be

adopted at time t = d0 and that the range of available technologies at time t can be written

as [0, t � (d0 � d1(t � d0))] = [0, (1 + d1)(t � d0)]. The range of vintages of technology ⌧ at

time t is given by the di↵erence between the time the last adopted vintage and the time of

adoption of the first one, t� (⌧ +D⌧ ), v⌧ 2 [⌧ , t�D⌧ ]. The output produced using modern
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technologies can be written as

Xm =

✓Z t�Dt

0
d⌧

Z t�D⌧

⌧
dv [a⌧Z(⌧ , v)]

1
✓�1

◆✓�1
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#!✓�1

(103)

= ea0
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�
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(104)
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 Z (1+d1)(t�d0)
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(105)
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...✓�1 e
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✓ � 1

�+ �d1 � a1

◆h
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�+�d1�a1
✓�1

((1+d1)(t�d0)) � 1
i◆

� . . .

✓
...✓�1 . . .� ✓ � 1

�+ � � a1

h
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�+��a1
✓�1

((1+d1)(t�d0)) � 1
i◆✓�1

(106)

= ea0
✓
(✓ � 1)2

�

◆✓�1

exp
⇥�
(� + �� a1)(1 + d1) + d21�

�
(t� d0)

⇤
(107)

0

@ 1

�+ �d1 � a1

h
1� e�

�+�d1�a1
✓�1

(1+d1)(t�d0)
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� e�

d21�

✓�1
(t�d0)

�+ � � a1

h
1� e�

�+��a1
✓�1

(1+d1)(t�d0)
i
1

A
✓�1

.

This last expression can be rewritten as

Xm(t) = Amegmtf(t) (108)

where

Am = ea0
✓
(✓ � 1)2

�

◆✓�1

e�d0((�+��a1)(1+d1)+d21�) (109)

gm = (� + �� a1)(1 + d1) + d21� (110)

f(t) =

0

@ 1

�+ �d1 � a1

h
1� e�

�+�d1�a1
✓�1

(1+d1)(t�d0)
i
� e�

d21�

✓�1
(t�d0)

�+ � � a1

h
1� e�

�+��a1
✓�1

(1+d1)(t�d0)
i
1

A
✓�1

Next we analyze the properties of f(t). First, note that the first instant of time in which

technology is adopted, t = d0, f(d0) = 0 and limt!1 f(t) =
⇣

1
�+�d1�a1

⌘✓�1
. To further

analyze the behavior of the damp factor f(t) it is useful to rewrite it as f(t) = h(t)✓�1, note
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that

f 0✓�2h0(t), (111)

f 00✓�2
⇥
(✓ � 2)h(t)�1h02 + h00(t)

⇤
, (112)

gf ⌘ (ln f(t))0 = (✓ � 1)
h0(t)

h(t)
, (113)

g0f = (✓ � 1)
h00(t)h(t)� h02

h(t)2
. (114)

The time derivative of h(t) is

(✓ � 1)h0(t) = (1 + d1)e
��+�d1�a1

✓�1
(1+d1)(t�d0) . . .

. . .� e�
�d21(t�d0)

✓�1


(1 + d1)e

��+��a1
✓�1

(1+d1)(t�d0) � �d21
�+ � � a1

⇣
1� e�

�+��a1
✓�1

(1+d1)(t�d0)
⌘�

Result 1: h0(t) > 0 for t > d0, h0(d0) = 0 and limt!1 h0(t) = 0. Proof: By direct

substitution it is verified that h0(d0) = 0. To show that h0(t) > 0. Suppose that it is true, and

rearrange,

(1 + d1)e
��+�d1�a1

✓�1
(1+d1)(t�d0) > e�

�d21(t�d0)

✓�1 (1 + d1)e
��+��a1

✓�1
(1+d1)(t�d0) . . .

. . .� e�
�d21(t�d0)

✓�1
�d21

�+ � � a1

⇣
1� e�

�+��a1
✓�1

(1+d1)(t�d0)
⌘

(1 + d1)e
�(�+�d1�a1)(1+d1)+d21�

✓�1
(t�d0) > (1 + d1)e

��+��a1
✓�1

(1+d1)(t�d0) � �d21
�+ � � a1

⇣
1� e�

�+��a1
✓�1

(1+d1)(t�d0)
⌘

(1 + d1)e
�

✓�1
(t�d0) > (1 + d1)�

�d21
�+ � � a1

⇣
e

�+��a1
✓�1

(1+d1)(t�d0) � 1
⌘

Note that the left hand side is an increasing function of t while the right hand side is decreasing.

Moreover the left hand side equals the right hand side at t = d0, establishing the result claimed

for t > d0. Finally, the result that limt!1 h0(t) = 0 follows directly from taking the limit of

h0(t). QED

Result 2: h(t) is convex for t0  t < t⇤ and concave thereafter. Moreover,

limt!1 h00(t) = 0. Proof: The expression for (✓ � 1)2h00(t) is

�(1 + d1)
2(�+ d1� � a1)e

��+d1��a1
✓�1

(1+d1)(t�d0) + e�
(1+d1)(�+��a1)+d21�

✓�1
(t�d0) ·

✓
(1 + d1)(2�d

2
1 + (1 + d1)(�+ � � a1)) +

�d21
�+ � � a1

� �d21
�+ � � a1

e�
�+��a1

✓�1
(1+d1)(t�d0)

◆
.

Evaluating this expression at t = d0 yields (1 + d1)(1 + d21)� > 0. Next, conjecture that
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✓ � 1)2h00(t) > 0. This implies that

(1 + d1)2(�+ d1� � a1)e
��+d1��a1

✓�1
(1+d1)(t�d0) < e�

(1+d1)(�+��a1)+d21�

✓�1
(t�d0)·⇣

(1 + d1)(2�d21 + (1 + d1)(�+ � � a1)) +
�d21

�+��a1
� �d21

�+��a1
e�

�+��a1
✓�1

(1+d1)(t�d0)
⌘

()

(1 + d1)2(�+ d1� � a1)e�(t�d0) <⇣
(1 + d1)(2�d21 + (1 + d1)(�+ � � a1)) +

�d21
�+��a1

� �d21
�+��a1

e�
�+��a1

✓�1
(1+d1)(t�d0)

⌘

This last expression is indeed satisfied for t = d0 (as is the same expression we evaluated

before). Note that the left hand side is an increasing function that tends to infinity, while the

right hand side is a decreasing function that tends to minus infinity. Thus, at some t⇤ � t0

this inequality will cease to be true, and (✓ � 1)2h00(t) < 0 in that range. Finally, the result

that limt!1 h00(t) = 0 follows directly from taking the limit of h00(t). QED

We briefly discuss how the behavior of h(t) can inform our analysis on f(t) and its deriva-

tives. Using equation (111) it is immediate to verify that f 0(t) inherits the properties of h0(t),

and hence, f 0(t) is increasing and f 0(d0) = limt!1 f 0(t) = 0. Similarly, using (114), we con-

clude that gf is increasing and g0f (d0) = limt!1 g0f (t) = 0. Moreover limt!1 f 00(t) = 0. It

can be verified too that limt!d0 f
0(t) =

(1+d1+d21+d31)�
(✓�1)2

> 0.

Next we analyze the case in which ⌧ > T . (the time corresponding to the transition is

t = d0+T/(1+d1). Note that the output produced with Modern technologies can be divided

in the output produced using technologies ⌧ 2 [0, T ] and the subsequent technologies, ⌧ > T .

The output produced using the first range of technologies can be computed as we have done
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before,

Xm0(t) =

✓Z T
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Note that this is an increasing function. Write output produced Xm0(t) = C(Aegt �B)✓�1

X 0gt
m0(✓ � 1)(Aegt �B)✓�2 > 0. (121)

The second derivative is

X 00gt
m0 +B)✓�2g2A

�
A(✓ � 2)(Aegt �B)�1 + 1

�
. (122)

It is clear that (122) is asymptotically positive. Whether or not it is always positive, depends

on whether

AegT �B > A(✓ � 2),

which depends on parametric assumptions.

Next we derive the output produced with ⌧ > T using in equation (63) in which case the

adoption margins are constants and we denote T ⌘ ti
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(127)

where �t ⌘ t�D � ti and a = ea0

Note that the results we have derived for t < T apply directly toXm1 because the transient

part of (127) is a particular case of the case analyzed previously for d1 = a1 = 0. In this case,

taking the second derivative of h(t) one can find a closed form expression for the threshold t⇤

above which h(t) becomes convex. It is t⇤ = ✓�1
� ln

⇣
�+�
�

⌘
.

Next, note that the total modern output produced when technologies ⌧ > T have been

adopted is

Xm =

✓
X

1
✓�1

m0 +X
1

✓�1

m1

◆✓�1

. (128)

As both Xm0 and Xm1 are increasing functions of time, it is immediate to verify that Xm

is increasing over time. To gain further insight on its behavior, note that (120) and (127) can
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be written as

Xm0 = Ae(�+�)t
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Using (128), we have that
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(137)

Denoting by h(t) the terms inside the parenthesis, we have that

(✓ � 1)h0�
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In general, the properties of h0(t) and h00(t) depends on the combination of several parameters.
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To gain some insight, consider the case in which �, � � a1, d1,

D � C =
1
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, (143)
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In this case, (✓ � 1)h0(T ),

�e�
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✓�1 + e�
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⌘
. (145)

A su�cient condition for h0(t) to be increasing for all t � T is that d0 < T . That is the initial

lag has to be relatively small compared to the transition period. For the second derivative,

we have that

(�+ �)e�
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. (146)

This shows already that asymptotically, (i.e., for large t) h00(t) < 0. Similar to the analysis of

the first derivative, we have that evaluated at t = T , a su�cient condition for equation (146)

to be positive is d0 < T . In this case we would have an S-shape.

Next, we study the behavior of the share

s =
1

1 +
⇣
Xm
Xo

⌘ 1
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.

The quotient in the previous expression can be written as,
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= C0e
g0t + C1e

g1th(t) (147)

where C0, C1 are two constants, g0 < g1, and h(t) is given by equation (127),
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with �t = t � T. It is immediate to verify that y is an increasing function (as it is the sum

of two increasing functions). Thus, s is decreasing over time. Taking the second derivative

over time of s, one finds that the sign of the second derivative is the same as the sign of
⇥
ẏ2 � (1 + y)ÿ2

⇤
, using that

ẏ = g0C0e
g0t + g1C1e

g1th+ C1e
g1tḣ (149)

ÿ = g20C0e
g0t + g21C1e

g1th+ 2g1C1e
g1tḣ+ C1e

g1tḧ (150)

53



Using the fact that h(T ) = ḣ(T ) = 0, ḧ(T ) = �, we have that
⇥
ẏ(T )2 � (1 + y(T ))ÿ(T )2

⇤
is

g20C
2
0e

2g0T � (1 + C0e
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Thus, s is initially concave. That is, there exist a " > 0 such that if t 2 [T, T + "] then

ẏ(t)2 � (1 + y(t))ÿ(t)2 < 0.

Next, using that limt!1 h(t) = �/�(�+�), limt!1 ḣ(t) = 0 and limt!1 ḧ(t) = 0, we find

that
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�
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� 1

◆
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Hence, the asymptotic behavior depends on whether � 7 �(�+�). Note that given that both

� and � are on the order of 1/100, we have that � > �(�+ �), and hence s is asymptotically

convex.39

Proposition 7 Suppose that the half-life of the system for levels and growth is reached for

⌧ 2 [T, T̄ ]. Then, the half-life of the system and the half-life of the growth rate for the Western

countries can be approximated by

tlevel1/2 = do �
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ea0
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(155)

where Y (d0) denotes the income level when Industrial Revolution technologies starts to be

adopted and C is some positive constant.

Proof of Proposition 7: In this proof we will not provide the level of detail of the Proof

of Proposition 3, as the derivations are analogous. We assume that the half life is achieved

in the regime where ⌧ < T . We assume directly that the transient part h(t) ' 1 (which we

only assumed in the end of 3. Under these assumptions, the definition of the half-life for the

39For example, in the baseline case, we have that � = � = 1%, so that the asymptotic behavior is convex
1

100
>

1
100

2
100

. In fact, under the assumption that � = �, the condition for an asymptotic convex behavior is
that � < 50%.
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growth rate is
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Next, we derive the half-life in levels. Define

Ỹ (t) =
Y (t)

eam
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(✓�1)2

�(�+�)

⌘✓�1
e(�+�)(t�dm)

. (161)

By construction, limt!1 Ỹ (t) = 1. Hence, the definition of the half-life is

Ỹ (0) +
1

2
(1� Ỹ (0)) = Ỹ (t1/2), (162)

where we are taking the normalization T = 0. This is a transcendental equation, so to make

further progress we assume that the transient part of growth is h(t) ' 1,40 Denoting the left

hand side of (161) by C, we can re-write as
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�
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e�a0Y (d0)e
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⌘ 1
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To solve for this equation analytically, we approximate the second term in parenthesis for its

average value. Using the following notation

 =
(✓ � 1)2

�
+ <

⇣
e�a0Y (d0)e

(gO�����ga)(t�dO)
⌘ 1

✓�1
> (165)

40One could do as in the proof of Proposition 3 and take the average values.
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t can be expressed as

tlevel1/2 = do �
�+ �

ga
(do � dm) +

1

ga
ln

0

B@
C
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Time Period
1820-1900 1900-2000

Simulation Western Countries .69% 2.16%
Non-Western Countries .27% 1.45%
Di↵erence .42% .71%

Maddison Western Countries 1.1% 2.0%
Rest .4% 1.2%
Di↵erence West-Rest .7% .8%

Table 9: Growth rates of GDP per capita. Simulation results and growth rates from Maddison
(2004)

G Simulation and Calibration of the Production Function in

Section 5

The simulations reported in the paper are a discrete time model, in which at each period of

time a new technology and a new vintage of all technologies appear. We run first the model

forward to reach a BGP at a growth rate of .2% holding the adoption margins constant. We

normalize the output at the initial point of the initial revolution so that it is equal for all

countries that we simulate. Then we start reducing the adoption lag and the intensive margin

for the new technologies that appear, holding the evolution of the productivity of the “Old”

ones at pre-Industrial levels (as explained in the model).

The simulations reported in the paper normalize the output produced using the pre-

Modern technologies as follows. The production function we are working with could be written

in general as

Y (t) = C
h
(⇠OldAOld(t))

1
✓�1 + (⇠ModernAModern(t))

1
✓�1

i✓�1
. (167)

We normalize ⇠Modern = 1, as the presumption is that we have a good description of the

Modern growth process,

Y (t) = C
h
(⇠OldAOld(t))

1
✓�1 +AModern(t)

1
✓�1

i✓�1
. (168)

Next, we use the fact that for the Western countries we know much income grew since the

our “start” of the industrial revolution (1765) –we interpolate output growth from Maddison

(2004) to obtain this number– up to an arbitrary date T̄ , which we take to be 1820. Denote
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Table 10: Adoption Lags with Non-homotheticities

Technology Name Invention Obs. Mean Sd p10 p50 p90 iqr
Year

Spindles 1779 28 114 49 49 108 170 94
Ships 1788 36 121 56 47 145 179 111
Railways Freight 1825 34 71 30 31 74 117 47
Railways Passengers 1825 23 64 37 15 63 116 61
Telegraph 1835 32 48 30 18 39 94 33
Mail 1840 31 44 39 6 33 104 78
Steel (Bessemer, Open Hearth) 1855 40 61 36 13 61 106 57
Telephone 1876 35 49 33 6 47 91 56
Electricity 1882 56 44 25 12 41 69 37
Cars 1885 47 40 23 14 33 64 33
Trucks 1885 53 36 20 14 33 63 29
Tractor 1892 55 57 20 29 63 79 15
Aviation Freight 1903 32 47 14 32 47 65 22
Aviation Passengers 1903 30 31 16 16 26 53 24
Electric Arc Furnace 1907 28 53 21 22 59 78 37
Fertilizer 1910 74 42 11 26 43 52 13
Harvester 1912 67 37 17 17 42 50 23
Synthetic Fiber 1924 46 38 4 33 39 41 2
Blast Oxygen Furnace 1950 37 15 8 8 13 28 10
Kidney Transplant 1954 24 13 7 4 13 25 4
Liver Transplant 1963 18 18 3 15 18 24 3
Heart Surgery 1968 16 12 3 9 12 17 3
PCs 1971 69 16 3 12 16 19 3
Cellphones 1975 82 13 4 9 14 17 5
Internet 1983 50 7 3 2 7 10 4

Total 1043 41 35 10 34 82 41
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Table 11: Intensive Margin with Non-homotheticities

Technology Name Invention Obs. Mean sd p10 p50 p90 iqr
Year

Spindles 1779 28 0.1 0.8 -1.6 0.1 1.6 1.0
Ships 1788 36 0.0 0.8 -2.1 0.1 1.6 0.8
rail freight 1825 34 0.0 0.4 -0.7 -0.1 0.8 0.5
rail pass 1825 23 0.1 0.4 -0.6 0.1 0.6 0.5
Telegraph 1835 32 -0.1 0.5 -1.2 -0.1 0.8 0.5
mail 1840 31 -0.1 0.4 -1.1 0.0 0.6 0.5
steel total 1855 40 -0.1 0.6 -1.3 0.0 0.6 0.7
Telephone 1876 35 -0.2 0.9 -1.9 -0.1 0.9 1.0
Electricity 1882 56 -0.2 0.6 -1.4 -0.2 0.8 0.9
Cars 1885 47 -0.4 0.8 -1.7 -0.4 0.5 1.2
Trucks 1885 53 -0.3 0.7 -1.6 -0.2 0.7 0.7
tractor 1892 55 -0.6 0.9 -1.9 -0.7 0.7 1.3
Aviation freight 1903 32 0.0 0.4 -0.6 0.0 0.8 0.5
Aviation passengers 1903 30 -0.1 0.6 -0.9 0.0 1.0 0.7
Steel eaf 1907 28 0.1 0.4 -0.6 0.2 0.8 0.6
fertilizer 1910 74 -0.5 0.7 -1.4 -0.5 0.4 0.9
harvester 1912 67 -0.6 0.8 -1.8 -0.6 0.8 1.0
Synthetic 1924 46 -0.2 0.6 -1.1 -0.1 0.5 0.6
bof 1950 37 -0.6 0.8 -2.1 -0.3 0.3 1.1
Kidney transplant 1954 24 -0.1 0.4 -0.8 -0.1 0.3 0.5
Liver 1963 18 -0.2 0.5 -1.6 -0.1 0.2 0.3
Heart 1968 16 -0.3 0.7 -2.1 -0.1 0.3 0.4
PCs 1971 69 -0.3 0.5 -1.2 -0.3 0.4 0.7
Cellphones 1975 82 -0.5 0.6 -1.6 -0.3 0.4 0.9
Internet 1983 50 -0.7 0.9 -2.6 -0.4 0.4 1.1

Total 1043 -0.3 0.7 -1.6 -0.2 0.6 0.8
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Table 12: Evolution of Adoption Lags with Non-homotheticities

(1) (2) (3)
Dependent Variable is: Intensive Intensive Intensive

World Western Countries Rest of the World

Year-1820 -0.011*** -0.0076*** -0.012***
(0.0005) (0.0007) (0.0004)

Constant 4.23*** 3.58*** -4.53***
(0.08) (0.08) (0.06)

Observations 1027 314 713
R-squared 0.43 0.28 0.58

Note: robust standard errors in parentheses,*** p<0.01. Each observation is re-weighted so that each technol-

ogy carries equal weight.

by ↵ the ratio Y (T̄ )/Y (1765). Then, to match the increase in relative output, we have that

⇠Old =
AModern(T̄ )h

(↵AOld(1765))
1

✓�1 �AOld(T̄ )
1

✓�1

i✓�1
. (169)

Finally, to match the level of output at the “start” of the industrial revolution, we have that

C =
Y (1765)

⇠OldAOld(1765)
. (170)

Note that the dynamics are independent of the term C. So for our purposes, we can re-scale

the output at the start of the Industrial Revolution to 1.

Given that we simulate the evolution of a system to its initial pre-Modern growth rate, the

level of output at a given point of time is di↵erent depending on the levels of adoption. We

can rewrite the production function as
h
(C⇠OldAOld(t))

1
✓�1 + (CAModern(t))

1
✓�1

i✓�1
. Hence,

the normalizing initial term C⇠Old is di↵erent for each of our countries. Indeed, the term ⇠Old

is, on the contrary technology specific, as it contains information on the relative productivity

of pre-Industrial to Modern technologies. In other words, the ratio of C⇠Old to C Hence, once

we pin it down for the Western countries from equation (169), we use it in the rest of the

simulations.
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Table 13: Evolution of the Intensive Margin with Non-homotheticities

(1) (2) (3)
Dependent Variable is: Intensive Intensive Intensive

World Western Countries Rest of the World

Year-1820 -0.0025*** 0 -0.0044***
(0.0005) (0.0002) (0.0006)

Constant -0.04 0 -0.04
(0.08) (0.07) (0.1)

Observations 1043 323 720
R-squared 0.04 0 0.10

Note: robust standard errors in parentheses,*** p<0.01. Each observation is re-weighted so that each technol-

ogy carries equal weight.

H Figures
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Figure 4: Generic Evolution of the growth rate in the transition to Modern growth.

Figure 5: Slow transitional dynamics.

(a) Consumption gap relative to the Modern BGP (b) Growth path to Modern BGP

This simulation corresponds to the transition to the new balanced growth path after an acceleration

of the technological frontier from .2% to 2% for a country with a constant lag as the average lag in

our sample (50 years) and average intensive margin (40% of the U.S. productivity level). The star *

denotes the half-life.
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Figure 6: Growth of Western and non-Western countries imputing the estimated evolution of
the intensive and extensive margins.

Figure 7: Growth of Western and non-Western countries with only an acceleration of the
technology frontier. Both margins of adoption are held constant.
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(a) Dynamics due only to a decline in lags. (b) Dynamics due to the divergence in the intensive
margin.

Figure 8: Role played by the di↵erent margins of adoption.

65



(a) Dynamics with productivity gains from new varieties only.

(b) Dynamics with productivity gains from new technologies only.

Figure 9: Role played by the di↵erent margins of productivity gains
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Figure 10: Evolution of Adoption Lags with Non-homotheticities
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Figure 11: Evolution of the Intensive Margin with Non-homotheticities
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