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Abstract

Bidders�risk attitudes have important implications for sellers seeking to maximize

expected revenues. In ascending auctions, auction theory predicts bid distributions in

Bayesian Nash equilibrium does not convey any information about bidders�risk pref-

erence. We propose a new approach for inference of bidders�risk attitudes when they

make endogenous participation decisions. Our approach is based on the idea that bid-

ders�risk premium �the di¤erence between ex ante expected pro�ts from entry and the

certainty equivalent �required for entry into the auction is strictly positive if and only

if bidders are risk averse. We show bidders�expected pro�ts from entry into auctions is

nonparametrically recoverable, if a researcher observes the distribution of transaction

prices, bidders�entry decisions and some noisy measures of entry costs. We propose

a nonparametric test which attains the correct level asymptotically under the null of

risk-neutrality, and is consistent under �xed alternatives. We provide Monte Carlo ev-

idence of the �nite sample performance of the test. We also establish identi�cation of

risk attitudes in more general auction models, where in the entry stage bidders receive

signals that are correlated with private values to be drawn in the bidding stage.
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1 Introduction

We propose a nonparametric test to infer bidders�risk attitudes in auctions with endoge-

nous entry of potential bidders. In these auctions, potential bidders observe some (possibly

idiosyncratic) entry costs, such as bid preparation/submission costs or information acquisi-

tion costs that need to be incurred before learning about private values, and decide whether

to pay the costs to be active in the bidding stage. In any Bayesian Nash Equilibrium (BNE),

bidders make rational entry decisions by comparing expected utility from entry with that

from staying out, based on their knowledge of entry costs or preliminary signals of private

values to be realized in the subsequent bidding stage.

Inference of bidders� risk attitudes have important implications for sellers� choice of

revenue-maximizing auction format. When participation of bidders is exogenously given

and �xed, the Revenue Equivalence Theorem states that expected revenues from �rst-price

and ascending auctions are the same if bidders are risk-neutral with symmetric, indepen-

dent private values (IPV). On the other hand, Matthews (1987) showed that, if bidders

are risk-averse in such models, then �rst-price auctions yield higher expected revenues than

ascending auctions.

Bidders�risk attitudes also a¤ect revenue rankings among symmetric IPV auctions when

participation decisions are endogenous. For risk-neutral bidders, Levin and Smith (1994)

implied any given entry cost induces the same entry probabilities in �rst-price auctions

(with entrants observing the number of other entrants) and in ascending auctions. Thus

the Revenue Equivalence Theorem implies expected revenues must be the same from both

�rst-price and ascending formats under endogenous entry. On the other hand, Smith and

Levin (1996) established the revenue ranking of �rst-price over ascending auctions under

endogenous entry for risk-averse bidders, except for the case with decreasing absolute risk

aversions (DARA).1

While some earlier papers had studied the identi�cation and estimation of bidders�risk

attitudes in �rst-price auctions (e.g. Bajari and Hortascu (2006), Campo, Guerre, Perrigne

and Vuong (2007) and Guerre, Perrigne and Vuong (2009)), inference of risk attitudes in

ascending auctions remains an open question. Athey and Haile (2007) pointed out bidders�

risk attitudes cannot be identi�ed from bids alone in ascending auctions where participa-

tion is given exogenously. This is because bidding one�s true values is a weakly dominant

1Even in the case with DARA, �rst-price format can yield higher expected revenues than ascending

formats when entry costs are low enough. To see this, consider a simple case where entry costs are low

enough so that the di¤erence between entry probabilities in �rst-price and ascending auctions are su¢ ciently

small. In such a case, these two probabilities are both close to 1 and only di¤er by some " > 0. By Matthews

(1987), conditioning on any given number of entrants, ascending auctions have smaller expected revenues

than �rst-price auctions. With di¤erence between the two entry probabilities " being small enough, such a

revenue ranking result will be preserved.
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strategy in ascending auctions, regardless of bidders�risk attitudes. Thus, bidders with var-

ious risk attitudes could generate the same distribution of bids in Bayesian Nash equilibria.

Consequently, the distribution of bids from entrants is not su¢ cient for inferring bidders�

risk attitudes. Furthermore, we show in Section 4 that risk attitudes cannot be recovered

from transaction prices and entry decisions of a given set of potential bidders, when nothing

is known about entry costs. It follows that some knowledge of entry costs is necessary for

recovering risk attitudes.

We propose a non-parametric test for bidders�risk attitudes when researchers observe

the transaction prices and bidders�entry decisions in ascending auctions. Our approach only

requires data to contain some noisy measures of bidders�entry costs. This is motivated by

the fact that entry costs are often measurable (at least up to some noises) in applications even

when risk attitudes are unknown. For example, entry costs may consist of bid preparation

costs (such as mailing costs), admission fees or other information acquisition expenses, which

are usually observed with noises in data.

The main insight for our test can be illustrated using the mixed-strategy entry model

(which is analogous to that considered in Levin and Smith (1994) for �rst-price auctions).

In the entry stage, all potential bidders observe some common entry cost and decide whether

to pay the cost and enter an ascending auction in the bidding stage. In a Bayesian Nash

equilibrium, potential bidders�participation in the auction will be in mixed strategies with

the mixing probability determined to ensure that a bidder�s expected utility from entry equals

that from staying out. Hence bidders� risk attitudes can be identi�ed by comparing the

expected pro�ts from entry and the certainty equivalent. As long as the expectation of entry

costs can be identi�ed from data, the distribution of transaction prices and entry decisions

alone can be used to make such a comparison. Building on this intuition, we show that

identi�cation of risk attitudes can also be achieved in a related model where bidders�entry

costs are idiosyncratic and entry decisions follow a pure-strategy. Perhaps more interestingly,

we extend the idea to recover risk attitudes in more general models where private values in

the bidding stage are a¢ liated with preliminary signals observed by potential bidders in the

entry stage.

We apply the analog principle to construct a non-parametric test statistic, using data

on transaction prices and entry decisions as well as estimates of the mean of entry costs.

We characterize the limiting distribution of this statistic, and propose a bootstrap test that

attains correct asymptotic level and is consistent under any �xed alternative of risk-aversion

or risk-loving. We provide evidence for its decent �nite sample performance through Monte

Carlo simulations.

The remainder of the paper is structured as follows. In Section 2 we discuss the related

literature; in Section 3 we present two basic models of auction entry and bidding; in Section

4 we describe the theoretical result underlying our test for bidders� risk attitudes under
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the two basic models; in Section 5 we propose the test statistic and derive its asymptotic

distribution; in Section 6 we present Monte Carlo evidence for the small sample performance

of our test statistics; in Section 7 we extend our test to an auction model with selective

entry; and in Section 8 we conclude. The proofs are collected in the appendices.

2 Related Literature

This paper �ts in and contributes to two branches of the literature on structural analyses

of auction data. Some earlier papers analyzed the equilibrium and its empirical implica-

tions in auctions with endogenous entry and risk-neutral bidders. These include Levin and

Smith (1994), Li (2000), Ye (2007) and Li and Zheng (2009). Marmer, Shneyerov and Xu

(2011) study a model of �rst-price auctions between risk-neutral bidders with selective en-

try, and discuss testable implications of various nested entry models. Roberts and Sweeting

(2010) estimated a model of ascending auctions with selective entry and risk-neutral bidders,

assuming identi�cation is attained for a model with parametrized structure.

Other papers studied the identi�cation and estimation of bidders�utility functions along

with the distribution of private values in �rst-price auctions without endogenous entry.

Campo, Guerre, Perrigne and Vuong (2009) showed how to estimate a semiparametric model

of �rst-price auctions with risk-averse bidders when the identi�cation of a parametric utility

function is assumed. Bajari and Hortascu (2007) used exogenous variations in the number

of bidders in �rst-price auctions to semi-parametrically estimate the utility function while

leaving the distribution of bidders�private values unrestricted. Guerre, Perrigne and Vuong

(2009) used exogenous variations in the number of potential bidders to non-parametrically

identify bidders�utility functions along with the distribution of private values in �rst-price

auctions. Lu and Perrigne (2008) considered a context where data contain bids from both

�rst-price and ascending auctions that involve bidders with the same underlying utility func-

tion and the distribution of private values. Their idea is to �rst use bids from ascending

auctions to recover the distribution of private values, and then use bids from �rst-price

auctions to recover the utility function.

Our work in this paper contributes to these two branches of empirical auction literature by

studying a model which endogenizes bidders�entry decisions and relaxes the risk-neutrality

assumption at the same time. To the best of our knowledge, our paper is the �rst e¤ort to

non-parametrically infer bidders�risk attitudes in ascending auctions with endogenous entry.

Levin and Smith (1996) presented some results on the revenue ranking of auction formats in

terms of seller revenues when auctions are known to involve risk-averse bidders who make

endogenous entry decisions. Their focus is not on the identi�cation of bidders�risk attitudes.

Ackerberg, Hirano and Shahriar (2011) studied a class of e-Bay auctions where a typical

online ascending auction is combined with an option of paying the buy-out price posted by
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the seller in order to purchase the object immediately. They showed how to identify the

bidders�utility functions and the distribution of private values using exogenous variations in

the buy-out prices and other auction characteristics. The format of auctions they consider is

qualitatively di¤erent from the one we consider in this paper, which is a standard ascending

format with endogenous entry. We do not embark on a full identi�cation of the utility

function in this paper, and therefore require fewer sources of exogenous variations to perform

the test. (With exogenous variations in entry costs, identi�cation of the utility function may

be possible in our model as well.) Our approach does not rely on variations in entry costs,

for our test can be performed for any given level of entry costs. Another di¤erence is that,

we also goes beyond identi�cation and propose a method of robust inference. We propose a

non-parametric test statistic, derive its limiting distribution, and present evidence for good

performance in �nite samples.

Our paper �ts in a category of empirical auction literature on nonparametric tests of the

empirical implications/predictions of auction theory. Earlier works in this category included

tests of bidders�rationality in �rst-price auctions with common values in Hendricks, Pinkse

and Porter (2003), tests for presence of interdependent values in Haile, Hong and Shum

(2004), and test for a¢ liations between bidders�private values in Li and Zhang (2010) and

Jun, Pinkse and Wan (2010).2

3 Ascending Auctions with Endogenous Entry

Consider an empirical context where researchers observe data from a large number of

independent single-unit ascending auctions. Each of these auctions involve N potential bid-

ders who have symmetric independent private values and make endogenous entry decisions.

In the entry stage, each potential bidder decides whether to incur an entry cost Ki so as

to become active. Following their entry, active bidders see their private values Vi, and then

compete in an open out-cry (ascending) auction in the bidding stage. A binding reserve

price r may be implemented in an auction, and is observed by all potential bidders in the

entry stage. In each auction, private values and entry costs are independent draws from

some distribution F (V1; :; VN ; K1; :; KN), which is common knowledge among all potential

bidders before making entry decision. Upon entry, each bidder may or may not be aware of

the total number of active entrants (denoted A). All bidders in data share the same bounded

von Neumann-Morgenstein utility function u : R+ ! R with u0 > 0 and the sign of u00 is

the same over R+. A winner who has value Vi and pays a price at Pi receives a payo¤ of
u(Vi � Pi� Ki).

Similar to Li and Zheng (2009), we consider two related entry models that di¤er in

whether entry costs Ki vary across potential bidders. With a slight abuse of notation, we

2See Athey and Haile (2007) and Hendricks and Porter (2007) for recent surveys.
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use N and A to denote respectively both the number and the set of potential and active

bidders. Let F�1;�2, F�2j�1 denote respectively the joint and conditional distributions of generic

random vectors �1; �2. We use upper cases to denote random variables and lower cases to

denote their realizations. For notational simplicity, we drop the reference to N when there

is no ambiguity.

Model A (Identical Entry Costs). In each auction, bidders share the same costs (Ki = K

for all i) in the entry stage. Private values Vi are independently and identically distributed

over bounded support [v; v] given K. Across auctions, entry costs are drawn independently

from the same distribution FK over [k; k]. That is, Pr(V1 � v1; :; VN � vN jK = k) =Q
i2N FV jk(vi).

Model B (Heterogeneous Entry Costs). Idiosyncratic entry costs Ki are privately

known to bidder i, and are i.i.d. draws from some continuous, increasing distribution FK
over [k; k]. Private values are independent from entry costs, and are i.i.d. draws from

some distribution FV . (That is, the joint distribution of private values and entry costs is

�i2NFK(ki)FV (vi).)

In Models A and B, we assume FV is continuous, atomless and increasing over [v; v]. We

focus on cases where bidders�private values are symmetrically distributed in Sections 4-5. In

both models, in Bayesian Nash equilibrium (BNE), each entrant i in bidding stages follows

a dominant strategy to drop out at his true value Vi if A � 2. When A = 1 in the bidding
stage, the lone entrant wins and pays the reserve price r. Yet entry strategies in BNE di¤er

across these two models. In Model A, there is no private information available to potential

bidders in the entry stage. Players adopt mixed strategies and make independent decisions

to enter with certain probabilities. In Model B, potential bidders have private information

about their own entry costs, and we focus on pure strategies where potential bidders decide

to enter if and only if their private entry costs are lower than certain cuto¤s. We characterize

the BNE in both models for the rest of this section.

Let A�i denote the set of active entrants that bidder i competes with if he decides to

enter. Let r be a binding reserve price (r > v). De�ne Pi � maxj2A�ifmaxfVj; rgg as i�s
payment if he enters and wins while other bidders in A�i follow weakly dominant bidding

strategies. If A�i = ?, then de�ne Pi � r. Then i�s pro�t under dominant strategies

is (Vi � Pi)+ � k, where (:)+ � maxf:; 0g. Let !A(k;��i) denote the expected utility for a
bidder i in Model A conditional on paying entry cost k and on potential competitors entering

with probabilities ��i � f�jgj2Nnfig. Under assumptions of Model A,

!A(k;��i) � u(�k)FV jk(r) +
Z v

r

h(v; k;��i)dFV jk(v),
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where for all v > r,

h(v; k;��i) � u(v � r � k)FPi(rjk;��i) +
Z v

r

u(v � p� k)dFPi(pjk;��i)

+u(�k)[1� FPi(vjk;��i)] (1)

with FPi(:jk;��i) being the distributions of Pi in Model A when K = k, and i�s potential

competitors enter with probabilities ��i.

Similarly, in Model B, let !B(ki;k�i) denote the expected utility for a bidder i conditional

on paying ki to enter and potential competitors entering when their costs are lower than

k�i � fkjgj 6=i. Let FPi(:jk�i) denote the distribution of Pi conditional on i�s competitors
entering when their private entry costs are lower than k�i. Under assumptions of Model B,

!B(ki;k�i) = u(�ki)FV (r) +
Z v

r

~h(v; ki;k�i)dFV (v)

where ~h(v; ki;k�i) is de�ned by replacing k and FPi(:jk;��i) in (1) respectively with ki and
FPi(:jk�i) in Model B. Due to symmetry in distributions of private values across bidders in
both models, both FPi(:jk;��i) in Model A and FPi(:jk�i) in Model B do not change with
the bidder identity i. Consequently, !A; !B are also independent from the bidder identity i.

Given our speci�cation of Model A, !A is decreasing in ��i for any given k. This is due

to the following two observations: First, the distribution of active entrants competing with

a bidder i is stochastically increasing in ��i. (A higher ��i leads to a higher probability of

competing with a greater number of rivals.) Second, the distribution of u((Vi � Pi)+ � k)
conditional on entry is stochastically decreasing in the number of active competitors. By

similar reasoning, we can show in Model B that !B is decreasing in ki and k�i. Using these

properties, entry strategies in Bayesian Nash equilibrium is characterized in the following

lemma. Its proof is included in Appendix A.

Lemma 1 (a) Suppose the common entry cost k is such that !A(k; (1; :; 1)) < u(0) <

!A(k; (0; :; 0)) in Model A. Then there is a unique symmetric BNE in which all bidders enter

with probability ��k, where �
�
k is the unique solution to !

A(k; (��k; :; �
�
k)) = u(0). (b) Suppose

!B(k; (k; :; k)) < u(0) < !B(k; (k; :; k)) in Model B. Then exists a unique symmetric BNE

in which all bidders enter i¤ ki � k� where k� is the unique solution to !B(k�; (k�; :; k�)) =
u(0).

In Model A, whenever !A(k; (0; :; 0)) � u(0) (or !A(k; (1; :; 1)) � u(0)), the equilibrium
entry probabilities must be 0 (or 1 respectively). Thus the assumption !A(k; (1; :; 1)) <

u(0) < !A(k; (0; :; 0)) can be tested as long as entry decisions are observed in data. Like-

wise, entry strategies in Model B will be characterized by k (or k respectively) if u(0) >

!B(k; (k; :; k)) (or u(0) < !B(k; (k; :; k))). The equilibrium entry processes in Models A and
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B are both non-selective, in the sense that the potential bidders� entry decisions are not

based on any informational variables that are correlated with private values to be drawn in

the bidding stage.

4 Identi�cation of Bidders�Risk Attitudes

In this section, we assume the number of potential bidders is �xed at N and known to

the researcher. We start by assuming that researchers have complete knowledge of entry

costs. In Model A, this means researchers observe entry costs. In Model B, this means the

researcher knows the distribution of entry costs FK . In practice, the auctioneer sometimes

charges a �xed admission fee to entrants (such as art auctions). This �ts in Model A provided

the admission fees are observed in data.

Our identi�cation argument builds on the simple intuition that the certainty equivalent

for risk-averse bidders must be strictly smaller than the expected pro�ts from entry. The

di¤erence between these two can be recovered from bidders�entry decisions and the distri-

bution of transaction prices alone. In Section 4.2, we generalize this argument to allow for

the case when the distribution of entry costs is only imperfectly known to the researcher.

4.1 Complete knowledge of entry costs

Let ��k denote entry probabilities in symmetric BNE of Model A when the common entry

cost is k; and let k� denote the cuto¤ that characterizes the entry strategies in symmetric

BNE of Model B. Let �A(��k; k) denote expected pro�ts for a bidder i if he enters in Model

A, conditional on the entry cost k and that each of his potential competitors also enters with

probability ��k. That is, �
A(k) � E[(Vi � Pi)+ � kj K = k]. [We suppress ��j = �

�
k 8j 6= i�

in the event conditioned on in order to simplify notations]. Similarly, let �B(k�) denote i�s

expected pro�ts from entry in Model B, given his idiosyncratic cost k�, and that competitors

enter if and only if their costs are lower than k�. That is, �B(k�) � E[(Vi � Pi)+ � k�j k�],
where �k��denotes the event �A�i = fj 6= i : kj � k�g�. Both �A and �B are independent
from bidder identities due to the symmetry in private value distributions.

Lemma 2 (a) Suppose k is such that 0 < ��k < 1 in Model A. Then �
A(k) = 0 i¤ bidders

are risk-neutral, and �A(k) > 0 (or < 0) i¤ bidders are risk-averse (or respectively, risk-

loving). (b) Suppose k < k� < k in Model B. Then �B(k�) = 0 i¤ bidders are risk-neutral,

and �B(k�) > 0 (or < 0) i¤ bidders are risk-averse (or respectively, risk-loving).

Proof. Consider Model A. By Lemma 1, in any symmetric BNE, bidders decide to enter

with probability ��k with !
A(k;��k) � E[u((Vi�Pi)+�k)jk; ��j = ��k 8j 6= i�] = u(0). Thus,

0 is the certainty equivalent associated with u and the distribution of (Vi � Pi)+ � k given
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entry cost k and private value distribution FV jk. Therefore, �A(k) > 0 if u00 < 0 (bidders

are risk-averse). Likewise, it can be shown that �A(k) = 0 (or, respectively, �A(k) < 0) if

bidders are risk-neutral (or risk-loving). Similar arguments proves part (b) for Model B. �
Lemma 2 suggests bidders�risk attitudes can be identi�ed in Model A if �A(k) can be

recovered at least for some k with 0 < ��k < 1. Likewise, risk attitudes can be identi�ed in

Model B with k< k� < k, provided �B(k�) can be constructed from entry decisions and the

distribution of transaction prices. Proposition 1 states this can be done when k is observed

in data. Let FV (s:m)jk denotes the s-th smallest out of m independent draws from FV jk for all

1 � s � m.

Proposition 1 (a) For any entry cost k such that 0 < ��k < 1 in Model A, �
A(k) is identi�ed

from bidders�entry decisions and the distribution of transaction prices, provided the entry

cost k is observed in data. (b) If k < k� < k in Model B, then �B(k�) is identi�ed from entry

decisions and the distribution of transaction prices, provided the entry cost distribution FK
is known.

Proof. Proof of (a). By de�nition, �A(k) = E[(Vi � Pi)+ �Kj K = k]. Conditional on k,

entry decisions are independent across bidders, and jointly independent from private values

in Model A. Furthermore, private values are i.i.d. across bidders given k. Hence, once

conditional on k and A�i (the number of active competitors for i in the bidding stage),

(Vi; Pi) are independent from mixed strategies adopted by potential competitors. Using the

Law of Iterated Expectations,

E[(Vi � Pi)+jk] =
PN�1

a=0 E[(Vi � Pi)+jk; A�i = a] Pr(A�i = ajk). (2)

With common cost k and entry decisions observed from data, ��k is directly identi�ed as the

probability that a bidder enters under cost k. Consequently, Pr(A�i = ajk) is identi�ed as a
binomial distribution with parameters N � 1 and ��k. Conditional on entering with cost k,
private values are independent draws from FV jk. Let 1f:g denote the indicator function. By
the Law of Iterated Expectations, E[(Vi � Pi)+jk, A�i = a] is

E[(Vi � Pi)1fVi > Pi > rgjk, A�i = a] + E[(Vi � r)1fVi > rg1fPi = rgjk, A�i = a]

=

Z �v

r

�Z �v

v

(s� v) dFV jk(s)
�
dFV jk(v)

a + FV jk(r)
a

Z �v

r

(v � r) dFV jk(v) (3)

for all A�i = a � 1, due to independence between Vi and Pi given k. Applying integration
by parts to the �rst term in (3), we have

E[(Vi � Pi)+jA�i = a; k] =
Z �v

r

FV jk(v)
a � FV jk(v)a+1dv

for a � 1. Besides, E[(Vi � Pi)+j A�i = 0; k] = E[(Vi � r)+jk] =
R �v
r

�
1� FV jk(v)

�
dv. Since

k is observed in data, �A(k) can be recovered as long as FV jk(v) is identi�ed for v � r.
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Let W denote transaction prices observed in data. If no entrants bid above r, then de�ne

W < r. The symmetric IPV assumption implies for any m � 2, Pr(W < rjA = m; k) =

Pr(V (m:m) < rjk) = FV jk(r)m and Pr(W = rjA = m; k) = mFV jk(r)m�1[1� FV jk(r)]. Hence
for any m � 2 and t � r,

Pr(W � tjA = m; k) = Pr(W < rjm; k) + Pr(W = rjm; k) + Pr(r < W � tjm; k)
= FV jk(t)

m +mFV jk(t)
m�1[1� FV jk(t)] = FV (m�1:m)jk(t).

For any m � 2, de�ne �m(t) � tm+mtm�1(1� t) so that FV (m�1:m)jk(t) = �m(FV jk(t)). Since
�m(t) is one-to-one for any m � 2 over t 2 [0; 1], FV jk(t) is (over-)identi�ed for each t � r
from the distributions of W conditional on k and A = m. Proof of part (b) uses similar

arguments and is included in the appendix. �
Remark 1 If bids from those who lose (i.e. prices at which they drop out) are observed in

data, the distribution of the other order statistics V (s:m) with s � m � 2 can also be used
for identifying �A(k) and �B(k�). This is because a one-to-one mappings between FV jk and

the distributions of these smaller order statistics in Model A still exists. Likewise for Model

B. Such an over-identi�cation can be exploited to improve e¢ ciency in estimation.

Remark 2 In practice, auction data may be �truncated� in the sense that only those
involving at least one entrants are observed. In such a case, a positive entry probability

��k in Model A is (over-)identi�ed using ratios of truncated distributions

Pr(A=njA�1;k)
Pr(A=n+1jA�1;k) =

CNn (��k)
n
(1���k)N�n

CNn+1(��k)
n+1

(1���k)N�n�1
=

(n+1)(1���k)
(N�n)��k

for all n � N�1. Similar arguments show FK(k�) is identi�ed from truncated data in Model
B. Same arguments in Proposition 1 show �A(k) and �B(k�) can be recovered.

4.2 Imperfect observation of entry costs

We now consider cases where researchers only have imperfect knowledge about entry

costs. First, consider an extension of Model A where entry costs K common to potential

bidders vary across auctions, but the researcher only observes noisy measures of costs ~K =

K + � with E(�) = 0. Then �K � E(K) = E( ~K) is directly identi�able from data. In such

a case, the test for bidders�risk attitudes can still be conducted, provided entry costs vary

independently from bidders�values.

Corollary 1 Let [k; k] denote the support of entry costs K in Model A. (a) Suppose

0 < ��k < 1 for all k 2 [k; k]. Then E[�A(K)] = 0 when bidders are risk-neutral, and

E[�A(K)] > 0 (or < 0) when bidders are risk-averse (or respectively, risk-loving). (b) If K

is independent from (Vi)i2N , then E[�A(K)] is identi�ed from bidders�entry decisions, the

distribution of transaction prices and noisy cost measures ~K.

9



Proof. Part (a). By Proposition 1 and the support condition in part (a), �A(k) = 0 for all

k 2 [k; k] if bidders are risk-neutral, and �A(k) > 0 (or �A(k) < 0) for all k if bidders are
risk-averse (or, respectively, risk-loving). Integrating out k using FK proves (a).

Part (b). That K ? (Vi)i2N implies, given A�i = a, the vector of order statistics

(V (s:a+1))s�a+1 is independent from K. Thus '(a) � E[(Vi � Pi)+jA�i = a; k] does not

depend on k for all a � 0 (recall Pi � r when A�i = ?). By (2), E[�A(K)] is:Z k

k

�k +
PN�1

a=0 '(a) Pr(A�i = ajk)dFK(k) =
PN�1

a=0 '(a) Pr(A�i = a)� �K . (4)

To identify Pr(A�i = a) (or
R k
k
Pr(A�i = ajk)dFK), note that given any k and N , A�i is

binomial (N � 1; ��k) while A is binomial (N; ��k). By construction,

Pr(A�i = ajk) = N�a
N
Pr(A = ajk) + a+1

N
Pr(A = a+ 1jk) (5)

for all k and a � N � 1. Integrating out k on both sides of (5) implies Pr(A�i = a) =
N�a
N
Pr(A = a) + a+1

N
Pr(A = a + 1). Since the unconditional distribution of A is directly

identi�ed, so is the distribution of A�i. As for �K , it is identi�ed as E( ~K). �
Observing some noisy measures of entry costs is su¢ cient but not necessary for identifying

risk attitudes in Model A. As suggested by the proof of Corollary 1, only �K needs to be

known (or recoverable from data).

There is an alternative approach for recovering the unconditional distribution of A�i.

Because entry decisions in data are rationalized by a symmetric BNE, the distribution of

A�i can be identi�ed as the distribution of the number of entrants from a random subset of

N�1 potential bidders. Such subsets can be formed by removing a randomly-selected bidder
i from the set of N potential bidders. We adopt this alternative approach while constructing

the test statistic.

Now consider a special case of Model B where researchers have imperfect knowledge of

entry costs. Suppose the data contain noisy measure of idiosyncratic costs K 0
i = Ki + �i.

The measurement errors �i�s are independently drawn from the same distribution F�, which

is independent fromKi. Even withKi now unobservable, expected pro�ts from entry E[(Vi�
Pi)+j k�] is recoverable as in Proposition 1. Thus, bidders�risk attitudes can be identi�ed
as long as k� can be recovered using the distribution of K 0

i.

If the distribution F� is known to researchers and has a non-vanishing characteristic

function, then the characteristic function of Ki is recovered as E(eitK
0
i)=E(eit�i). With the

equilibrium entry probability identi�ed from data, the equilibrium cuto¤ k� can be recovered

by inverting FKi
at the entry probability. Even with F� unknown to researchers, the cuto¤

k� can be recovered provided researchers have multiple noisy measures of idiosyncratic costs

Ki. Suppose for each Ki, data contain two noisy measures (K 0
i;1; K

0
i;2) � (Ki+ �i;1; Ki+ �i;2),

where (Ki; �i;1; �i;2) are mutually independent with non-vanishing characteristic functions,

10



and the mean or some quantile of either �i;1 or �i;2 is known.3 The Kotlarski Theorem (see

Kotlarski (1967) and Rao (1992)) then applies to identify the marginal distributions of Ki

and �i;1. Inverting the distribution of Ki at the entry probability then gives k�.

4.3 Further discussions about entry costs

Our test for bidders�risk attitudes requires that the researcher have at least some partial

knowledge about entry costs (such as its expectation). We now elaborate on theoretical and

empirical justi�cations of such an assumption. We also discuss possibilities for constructing

a test without such knowledge by exploiting the exogenous variations in the number of

potential bidders.

First, with the number of potential bidders �xed and researchers having no information

about entry costs, it is impossible to nonparametrically infer bidders� risk attitudes from

observed entry decisions and transaction prices alone. To see this, consider a simpli�ed

version of Model A�where all auctions in data have the same �xed entry cost k, which is not

reported in data. The distribution of private values is still identi�ed from the distribution

of transaction prices and the number of entrants; and the equilibrium entry probability is

also identi�ed from entry decisions. Nonetheless, even in this simpli�ed case, the bidders�

utility u(:) and the �xed cost k cannot be jointly identi�ed. To see this, suppose bidders

are risk-neutral with utility function u(:) and ��k 2 (0; 1). Then one can always replace u
with a slightly concave ~u 6= u, the observed entry behaviors (��) would still be rationalized
by some level of entry cost ~k 6= k that equals the expected utility from entry to that from

certainty equivalent (i.e. E[~u((Vi�Pi)+� ~k)j��; k] = u(0)). Thus, our hope for inferring risk
attitudes from entry and bidding behaviors (when the number of potential bidders is �xed)

must utilize at least some partial knowledge of entry costs. To our knowledge, our work in

this paper is the �rst attempt to exploit possible information from entry costs to recover risk

preferences.

Second, depending on the empirical application considered, entry costs may well be mea-

surable (at least up to random noises) through additional surveys or data collection work.

For example, in timber auctions held by US Forest Service, the entry costs for potential bid-

ders (i.e. that millers and loggers located in a nearby geographic region) consists largely of

information acquisition costs. These costs are the prices for conducting a �cruise�on forest

tracts in order to plot the distribution of the diameter and height of trees, etc. (See Athey,

Levin and Seira (2011) for details.) Such private cruises are institutionalized and standard

practices on the market. Thus it is plausible that their costs vary little across potential bid-

ders, and can be learned through surveys or market observations up to random measurement

3The two measurement errors �i;1, �i;2 could be drawn from di¤erent marginal distributions, in which

case the identi�cation would require researchers to know how to distinguish K 0
i;1 and K

0
i;2 in data.
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errors. Thus the assumption of having an unbiased estimator for the common entry costs

seems plausible in such contexts. Other well-known examples where this assumption might

be expected to hold include the high-way procurement auctions considered in Li and Zheng

(2009) and Krasnokutskaya and Seim (2011).

If the number of potential bidders can be expected to vary exogenously in data (in the

sense that marginal distribution of Vi is invariant to N), then there is hope for constructing

a non-parametric test for bidders�risk attitudes from ascending auctions with IPV without

relying on any information about entry costs. To see this, consider the scenario where

the data contains two sets of auctions, with each observed to involve either N or N 0 > N

potential bidders respectively. The entry cost k is not observed in data, but known to remain

the same across all auctions. Then by the same arguments above, the null of risk neutrality

implies E[(Vi � Pi)+j��N;k; N ] = k and E[(Vi � Pi)+j��N 0;k; N
0] = k, where ��N;k denotes the

equilibrium entry probability when entry cost is k and the number of potential bidders is N .

Thus the null yields a testable implication

E[(Vi � Pi)+j��N;k; N ] = E[(Vi � Pi)+j��N 0;k; N
0], (6)

where both sides are identi�able from data and do not require observations of entry costs.

However, the main challenge is to derive a formal description of the power of a test under

the alternatives (of risk-aversion or risk-loving). We conjecture (6) should fail in general

when the null of risk-neutrality is false. Nevertheless, it is not clear how the direction of

inequality would be related to the types of alternatives (i.e. aversion or loving). We leave

this for future research.

5 Inference of Bidders�Risk Attitudes

We now construct a test for bidders�risk attitudes using the analog principle. We focus

on the extended version of Model A, where entry costs K vary across auctions independently

from (Vi)i2N . Researchers only get to observe noisy measures ~K = K + �, where � ? (K,

(Vi)i2N) and E(�) = 0. Furthermore, 0 < ��k < 1 for all k 2 [k; k]. Hereinafter we refer
to these assumptions as the Conditions of Model A�. Independence of � from (K; (Vi)i2N) is

not necessary for our inference procedure in Section 5.2 to be valid. Nonetheless it simpli�es

derivation of the limiting distribution of our test statistic. To simplify exposition, we �x the

number of potential bidders N , and drop it from the notations for observable distributions

in data when there is no ambiguity.
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5.1 Asymptotic property of the test statistic

Recall our goal is to draw a conclusion as to which of the following three competing

hypotheses is supported by data:

H0 : Bidders are risk-neutral, � 0 = 0;

HA : Bidders are risk-averse, � 0 > 0; and

HL : Bidders are risk-loving, � 0 < 0.

where � 0 � E[�A(K)]. Our data contain T independent auctions, each of which is indexed
by t, involves N potential bidders and has at least one active entrants. Let At denote the

number of entrants in auction t. By de�nition, Wt < r if and only if there is no transaction.

On the other hand, when there is transaction (Wt � r), the transaction price in auction t is
Wt = maxfr; V (At�1:At)g when At � 2 and Wt = r when At = 1. Our test statistic amounts

to estimating the right-hand side of (4) using the analog principle.

Construction of the Test Statistic �̂T

Step 1 For m � 2, calculate the empirical distribution of transaction prices

F̂W;m;T (s) � 1
N

P
t�N 1fWt � s and At = mg= 1N

P
t�N 1fAt = mg

for any s � r.

Step 2 For any m � 2, estimate the distribution of private values at s � r by F̂V;m;T (s) �
��1m (F̂W;m;T (s)), where �m(t) � tm +mtm�1(1 � t). Aggregate these estimates by F̂V;T (s) �
1

N�1
PN

m=2 F̂V;m;T (s) for any s � r.

Step 3 Estimate '(a) for a � 0 using sample analogs:4

'̂T (a) �
Z �v

r

h
F̂V;T (s)

ia h
1� F̂V;T (s)

i
ds.

The integral is calculated using mid-point approximations.

Step 4 In each auction t, select a potential bidder i randomly. Let ~At denote the number

of entrants from the other N�1 potential bidders (excluding i). Estimate � � (�(a))0�a�N�1

4As shown while proving part (a) of Proposition 1,

'(a) =

Z �v

r

[FV (s)]
a
[1� FV (s)] ds

for each a � 0. The distribution of private values (Vi)i2N are independent from K under Conditions of

Model A�in Corollary 1.
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by �̂T � (�̂T (a))0�a�N�1, where �̂T (a) � 1
T

P
t�T 1f ~At = ag.5 Then estimate �K by �̂T �

1
T

P
t�T

~Kt. Finally, estimate � 0 by

�̂T �
PN�1

a=0 '̂T (a)�̂T (a)� �̂T .

We now derive the limiting distribution of
p
G (�̂T � � 0). Let � �denote weak conver-

gence of stochastic processes in a normed space. (For Euclidean spaces RN , this is reduced
to convergence in distribution, denoted � d!�.) Let F ~V be a short-hand for the section of
FV over the domain [r; �v) and F̂ ~V ;T be a short-hand for its estimator as de�ned in Step 2.

Denote the limiting distribution of
p
T (�̂T ��) and

p
T (�̂T ��K) by N� and N� respectively.

We characterize the covariance between N� and N� in Lemma B4 in the appendix. We also

show in Lemma B5 in the appendix that under mild conditions
p
T
�
F̂ ~V ;T � F ~V

�
 GV ,

where GV is a zero-mean Gaussian Process indexed by [r; �v). Lemma B5 characterizes the
covariance kernel of GV as well as its covariance with N� and N�. The proof of these results

builds on the fact that �̂T , �̂T are simple sample averages, while F̂V;T is a known function of

sample averages.

Let S[r;�v) denote the set of functions de�ned over the domain [r; �v) that are strictly
positive, bounded, integrable, right-continuous and have limits from the left. Under the sup-

norm, S[r;�v) is a normed linear space with a non-degenerate interior. De�ne ' : S[r;�v) 7! RN+
as '(F ) � ('(a;F ))N�1a=0 , where

'(a;F ) �
Z �v

r

F (s)a � F (s)a+1ds.

By de�nition, '(F̂ ~V ;T ) = ('̂T (a))
N�1
a=0 � '̂T and '(F ~V ) = ('(a;F ~V ))N�1a=0 � '. The mapping

' is Hadamard di¤erentiable at F ~V tangentially to S[r;�v) (see Appendix B). For any h 2 S[r;�v),
the Hadamard derivative D';F ~V

: S[r;�v) ! RN+ is

D';F ~V
(h)(a) �

Z �v

r

�
aF ~V (s)

a�1 � (a+ 1)F ~V (s)a
�
h(s)ds

for 1 � a � N � 1; and D';F ~V
(h)(0) � �

R �v
r
h(s)ds.

Proposition 2 Suppose the reserve price r is binding and FV is continuously distributed
with positive densities over [r; �v). Under the Conditions in Model A�,

p
T (�̂T � � 0) N�

where N� � �D';F ~V
(GV ) + 'N� � N� follows a univariate normal distribution with zero

mean.
5An alternative is to estimate �(a) by 1

T

P
t�T

N�a
N 1fAt = ag+ 1

T

P
t�T

a+1
N 1fAt = a+ 1g. (See proof

of Corollary 1 for details.)
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The proposition uses the Functional Delta Method (Theorem 3.9.4 in van der Vaart and

Wellner 1996), and its proof is included in Appendix B. The proof builds on the fact that

both �̂T ; �̂T are simple sample averages while '̂T is a known non-linear functional involving

sample averages. This allows us to �rst apply the Functional Delta Method to show thatp
T ('̂T �') D';F ~V

(GV ), with the covariance kernel of GV and its covariance with N�;N�

completely characterized in terms of population distribution in the data-generating process

(DGP). The Jacobian of the right-hand side of (4) with respect to ('; �; �K) at the true DGP

is the 1-by-(2N + 1) vector [�; ';�1]. Thus another application of the multivariate delta
method delivers the result. The Gaussian process GV and N�;N� are Borel-measurable and

tight. Besides, by construction the Hadamard derivativeD';F ~V
is a linear mapping over S[r;�v).

Thus the limiting distribution �D';F ~V
(GV )+ 'N�� N� is a zero-mean univariate normal (by

Lemma 3.9.8. of van der Vaart and Wellner (1996)).

5.2 Bootstrap Inference Procedure

Our goal is to test the null H0 : � 0 = 0 against two directional alternatives HA : � 0 > 0

(risk-averse) and HL : � 0 < 0 (risk-loving). Set the level for our test to be �. In principle,

we can estimate the standard derivation of the limiting distribution in Proposition 2 using

the analog principle. Then the asymptotic plug-in approach can be applied to estimate the

critical value for testing H0 : � 0 = 0. In this section, we adopt an alternative approach using

bootstrap procedures to testH0. This avoids the explicitly estimating the standard deviation

of the limiting distribution of
p
T (�̂T � � 0). Building on results in Proposition 2, we show

the bootstrap test is consistent against �xed alternatives (of risk-aversion or risk-loving),

and attains the correct level asymptotically.

Bootstrap Procedure for Testing H0 : � 0 = 0

Step 1: Calculate �̂T using the original sample.

Step 2: Draw a bootstrap sample with size T from the original sample with replacement.

Estimate � 0 using this bootstrap sample and denote the estimate by �̂T;1.

Step 3: Repeat Step 2 for B times and denote the bootstrap estimates by f�̂T;bgb�B. Find
the 1�� quantile of the empirical distribution of the bootstrap estimates f

p
T j�̂T;b� �̂T jgb�B

(denoted by ĉ1��=2;T ).

Step 4: Do not reject H0 if �ĉ1��=2;T �
p
T �̂T � ĉ1��=2;T . Reject the null in favor of HA

(or HL) if
p
T �̂T > ĉ1��=2;T (or respectively if

p
T �̂T <�ĉ1��=2;T ).

Proposition 3 establishes consistency and asymptotic validity of the test. Let Pr(�̂T � :
j � 0) denote the distribution of �̂T given true value of � 0 in the data generating process.
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Proposition 3 Suppose the Conditions in Model A�hold, and data contains T independent
auctions, each involving N potential bidders and

lim
T!+1

Pr
�p
T �̂T � ĉ1��=2;T j� 0 = c

�
= 1 8c > 0; (7)

lim
T!+1

Pr
�p
T �̂T � �ĉ1��=2;T j� 0 = c

�
= 1 8c < 0; (8)

lim
T!+1

Pr
�p
T �̂T > ĉ1��=2;T or

p
T �̂T < �ĉ1��=2;T j� 0 = 0

�
= �. (9)

These results are due to the fact that the empirical distribution of
p
T (�̂T;b � �̂T ) calcu-

lated from bootstrap samples provides a consistent estimator for the �nite sample distribution

of
p
T (�̂T � � 0) under mild conditions. Such conditions are stated in Beran and Ducharme

(1991) and veri�ed for our context here in Appendix C. (Here consistency means the dis-

tribution of
p
T (�̂T � � 0) as estimated from bootstrap samples gets uniformly close to the

asymptotic distribution of
p
T (�̂T � � 0) as sample size increases.See Horowitz (2000) for a

formal de�nition of bootstrap consistency.) The results then follow from the fact that
p
T� 0

is zero under the null but diverges to positive (or negative) in�nity under the alternative.

Our bootstrap inference uses an asymptotically non-pivotal statistic
p
T (�̂T � � 0). One

could construct asymptotically pivotal statistics using the pre-pivoting approach. This would

help attain asymptotic re�nements in the approximation of test statistic distribution rela-

tive to �rst-order asymptotic approximation or bootstrap using asymptotically non-pivotal

statistics. This is computationally intensive due to bootstrap iterations and therefore we do

not pursue this approach here..

6 Monte Carlo Experiments

This section presents evidence for the performance of our test in simulated �nite samples.

We consider the following data-generating process (DGP): Each auction involves N potential

bidders who face the same entry cost K. Upon entry, bidders draw private values from a

uniform distribution with support [v; v] � [0; 10]. The reserve price is R = 3. The data

report prices paid by the winner and the number of entrants in each auction. When there is

no transaction (when all entrants�realized privates values are lower than R), the transaction

prices is set to an arbitrary level lower than R. The data only report noisy measures of the

entry costs ~K = K + � where � is drawn from a uniform distribution [�1
2
; 1
2
]. Bidders�von-

Neumann-Morgenstern utility is speci�ed as u(t) �
�
t+5
10

�

. That is, bidders are risk-neutral

(and respectively, risk-averse or risk-loving) if 
 = 1 (and 
 < 1 or 
 > 1).For a �xed level

of entry cost and 
, the entry probability decreases in the number of potential bidders. This

con�rms that the pattern as stated for the case with risk-neutral bidders in Li and Zheng

(2009) is carried over into the general case with non-risk-neutral bidders. Besides, once
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controlling for the entry costs and the number of potential bidders, the entry probability

increases as bidders become more risk-loving (
 increases).

[Insert Figure 1 (a), (b), (c), (d) here.]

To illustrate how performance of the test depends on bidders�risk preferences, we �rst

focus on a simple design with the entry cost �xed atK = 0:7 orK = 0:9 respectively. We also

set N = 4 in the data-generating process. We report test performance under various 
 in the

DGP in Figure 1. For each gridpoints 
 between 0:8 and 1:2 (with gridwidths being 0:2), we

simulate S = 300 data sets, each containing T = 5; 000 or T = 10; 000 independent auctions.

In every single auction, data contain ~K = 0:7 + � where � is uniform on [�1=2; 1=2]. For
each simulated sample, we calculate the statistic �̂T , and then perform the test by drawing

B = 300 bootstrap samples with replacement from that estimation sample. We experiment

with � = 5% and 10% respectively. The solid curves in Figure 1 show the percentage of these

S simulated samples where the test fails to reject the null of risk-neutrality (H0 : 
 = 1).

The dashed (and dotted) curve plots the proportion of these samples in which the test rejects

the null in favor of the alternative HA : 
 < 1 (and HL : 
 > 1) respectively. Each panel of

Figure 2 reports these proportions for a given pair of sample size T and entry costs K.

In all panels of Figure 1, the test attains approximately the targeted level for both � = 5%

and � = 10%, when the null is true in the DGP. All panels show that under the alternative

the power of the test increases fairly quickly to 1 as 
 moves away from the risk-neutral

value 1.6 A comparison of panels (a) and (c) with panels (b) and (d) suggests an increase

in sample size improves test performance both in terms of errors in rejection probabilities

under the null, and power under the alternative. For a given sample size T , the test performs

better when K = 0:9. This can be partly ascribed to the fact that the di¤erence between

entry probabilities under the null and the alternatives are slightly more pronounced when

K = 0:9 than when K = 0:7.

Next, we present performance of the test when the DGP contains random entry costs

that are observed with noises under the Conditions of Model A� (which are speci�ed at

the beginning of Section 5). We let K be drawn from a uniform multinomial distribution

with support [0:7; 0:8; 0:9], and ~K = K + � as before. We experiment with DGP with


 2 f1; 0:9; 1:1g and N 2 f4; 5g. For each DGP, we perform our test in S = 300 simulated

data sets, each containing T = 5; 000 or 10; 000 independent auctions. As before, for each

simulated sample, we conduct our test by drawing B = 300 bootstrap samples. The test

results are summarized in Table 1.

Table 1(a): Test Performance under Random Costs (N = 4)

6In the presence of directional alternatives (i.e. HA and HL), we de�ne the power of the test as the

probability of rejecting the null in favor of the true alternative that underlies the DGP.
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� = 5% � = 10% � = 15%

T = 5; 000


 = 1 [5.00%, 93.67%, 1.33%] [4.00%, 93.00%, 3.00%] [5.33%, 89.67%, 5.00%]


 = 0:9 [0.00%, 36.00%, 64.00%] [0.00%, 25.00%, 75.00%] [0.00%, 20.33%, 79.67%]


 = 1:1 [77.00%, 23.00%, 0.00%] [86.00%, 14.00%, 0.00%] [90.67%, 9.33%, 0.00%]

T = 10; 000


 = 1 [3.33%, 95.33%, 1.33%] [8.67%, 87.67%, 3.67%] [11.67%, 84.00%, 4.33%]


 = 0:9 [0.00%, 9.67%, 90.33%] [0.00%, 3.00%, 97.00%] [0.00%, 2.33%, 97.67%]


 = 1:1 [95.33%, 4.67%, 0.00%] [97.33%, 2.67%, 0.00%] [99.00%, 1.00%, 0.00%]

The rows in Table 1 represent di¤erent DGPs and sample sizes, each corresponding to a

pair (N; 
). The column heads are targeted levels. We test the null of risk-neutrality (H0)

against two alternatives risk-aversion (HA) and risk-loving (HL). For each cell in Table 1,

we report (from the left to the right) the proportions of S simulated samples where the test

rejects H0 in favor of HL, where the test does not reject H0, and where H0 is rejected in

favor of HA respectively.

Table 1(a) shows the result for N = 4 and T = 5; 000 or 10; 000. In such cases, our test

attains a rejection probability close to the targeted level � when the null of risk-neutrality is

true (
 = 1). When the bidders are not risk-neutral, the test yields reasonably high chances

for rejecting the null in favor of the correct alternative. When bidders are not risk-neutral,

the percentage of samples in which the null is rejected in favor of an incorrect alternative

(also known as the �Type-three� error) is zero across all speci�cations and sample sizes.

Table 1(a) also shows the performance of the test improves as the sample size T increases.

For a �xed speci�cation, the probability for rejecting the null when bidders are risk-neutral

is closer to the targeted level when T = 10; 000. There is also a quite substantial increase

in the power of the test (i.e. probability for rejecting H0 in favor of the correct alternative)

under both alternatives as T increases.

Table 1(b): Test performance under Random Costs (N = 5)
� = 5% � = 10% � = 15%

T = 5; 000


 = 1 [3.67%, 94.67%, 1.67%] [6.00%, 91.00%, 3.00%] [8.00%, 86.33%, 5.67%]


 = 0:9 [0.00%, 45.67%, 54.33%] [0.00%, 32.33%, 67.67%] [0.00%, 27.00%, 73.00%]


 = 1:1 [73.00%, 27.00%, 0.00%] [80.00%, 20.00%, 0.00%] [88.00%, 12.00%, 0.00%]

T = 10; 000


 = 1 [3.67%, 95.67%, 0.67%] [7.33%, 90.33%, 2.33%] [10.33%, 84.33%, 5.33%]


 = 0:9 [0.00%, 12.67%, 87.33%] [0.00%, 6.33%, 93.67%] [0.00%, 3.67%, 96.33%]


 = 1:1 [93.67%, 6.33%, 0.00%] [98.33%, 1.67%, 0.00%] [98.67%, 1.33%, 0.00%]
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Table 1(b) reports similar results for N = 5. A comparison between Table 1(a) and 1(b)

shows the impact of a larger number of potential bidders on the relative performance of the

test is ambiguous, depending on the true DGP. With 
 = 1 in DGP and for a �xed sample

size T , the test yields smaller errors in the rejection probability when N = 5 in most cases.

(The only exception takes place when T = 10; 000 and � = 5%, in which case errors in

rejection probabilities are both small when N = 4 and N = 5.) By construction, increasing

the number of potential bidders a¤ects the test performance through two channels that have

o¤setting impacts. First, with T �xed, the number of auctions involving a given number

of entrants m � N may decrease as N gets larger. Hence for each m, the empirical price

distribution F̂W;m becomes a worse estimator for FW;m in the population as its variance is

increased. On the other hand, the number of empirical distributions fF̂W;mgm�N available
for estimating FV increase as N increases, which might help increase performance of F̂V;T as

an estimator for FV . The improvement of test performance under a larger N when 
 = 1

appears to be evidence that the second impact has dominated the �rst when the DGP

involves risk-neutral bidders only. On the other hand, the impact of a large N on the power

of the test when 
 6= 1 is ambiguous. For example, consider the case with larger sample

size T = 10; 000. When bidders are risk-averse with 
 = 0:9, the power of the test is higher

for any given � when N = 4. Meanwhile, the power appears to be higher when N = 5 if


 = 1:1 and � = 10%. We conjecture that such patterns are due to combined impacts of

the shape of u(:) and the fact that the entry probability decreases as N increases (which in

turn implies the distribution of payo¤s (Vi � Pi)+ from entry is stochastically decreasing).

7 Extension: Selective Entry with Informative Signals

So far we have considered models where bidders�information in the entry stage is uncor-

related with their private values to be drawn in the bidding stage. In this section, we relax

this assumption and consider models where bidders�entry decisions are based on informative

signals correlated with private values in the bidding stage. Nonparametric identi�cation of

bidders�risk attitudes can be attained in this case, provided data is rich enough to contain

auctions with continuous variations in observable entry costs.

The model is speci�ed as follows. In the entry stage, each bidder i receives a preliminary

signal Si and decides whether to become active by paying the entry cost k (which is the same

for and known to all bidders). The costs are incurred only for entrants. Upon entry, each

bidder sees his true value Vi, and bids in an ascending auction with a reserve price r. The

joint distribution F (S1; :; SN ; V1; :; VN) and r are common knowledge among all potential

bidders in the entry stage. Each entrant may or may not be aware of the number of active

competitors A.

SAF (i) Preliminary signals and private values (Si; Vi) are i.i.d. across bidders (F (S1; :; SN ;
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V1; :; VN) = �Ni=1F (Si; Vi)); (ii) (Si; Vi) is a¢ liated for each i; (iii) Marginal distributions

FSi and FVi are continuous and increasing over bounded supports [s; s] and [v; v] for all i.

The SAF (which stands for �symmetry and a¢ liation�) condition requires that bidders�

private information (Si; Vi) are independently and identically distributed across bidders. It

also requires that each bidder�s preliminary signal Si is a¢ liated with his/her private values

to be drawn in the bidding stage. Suppose r > v. Let �!i(si; k; s�i) denote ex ante expected

utility for bidder i with signal si if potential competitors follow monotone, pure-strategy BNE

characterized by cuto¤s s�i � (sj)j 6=i. That is, !i(si; k; s�i) � E[u((Vi � Pi)+ � k)jsi; A�i =
fj : Sj � sjg].

Lemma 3 Under SAF, !i(si; k; s�i) is increasing in si and non-decreasing in s�i for any
�xed k.

Lemma 3 accommodates cases where Sj takes either discrete or continuous values. The

proof of Lemma 3 exploits the fact that a¢ liation exists between Si and Vi for each bidder

i, while each bidder�s private information (Si; Vi) are independent across all i.

Let �!(s; k) be a shorthand for �!i(s; k; (s; :; s)) = E[u((Vi � Pi)+ � k)jSi = s;A�i = fj 6=
i : Sj � sg]. Under SAF, �!(s; k) is the same for all i, and increasing in s due to Lemma
3. Using Lemma 3, we can show symmetric pure-strategy BNE in the entry stage must be

characterized as in Lemma 4 below. The proof follows from similar arguments for Lemma 1.

Lemma 4 Under SAF, there exists a unique pure-strategy BNE in the entry stage of auc-
tions with entry costs k. In such an equilibrium, each bidder i decides to enter if and only

if si � s�k, where �!(s
�
k; k) = u(0) if �!(s; k) � u(0) � �!(s; k) and s�k = s (or, respectively,

s�k = s) if �!(s; k) > u(0) (or �!(s; k) < u(0)).

Let ��(s; k) � E[(Vi � Pi)+ � kjSi = s; A�i = fj 6= i : Sj � sg], which is identical for all
i under SAF. Similar to Section 4, Lemma 5 below suggests bidders�risk attitudes can be

identi�ed as long as ��(s�k; k) can be constructed from the observable distributions of entry

decisions and submitted bids for any k that induces non-degenerate entry probabilities in

PSBNE.Its proof is similar to that of Lemma 2.

Lemma 5 Suppose SAF holds and �x any k s.t. s < s�k < s. Then ��(s
�
k; k) = 0 if bidders are

risk-neutral, and ��(s�k; k) > 0 (or < 0) if bidders are risk-averse (or respectively, risk-loving).

That s < s�k < s is obviously testable using the observed individual entry probabilities.

The proof follows from the same argument of Lemma 2. The next proposition shows ��(s�k; k)

can be recovered from observed entry probabilities and the distribution of transaction prices.

By de�nition,

��(s�k; k) � E
�
(Vi � Pi)+ � kjSi = s�k; A�i = fj 6= i : Sj � s�kg

�
(10)
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Given SAF, it su¢ ces to show the distributions of Vi given Si = s�k and the distribution of

Pi given A�i = fj 6= i : Sj � s�kg can be recovered respectively from data.

Proposition 4 Suppose SAF holds and (Vi; Si)i2N is independent from entry costs. Suppose
for k, there exists " > 0 such that s < s�k0 < s for all k

0 2 (k � "; k + "), and entry costs,
entry decisions and transaction prices are observed in data. Then ��(s�k; k) is identi�ed.

Proof. Because (Vi; Si) are independent across bidders, the joint distribution of (Pi; Vi)

conditional on A�i = fj 6= i : Sj � s�kg and Si = s�k can be factored as:

FPijA�i=fj 6=i:Sj�s�kg � FVijSi=s�k . (11)

Because (Vi; Si) are identically distributed across i, for any t � r,

Pr(Pi � tjA�i = fj 6= i : Sj � s�kg)
=

PN�1
m=0 [FV (tjSj � s�k)]

m �N�1
m

�
FS(s

�
k)
N�m�1[1� FS(s�k)]m (12)

where FS, FV jS�s�k are the marginal distribution of Si and the conditional distribution of

Vi given Si, and N is the number of potential bidders including i. (The subscript i is

suppressed to simplify notations.) By de�nition, the probability in (12) is 0 for all t < r.

Note FS(s�k) = Pr(i entersjk) is identi�ed. The next two lemmas show both terms in (11)
are identi�ed under the given conditions. Let a denote the realized number of entrants in

an auction.

Lemma A2 Under SAF, for any k such that s < s�k < s, FV (tjSi � s�k) is identi�ed for

t � r from the distribution of W conditional on any k and any number of entrants a (with

a � 2).
Lemma A3 Under SAF, FV (tjSi = s�k) is identi�ed for any t � r and any k s.t. s < s�k < s,
provided Pr(W � tjk; a) and Pr(i entersjk) are observed in an open neighborhood around k
for some a � 2.
Proofs are included in Appendix A. Lemma A2 uses the one-to-one mapping between

a second-order statistic and the underlying parent distribution. Lemma A3 builds on the
fact that under the independence between private information and entry costs, @

@K
Pr(Vi � t

and i entersjK)jK=k = �FV (tjS = s�k)

�
dFS(s�K)
dK

jK=k
�
. Thus the product in (11), and

consequently ��(s�k), is identi�ed. �
We leave the construction of a test statistic and derivation of its asymptotic properties

for such a model with selective entry to future research.

8 Concluding Remarks

This paper proposes an approach for robust inference of bidders� risk attitudes in as-

cending auctions where potential bidders make endogenous entry decisions based on their
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information of entry costs and private value distributions. We show that risk premium can

be nonparametrically recovered from the distribution of transaction prices and entry deci-

sions. A test is proposed and shown to have good �nite sample performance under various

data-generating processes. We have also extend our results to establish identi�cation of bid-

ders�risk preference in a more general auction model where entry is selective. A direction for

future research is to derive tests that exploit exogenous variations in the number of potential

bidders and thus do not require knowledge about entry costs (see discussions in Section 4.3).
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APPENDIX

A Proofs of Identi�cation Results

The proof of Lemma 1 builds on Lemma A1 below.

Lemma A1 (a) In Model A, !A(k;��i) is continuous and non-increasing in ��i for all k.
(b) In Model B, !B(ki;k�i) is continuous, decreasing in ki and non-increasing in k�i.

Proof of Lemma A1. Proof of part (a). Recall that by the Law of Iterated Expectations,

!A(k;��i) = u(�k)FV jk(r) +
Z v

r

h(v; k;��i)dFV jk(v) (A1)

where for v > r,

h(v; k;��i) � u(v � r � k)FPi(rjk;��i) +
Z v

r

u(v � p� k)dFPi(pjk;��i)

+ u(�k)[1� FPi(vjk;��i)]

and we have used the independence between private values Vi conditional on entry costs.

Note for any t 2 [r, �v], the event "Pi � t" can be represented as

\j2Nnfigf"j stays out" or "j enters \ Vj � t"g.

Due to the independence between entry decisions and between private values, FPi(tjk;��i) =Q
j 6=i[1� �j + �jFV jk(t)]. The marginal e¤ect of �j on this conditional probability is strictly

negative for all j 6= i at �j 2 [0; 1] and t 2 [r; v]. (Recall FV jk(r) > 0 when r is binding.)

This implies h(v; k;��i) is decreasing in ��i for any �xed k. Hence !A(k;��i) is decreasing

in ��i. The continuity follows from Dominated Convergence Theorem.

Proof of part (b). Due to independence between idiosyncratic costs and private values,

as well as the assumption of symmetric IPV,

!B(ki;k�i) = u(�ki)FV (r) +
Z v

r

~h(v; ki;k�i)dFV (v)

where ~h(v; ki;k�i) is de�ned in the same way as h(v; k;��i) in (A1), except with k and

FPi(:jk;��i) from Model A replaced by ki and FPi(:jk�i) in Model B. By construction, ~h is
decreasing in ki for all (v;k�i). Besides,

FPi(tjk�i) = Pr(�j does not enter�or �j enters and Vj � t" 8j 6= ijk�i)
= �j 6=i[1� FK(kj) + FK(kj)FV (t)]
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which is decreasing in k�i at t � r. This implies ~h is non-increasing in k�i. Consequently,
!B(ki;k�i) is decreasing in ki and non-increasing in k�i. �

Proof of Lemma 1. Given part (a) of Lemma A1, the proof of equilibrium entry strategies
in Model A is similar to the risk-neutral case in Levin and Smith (1994) and omitted. To

prove equilibrium entry strategies in Model B, suppose some bidder i deviates and enters

when ki > k�. Then his expected utility, conditioning on all other potential competitors

following entry strategies characterized by the cuto¤s k�, will be strictly lower than pay-

o¤ from staying out (because !B(ki; (k�; :; k�)) < !B(k�; (k�; :; k�)) = u(0)). On the other

hand, if i stays out while his signal is ki < k�, he is not maximizing his expected utility

conditional on others�strategies, because entry could yield higher expected utility (i.e. u(0)

< !B(ki; (k
�; :; k�))). The uniqueness of the equilibrium follows from the monotonicity of

!B(k; (k; :; k)) in k. �

Proof of Proposition 1. Proof of part (b). By de�nition,

�B(k�) � E[(Vi � Pi)+jk�]� k�.

With data rationalized by symmetric BNE, the entry probability is identical across all po-

tential bidders and is equal to FK(k�). This entry probability is identi�ed as the proportion

of potential bidders who enter. With FK known, the cuto¤ k� is identi�ed by inverting FK
at this entry probability. By replacing the event ��j = �

�
k 8j 6= i" in our arguments for part

(a) with �A�i = fj 6= i : Kj � k�g", we can use the Law of Total Probability to write the
�rst term in the de�nition of �B(k�) as:PN�1

a=0 E[(Vi � Pi)+j A�i = a] Pr(A�i = aj k�).

By independence between K and (Vi)i2N , we have

E[(Vi � Pi)+j A�i = a] =
Z �v

r

F aV (v)� F a+1V (v)dv

for a � 1 as in part (a). Besides, E[(Vi�Pi)+jA�i = 0] = E[(Vi�r)+] =
R �v
r
1�FV (v)dv. The

distribution of A�i = #fj 6= i : Kj � k�g, conditional on all potential bidders enter below
the cuto¤ k�, can be recovered as a binomial distribution derived from N � 1 independent
trials, each with success probability FK(k�). Similar to part (a), FV (t) is (over-)identi�ed

for t � r from Pr(W � tjA = m) for all m � 2. �

Proof of Lemma 3. Let Pi � maxj2AnfigfmaxfVj; rgg. Under SAF, F (pijvi; si; s�i) =
F (pijs�i) and F (vijsi; s�i) = F (vijsi). Thus by the Law of Iterated Expectations,

�!i(si; k; s�i) = u(�k) Pr(Vi � rjsi) +
Z �v

r

�h(v; k; s�i)dFVijSi(vjsi)
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where �h(v; k; s�i) � u(v � r � k)FPijS�i(rjs�i)+
R v
r
u(v � p � k)dFPijS�i(pjs�i)+ u(�k)[1 �

FPijS�i(vjs�i)]. By the Leibniz Rule,

@
@v
�h(v; k; s�i) = u

0(v � r � k)FPijS�i(rjs�i) +
Z v

r

u0(v � p� k)dFPijS�i(pjs�i) > 0 (A2)

Thus �h is increasing in v for �xed s�i and k. By the a¢ liation of Vi and Si for all i, the

distribution F (:jsi) is stochastically increasing in si. Hence �!i(si; k; s�i) is increasing in si
given k and s�i. To show �!i(si; k; s�i) is non-decreasing in s�i given si and k, it su¢ ces to

show FPijS�i(pjs�i) is stochastically non-decreasing in s�i for all p � r, which would imply
�h(v; k; s�i) is non-decreasing in s�i for any v 2 [v; �v]. Note for any t 2 [r; �v], the event

�Pi � t�can be written as

\j 6=if"Sj < sj" [ "Sj � sj \ Vj � t"g

Under SAF, Pr(Pi � tjs�i) =
Q
j 6=i[FSj(sj) + Pr(Vj � t; Sj � sj)]. Also note for all t and

any s0j > sj,

FSj(sj) + Pr(Vj � t; Sj � sj) � FSj(s0j) + Pr(Vj � t; Sj � s0j).

Hence FPijS�i(tjs�i) is non-decreasing in s�i for all t 2 [r; �v]. �

Lemma A2 Under SAF, for any k such that s < s�k < s, FV (tjSi � s�k) is identi�ed for

t � r from the distribution of W conditional on any k and any number of entrants a (with

a � 2).

Proof of Lemma A2. By de�nition, for any t � r, Pr(W � tjk;A = a) is identical to the
distribution of the second-highest order statistic among a independent draws from the same

conditional distribution FV (:jSi � s�k). That is, for any t � r

Pr(W � tjk; a) =
Pa

m=a�1
�
n
m

�
FV (tjSi � s�k)m[1� FV (tjSi � s�k)]a�m

Thus for all a � 2, there exists a one-to-one mapping �a so that FV (tjSj � s�k) = �a(Pr(W �
tjk; a)). (Note the mapping �a does not depend on k as (Vi; Si) is assumed to be independent
from entry costs.) That Pr(i entersjk) > 0 for k implies Pr(A � 2jk) > 0. Thus FV (tjSi � s�k)
is over-identi�ed for t � r, because the identi�cation arguments above can be applied for

any a such that Pr(A = ajk) > 0. �

Lemma A3 Under SAF, FV (tjSi = s�k) is identi�ed for any t � r and any k s.t. s < s�k < s,
provided Pr(W � tjk; a) and Pr(i entersjk) are observed in an open neighborhood around k
for some a � 2.
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Proof of Lemma A3. Given Lemma A2, FV (tjSi � s�k) is identi�ed for any such k using
distributions of entry decisions and transaction prices. Hence

Pr(Vi � t; Si � s�k) = FV jS(tjSi � s�k) Pr(i entersjk)
= �a(Pr(W � tjk; a)) Pr(i entersjk) (A3)

is also identi�ed using any a such that Pr(A = ajk) > 0. We consider this joint distribution
as known for the rest of the proof. For any t � r, di¤erentiating this distribution with

respect to entry costs at k gives:

@
@K
Pr(Vi � t; Si � s�K)jK=k

= � @
@K
Pr(Vi � t; Si � s�K)jK=k = �

�
@
@S
Pr(Vi � t; Si � S)jS=s�k

� �ds�K
dK
jK=k

�
= �FV (tjS = s�k)fS(s�k)

�
ds�K
dK
jK=k

�
= �FV (tjSi = s�k)

�
dFS(s

�
K)

dK
jK=k

�
,

where we have used the independence between (Vi; Si) and entry costs. Hence

FV (tjSi = s�k) = �
@
@K
Pr(Vi � t; i entersjK)jK=k

d
dK
Pr(i does not enter jK)jK=k

because FS(s�k) = Pr(i does not enter jk) in the pure-strategy BNE and d
dK
FS(s

�
K) =

d
dK
Pr(i

does not enter jK). The denominator is non-zero under the assumption of the proposition.
Hence FV (tjSi = s�k) is identi�ed for t � r as long as Pr(W � tjk; a) and Pr(i entersjk) are
observed in an open neighborhood around k for some a � 2. �

B Limiting Distribution of
p
T (�̂T � � 0)

Consider Model A�where (i) K vary across auctions independently from (Vi)i2N over a

support [k; k] such that �k 2 (0; 1) for all k 2 [k; k]; and (ii) researchers observe ~K = K + �,

while � ? (K; (Vi)i2N) with E(�) = 0.
De�ne three classes of functions over the joint support of (W;A; ~A): F0 � f1fW � sg for

r � s < �vg; F1 � f1fA = mg for 2 � m � Ng; and F2 � f1f ~A = ag for 0 � a � N � 1g.
It follows from Donsker (1952) that F0, F1 and F2 are all Donsker Classes. By Corollary
9.3.2 in Kosorok (2008), a class formed by taking the pair-wise in�mum F3 � ff0 ^ f1 : f0 2
F0; f1 2 F1g � f1fW � s and A = ng for r � s < �v and 2 � n � Ng is also Donsker. It
follows from Theorem 2.1 in Kosorok (2008) that the Donsker property is preserved under

�nite unions. Thus F = F1[ F2[ F3 is Donsker.
Throughout Appendix B, we use P0 to denote the true probability measure for (W;A; ~A)

in the data-generating process. Let PT denote the corresponding empirical measure. For
any signed measure Q, let Qf �

R
f dQ (e.g. P01fW � sg = E[1fW � sg] = Pr(W � s)).

The empirical process GT �
p
T (PT � P0) (indexed by the Donsker class of functions F)

26



thus converges weakly to a zero-mean Gaussian Process G, whose covariance kernel is given
by P0hh0 � P0hP0h0 for any pair h 6= h0 in F . (We include speci�c forms of the covariance
kernel of G in the web appendix.)
Lemma B4 below characterizes the weak convergence of estimators for the distribution

of transaction prices W . Let FW;m denote the distribution of W given A = m. To simplify

notations, let F ~W;m denote the section of FW;m over [r; �v) and F̂ ~W;m;T denote corresponding

estimators for F ~W;m de�ned in Section 5. Let �̂T (m) � PT1fA = mg, �̂T � (�̂T (m))
N
m=2

and � denote its population counterparts (i.e. �(m) � Pr(A = m)). Note P01fW � s and
A = mg=�(m) = Pr(W � sjA = m) � FW;m(s). Let �̂T � (�̂T (a))

N�1
a=0 and � denote its

population counterparts (i.e. �(a) � Pr( ~A = a)).
Let fF ~W;mgNm=2 denote N�1 mutually independent, zero-mean Gaussian Processes, each

indexed by [r; �v), such that the covariance kernel (F ~W;m(s);F ~W;m(v)) is given by:

~�s;v;m �
"
FW;m(s) (1� FW;m(s)) FW;m(s) (1� FW;m(v))
FW;m(s) (1� FW;m(v)) FW;m(v) (1� FW;m(v))

#

for any s < v on [r; �v) and m � 2. Let N� be a multivariate normal random vector in RN

with variance �(a)[1� �(a)] on the diagonal, and covariance ��(a)�(a0) o¤-diagonal.

Lemma B4 Suppose the Conditions in Model A�(as de�ned in Section 5) hold. Then

p
T

0BBBBBB@
F̂ ~W;2;T � F ~W;2

...

F̂ ~W;N;T � F ~W;N

�̂T � �
�̂T � �K

1CCCCCCA 
0BBBBBBBB@

1p
�(2)
F ~W;2

...
1p
�(N)

F ~W;N

N�

N�

1CCCCCCCCA
(B4)

where fF ~W;mgNm=2 is de�ned above and (N�;N�) is a multivariate normal random vector in

RN+1. The covariance between the processes fF ~W;mgNm=2 and (N�;N�) is given by

Cov
�
F ~W;m(s);F ~W;m0(s0)

�
= 0, Cov(F ~W;m(s);N�(a)) = 0,

V ar(N�(a)) = �(a)(1� �(a)), Cov(N�(a);N�(a
0)) = ��(a)�(a0),

Cov(F ~W;m(s);N�) =
1p
�(m)

�
E[1fW � s; A = mgK]� FW jm(s)E[1fA = mgK]

�
,

Cov(N�(a);N�) = E[1f ~A = agK]� �(a)�K and V ar(N�) = V ar(K) + V ar(�),

for all s 6= s0 with s; s0 � r, for all a 6= a0 in f0; :; N � 1g and for all m 6= m0 in f2; :; Ng.

Proof of Lemma B4. For a set S, let B(S) denote the space of bounded, real-valued
functions with domain S, equipped with the sup-norm. Let � be a mapping from B([r; �v))
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(0; 1)N�1
 (0; 1)N to B([r; �v)
 f2; :; N�1g)
 (0; 1)N such that the resulted function �(F; �; �)
evaluated at any s 2 [r; �v); m 2 f2; :; N � 1g and a 2 f0; :; N � 1g is:

�(F; �; �)(s;m; a) �
�
F (s;m)
�(m)

, �(a)
�
.

With a slight abuse of notation, we also write �(F; �; �)(s;m; a) as �(F (s;m); �(m); �(a))

below. By construction, F̂ ~W;m;T (s) is the �rst coordinate in �(PT1fW � s; A = mg;PT1fA =
mg;PT1f ~A = ag) and F ~W;m(s) is the �rst coordinate in �(P01fW � s; A = mg;P01fA =
mg;P01f ~A = ag) for any s � r, m � 2 and 0 � a � N�1. Because F is a Donsker Class, the
empirical process GT �

p
T (PT�P0) converges weakly to a tight limiting process G in B(F),

i.e. the space of uniformly bounded functions de�ned over F . (See Theorem 2.1 and page

16 in Kosorok (2008).) Besides, under the Conditions in Model A�, P0f > 0 for all f 2 F1
(or equivalently, �(a) > 0 for all 0 � a � N � 1). Therefore � is Hadamard-di¤erentiable
at �0 � (P0f3; P0f1; P0f2)f32F3;f12F1;f22F2 (or equivalently, at (Pr(W � :; A = :); �(:); �(:)))
tangentially to the domain of �. The Hadamard derivative is

�0�0(h1; h2; h3)(s;m; a) =
�
h1(s;m)
�(m)

� h2(m)P01fW�s;A=mg
�(m)2

; h3(a)
�

for h1 2 B([r; �v)), h2 2 (0; 1)N�1, h3 2 (0; 1)N . The Functional Delta Method (Theorem 2.8

in Kosorok (2008)) applies to characterize the weak convergence in (B4). The covariance

function is thus derived by applying a �nite-dimensional, multivariate delta method to the

limiting process evaluated at a generic �nite set of elements from the index set [r; �v) 

f2; :; Ng 
 f0; :; N � 1g. The mutual independence between the N � 1 zero-mean Gaussian
processes fF ~W;mgNm=2 and their joint independence from N� both follow from an application

of the Delta Method to these random vectors. Most importantly, independence between

fF ~W;mgNm=2 and N� results from the fact that ~A is independent from W conditional on A

(since K is independent from (Vi)i2N). Finally, the covariance between N� and the Gaussian

Processes fF ~W;mgNm=2 and N� follows from an application of the Multivariate Delta Method

to �̂T and N�(a) and F ~W;m(s) for any arbitrarily s;m; a. More details in the derivation are

included in the web appendix. �

Next, we characterize the joint limiting behavior of estimators for FV and �. To simplify

notations, let F ~V denote the section of FV over the support [r; �v), and let F̂ ~V ;m;T and F̂ ~V ;T
denote the section of F̂V;m;T and F̂V;T over [r; �v). For each m, let �m(t) � ��1m (t) for t 2 [0; 1).
For any s; v 2 [r; �v) and m � 2, let D0;m denote a 2-by-2 diagonal matrix with diagonal

entries being �0m (FW;m(s)) and �
0
m (FW;m(v)). Let �s;v be a (2N � 2)-by-(2N � 2) block-

diagonal matrix such that the (m� 1)-th diagonal block is the 2-by-2 matrix D0;m
~�s;v;mD0

0;m

�(m)
.

De�ne:

D1
2-by-(2N�2)

�
"

1
N�1 0 1

N�1 0 � � � 1
N�1 0

0 1
N�1 0 1

N�1 � � � 0 1
N�1

#
.
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For any s � r, let �s denote the variance of the limiting distribution of the random vector

GT (1fW � s; A = 2g; 1fA = 2g; :::; 1fW � s; A = Ng; 1fA = Ng; ~K) in R2N�1. The
speci�c form of �s is provided in the web appendix along details in the proof of Lemma B4.

De�ne a 2-by-(2N � 1) matrix D2 as:

"
1

N�1 � � � 1
N�1 0

0 � � � 0 1

#
D�

266664
1
�(2)

�ps2
�(2)

� � � 0 0 0
. . .

0 0 � � � 1
�(N)

�psN
�(N)

0

0 0 � � � 0 0 1

377775
N -by-(2N�1)

whereD� is aN -by-N diagonal matrix with diagonal matrix being [�
0
2(FW;2(s)); :; �

0
N(FW;N(s)); 1]

and psm � P01fW � s; A = mg for s � r

Lemma B5 Suppose F ~V is continuously distributed with positive densities over [r; �v). Under
conditions in Model A�, p

T
�
F̂ ~V ;T � F ~V

�
 GV , (B5)

where GV is a zero-mean Gaussian Process indexed by [r; �v) and is independent from N�. The

covariance kernel for GV is (GV (s),GV (v)) = D1�s;vD
0
1 for any s; v 2 [r; �v); and (GV (s),N�)

is bivariate normal with covariance D2�sD
0
2 for any s 2 [r; �v).

Proof of Lemma B5. Let DS denote the space of bounded functions de�ned over S
(DS is equipped with the sup-norm). By de�nition, F̂ ~V ;m(s) = �m(F̂ ~W;m(s)) and F ~V (s) =

�m(F ~W;m(s)) for all r � s � �v. Thus �m can also be interpreted as a mapping from DS to
DS for each m, and is Hadamard di¤erentiable at F ~W;m tangentially to DS . The Hadamard
derivative of �m at F ~W;m is given by �

0
m(F ~W;m(s))h(s). By the Functional Delta Method,

p
T

0B@ F̂ ~V ;2 � F ~V
...

F̂ ~V ;N � F ~V

1CA 
0B@ F ~V ;2

...

F ~V ;N

1CA
where fF ~V ;mgNm=2 are N � 1 mutually independent zero-mean Gaussian Processes, each in-
dexed by v 2 [r; �v). These N � 1 Gaussian Processes are jointly independent from N�.

Furthermore, for each m 2 f2; :; N � 1g, the covariance function for F ~V ;m(s);F ~V ;m(v) for all
v > s � r is

�s;v;m � D0;m

h
~�s;v;m=�(m)

i
D0
0;m.

Since F̂ ~V ;T � 1
N�1

PN
m=2 F̂ ~V ;m;T , another application of the Delta Method shows

p
T
�
F̂ ~V ;T � F ~V

�
converges weakly to GV , a zero-mean Gaussian Process indexed by v 2 [r; �v). The indepen-
dence of GV and N� follows from independence of fF ~V ;mgNm=2 and N�. Again under condi-

tions in Lemma B4, the Delta Method can be applied to show that the covariance kernel

29



(GV (s);GV (v)) is D1�s;vD
0
1 for any r � s < v < �v, where �s;v is a block diagonal matrix

de�ned above (it is a block diagonal matrix because fF ~V ;mgNm=2 are mutually independent
Gaussian processes). As for the covariance between GV (s) and N� also follows from the

Delta Method. (See the web appendix for more details in derivations.) �

Recall that S[r;�v) denotes the set of functions de�ned on the support [r; �v) that are strictly
positive, bounded, integrable, right-continuous and have limits from the left. Equipped with

a sup-norm, S[r;�v) is normed linear spaces with a non-degenerate interior. With a slight abuse
of notation, de�ne ' : S[r;�v) 7! RN+ as

'(F ) � ('(a;F ))N�1a=0 , where '(a;F ) �
Z �v

r

F (s)a[1� F (s)]ds

'̂T (a) �
Z ~v

r

F̂V;T (s)
a � F̂V;T (s)a+1ds.

By de�nition, '̂T � ('̂T (a))N�1a=0 = '(F̂ ~V ;T ) and ' � ('(a;F ~V ))N�1a=0 = '(F ~V ). The mapping

' is Hadamard di¤erentiable at F+V tangentially to S[r;�v). The Hadamard derivative D';F ~V
:

S[r;�v) ! RN+ is

D';F ~V
(h)(a) �

Z �v

r

a[F ~V (s)]
a�1h(s)� (a+ 1)[F ~V (s)]ah(s)ds

for any h 2 S[r;�v) and a � 1; and D';F ~V
(h)(0) � �

R �v
r
h(s)ds. To see this, note for a � 1 and

any tn ! 0 and hn ! h 2 S[r;�v) such that F ~V + tnhn 2 S[r;�v) for all n,

'(a;F ~V + tnhn)� '(a;F ~V )
tn

�
Z �v

r

�
[F ~V (s)+tnhn(s)]

a�[F ~V (s)]
a

tnhn(s)
� [F ~V (s)+tnhn(s)]

a+1�[F ~V (s)]
a+1

tnhn(s)

�
hn(s)ds

=

Z �v

r

�
aF ~V (s)

a�1 � (a+ 1)F ~V (s)a
�
h(s)ds,

where we have used that S[r;�v) is strictly positive over [r; �v). The case with a = 0 follows

from the same arguments. De�ne the Jacobian of � with respect to ('; �; �K) evaluated at

their true values in the DGP as:

[�(0); :; �(N � 1); '(0); :; '(N � 1);�1] � [�; ';�1].

Since ' is Hadamard di¤erentiable at F+V tangentially to S[r;�v), it follows from Lemma B5

and the Functional Delta Method that

p
T

0B@ '̂T � '
�̂T � �
�̂T � �K

1CA 
0B@ D';F ~V

(GV )
N�

N�

1CA (B6)
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where GV is a zero-mean Gaussian Process de�ned in Lemma B5 and is independent from
N�. The covariance between N� and N� is given in Lemma B4, while the covariance between

GV and N� is given in Lemma B5. An application of the Multivariate Delta Method shows

that under the conditions in Lemma B5,
p
T (�̂T � � 0)  N� � �D';F ~V

(GV ) + 'N� � N�.

To see that the limiting distribution N� is univariate normal with zero-mean, note that the

Gaussian process GV is Borel-measurable and tight (see Example 1.7.3. in van der Vaart and
Weller (1996)) and that by construction the Hadamard derivative D';F ~V

is a linear mapping

de�ned over S[r;�v). It follows from Lemma 3.9.8. of van der Vaart and Wellner (1996) that

N� is univariate normal with zero mean.

C Proof of Consistency and Asymptotic Validity

Let c1��=2 denote the actual 1��=2 quantile of the limiting distribution of
p
T (�̂T � � 0)

in the data generating process. Our �rst step is to establish ĉ1��=2;T
p! c1��=2 as T ! +1

by showing the consistency of bootstrap. We proceed by verifying the consistency conditions

speci�ed in Beran and Ducharme (1991).

First, as stated in Proposition 2, the limiting distribution of
p
T (�̂T �� 0) is characterized

by the joint distribution ofW (transaction prices), A (the number of entrants) and ~K (noisy

measures of entry costs). Let P0 denote the true distribution in DGP. Across auctions in

data, (Wt; At; ~Kt) are i.i.d. draws from P0, and by the Uniform Law of Large Numbers, the

empirical distribution of (Wt; At; ~Kt) converges in probability to its population counterpart

uniformly over the joint support of (W;A; ~K). Second, Proposition 2 suggests that given any

permissible joint distribution of (W;A; ~K) underlying the DGP, the limiting distribution ofp
T (�̂T � � 0) is continuous over R.
Let GT (:;P ) and G1(:;P ) denote respectively the �nite sample distribution and the

limiting distribution of
p
T (�̂T � � 0) when the actual joint distribution of (W;A; ~K) in DGP

is given by a generic permissible P . The third and last condition in Beran and Ducharme

(1991) to be checked is that for any sequence of permissible distributions PT that converge

to P0 in sup-norm as T ! +1, the �nite sample distribution of
p
T (�̂T � � 0) under the

DGP PT (denoted by GT (:;PT )) converges to G1(:;P0) pointwise on the real line. To see

this, note for any s 2 R,

jGT (s;F1)�G1(s;F2)j � jGT (s;F1)�G1(s;F1)j+ jG1(s;F1)�G1(s;F2)j . (C7)

For any s, the �rst term on the right-hand side of (C7) converges to 0 as T ! +1 (by

the de�nition of convergence in distribution). Let k:k1 denote the sup norm. It follows

from the continuity of the limiting distribution characterized by Proposition 2 that, for any

s 2 R and " > 0, there exists � > 0 (possibly depending on s; ") such that for any F1; F2
with kF1 � F2k1 � �, the second term is smaller than " for T large enough. Now suppose a
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sequence of distribution PT converges to P0 uniformly over R as T ! +1. For any " > 0,
we can always send T to be large enough so that kPT � P0k1 is small enough to induce

jGT (s;PT )�G1(s;P0)j � ". (To see this, replace F1; F2 in (C7) with PT ; P0 respectively.)
Thus conditions for bootstrap consistency in Beran and Ducharme (1991) hold. Hence the

bootstrap estimator for the �nite sample distribution of
p
T (�̂T�� 0) converges in probability

uniformly to the limiting distribution characterized in Proposition 2, regardless of bidders�

risk attitudes in DGP. (To simplify notations, we suppress dependence of N� on the joint

distribution of (W;A; ~K) in DGP for the rest of the proof.) With the limiting distribution

of
p
T (�̂T � � 0) being absolutely continuous with positive densities almost surely over R, the

bootstrap estimator for the 1� �=2 quantile ĉ1��=2;T converges in probability to the actual
1 � �=2 quantile of the limiting distribution (denoted by c1��=2) as T ! +1. Again, such
consistency holds regardless of bidders�risk attitudes in DGP.

Suppose in the true DGP, bidders are risk-averse with � 0 = c for some c > 0. By

de�nition, Pr
�p
T �̂T � ĉ1��=2;T j� 0 = c

�
= Pr

�p
T (�̂T � � 0)� ĉ1��=2;T � �

p
T� 0j� 0 = c

�
.

It follows from Proposition 2 that
p
T (�̂T � � 0) converges in distribution to a zero-mean,

univariate normal N� . For any " 2 (0; 1), let c" < +1 denote the "-quantile of N� . Since

ĉ1��=2;T
p! c1��=2 and � 0 > 0 under HA, we have limT!+1 Pr(ĉ1��=2;T < c" +

p
T� 0j� 0 =

c)! 1 for any " 2 (0; 1). Hence for any c > 0,

Pr
�p
T �̂T � ĉ1��=2;T j� 0 = c

�
� Pr

�p
T �̂T � ĉ1��=2;T and ĉ1��=2;T < c" +

p
T� 0j� 0 = c

�
> Pr

�p
T (�̂T � � 0) � c" and ĉ1��=2;T < c" +

p
T� 0j� 0 = c

�
! Pr

�p
T (�̂T � � 0) � c"j� 0 = c

�
= 1� "

as T ! +1. This proves the consistency of our test under �xed alternatives of risk-averse
bidders (HA : � 0 = c with c > 0). Symmetric arguments show

lim
T!+1

Pr
�p
T �̂T � �ĉ1��=2;T j� 0 = c

�
= 1

for any c < 0 (bidders are risk-loving in DGP). If bidders are risk-neutral with � 0 = 0,

Pr
�
�ĉ1��=2;T �

p
T �̂T � ĉ1��=2;T j� 0 = 0

�
= Pr

�p
T (�̂T � � 0) + ĉ1��=2;T � 0 and

p
T (�̂T � � 0)� ĉ1��=2;T � 0j� 0 = 0

�
�! Pr(�c1��=2 � N� � c1��=2) = 1� � as T ! +1,

where the second equality follows from that
p
T (�̂T � � 0)

d! N� and ĉ1��=2;T
p! c1��=2

(1��=2 quantile of the zero-mean normal variable N� ) and an application of the Continuous

Mapping Theorem.
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Figure 1 (a): Performance of the test given various risk attitudes in DGP.
(K = 7=10. T = 5000.)

Notes: Solid lines plot the proportion of S = 300 simulated samples in which our test

fails to reject the null of risk-neutrality. Dashed lines plot the probability that the null is

rejected in favor of HA (risk-aversion with 
 < 1). Dotted lines plot the probability that the

null is rejected in favor of HL (risk-loving with 
 > 1).
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Figure 1 (b): Performance of the test given various risk attitudes in DGP.
(K = 7=10. T = 10000.)
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Figure 1 (c): Performance of the test given various risk attitudes in DGP.
(K = 9=10. T = 5000.)
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Figure 1 (d): Performance of the test given various risk attitudes in DGP.
(K = 9=10. T = 10000.)
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