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Abstract A large literature uses matching models to analyze markets with
two-sided heterogeneity, studying problems such as the matching of students
to schools, residents to hospitals, husbands to wives, and workers to firms.
The analysis typically assumes that the agents have complete information,
and examines core outcomes. We formulate a notion of stable outcomes in
matching problems with one-sided asymmetric information. The key con-
ceptual problem is to formulate a notion of a blocking pair that takes account
of the inferences that the uninformed agent might make from the hypothesis
that the current allocation is stable. We show that the set of stable outcomes
is nonempty in incomplete information environments, and is a superset of
the set of complete-information stable outcomes. We provide sufficient con-
ditions for incomplete-information stable matchings to be efficient.
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Matching with Incomplete Information
by
Qingmin Liu, George J. Mailath, Andrew Postlewaite, and Larry Samuelson

1 Introduction

A large literature uses the matching models introduced by Gale and Shap-
ley (1962) and Shapley and Shubik (1971) to analyze markets with two-
sided heterogeneity, studying problems such as the matching of students
to schools, residents to hospitals, husbands to wives, and workers to firms."
The typical analysis in this literature assumes that the agents have complete
information, and then examines stable outcomes. A proposed outcome that
matches each firm to a worker (for example), along with a specification of
a transfer from the firm to the worker, is stable if there is no unmatched
worker-firm pair that could both increase their payoffs by matching with
each other and making an appropriate transfer.

The assumption of complete information makes the analysis tractable
but is implausible.? This paper examines matching models in which the
agents on one side of the market cannot observe the characteristics of those
on the other side. To what extent does ignoring the asymmetry of infor-
mation in a matching problem alter outcomes? What does it mean for an
outcome to be stable under incomplete information? What are the proper-
ties of stable outcomes?

Our first order of business is to formulate an appropriate modification
of stability for problems in which there is asymmetric information. Incorpo-
rating incomplete information raises subtle issues. Consider a worker/firm
matching problem in which each worker and each firm has a nonnegative in-
dex that is their “quality,” and any matched worker-firm pair can generate
a surplus that is increasing in both of their qualities. Suppose that firms’
qualities are commonly known, but workers’ qualities are not. Each firm
knows the quality of the worker it is matched with, and knows the transfers
in other worker-firm pairs, but not the workers’ qualities in those pairs. As
in the complete information framework, we would say that the outcome is
not stable if there is an unmatched worker-firm pair that can deviate and
increase the payoff to each. But with incomplete information, how does a

!See Roth and Sotomayer (1990) for a survey of two-sided matching theory.

2Moreover, there is no mechanism yielding stable matchings under which the truthful
revelation of preferences is a dominant strategy for all agents (Roth, 1982), and hence
incomplete information will in general have substantive behavioral implications.



firm know whether it will be better off by deviating to match with a worker
whose quality isn’t known? At first pass, one might think that the answer
is simple: the firm should maximize its expected payoff in deciding whether
a potential deviation is profitable. But what beliefs should the firm have?
Both parties must agree on a proposed deviation, and a firm may be able to
make inferences about a worker’s quality by his willingness to deviate. In
addition, the firm may make further inferences from the fact that no other
worker-firm pairs wish to deviate. We formulate a notion of stable outcomes
that takes account of all such inferences that firms might make. This notion
is defined in terms of an iterative belief-formation process reminiscent of
rationalizability.

We are not the first to study these kinds of questions, and we discuss
the related literature in Section 5.

We emphasize that our notion of pairwise stability for incomplete in-
formation environments is aimed at understanding the stability of possible
outcomes. We start with the presumption that a matching exists, and ask
whether this matching is stable. To answer this question, we assume that
each firm knows the quality of the worker with whom it is matched, that
each firm supposes the proposed match is stable, and that firms make use
of all of the inferences they can draw from this information, and then ask
whether any worker and firm can form a blocking pair. By considering every
possible outcome (matching and transfer) in this way, we construct the set
of stable outcomes. We do not address how stable outcomes might arise.
This is in keeping with the vast majority of work on complete-information
matching. However, under complete information, one can at least imagine an
underlying matching process: unmatched agents randomly meet each other
and make proposals, with the process stopping when no unmatched pair can
improve on their situation by matching. It is less obvious how one would con-
struct a matching process leading to stable outcomes, because agents make
inferences from intermediate outcomes during the matching process, so the
set of possible incomplete-information stable outcomes becomes a “moving
target.” Providing noncooperative foundations for incomplete-information
stable matchings is an obviously interesting problem but separate problem.
We return to this issue in Section 5.

Our notion of stability precludes profitable pairwise deviations, but does
not consider deviations by groups of agents other than a single worker and
a single firm. Under complete information, it is easy to show that pairs can
block any outcome that could be blocked by larger coalitions, and hence
restricting attention to pairwise stability sacrifices no generality. That need
not be the case with incomplete information. Given our assumption that in



a proposed matching firms know the quality of the worker with whom they
are matched, a coalition that includes more than a single firm potentially
has more information—“potentially” because one would have to specify the
process by which firms communicated, presumably accounting for incentives,
in order to characterize the information at their disposal. We allow only
pairs to deviate to avoid the problems that arise when larger coalitions are
allowed. Section 5 explains why many of our main results would carry over
to models that allowed larger coalitions.

Sections 2 and 3 develop our stability concept for matching problems
with incomplete information. The key is to identify all the inferences a
firm can make from what it knows directly and from the hypothesis that the
proposed match is stable. We think of firms repeatedly observing a matching
outcome, leading them to conclude that there are no blocking pairs, and in
turn to draw conclusions about various workers’ types.

Section 4 explores the implications of our notion of incomplete informa-
tion stability. Under quite general conditions, pairwise stable outcomes exist
in incomplete-information environments. Under intuitive sufficient condi-
tions, these outcomes are efficient, but in general they can fail equal treat-
ment of equals. Incomplete-information pairwise stable outcomes are a su-
perset of complete-information stable outcomes. Agents’ payoffs in stable
incomplete-information problems with “little” asymmetry of information are
close to the payoffs to those with no asymmetry.

2 Matching with Incomplete Information

2.1 The Environment

We generalize the complete-information matching models studied by Shapley
and Shubik (1971) and Crawford and Knoer (1981). There is a finite set of
workers, I, with an individual worker denoted by ¢ € I. There is also a finite
set of firms, J, with an individual firm denoted by j € J. Indices identify
agents, but do not play a direct role in production. We use male pronouns
for workers and female for firms.

The productive characteristics of an agent are described by the agent’s
type, with W being the set of possible worker types and F' being the set of
possible firm types. The function mapping each firm to her type is denoted
f : J — F. The function mapping each worker to his type is denoted
w:l—>W.

Value is generated by matches. We take as primitive the aggregate match
value each agent receives in the absence of any transfers between the agents.



Following Mailath, Postlewaite, and Samuelson (2012a,b), we call these val-
ues premuneration values. For example, the firm’s premuneration value
may include the net output produced by the worker with whom the firm is
matched, the cost of the unemployment insurance premiums the firm must
pay, and (depending on the legal environment) the value of any patents
secured as a result of the worker’s activities. The worker’s premuneration
value may include the value of the human capital the worker accumulates
while working with the firm, the value of contacts the worker makes in the
course of his job, and (again depending on the legal environment) the value
of any patents secured as a result of the worker’s activities.

A match between worker type w € W and firm type f € F gives rise
to the worker premuneration value v,y € R and firm premuneration value
¢y € R. We call the sum of the premuneration values, vy + ¢, the
surplus of the match. We avoid having to continually make special note of
nuisance cases by also defining the premuneration values of an unmatched
worker and an unmatched firm, which we take (without loss of generality)
to be zero, denoting these values by vy, (), f(;) for the worker and ¢,,;) r(z)
for the firm.

Each firm’s index is commonly known, as is the function f, and hence
each firm’s type is common knowledge. On the other hand, while a worker’s
index is common knowledge, the function w (and hence workers’ types) will
in general not be known (though workers will know their own types). We
assume the worker type assignment w is drawn from some distribution with
support © C W, As will be clear, while the support plays an important
role in the analysis, the distribution does not. The functions v : W x F — R
and ¢ : W x F — R are common knowledge.

Given a match between worker i (of type w(7)) and firm j (of type £(5)),

the worker’s payoff is
w

T = Vw(i),£(j) T D
while the firm’s payoff is

f._
T = Oy f(G) — P>

where p € R is the transfer paid to worker ¢ by firm j. We often refer to
this transfer as a wage, though it might be negative.

A matching function is a function p : I — JU{@}, one-to-one on p~1(J),
that assigns worker 4 to firm g (7), where p (i) = @ means that worker i is
unemployed and p~! (j) = @ means that firm j does not hire a worker. The
outcome of such a function is a matching.



A transfer scheme p associated with a matching function p is a vector
that specifies a transfer p; ,;) € R for each ¢ € I and p,-1(j); € R for
each j € J. To again avoid nuisance cases, we associate zero transfers with
unmatched agents, setting pg; = piz = 0.

Definition 1 An allocation (u,p) consists of a matching function p and
a transfer scheme p associated with p. An outcome of the matching game
(1, p, W, £) specifies a realized type assignment (w, ) and an allocation (u, p).

2.2 An Example

We illustrate the environment and preview our stability notions. There are
three workers and firms (I = J = {1, 2,3}). The set of possible worker types
is W = {1,2,3} and the set of possible firm types is F' = {2,4,5}. The firm
type assignment is given by f(1) = 2, £(2) = 4, and f(3) = 5. A worker of
type w and a firm with type f generate a premuneration value wf to each
agent, i.e., vy = ¢ p = wf.

2.2.1 Complete Information

Suppose the worker type assignment is w(1) = 1, w(2) = 3, and w(3) = 2,
and that this is commonly known. The notion of stability for this complete-
information setting is familiar from Gale and Shapley (1962). Because the
surplus function is supermodular, the only stable matching must be posi-
tively assortative in type (Shapley and Shubik, 1971), which is the efficient
matching (in the sense of maximizing total surplus).

To illustrate the reasoning behind this result, consider the matching
shown in Figure 1, which is not assortative. Since the matching of worker 2
(who has type 3) with firm 2 (who has type 4) generates a surplus of 24, we
have 7§ + ﬂg = 24, and similarly 7% + 7T§ = 20. But the surplus generated
by a positively assortative matching by type of the top two workers and
firms is 46. In the candidate match of Figure 1, either 7§ + 7T§ < 30 or
my + 7r£ < 16, and hence either worker 2 and firm 3, or worker 3 and firm
2, can form a blocking coalition (i.e., can match and make a transfer under
which both receive more than under the candidate match).

2.2.2 Incomplete Information

Now suppose that the firms know the workers’ indices, know the set of
possible worker types W = {1,2,3}, and know the type of worker with
whom they are matched, but do not know the function w assigning types



worker indices 1 2 3

worker payoffs, 7i*: w" wy 7w
worker types, w:
firm types, f:

firm payoffs, w{ : 7r{ ﬂ'g 7T:J;

firm indices 1 2 3

Figure 1: A matching that cannot be complete-information stable. Workers
and firms are indexed by column. The matching of types is indicated by the
ovals: (i) =1, for i € {1,2,3}.

to indices. Suppose the realized types and the matching of firms to workers
are as in Figure 1, with the transfers and payoffs shown in Figure 2. Firms
believe the set €2 of possible vectors (w(1),w(2),w(3)) is (in this example)
the set of permutations of (1,2,3). Hence, each firm knows there is one
worker of type 1, one worker of type 2, and one worker of type 3, and knows
the type of her own worker, but does not know the types of the other two
workers.

We consider a stability notion analogous to that of the complete-informa-
tion case, namely that there be no unmatched pair who can find an agree-
ment that both prefer to the proposed outcome. Consider a candidate block-
ing pair consisting of worker 3, firm 2, and some transfer p € (—2,0). Under
complete information, this would indeed be a blocking pair. Under incom-
plete information, it is again immediate that any such agreement makes a
worker of type 2 better off than in the proposed outcome, and hence satis-
fies one condition for being a blocking pair. However, firm 2 does not know
whether worker 3 is of type 1 or type 2. The proposed deal is advantageous
for firm 2 if the worker is type 2, but not if the worker is type 1.

Is this a blocking pair? To answer this question, both here and in general,
we must take a stand on what beliefs the firm is likely to have about the type
of worker in a proposed blocking pair. Our requirement will be that a pair
can block only if both agents expect higher payoffs, given any reasonable
beliefs the firm might have over the support of possible worker types. Could
the firm reasonably expect worker 3 to be type 17 It initially appears that
this is the case, since firm 2 knows only that worker 3 is not of type 3.



worker indices 1 2 3
worker payoffs, 7": 2 16 6
worker types, w:

transfer price, p:

firm types, f:
firm payoffs, 7rjf : 2 8 14
firm indices 1 2 3

Figure 2: A possible outcome of the worker type assignment under incom-
plete information, with a matching outcome, transfers, and payoffs. Types
and premuneration values match those of Figure 1; workers and firms are
indexed by column, and the matching is by index (indicated by the ovals).

However, the firm may be able to refine her beliefs on the strength of the
fact that worker 3 is willing to participate in the block. To pursue this, notice
that if worker 3 were type 1, his current payoff would be 1, while he would
receive a payoff of 4+ p in the candidate blocking pair. Since 4+p > 1 for all
P € (—2,0), the candidate blocking pair is also advantageous for a worker of
type 1. Firm 2 then cannot be sure whether the proposal involves a worker
of type 1 or type 2. Hence, the firm could reasonably believe the worker
is of type 1, making the proposed deal disadvantageous for the firm. The
allocation illustrated in Figure 2 thus appears to be incomplete-information
stable.

However, the argument does not end here. The “reasonable” requirement
we place on the firms’ beliefs is that the support of these firm’s beliefs be
consistent with all of the inferences the firm can draw, using the firm’s
information and the hypothesis that the candidate allocation is stable. In
this case, firm 2 can reason as follows: Suppose worker 3 were of type 1.
Then firm 3 would receive a payoff of 9, worker 1 would be of type 2 and
would receive payoff 2, and firm 3 would know that worker 1 was of type
at least 2. Worker 1 and firm 3 could the match at wage 0 (for example),
giving each a higher payoff than the candidate stable allocation and thus
constituting a blocking pair. But firm 2’s working hypothesis is that the
proposed allocation is stable, and hence that there is no such blocking pair.



worker payoffs, mi": 4+ pi1 4+ p22 15+ p33
worker types, w:
transfer price, p:
firm types, f:

firm payoffs, 71';: 4—p11 4—p2 15—ps33

Figure 3: A matching in which the lowest type worker does not match with
the lowest type firm. Workers and firms are indexed by column. Types and
premuneration values are from Figure 1. The matching of types is indicated
by the ovals: p(i) = ¢, for i € {1,2,3}. The worker type assignment is from
Section 2.2.3.

If the candidate allocation is to be stable, then worker 3 cannot be of type 1,
and hence worker 3 must be of type 2. This ensures that the proposed block
is profitable for firm 3, and hence that we indeed have a blocking coalition.
The allocation illustrated in Figure 2 is thus not incomplete-information
stable.

The central issue addressed in this paper is to make precise and then
explore the implications of this belief-formation process.

2.2.3 Incomplete Information: Inference

Firm 2’s inference in the preceding section does not hinge critically on the
strong assumptions made about the possible worker type distributions. In
particular, we preview a general result: if premuneration values are increas-
ing and strictly supermodular, then only positive assortative matchings can
be stable.

The firms’ types are again given by f(1) = 2, £(2) = 4, and f(3) = 5.
Assume nothing more about worker types than that the set of possibilities
is W = {1,2,3}. Workers’ types may be drawn independently from this set,
or may be drawn according to any other procedure. Premuneration values
are given by vy 5 = ¢,y = wf.

We first argue that the lowest type worker must be matched with the
lowest type firm. Consider the matching in Figure 3, which pairs the worker
of the lowest type with the firm of the second lowest type.



Suppose first that
P11 > 4 + p22,

and consider a candidate blocking pair involving worker 2, firm 1, and trans-
fer p = (p11 + p22)/2. Worker 2 finds the resulting payoff strictly preferable
to the current matching, since 2 + p > 4 + pa2. Moreover, a lower bound
on firm 1’s payoff under such an offer is provided by assuming that worker
2 has type 1, and so firm 1 also finds such an offer strictly preferable to the
current matching, since 2 —p > 4 — p11.
Suppose instead that
P11 < 4+ p2s,

and consider a candidate blocking pair involving worker 1, firm 2, and trans-
fer p = p11 — 3. Worker 1 finds the resulting payoff strictly preferable to the
current matching, since 8 +p > 4 + p11. In computing a lower bound on
her payoff under such an offer, firm 2 should understand that worker 1 of
type 1 does not find such a match attractive, since 4 + p < 2 + p11. Under
the belief that worker 1 has type at least 2, firm 2 then also finds the offer
strictly preferable to the current matching, since 8 — p > 4 — paa.

This ensures that the lowest types of firm and worker must be matched.
This logic can be iterated to show that the lowest two types of workers must
be matched with the lowest two types of firms, the lowest three types of
workers with the lowest three types, and so on, giving the result that only
assortative matchings can be stable.

3 Stability

3.1 Individual Rationality

A matching is individually rational if each agent receives at least as high
a payoff as provided by the outside option of remaining unmatched, i.e.,
receives at least zero. Since firms observe the types of workers with whom
they are matched at the interim stage, the notion of individual rationality
is the same for complete and incomplete information.

Definition 2 An outcome (u, p, w,f) is individually rational if for alli € T
and j € J,

V(i) £(u(i) T Piu@) = 0 and
Pw(u=1())£(G) ~ Pu1()g = 0-



3.2 Complete Information Stability

The notion of stability in matching games with transferable utility was first
formulated by Shapley and Shubik (1971), who also established existence.
Crawford and Knoer (1981) provide a constructive proof of existence by
applying a deferred acceptance algorithm to a model with discrete transfers.

Definition 3 A matching outcome (u, p, w, f) is complete-information sta-
ble if it is individually rational, and there is no worker-firm combination
(1,7) and transfer p € R from j to i such that

Vw(i),£(j) TP > Vw(i)f(u(i) T Piu(i)

and
Pw(i),t() — P > Pw(u=1(7))£G) ~ Pu1(j).-

If (u, p,w,f) is a complete-information stable outcome, the allocation (i, p)
is a complete-information stable allocation at (w,f).

It is well-known that for each type assignment (w, f), a complete-informa-
tion stable allocation exists, is efficient, and agents on the same side of the
market obtain the same payoffs if they have the same types (equal treatment
of equals).

3.3 Incomplete Information

We are interested in the stability of a matching when each worker knows
his type, but the worker type assignment is not known by any agent. We
view stability as capturing a notion of steady state: a matching is stable
if once established, it remains in place. Think of workers and firms in the
labor market observing a particular matching (together with its associated
transfers). If the matching is stable, then we should expect to see the same
matching when next the labor market opens, and each subsequent time
the labor market opens. To make this operational, we characterize the
implications of having the stability of the matching be common knowledge.
Importantly, we do not examine the process by which the matching comes
into being. Rather, we view the matching as already in place, identify the
implications of agents understanding that the current match is stable, and
then check whether it is indeed stable.

We emphasize what a firm can observe: the types of all firms, the distri-
bution from which the function assigning workers’ types is drawn, the type
of the firm’s current worker, and which worker is matched with which firm

10



at which price. Hence, a firm assessing a candidate block involving worker ¢
knows the identity and type of the employer with whom ¢ is matched in the
supposed stable allocation.

We model the firms’ inferences via a procedure of iterated elimination of
unstable matching outcomes. This formulation resembles the game-theoretic
notion of rationalizability (Bernheim (1984) and Pearce (1984)), obtained
via iterated elimination of strategies that are never best responses, though
a better analogy may be the deductive iterations that arise in the classic
“colored hats” problem with which discussions of common knowledge are
often introduced (Geanakoplos, 1994, p. 1439). Similar reasoning lies behind
the no-trade theorem of Milgrom and Stokey (1982).

Definition 4 Fix a non-empty set of individually rational matching out-
comes, ¥. A matching outcome (u,p,w,f) € ¥ is YX-stable if there is no
worker-firm combination (i,7) together with a transfer p € R such that

Vaw(i)£() TP > V(i) £(u(i)) + Piu(i)> (1)
and
Pwi().£(7) ~ P > Pw'(u=1()).£(G) ~ Pu=1(i).i (2)
for all w' € Q satisfying

(1, p,w',f) € 2, (3)
w(p () =w(u (), and (4)
Vw/(i),£() TP > V' (i) £(u(i) T Pipu(i)- (5)

Inequality (1) requires that worker i receives a higher payoff in the pro-
posed deviation than in the putative stable matching. Inequality (2) re-
quires that firm j expect a higher payoff in the proposed deviation than in
the putative stable matching, for any reasonable beliefs the firm might have
over worker type assignments. Our notion of “reasonable” only restricts
the supports of such beliefs, and so we suppress the beliefs, describing the
restrictions on the supports directly. To qualify as reasonable, a type assign-
ment must satisfy three criteria, given by (3)—(5): (3) the type assignment
must be consistent with matching outcomes in the set X, a restriction that
will become operational in the iterative argument we construct next; (4) the
type assignment must not contradict what the firm j already knows at the
interim stage, i.e., it must be consistent with the type of firm j’s current
worker =1 (j); and (5) the type of worker i with whom j is matched in the

11



worker payoffs, 7": 2 16 10 + p33
worker types, w:

transfer price, p:

firm types, f:

firm payoffs, 71';: 2 8 10 — p33

Figure 4: A matching outcome that is not X’-stable (where X is the set
of individually rational matching outcomes) for the transfer pss = —2, but
is ¥.0-stable for the transfer ps3 = —4 (the outcome from Figure 2). Types
and premuneration values are from Figure 1.

proposed deviation must be consistent with #’s incentives (i.e., the type of
this worker should be better off than under that worker’s current match).

The argument in Section 2.2.3 shows that the matching outcome of Fig-
ure 3 is not X0-stable, where X0 is the set of all individually rational match-
ing outcomes, irrespective of the level of transfers. That argument is general,
and shows that if premuneration values are increasing and strictly supermod-
ular, no matching outcome in which a matched lowest type of worker and
a lowest type of firm are not matched with each other is ¥%-stable (Lemma
A.3). In other cases, the precise nature of the transfers determines whether
the matching outcome is X%-stable. For example, the matching outcome in
Figure 4 may or may not be ¥.0-stable, depending on p. Suppose first that
P33 = —2, and consider a candidate blocking pair consisting of worker 2
(who has type 3) and firm 3, with transfer p € (1,2). Worker 2 prefers this
resulting match to the proposed equilibrium outcome. Moreover, firm 3 can
calculate that a worker matched with firm 2 would prefer such an alterna-
tive match if and only if the worker is of type 3, ensuring that firm 3 also
strictly prefers the proposed block and hence that the candidate outcome is
not ¥.0-stable. In contrast, the outcome with ps3 = —4 (the outcome from
Figure 2) is X.'-stable: Note first that worker 2 and firm 3 can no longer
block because the total payoff of the pair equals their surplus were that pair
to match. Moreover, it is an implication of the discussion in Section 2.2.2
that worker 3 and firm 2 cannot form a blocking pair

While Definition 4 suppresses the role of beliefs, our preferred interpre-
tation is that firms are expected profit maximizers. In particular, when

12



worker payoffs, m: 2 16 1
worker types, w:
transfer price, p:
firm types, f:

firm payoffs, 7r]]-c : 2 8 9

Figure 5: The transfers and matching from Figure 2 with a different worker
type realization.

evaluating a potential blocking match with worker ¢, firm j evaluates the
profitability from such a match using her beliefs over worker ¢’s possible type
to calculate expected profits. However, we are interested in understanding
the basic nature of the possible restrictions implied by incomplete informa-
tion stability without assuming too much about the nature of the protocols
(extensive form) of firm-worker interactions. That is, we only allow blocking
if we are confident that firm j believes she benefits. We accordingly require
that the firm believe the blocking is profitable under all reasonable beliefs,
restricted only by the common knowledge of the structure of the matching.

Definition 5 Let X0 be the set of all individually rational outcomes. For
k > 1, define

k= {(u,pw, f) e 251 (u,p,w, ) is Ekfl-smbl@}

The set of incomplete-information stable outcomes is given by

30— ﬂ:’:l sk

If (p,p,w,f) is an incomplete-information stable outcome, the allocation
(1, p) is an incomplete-information stable allocation at (w,f).

Consider the outcome in Figure 2. We argued earlier that this outcome
is X0-stable. Hence that outcome is in 3!. However, the outcome is not 3!-
stable and hence is not contained in in ¥, because outcomes with w’(3) = 1
(such as the one displayed in Figure 5) are not contained in X! (for Figure
5, consider an offer of p = —% by worker 3 to firm 1).
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The sequence XF is a (weakly) decreasing sequence of sets of outcomes.
As stated in the next proposition, it is straightforward to see that the limit
of the sequence, 3°°, is nonempty.

Proposition 1 For each type assignment (w,f), there is an incomplete-
information stable outcome (u, p, w,f), and so the set of incomplete-information
stable allocations is non-empty.

Proof. If (u,p) is a complete-information stable allocation at (w,f), then
by definition (u, p,w,f) € ¥ for each k > 0. |

3.4 Fixed-Point Characterization

The iterative procedure of Definition 5 describes an algorithm for obtaining
the set of all incomplete-information stable allocations. This set has a fixed-
point characterization, which is often more convenient for verifying that a
given matching outcome is stable.

Definition 6 A nonempty set of matching outcomes E is self-stabilizing if
every (u,p,w,f) € E is individually rational and if every (u,p,w,f) € E
is E-stable. The set E stabilizes a given matching outcome (u,p,w,f) if
(u,p,w,f) € E and E is self-stablizing. A set of worker-type assignments
0F C Q stabilizes an allocation (u,p) if {(u,p,w,f):w €Q*} is a self-
stabilizing set.

We now summarize several useful properties of a self-stabilizing set of
matching outcomes (the proof is in Appendix A.1).

Lemma 1

1. The singleton set {(p, p, w,f)} is self-stabilizing if and only if (1, p, w, f)
is a complete-information stable outcome.

2. If both E1 and Es are self-stabilizing, then E1 U Es is self-stabilizing.
3. If E is self-stabilizing, then its closure E is self-stabilizing.>

4. If E is a self-stabilizing set and (p, p, w,f) € E, then EN{(u, p, W', f) :
w’ € Q} is also a self-stabilizing set.

3Given any set of outcomes E, the outcome (i, p, w, f) is in the closure of E if there is
a sequence (p",p™,w" ") € E such that (¢, p",w",f") — (u, p, w, f) pointwise. Since
u, w and f are drawn from finite sets, (u, p, w,f) € E if and only if there exists a sequence
p" — p such that (u,p",w,f) € E.
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The following proposition provides a fixed-point characterization of the
set of stable outcomes (the proof is in Appendix A.2):

Proposition 2
1. If E is a self-stabilizing set, then B2 C X*°.

2. The set of incomplete-information stable outcomes, >°°, is a self-
stabilizing set, and hence the largest self-stabilizing set.

3. The set ¥°° is closed.

One immediate implication of Proposition 2 is that to show (u,p,w,f)
is a stable outcome, it suffices to construct a subset 2* containing w that
could stabilize the allocation (u,p).

4 Implications of Incomplete-Information Stabil-
ity

4.1 Allocative Efficiency

4.1.1 Payoff Assumptions

Stable matchings have particularly strong implications under some econom-
ically relevant constraints on premuneration values:

Assumption 1 (Monotonicity) The worker premuneration values v,,r and
firm premuneration values ¢,y are strictly increasing in w and f.

Assumption 2 (Supermodularity) The worker premuneration values vy, ¢
and firm premuneration values ¢,y are strictly supermodular in w and f.

The assumption of supermodularity is common in the literature on la-
bor markets and marriage markets. Its sorting implications in matching
markets were first studied by Becker (1973). Note that the supermodular-
ity assumption is imposed on premuneration values, not only on the total
surplus.

4.1.2 Information-Revealing Prices

Under supermodularity, a firm faced with evaluating its participation in a
potential blocking pair can draw relatively sharp inferences about the type of
worker from the worker’s willingness to participate in the blocking coalition
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at the associated transfer. The following lemma identifies conditions under
which a firm entertaining a deviation to match with a worker of unknown
type can be certain of a lower bound on the worker’s type (the proof is in
Appendix A.3).

Lemma 2 Suppose Assumption 2 (supermodularity) holds, and (p, p,w, )
1s individually rational. If a type-w* worker is matched with a type-f* firm
at a transfer p*, then for any firm with type f > f*, there exists € > 0 such
that for any p € (Vaxpx + D" — Vi £, Vape = +D* — Ve f + €],

Vwf +D > Vs + D7, for any w > w*, (6)
Vwf+p >0, for any w > w*, and (7)
Vwf + D < Vg + 05, for any w < w*. (8)

If w* is unmatched in an individually rational matching outcome, then for
any firm type f, there exists € > 0 such that for any p € (—vy»f, —Vy=f+e],

Vwf +p >0, for any w > w*, and
Vs +p <0, for any w < w*.

The interpretation is as follows. Suppose a worker is willing to partici-
pate in a blocking pair with a firm of type f > f*, where f* is the type of the
worker’s current match, at a transfer of p just above vy« g« +p* — vy« r. The
type f firm can then infer that the worker would benefit from this proposal
if and only if his type is at least w*. Condition (6) says that all worker types
higher than or equal to w* prefer working for a type f firm under a transfer
p to remaining in the old match; (7) says that matching with a type f firm
is individually rational; (8) says that if worker type is lower than w*, then
the worker prefers to stay in the candidate matching.

4.1.3 Efficiency

Under supermodularity, an outcome is efficient if and only if it features assor-
tative matching. No additional assumptions are needed to ensure efficiency
of stable outcomes. Section A.4 proves the following.

Proposition 3 If Assumptions 1 (monotonicity) and 2 (supermodularity)
hold, then an incomplete-information stable outcome is efficient.

We now describe an example that demonstrates that without supermod-
ularity stable outcomes may be inefficient. There are two workers and two
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Figure 6: A failure of efficiency in the absence of strict spermodularity. The
first matching is incomplete information stable, stabilized by the second
complete information stable outcome. In this example, W = {2,3}, F =

{172}7 Vwf = 0, and d)wf =wf.
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firms. It is commonly known that f(1) = 1, f(2) = 2, and w(2) = 2. We
suppose that worker 1’s type could be either 2 or 3, and the realized value
is 3. The worker’s premuneration value is zero in any match (thus violating
strict supermodularity), while the firm’s premuneration value is the product
of the types in a match, wf.

We claim that the first matching outcome in Figure 6 is an inefficient,
incomplete-information stable outcome (i, p,w,f). To show (u,p,w,f) is
an incomplete-information stable outcome, we use Proposition 2 and show
that the set F = {(u, p,w,f), (u,p,w',f)} is a self-stabilizing set, where
(u, p,w', f) is given by the second matching.

First note that (u,p,w’,f) is a complete-information stable outcome,
and hence is self-stablizing as a singleton set. This outcome stabilizes
(1, p,w, ) as follows. The only potential blocking pair at type assignment
(w,f) must involve worker 1 and firm 2. However, firm 2 believes that
worker 1 could be either type 2 or type 3. There is no nonnegative (so that
the worker is willing to participate) transfer at which firm 2 could gain from
such a proposed block if worker 1 is type 1. The allocation then cannot be
blocked, and hence we have incomplete-information stability.

In this example, the conclusion of the sorting lemma (Lemma 2) fails be-
cause worker type 3 has a constant premuneration value and consequently
doesn’t have an individually rational and incentive compatible way to “con-
vince” the second firm that his type is 3.
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Figure 7: A failure of equal treatment. The first matching is incomplete
information stable, stabilized by the second complete information stable
outcome. In this example, W = {1,2}, F' = {2} and vy = ¢,y = wf.

4.2 Failure of Equal Treatment of Equals

The equal treatment of equals is a basic notion of fairness, and is trivially
satisfied by stable outcomes in complete information environments. We
have shown that under strict supermodularity and monotonicity, incomplete-
information stable matchings exhibit a strong efficiency property. A natural
question is whether we also obtain fairness, in the sense of equal treatment
of equals.

We now show by example that equal treatment of equal worker types
can fail. There are two firms, each of type 2, and two workers, with types
drawn independently from the set {1,2}. Premuneration values are wf for
both workers and firms. Consider the first matching outcome (u, p, w, f) in
Figure 7. This matching outcome violates equal treatment of equals, since
the workers are of the same type but receive different payoffs. If there were
complete information, the first worker and the second firm would form a
blocking pair.

To establish incomplete-information stability, we construct an argument
reminiscent of that used in the previous example. We show that (u, p, w, f)
is part of a self-stabilizing set. The easiest way to do so is to consider a set
of two outcomes, the second of which ((u, p, w’, f)) is complete-information
stable.

Consider the self-stabilizing set E = {(u,p,w,f), (¢, p,w', )}, where
(u,p,w',f) is given by the second matching outcome in Figure 7. The
latter is complete-information stable, so we need only show that (u, p, w, f)
is incomplete-information stable, for which it suffices to show that a coalition
consisting of worker 1 and firm 2 cannot block (u, p, w, f). This follows from
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the fact that firm 2 cannot be sure that such a worker is of type 2 rather
than type 1, since any transfer inducing a type-2 worker to participate in
such a blocking pair would also induce a type-1 worker to participate.

4.3 Relation to Complete-Information Stability

Proposition 1 established that any complete-information stable outcome

is incomplete-information stable. The examples in Sections 4.1.3 and 4.2
present incomplete-information stable outcomes that are not complete-information
stable. The set of incomplete-information stable outcomes is thus a strict
superset of the set of complete-information outcomes. This section describes
settings in which the two concepts coincide, or are close.

4.3.1 Almost Complete Information: Continuity

We first seek a continuity result. The motivation for such a result is straight-
forward. We believe that matching environments invariably involve at least
some asymmetry of information. At the same time, complete-information
models are convenient. It would then be similarly convenient if the equilib-
rium outcomes of our complete information matching models are “close” to
the outcomes of incomplete information matching models when the asym-
metry of information is small. Since our notion of incomplete information
stability depends only on the support of the distribution determining worker-
type assignments, our notion of close is necessarily strong. In particular, it
requires the supports to be close (which is not an implication of standard
notions of distance on distributions).

We cannot expect such a continuity result without continuity in premu-
neration values:

Assumption 3 (Continuity) The premuneration values vy and ¢, are
continuous 1n w.

Fix a type assignment w € Rl and fix § > 0, and denote by &5 (w) a
d-neighborhood of w in the Euclidean metric. Since we will be varying the
support €2, we make the dependence of the set of incomplete information
stable outcomes on the support Q explicit by denoting that set by %°°(£2).
Note that the set of complete information stable outcomes for a given worker-
type assignment w can be written as ¥°({w}). Let 7 (u, p,w, f) € R/l
be the vector of payoffs that workers and firms receive in the matching
outcome (i, p, w,f), and denote by 7 (£ (Q)) € RVl the set of payoff
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vectors associated with the set of matching outcomes X*° (§2). Denote by
Es (m (2°°(£2))) the d-neighborhood of the set 7 (X°° (€2)), that is,

&5 (m (5% () = U & (m (1, p, W, 1))

(M,W,f,p) exee (Q)

We then have that if there is almost complete information about a
worker-type assignment w, then the set of incomplete-information stable
outcomes is close to the set of complete-information outcomes in terms of
payoffs.

Proposition 4 Suppose Assumption 8 holds. Fir a type assignment w €
R For any e > 0, there exists § > 0 such that w (> (Q)) C &, (7 (2° ({w})))
for any finite set Q C &5 (w).

4.3.2 Restrictions of Workers’ Types

The examples in Sections 4.1.3 and 4.2 present incomplete-information sta-
ble outcomes that are not complete-information stable. In these examples,
workers’ types are determined by independent draws. One’s intuition is
that firms are able to infer relatively little about workers’ types in such
an environment. Firms might be able to draw stronger inferences, and the
set of incomplete-information stable outcomes might be close to the set of
complete-information stable outcomes, if there is correlation among workers’

types.
This section considers a very strong form of correlation in workers’ types:

Definition 7 The support Q is a set of permutations if for any w,w’ € Q
there exists a one-to-one mapping v : I — I such that w (i) = w' (¢ (i)).

The types were drawn from a set of permutations in Section 2.2.2.

For the result in this subsection, we focus on the case where |I| = |J]
and assume that vy r > 0 and ¢,y > 0 for any w € W and f € F'.

A plausible conjecture is that when there are at least as many dis-
tinct types of firms as workers, assortative matching identifies worker types
from the firm types with which they are matched, and hence incomplete-
information stability implies complete-information stability. We now show
by example that this is not the case. The matching outcome in Figure
8 illustrates that an incomplete-information stable matching need not be
complete-information stable, even though there are equal numbers of worker
and firm types, and 2 is a set of permutations. There are 2 types of firms
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Figure 8: An incomplete information stable matching outcome (when € is
a set of permutations) that is not complete information stable.

and 2 types of workers. As usual in our examples, vy 5 = ¢,y = wf. This is
not complete-information stable, as worker 4 and firm 3 can form a blocking
pair. In the incomplete-information setting, any transfer at which worker 4
is willing to match with firm 3 also makes worker 2 willing to match with
firm 3. Firm 3 thus cannot preclude the possibility that the worker type
in a candidate blocking pair is 2, and hence cannot be sure of the prof-
itability of the proposed block. This in turn ensures that the outcome is
incomplete-information stable.

The difficulty is that the observables, namely firms’ types and transfers,
are the same for all firms of type 3. As a result, neither an outside observer
who knows only that a firm is type 3, or a different firm of type 3, can
ascertain the type of worker with whom the firm is matched.

This difficulty is eliminated if either all firms or all workers have different
types (the proof is in Appendix A.6):

Proposition 5 Suppose Assumptions 1 and 2 hold, and assume ) is a set
of permutations. Incomplete-information stability coincides with complete-
information stability if either

1. different firms have different types, or
2. different workers have different types.

The first case (different firms have different types) is straightforward,
since now (observable) firm types perfectly reveal worker types in an assor-
tative matching. For the second case (different workers have different types),
while worker types are not observable, when different workers have different
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types, the transfer p, which is observable, is fully informative about worker
type regardless of firm types.

5 Discussion

In a world of complete information, it is natural to combine the study of
stable matchings with the study of the process by which such matchings are
formed. The deferred acceptance algorithm of Gale and Shapley (1962), for
example, can be used to construct direct mechanisms with stable equilib-
rium outcomes.* Alternatively, one might consider decentralized procedures.
For example, Lauermann and Noldeke (2012) examine a model in which
the members of two populations are continually matched into pairs, with
each pair either agreeing to form (and leaving them market) or returning to
the unmatched pool. One’s intuition (with Lauermann and Noldeke (2012)
identifying the conditions under which this intuition can be made precise)
is that as matching frictions become negligible, the equilibrium outcomes of
this process should converge to stable outcomes. If not, there exists a pair
of agents who would prefer matching with one another rather than settle for
their equilibrium outcomes, and the absence of matching frictions suggests
that they should be able to find another, vitiating the convergence to an
equilibrium outcome that is not stable.

Under incomplete information, the connection between stable matches
and the process by which stable matches are formed is less obvious. In
the process of encountering others and making and accepting or rejecting
matches, the agents are likely to learn about their environment. As a result,
the information structure prevailing at the end of the matching process will
typically differ from that which characterizing the beginning of the process.
Explaining the process leading to a stable matching thus requires specifying
the matching mechanics as well as the initial configuration of incomplete
information. Our intuition provides few clues as to the relationship between
the concluding specification of information, the original information config-
uration, and the intervening process.

One branch of the literature has responded by focussing on the process

4For example, if preferences are strict and the direct mechanism maps announced
preferences into the outcome computed via the deferred acceptance algorithm, then it
is a dominant strategy in this mechanism for “proposers” to announce their preferences
truthfully (Gale and Shapley, 1962). There is no stable matching mechanism under which
truthful revelation of preferences is a dominant strategy for all agents (Roth, 1982), but
every Nash equilibrium outcome of this deferred-acceptance-based mechanism is stable
with respect to the agents’ true preferences (Roth, 1984).
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by which matches form under incomplete information. For example, one
could again consider a direct revelation mechanism in which the announced
preferences are inputs to the deferred acceptance algorithm. Rather than
considering Nash equilibria, one now examines Bayes Nash equilibria of the
incomplete information game. Roth (1989) does this for the case that agents
know their own preferences for partners, but do not know potential partners’
preferences. He shows that some important qualitative features of the equi-
libria in complete information do not carry over to incomplete information.
There exists no mechanism with the property that at least one of its equilib-
ria is always stable with respect to the true preferences at every realization
of the game. In other words, any mechanism that might be employed will
sometimes result in a match in which there will be an unmatched pair, each
of whom knows they would prefer that match to the mechanism’s match.
Thus even in what would seem to be the simplest extension to incomplete
information, in which all agents know the value to them of potential part-
ners, the link between the strategic issue of how matches are formed and
the stability of matches is broken.

A number of papers have examined decentralized procedures for form-
ing matches. This work shares with ours the necessity of identifying the
inferences agents can draw from the behavior of other agents. Chade (2006)
analyzes a model in which agents observe a noisy signal of the true type of
any potential mate. In this environment, agents’ matching decisions must
incorporate not only information about a partner’s attribute conveyed by
the noisy signal, but also information about a partner’s type given their
acceptance decision. Chakraborty, Citanna, and Ostrovsky (2010) study a
two-sided matching problem with incomplete information and interdepen-
dent valuations on one side of the market. They cast their model as one
of matching students to colleges when students have complete information
about colleges. Colleges care about students’ characteristics, but get only
noisy signals about those characteristics. Other colleges also get signals
about students’ characteristics, and as a consequence, the set of offers a stu-
dent gets conveys information about his or her characteristics. Chakraborty,
Citanna, and Ostrovsky (2010) show that when the entire realized matching
outcome is publicly observable, stable mechanisms do not generally exist.
The instability stems from colleges learning about student qualities from the
observable match, given the mechanism. In their model, colleges may learn
differently under different mechanisms, hence a matching may be stable un-
der some mechanisms but not under others. Their approach is to define
stability of matching mechanisms rather than stable matches. We similarly
assume in our work that the match is publicly observable, but define stability
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for a match without reference to any mechanism from which the matching
arose.”

Our approach differs from much of the work on matching with incom-
plete information in that we start with a notion of stability of a match in
an incomplete information environment rather than with a process by which
matches form. We build into our stability notion the requirement that agents
make use of all of the information they infer from the common knowledge
that the matching is stable. Our interpretation of this common knowledge
is that the agents see a match that persists over time, infer that there are
no blocking opportunities, that others also know there are no blocking op-
portunities, and so on. In a similar spirit, Forges (1994) and Holmstréom
and Myerson (1983) study mechanism design problems with the constraint
that the outcome should be free from objections players might make based
on information revealed by the mechanism.

We view this notion of stability as a metaphor, capturing necessary con-
ditions for an outcome to be the potential product of a matching process.
We do not have an explicit model of origination of the match, nor of the
blocking process testing the stability of a match. In particular, our model
does not explicitly capture the dynamic and intertemporal considerations
that such an explicit model (of either the origination or blocking process)
would require.

Our work is most closely related to the literature on the core in incom-
plete information problems. There are different definitions of the core with
incomplete information, each of which is meant to capture the idea that
a core outcome should not be subject to objections that coalitions of the
agents might raise. Different definitions make different assumptions about
what information a coalition might use in evaluating outcomes and formu-
lating objections.

Wilson (1978) proposed two polar cases, the first being that agents could
share all information any member of the coalition had and the second being
that agents could share only the information that was common knowledge.

5A number of other papers study specific dynamic matching games with uncertainty
about the valuation of others. Lee (2004) shows that interdependencies in valuations
can lead to adverse selection in a college admission problem. Chade, Lewis, and Smith
(2011) and Nagypal (2004) analyze college application models when students are uncertain
about their own quality and applications are costly. Hoppe, Moldovanu, and Sela (2009)
study a model in which agents have private information about their own qualities and
are matched assortatively based on costly signals they send. Ehlers and Masso (2007)
study mechanisms for matching when preferences are unknown, showing that truth telling
is an equilibrium only if every possible preference profile implies a singleton core under
complete information.
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The first of these ignores the incentive constraints that might inhibit com-
plete sharing, while the second seems overly restrictive about what infor-
mation might be shared. Dutta and Vohra (2005) consider a middle ground
in which coalitions are allowed to coordinate their objections by inferring
information from the objection being contemplated. That is, if a coalition
contemplates a coordinated objection to a proposed outcome, each agent
in the coalition understands that his objection is irrelevant unless all other
agents in the coalition agree to the coordinated objection. In essence, agents
are able to make “conditional” offers to other agents that have no effect un-
less the offer is accepted by the other agents.® While our analysis is quite
similar in spirit, there are important differences in the inferences in Dutta
and Vohra (2005) and the inferences in our model. In Dutta and Vohra
(2005), the inferences come only from the hypothesis that other agents are
willing to participate in a blocking coalition. In our terms, these are “first-
round” inferences. In contrast, our model also allows agents to make second
round inferences—they may make inferences from the fact that other agents
do not block (which is not the case in Dutta and Vohra (2005)). Our agents
continue, making third-round inferences, and fourth-round inferences, and
so on. In the end, our agents make all possible inferences consistent with the
common knowledge of the stability of the matching. We believe that this
feature, distinguishing our work from the literature, is vital to achieving a
stability notion that both captures a suitably rich process of information
inference and is consistent with existence.

In keeping with our interpretation of stability as characterizing a persist-
ing outcome, we assume that firms know the type of their current partners.
In contrast, it is common in the literature to assume that the market contains
only unmatched agents, with no distinguished pairs that know one another’s
identities, and with matched agents leaving the market to be replaced by
new agents (as in, for example, Myerson (1995)).

Mailath, Postlewaite, and Samuelson (2012b) examine a model in which
a continuum of sellers (the counterpart of firms) and a continuum of buyers
(the counterpart of workers) simultaneously invest in attributes (the coun-
terpart of types), and then competitively match, with payoffs determined
by premuneration values adjusted by a transfer. Seller attributes are public,
while buyer attributes are private. Seller attributes are priced by a uniform
pricing function that, since buyer attributes are private, is independent of
buyer attributes. The equilibrium combines market clearing under uniform
pricing with a pairwise stability notion close in spirit to incomplete infor-

6See Serrano and Vohra (2007) and Myerson (2007) for similar models.
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mation stability. Premuneration values are supermodular and the model
incorporates (the continuum counterpart) of worker types being drawn from
a set of permutations, with no two workers and no two firms having iden-
tical types. In contrast to Proposition 5, however, equilibria in Mailath,
Postlewaite, and Samuelson (2012b) need not satisfy complete-information
stability. In addition to a collection of modeling and technical differences,
it is not assumed in Mailath, Postlewaite, and Samuelson (2012b) that each
seller exogenously knows the attribute of the buyer he is matched with,
though in equilibrium each seller is able to correctly infer the buyer’s at-
tribute. More importantly, sellers in Mailath, Postlewaite, and Samuelson
(2012b) cannot identify the current match of buyers appearing as part of
potential blocking coalitions.

Our notion of incomplete-information stability allows for deviations by
a single pair, but not deviations by larger coalitions. Under complete in-
formation, the restriction to pairwise blocking coalitions is innocuous. Any
outcome that can be blocked by a coalition can be blocked by a pairwise
coalition. Under incomplete information, this is no longer obviously the case.
Expanding the analysis beyond pairwise blocking coalitions would first re-
quire taking a stand on what inferences agents can draw from the hypothesis
that the entire coalition is willing to participate. This would presumably
proceed along the lines off our analysis, though the details are nontrivial.
Allowing larger blocking coalitions stands high on our list of prospective
extensions (along with moving beyond one-to-one matching).

Many of our results will clearly carry over to models that allowed larger
deviating coalitions. If the set of allowed coalitions is increased, more out-
comes will be blocked, and consequently the set of unblocked outcomes
will be (weakly) smaller. However, any plausible stability notion will leave
complete-information stable outcomes unblocked. Thus, our results that
incomplete-information stable outcomes exist and are a superset of complete-
information stable outcomes, as well as that under quite general conditions
incomplete-information stable outcomes are efficient, will continue to hold
when more coalitions are allowed. Similarly, the equal treatment of equals
may still fail, and the continuity of payoffs when there is little asymmetry
of information will hold.

Finally, one might think that an auction-like process could mediate the
matching in our environment, since auctions are a common mechanism for
matching buyers to sellers in one-sided asymmetric information environ-
ments. For example, consider the following setting and second-price auction
mechanism.

Let (wy, we, ...,w,) and (f1, fa, ..., fn) be vectors of worker and firm
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types to be matched, with the firm types being common knowledge and
increasing in index, and the worker types being private information. The
premuneration value for worker type w; matched with firm type f; is w; f;, as
is the firm’s premuneration value. Consider a direct revelation mechanism
defined as follows. Let (wy,so,...,w,) be the announced worker types.
Denote the k" order statistic of the reports by W(x). The direct mechanism
matches the lowest announced worker type with the lowest firm, and charges
the worker a price of p; = 0. The second lowest announced worker type is
matched with the second lowest firm type and charged pa = w(y) - (fo— f1),
the increase that the lowest worker would have had for matching with this
firm. The k*® worker is matched with the k** firm and is charged p, =
W1y (fr — fr—1) + pr—1, that is, the increase in the payoff to the worker
just “beneath” the k*™-worker from being matched with firm % rather than
firm k& — 1.

It is straightforward to show that it is a dominant strategy for workers to
announce their types truthfully. The difficulty is that the this process need
not generate stable outcomes. Consider the case in which workers’ types
are (1,2,3), and firms’ types are (1,1,1). All firms will then be matched
with workers at price 0. But notice that the values to the three firms will
be (1,2, 3), since the firms’ premuneration values depend on the type of the
worker. The combination of firm type 1 and worker type 2 can then form a
blocking pair, as can firm type 1 and worker type 3 as well as firm type 2
and worker type 3.

It is an important component of this instability result that sellers’ pre-
muneration values are nontrivial functions of buyers’ characteristics. There
would be no problem with stability if sellers did not care with which buyer
they were matched.” Interestingly, Google auctions places on webpages to
advertisers, thus operating a mechanism that matches buyers (advertisers)
and sellers (webpage owners). This auction would generate stable outcomes
if sellers received a flat fee for their spots, rendering them indifferent over
the buyers with whom they are matched. However, the sellers’ total revenue
depends on the number of times an ad generates a click, ensuring that the
sellers have premuneration values that are nontrivial functions of buyers’
characteristics. Presumably, this fee structure reflects buyers’ uncertainty
about the quality of the web pages over which they are bidding, protect-
ing them from paying high prices for sites the generate little traffic. In the

"For example, Edelman, Ostrovsky, and Schwarz (2007) analyze a generalized second
price auction, but essentially assume that sellers’ premuneration values are the same for all
buyers, eliminating the reason why auctions in our framework will often generate outcomes
that are not stable.
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process, however, the fee structure opens the possibility that the resulting
outcome will not be stable.

A Appendix: Proofs

A.1 Proof of Lemma 1

Only statement 3 of the Lemma requires proof, the others being obvious from
the definition. Suppose en route to a contradiction that F is self-stabilizing,
but its closure, E, is not. There is then an outcome (i, p, w,f) € E, a pair
of unmatched agents (i, j), and a transfer p’ such that

V(i) £(G) TP > Va(i) £(u(@)) T Piu(i) (A1)
and
Pwi(i),8G) ~ P > Do (u=1()) ) ~ Pu=1().d (A.2)
for all w’ € § satisfying
(u,p,w',f) €F, (A.3)
w/(ut (7)) = w(u~! (), and (A1)
Vwi(i) £(7) F P> V(i) £(u(@) F Pipti)- (A.5)

Since 2 is finite, the set of worker-type assignments that satisfy condition
(A.2)—(A.5) is unchanged for p < p’ but arbitrarily close. Thus, there is a
p” < p/ such that for all p € (p”,p’), the lower transfer p also satisfies (A.1)
and (A.2)—(A.5) for (i,7).

Let p" — p be a sequence satisfying (u, p™, w’,f) € E (recall footnote
3). It is then immediate from (A.1) that there exists an N such that, for all
n > N and all p € (p//,pl), Vw(i)£(5) +p> Ve (i), £(1(i)) + pzu(l)

Since F is self-stabilizing, for all n > N, and all p € (p”,p’), there exists
w’ € Q, such that

Pwi(i),£(G) ~ P = Pw' (=1 (7)),£G) ~ Pu=1()g (A.6)
(Mapawlvf) € E7 (A7)

w (Tt (5) =w(p ' (j), and (A.8)
Vaw'(i),£() TP > V() £(u(3)) T Pipu(i)- (A.9)

Since {2 is finite, there exists w’ such that the above holds for infinitely
many n > N and for two values p; < po € (p”,p’). This yields the desired
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contradiction, since the w’ obtained violates condition (A.2)—(A.5): Taking
limits along the implied subsequence, (A.6) implies that the inequality in
(A.2) is reversed, while (A.7) and (A.8) replicate (A.3) and (A.4), and the
strict inequality in (A.5) holds at po.

A.2 Proof of Proposition 2

(1) We first show X°° contains every self-stabilizing set E. By definition
E c 0. Suppose E C ¥F1 for k > 1, and (u,p,w,f) € E. Since E is
self-stabilizing, (i1, p, w,f) is E-stable, and so is ¥*~!-stable (because ¥¥~!
is a larger set), and so is in ¥ by the definition of ¥*. Induction shows that
E cC¥™.

(2) We next argue that X is a self-stabilizing set. Suppose not. By con-
struction, ¥*° C X0 and so every outcome (u, p, w,f) € £ is individually
rational. Then, there is an outcome (u, p, w,f) € 3°° that is not 3*°-stable.
In particular, there is an unmatched pair (i, j) and transfer p € R such that
(1) and condition (2)—(5) hold for ¥ = %*®. Since (u, p,w,f) € XF is X*-
stable for each k > 0, and ((i, j), p) satisfies (1), for ¥ = ¥¥ condition (2)-(5)
must fail. That is, for each k, Pwk(i) () — P < Pwk(u=1(j)).£) — Pu-1().j for
some w" such that (a) (u,p, w*,f) € TF, (b) wh(u=1(j)) = w(p™ (4)),
and () Vyk@) () TP > Vwk() f(u) T Piu()- Since w” is drawn from
a finite set of type vectors, there is a w* that appears infinitely often
in the sequence {w*};. Since X* is a decreasing sequence of sets, and
(1, p,w*,f) € ¥F for infinitely many k, (u,p,w* f) € N, Xk = £,
Hence, we conclude that ¢y« ¢(j) =P < Gwe(u-1(j)),£(j) — Pu-1(j),j Where
w* satisfies (a) (1, p, w*,f) € £, (b) w*(u" (j)) = w(u " (j)), and (c)
Vawe(i)£(G) T P > Vwe(i)£(u(i)) + Piu@)- Thus, condition (2)—(5) fails for
> = X, the desired contradiction.

(3) We have established that ¥ is the largest self-stabilizing set. Mean-
while, the closure of a self-stabilizing set is self-stabilizing. Hence £°° = 3.

A.3 Proof of Lemma 2
Define

£

P° =V pe + P — Ve €, (A.10)

where ¢ > 0 will be determined later. The first required inequality (6) with
p=p°is

Vit + Vs pr € > Ve + Ve g for any w > w®,

29



which is immediate when w = w*. When w > w*, it follows from the assump-
tion of strict supermodularity (since f > f*). Since (u, p) is an individually
rational matching, v+« + p* > 0. Hence for any w > w*, f > f*, and p°
defined in (A.10),

Vwf +p8 > Vw* f +p€ > Vapx f* ‘H?*a

proving (7).
After substituting for p = p® defined in (A.10), the inequality (8) be-
comes
Vif + Ve fr + € S Vippe + Ve, for any w < w’.

For ¢ sufficiently small, this inequality follows from the assumption of strict
supermodularity (since f* < f). Inequalities (6-8) immediately hold for
P € (Ve pr + D — Vg, 0°]. The proof for the case that w* is unmatched is
similar. |

A.4 Proof of Proposition 3
A.4.1 Preliminaries: An Inductive Notion of Assortativity

We first formulate an inductive notion of assortativity. We write the finite
set of possible worker and firm types as W = {wl,wQ, ...,wK} and F' =
{fl,fz, ...,fL}, with both w* and f¢ increasing in their indices. To deal
with unmatched agents, we introduce the notation f (&) = w (&) = @, with
the conventions @ < w® and @ < f* for any k and ¢. The function f o u
is weakly comonotone with w on I' if £(u (7)) > £(u (")) for all i, € I’
satisfying w (i) > w (¢').

Definition A.1 For 1 < k < K, a matching outcome (u,p,w,f) is kiP-
order worker-assortative if, for all w > w”*, f o u is weakly comonotone
with w on I' = {i : w (i) € {w!,...,w",w}}. For1 < (¢ < L, a matching
outcome (p, p, w, f) is {®'-order firm-assortative if, for all f > f*, wou™" is

weakly comonotone with £ on J' = {j : £ (j) € {f*,.. .,fe,f}}. A matching
(u, p,w,f) is worker-assortative if it is (K — 1)th—0rder worker-assortative;
it 1s firm-assortative if it is (L — l)th—order firm-assortative. A matching
(u, p, w,f) is assortative if it is both worker-assortative and firm-assortative.

Note that the worker-assortativity order is defined in terms of the grand
set of all worker types W, not the ex post realized types; similarly for
firm-assortativity. For example, if w (i) # w! for all 4, i.e., no worker has
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worker types, w:
firm types, f:

Figure 9: A matching that is 1%t-order, but is not 2"-order worker assorta-

tive. There are 4 workers and 2 firms, W = {1,2,3,4} and F = {1,2}, and
workers and firms have different types.

OO T OLL

Figure 10: The two nontrivial 2"%-order worker-assortative matchings for the

environment of Figure 9. The first is worker assortative, while the second is
not.

the lowest possible type w!, then (i, p,w,f) is trivially first-order worker-
assortative by definition. In addition, k*'-order worker-assortativity requires
not only that the k lowest worker types {wl, e wk} are matched with firms
assortatively, but also that any workers with a higher type w > w” are
matched with (weakly) higher firm types. For example, the matching in
Figure 9 is not 2"d-order worker-assortative even though the lowest two
worker types are matched assortatively. Figure 10 displays the two nontriv-
ial 2nd-order worker-assortative matchings.

In addition to the first matching displayed in Figure 10, there is a trivial
worker-assortative matching in which no worker or firm is matched and the
two worker-assortative matchings displayed in Figure 11.

The first matching in Figure 11 is not firm-assortative and hence not
assortative. The first matching in Figure 10, the second matching in Fig-
ure 11 and the trivial matching in which no worker or firm is matched are
both worker- and firm-assortative. Note that our definition of assortative
matching does not exclude the case that all agents remain unmatched. By
Definition A.1, this matching is 3"9-order worker-assortative and 1%-order
firm assortative, and hence assortative. This case is important because if, for
example, vy f = ¢,y = —1, everyone staying unmatched is the only individu-
ally rational, and hence the only efficient, matching. But, if v,y = ¢, r = 1,
this assortative matching is not efficient. In fact, it is easy to see that
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w: w:
f: f:

Figure 11: The two other nontrivial worker-assortative matchings for the
environment of Figure 9.

any assortative matching can be efficient for the appropriate specification of
premuneration values.

The following straightforward observation delineates the difference be-
tween assortativity and efficiency (we omit the proof).

Lemma A.1 Under Assumptions 1 and 2: (a) An efficient matching out-
come (p,p,w,f) is assortative. (b) If an assortative matching outcome
(1, p,w,f) is not efficient, then either there exists a matched worker-firm
pair that generates a negative surplus, i.e., there exists i € I such that
(i) € J and V() g(u-15)) + Pw(i)eu-1G)) < 03 or there exist an unmatched
worker and an unmatched firm who could have generated a positive surplus
by matching together, i.e., there exist a worker i € I and a firm j € J such

that 1 (i) = p=' (j) = @ and vy £() + dw(i)e) > 0-

The following observation is useful in our inductive proofs.

Lemma A.2 A matching outcome (u, p,w,f) is (k+ l)th—order worker as-
sortative if and only if it is k™-order worker assortative and for all w >
whtL, £(p) is weakly comonotone with w on {i : w(i) = w**1, w}. A match-
ing outcome (u,p, w,f) is (£ + l)th—order firm assortative if and only if it is
(" -order worker assortative and for all f > f1, w(p™") is weakly comono-

tone with £ on {j : £(5) = f*L, f}.

Proof. The “only if” parts are immediate by definition. “If’: since (u, p, w, f)
is k*M-order worker assortative, f(u) is weakly comonotone with w on {i :

w(i) € {w',...,wk wkt1}}. Moreover, for all w > wk!, f(u) is weakly
comonotone with w on {i : w(i) = w** w}. If there is a worker i sat-
isfying w(i) = w**!, then it is immediate that f(u) is weakly comono-

tone with w on {i : w(i) € {w',...,w* wF" w}}. Suppose then that

w(i) # wkt! for all i € I. Then, for all w > w**! f(u) is trivially
weakly comonotone with w on {i : w(i) = w*™!, w} for any f. Nonetheless,
since (u, p,w,f) is kth-order worker assortative, we immediately have that
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(p, p, w, ) is (k + 1)"-order worker assortative, since for all w > w**!, the
sets {i : w(i) € {w!,...,w* w}} and {i : w(i) € {w',..., 0" w1 w}}
agree. The proof for firm assortativity is identical. ]

A.4.2 Completion of The Proof of Proposition 3

Worker-Assortativity. Without loss of generality, assume the true type
assignment (w,f) is such that w: {1,...,n} - W and f: {1,...,n} — F are
weakly increasing. Thus players with lower identities have lower types. (We
still need to keep in mind that the firms do not know w.)

We use an induction argument, based on the following two lemmas.

Lemma A.3 If (u,p,w,f) € X!, then (u,p) is first-order worker assorta-
tive under (w,f).

Proof. Suppose to the contrary that (u,p,w,f) € X! yet it is not first-
order worker assortative. Then by definition, f(x) is not comonotone with w
on {i: w(i) € {w!,w}} for some w > w'. That is, there exist two workers,
say 1 and 2, such that w (2) > w (1) = w! but f(u((2)) < f(u((1)) # @.

Claim A.1 If (u,p,w,f) € X!, then u(2) # 2.

Proof. Suppose not, i.e., u(2) = @. Since (i, p,w, ) € X°, worker 1’s
individual rationality in the matching outcome (u, p, w, f) implies that
the payoff of firm 1 (1) in this matching outcome is bounded above by
the total surplus generated, ’R’/{(l) < Vit £(u(1)) T Pt £(u(1))-

Consider the worker-firm pair (2,1 (1)) with a transfer p. By Lemma
2 (taking w* = w(2) and f = f(u) (1)), there exists € > 0 such that
for —vw(@),e(u(1) <P = —Vw),£(u) +&

Vg 1)+ >0, for any w > w (2), and (A.11)
Vi g(u)(1) TP <0, for any w < w (2). (A.12)

Worker 2 is better off because he gets a positive payoff, from (A.11);
firm p (1) will assign probability 1 that the deviating worker’s type is at
least w(2) because of (A.11) and (A.12). Hence, the expected payoff
of firm 4 (1) in this deviation is bounded below by ¢y, 2) £(u1)) — P-
By taking p close to —vy(2)(u)(1), this lower bound can be made
arbitrarily close t0 dy(2) £(u(1)) T Vw(2),£(u(1))- Since w(2) > w', strict
supermodularity implies that ¢ (2) £(,(1)) T Vw(2)£(u(1) > V! f(u(1)) T
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Put £(u(1)) = wf (1) Hence (2,14 (1)) forms a blocking pair with price p.
This contradlcts the assumption that (u,p,w,f) € B! d

Claim A.2 If (u,p,w,f) € B!, w(2) > w(l) = w!, and f(u(2)) <
£ (1)) # 2, then

Dw(2),£(u(1) T Yw(@)£u(1) < Vw(@)£u(2) T P2u@) T Pt f(u(1)) — PLu(1)-
(A.13)

Proof. By Lemma 2, worker 2 can credibly reveal his type being at
least w (2) by approaching firm u (1) with a transfer

P = Vw(2),£(u(2) T P2,u2) — Vw(2),f(u)(1) T &

for some small € > 0.

Since (p,p,w,f) € 1, firm p (1) rejects worker 2 and p. That is, the
firm would be worse off in the new match. Hence,

Puw(u(1)) = P < Put £(u(1)) — P1u() for some w >w(2). (A.14)

Since qbwf is increasing in w and f, the statement in (A.14) holds if
and only if

Pw(@)£(u(1)) ~ P = Pwl £(u(1)) ~ PLu(1)-
Substituting for p,

Pw(2).£u(1) — (Vw(@).£(u(2)) + P2u(2) — Vw(2) £(u(1)) T €)
< Owl £(u(1)) — P1u(1)
implying (A.13). O

Claim A.3 If (u,p,w,f) € 1, w(2) > w(l) = wl, and f(u((2)) <
f(pu (1)) # @, then

Vur £(u(2) T Gut #u2) < (Vat 161)) + PLuw) + (w2 £(u2)) — P2u@)-

(A.15)

Proof. If the inequality in (A.15) did not hold, we can find ¢ € R
such that

Vwl f(u(2)) T4 > Val (1)) T P1u(1) and (A.16)

Pt (u(2)) — 4 > Pw(2),£(u(2)) — P2,u(2)- (A.17)

34



Since b is increasing and w! is the smallest type, (A.17) implies that

i Gy, £((2)) ~ 4 > Pow(2) £(u(2)) ~ P2u(2)- (A.18)
Hence, (A.16) and (A.18) imply (1, (2)) is a blocking pair, contra-
dicting (u, p,w,f) € BL. O

Finally, we combine Claims A.2 and A.3. Adding the two inequalities,
we obtain

(Vi £(u() + Vw@ s 1)) + (%l,f(um)) T ¢w<2>,f<u<1>>)

< (Vur f(u() + Vw) d(u2) + (%l,f(u(l)) + ¢’w<2),f(u<2>>) :

Recalling that w! < w(2) and f(1(2)) < f(u(1)), this inequality contradicts
strict supermodularity. ]

Lemma A.4 For any k > 1, if (u,p,w,f) € Z*, then (u,p,w,f) is k-
order worker assortative.

Proof. We proceed by induction. Suppose the claim holds for k£ > 1 (from
Lemma A.3, the claim holds for £ = 1). Suppose to the contrary that
(p, p, w, f) € X¥1 and (i, p,w,f) is not (k+1)*-order worker assortative.
There then exist two workers ¢ < 4’ such that worker i’s type is w (i) =
whtl < w(i') and f(u (7)) > f(u (7). The proof of Claim A.1 shows (with
obvious modifications) that u(i') # @.

Claim A.4 If (u,p,w,f) € S w(i) = wFt! < w () and f(u(i)) >
£(u (7)), then

Vaw(ir),£(u(3)) T Pw (i), £(u(i)) < V()£ (i) T Piru@r) T Pw(i) £(u(i)) — pé’ﬁ(i{ -9)

Proof. By Lemma 2, worker i’ can credibly and profitably reveal his
type as being at least w (i') by approaching firm p (i) with a transfer

P = V(i) f(u(i)) T Pitu(ir) =~ Vw(ir)f(u(i) T &

for some small € > 0. Since (u, p, w, f) € S+ (/) 1 (i) together with
p cannot make firm p (i) better off for any consistent belief. Hence,
there exists w > w (i') such that

Put(u() ~ P = Pw(i)£(u() ~ Piu(i)-

35



By monotonicity of b and w (i) < w (i) < w, we have

Pw(i"),£(u(5) ~ P = Pw() £(u(s) ~ Pipu(i)-
Substituting for p, we get (A.19). O

Claim A.5 If (u,p,w,f) € SF1 w (i) = wht! < w (i) and f(u(i)) >
f(u (i), then

V(i) £(u(i)) T Pw (i) £(u(ir)) < Vw(i)£(u(i) T Pipti) + Pw(in) f(u(ir)) — pi’,(uA(i’% -0)

Proof. Suppose to the contrary that the claimed inequality does not
hold. We can then find ¢ € R such that

V(i) £(u()) T4 > Vw(i) f(u(i)) T Pip@) and (A.21)
Pw(i),£(u(i")) — 4> Pw(ir) (i) ~ Pt ulir)- (A.22)
By monotonicity of b, (A.22) implies
k+1
(A.23)
By the induction hypothesis, ¥ only contains outcomes that are k-

order worker assortative. Consider the following set of worker type
assignments:

¢w,f(,u(i/)) —q> qbw(i’),f(,u(i’)) — pi’,u(i’) for all w >wW (Z) =w

Q= {W/ e (,u,p,w’,f) eyt w (z') =W (z') ,
Vw! (i) £(u(i')) T4 > Vw! () £(u(5) T Pi(i) }

For any w' € @/, we have w’ (i) > w**!. To see this, suppose to

the contrary that w' (i) < w”. By assumption, w' (i') = w(i') >
whtt > wk and f(u (i) > f(u(i')). But then w' (i') > w'(i), while
f(u (i) > £(pu (7)), and so (u, p, ', f) is not k*'-order worker assorta-
tive, contradicting the assumption that (u, p, w’,f) € X

It then follows from (A.23) that

UL Qo () £(pu(it)) ~ 9 > Pw(r). £(uli')) ~ Pir pu(ir)- (A.24)

w’'eQ

Hence, from (A.21) and (A.24), the unmatched pair (i, u (') at trans-
fer ¢ can form a blocking pair. A contradiction. |
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Summing (A.19) and (A.20), we have

(Vw (i) £u(i)) F Vw(i) d(u(r))) + (¢w<z">, )+ P )))
< (Vw(@) b)) + Vwii) (i) + <<f’w(z ) + Pl (7))
contradicting strict supermodularity. ]
Assortativity.

Lemma A.5 If (u,p,w,f) € ¥°°, then it is assortative.

Proof. From Lemmas A.3 and A.4, we have the worker assortativity of
(1, p,w,f). If it is not firm assortative, then we can find two firms with
different types, say firms j and j/ with f (§) < £ (j), such that w(u=! (5)) >
w(p=t(§). If u=t (') # @, worker assortativity is violated. Hence, u~1 (j') =
.

From Lemma 2 (taking w* = w(u~! (), f* =f(j), f = f(j'), and p* =
Pu-1(j),), if worker u ~1(4) proposes a price p = Va(u—1().£G) T Pu-1()j —

y . y

Vw(u—1(j))£(j) + € for small ¢ > 0 to firm j', and if firm j" accepts the
proposal, then worker ;! (5) is better off and can prove that his type is at
least w (1=t (4)). That is,

V() TP > VuwtG) T Pu-1().» for any w > w(;fl (7)), (A.25)

Vit + P =0, for any w > w(u "t (4)), (A.26)

V(i) TP < Vwt(j) T Pu-1() for any w < w(p =t (5)). (A.27)
It remains to argue that firm j’ indeed finds it profitable to accept this
proposal (so that ( 1) ,j’) can form a blocking pair). Since ¢, is
strictly increasing in f, we can choose € such that 0 < & < ¢y (,-13j)).£(j1) —
Pw(u-1(j)),£()- As worker ~1(4) can credibly signal that his type is at least
w(u 1(4)), the payoff to firm j’ from this proposal is bounded below by

Pw(u=1())£(") ~ P
= Pw(u=1()),£(G) ~ Ywln— (G))£06) ~ PutG)g T Vw16 ~ €
> w1 ()).£G) ~ Yl (D)EG) ~ Pum1()d T Vw1 ()40
> Pw(u1()).£G) ~ Pu1().d
>0,

where the three inequalities follow from substituting the upper bound of
€, the monotonicity of v,,r, and the individual rationality of the candidate
matching.
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Efficiency. Suppose (u,p,w,f) € £ is not efficient. Then by Lemma
A.1, there are two cases.

(1) There exists i € I such that pu (i) € J and V() g(u-1(0) T Pw(i) £(u-1 ) <
0. This clearly violates individual rationality.

(2) There exist a worker ¢ € [ and a firm j € J such that p(i) =
p 1 (j) = @ and Vw(i)£(j) T Pw(i)£(j) > 0- In this case, suppose worker
i proposes a transfer of p = —vy ;)¢ + € to firm j, where € > 0 is to
be determined later. Hence vy ¢y +p = € > 0. If w (i) is the lowest
worker type among W, then this transfer will make both the worker and firm
unambiguously better off if € < vy (i) £(j) + Pw(i) £(j)- If W (4) is not the lowest

type, take £ < min {¢>w<z‘>,f<j) F V(i) £()s Vw (i) ) — MAXw<w(i) Vw,fo)} - By
monotonicity, for any w < w (),

Vwt(j) TP = Vwt(j) ~ Vw(i)f(j) T €

< Vwt() ~ Pwli)£6) T VwG) T 0K Vo t()

= YutG) T 28 Veto)

<0.

So firm j will believe the worker has a type of at least w (i) , and will expect
a payoff bounded below by

Pw(i).£(j) — P = Pw(i)£(j) T Vw(i).£(j) — € > 0-

Hence, (i, j) form a blocking pair.

This completes the proof of Proposition 3. |

A.5 Proof of Proposition 4

Suppose to the contrary, that there exists € > 0 such that for any integer
n > 0, there exists Q" C &1 (w) and (p",p™, w", f) € £ (2") such that

(u", p" W™, f) & & (m (5% ({w}))) -

We denote by ||-|| the Euclidean metric. Notice that [|[w" — w| — 0 as
n — oo. Hence, the boundedness of {w"} and the individual rationality
of (u",p™,w", f) € £°°(Q") imply that the sequence {p”} is bounded.
Notice also that ||(u”,p",w, f) — (u",p", w", f)|| = 0 as n — oco. Since
(u™,p™, W f) & & (m (2% ({w}))), it follows that for sufficiently large n,

™ (", p"w, f) ¢ £ (m (X% ({w}))) - (A.28)

38



Since there is a finite number of possible matchings, at least one (denoted 1)
appears infinitely often in the sequence. Taking a subsequence if necessary,
we may assume u'* is constant, equal to u, and p” converges to some limit,
denoted p. We then have from (A.28) that = (u,p,w,f) ¢ 7 (X ({w})),
that is, (i, p, w, ) is not complete information stable.

Since individual rationality is satisfied along the sequence, it is trivially
satisfied in the limit. Since (u,p,w,f) is not complete information stable,
there is a pair (7, j) together with a price p € R such that

Vw(i) () TP = Vw(i)t(u() T Piu(i):
Pw(i)f() ~P > Pw(i)(u(i)) ~ Pin(i)-

Then by continuity there exists integer N1 > 0 such that

Vw(i) () TP = Vw(i)t(u@) T Piu(i):
Dwi()£G) — P > Pwi(i)f(us)) — Pipug) for any w' € R (w).

Further by continuity, there exists integer No > 0 such that if n > N,

Vwr(i)£(j) TP > Vwe(i)e(un() T p?,u"(i)’
Swi(i) £G) =P > Pwn(i) f(un(i)) ~ Piynge) for any w' € €1 (w).

Takes n > max {1, Na} . Then,

Van(i)£(G) TP > Vawn(a) £(un () + Piun i)
¢w’(i),f(j) -p > ¢Wn(7;)7f('un(z‘)) — pZun(i) for any w e Q" C fNil (W) .

Therefore, (u™,p"™, w", f) ¢ X (2"). A contradiction. [ |

A.6 Proof of Proposition 5

If different firms have different types, then from Lemma A.5, the worker type
assignment w is common knowledge, and incomplete information stability
trivially coincides with complete information stability.

Suppose different workers have different types and several firms share
the same type f. Write f~! (f) as this set of firms. We claim that Pu-1(j),j
is different for each j € f=1 (f).

Define

j1 = argminw(u~" (),
Jef=1(f)
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and for 1 <k < |[£71(f)

je= argmin  w(p ! (j)).
Jef~ O\ dk—1}
Note that because no two workers have the same type, firm j; knows the
ranking of worker =1 (ji): the worker p~! (j) is the k'™ worst among those
who match with some firm in the set f~1 (f). Firm j;’s profit is

T = Pw(u=1(r))£Gr) ~ Pru0ix)-

We proceed by induction.

Step 1. pP,-1(j1),j1 < Pu-1(j),j. for any k> 1.

Suppose to the contrary p,-1(;,)j; = Pu-1(j,).j, for some k > 1. Then
mj, < mj, because b is strictly supermodular and firm j; is matched with
a strictly worse worker type than firm j;. Then (;fl (Jk) ,jl) can form a
blocking pair with a transfer p,-1(;,) ;. + €, a contradiction.

Step 2. Fix k£ and assume for the purpose of induction that for some
U< k-1, Pu-1(j0)je < Pu-1(j).jp for any 1 < £ < ¢'. Therefore, everyone
knows that the subset of firms in £~! (f) who are matched with the worst ¢

!
workers have the lowest ¢’ transfers. Suppose P10y i1 ) 2 Pu—1(n)jn-
Then (,u_l (Jk) ,jgurl) with transfer p,-1( + ¢ form a blocking pair.

Therefore, P,-

Jk)>Jk
Yo )dres ~ Pt (Gn)di

Step 3. The induction argument in the first two steps establishes that
Pu-1(j),j 18 strictly increasing in k. Therefore, firms know that high type
workers get strictly higher transfers from the set f~! (f) in an incomplete
information stable matching, and hence there is no uncertainty about the
types of workers employed by £=! (f).

Hence once again worker type assignments are common knowledge. M
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