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Abstract

The paper analyzes dynamic principal-agent models with short period lengths. The two
main contributions are: (i) an analytic characterization of the values of optimal contracts in
the limit as the period length goes to 0, and (ii) the construction of relatively simple (almost)
optimal contracts for fixed period lengths. Our setting is flexible and includes the pure hidden
action or pure hidden information models as special cases. We show how such details of the
underlying information structure affect the optimal provision of incentives and the value of the
contracts. The dependence is very tractable and we obtain sharp comparative statics results.
The results are derived with a novel method that uses a quadratic approximation of the Pareto
boundary of the equilibrium value set.

1 Introduction

While the problems of dynamic incentive provision are central to economics, existing methods
typically do not provide tractable analytic solutions. In the paper we will consider dynamic con-
tracting problems in which a risk neutral principal interacts repeatedly with a risk averse agent
under asymmetric information. These are benchmark models in labor economics, corporate finance
(CEO compensation and optimal capital structure), and the literatures on optimal dynamic in-
surance and taxation. We develop a discrete-time method that allows us to solve such problems
analytically for a range of contracting environments. We thus also obtain sharp qualitative re-
sults about optimal dynamic incentive provision and its dependence on the underlying information
structure.

Our models feature frequent decisions and information arrival (“short period length”), with
public signals whose variance is large compared to the contribution of the agent’s actions. We
have in mind situations such as incentivizing the CEO of a company with shares traded on a stock
market. The class of models is permissive regarding the precise nature of information structure
and distribution of revenue in each period. It embraces, as extreme special cases, pure hidden
action models, when the agent acts at an ex-ante stage and has private information about his own

action only, and pure hidden information models, when the agent acts conditionally on the “noise”



realization. Respective cases in point are devoting effort to develop a risky project, and diverting
funds from realized cash-flow.

More precisely, for each fixed information structure, we look at a sequence of models with
shrinking period length. The period length affects the per-period payoffs as well as the variance
of the public signals (see Abreu, Milgrom, and Pearce [1991]). On one hand, in a certain sense
(explained below) all the sequences of models we consider converge to the same limit. On the
other hand, each sequence corresponds to a qualitatively different information structure. First,
information structures may differ in the distribution of the public signal and how informative the
signal is about the agent’s action. Moreover, they may differ in the amount of private information
that the agent receives, as in the pure hidden information and pure hidden action models mentioned
above. While the differences are crucial for the design of incentives in the standard static models,
it is not a priori clear whether and how they should affect the design of incentives in the dynamic
model with short period lengths.

In the paper we develop what we call a quadratic approximation method to solve those dynamic
contracting problems in the following sense. First, for any type of information structure, we char-
acterize the limit of the Pareto frontier of value sets achievable by incentive compatible contracts,
as the period length shrinks. Second, we construct relatively simple suboptimal contracts, whose
values converge to the Pareto frontier as the period length shrinks. Third, we show that the limit
values and the contracts depend on the precise nature of the underlying information structure. The
dependence is very tractable and preserves many qualitative features of the static models, which
facilitates comparative statics analysis.

In the model, a risk neutral principal and a risk averse agent sign a fully enforceable contract at
time zero. Once the contract is signed, in every period the timing is as follows: 1) the agent observes
a private signal and then chooses a costly action, 2) both the principal and the agent observe the
revenue realization that depends on the agent’s action and noise, 3) the principal compensates
the agent. The information structure is fully specified by a joint distribution of the private signal
and noise, rescaled to account for the period length. For example, the pure hidden action model
corresponds to the case when the private signal is completely uninformative of the noise, whereas
in the pure hidden information case, the private signal is the same as the noise realization. The
contract specifies the agent’s consumption for each period contingent on the history of past revenue
realizations.

Following standard dynamic programming methods (see Abreu, Pearce, and Stacchetti [1986,
1990] and Spear and Srivastava [1987]), the contracts can be described with the agent’s continuation
value as a state variable. The continuation value promised last period fully determines the current
period action, contingent on the private signal, as well as consumption and new continuation value,
contingent on revenue. In order to provide incentives to exert costly effort, the consumption and
continuation value must respond to revenue and reward the agent for good outcomes, whereas on
the other hand such volatility is inefficient and imposes a “cost of incentives”, given the agent’s
risk aversion. Thus, the model features a tradeoff between dynamic insurance and incentives. The
optimal contract resolves this tradeoff and regulates how incentives are provided in the course of
the agent’s career.

Our method for solving the problem comprises two steps. The first step consists in solving a
family of static problems. Given a mean effort and mean cost of effort, roughly, we look for an action



scheme with those parameters and a scheme of continuation value “transfers” with minimal variance,
which provide local (first-order) incentives for exerting effort. The problem is closely related to
possibly the simplest instance of a static principal-agent problem with incentives-insurance tradeoff,
in which the agent has mean-variance utility of consumption. For a short period length, it turns
out that the per period cost of incentives is proportional to this variance, for a given mean effort
and cost of effort. Also, the variance depends on the information structure: intuitively, it is low in
the case when the revenue is statistically informative of the agent’s action. For example, in some
extreme cases when each action gives rise to a different support of revenues, any deviation can be
statistically identified and the variance is zero.

The second step consists in solving a Hamilton-Jacobi-Bellman (HJB) differential equation,
with the variance of incentive transfers as a parameter. The function F' solving this equation
provides the principal’s value F'(w) for the optimal static contract that delivers a given value w
to the agent, absent information problems but with explicit cost of incentives, proportional to
the variance of incentive transfers. Except for the variance of incentive transfers, the equation is
familiar from the continuous-time dynamic programming models (see Sannikov [2007, 2008]). For
example, the function that gives the principal’s value for the first best optimal contracts (absent
any informational problems) solves this equation with the cost of incentives zero.

In the paper we show that the differential equation describes the limit of the values of the
optimal contracts, while the policy functions of the two steps can be used to design relatively
simple and essentially optimal discrete time contracts.

All the models we consider, independently of the information structure, approximate in distri-
bution the same continuous-time model, in which the agent controls the drift of a noisy revenue
process that follows Brownian Diffusion. Nevertheless, the limit solutions are sensitive to the in-
formation structure. The solutions depend on the variance of incentive transfers, which in turn
depends on the information structure, parametrized by the distribution of signals. With the com-
parative statics of the contracts reduced to the analysis of static incentive problems, we illustrate
how the contracts and their values respond to changes in the “noise” distribution or amount of
private information the agent receives. For example, restricting attention to the pure hidden action
models when the agent has no private information about the environment, the value of the con-
tracts depends on a single and readily computed parameter of the noise, the variance of likelihood
ratio. Or, fixing the distribution of revenues to be normal, the case when the agent has no private
information about the environment (pure hidden action) results in the most inefficient contracts.

We may compare our results with the optimal contract and its value in the model formulated
directly in continuous time (Sannikov [2008], see also Williams [2009]). As regards the value, it
agrees with the limit of values for a particular class of information structures, namely pure hidden
action models with the variance of likelihood ratio as in the normal distribution. In this sense, we
provide a justification of the existing continuous time model. However, the limit is different and
new to the literature if we go beyond the pure hidden action case and allow agent some private
information about the noise, or just change the variance of likelihood ratio.! For example, for the
same variance of the revenue, a double-exponential noise results in strictly more efficient contracts,
while for some finite support distributions the optimal contracts achieve the first best.

While Williams [2009] considers continuous time models with private information, the models do not allow private
information about the signals in the current period.



The relationship with the optimal continuous-time contract itself (as opposed to its value) is
even more delicate. In the case when the values converge to the value of the optimal continuous-
time contract, the optimal discrete time contracts converge weakly (in distribution) to the optimal
continuous time contract. Nevertheless, the discrete-time contracts must be sensitive to the pre-
cise details of the noise distribution. For example, a normal distribution requires contracts with
continuation values responding linearly to the revenue realizations (see for example Holmstrom
and Milgrom [1987]), while for the double-exponential distribution the continuation values take
only two values, with the cutoff at a certain revenue level. There is no single contract that would
be approximately optimal for both kinds of distributions.? In this sense, the optimal continuous-
time contract does not contain enough information to construct approximate optimal discrete-time
contracts, no matter how short the period length.?

While we use our quadratic approximation method on a particular class of principal-agent
models, we are convinced that its range of applicability is much broader. In the paper we discuss
three extensions. First, the period length might affect the information structure differently. This
case includes environments where the information structure is independent of period length, as in
Folk Theorem analysis, when we recover the Folk Theorem result as a special case. Second, we
look at the case when the agent’s action affects not only the mean of the revenue distribution, but
also higher moments. Third, we look at a different type of preferences, in which the cost of action
to the agent is expressed not in utility, but in monetary terms.

As mentioned above, our results rely on the parametrization of the dynamic contract by the
agent’s continuation value (Abreu, Pearce, and Stacchetti [1986, 1990], Spear and Srivastava [1987]).
This insight leads to a method for computing the optimal contracts (Abreu, Pearce, and Stacchetti
[1990]), or more generally Pareto efficient Perfect Public Equilibria, for models with a fixed period
length based on the value iteration technique. Phelan and Townsend [1991] show a related method
to compute optimal contracts based on the iteration of a linear programming problem. While those
approaches are flexible and applicable to a wide variety of problems, they are computationally
intense and do not yield analytical solutions. This hinders the comparative statics analysis of how
the information structure affects the solutions.

One way to restore analytical tractability is to focus on models with patient players (Radner
[1985], Fudenberg, Holmstrom, and Milgrom [1990]). This is equivalent to considering models with
short period length, where the period length parametrizes the stage game payoffs, but not the
information structure. While this simplifies the analysis, the models have the feature that in the
limit, as the period length shrinks, the informational frictions disappear (“Folk Theorem”). Abreu,
Milgrom, and Pearce [1991] suggest a more realistic approach where increasing the frequency of
actions also affects the information structure. In our benchmark model, short periods come with
high variance of public signal, which in particular exacerbates the informational problems and

2There is no contradiction between the weak convergence and the fact that no single contract “works” for different
noise distributions: all it establishes is that the notion of weak convergence is very weak.

$While the results seem to have a flavor of lack of lower hemicontinuity, we would like to treat the statement
with a grain of salt. The interpretation is sensitive to which models we consider as being close, i.e., the choice of a
topology. The interpretation is correct if one treats weak topology over the models as the right one. We would like to
stress that our results are independent of those interpretational issues: we provide full characterization of the limits
of the optimal contracts and their values for a range of underlying information structures, whether one interprets the
models as convergent or not.



prevents the first-best outcome from being achieved in the limit.

On a technical level, Matsushima [1989] established efficiency results and Fudenberg, Levine,
and Maskin [1994] the Folk Theorem for patient players by decomposing continuation values on
hyperplanes tangent to the (Pareto frontier of the) set of achievable values. Our method bears a
close resemblance to this approach, where we use quadratic instead of the linear approximation
of the frontier. The more precise approximation is required by the richer class of processes of
public signals we consider. Moreover, the curvature of the boundary is proportional to the cost
of incentives; when the process of signals is such that the linear approximation is appropriate, we
recover as the special case the result of costless provision of incentives, i.e. Folk Theorem, in our
restricted setting of principal-agent problems (see Section 3.1).

Hellwig and Schmidt [2002] is among the first papers to provide an upper hemicontinuity result
linking the solutions of discrete-time and existing continuous-time models. It presents a sequence of
discrete-time models whose optimal policies converge to the optimal policy of the continuous-time
principal-agent model by Holmstrom and Milgrom [1987], in which the agent has CARA utility
function and is compensated only at the end of the employment period. Biais, Mariotti, Plantin,
and Rochet [2007] established such an upper hemicontinuity result for the principal-agent model
of diverting cash-flows by Demarzo and Sannikov [2006], in which the agent is risk-neutral and the
efficiency cost from diverting funds is linear, by looking at sequences of binomial revenue processes.
Sannikov and Skrzypacz [2007] considers a more general framework of games and limit processes
that are an arbitrary mixture of Brownian Diffusion and Poisson processes, and show convergence
of the solutions for discrete time games with normal noise and pure hidden action structure, in the
case of arbitrarily patient players. Our upper hemicontinuity results are rather general, making no
appeal to CARA, infinite patience, risk neutrality of the agent or linearity of costs.

In the opposite direction, Muller [2000] illustrates that, in the context of the model by Holm-
strom and Milgrom [1987], for a particular sequence of models the limit of the solutions might
disagree with the solution of the continuous-time limit model. For a reputation game with one long-
lived player, Fudenberg and Levine [2009] established an analogous result, comparing sequences of
models with different numbers of aggregated signal realizations within each time period. The tech-
niques used for the case with one long-lived player, where the Pareto frontier is a point and the
optimal policy is stationary, seem to be particular to this setting. By contrast, we look at a broad
class of information structures well known from the static incentive literature, and obtain sharp
and unified characterizations based on the variance of incentive transfers. We also expect that our
method of deriving limit values and essentially optimal contracts (equilibria, or policy functions)
based on the quadratic approximation of the Pareto frontier is applicable in general settings, and
in particular when the frontier is multi-dimensional and optimal contracts nonstationary.

2 Model

2.1 The Agency Problem

A risk neutral principal contracts with a risk-averse agent. The principal offers the agent an
infinite contract specifying a contingent payment for each period as a function of the history of
output (gross revenue) in past periods. If the agent accepts it, the contract becomes legally binding



and cannot be terminated by either party. In every period of length A, the timing is as follows. The
agent observes a private signal about the random shock affecting output in the current period, and
then chooses an action (effort). The agent’s action and the random shock determine the output,
which is realized at the end of the period. The principal pays the agent after observing the output
and the agent consumes his compensation (the agent can’t save or borrow). Note that both the
agent’s signal and action are his private information, whereas output is publicly observed. Though
the agent’s actions are unobservable, the principal and the agent also implicitly agree to a full
contingent action plan for the agent. Finally, note that we do not allow communication between
the agent and the principal.

The agent’s per period utility is given by Afu(c) — h(a)], where a € A and ¢ > 0 denotes his
consumption. The agent’s action and consumption are stated in flow units.* The consumption
utility function v : Ry — R is twice continuously differentiable, strictly increasing and strictly
concave, with u(0) = 0 and lim..o u(c) = @ < oco. The agent’s action space is a closed interval
A C R with 0 € A and right endpoint A. We consider two cases below, either A = [0, 4] or
A = (—o0, A]. The cost of effort function b : A — R is continuous and its restriction to positive
actions is strictly convex, strictly increasing and twice continuously differentiable, while h(a) = 0
for all @ < 0. We also assume that there exists v > 0 such that h(a) > ~ya for all @ > 0. In addition,
we assume that h/(04+) < u/(0), so absent asymmetric information it is efficient to have the agent
exert positive effort.

The principal’s per period payoff is Alz + a — ¢|, where x is a random shock, a is the agent’s
action and c is the agent’s compensation, again in flow units. We will interpret y = Alzx + a] as
the output realization. Both the principal and the agent discount future payoffs by the common
discount factor e~™2, where r > 0 is the discount rate.

Let z, denote the agent’s private signal realization in period n. We assume that (z,,z,)
are randomly distributed and {(x,,z,)} are i.i.d. We consider two settings: (i) the absolutely
continuous case where the conditional distribution of z,, given z, has a density gfq 4 (n|2,) and

2, has a distribution G2 (z,,); and (ii) 2z, = ¥, and the distribution of x,, has density g% (z,).
We assume that E*[z,] = 0 and V2[z,] = 62/A. The length of the period A parametrizes these
densities because we assume that the quality of the signals (the inverse of their variances) increases
with A. Later we make precise assumptions on how these distributions vary with A.

Case (i) includes the standard “hidden action” agency model in which z, is completely un-
informative about z,. Case (ii) corresponds to the “pure hidden information” model where the
agent knows exactly the output that will be produced as a function of his own action. We will also
investigate intermediate models where, for example, GA(xn, zn) is a binormal distribution with a
positive correlation between x,, and z,.

2.2 The Principal’s Problem and Important Curves

A contract is a process {c,} that for each period n specifies the agent’s compensation ¢, as a
function of the history of outputs (yo,...,yn). A plan for the agent is another process {a,} that

4While our interpretation that consumption, which in principle depends also on the current period’s output, flows
during the duration of the period seems inconsistent, it is an indirect corollary to our results that consumption
independent of current output is with no loss of generality when the period length is small - see the next Section.



specifies the agent’s action in each period n as a function of the history (2o, yo,-- -, 2n—1, Yn—1, 2n)-
Since the principal’s contract does not depend on the agent’s private signals and signals across
periods are independent, there is no loss of generality in restricting action plans so that a, is a
function of (yo,...,Yn—1, 2n) only.

The principal’s expected discounted revenue for a contract-action plan pair ({c,}, {a,}) is

I({cy}, {an}) = FEA [Z e A (yy — Acy) | = FAE® | e A" (ay — cn)] ,
n=0 n=0

while the agent’s expected discounted utility is

U({cn}, {an}) = FAEA

Yo (ulen) —h (an))] :

n=0

where the factor 7 is such that fA = 1 — e~ and normalizes the sums so that FA Y e 4" = 1.5
The action plan {a,} is incentive compatible (IC) for the contract {c,} if for any other plan {a/,},
any N and any realization (yo,...,Yn—-1,2N),

EA Z e_TAn (u (Cn) - h(an)) ‘(yoa"'aleazN)]
n=N
> EA Z e—'rA'n, (u (Cn) —h (a",n)) ‘(y07 s 7leyzN)] :
n=N

For a given w, the principal’s problem consists of finding a contract-action plan {c,}, {a,} that
maximizes his expected discounted revenue among all the incentive compatible plans that deliver
an expected discounted utility w to the agent. For any w € [0,a), let F*(w) be the principal’s
value from an optimal IC contract-action plan,

F2(w) = sup {I({en}, {an}) | {an} is IC for {e}, U({cn}, {an}) = w}.

A wage contract specifies for each period n a compensation that does not depend on the current
output y,,. That is, {¢,} is a wage contract if for each period n the agent’s compensation ¢, only
depends on the history of outputs (yo,...,yn_1). Let FA¢ : R, — R represent the principal’s
value from an optimal IC wage contract-action plan. An indirect implication of our main result
(see Lemma 13) is that when A is small, the loss from only allowing wage contracts is small:
FAC (w) T FA(w) as A — 0, uniformly in w € [0, ).

We also define F' (w) as the principal’s value for an optimal feasible ( “first best”) contract-action
plan (not necessarily IC). It is easy to see that such a plan is stationary, and so F (w) is just equal
to the value of an optimal feasible one period contract-action pair:

F(w)znéix{afdaefl, c>0, u(c)—h(a)=w}.

®Note that ¥ — 7 as A | 0.



One can show that F satisfies the following ODE:
F(w):n;%x{(a—cwf’(w)(wmm)—u(c))}. (1)
Finally, let F' : [0,7) — R be the retirement curve. That is,
E(w)=—u"" (w).

Continuation values (w, F'(w)) with w € [0,u) are attained by wage contracts that pay the same
¢n = F(w) in every period (regardless of history), when the agent chooses action a, = 0 in every
period. Since such wage contract-action plan is IC, F» > F.

P

Figure 1: Value functions.

Notice that
FA(0) = FA<(0) = 0.
This follows from the limited liability constraint ¢ > 0 and « (0) = h(0) = 0: since the agent can
always deviate to exerting no effort, the only way for the agent to receive an expected discounted
utility of zero is for the contract to pay zero in every period.® Also, there exists Wgp € [0, ) such
that F(wsp) = F(Wsp) and F(w) > F(w) for all w < wsy. This is because if the agent must receive
high expected utility, exerting any positive effort by the agent is too costly for the principal (see
Spear and Srivastava [1987], Sannikov [2008]).”

b Assumption (A2) below guarantees that if agent gets a strictly positive expected continuation value when taking
a strictly positive effort (which compensates him for the cost of effort), then he would also get a strictly positive
expected continuation value from no effort.

"Formally, marginal cost of effort is bounded below by v > 0 for positive actions while marginal utility of con-
sumption converges to zero as consumption increases. This excludes any interior solution for F(w) for sufficiently
high w since such solution must satisfy h'(a) = u'(c), for ¢ > u~" (w) such that u(c) — h(a) = w.



Altogether, for any A > 0 we have F < F&¢ < F

FA < F (see Figure 1). In particular, this
implies that there exist a minimal agent’s value wsAp, 0<w, <w

sp> such that:

F3(wy) = F(wg):

2.3 Frequent Actions: Parametrization and Assumptions

We are interested in solving the principal’s problem when the period length A is small. We assume
that while A decreases, (Z, X) are normalized signals generated by a fixed distribution (independent
of A):

(A1) There exists a distribution function G(z, z) with E[z] = 0 and V[z] = o2, such that for each
A >0,
G2 (z,2) = G(azVA, 2VA).

Note that E*[z] = 0, and VA[z] = 02/A. Consequently, the linear interpolation of the process
{XkAken where Xpn = % Zﬁzl Tpn, With z, ~ G)A(, converges in distribution to the Brownian
Motion as A — 0 (Invariance Principle, see e.g. Theorem 4.20 in Karatzas and Shreve [1991]). This
also implies that if y, = Az, + a(2,)] and Bya = 2 Sk (Y — ABAa(2,)]) = 2 S (@0 &),
with a(z) € [0, 4], &, = a(z,) — B*a(z,)] and (z,,2,) ~ G, then the linear interpolation of
the process {Bga }ren converges in distribution to the Brownian Motion as A — 0 (see Whitt
[1980])%. In other words, the linear interpolations of revenue processes converge in distribution to

the continuous time process {Y;} satisfying
dY; = BE”[as]dt 4 od By,

where {B;} is a Brownian Motion.

We also assume that one of the following two assumptions is satisfied. The first assumption
corresponds to the case when the agent has some imprecise (possibly uninformative) signal about
the noise, and the noise has absolute continuous distribution, conditional on the private signal.
The available actions are bounded below by zero. The second assumption corresponds to the pure
hidden information case when the agent knows the noise realization before taking an action. In
this case we assume that the agent’s actions are unbounded from below. In a separate note we
show that pure hidden action model with compact action set results in the first best contracts as
the period length shrinks to zero.

(A2-AC) For any z, the distribution of X conditional on [Z = 2] has density function gx|z (z[2),
and there exist 6, M > 0 such that for all z,

/ SUPse(0,0] g/X|Z (z— 5\2)2
R

dr < M and /sup ’g (x —8|2)|dx < M.
9x|z (z]2) R Xz ( 2

6€[0,9]

Moreover, the set of available actions is A = [0, A] for some A € R..

8Each process {Bka}ren is the sum of two continuous path processes, one converging weakly to the Brownian
Motion and the other to the process identically equal to zero.



(A2-PHI) X = Z and X has a density function gx(x). Moreover, the set of available actions is
A = (—o0, A] for some A € Ry.

Throughout the paper we use the standard notation O(A) and o(A) to denote arbitrary func-
tions a(A) and B(A), respectively, such that

a(A) . BA)
A‘ < oo and lim T—O.

A—0

lim
A—0

3 Results

3.1 Solution to the Principal’s Problem: Values

In this section we focus on determining the principal’s value for the optimal contract-action plan,
as the period length A shrinks to 0. The explicit definition of the contract-action plans that achieve
those values is postponed until Section 3.3.

We will see that as A — 0, the solution of the principal’s problem can be approximated by the
following two step procedure. In the first step we solve a family of static problems. For any “mean
action” @ > 0 and “mean cost” h > 0, define the variance of incentive transfers

0@ k) = inf o)) )
st. a=Bla(x)], h=E[ha()],
W (a(2)) = — /R v(@)gk 7 (z2)ds V2 (FOCe-AC)
W (a(z) = o/(z) Va (FOCo-PHI)

The infimum is taken over measurable functions in the absolutely continuous case. In the pure
hidden information case, the infimum is over piecewise continuously differentiable functions a(-)
and continuous functions v(-), and the (FOCg-PHI) condition is required everywhere except for
finitely many points of discontinuity of a(-).

To interpret the function ©, consider the following static contracting problem. An agent has
a quasilinear utility v — h(a), and chooses an action a (z) that depends on his privately observed
signal z. The principal observes a noisy signal « + a(z) and makes transfer v to the agent. His
objective is to minimize the variance of transfers that provide first order incentives for an action
scheme with mean action @ and mean cost h.® ©(a, h) is the value of the simplified version of this
problem, when we substitute ¢ = 0. In particular, the last two lines in the definition of ©(a, h)
correspond to the local incentive constraints: the (FOCg-AC) applies to the absolutely continuous
case, while (FOCg-PHI) to the pure hidden information case.

The second step refers to the following optimal control problem:

F(w) :{ asgp} E [ /0 Oor[at(wt) - ct(Wt)]e_”dt]

s.t. dW; = T[Wt — U(Ct(Wt)) + iLt(Wt)]dt + T\/@((it(Wt), Bt(Wt)) dB;, Wy=w.

9 Alternatively, the principal is minimizing expected transfers to an agent with mean-variance utility of transfers,
who has an ex ante outside option —h.

10



This is a principal’s problem similar to that obtained by Sannikov [2008]. The state variable W;
represents the continuation value for the agent. It’s drift is proportional to the difference of the
continuation value and the expected flow of utility to the agent, who receives payment c;(W;)
and incurs mean cost hy(W;). The diffusion coefficient is determined by the variance of incentive
transfers. F'(w) represents the principal’s payoff when the initial continuation value for the agent
is w. The corresponding HJB equation for this problem is

F(w) = sup {(d —c)+ F'(w) (w +h— u(c)) + %F"(w)r@(c‘z, ﬁ)} , (3)

ah,c
which we solve with the boundary conditions:
F(0)=0 (4)
and F’(0) equal to the largest slope such that for some wg, > 0
F(wgp) = F(wsp) and  F'(wsp) = F (wyp) - (5)

The first two conditions are analogous to the conditions that must be satisfied by F2 (see the end
of Section 2.2). The last one is the smooth pasting condition.

Without any additional restrictions on the information structure, and thus on the variance
of incentive transfers function ©(a, k), there need not exist a unique solution to the above HJB
differential equation with boundary conditions (4) and (5). However, we can get around this by
analyzing a perturbed equation, which always has a unique solution and that provides an arbitrarily
good approximation to the solution of the principal’s problem. For any ¢ > 0 consider the following
differential equation:

F¢(w) = sup {(d —c) + F(w)(w + h —u(c)) + %Fé’(w)r@c(a, B)} , (6)

a,h,c

where

O¢(a, h) = max {¢,O(a, h)},
with the same boundary conditions as above.!? Let wg, ¢ be the value at which F, satisfies (5).

The following is the first main result of the paper. The proof of Theorem 1 is in Section 4. For
a function f: I — R, we define |f|; = sup,¢; |f(w)| and |f|} = |max {0, f (w)}|,-

Theorem 1 For any ¢ > 0, equation (6) with the boundary conditions (4) and (5) has a unique
solution F¢. The value wgy, = lime_,gwgy ¢ and the function F' = lim¢_o F¢ exist. For any agent’s
promised value w € [0, wgp|, F(w) is the limit of the principal’s value from optimal contract as the
period length A shrinks to zero:

lim |F — F2|,

0,
A—0

0,wsp) =

'"Formally, the lower bound ¢ on ©, guarantees that the differential equation is uniformly elliptic.
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while for w > wgy, F(w) provides an upper bound:
F(w) > iim0 FA(w)  for all w > wgy.

More precisely, for fixed ( we have

+

}FC - FA‘[O,wspyc] =

O(¢) + 0(2» and |FA — Fd[;’ﬁ] =0(0) + O(AA)'

Theorem 1 is proven with just minimal restriction on the information structure (assumptions
(A1) and (A2) above). The following proposition shows that with additional assumptions there is
no need to consider perturbed equations (while the uniqueness may be lost).

Consider the following assumption:

(Cont) © (a,h) > 6 (a) for a continuous ¢ with 4 (@) > 0 when @ > 0.

Proposition 1 Let F' be as in Theorem 1.

(i) Assume that © (ZL, l_z) >0 >0 fora>0. Then, F is the unique solution of equation (3) with
the boundary conditions (4) and (5). Moreover, in (3) one may add the constraint a > 0.

(ii) Assume (Cont) holds. Then F solves equation (3) with boundary conditions (4) and (5).

Theorem 1 provides an explicit formula for the value of the optimal contract-action plans as
the period length converges to zero. The value depends on the underlying information structure,
described by the joint distribution G(z, z), and the dependence is fully captured by the variance of
incentive transfers function © in the differential equation. This facilitates the comparative statics
analysis of how the information structure affects the values, as we illustrate in the next section.

The following result is crucial for such analysis. Reducing the variance of incentive transfers,
intuitively, decreases the informational rent and the cost of incentives. The proposition shows that
this increases the value of the optimal contracts.

For an arbitrary function © : R2 — R} U {co} define D® = {(a,h) € R | ©(a, h) < oo} and
D?® ={(a,h) € D° | a > 0}.

Proposition 2 Consider ©, O, and let F© and F€ be as in Theorem 1.

(i) If © > © then FO(w) < F&(w) for all w € [O,w%].

(ii) Suppose (Cont) holds. If © >pe O then FO(w) < F&(w) for all w € (O,w%).

Recall that F is the value of an optimal feasible (first best) one period contract-action pair.
For w > 0, the function F solves (1), which is the HIB equation (3) with © = 0, while F does
not satisfy the boundary condition (4). The following proposition shows that when the variance of

incentive transfers is identically zero, the functions F¢ from Theorem 1 converge to F, and so as
the period length A shrinks to zero the first best value F' is achievable (see Figure 2).

Proposition 3 Suppose that © =0 and let F' be as in Theorem 1. Then
F=F(w) foral w>0.
More precisely, for every 6 > 0 there is 0 such that if © < 0 then
F>F(w)—46 foral w>?§.

12



I

Figure 2: Proposition 3.

3.2 Examples and Comparative Statics

The following example shows that the value of the optimal contract-action plan formulated directly
in continuous time (Sannikov [2008]) agrees with the limit of values of discrete time optimal action-
plans for a particular signal structure.

Example 1 Consider the pure hidden action case when X is normally distributed with mean 0
and variance o2. For any a € [0, A], since the signal z is uninformative, (FOCg-AC) implies that
a(z) = a. Hence, when h = h(a),

O(a,h(@) = min / o(2)2gx (2)dz, (M)

The optimal solution of this problem is v(x) = h'(a)z and ©(a,h(a)) = [h'(a)o]?, when @ > 0, and
0(0,0) = 0. Moreover, ©(a,h) = oo for all h # h(a). Note that ©(a,h(a)) is discontinuous in
a: 9(a,h(a)) > [yo]? > 0 = ©(0,0) for all @ > 0. In this case, the HJB equation (3) with the
additional constraint a > 0 (see Proposition 1) becomes

F(w) = sup {(a —c) + F'(w)(w + h(a) —u(c)) + ;F”(’LU)TO'Z}I/(CL)Q} ,

a>0,c

which is exactly Sannikov’s equation (5).

The example shows that in the case of pure hidden action models with normal noise the value
of the optimal contract depends on the single parameter of the distribution of noise, its variance.
We generalize the example in the following way.

13



Lemma 1 Consider a pure hidden action model with density gx(z). Then O(a,h) = oo for all
h # h(a), ©(0,0) =0 and for a >0

6(a, h(a)) = V,’_j}i(;X)

where

vimg - [ [X5] swerin= [ 0

Proof. That ©(0,0) = 0 and ©(a,h) = o for all h # h(a) is clear. Just as in Example 1,
the solution of problem (7) for @ > 0, as characterized by the necessary first order conditions, is
v(z)=C *‘; ((f)), vsjh_eze incentive compatibility constraint implies that C' = —%
O(a,h(@) = ~% - whena>0. m

~ VLR(gx)

. Consequently,

The variance of incentive transfers, and thus the value of optimal contract-action plans (when
A shrinks) depends on the single parameter of the underlying noise distribution, the variance of
likelihood ratio VLR(gx). The variance of the likelihood ratio is the measure of informativeness of
the public signal about the action of the agent: its high value diminishes the informational rent to
the agent. Witness the following example.

Example 2 Consider pure hidden action models for three cases of noise distribution, each with
variance o%: (i) normal distribution, (ii) double exponential distribution and (iii) “linear” distrib-

ution, with corresponding densities:'*
1 12
gx(z) = 76_[%] , T€R
oV 2T
A
g (x) = 567)"90‘7 zeR
dx(@) = c=lzf, Jz[ <1/e

for A= ? and ¢ = %ﬁ' The corresponding variances of likelihood ratio are:

VLR(g%) =1/0% VLR(g%) =2/0% and VLR(g%) = co.

In particular, in the “linear” distribution case the incentives are costless and the first-best is achiev-
able (Proposition 8). Intuitively, with bounded support of the noise, agent’s defection from the
prescribed action plan gives rise to signals that would not occur otherwise, and those signals have
sufficiently high probability (density has sufficient mass at the extremes).

Note that the pure hidden action model satisfies the assumption (Cont) with d(a) = %.

Thus, a direct consequence of Lemma 1 and part (ii) of Proposition 2 is the following;:

"TFormally, the “linear” distribution does not satisfy our assumption (A2-AC) as it results in infinite variance of
likelihood ratio. But one may consider approximations with the density at the extremes of the support changed to,
say, quadratic functions, resulting in finite but arbitrarily large variance of likelihood ratio.

14



Corollary 1 In the pure hidden action model with density gx(z), the limit value of the optimal
contract-action plans as A shrinks to zero is increasing in the variance of likelihood ratio VLR(gx).

Let us now study the settings in which the agent has some private information about the
environment.

Lemma 2 Consider a hidden information model where the range of the agent’s signal z is a finite

set of values {z1,...,zK}. Then the variance of incentives transfer function is
) K / K K /
O(a,h) =  min ; Aeh/(ag), st a= kz::lgz(zk)ak and h = ggz(zk)h (ar),
where X = (A1,..., k)T solves the linear system of equations L - X\ = (h'(a1),...,h (ax))T with

matriz L = [Ly.¢] given by

x| z(®l2k) 9y 7 (]20)
LM:/ X1z X1z de kl=1,... K.
R 9x ()
Proof. v(z) = —g%(x) Zle >\k9/X|Z($|Zk) is the solution to the following auxiliary problem:

O(ai,...,ax) = irvlf /Rv(x)zgx(x)dm

stt. h(ag) = /Rv(x)gg(z(ﬂzk)dm E=1,... K,

and A is the vector of Lagrange multipliers for the constraints. Thus é(al,...,aK) equal to
SO AR (ay) is the variance of incentive transfers for arbitrary actions ay, .. .,ax. Minimizining
over all actions with mean action @ and mean cost h yields the result. m

Thus with finitely many actions solving for the cost of incentives reduces to solving a finite
dimensional unconstrained minimization problem. Associated to this hidden information model,
there is a natural pure hidden action model, where the agent does not observe the signal z. For
this pure hidden action model, the corresponding variance of incentives transfer function is given
by Opna (@, h(a)) = ©(a,...,a). Since a; = a for all k is always feasible when h = h(a), we obtain
the following result.

Corollary 2 Let © be as in Lemma 2 and Opgy be the variance of incentive transfers for the
associated pure hidden information model. Then © < Opgy and FOria < FO,

In other words, the case when agent has no private information about the environment results
in least efficient contracts.
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Example 3 An interesting special case of Lemma 2 is when for a given density go(x) with mean
0, 9x|z(x|2k) = go(x — ) for some py,, where Y gz(zk)py, = 0. For a concrete example, assume
that K = 2, gZ<Z1) = gZ(ZZ) = 1/2;

go(z) = C[L +cos(z)] for we[-mal, and —py=py=m/2

where C' = 1/[27]. Then, gx|z(z|21) = C[l—sin(x)] in [-37/2,7/2], and gx|z(z|22) = C[1+sin(z)]
in [—m/2,3mw/2]. Hence, g’X|Z(:c\z1) = —Ccos(x) and g’X|Z(a:|z2) = Ccos(x),

L= i [ o ! ] . A= é[w(al) +h'(az)] and Ay = é[h’(m) + 50/ (az)),

which yields ©(ay, az) = %[5{1’ a1)? + 2k (a1)h'(az) + 5h'(a2)?]. For generic h, @ and h, the con-
straints @ = a1 + as] and h = 4[h(a1) + h(a2)] uniquely determine (a1,a2) (when the system is
compatible) and ©(a,h) = @(al, az). Then, for a fized a,

- 1 1
min ©(a, h) = min 6[5h’(a1)2 + 20 (a1)R (ag) + 5R'(a9)?] s.t. a= §[a1 + as.
h
The optimal solution is a1 = ag = @ when h'? is a convex function, and a1 = 0 and as = 2a when h'?
is a concave function. For example, if h(a) = %a5/4+’ya, where y > 0 implies that h'> = [a"/* +~]?
is concave. In this case, ming ©(a, h) = ©(0,2a) < O(a,a) = Opya(a, h(a)).

The example illustrates that in the hidden information model, in any period, for a fixed mean
effort a there might arise a tradeoff between two sorts of implementation costs. On one hand,
given convex cost function, a “flat” effort scheme a(z) = @ minimizes the direct cost of effort
E[h(a(2))] to be h(a). On the other hand, the cost of incentives ©(a,h) might be minimized
for the effort schemes that is responsive to the environment and does not satisfy a (z) = a, which
implies h > h (@). How the tradeoff is resolved depends on the relative “prices” of each cost in the
differential equation (3), given by F’ and F” respectively.

Consider now the pure hidden information case. The following result allows us to rank the
distributions of noise in terms of the cost of incentives that they impose. The condition is a strong
form of ranking of signal’s dispersion.'?:!3

Lemma 3 Consider two signal distributions G and T' of noise for the pure hidden information
case, with corresponding strictly positive densities g and ~y. Suppose that:

G@)=T(2") = g(z) >~ (), Va,a’
Then, for the corresponding variance of incentivizing transfer functions O¢ and Or,

Or > O¢.

12The condition implies lower variance, but is incomparable to SOSD: a SOS inferior distribution can either
dominate or be dominated in terms of our ranking.

13Essentially the same proof also shows the strict ranking of variances of incentive transfers, as long as the “inf”’
in the definition of Or can be replaced by “min”. In the cases when the optimal policies for ©r do not exist, we
conjecture that under some additional conditions on the distributions G and I' the proof can be strengthened to yield
strict ranking.
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Proof. Fix (a,h) in the domain of Or, any € > 0 and let (ar,vr) be an e-suboptimal policy for
Or(a, h). We may assume that Er [vr (z)] = 0. We will define a policy (ag,vq) that is feasible for
the problem O (@, h) and such that E¢ [vZ (z)] < Or(a, k).

For any z let ag () = ar (') where 2’ is such that G (z) = I'(2’). Since both G and I" are
strictly increasing between 0 and 1, a¢ is well defined. We have:

/ ac(@)g(x)dz = / a6(G LT (@) (e)d' = / ar (&Y (') det,

where we have used the change of variables z = G~1(I'(z)), so 4% = Z]((Z/))

J Mac(x))g(a)dz = [ har(z"))y(2")da’.
The incentive transfer function vg is defined via the (FOCg-PHI) condition:

vg(z) = (ag(2)),

except for the finitely many points of discontinuity of ag(x), where it is extended continuously,
together with the condition Eg[vg(x)] = 0. Choose any points T > z, ' > 2’ such that G() =
['(7') and G(z) = T'(z'). We have:

. Similarly we get that

va(T) —va(z) = /r h(ag(z))dx

= /1‘ h(ap(x’))v(x,) dr' < /x h(ar(z"))dx’" = vp(Z') — vr(z).

!

This means that the random variable vg (X), X ~ G, is less dispersed than vp (X), X ~ I
Since Er [vr (7)] = Eg [ve (z)] = 0, this implies that for the concave function ¢ (x) = 2% we have
Eq [vZ (#)] < Er [vg (z)] < Or(a,h) + ¢ (see Theorem 3.B.2 in Shaked and Shanthikumar [2007],
which is taken from Landsberger and Meilijson [1994]). Since ¢ > 0 is arbitrary, this concludes the
proof. m

The following Lemma is related to Corollary 2.

Lemma 4 Fiz 02 > 0 and any signal distribution with variance of noise 0. Let © be the cor-
responding variance of incentive transfers, and let ©" correspond to the pure hidden information
model with normal noise. Then © < O" and F®" < F®.

As a corollary, the value of contracts computed directly in continuous time (see Example 1) is
the lower bound on the limits of values, for all information structures that approximate the same
continuous time limit (in the sense described above).

Proof. The optimal policy function for © (a, h (a)) with @ > 0 in the pure hidden action case with
normal distribution has a linear incentivizing transfer function v(z) = h/(a)z, and © (a,h(a)) =
W (a)? 0% (Example 1). This incentivizing transfer function provides not only “ex-ante”, but also
“ex-post” incentives, thus incentivizing the agent to a constant effort scheme a (z) = a under any
distribution of signals. As long as the variance of noise X is o2, the variance of incentivizing
transfers is 7’ (@) 62. The Lemma thus follows from Proposition 2, part (i). m
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3.3 Solution to the Principal’s Problem: Contract-Action Plans

In this section we show how to construct contract-action plans that are approximately optimal as
the period length is short. For this purpose, we first define the Bellman operator associated with the
principal’s problem, i.e. stage-game maximization problem parametrized by agent’s continuation
value. We then define policies for the Bellman operator, based on the policies for the variance of
incentive transfers function (2) and the policies for the perturbed HJB equation (6). The contract-
action plans we construct are defined through a recursive application of those policies, as explained
below.

For any interval I C R and any function f : I — R, define the new function TIA f:Ry — R by

TR f(w) = sup, % (a,c, W f) (®)
st alz)€A Yz, c(y)>0 and W(y)el Yy
w =B [FA[u(c(Alz + a(2)])) - hla())] + e AW (Afw + a(2)])] (PK)
a(z) € argmax B [M[U(C(A[az +a])) — h(@)] + e AW (Alz +a)) | z} Vz (IC-AC)
a(z) € argmax 7A [u(c(Alz + a])) — h(a)] + e ™AW (Alz +a]) Vo (IC-PHI)

where the supremum is taken over measurable functions and
(0, ¢, W; f) = BA[FA[a(z) — c(Alz + a(2)] + ¢ 2 W (Al +a(2)]. (9)

In the problem, (PK) is the promise-keeping constraint and (IC) is the incentive constraint.
Here (and similarly below) we write problem T4 f(w) with two alternative constraints: (IC-AC)
and (IC-PHI), for the absolutely continuous and the pure hidden information cases. The interval
I in the problem represents an additional constraint that restricts the range of the continuation
values. This constraint ensures that continuation values are in the domain of f.

For I = [w,w] and A > 0 (small), let 12 = [w + AY3 @ — AV/3].

Definition 1 For any ¢ > 0 and F¢ solving (6) on an interval I, period length A > 0, agent’s
promised value w € I and an approximation error € > 0, define a simple policy (a,c, W) as follows.
Let (@, h,c) be an e-suboptimal policy of (6) at w, and for the corresponding (a,h), let (a,v) be an
e-suboptimal policy of (2).

If w e I? let (see Figure 3)

cly)=c (10)
W(y) = C + VAT x v(y/VA,,, va) < (AC),

v(=Mo) if y/VA <M.

W(y) = C+ VAR x & w(y/VA) if |y/VB)| < M. (PHI),
v(Me) if y/VA> M,

a(z) is an action that satisfies the (IC) constraint in (8),
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where M is a (large) constant (see Definition 4 in the Appendiz) and C' is chosen so that the
promise keeping (PK) is satisfied.

Ifw ¢ I® let
c(y) =u" (w), (11)
W (y) = w,
a(z) =0
kM AJA
W ()
b :
C : } C
' ! 1 !

McA/A
“—— kA V(A

Figure 3: Continuation values for the AC and PHI cases in Definition 1, where k = Ferd,

Lemma 11 in Section 4 shows that in the definition of the action scheme a above, the global
incentive constraint (IC) is essentially equivalent to the local incentive constraint.

Note that a simple policy depends on F¢, ¢, A and w. A simple policy is feasible for (8): it
satisfies the (PK) and (IC) constraints by construction, and W (y) € I for all y, if the period length
A is small enough. Finally, note that even for fixed parameters F¢, ¢, A and w there are many
simple policies, each corresponding to some e-suboptimal policies in the problems (2) and (6).'*

For any initial agent’s promised value w € [0, @), a set of simple policy functions for all promised
values in [0, @) generates a full (wage) contract-action plan.

Definition 2 For any ( > 0 and F¢ solving (6) on an interval I, A >0, w € [0,u) and e > 0 let a
simple contract-action plan be that defined recursively by a set of simple policies for all w € [0,u).
That is, if (a,c, W) is a simple policy for w, the plan specifies (ag,co) = (a,c). Then, for each
signal y, if w = W(y) and (a,é, W) 18 a corresponding simple policy for w, the plan specifies
(a1,c1) = (a,¢) for the second period. And so on.

Given a continuation value w for the agent - as a state variable - the algorithm for deriving a
simple contract-action plan is as follows. An e-suboptimal policy (a, h, ¢) of the HJB equation (6)
at w determines the wage payment and the approximate mean effort and mean cost of effort in

MWithout additional assumptions, optimal policies for the two problems need not exist.
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the current period. Given (a,h), an e-suboptimal policy (a,v) in the problem of minimizing the
variance of transfers (2) is used to construct the scheme of incentivizing continuation values. The
continuation value scheme, as a function of the public signal, is equal to function v, which must
be linearly rescaled accordingly to the period length and the promised continuation value, as well
as truncated at a high absolute value. The action scheme is approximately the same as a; the
difference is due to the fact that the truncation of v affects the incentives to a small degree (see
Section 4.3).

Remark 1 In the pure hidden information case, the v in the definition of a simple policy at w is
continuous and piecewise twice continuously differentriable (see the definition of ©). From now on
we assume that for any € > 0, there is a common finite set D. such that the set of functions v" for
all w € [0,%) are equicontinuous outside of D, which is without loss of generality"®.

By construction, any simple contract-action plan is incentive compatible. Therefore, its value
to the principal is bounded above by F2. The following Theorem, which is the second main result
of the paper, shows that any simple contract-action plan is close to optimal (proof is in Section 4).

Theorem 2 For ¢ > 0 and F¢ solving (6) with the boundary conditions (4) and (5) on an interval
I = [0,wgp ¢, period length A, agent’s promised value w € [0,%) and an approximation error € >0
a simple contract-action plan is [O(C) 4+ O (g) + O(AY3)]-suboptimal.

In the case of pure hidden action, we follow up on Lemma 1 and Example 2 from the previous
section but now in the context of contract-action plans.

Lemma 5 Consider a pure hidden action model with density gx(z). Then a simple contract-action
plan is based on a process of continuation values that is truncated linear in the likelihood ratio. More
precisely, it is based on simple policies (a,c, W) such that for any w € [O,wsp7C]A the process of
continuation values driven by the public signal (revenue) is given by:

_ M@ gx/VA)
VLR(9x)  gx(y/VA)

W(y) = C — VAFe A \(y) x 1) <m.  where A(y)

and a and C are as in Definition (1).

Example 4 Consider again pure hidden action models for normal, double exponential and “linear”

distribution, all with variance o®. Then the simple contract-action plans from Lemma 5 have

continuation values processes given by

wr (y) = C1+Cyxyx 1|y\§037
% _ C, when y >0
W=y = {C,wheny<0 ’
sgn (y)
W)l( () = CitCax (1-— (|y|) x 1(1—\y|)_1§03’

" The proof is immediate from the fact that (F{ (w),F/ (w)) is continuous on I, and so for a fixed policy (a, h, c)
the right-hand side of equation (6) is contionuous in w. Since I is compact, this shows that for any € > 0 the set of
e-soboptimal policies (@, h, c) can be assumed to be finite, which yields the proof.
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for appropriate constants, as in Lemma 5.

Holmstrom and Milgrom [1987] show that in the continuous time model it is optimal to use
transfers linear in the public signal. The Lemma above generalizes this result, with the standard
interpretation of continuation values as “transfers in utility”: In the pure hidden action discrete
time models and arbitrary noise structure, it is essentially optimal to use transfers linear in the
likelihood ratio. (For the normal noise, likelihood ratio is equal to the public signal.) For example,
when noise is double exponential the continuation values in every period take only two values,
with the threshold signal of zero. We note that while such threshold schemes are often optimal in
cases when agent has only two actions available, in our model the agent has continuum of available
actions.

In the following we ask the question whether, as period length shrinks, the details of the signal
structure matter for the design of approximately optimal contracts. Recall that in the case of values
(Theorem 1) the dependence was fully captured by the variance of incentivizing transfers function
©. However, note that the simple contract-action plans in Lemma 5 and Example 4 look very
different for different noise distributions, even if they correspond to the same ©: witness the case
of the normal distribution with variance 1 and a double-exponential distribution with variance 2
(Theorem 1 and Example 4). It is not difficult to establish that, in the pure hidden action model,
the contract-action plans must be based on continuation value processes that are close to linear in
likelihood ratio, as in Lemma 5. Thus, for example, while the continuation values linear in revenue
will work for the normal noise, they will be very suboptimal when the noise is double-exponential.
One would like to conclude from this that there is no single contract that will work for two different
noise structures.

The following Proposition establishes that the conclusion is in fact correct. We note that
the conclusion requires a more elaborate argument than the discussion above suggests, as the
continuation value process is defined endogenously, relative to the noise structure (the same contract
gives rise to different processes, for different noise structures).

Consider two noise distributions with densities gx and yx that have the same variance of
likelihood ratio but linearly independent likelihood ratios:

2
. 9x (z4) Vx (z4)

VLR =VLR , inflE -C > 0. 12

(QX) ('YX) c 9.7 gx (xg) x (xW’) ( )

Proposition 4 For any A > 0 consider two pure hidden action models with noise densities gx
and fx that satisfy (12). For every wg,wy € (0,wsy) there exists 6 > 0, such that for sufficiently
small A there is no contract {c,} that is §-suboptimal for the two distributions and delivers values
wy and wy.

The Proposition compares the contracts for the special case of signal structures with pure hidden
action and the same values of the optimal contracts (as period length shrinks). While this is the
most relevant case, as this is exactly when one would suspect the same contract to work, we also
comment in the Appendix how to extend the proof to the case of arbitrary two signal structures.
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A different way to interpret the result is to say that knowing the optimal continuous-time
contract only would provide little guidance as to how the (close to) optimal discrete time contracts
look like, no matter how short the period length. Such contracts must depend on the distribution
of noise in the discrete-time models, as in Theorem 2.

On the other hand, in the context of pure hidden action models with the same variance of
likelihood ratio, the simple contract-action plans determine the unique continuous-time contract.
For any continuous time Brownian Motion process {B;} and VLR (gx) > 0, w € [0,u) consider a
continuous time process {W;} that starts at w and satisfies the stochastic differential equation:

W)

AWy =r (W —u (e (W h(a (W) dt +r
Wi =71 (Wi —u(c(Wy)) + h(a(Wy)))dt + Rlgx)

By, (13)

where ¢ (W;) and a (W;) are the minimizers'® in the solution of (3) with the boundary conditions
(4) and (5), together with:

Wy =W, fort > 1,
where 7 is a random time when W; hits 0 or wg, The process determines a pair of continuous time
processes ({ct}, {at}) such that:

(14)

_f a(Wy), fort < T _f e(Wy), fort <1
& = 0, fort > » G = —F (W), fort > 1

In the case when VLR (gx) = 1, for any promised value to the agent w € [0,a), the pair
({ct},{as}) is the optimal continuous-time contract derived in Sannikov [2008].!" The proof follows
from the Invariance Principle (see e.g. Theorem 4.20 in Karatzas and Shreve [1991]).

Lemma 6 Consider a pure hidden action model with noise density gx. For any €,A > 0 and
w € [0,u) let ({c,%’a}, {aﬁ’a ) be a simple contract-action plan for F. solving (6) with the boundary
conditions (4) and (5). Then

. . Ae A,

tim Jim (¢}, {a>)) = ({e), {ar}).
where ({ct}, {ar}) is the continuous time process defined in (13) and (14) for w, ({ctA"s}, {atA’a}) is
the linear interpolation of ({c5™°}, {ak™}), and the convergence is in the weak® topology.

4 Proof of Theorems 1 and 2

4.1 Bellman Operators

Recall the Bellman operator TIA associated with the principal’s problem, i.e. the stage-game max-
imization problem parametrized by the agent’s continuation value, defined in (8). In particular,

"The sets [0, A] and [0,u"" (wsp)] are compact, while the right hand side of (3), for the case when h = h (a) is
continuous in @ and ¢, except possibly at @ = 0. Since however in this case the policies satisfy @ > 0 (see Proposition
1), then the right hand side has the same value and policy as the problem for which © (0,0) := limg_.0 © (a, k (a)).

1"We identify two processes that agree in distribution;

22



T [ﬁﬂ) is the Bellman operator associated with the principal’s optimization problem. The following
Proposition is a direct consequence of self-generation.

Proposition 5 F2 is the largest fized point f of T[ﬁﬁ) such that f < F.

More generally, for any interval I C R, let F IA be the largest fixed point f of TIA such that
f<F.

Proposition 6 Let I C R be any interval. Then for any two bounded functions fi, fo : I — R,
ITAfL—TRfalf <e ™ |fi — folf.

Proof. The proof is analogous to that of the Blackwell’s theorem (Blackwell [1965]). m

In order to establish our results, it will be useful to also consider other related Bellman operators
with a modified objective function and/or constraints. If we restrict the consumption schedule ¢ (y)
to be constant, we obtain the operator TIA . This is the appropriate operator when the principal is
restricted to offer wage contracts only. In the pure hidden information case, let us also analogously
define TIA D f(w) as T IA “f(w) with the additional constraints that a(-) is piecewise continuously
differentiable and W(-) is continuous. In the absolutely continuous case, we let T IA A IA <,

We also consider a modified Bellman operator with a quadratic objective function and simplified
constraints. The continuation value f(W(y)) in the objective function is replaced by its quadratic
approximation around the agent’s promised value w, the feasibility constraint on continuation
values is dropped, the consumption schedule is restricted to be constant, only first order conditions
are required, and the signal y = Az + a(z)] is approximated by just Az:!®

TR f(w) = su‘I/)V D2 (a, ¢, W; f,w) (15)
st. a(z)eAd Vz, ¢>0, and W(y)eR Vy
w=E~” [fA[u(c) — h(a(z))] + e_TAW(Am)] (PKy)
6—7‘A
7h'(a(z)) = — A /R W (Az)gR|(z]z)dz V2 (FOC,-AC)
7h'(a(z)) = e TAW(Az) Vo (FOC,-PHI),
where
Qi £.w) = F(w) + F)w—w) + T —w)? and
@2 (a, ¢, W f,w) = BA[FAa(2) — ] + e AQW (Aw); f,w)]. (16)

Moreover, in the pure hidden information case, the supremum is over piecewise continuously differ-
entiable functions a(-) and continuous functions W (-), and the (FOC,-PHI) condition is required
everywhere except for the (finitely many) points of discontinuity of a(-).

When a(z) = 0, the equalities in the IC constraints below should be replaced by the inequality #h'(04) > r.h.s,
and when a(z) = A, these equalities should be replaced by 7h'(A_) < r.h.s. In the pure hidden information case,
when a(z) = 0 or a(z) = A, at an optimum the inequalities are attained with equality (see e.g. Edmans and Gabaix
[2011)).
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Figure 4: Quadratic approximations.

4.2 From Bellman Operators to HJB Equation

Below we establish the bounds in Theorem 1 and the proof of Theorem 2. Uniqueness of the
solutions F¢ of the differential equations and the existence of the limits F' = lim F and wg, =
lim w,,, ¢ in the statement of the Theorem 1 rely solely on the properties of the differential equations
(3) and (6) and are established in Section 7.2 (Lemma 18 and Corollary 3), where we more broadly
analyze their properties.

The proof is based on the following crucial Proposition 7 and Lemma 7. The Proposition
establishes that, roughly, F is close to being a fixed point of the TIA operator, and that the simple
policies are almost optimal in the problem T IAFC. Lemma 7 establishes that if F{ is close to a fixed
point of TIA then the largest fixed point must be close to F¢, and that the almost optimal policies
for TIAFQ- are almost optimal in the full dynamic programming problem.

Proposition 7 Fiz ( > 0 and F; solving the HJB equation (6) on an interval I with Fé’ < 0. Then
|TAF; — F¢|;a = o(A) + O (CA). Moreover, for any e >0, A >0 and w € I®, ®2(a,c, W; Fy) >
Fe(w) — O(eA) — O (CA), where (a,c, W) is a simple policy defined for (F¢,e, A,w) by (10) and
(11).

For an interval I, A > 0 and a set of feasible policies p = {(a,c, W)}, ; for the Bellman
operator TIA let TIA’p be the operator defined as T[A’pf(w) = &2 (a,c,W; f), and let FIA’p be the
value achieved by the policies p. Note that FIA P is a fixed point of TIA P,

Lemma 7 Let F' be defined on an interval I.
(i) If for some e >0 and J C I

TAF — F| = 0(A)+ 0 (A),

9See also proof below Lemma 7 in Biais, Mariotti, Plantin, and Rochet [2007].
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Figure 5: Lemma 7(i). Functions F, TAF, (TA)2F, (TA)*F, and FA.

then

O(A)‘

+
\FJA—F\J:O(EH A

(i) If for somee >0 and J C I
‘F - TIAJ’F’j = 0(A)+ 0 (eA),
then
|F - FIAJ’F —0(e) +|F- FIA’P’;J + O(AA).
Proof. (i) Fix A > 0 We have

[P —F|) < |FP —TPFR) + |TOFS —TRF|) + |TRF - F| <

< ¢ |FP —F|" +|T8F - F|],
Consequently
s gt |TRF-F[) _|TPF-F[; 0(A)
Fr=F s =y sy = 0@+

(ii) The proof is analogous to case (i). m

Given Proposition 7 and Lemma 7, the proof of Theorems 1 and 2 is as follows. For any
¢,A >0 and F; defined on I = [—AY3 4 + A'/3] the Proposition implies that |TIAF< — Feljoa) =
o(A) 4+ O (CA), and so part (i) of the Lemma with J = [0, @) implies that

0(a)

JF
[P~ Flom =00+ =4

25



On the other hand, for any ¢,A > 0, F¢ defined on I = [0,wyp ], an approximation error
€ > 0 and the corresponding simple contract-action plan based on the set of simple policies p =

+
{(a,c, W)}, er» we have, from the Proposition, that ’FC - TIAJDFC‘IA =0(A)+ 0O (eA)+ 0 (CA).
Thus, part (ii) of the Lemma implies that

+ + o(A
|- Fpr| = O(c)+0(s)+)F<—FIA’p‘I\IA+ (A):
o(A)

A

= 0W)+0(e)+

The last equality follows from the continuity of F¢, F¢ (0) = FlA’p (0) and Fe(wsp ) = F(wepe) <
F IA P(wgp¢). This concludes the proof of both Theorems.

4.3 Proof of Proposition 7

The proof of Proposition 7 is established by a series of Lemmas that relate values of Bellman
operators applied to the function F' from Theorem 1, as well as their policy functions. As regards
the values, the line of argument can be illustrated as follows:

F ~ TMMFP ~ TPMMEP  ~ TPF  ~ TAFR
Lemma 9 Lemma 10 Lemma 12 Lemma 13
The following Lemma shows the connection between the Bellman operator 72+, for short period
length A, and the HJB equation (3).

Lemma 8 Consider any twice differentiable function F : I — oo with F”' < 0. Then:

T29F (w) = #A sup {(a —¢) + F'(w)[w+ h — u(c)] + eTAF”Q(w)f@(a, h)}+emF (w)+0 (A?).

a,h,c

Moreover, for a fived e-suboptimal policy (6, h, c) in the problem above, together with an e-
suboptimal policy (a,v) in the problem © (E, E), for any A > 0 the policy (an, ch, WqA), with
ch = c (17)

WqA (y) = wHFA ™ w +h—u(e)] + 7FVAu(VAy),

a®(2) = a(VAz),

q

<

is feasible and O (eA)-suboptimal for T™9F(w).

The intuition for the Lemma is as follows. Finding the optimal policy (a, ¢, W) for the problem
TAME (w) can be split into two stages: first, choosing optimal mean action @, mean effort h
and wage ¢, and second, choosing optimal action scheme a corresponding to @, h together with
optimal incentivizing continuation value scheme W. As regards the second step, given the quadratic
approximation of F'| it is only the first two moments of W that are relevant. The first moment is
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fully pinned down, given @, h and ¢, by the promise keeping (PK,) constraint. Minimization of the
second moment is, after renormalization with respect to period length A, precisely the definition
of ©.

The following is essentially a corollary to the previous Lemma. We will call the policies defined
in (17) quadratic simple.

Lemma 9 Fiz ¢ > 0 and Fy solving the HJB equation (6) on an interval I with Fé’ < 0. Then

|TA7‘7FC — Felr = o(A) + O (CA). Moreover, for any e, A > 0, w € I and corresponding quadratic
simple policy (aq, cq, Wy), @A’q(aq, cq, Wys Feyw) > Fe(w) — O(Ae) — O (CA), uniformly in 1.

Next Lemma shows that the simplifications implicit in the definition of T2 - quadratic ap-
proximation of F', possibly unbounded values of W only local incentive constraints, approximating
public signal with just Ax - are negligible when period length A is short. (We deal with constant
consumption in Lemma 13.) Simple policies (Definitions 1 above and 4 in the Appendix) differ
from quadratic simple policies above (see Definition 3) in that, essentially, they undo those simpli-
fications: the tails of the continuation values are truncated, the local IC implicit in the quadratic
simple policies is replaced by the global IC and the public signal is A[z + a (2)].

Lemma 10 Let F : I — R be twice continuously differentiable with F” < 0. Then |TIA’dF -
TA9F|;a = o(A). Moreover, for fited e > 0 consider quadratic simple policies (aq,cq, Wy) for
TAE (w), A >0, w € I®. Then for A sufficiently small, w € I® and the corresponding simple
policies (a,c, W), ®*(a,c, W; F) > cI>A"1(aq,cq, We; F,w) — O(eA), uniformly in w.

The simple policies achieve similar values to the quadratic simple policies for the following
reasons. First, the truncation of continuation values has little effect on the incentives. In the
pure hidden information case, agent’s incentives, given private signal (“noise”), are determined
by the slope of W at nearby revenue realizations. Therefore, giving up slope of the continuation
values W at the tails affects agents incentives only for extreme noise realizations. In the absolutely
continuous case, given that F” is negative and bounded away from zero, using W far away from
its mean is costly. Under assumption (A2-AC), there are hardly any revenue realizations that are
so informative of agent’s effort to be worth the cost of such extreme continuation values. Thus the
truncation affects agents incentives only slightly.?’ On the other hand, given the truncation, the
quadratic approximation of F' has little effect on the value of the problem and continuation values
are included in 1.

Second, in the AC case, since the effect of the agent’s effort on the distribution of public signal
is small, the optimal incentivizing scheme W under local IC only is such that the agent faces
incentives almost constant in his own action (the expected continuation value is almost linear in
his own action). Given strict convexity of the cost of effort, the agent’s problem is strictly convex
and local incentives are sufficient. Also, approximating public signal by just Ax affects incentives,
and so the agent’s action only slightly. In the PHI case the problem facing the agent could be
nonconvex only at the noise realizations close to the finitely many points of discontinuity of W.
Thus, we also have the following Lemma.

20Gee also Sannikov and Skrzypacz [2007].
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Lemma 11 Consider any simple policy (a,c, W) defined in (10) for I,F,e, A, w.

(i) In the AC case, for sufficiently small A, a(z) is the unique action that satisfies the local
version of (IC), for all z.

(i) In the PHI case, for sufficiently small A, a(x) is one of at most two actions that satisfies
the local version of (IC), for all x.

The next Lemma is relevant only for the PHI case. It establishes that the restriction to piecewise
continuously differentiable policies a and continuous W is without loss of generality. The proof is
closely related to the analogous results in the static mechanism design with quasilinear utilities.

Lemma 12 Let Z = X, and let F : I — R be twice continuously differentiable with F” < 0. Then
ITAF = TRF|1a = o(A).

The last Lemma needed to establish the proof of Proposition 7 shows that the restriction to
wage contract-action schemes is without loss of generality.

Lemma 13 If F : I — R is twice continuously differentiable and F" < 0, then TIA’CF —TAF i
=o0(A).

Intuitively, since with short periods the signal about agent’s action is weak, in order to provide
nonegligible incentives the variation in utility from signal-contingent payments must be of high
order vA. While the continuation value function may provide such incentives, the direct money
payments are only of order A. Thus, changing consumption to be constant affects the incentives
only slightly.

5 Extensions

5.1 Changing signal structure

Suppose now that for period length A the private signal z is distributed with density 7%, while
given the private signal z and action a the revenue y is distributed with density 2 (y|z,a). This
extends the model in the paper along two dimensions. First, it generalizes the way the period length
A parametrizes the distribution of signals. Second, it generalizes the way agent’s effort affects the
distribution of public signal.

For any @ and h > h (@) consider the following problem:

0A@h) = inf / )72 ]z a(2)13 ()dydz, (1)

a,v

a= /a(z)v%(z)dz

a(z) € arg max {—rAh(a) + e_TA/

v(y)vA(y!z,a(z))dy} V.
ac R
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Similarly, if z and y take only countably many values and ’y%, ~A stand for probabilities, ©4
is defined analogously, with sums replacing integrals.
Suppose that for any such h,a@ lima_, % = O(a, h) for some function ©, where the con-
vergence is uniform. Then all our results can be extended to this general case (with the obvious

changes in the definition of the optimal contracts). Below we consider three examples.

5.1.1 Examples:

General mean shifting effort. We generalize the basic model by allowing the effect of effort
on the revenue to vary with noise. In particular, fix a twice continuously differentiable, bounded
function ¢ and for any period length A > 0 let

y=x+ A¢($/\/K7 a),

where the noise z and the private signal z are distributed with the joint denisty ¢® as before.
With just slight changes in notation in the proof one establishes that

O(a,h) = 1nf E[v( )2]

a(z))], h= E[h(a(z))],
(2)) = 2)po(x,a)dr Vz (FOCe-ACQ)
R
h/( a(x) U/($)¢2 ,a) Yz (FOCe-PHI)

In particular, in the pure hidden action case, for any target action @ the optimal v function is

linear in % and O(a, h (a)) is equal to b’ (@) x E [(‘W)z].

Folk Theorem. Consider now the model in which for every period length A we have y = As,
where s is a (public) signal with distribution that depends on action a and is independent of A.
The analysis in this case coincides with the analysis of a discrete time model with fixed period
length 1 and a fixed distribution of signals vg, in which the per period discount factor converges to
one. For simplicity let us consider the pure hidden action case and assume that the sets of available
actions A and possible public signals S are finite, with conditional probabilities p (s|a) .

In our model only one player’s actions affect the public signal, and so the standard identifiabil-
ity assumptions (see Fudenberg, Levine, and Maskin [1994]) reduce to {p(-|a)},c 4 being linearly
independent. Given linear independence, for any a € A there exists a function ¢, such that:

Y ¢(s)p(sla) = 0, (19)

sES

S C(s)p (sl

ses

IN

e'r[h(a) —h(a)].

In other words, for the period length 1 the policy (a,(,) satisfies the constraints of the problem
(18) for (a,h) = (a,h (a)) and so O (a,h(a)) < g (Co (s))*p(sla) .
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Now, for the period length A > 0, for any action a the function (2 (y) = - acC, (%) satisfies
the constraints of the problem (18) for (@, k) = (a, h (a)), since for any action a’ we have:

—rAh(d) + e YR ()7 (yld) = A [—rh(a) + ey (a(5) )

yeAS s€S

and the result follows form the case A = 1. Therefore

0% (a,h(a) < Y (¢A ) 7™ (yla) = A GMZ (Ca ()2 (sla) = O (A2).

yeAS SES

Consequently, the limit of the values of the optimal contracts is described by the solution to the
HJB equation (3) with ©(a, h) = lima g % = 0, and so, due to Proposition 3, in the limit the
first best outcome is achievable. In other words, for the particular model that we considered we
recover the Folk Theorem result.

Shifting Volatility. Suppose now that the agent’s action determines the volatility of the
revenue process. More specifically, let the set of available actions A C (0,1) be finite and for any
period length A the revenue be normally distributed with mean 0 and variance A (1 — a).?! Note
that unlike in the previous example the signal structure is not independent of A, i.e. revenue cannot
be written as As with distribution of s independednt of A.

For the model with A = 1 the set of conditional densities {~' ('|a)}a ¢ 4 is linearly independent
and so, just as in the example above for any a € A the exists a function (, satisfying (19).
Consequently ©'(a, h (a)) < [ (¢, ()" 7! (y]a) dy.

With the period length A >0, for any action a the function ¢4 (y) = ﬁ—f; “ (%) satisfies

the constraints of the problem (18) for (@, ) = (a, h (a)), since for any action a’:

—rAh(a ""A/Ca S yla)dy = —rAh(a ’"A/Ca< )’YA (yla') d
- A[—rh /Ca yla)dy}

and the result follows form the case A = 1. Therefore, as above, ©2(a, h (a)) = O (A?), and in the
limit the first best outcome is achievable.

5.2 Changing payoff structure

The method can also be used to the models with different payoff structure. One important example
concerns the problems with diversion of cash-flows (see DeMarzo and Fishman [2007], Demarzo and
Sannikov [2006], Biais, Mariotti, Plantin, and Rochet [2007]). The difference with the model in the

2! The model is trivial in the case when the Principal is risk neutral. If we assume that the Principal has mean-
variance preferences u, (Fy) = E [y]— Var [y], his per period utility is equal to A (1 — a — ¢), and so (up to a constant)
the same as considered in the paper.
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previous sections is that the “cost” of effort to the agent will not be independent of consumption,
but is in fact expressed directly in monetary terms.

The action a of the agent will be interpreted as the amount of money diverted from the cash
flow, after the cash flow is observed. To be able to compare the results with the literature we let
a € A=10,00). Agent’s benefit, in monetary terms, from stealing a is h (a), where h is a concave
function such that A’ < 1 and A’ (a) = < 1 for a > A. For any A the stage game payoffs are thus:

up (a,¢) = A(drift —a— c) + noise,
ug (a,¢) = Au(ec+h(a)).

We thus go beyond the “linear” approach in the literature and allow the h function to be
nonlinear as well as agent to be risk averse. Furthermore, as in the literature, we assume that in
every period after observing the public signal the principal can break the contract, which will result
in a continuation payoffs wp,w4 > 0 for the principal and the agent.

Few remarks. One can show that the payoffs to the principal and the agent cannot fall below wp
and w4 (see DeMarzo and Fishman [2007], Demarzo and Sannikov [2006], Biais, Mariotti, Plantin,
and Rochet [2007]). Also, the optimal contracts will never require the agent to divert more than
some finite amount A . In contrast to the “linear” case, however, even the optimal contract may
require the Agent to divert nonnegative amount. One can show that the values of the optimal
contracts converge to F', where F' is the maximal function that solves

F(w) = Iar}%)cc{drift —(@+c)+ F' (w) (w—u)+ 7“F”2(w)® (&,ﬂ,c)} ,
F(ws) =wp, F<F,
where
O .c) = inf / V2 (2)g(x)dz, (20)
s.t. a= /a(:z:)g(:n)dm
= /u(c + h(a(z)))g(x)dx

V' (z) = v/ (c+ h(a(x)))h (a(x)).

Note also that allowing the agent to be risk averse, we can treat this model as a model of
insurance: Agent observes own income, decides how much to report (where reporting less than
truth might involve some efficiency loss). The principal can decide to end the relationship, which
here might mean that he implements a costly perfect monitoring scheme so that the parties get the
first best minus the exogenously determined cost of monitoring.

6 Conclusions

We study a rich family of dynamic agency problems that includes the standard hidden action and
hidden information models as special cases. We develop a quadratic approximation method that,
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when the period length is short, allows us to characterize the upper boundary of the equilibrium
value set by a differential equation, and to construct contracts that are both relatively simple and
almost optimal. The quadratic approximation method developed here should be useful in many
dynamic settings with asymetric information (for example repeated partnerships and oligopoly
games).

The solutions we derive depend on the information structure, including the corresponding den-
sities of signals. Nevertheless our method is very tractable as it involves solving a family of simple
static problems and a differential equation. The upper boundary of the equilibrium value set de-
pends on a single parameter of the information structure, the variance of incentive transfers. The
simple contracts are built from the optimal solutions of the static problems, which are functions of
the likelihood ratios of public signals familiar from the static contracting literature.

In particuar, while easy to construct, the contracts are sensitive to the details of the information
structure, for any period length. The upper boundary of the value set of the continuous time model
is the limit, as the period length shrinks to 0, of the upper boundary of the value set of discrete
time models with particular information structures, whereas the optimal continuous time contract
does not provide enough information to construct (approximately) optimal discrete time contracts.

7 Appendix

7.1 Details for Section 4.3

The following Lemma will be used throughout the paper. It says that for any period length A > 0
and any of the Bellman operators applied to a strictly concave function F', the continuation value
policy function must have variance at most proportional to A. Intuitively, this must be the case in
order to bound the efficiency loss, due to the high variance and strict concavity of F', by potential
per-period gains, which are of order A.

Lemma 14 Let I = [w,w] and F : I — R be twice continuously differentiable with F" < 0.
Suppose that the policy (a,c, W) is A-suboptimal for the problem X F (w), with w < e ™ W and X
any of the Bellman operators TIA, TIA’C, TIA’d and T?4. Then for some V that depends on F only
we have VA [W(Alz + a(2)])] < VA.

Proof. In each of the above problems the policy (a,c, W) = (0,0, e w) is an available policy
that satisfies all the constraints and delivers a value of at least F (w) + [min F'] (e"® — 1) w =

F(w) 4 O(A). Let h = EA[h(a(2))], & = BA[u(c(Alz + a(2)]))] and W = EA[W (Alz + a(2)])]. The
promise-keeping constraint implies that

W —w=FAe™[w+ h — 1] = O(A),

since w € [w, W], h e [0,h(A)] and @ € [0, @]. Therefore, W (Alz 4 a(2)]) —w = (W (Alz + a(z)]) —
W)+ (W — w) implies

EX[(W(Afz +a(2)]) — w)?] = VA W (Alz + a(2)])] + O(A?%).
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Consequently, for Y either ®29 (a,c, W; F,w) or ®* (a,c, W; F) we have Y > F (w) + O (A) and

max F"
2

Y <FAA 4 A (F(w) FFASAF (w)[w + b — 4] + VA W (Alz + a(2)])] ) +0(A2),

which after rearranging terms gives the result for an appropriate V. m
Proof. (Lemma 8) Fix w € I and any feasible policy (a,c, W) for TA9F (w), let a = E*[a(2)],

h = E2[h(a(z))] and W = EA[W(Az)]. As in the proof of Lemma 14, the promise-keeping
constraint for T29F (w) implies that W — w = FAe"™[w + h — u(c)]. Therefore, T®F(w) equals

= sup { FA(G — ¢) + e 2TEA[F(w) 4+ F'(w)(W(Az) — w) + %F”(w)(W(Am) - w)Q]}
a,c,W

=7A asle[/)V {(a —¢)+ Fl(w)[w+h —u(c)) +e ™ FQT(A)VA[W(A:U)]} +e"AF(w)+ 0 (A?)

=FA sup {(a—c)+F’(w)[w+B—u(c)]+ raFw )~6(a h) — F(w )}+e"”AF(w)+O(A2),

a,h,c

where the last equality follows from the definition of O(a, h), as we argue below.
For a given (a,h), since F"(w) < 0 and ng|Z x|z)dz = 0, the above optimization problem
involves the subproblem

inf  EAWo(z)?

a,Wo
st.  a=E*a(z)], h=E*Rh(a(z)], 0=E>*Wy(z)],
efrA
#H () = — / Wo(x)gd,(zl2)ds V2 (FOC-AC),
7h' (a () = e AW (z) Vo (FOC-PHI),

where Wo(z) = W(Az) — W. Note that the constraint 0 = E2[Wy(x)] can be dropped since
it will be satisfied by a solution (or infimum sequence) of the relaxed problem. Note also that

9% (%) = VAgx (VD) g7(2)) = \fgz(z\r) and g% ,(z]2)) = VAgx|z(zvVA|2VA). Hence,
letting v(z) = e "AWy(z/VA)/[FVA] and d(z) = a(z/VA), the subproblem becomes

iang P2 A AEv(2)?]
st.  a=Ea()], h=Eh@),
W (a(2)) = — / v(@)dy 5 (@l2)ds V2 (FOC-AC),
B (a(z)) =" (z) Vo (FOC-PHI).

Therefore the value of this last problem is by definition 72 Ae?20(a, h). This justifies the substi-
tution of ©(a, h) in the equation above and establishes the proof. m
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Proof. (Lemma 9) From Lemma 8 we have

T F(w) — Fe (w)

a,h,c

= sup fA{(d—c) + F{(w)[w + h — u(c)] + e
— 0(CA)+0(A?).

The last equality follows because F¢ satisfies the HJB equation (6). Lemma 8 also yields that
2 (ay, cq, Ws Feow) > Fe(w) — O (A%) — O (Ae) — O (CA), establishing the proof. m

Definition 3 For a twice differentiable function F': I — co with F"<0,e>0,welande-
suboptimal policies (6, h, c) and (a,v) as in Lemma (8), the policies (an,ch,WqA) defined in (17),
for A >0, will be called quadratic simple.

Remark 2 In the pure hidden information case, the v in the definition of a quadratic simple policy
at w is continuous and piecewise twice continuously differentriable (see the definition of ©). We
assume that for any € > 0, there is a common finite set D such that the set of functions v for all
w € I are equicontinuous outside of D, which is without loss of generality (see Remark 1).

The following two technical Lemmas are crucial for the proofs of Lemmas 10 and 11 in the
absolutely continuous case. Lemma 15 will be used to show that the incentives provided by the
tails of the continuation values are negligible, for short period length. Lemma 16 will establish that
the expected continuation value for the agent is almost linear in action, for short period length.
This will be used to show strict convexity of agent’s problem and so that the local incentives are
sufficient, as well as that approximating public signal by Az hardly affects the incentives, and so
agent’s action.

Lemma 15 Suppose [X|Z = z| is absolutely continuous and g satisfies (A2). For any e > 0 there
exist M. such that for all v : R? — R with EA [v (x, z)2] <1 the following holds

P [{z : ‘/|U|>Msv(ac,z) g'X|Z (z|z)dz| < 5}] >1-—c.

Proof. Fix ¢ > 0 and consider a function v that satisfies E[v (z,2)?] < 1. We have, from the
Tshebyshev’s inequality,

P Hz : /v(:r,z)QgX|Z(:U|z)dx > 2/5}] < f”@’zig/g’ 2dedz

Due to Assumption (A2-AC) the term

/ |z 2
FW):/ Ixiz(#2)”

|9;(\z(x|2)‘>NgX|z(m|z) gX|Z(£L'|Z)
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converges pointwise to zero as N T oo (Lebesgue’s Monotone Convergence Theorem). Also, there
exists a set L. C R and N, > 0 so that Pz[L.] > 1 —¢/2 and for all z € L. T'y. (2) < %. Define
the set BY = L. N {z: [v(z,2)*gx|z(x|z)dx < 2/}, which satisfies Pz [BY] > 1 —e.

Let D( ) = {z | ]gX‘Z( ]z)| > Negx|z(w|z)}. If follows from the Cauchy-Shwartz inequality
that for all z € BY

On the other hand, for M, > 4;\2[5 and any z € BY we have

1
Lo (z]2)? 2 313
9X|Z( |2) daz] < [25} €
€8

v(:v,z)g’XlZ(x|z)‘ dr < [/v(m, z)2gX|Z(;c|z)dx X /

D) 9x|z(%]2)

/ v@,2) g el do < 37 [ P 2)gxzlele)de < 5.
{z¢D(2):v|>M:}

Altogether, the above two expressions establish that for all z € BY

[ p@ndstela]d <.
|v|>Me.

which establishes the proof. m

Lemma 16 Suppose [X|Z = 2] is absolutely continuous and g satisfies (A2). For any e > 0 and
M there exists 6 > 0 such that for all § (-) with 0 <5 (-) <0 and v: R? — R the following holds

/ v (z, 2) g'X|Z (z|2) dm—/ v(z+4(2),2) gng (x|z)dx| <e,  Vz (21)
| <M

lv|<M

E [v2 (x+d(2),2) 1|U‘§M] <E [112 (z,2) 1\v|§M] + €.
Proof. For every z and z, \ggﬂz(m]z) —g'X|Z(3: —d(2)|2)] < 6|g3'<‘Z(x —&(x, 2)|2)| for some &(z, 2) €

[0,6(2)] € [0,8]. Therefore, with & and M the constants in (A2), for every § < min {7, MEM} we
have that

/viM ‘v(:c,z) [Qg(‘z(x]z) — g iz(@ = 8(2)]2) }

which establishes (21).
. . . N 15
Similarly, for any ¢ < min {(5 BT \/ﬁ} we have that

f(m,z)\z)‘ dr < SMM < e,

/R/USM|’U(.’L‘,Z)2 (9(z,2) — g(z — a(z),2))| dedz < 5M? // ‘gX|Z z — &(z,2)|2)g7(2)| dudz

Ix|z(7|2)

/ _ 2 %
- 5M2/ [/ Iy 1z(@ = &z, 2) | 2) dm] ap(2)dz < SMPV/IT < .
R |JR

with the second inequality following from the Cauchy-Schwarz inequality, which establishes the
Lemma. m
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Definition 4 For a twice differentiable function F : I — oo with F”" < 0,¢ >0, A >0, w €
I and quadratic simple policies (ag,cq, Wy) in the problem TA4F (w), define the simple policy
(a,c, W) for TIA’CF (w) as

c = cq,

W(y) = C+Wa(y)Ly, (Aw)—85 (W, (x| <VEM. (AC),
W, (—VAM,.) if Az < —VAM,.

W(y)=C+< Wy (Ax) if |Az| < VAM, (PHI),

W,(VAM.) if Az >AM.
a(z) is an action that satisfies the (IC) constraint in (8),

where M. is the constant defined in Lemma 152 when X|Z is AC, and such that Px ([—M., M.])
>1—¢, when X = Z. C is chosen to satisfy the (PK) constraint in (8).

Note that in the case when F' solves the HJB equation (6) the above definition of a simple
policy agrees with the one in Definition 1.

Proof. (Lemma 10) Fix ¢ > 0 and A > 0 such that v/A < §/A, for § as in Lemma 16 (with
M = M.) and w € T*.

Step 1: We first show that ®*(a,c, W; F) > @A’q(aq,cq,Wq; F,w) — O(¢A), uniformly in w.
Since ¢ is arbitrary, in view of Lemma 8, this establishes |T24F — TIA’dF\}'A =o(A).

By Taylor series expansion, for y = Az + a(z)]

1
F(W(y)) = F (w) + ' (w) (W (y) — w) + 5F (w) (W (y) - w)? + o([W(y) — w]?).
(PK) implies that w — EA[W (y)] = O(A) and ‘W(y) - EA[W(y)H = O(v/A) by construction (note
that when Z = X the IC constraint implies W' (y) < #h/(A)), and so |w — W (y)| = O(V/A) for all
y. Therefore, for A small enough the policy (a,c, W) is feasible when w € I A and

2 (0, e, Wi F) = FABA [a(2)] - o) + e[ F(w) + F'(w)BA[W () - u] (22)

F//(w)

T

AW (y) - w)’]| +0(4)
Let us bound from below the terms in the second line of the above expression by the corresponding
terms in ®24(ay, cg, Wy; F,w).

Case 1: X|Z has continuous density. Given the definition of W, the necessary local version
of (IC) take the following form:

—rA
7A

/R W(Az + a ()9l (o])de = ~ VAO(VAL + a(2)])g%] (2] 2)da,

—h(a(z)) = A Jyens o

22We assume, without loss of generality, that Vx[v(z)]] <1 - else work with rescaled v.
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whereas the definition of W, and (FOC,-AC) imply

—rA

—h(a4(2)) = W Ax) gX|Z(ac\ A/\FU \Fx)gX|Z(:c|z)

Lemma 14 implies that VA [\/Zv(\/ﬁx)] < VA, and so Lemma 15 applied to v(x) yields

=P [ /U>M€ v(x)g'XlZ(a:\z)d:U

On the other hand, from Lemma 16 follows that for sufficiently small A and every z

L \/Zv(\/gx)gﬁiz(x\z)dx

pA
A S

<e

S&?] >1—-c.

VAu(VAD)GA (]2 — VAO(VAL + a(2)])gd] (a]2)da

| [v| <M. |v| <M.

‘ [ v@ipelads [ oot VBa@)gy (el
[v] <M

lv|<Me

<e

Consequently, with probability greater than 1 — ¢, |h/(aq(2) — A’ (a(2)) | < 2¢, and so

PAlag(2) — a(2)] < ] > P (ay(2) — W(a())] < 25] > 1 <. (24)

Since also ¢(y) = ¢, and actions are bounded we have
FA (B [ag(2)] = ¢g) — (B2 [a(2)] - o) = O(eA). (25)

Subtracting (PK,) for problem T24F from (PK) for problem 74“F and using (24), we obtain

e TAF (w) [BR W (y)] — B [W,(Az)]| = O(A). (26)
Finally
EA (W (y) —w)’] = P BAA(VA[z +a(2))1<ar] + O (A7) (27)
< FerAEA [Avg(\/gw)l‘v‘SMe] + 0 (eA)
< PeAEA AV (VAD)] + O (eA) = BA[(W, (Az) — w)?] + O (¢A).

The first inequality follows from Lemma 15. The equalities follow from the definitions of W, and
W and the fact that EA[W (Afz + a(2)]) — w] = O(A) and BA[W, (Az) — w] = O(A), from (PK)
and (PK,). Inequalities (25)—(27) establish the proof of Case 1.

Case 2: X = Z. Given the definition of W, the necessary local version of (IC) take the following
form:

7h (a(x)) = e AW (y) = 7' (VA + a (), (28)
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whereas, given the definition of W, and (FOC,-PHI), we have
h (aq(x)) = e "AW, (Az) = i (VAz).

Let D be the finite set of points such that each v in the definition of the policy is twice
continuously differentiable on R\ D (see Remark 2) and consider the set

N2 = [-Mo/VA M /VA = A\ | J{d/VA+¢: e 0,A]}.

deD

For sufficiently small A, P4 [NEA] > 1 — e. Moreover, for any = € NEA, v' is continuously differ-
entiable on [v/Az,vA[z + a(z)]]. Consequently, for all such z |1/(a,(z) — h'(a(z))| < VAmaxv”,
where the maximum is taken over the set [—M,, M,], and hence

VA maxv”

|aq (x) —a ($)| < inf A"

Since P2 [N2] > 1 — ¢, we have that the inequalities (25) and (26) hold. Moreover, by taking the
maximum over maxv” over [—M, M,| for all w (which is well defined, due to the assumption of
equicontinuity) we establish that the bounds in those inequalities are uniform in w € I®. Finally,
(27) follows from Lemma 15 just as in the previous case. This establishes the proof.

Step 2: We will show that ‘TIA’dF (w) — TA"JF(u))‘j_A =o(A).

Case 1: X|Z has continuous density. The proof is fully analogous to the previous step.
For a policy (a,c, W) that is eA-suboptimal in the problem TIA’dF (w) define (aq,cq, Wy) as in
Definition 1: ¢q = ¢, Wy (Az) = C+W (Az) if |W (Az) — EA [W (y)]| < VAM. and W, (Az) = C
otherwise, while a, (2) is defined by the (FOC,-AC) condition and C is chosen to satisfy (PK,). By
construction (ag, ¢q, W) is feasible T24F (w) and we prove as in step 1 that @A’q(aq, cq, Wy Fyw) >
D2 (a,c, W; F) — O(eA).

Case 2: X = Z.2 For a policy (a, c, W) that is eA-suboptimal in the problem TIA’dF (w) define
(ag, cq, W) as follows. Let ¢, = ¢, a, (v) = a () for x € [-M./VA+1,M./v/A—1], a; (z) = 0 for
x ¢ [~M./VA, M./vA] and a, piecewise continuously differentiable. W, is defined by the local IC
n (15), continuity and PK. The policy (a4, cq, Wy) is feasible by construction, and we must prove
that @A’q(aq,cq, Wy Fow) > d2(a,c, W; F) — O(eA).

On the one hand, P2 [a,(z) = a(z)] > 1—2¢ for sufficiently small A, which implies the analogues
of (25) and (26). On the other hand, for all ,Z € [~ M./VA, M./VA]

W,(AZ) — W (Az) = 7e™@ / AR (ag(x = e / ' AR (a(z))dz

= fem / AR (a(z))(1 + d'(2))dz — A(h(a(T)) — h(a@)))]
= W(A[z +a()]) - W(A[z + a(z)]) + O(A),

23In Step 1 we used the fact that the quadratic simple policies, for all A, are based on the same set of v functions
from the definition of ©. In particular, the W, functions have the same number of points of discontinuity, for all A.
In this Step, without additional proofs we cannot assume such uniformity, and so the construction is different.
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Consequently VA[IW,(Az)] < VA W(y)lmng/\/Z] + O(A?). Moreover, since VAW (y)] < VA

(Lemma 14) and W’ € [0, h/(A)], there is K. such that for any A, |z| < M./v/A implies y € B,
where B = {y | [W(y) - EA[W(y)]| < VAK.}.
Altogether

O (ag, 0, Wi Fyw) = FAEAa(@)] - ) + "2 F(w) + F/(w)BAW (y) - w]

+ %F”(w)VA W)1p)| +0(A) < 8 (a,c,W:F) + 0 (cA).

which establishes the Lemma. m

Proof. (Lemma 11) Fix w € I and a simple policy (a,c, W).

(i) Consider the necessary local version of (IC) in (23). Since h is strictly convex, Lemma 16
implies that for sufficiently small A and any z there is a unique solution a (z) to this equation.

(i) Consider now the necessary local version of (IC) in (28). Since b’ is strictly convex it follows
that if v/ is continuously differentiable on (vVA[z + a1], VA[z +a (2)]) for some a; < a (z) (without
loss of generality) then a; cannot be the solution to this equation. Therefore, since for sufficiently
small A there may be at most one point of discontinuity of v on an interval of length v/AA, for
every x there are only two actions that satisfy (28). m

The following Lemma 17 is relevant only for the proof of Lemma 12. It is related to the standard
results in the static mechanism design.

Lemma 17 Suppose X = Z. For any A > 0 and w € I, if (a,c, W) satisfies (IC) in TIA’CF(w)
then x + a(z) is nondecreasing. Conversely, if (a,c, W) satisfies the local version of (IC) almost
everywhere and x + a(x) is nondecreasing, then (a,c, W) satisfies the IC.

Proof. The proof is standard, but we provide it for completeness. Suppose first that (a,c, W) is
incentive compatible. Therefore for any =’ > x

—h(a(z))) + e AW (Al + a(2')])

—7h(a(z) — (' — x)) + e AW (Alz + a()))
—Fh(a(z)) + e AW (Alz + a(x)]) !

2 Y
> —ih(a(z’) + (2 — 2)) + e AW (A2 + a(z)]).

Hence,
h(a(z')) — h(a(z) — (&' — 2)) < h(a(a’) + (2’ — 2)) — h(a(2)).

Since h is convex, this implies that a(z') > a(x) — (¢' — z).
Conversely, we argue by contradiction. Assume that (a, c, W) satisfies the local IC and x + a(z)
is nondecreasing. Let

Viz,z') = —fh(a(z') + (z' — x)) + "2 W (A2’ + a(z)]).

By local IC, Va(z,z) = 0 for all z. Suppose that for some 2’ > = we have V(z,2’) > V(x,z). Then

! /

0<V(z,2")—V(x,z) = /: Vo(z, s)ds = /: [Va(z,5)) — Va(s, s)] / / Via(z, s)dzds.
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But

Via(z,s) = 7h"(a(s) + (s — 2))(1 + d/(s)) > 0.
which is a contradiction. The case V(x,2’) > V(z,z) with 2’ < z is analogous. m
Proof. (Lemma 12) Fix A,e > 0 and consider any A-suboptimal policy (a,c, W) for TA¢F (w).
Let M. be such that P{[[—~M./vVA, M./v/A]] > 1—¢. We construct a policy (ag, cg, Wq) as follows.
The function a4(-) is derived from the function a(-) below so that aq4(-) is piecewise continuously
differentiable and x 4 a4(z) is nondecreasing. Then we let ¢y = ¢, and Wy be such that it satisfies

the local version of (IC):
7h'(aa(z)) = e "EWo(Alz + aq(2))]),

is continuous and the constant of integration is adjusted so that it satisfies the PK condition. By
Lemma 17, the policy (agq, cq, Wy) is feasible by construction.

Below we will define ag so that ag (z) = 0 if = ¢ [-M./VA, M. /A + A], = + ag(z) is nonde-
creasing and

M. /VA M. /VA
aqg(x) —a(x)|dr <e and / ay(x) —d(z)| dx < e. 29
[ leate) —ate) o) = @) (29)
Recall that if f is nondecreasing, then f is differentiable a.e. and fab f'(z)dx < f(b) — f(a).?* Since

W (aq(x))(1 + ag(x)) — W' (a(x))(1 + d'(z))
= (aq(x))(ag(z) — a'(x)) + (W' (aa(x)) = I'(a(2)))(1 + o' (2)),

(29) implies that for any z,Z € [~ M. /VA, M. /VA],

Wa(A[Z + ag(T)]) — Wa(Alz + ag(z)]) = Fe"™>A /:v B (aq(x))(1 + aly(z))dx

< W(A[Z + a(@)])) — W(Alz 4 a(z)]) + 7™ A [h'(A)E + max h” [2\/]\% +a(x) — a@)”
The rest of the proof will follow as in last step of Lemma 10 to establish that ®2 (ag, cq, Wy; F) >
2 (a,c, W; F) — O (eA).
We now construct an aq satisfying (29) and = + a4(x) is nondecreasing. First, note that since
for any y > = we have a (z) > a (y) — 5%, a may not discontinuously decrease. Therefore, the set of
points D C [~M./vA, M./v/A] at which a may be discontinuous is at most countable. Moreover,

if J =23 cpla(ry) —a(xz_)), then

Me/VA
J +/ (1+d(z))dr = 2Me 4 a(T) —a(z) < A+ 21

—~M./VA VA B VA

Since 1 + a/(z) > 0, this implies that J < A + %. Let Dy be a finite set of points where a is
discontinuous such that erDf(a(:r+) —a(z-)) > J —¢/2, and let § = mingep,(a(r4) —a(z-)).

21See, for example, Theorem 2 in Chapter 5 of Royden [1988).
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For any n € N and = € [~ M./VA, M. /V/A] let

n z+1/n
a,, (z) = / a’ (s)ds.
z—1/n

The function a), is differentiable and for any x, a,(z) > —1 (since a/(z) > —1). From the Lebesgue’s

Density Theorem it follows that for sufficiently large n, fi\/[]&/gg lal () — o/ (x)|dz < 6.

Finally, for D; = {dl, ...,dn} (do = —M./VA, dpyr = M./vV/A, and for any € [d;, dis1) let

aq (x) = a(d;) + /dx a,, (s)ds.

The function a4 satisfies (29) and x + a4(x) is nondecreasing by construction, which establishes the
proof. m

Proof. (Lemma 13) Fix ¢,A > 0 and any w € I®, and let (a,c, W) be a policy function that
is eA—suboptimal in the problem TIAF (w). Using Lemma 15 and arguments as in the proof of
Proposition 10 we may assume without loss of generality that for every public signal y = Alz+a (z)]

W (y) — EA [W (y)]| = O <\/Z), and that ®2(a,c, W; F) is equal, up to o (A)

(1) + F (w) (B W ()] - w)
V2 (W (y) )

A (B 0 (2)] - 3R e @)]) +e |

Let the policy (ac, ¢, W,) with constant consumption be defined so that a. = a, B2 [u (c(y))] =
u (c.) and
¢ TAWe (y) = AF [u(e(y) — B2 [u(e ()] +e "W (y).

We will compare the terms in (30) with the analogous terms for the policy (ac, ¢, We). We have
E2 [a(2)] = B2 [ac (2)], BA [W (y)] = BA [W. (y)] and, from concavity of u, c. < E? [c(y)]. Letting
C(y) := 7™ [u(c(y)) — u(c.)] the following establishes the proof:

2 2
VAW ()] = VAW ()] = BY (W () + AC (y) — BA (W ()])°] = B* |(W () = B~ W ()]
— AZEA [(2(y)] + ABA [(W (y) — BA W (9)]) € (4)] < A2(Fe™7)? + A¥27er27 = 0 (A)
|
7.2 The HIJIB Equation
We start with a Lemma that establishes some basic properties of the solution of the HJB equation.

Lemma 18 Suppose that © > 6 > 0.
(i) For any initial conditions F(w) and F'(w) the HJB equation (3) has a unique solution F in
any interval [w,w] C R.
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(i1) F is twice continuously differentiable and (F, F') depends continuously on the initial con-
ditions.

(i11) F' is monotone with respect to F'(w). That is, if F1 and Fs are two solutions of the HJB
equation in an interval [w,w] C R with Fi(w) = Fa(w) and F{(w) > Fj(w), then F{(w) > Fj(w)
(and hence Fy(w) > Fa(w)) for all w > w.

Proof. See Sannikov [2008]. m

Note that the definition of ©¢ for any ¢ > 0 guarantees that ©, > ¢ > 0. Lemma 18 thus
implies that for any ¢ > 0 the HJB equation (6) with the boundary conditions (4) and (5) has
a unique solution F. Moreover, the uniqueness, continuity and monotonicity in the initial slope
suggest the natural procedure for computing Fg.

The following Lemma is crucial for the proof of the Theorems.

Lemma 19 Suppose that © > 0 > 0. The solution F of the HJB equation (3) with the boundary
conditions (4) and (5) is strictly concave.

Proof. See Sannikov [2008]. m

The following “single crossing” Lemma will be used in the proof of Proposition 2.

Lemma 20 Consider two functions © > © > 0, and suppose that F® and F€ solve the corre-
sponding HJIB equations (3) with F®" < 0.

(i) If for some w, FO®(w) = F(w) and FO(w') > F&(w') in a right neighborhood of w, then
FO(w') > F&(w') for all w' > w.

(ii) Assume © > ©. If for some w, F®(w) = F&(w) and F® (w) > F®(w), then F® (w') >
FO(w') for all w' > w.

Note that the precondition of part (i) is implied by (but is not equivalent to) F© (w) = F&(w)
and F® (w) > F® (w).
Proof. We prove only part (i) (the proof of part (ii) is analogous). First, by assumption, F®'(w') >
FO(w') for all w' > w sufficiently close to w. Suppose now that there exists w’ > w with F®' (w') <
F®(w') - we now assume that w' is the smallest with this property. Since F®’ > (wuwy F O we
have that F®(w') > F&(w'). Therefore, it must be the case that F®(w') > F&"(w'): otherwise,
since F®(w') < 0 and © > O, every policy (@,h,c) would yield a weakly higher value of the
right-hand side of HJB equation (3) for F&(w') than for F®(w'). But F®"(w') > F&"(w') implies
that F®'(w") < F® (w") for w" in a left neighborhood of w’, contradicting the minimality of w’. m

7.2.1 Proof of Proposition 2, part (i)

For any ¢ > 0, let FCG and FcQ be as in Theorem 1. By Lemma 18, FC@ and FCQ exist. Let us
show that FC@(w) < FCQ(w) for all w € [O,ngvc]. Part (i) of Lemma 20 implies that there is no
point w € [vasep,g) such that Fce('w) = FC@(w) and Fce(w’) > FCQ(w’) in a right neighborhood of
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w: otherwise FCQ( o) < F (w® i) = F(w%c), contradicting FCQ > F. The result attains since

€]
F2(0) = F(0).
The result also implies monotonicity in ¢: for ( < ( F, 9( ) < Ce
FCQ(w) < Fg(w) for all w € [0, ng C] Altogether, we obtain F©(w)
by taking pointwise limits as ¢ | 0. This establishes the proof.

for all w € [0, wsp C] and

(w)
< FO(w) for all w € [0,w)]

The following Corollary establishes the last missing part of the proof of Theorem 1.

Corollary 3 For any © the Function F' and wg, in Theorem 1 exist.

7.2.2 Proof of Proposition 1

We will use the following Lemma.

Lemma 21

(i) Suppose that ©(a,h) >0 > 0 for a > 0. Then for all { > 0 the F; as in Theorem 1 solves
equation (6) with an additional constraint a > 0.

(i1) Suppose (Cont) holds. Then for any [w,w] C (0,ws,) there exists v > 0 such that for
all sufficiently small ¢, the F¢ as in Theorem 1 solves equation (6) on [w,w] with an additional
constraint a > .

Proof. For any A € [F' (wgp),00) let Hy be the linear function tangent to the retirement curve
{(w, F (w)) : w € [0, wsp]} with the slope A (if A > F'(0), Hy(w) = \w).

(i) Fix any ¢ > 0. Since F¢ and F are concave and Fy > F, for any w € [0, wyp ¢] we have
F¢ (w)—HFC’ (w)(w) > 0. On the other hand, for any ¢ and w € [0, wsp], if we restrict the policy on the

right hand side of equation (6) to satisfy a = 0, we have max.{—c+ F/(w)(w—u(c ))+ 2F”( w)r¢} <
max.{—c + F/(w)(w — u(c))} = F(w') + F'(w)(w — w') = HFé(w)(w), where w’ is such that
F'(w') = F/(w). Hence, choosing @ = 0 is never optimal and without any loss the additional

constraint @ > 0 can be included in (6) to compute F¢(w).
(i) We may assume wg, > 0. Note also that for any ( > 0 and F; as in Theorem 1 we have

F (Wyp) < FL () < F (w) /u,

for all w € [w,w|. We will establish that there is « > 0 such that for any ¢ and w € [w,™w],
Fe(w) — HFé(w)(w) > a. If not, then let {wy,}, {w,},{¢,} and {a,} with w, € [w, @], w], < wsp,
Cn 1 0, o | 0besuch that Fe (wn)—HFC/ (wn) (Wn) <y (wWhere wy, is such that F'(w;,) = FC’n (wp))-
We consider three cases. !

(Case 1) Suppose that for some ¢ > 0 and all n, w;, € [0, ws, — J]. The concavity of Fi  and I
imply that an(w”) HFC/ (wn)(wn) Z an( ) HF (wn) ( ;1) = FC ( ) E( I) But since an
is increasing as ¢,, | 0 (Pr(;position 2, part (1)), F (wz) F(wy,) > infye (5,5 Fe, (W) —F(w) >0,
a contradiction.

(Case 2) If w), | 0 (we might assume so by choosing a subsequence), then we would have
Fe, (wn) — HFén(wn) (wp) — F'(0) x wy. By concavity of all F¢  this would imply that, first,
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Fe (w) — F'(0) x w for all w € [0, wy], and second, that there is a sequence {wy,}, w;, € [0,w,],
such that F/ (wy) — F'(0) and F/ (wy) — 0. But then

Fe (wp) — n;ficx{(a— ¢)+ F(0) (wy + h(a) —u(c))}

= mgx{a—l—E’ (0) (w)y +h(a))} > F' (0)wy,

where the equality follows from the fact that F' (0) = ﬁ and strict concavity of w, while the
inequality follows from A/, (0) < u’(0). This establishes the required contradiction.

(Case 3) If w!, T wsp, we derive the contradiction in the analogous way as in case 2.

We have established that for all ¢ and w € [w,w], F¢ (w) — HFé(w)(w) > a > 0. On the other
hand, for any ¢ and w € [w,w], if we restrict the policy on the right hand side of equation (6)
to satisfy a = 0, we have max.{—c + F¢ (w) (w —u(c)) + %Fé’ (w)r¢} < Hpy(w) (w) < Fe (w) — a.
Since FY are uniformly bounded on [w,w] and h < %h (A), we see that the policy for F (w), for
any ¢ and w € [w,w]|, satisfies the additional constraint a >  for appropriate v > 0. m

We are now ready to prove Proposition 1.

(i) Given Lemma 21, part (i), all the functions F for ¢ < € are the same, and solve the equation
(3). The Proposition then follows from Theorem 1.

(ii) Choose any [w,w] C (0, wsp). Lemma 21, part (ii), guarantees that for sufficiently small ¢
all F¢ satisfy the constraint a > v on [w,w], for some v > 0. Therefore, for sufficiently small ¢ all
F satisfy on [w,w]:

F"(w)ziin% {F(w)—(a—c)—F’ w) (w—i—h—u(c))}’
a>7,h,c

(
r0 (a,h) /2

with the right-hand side Lipschitz continuous in (w, F (w), F' (w)), since © > § (v) > 0 for a > +.

Part (i) of Proposition 2 guarantees that Fy converge in the supremum norm as ¢ | 0 to a
function F. Since Fé are uniformly bounded on [w,w], it follows that all Fé’ and FC/ are Lipschitz
continuous with the same Lipschitz constant, and so F C, converge to F’ not only in L! but in the
supremum norm, by the Arzela-Ascoli Theorem. Uniform Lipschitz continuity guarantees also that
F'= L[ that F” := lim¢ o I exists and I satisfies the above equation (all on [w, w]). Since the
set [w,w] is arbitrary, this proves that F' solves (3) in (0, wsp).

7.2.3 Proof of Proposition 2, part (ii)

Part (ii) of Proposition 1 shows that F€ and F® satisfy the HJB equation (3). Part (ii) of Lemma
21 guarantees that for F€ and F® restricted to [w, W] C (0,wspe) as well as the domains of ©
and © restricted to {(EL, l_z) 1a > ’y} , the preconditions for part (ii) of Lemma 20 are satisfied, with
0 = §(y) for v as in Lemma 21. Moreover, part (i) of the Proposition implies that F& > F©.
Therefore, if F€ (w) = F® (w) for some w € (O,w?p), it must be that F®' (w) = F® (w), and so
F® (w') < F® (w') for w' > w, contradicting F€ > F. This completes the proof.
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7.2.4 Proof of Proposition 3

The proof follows from the following Lemma.

Lemma 22 Suppose that © = 0. For any 6 > 0 and sufficiently small ¢ the solution F¢ of the
HJB equation (6) with initial conditions

Fe (@) = F (@) - 8, F,(@) = F (@)

for some w € [0, W] satisfies
20
B <o) =5

Proof. For any \ € [F/ (Wep) ,00) let Gy be the linear function tangent to the first-best frontier
{(w,F (w)) : w € [0, W]} with the slope X. We will show that if for an arbitrary w € [0, wsp)

G riw) (W) = F¢ (w) =6, (31)

then F' (w) < _%5' Note that then as long as —? < minge(om,,) F" (w) the above condition will
be satisfied over the whole interval [0, W], which will establish the Lemma.
Since © = 0, the HJB equation (6) takes the form

a,h,c

F' (w) = ?mm{FC —(a—c¢) = Fl(w)(w+h—u(c))}. (32)

Let w' be such that F/ (w) = F' (w') . For the policy (a (w'),c(w')) in the problem (1) at w’ we
have:

Fe (w) = (a(w) = e (@) = FL (w) (w+ b (a (@) —u(e(w))) =
F(w) = (a(u) —c ()~ F (w) (w" = (o (w)) — (e (w))

+ [Fe (w) = F () + F (w) (v —w)] = [F (w) = F (@) + F¢ (w) (v —w)] < =4,

where the last equality follows from (1), while the last inequality follows from (31). Since (a(w'),

h(a(w")), c(w')) is an available policy in the problem (32), this establishes that I’ (w) < —2—55. ]

Given the Lemma, for any 6 > 0 and sufficiently small ¢ > 0 the solution F; of the HJB
equation (6) with initial conditions F, (w) = F (w) — 4, Fl(w) = F (@) with @ € [0, Wsp] will
satisfy Fr (w) = F(w) and F¢ (w) = F (w) for some 0 < w < W < Wsy. This together with
Proposition 7 and part (ii) of Lemma 7 establishes the proof of the Proposition.

7.3 Proof of Proposition 4

Fix period length A > 0, densities gx and vy satisfying (12) and any wg, w, € [0,%). Consider
the problem of finding a contract {c,} and action plans {ag,},{ay,} that maximize the sum of
principal’s expected discounted revenues under noise densities gx and 7y, such that {c,},{agn} is
incentive compatible under gx and {¢,}, {ay} is incentive compatible under vy, and they deliver
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expected discounted utilities wy and w. to the agent. Let I, gAﬂ (wg, w~) be the value to the principal
from the optimal contract:

F (wgywy) = suwp {Ty({en} {agn}) + L ({ea} {arn})
{agn} is IC for {cn}, Ug({cn}, {agn}) = w under density gx,

{ayn} is IC for {c,}, U,({cn},{ayn}) = w under density ’yX}

To establish the Proposition we show that if wy, w, € (0,wsp) then there is 6 > 0 such that for
sufficiently small A FgAﬂ (wg, wy) + 0 < F (wg) + F (wy) =: F5 (wg, w,), where F is as in Theorem
1.

First, consider the following Bellman operator:

Tﬁ’yf(wg7w’)/) = sup ‘DgA(ag,c, ngf) —i—‘I’ﬁ(ay,c, W'yif)
ag,a~,c,Wg, Wy
s.t. ap € A, c(y) >0 and Wy(y) € [0,a) Vy
wy = By [M[“(C(A[UC +ag))) = hlag)] + e AWy (Alz + %])] (PKs)

as € argmax B [m[u(c(A[a: +a])) — h(@)] + e AW (Al + a])] (IC3-AQC)

where the supremum is taken over measurable functions and and <I>¢A)(a, ¢, W; f) is as in (9), for
¢ € {g,7}. The following is an analogue of Proposition 5:

Proposition 8 Fﬁv is the largest fixed point f of Tﬁv such that f(wg, wy) < F(wg) + F(w,).

For a set of feasible policies p = {(ay, a, c, Wy, W,Y)}( 0,2)2 for the Bellman operator Tg%7

wg,wy)€E[O,
let TgAﬁ’p be the operator defined as TgA,J,p (w) = CIDQA(ag,c, W f) + <I>$(aﬂy,c, W,; f), and let FgA,;p
be the value achieved by the policies p. Note that FgAy P is a fixed point of TgA7 =P, Also, policies p
together with an initial point (wg,w,) = (wh 5, w? ;) determine a stochastic process {(wgn, wh )}
of continuation values.

For the proof of the Proposition we use the following five claims. Claim 1 is related to Lemma

7. It shows that for a fixed set of policies p for the Bellman operator TgAﬁ7 how far the value of the

contract built up recursively from those policies falls short of Fy (Fy — Ff ~P) can be expressed as

a discounted expected sum of how far each policy applied to Fy falls short of Fy (Fy — TgA7 ).
The idea behind the construction in the remaining four claims is as follows. For any € > 0

consider the set S. = {(wg, w,) € [g,wsp —€]? : Jwy — wy| > &, max {wy, w,} > wo + &}, where wy

is such that F' (wg) = F’ (0) = —ﬁ. Claim 2 shows that once the two continuation values are in

the set, Fy — Ti? Fy must be negative: The reason is that to achieve Fy (wg,wy) = F (wy) + F (w,)
the wages paid in the separate two optimal policies for each continuation value must be different
(such that —1/u/ (¢q) = F' (wy), and —1/u/ (¢y) = F' (wy)), whereas TgAﬂ’p restricts the wage to be
the same.

Claim 3 shows that if Fg—TgA7 ,;p F5 is to remain small, it must be that the variances of continuation
values W, Wy and W, — Wy must be bounded away from zero, and not too big. This follows from
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the results in the paper: for the policy p to fare well, the continuation values for each noise must
be approximately linear in likelihod ratio. Also, since the likelihood ratios are linearly independent
by assumption, W, — Wy can’t be too small. Using Claim 3, Claim 4 shows that under policies p
once the process of continuation values (wgy,w,) enters set S, it must stay there for a while with
nonnegligible probability; Claim 5 shows that starting at any interior point of continuation values
the process enters S in finite time with nonnegligible probabilities. Those results, together with
Claim 2 establish the Proposition.

Fix a set of policies p for the Bellman operator TQAW.

Claim 1 Consider function F : [0,a)* — R and (w} o, w? ) € [0,@)*. Then for any N € N

N
A A —rnA A
Fy (wg, wy) — F 2P (wg,wy) = B, [ Z e " (Fy(wg p, wh ) — Ty 5P Fo(wy p, wh ) +
n=0

—r(N+1)A A,
+e VY (F2(wy yyr> W y1) — Fg,’Yp(ng),N+17w$,N+1))]'
Proof. For any (wg,w,) € [0,%)? we have

A A A
By (wg, wy) = F P (wg,wy) = Fa(wg,wy) — T PESP (wg, wy) =

A A A A
= Fy(wg,wy) = T 2P Fo (wg, wy) + TP By (wg, wey) — Ty oPFP (wy, wy)

A A —rA A
= Eg;‘/ [FZ (wg, wy) — Tg7";pF2 (wg,wy) +e" (F2(w§,1a 71)571) - Fg,v’p(wg,p wﬁl))],

and using the equality recursively yields the proof. m

Claim 2 Fize > 0 and (wg, wy) € Se. Then there is 61 such that for sufficiently small A > 0:

Fr(wg, w,y) — TgAﬁFQ(wg,wy) > 01A.

Proof. In analogy to 727 we also define a simplified “quadratic” operator TgA, KR

Tﬁy’q (wg7w'y) = sSup (I)ﬁ’q(ag,c, Wys f, wg) + q)yA(a'yaCa Wo; f, w'y)
Qg ,a~,c,Wg, Wy
s.t. ap(z) € A, ¢>0, and Wy(y) eR Vy
wp = B3 [FAu(c(Alz + ag))) — hlag)] + e A Wo(Alz + ag])]  (PKsg)
—rA
i (ag) =~ / W(AD)6 (2)da (FOCq-AC)
R

where the supremum is taken over measurable functions and CD(% (a,c,W; f,wg) is defined in (16),
for ¢ € {g,7}. Using analogues to Lemmas 10 and 13 we establish:

‘TgA’,;qFQ — T£]A7A/F2|[O7,a)2 = O(A)
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Fix £ > 0 and (wg, w,) € [¢,wsy — £]* such that |w, — w,| > e. In view of the above bound, it

is sufficient to establish that Fy(wg,w~) — Tﬁw’ng (wg,w~) > 014, and so, due to Proposition 7 and
Lemmas 10 and 13, it is sufficient to show that

THUF (wg) + THUF (wy) — T Fy(wg, wy) > 014,

where TgA “and T 7A 4 stand for operator T2 under the respective noise densities.
We have

Tf’qF(w(ﬁ) = sup—7A {c+ F' (wy)u(c)} + sup <I>$ (a, W3 F,wg) ,
c a,W
TgAﬁ’qFQ(wg,ww) = sup—7A {2c+ F' (wg) u(c) + F' (wy)u(c)} +

+ sup <I>gA (ag, Wy; Fywg) + sup <I>$ (avy, Wy Fywsy) ,

ag,Wy a~,Wy

where
<I>¢A, (a,W; F,wg) = e_ATF(w¢)+77A {a + F'(wg)[wy + h (aqs)]}—l—e_ArEf,[%F" (we) (W(Aw)—w¢)2],

¢ € {g,7}. The proof follows from the fact that F” is bounded away from 0 on [0, wsy)? and so
|F" (wg) — F' (wy)| > €1 for some &1 > 0, which implies that for some d;:

sup — {c+F (wg)u(c)}—ksgp— {e+ F (wy)u(c)} > sup — {2c+ F' (wg) u(c) + F' (wy) u(c) }+61.

Claim 3 Fiz ¢ > 0 and (wg,wy) € [, Wsp — 6]2. Then there is §2 > 0 such that for sufficiently
small A and any feasible policy (ag, a,c, Wy, W) for TgA’A/Fg(wg, w,) if

@QA(ag,c, W Fy) + @ﬁ(av, ¢, Wy; Fo) > Fa(wg, wy) — 02A
then
VR Wy (Alzg + ag))], VR, (Alzy +a,))] > 624,
Vﬁy[Wg (Azg +ag)) =Wy (A(zy +ay))] > S2A.
On the other hand,
Fy(wg, wy) — @ﬁ(ag, c, Wy; Fo) + @ﬁ(a% c, Wy Fy)

(rh'(A))?
VLR(gx)

(rh'(A))

> d9 (VgA [Wg(A(xg + ag))] -A m)

) + 62(VE Wy (A(zy + ay))] — A
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Proof. Lemmas 21 part ii) and 8 imply that for certain d2 > 0 and sufficiently small A if
@A(ag,c, Wys Fo) + @ﬁ(ay,c, Wy Fa2) > Fo(wg, wy) — 024, then ag,a, > a > 0. But then Lem-

g
rh/(ag))?
mas 8 and 1 imply that Vﬁ[qu (A(zp + ay))] = A%, for ¢ € {g,7}, which yields the first

inequality. The same Lemmas imply that Wy (A(zy + ag)) = Eﬁ[W¢ (A(zp + ag))] + \/ZDi((zj))

(in Ly (qS)A()), for ¢ € {g,7}, and so the second inequality follows from the linear independence of
likelihood ratios (12). Finally, F” bounded away from zero immediately implies the third inequality.
]

Fix a set of policies p for the Bellman operator T2, T > 0, &1 > 2 > 0.

9,77

Claim 4 Fiz an initial point (wg, wy) € Se. Then there are 03,7 > 0 such that for sufficiently

small A
T/A

[Ze rna F2 gnv ) TA@F?( Wy n> g,n)) < d3

implies

P2 [(wh  wh ) € Seppn =0,...,T/A] > 6.

Proof. If the precondition is satisfied, then Claim 3 implies that, for ¢ € {g,7},

Aj(, P P (rh/ (A))2 .
Vd) [(w(ﬁ’t - w¢,0)] < TW + 5/(5 = CT76, for ¢ < CZW/A7
By [V [(whpyn —wh llwh o] < Crg, fort <T/A,
with Crs — 0 as T, 6 — 0. We also have
EZ[(wh , — wh I|wh ] < Dpg, for ¢/ < <T/A,

with Dps — 0 as T,6 — 0. It therefore follows that for « = § > 0 and 7 the stopping time of
reaching the set [, 00)

P2 P Y>a]l=
Pl o~ vaot 2
A
= P¢[t1<njg/xA{w ¢0}>aw¢T/A w 0= /2] +
A
Pyl max {wgy — wiob = 0w yn = wfii,o <a/2]
Crs
< P} w? P4 9) <2 — 0 0
Wy = Who Z A+ P0G ryn = w5y < —0/2 S 2055 =55 = 0,

as T',0 — 0. This establishes the proof. m

Claim 5 Fiz an initial point (wg, wy) € [, wsp —5]2. Then there are 64, T > 0 such that for
sufficiently small A

T/A
By | D e A (B () — TP Fa(wh )] < 04
n=0
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implies
Pgﬁ[(w;T/A-Fl’ws,T/A-i—l) S Sg} > 54.

Proof. The proof is similar to the proof of the previous claim and so is omitted. m

Given the claims, the rest of the proof is as follows. If (wg,w,) € Se then for the constants as
in the claims
T/A
A7 A - A A7
By (wy,wy) = Fl (wgywy) > BR[| D7 e 8(Byud,,wh ) = TEPFy(uh,,, wh,))]
n=0

) 1— e—T’T
> min {53, 1—67"A5351} ;

where the first inequality follows from Claim 1 and the second inequality follows from Claims 2 and
4.
If on the other hand (wy,w,) € [e1, wsp — €] \Se then

T/A
A A —rnA A
Fy (wg, wy) — F 3P (wg,wy) = B [ Z e " (Fa(wg n, wh ) — To 5P Fa(wg ,, wh ) +
n=0
—rT P g A, P P
+ e (Fa(wy a1 W5 yag1) = T Fo(Wy a3 17yai1))
>

1 — e r(T+4)
min {54, e "5, min {53, ﬁég(ﬁ ,

where the first inequality follows from Claim 1 and the second inequality follows from Claim 5 and
the inequalities above. This establishes the proof of the Proposition.

We note that the proof can be extended beyond the pure hidden action case and VLR (gx) =
VLR (vx). As regards the equality of variances of likelihood ratios, this guaranteed that the
limits of the values of contracts F,, and F, for two noise distributions are the same function F’
(Lemma 1). Because of that, as long as the continuation values w, and w, are not the same
the derivatives Fy (wy) and F (w,) differ as well, which is crucial for Claim 2. Dropping the
assumption VLR (9x) = VLR (yx) the proof would be analogous, yet the computation of the set
of continuation values (wg,wy) for which F, (wg) # F, (w,) would be cumbersome.

On the other hand, the assumption of pure hidden action models was also not crucial for the
proof: For two different information structures the proof will work as long as, roughly, the optimal
policies in the problem of minimizing variance of incentive transfers are sufficiently different (see

Claim 3).
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