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Abstract: The single crossing property plays a crucial role in economic theory, yet

there are important instances where the property cannot be directly assumed or eas-

ily derived. Difficulties often arise because the property cannot be aggregated: the

sum or convex combination of two functions with the single crossing property need

not have that property. We introduce a new condition characterizing when the sin-

gle crossing property is stable under aggregation and also identify sufficient conditions

for the preservation of the single crossing property under multidimensional aggrega-

tion. We use our results to establish properties of objective functions (convexity, log-

supermodularity), the monotonicity of optimal decisions under uncertainty, and the

existence of monotone equilibria in Bayesian-games.
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1. Introduction

Consider the following problem, pervasive in comparative statics analysis: an agent chooses

action x ∈ X ⊂ R to maximize her objective V (x; s), where s ∈ S ⊂ R is some parameter;

how does argmaxx∈XV (x; s) vary with s? It is well-known that argmaxx∈XV (x; s) increases

with s if the family {V (·; s)}s∈S obeys single crossing differences; this means that, for any

x′′ > x′, the function

∆(s) = V (x′′; s)− V (x′; s)

has the single crossing property, in the sense that ∆ crosses the horizontal axis just once,

from negative to positive, as s increases (see Milgrom and Shannon (1994)).1 This simple but

powerful result is useful when one is interested in comparative statics for its own sake (for
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1Our use of the term single crossing differences follows Milgrom (2004).
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example, when considering an agent’s portfolio allocation problem) or when monotonicity is

needed for establishing some other result (like equilibrium existence in supermodular games

(see Milgrom and Roberts (1990) and Vives (1990)).

However, single crossing differences cannot always be directly assumed or easily derived from

primitive assumptions. We give two such cases.

Case 1. Consider an agent who maximizes expected payoff V (x; s) =
∫
T
v(x; s, t) dF (t),

where t represents possible states of the world and F the distribution over those states.

Suppose, for any given t, {v(·; s, t)}s∈S obeys single crossing differences, so that the optimal

action increases with parameter s if the state t is known; in general, this is not sufficient

to guarantee that {V (·; s)}s∈S obeys single crossing differences, so we cannot conclude that

argmaxx∈XV (x; s) increases with s.

Notice that this difficulty will not arise if {v(·; s, t)}s∈S obeys increasing differences, i.e., if

v(x′′, s, t) − v(x′, s, t) is increasing in s at any t, since ∆(s) will then be increasing in s as

well. However, increasing differences is often too strong an assumption. For example, suppose

v(x, s, t) = u(Π(x, s, t)) where u is the agent’s Bernoulli utility function and Π(x, s, t) is the

monetary payoff in state t and parameter s. If {Π(·; s, t)}s∈S obeys increasing differences,

then {v(·; s, t)}s∈S will obey single crossing differences, but will not typically have increasing

differences (unless u is linear).

Case 2. Consider an n-player Bayesian game in which each player i takes an action after

observing a signal si ∈ [0, 1]. Signal si may convey direct information on player i’s payoff

function as well as indirect information on the actions of other players in the game (through

the joint distribution on players’ signals). In this case, it can be shown that the player i’s

objective function takes the form Vi(x; si) =
∫
[0,1]n−1 vi(x; s) dF (s−i|si) ds−i, where F (s−i|si)

is the distribution of s−i conditional on observing si. The existence of a Bayesian-Nash

equilibrium in which each player plays a monotone strategy (i.e., a strategy where the action

increases with the player’s signal) hinges on whether a particular player has an optimal

strategy that is monotone, given that other players are playing monotone strategies (see

Athey (2001)). To ensure that argmaxx∈XVi(x; si) increases with si, it suffices to have

{Vi(·; si)}si∈[0,1] obey single crossing differences; however, this property may not hold, even

when {vi(·; s)}s∈[0,1]n obeys single crossing differences and the signals are affiliated.

While these problems may be solved in specific contexts using various ad hoc techniques,

there has been no attempt at developing a general theory that addresses them systematically.
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We think that these problems are best understood as arising from the fact that the single

crossing property is not preserved under aggregation; i.e., the sum of two functions with the

single crossing property does not generally satisfy this property.

In this paper, we characterize the conditions under which the single crossing property is

preserved with aggregation. We show that any weighted sum of two functions with the

single crossing property also has this property if and only if the ratio of these functions is

monotone in a particular sense; we refer to this relation between functions as signed-ratio

monotonicity. Applying our results, we find conditions under which a risk averse monopolist

who faces uncertainty in demand will increase output when there is a fall in marginal cost.

This is an instance of a Case 1 problem. For a Case 2 problem, we look at a Bertrand

oligopoly with risk averse firms selling differentiated products, where each firm receives a

signal on the state of demand for his output. We find conditions under which each firm’s

pricing decision is monotone in the signal he receives, given that other firms are playing

monotone strategies. Finally, we illustrate how our results can be used to check that a

function is quasiconcave or concave-convex; note that the former can be characterized as

a function with a single crossing first derivative and the latter as a function with a single

crossing second derivative.

2. Aggregating single crossing functions

Let (S,≥) be a partially ordered set; a function f : S → R is said to have the single crossing

property if it satisfies the following:

f(s′) ≥ (>) 0 =⇒ f(s′′) ≥ (>) 0 whenever s′′ > s′.2 (1)

When S is an interval of R, the graph of f is a curve that crosses the horizontal axis just

once, hence the term ‘single crossing’. We refer to a function that obeys the single crossing

property as a single crossing function or an SC function.

It is easy to see that the sum of two single crossing functions is not necessarily a single

crossing function.3 This section is devoted to identifying the condition under which the

single crossing property is preserved with aggregation. Consider two single-crossing functions

f and g defined on the partially ordered set (S,≥).

2We mean that f(s′) ≥ 0 =⇒ f(s′′) ≥ 0 whenever s′′ > s′ and f(s′) > 0 =⇒ f(s′′) > 0 whenever s′′ > s′.
3For example, take f(s) = sin(s) + 2 and g(s) = −2.
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Definition 1 We say that f and g obey signed-ratio monotonicity if they satisfy the following

conditions: (a) at any s′ ∈ S, such that g(s′) < 0 and f(s′) > 0, we have

− g(s′)

f(s′)
≥ − g(s′′)

f(s′′)
when s′′ > s′; and (2)

(b) at any s′ ∈ S, such that f(s′) < 0 and g(s′) > 0, we have

−f(s′)

g(s′)
≥ −f(s′′)

g(s′′)
when s′′ > s′.

The significance of this property is clear from the following result.

Proposition 1. Let f and g be two SC functions. Then αf + βg is an SC function for any

nonnegative scalars α and β if and only if f and g obey signed-ratio monotonicity.

Proof: Suppose g(s′) < 0 and f(s′) > 0 and let α′ = −g(s′)/f(s′), so that α′f(s′)+g(s′) = 0.

Since α′f + g is an SC function, α′f(s′′) + g(s′′) ≥ 0 for s′′ > s′. Re-arranging this inequality

and bearing in mind that f(s′′) > 0 (since f is an S function and f(s′) > 0), we obtain

α′ = − g(s′)

f(s′)
≥ − g(s′′)

f(s′′)
.

For the proof of the converse we may, without loss of generality, assume that β = 1 (since

the single crossing property is preserved under positive scalar multiplication). Suppose

αf(s′) + g(s′) ≥ (>) 0. (3)

If g(s′) ≥ 0 and f(s′) ≥ 0, then we have g(s′′) ≥ 0 and f(s′′) ≥ 0 since f and g are SC
functions. It follows that αf(s′′) + g(s′′) ≥ 0. This inequality is strict if (3) is a strict

inequality since either f(s′) > 0 or g(s′) > 0.

Now consider the case where (3) holds but one of the two functions is negative at s′. Suppose

that g(s′) < 0. Then f(s′) > 0 since (3) holds. For any s′′ > s′,

α ≥ (>)− g(s′)

f(s′)
≥ − g(s′′)

f(s′′)

where the first inequality follows from (3) and the second from signed-ratio monotonicity.

Re-arranging this inequality, we obtain αf(s′′) + g(s′′) ≥ (>) 0. (Note that f(s′′) > 0 since

f is an SC function and f(s′) > 0.) QED

It is easy to check that two increasing functions obey signed-ratio monotonicity, as one

would expect, since any positive linear combination of increasing functions is increasing
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(and thus a single crossing function). For another illustration of Proposition 1, suppose

S = R, f(s) = s2 + 1, and g(s) = s3. In this case f is not increasing, but any positive

linear combination of f and g is still an SC function. We can confirm this by checking

that f and g have signed-ratio monotonicity: for s > 0, we have −g(s)/f(s) < 0, while for

s < 0, the ratio −g(s)/f(s) = −s3/(s2 + 1) is positive and decreasing in s. Now consider

a third function h(s) = e−s; since this function is positive for all s, h and f have signed-

ratio monotonicity, but it is easy to check that this is not the case for h and g. Therefore,

signed-ratio monotonicity is not a transitive relation between functions (though it is clearly

reflexive and symmetric).

The next result extends Proposition 1; it says that any positive linear combination of a

family single crossing functions is also a single crossing function, so long as members of the

family obey signed-ratio monotonicity pairwise. The proof can be found in the Appendix.

Theorem 1. Let (T,Σ, µ) be a finite measure space and suppose that for each s ∈ S, f(s, t)

is a bounded and measurable function of t ∈ T . Then F (s) =
∫
T
f(s, t)dµ(t) is an SC

function if, for all t, t′ ∈ T , the pair of functions f(s, t) and f(s, t′) of s ∈ S satisfy signed-

ratio monotonicity. This condition is also necessary if Σ contains all singleton sets and F

is required to be an SC function for any finite measure µ.

In applications, T will typically be interpreted as the set of possible states of the world

and when those states could be represented by a one-dimensional random variable, the

assumption of pairwise signed-ratio monotonicity in Theorem 1 is often reasonable. However,

in certain applications T is necessarily multi-dimensional. For example, establishing the

monotonicity of a player’s action with respect to his type in an n-player Bayesian game

will involve interpreting t as the vector of types of other players in the game. In this case,

signed-ratio monotonicity for all possible pairs t and t′ is a very strong condition. The next

theorem gets round this difficulty by imposing more structure on T and requiring signed-ratio

monotonicity only for ordered pairs of t and t′.

Theorem 2. Let (Ti,Σi, µi) (for i = 1, 2, ...n) be finite measure spaces such that Ti ⊆ R
and let f : S × T → R be a bounded and measurable function of t ∈ T = Πn

i=1Ti and an SC
function of (s, t). Suppose that ∀i, ∀s′ ∈ S, and ∀ t′′ > t′,

(i) the functions f(s, t′) and f(s, t′′) of s ∈ S satisfy signed-ratio monotonicity and

(ii) the functions f(s′, ti, t
′
−i) and f(s′, ti, t

′′
−i) of ti ∈ Ti satisfy signed-ratio monotonicity.

Then F (s) =
∫
T
f(s, t)dµ(t) (where µ is the product measure) is an SC function.
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Remark: It is straightforward to check that if f obeys (i) and (ii) then so does f̃(s, t) =

f(s, t)h(s, t) where h is a logsupermodular function of (s, t).4 Therefore, Theorem 2 tells

us that the map F (s) =
∫
T
f(s, t)h(s, t)dµ(t) is also an SC function. In particular, F is an

SC function if f is increasing in (s, t). In the context of Bayesian games, µ is the Lebesgue

measure, h is the posterior density function on the types of other players, conditional on the

player receiving signal s; h will be logsupermodular if types are assumed to be affiliated.

3. Applications of the aggregation theorems

Example 1. A quasiconvex function defined on an interval I in R can be characterized as a

function with a derivative that is a single crossing function, while a function on I is concave-

convex5 if its second derivative has the single crossing property. Theorem 1 provides a

useful way of checking that a function has such properties. For example, the convex-concave

property of the function G(s) = asb − csd + αs − β where s > 0, a > 0, b < 0, c > 0,

and d > 1, plays an important role in the entry-exit model of Dixit (1989).6 To see that

G is convex-concave, note that −G′′(s) = f(s) + g(s) where f(s) = −ab(b − 1)sb−2 and

g(s) = cd(d − 1)sd−2. Since f(s) < 0 and g(s) > 0, both f and g are SC functions. While

f is an increasing function, g may be increasing or decreasing, depending on the value of d.

Nonetheless, it is easy to check that these functions satisfy signed-ratio monotonicity. Hence

−G′′ is an SC function and G is a convex-concave function.

For another simple example, consider the profit function Π(x) = xP (x)− C(x), where P is

the inverse demand function and C the cost function. It is known that Π is quasiconcave if

P is positive, decreasing, and log-concave and C is convex. To recover this result, note that

−Π′(x) = f(x) +g(x), where f(x) = −P (x) and g(x) = −xP ′(x) +C ′(x). It is easy to check

that the conditions on P and C imply that f and g satisfy signed-ratio monotonicity and so

Π′ has the single crossing property.

Example 2. Theorem 2 implies the well-known result that logsupermodularity is preserved

under integration (see Karlin and Rinott (1980)); for economic applications of this result see

Jewitt (1991), Gollier (2001) and Athey (2001)). In the statement below, X = Πm
i=1Xi and

Y = Πn
j=1Yj, where Xi (for i = 1, 2, ...,m) are subsets of R and Yj (for j = 1, 2, ..., n) are

4The precise property of h we need (which makes sense even when S is not a lattice) is the following: ∀i,
∀s′ ∈ S, and ∀t′′ > t′, h(s, t′′)/h(s, t′) is increasing in s and h(s′, ti, t

′′
−i)/h(s′, ti, t

′
−i) is increasing in ti.

5By this we mean that there is s̄ ∈ I such that f is concave for s < s̄ and convex for s > s̄.
6In that model, s is the price of the product and G represents the difference in the continuation value

between being in and out of the market.
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nonempty compact intervals of R.

Corollary 1. Let φ be a function from X×Y to the positive real numbers such that, for any

x, φ(x, ·) is a bounded and measurable function of y ∈ Y . If φ is logsupermodular in (x, y)

then Φ, defined by Φ(x) =
∫
Y
φ(x, y)dy is a logsupermodular function.

Proof: Let K ⊂ M = {1, 2, ...m}, and suppose a′′ > a′, for a′′ and a′ in Πi∈KXi. Let

b∗∗ > b∗ be two vectors in Πi∈M\KXi. Suppose Φ(b∗, a′′) = QΦ(b∗, a′); then∫
Y

[φ(b∗, a′′, y)−Qφ(b∗, a′, y)] dy = 0. (4)

Define the function G : Πi∈M\KXi → R by G(b) =
∫
Y

[φ(b, a′′, y)−Qφ(b, a′, y)] dy. Note

that the integrand may be written as[
φ(b, a′′, y)

φ(b, a′, y)
−Q

]
φ(b, a′, y).

The term in the square brackets is increasing in (b, y) (because φ is logsupermodular); so

G is an SC function of b (see Remark following Theorem 2). Since G(b∗) = 0 (by (4)), we

obtain G(b∗∗) ≥ 0. Therefore,

Φ(b∗∗, a′′)

Φ(b∗∗, a′)
≥ Q =

Φ(b∗, a′′)

Φ(b∗, a′)
,

which establishes the logsupermodularity of Φ. QED

Example 3. We now apply Theorem 1 to solve a problem belonging to the first case

discussed in the Introduction. A firm has to decide on its optimal output level x > 0. Its

profit function is Π(x; s) = xP (x) − C(x; s), where P is the inverse demand function and

C(·; s) is the cost function, parameterized by s in (S,≥). It is well-known that a decrease in

marginal cost leads to a rise in the profit-maximizing output. To model this formally, assume

that the family {C(·; s)}s∈S obeys decreasing differences; by this we mean that, for all x′′ > x′,

the difference C(x′′; s) − C(x′; s) is decreasing in s. If C is differentiable, this is equivalent

to marginal cost dC/dx decreasing with s. It follows that {Π(·; s)}s∈S obeys increasing

(hence, single crossing) differences, so an application of Milgrom and Shannon’s monotone

comparative statics theorem guarantees that the profit-maximizing output increases with s.

Now consider a more general setting where the firm faces uncertainty over the demand for

its output. We assume that the profit at state t ∈ T ⊂ R is given by

Π(x; s, t) = xP (x; t)− C(x; s) (5)
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and that the firm maximizes V (x; s) =
∫
T
u (Π(x; s, t))λ(t) dt, where λ(t) is the subjective

probability of state t and u : R → R is the Bernoulli utility function representing the

monopolist’s attitude towards uncertainty. We would like to identify conditions under which

{V (·; s)}s∈S obeys single crossing differences, so that we could guarantee that the optimal

output level increases with s. In other words, for any x′′ > x′, we require

∆(s) =

∫
T

[u (Π(x′′; s, t))− u (Π(x′; s, t))]λ(t) dt

to be an SC function. For each t, δ(s, t) = u (Π(x′′; s, t)) − u (Π(x′; s, t)) is an SC function

of s if {C(·; s)}s∈S obeys decreasing differences. However, unless u is linear, δ will not in

general be increasing in s. Hence we face a problem of precisely the type that Theorem 1

is meant to address. Theorem 1 says that ∆ is an SC function if signed-ratio monotonicity

holds; the next result gives conditions under which that is satisfied. The proof is in the

Appendix.

Proposition 2. Suppose that (i) C is increasing x and decreasing in s and {C(·; s)}s∈S
obeys decreasing differences; (ii) P is decreasing in x and increasing in t and {lnP (·; t)}t∈T
obeys increasing differences; and (iii) u : R → R is twice differentiable, with u′ > 0, and

obeys DARA. Then for any t, t′ ∈ T , the functions δ(s, t) and δ(s, t′) of s obey signed-ratio

monotonicity.

Remark: When P is differentiable, {lnP (·; t)}t∈T obeys increasing differences if and only if

− 1

P (x; t′′)

∂P

∂x
(x; t′′) ≤ − 1

P (x; t′)

∂P

∂x
(x; t′) ∀x > 0, t′′ > t′.

Therefore, Condition (ii) says that in a high state, the market clearing price is high and the

elasticity (i.e., the proportional response) of the market clearing price with respect to output

is low. Note also that condition (iii) does not require u to be concave (i.e., the firm need not

be risk averse) and even if it were, the firm need not face a concave maximization problem

because Π need not be concave in x.

Sandmo (1971) considers the behavior of a price-taking firm under uncertainty, with the

market price experiencing additive shocks; in our notation, he assumes that P (x; t) = P̄ + t.

He showed that an increase in P̄ leads to higher output if u obeys DARA. This result is a

special case of ours since there is no formal difference between a rise in the price of the good

by (say) q and fall in its marginal cost by q.

Milgrom (1994) did not specifically examine the question we posed but pointed out that a

large class of seemingly distinct comparative statics problems has the same solution because
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they all rely on the same Spence-Mirrlees condition. A special case of our problem can indeed

be solved this way and checking the Spence-Mirrlees condition provides another application

of Theorem 1. Indeed, suppose P (x, t) = P̄ (x)+t; by Theorem 1 in Milgrom (1994), optimal

output increases with s if the ratio Wx/Wy is increasing in s, where W (x, y, s) =
∫
u(y +

tx−C(x, s))λ(t)dt. To see when this may occur, suppose Wx(x, y; s∗)/Wy(x, y; s∗) = α. The

function

F (s) =

∫
u′(y + tx− C(x; s))[t− Cx(x; s)− α]λ(t)dt (6)

satisfies F (s∗) = 0. Clearly, Wx(x, y; s∗∗)/Wy(x, y; s∗∗) ≥ α if F is an SC function. By

Theorem 1, it suffices that the integrand in (6) is an SC function of s and that any two such

functions (at different values of t) obey signed-ratio monotonicity. The reader can check that

the conditions of Proposition 2 do imply those properties.

Example 4. This is an application of Theorem 2 to solve a problem belonging to the second

case discussed in the Introduction. Consider a Bertrand oligopoly with n firms, each selling

a single differentiated product. We focus our discussion on firm 1 (the situation of the other

firms being analogous). Firm 1 has a constant unit cost of production of c1; the demand for

its output if it charges price p1 and the other firms charge p−1 (for their respective products)

is given by D(p1, p−1; s1), where s1 is some parameter affecting Firm 1’s demand that is

observed by firm 1. In general, firm j observes sj but not sk for k 6= j. At the price vector

p = (p1, p−1) and the parameter s1, firm 1’s profit is Π(p1, p−1; s1) = (p1 − c1)D(p1, p−1; s1).

Suppose that firm j 6= 1 charges the price ψj(sj) whenever it observes sj. If so, Firm 1

chooses p1 to maximize its expected utility

V (p1; s1) =

∫
S−1

u(Π(p1, [ψj(sj)]j 6=1; s1)λ(s−1|s1) ds−1,

where u is the firm’s Bernoulli utility function and λ(·|s1) is the distribution of s−1, condi-

tional on observing s1.

We know from Athey (2001) that a Bayesian Nash equilibrium (with equilibrium decision

rules that are increasing in the signal) exists if each firm has an optimal decision rule that

is increasing, given that all other firms are playing increasing decision rules.7 Therefore

we are interested in conditions under which argmaxp1>c1V (p1; s1) is increasing in s1, which

holds if ∆(s1) = V (p′′1; s1) − V (p′1; s1) is an SC function for any p′′1 > p′1 > c1. Consider

in the first instance the case where the agent is risk neutral, so u is the identity function.

Suppose that D is a logsupermodular function of (p1, p−1; s1). This condition has a very

7For generalizations of Athey’s work, see McAdams (2003) and Reny (2009).
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simple interpretation in terms of the elasticity of demand. Define

εi(p; s1) =
pi

D(p; s1)

∂D

∂pi
(p; s1) ;

the logsupermodularity of D is equivalent to εi being increasing in s1 and in pk for k 6= i

(for all i). It is straightforward to check that if D is (i) increasing in p−1 (i.e., good 1 is a

substitute for good k 6= 1 in the sense that an increase in the price of k raises the demand

for 1), (ii) logsupermodular, and (iii) ψj is increasing for all j 6= 1, then Π(p1, [ψj(sj)]j 6=1; s1)

is logsupermodular in (p1; s). If, in addition, λ(·|·) is logsupermodular (which holds if the

types are affiliated), then V is logsupermodular in (p1; s1). This in turn guarantees that ∆

is a single crossing function.

When the firm is not risk neutral, ∆ is an SC function if

δ(s1; s−1) = u(Π(p′′1, [ψj(sj)]j 6=1; s1)− u(Π(p′1, [ψj(sj)]j 6=1; s1)

obeys conditions in (i) and (ii) in Theorem 2 (with s = s1 and t = s−1). The following result

(which we prove in the Appendix) gives conditions under which this holds.

Proposition 3. Suppose that ψj is increasing for all j 6= 1, λ(·|·) is logsupermodular, and

D is increasing in p−1 and in s1, with ε1 increasing in s1 and in pk for all k 6= 1. Then

conditions (i) and (ii) in Theorem 2 (for s = s1 and t = s−1) are satisfied if any of the

following conditions hold:

(a) u(z) = ln z, i.e., the coefficient of relative risk aversion is identically 1;

(b) The coefficient of relative risk aversion is bounded above by 1 and is decreasing and,

for i 6= 1, εi is increasing in s1 and in pk for all k 6= {i, 1};
(c) The coefficient of relative risk aversion is bounded below by 1 and is decreasing and,

for i 6= 1, εi is decreasing in s1 and in pk for all k 6= {i, 1}.8

Appendix

The proof of Theorem 1 requires the following lemma.

Lemma 1. Let F = {fi}1≤i≤M be a family of SC functions such that any two members obey

signed-ratio monotonicity. Then
∑M

i=1 αi fi, where αi ≥ 0 for all i, is an SC function.

8The conditions on ε1, together with the (b) conditions on εi, for i 6= 1, are equivalent to the logsuper-

modularity of D. The case where h is linear is covered under (b).
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Proof: By Proposition 1, we need only show that F =
∑M

i=1 fi is an SC function. Suppose

that F (s′) ≥ 0; we are required to show that F (s′′) ≥ 0 for any s′′ > s′. If fi(s
′) ≥ 0 for all i,

then fi(s
′′) ≥ 0 for all i, so we obtain F (s′′) ≥ 0. Consider next the case where fi(s

′) < 0 for

some i. In this case, we may partition F into three subsets; for fi ∈ F1, we have fi(s
′) < 0;

for fi ∈ F2, we have fi(s
′) > 0; and for fi ∈ F3, we have fi(s

′) = 0. Clearly, fi(s
′′) ≥ 0

for fi ∈ F3. Since F1 is nonempty, so is F2. We may write the sum
∑

fi∈F1∪F2 fi in the

form
∑L

j=1 hj, where each hj is a positive linear combination of at most two functions in the

family F1 ∪ F2, such that hj(s
′) ≥ 0 for all j.9 By Proposition 1, hj is an SC function, so

we have hj(s
′′) ≥ 0 for all j. This gives F (s′′) ≥ 0. If F (s′) > 0, then hj(s

′) > 0 for some j,

so we obtain F (s′′) > 0. QED

Proof of Theorem 1: If f(s, t′) and f(s, t′′) violate signed-ratio monotonicity, Proposition 1

says that there are α, β > 0 such that αf(s, t′)+βf(s, t′′) is not an SC function. The necessity

of signed-ratio monotonicity is clear since we can choose µ to be the measure with µ({t′}) = α

and µ({t′′}) = β and µ(J) = 0 for all J ∈ Σ not containing t′ or t′′.

To prove the sufficiency of the condition, consider s′′ > s′ and suppose the ranges of f(s′′, ·)
and f(s′, ·) are contained in some bounded interval I. Partition I into disjoint intervals

Ij, j = 1, 2, ..., K, with a mesh of 1/m. Denote by T̄ (j, k) the subset of T such that for

t ∈ T̄ (j, k), we have f(s′, t) ∈ Ij and f(s′′, t) ∈ Ik. Note that the collection of sets T̄ (j, k),

with j and k ranging between 1 and K form a partition of T . Define the simple functions10

fm(s′, ·) and fm(s′′, ·) in the following way: for t ∈ T̄ (j, k), choose fm(s′, t) = f(s′, t̂jk) and

fm(s′′, t) = f(s′′, t̂jk) for some t̂jk ∈ T̄ (j, k). This construction guarantees that for s = s′, s′′,

fm(s, ·) tends f(s′, ·) pointwise; it also guarantees that for s = s′, s′′,
∫
T
fm(s, t) dµ(t) is a

finite sum of the form
∑

1≤j, k≤K αjkf(s, t̂jk). Lemma 1 guarantees that, if
∫
T
fm(s′, t) dµ(t) >

0 then
∫
T
fm(s′′, t) dµ(t) > 0 (because both integrals are finite sums). Since f is bounded

and µ is a finite measure, the dominated convergence theorem is applicable. Taking limits,

we obtain the following result (?): if
∫
T
f(s′, t) dµ(t) > 0 then

∫
T
f(s′′, t) dµ(t) ≥ 0.

To complete the proof we need to establish the following claims: (a) if
∫
T
f(s′, t) dµ(t) ≥ 0

then
∫
T
f(s′′, t) dµ(t) ≥ 0, and (b) that

∫
T
f(s′, t) dµ(t) > 0 then

∫
T
f(s′′, t) dµ(t) > 0. To

9One procedure is the following. Choose the fi function with the smallest absolute value at s′ and

add it to a fraction of a function having the opposite sign at s′, so that they sum to zero. Repeat the

procedure with the remaining functions; this will terminate after finitely many steps. For example, suppose

f1(s′) = 1, f2(s′) = −2, f3(s′) = 3, then we may decompose f1(s′) + f2(s′) + f3(s′) into
[
f1(′) + 1

2f2(s′)
]

+[
1
2f2(s′) + 1

3f3(s′)
]

+
[
2
3f3(s′)

]
, where each square bracketed term gives an hj function.

10By a simple function we mean a measurable function that takes finitely many distinct values.
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show (a), suppose
∫
T
f(s′, t) dµ(t) ≥ 0. Claim (a) is trivial if f(s′, t) ≥ 0 µ-a.e. Assuming this

is not the case, there must be t̃ such that f(s′, t̃) > 0. Thus, for any α > 0,
∫
T
f(s′, t) dµ(t)+

αf(s′, t̃) > 0. Result (?) guarantees that
∫
T
f(s′′, t) dµ(t) + αf(s′′, t̃) ≥ 0.11 Since this

is true for any α > 0, we conclude that
∫
T
f(s′′, t) dµ(t) ≥ 0. To prove (b), first note

that the problem is trivial if f(s′′, t) ≥ 0 for all t. Suppose instead that there is t̂ such

that f(s′′, t̂) < 0. Assuming that
∫
T
f(s′, t) dµ(t) > 0, choose β > 0 sufficiently small, so

that
∫
T
f(s′, t) dµ(t) + βf(s′, t̂) > 0. By result (?),

∫
T
f(s′′, t) dµ(t) + βf(s′′, t̂) ≥ 0. Since

f(s′′, t̂) < 0, we obtain
∫
T
f(s′′, t) dµ(t) > 0. QED

Proof of Theorem 2: Denote the vectors in Πn−1
i=1 Ti by t̃. Define F̃ (s, t̃) =

∫
Tn
f(s, t̃, tn)dµn(tn).

Conditions (i) and (ii) guarantee (by Theorem 1) that F̃ is an SC function of (s, t̃). We claim

that F̃ has the following properties: ∀ i < n, ∀ s′ ∈ S, and ∀ t̃′′ > t̃′, (I) the functions F̃ (s, t̃′)

and F̃ (s, t̃′′) of s ∈ S satisfy signed-ratio monotonicity and (II) the functions F̃ (s′, ti, t̃
′
−i)

and F̃ (s′, ti, t̃
′′
−i) of ti ∈ Ti satisfy signed-ratio monotonicity. In other words, F̃ inherit the

properties (i) and (ii) from F . We can then repeat the exercise and integrate F̃ by tn−1 and

so on. Eventually, we obtain signed-ratio monotonicity for the functions G(s, t′′1) and G(s, t′1)

of s, where

G(s, t1) =

∫
T2

∫
T3

...

∫
Tn

f(s, t1, t2, ..., tn−1, tn) dµ2(t2) dµ3(t3) ...dµn(tn) .

By Theorem 1, F (s) =
∫
T1
G(s, t1)dµ1(t1) is an SC function.

It is clear that if (i) and (ii) implies (I), then another application of the same result guarantees

that (II) follows from (ii).12 So we need only show (I). By Proposition 1, it suffices to show

that F̃ (s, t̃′) + ΓF̃ (s, t̃′′) is an SC function of s for any Γ > 0. By Theorem 1, this is

true if, for any t′′n and t′n in Tn, the functions g(s, t′′n) and g(s, t′n) of s obey signed-ratio

monotonicity, where g(s, tn) = f(s, t̃′, tn) + Γf(s, t̃′′, tn). Note that, by Proposition 1 and

condition (i), g is an SC function of s. By Proposition 1 again, we need only show that

φ(s) = g(s, t′n) +Qg(s, t′′n) is an SC function. Suppose φ(s∗) ≥ (>) 0. We need to show that

φ(s∗∗) ≥ (>) 0, where s∗∗ > s∗. This holds if we can construct A1 and A2 such that (a) A1

and A2 are SC functions, (b) φ(s) = A1(s)+A2(s) and (c) A1(s∗) ≥ 0 and A2(s∗) ≥ 0. Since

Tn is totally ordered, there is no loss of generality in assuming that t′′n ≥ t′n. Note that g(s, tn)

is an SC function of tn, by condition (ii), so if g(s∗, t′n) ≥ 0 we also have g(s∗, t′′n) ≥ 0. In this

case, we can let A1(s) = g(s, t′′n) and A2(s) = g(s, t′n). Suppose instead that g(s∗, t′′n) > 0 and

g(s∗, t′n) < 0. Since f is an SC function, f(s∗, t̃′′, t′′n) > 0 while f(s∗, t̃′, t′′n) may be negative

11Note that we applying (?) to the finite measure in which µ is supplement by an atom at t̃.
12In this application, ti takes the place of s and t̂ = (t1, ..., ti−1, ti+1, ...tn) takes the place of t.
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(Case 1) or nonnegative (Case 2).

Case 1. Given that g(s∗, t′′n) > 0, there is α ∈ (0, 1) so that A1(s) = Qf(s, t̃′, t′′n) +

αQΓf(s, t̃′′, t′′n) satisfies A1(s∗) = 0. Since (t̃′′, t′′n) and (t̃′, t′′n) are ordered, condition (i)

guarantees that A1 is an SC function. Define A2(s) = φ(s) − A1(s). Since A1(s∗) = 0,

A2(s∗) ≥ (>) 0. Observe that A2(s) = (1−α)QΓf(s, t̃′′, t′′n)+Γf(s, t̃′′, t′n)+f(s, t̃′, t′n), where

(t̃′′, t′′n) ≥ (t̃′′, t′n) ≥ (t̃′, t′n), so condition (i) guarantees that A2 is an SC function. So A1 and

A2 have properties (a)–(c).

Case 2. Notice that φ(s) =
[
Qf(s, t̃′, t′′n) + f(s, t̃′, t′n)

]
+ Γ

[
Qf(s, t̃′′, t′′n) + f(s, t̃′′, t′n)

]
. The

map from t̃ to Qf(s, t̃, t′′n) + f(s, t̃, t′n) is an SC map. This follows from repeated application

of condition (ii). Since φ(s∗) ≥ 0, we must have Qf(s∗, t̃′′, t′′n) + f(s∗, t̃′′, t′n) ≥ (>) 0 while

Qf(s∗, t̃′, t′′n) + f(s∗, t̃′, t′n) may be of either sign. Define A1 and A2 by

A1(s) = Qf(s, t̃′, t′′n) + βf(s, t̃′, t′n) and

A2(s) = Γ
[
Qf(s, t̃′′, t′′n) + f(s, t̃′′, t′n)

]
+ (1− β)f(s, t̃′, t′n).

If Qf(s∗, t̃′, t′′n) + f(s∗, t̃′, t′n) ≥ 0, choose β = 1. Otherwise, choose β ∈ [0, 1) to guarantee

that A1(s∗) = 0; this is possible since f(s∗, t̃′, t′′n) ≥ 0 so f(s∗, t̃′, t′n) < 0. Notice that the

component functions that make up A1 and A2 are all ordered with respect to t, so condition

(i) guarantees that A1 and A2 are SC functions. So A1 and A2 have properties (a)–(c).QED

The proofs of Propositions 2 and 3 require the following two lemmas.

Lemma 2. Suppose that u : R → R is twice differentiable, with u′ > 0 and −u′′(z)/u′(z)

decreasing in z, i.e., obeys DARA. Then for any a1 < a2, b1 < b2, a1 ≤ b1, and a2 ≤ b2,

u(a2)− u(a1)

u(b2)− u(b1)
≥ u(a2 + w)− u(a1 + w)

u(b2 + w)− u(b1 + w)
where w ≥ 0. (7)

Proof: It suffices to show that F (x) = ln (u(a2 + x)− u(a1 + x))−ln (u(b2 + x)− u(b1 + x))

is decreasing in x ≥ 0. Denoting u′ ◦ u−1 by f , the derivative

dF

dx
=

u′(a2 + x)− u′(a1 + x)

u(a2 + x)− u(a1 + x)
− u′(b2 + x)− u′(b1 + x)

u(b2 + x)− u(b1 + x)

=
f(u(a2 + x))− f(u(a1 + x))

u(a2 + x)− u(a1 + x)
− f(u(b2 + x))− f(u(b1 + x))

u(b2 + x)− u(b1 + x)
≤ 0,

where the final inequality holds because DARA guarantees that f is convex and, since u is

strictly increasing, u(a1 + x) < u(a2 + x), u(b1 + x) < u(b2 + x), u(a1 + x) ≤ u(b1 + x), and

u(a2 + x) ≤ u(b2 + x). QED
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Lemma 3. Let X and T be totally ordered sets, S a partially ordered set, and φ a map from

X × S × T to R. For x′′, x′ ∈ X with x′′ > x′, suppose that

(i) for every t ∈ T , φ(x′′; s, t)− φ(x′; s, t) is increasing in s;

(ii) for every s ∈ S, φ(x′′; s, t)− φ(x′; s, t) is an SC function of t;

(iii) u obeys the conditions of Lemma 2;

(iv) φ is increasing in (s, t); and

(v) any one of the following conditions holds for x = x′, x′′, and every s′′ > s′:

(a) φ(x, s′′, t)− φ(x, s′, t) is independent of t;

(b) u is concave and φ(x, s′′, t)− φ(x, s′, t) decreases with t;

(c) u is convex and φ(x, s′′, t)− φ(x, s′, t) increases with t.

Then the functions δ(s, t′) and δ(s, t′′) of s ∈ S obey signed-ratio monotonicity, where

δ(s, t) = u(φ(x′′, s, t))− u(φ(x′, s, t)).

Proof: Suppose that δ(s∗, t′′) > 0 and δ(s∗, t′) < 0. This means that φ(x′′; s∗, t′′) −
φ(x′; s∗, t′′) > 0 and φ(x′′; s∗, t′) − φ(x′; s∗, t′) < 0. Given (ii), this can only occur if t′ < t′′.

Now (iv) guarantees that φ(x′, s∗, t′) ≤ φ(x′; s∗, t′′), so we obtain

φ(x′′; s∗, t′) < φ(x′, s∗, t′) ≤ φ(x′; s∗, t′′) < φ(x′′; s∗, t′′).

If s∗∗ > s∗ we have

− δ(s
∗, t′)

δ(s∗, t′′)
= − u(φ(x′′; s∗, t′))− u(φ(x′; s∗, t′))

u(φ(x′′; s∗, t′′))− u(φ(x′; s∗, t′′))

≥ u (φ(x′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− u (φ(x′′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])

u (φ(x′′; s∗, t′′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− u (φ(x′; s∗, t′′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])

≥ u (φ(x′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− u (φ(x′′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])

u (φ(x′′; s∗, t′′) + [φ(x′; s∗∗, t′′)− φ(x′; s∗, t′′)])− u (φ(x′; s∗, t′′) + [φ(x′; s∗∗, t′′)− φ(x′; s∗, t′′)])

≥ u (φ(x′; s∗, t′) + [φ(x′; s∗∗, t′)− φ(x′; s∗, t′)])− u (φ(x′′; s∗, t′) + [φ(x′′; s∗∗, t′)− φ(x′′; s∗, t′)])

u (φ(x′′; s∗, t′′) + [φ(x′′; s∗∗, t′′)− φ(x′′; s∗, t′′)])− u (φ(x′; s∗, t′′) + [φ(x′; s∗∗, t′′)− φ(x′; s∗, t′′)])

= − u(φ(x′′; s∗∗, t′))− u(φ(x′; s∗∗, t′))

u(φ(x′′; s∗∗, t′′))− u(φ(x′; s∗∗, t′′))
= − δ(s

∗∗, t′)

δ(s∗∗, t′′)

The first inequality follows from Lemma 2, the second inequality from condition (v) (any

of (a), (b), or (c)), and the third inequality from the assumption that u is increasing and

condition (i). QED

Proof of Proposition 2: We check that Π and u satisfy the conditions of Lemma 3. Π

is clearly increasing in (s, t). For every t, Π(x′′; s, t) − Π(x′; s, t) is increasing in s since
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{C(·; s)}s∈S obeys decreasing differences. Furthermore, for every x and s′′ > s′, Π(x; s′′, t)−
Π(x; s′, t) = C(x; s′)− C(x; s′′), which is independent of t (so version (a) of condition (v) in

Lemma 3 is satisfied). It remains to show that, for any s, Π(x′′; s, t) − Π(x′; s, t) is an SC
function of t. Suppose Π(x′′; s, t′)−Π(x′; s, t′) ≥ (>) 0. Then x′′P (x′′; t′)−x′P (x′; t′) ≥ (>) 0

since C is increasing in x. Furthermore, we have13

0 ≤ (<)x′′P (x′′; t′)− x′P (x′; t′) =

[
x′′
P (x′′; t′)

P (x′; t′)
− x′

]
P (x′; t′)

≤
[
x′′
P (x′′; t′′)

P (x′; t′′)
− x′

]
P (x′; t′′)

= x′′P (x′′; t′′)− x′P (x′; t′′)

The inequality is true since {lnP (·; t)}t∈T obeys increasing differences and P is increasing in

t. We conclude that Π(x′′; s, t′′)− Π(x′; s, t′′) ≥ (>) 0. QED

Proof of Proposition 3: We may write u(Π(p1, (ψj(sj))j∈N1 ; s1)) as ũ(π̃(p1; s)) where

ũ(·) = u(exp(·)) and π̃(p1; s) = ln Π(p1, (ψj(sj))j∈N1 ; s1). The conditions on ε1 guarantee the

property (P1): π̃(p′′1; s) − π̃(p′1; s) is increasing in s. We also have the property (P2): π̃ is

increasing in s. For case (a), we have δ(s) = π̃(p′′1; s)− π̃(p′1; s), which certainly means that

(i) and (ii) holds since δ is an increasing function (by (P1)).

For cases (b) and (c), we first note that (P1) guarantees that δ is an SC function. To confirm

that (i) and (ii) holds, it suffices to check that δ(sN\K , s
′′
K) and δ(sN\K , s

′
K) (thought of as

functions of sN\K) obey signed-ratio monotonicity whenever s′′K > s′K , for K ⊂ N . This can

be obtained via Lemma 3 (with T = {s′′K , s′K}). Consider the assumptions under case (b).

Those assumptions guarantee property (P3): for any p1, π̃(p1; s
∗∗
N\K , sK)− π̃(p1; s

∗
N\K , sK) is

increasing in sK , for any s∗∗N\K > s∗N\K ; they also guarantee (P4): ũ is a convex function with

DARA. Properties (P1), (P2), (P3), and (P4) together ensure that conditions (i), (ii), (iii),

(iv), and (v-c) in Lemma 3 are satisfied. We conclude that δ(sN\K , s
′′
K) and δ(sN\K , s

′
K) obey

signed-ratio monotonicity. The same conclusion obtains under case (c). This is because those

conditions imply property (P3′): for any p1, π̃(p1; s
∗∗
N\K , sK)− π̃(p1; s

∗
N\K , sK) is decreasing in

sK , for any s∗∗N\K > s∗N\K ; they also guarantee property (P4′): ũ is concave with DARA. [Note

the contrast between (P3) and (P3′) and between (P4) and (P4′).] In this case, conditions

(i), (ii), (iii), (iv), and (v-b) in Lemma 3 are satisfied. QED

13This argument is an adaptation of the one used by Amir (1996) to guarantee that reaction curves in the

Cournot model are downward sloping.

15



References

AMIR, R. (1996): “Cournot Oligopoly and the Theory of Supermodular Games,” Games and
Economic Behavior, 15, 132-148.

ATHEY, S. (2001): “Single Crossing Properties and the Existence of Pure Strategy Equilibria in
Games of Incomplete Information,” Econometrica, 69(4), 861-890.

DIXIT, A (1989). “Entry and exit decisions under uncertainty,” Journal of Political Economy,
97(3), 620-638.

GOLLIER, C. (2001): The Economics of Risk and Time. Cambridge: MIT Press.

JEWITT, I. (1991): “Applications of Likelihood Ratio Orderings in Economics,” IMS Monograph
and Lecture Notes, 19, 174-189.

KARLIN, S. AND Y. RINOTT (1980): “Classes of Orderings of Measures and Related Correlation
Inequalities. I. Multivariate totally positive distributions,” Journal of Multivariate Analysis,
10, 467-498.

MCADAMS, D. (2003): “Isotone Equilibrium in Games of Incomplete Information”, Economet-
rica, 71(4), 1191-1214.

MILGROM, P. (1994): “Comparing Optima: Do Simplifying Assumptions Affect Conclusion?”
Journal of Political Economy, 102(3), 607-615.

MILGROM, P. (2004): Putting Auction Theory to Work, Cambridge University Press.

MILGROM, P. AND J. ROBERTS (1990): “Rationalizability, Learning, and Equilibrium in
Games with Strategic Complementarities,” Econometrica, 58(6), 1255-1277.

MILGROM, P. AND C. SHANNON (1994): “Monotone Comparative Statics,” Econometrica,
62(1), 157-180.

RENY, P. J. (2009): “On the Existence of Monotone Pure Strategy Equilibria in Bayesian Games”
Econometrica, 79(2), 499-553.

SANDMO, A. (1971): “On the Theory of the Competitive Firm under Uncertainty,” American
Economic Review, 61, 65-73.

VIVES, X. (1990): “Nash Equilibrium with Strategic Complementarities,” Journal of Mathemat-
ical Economics, 19, 305-21.

16


