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Abstract. We study the revenue-maximizing sale of an object in a dynamic environ-
ment, with buyers that differ in their degree of patience: Besides his privately known
valuation, each buyer has a privately known deadline for buying. First, we derive the
optimal mechanism, neglecting the incentive constraint for the deadline. Here the seller’s
desire to extract rents interacts with the dynamic arrival of new information. This can
lead to a violation of the neglected incentive constraint. We give sufficient conditions on
the type distribution under which the neglected constraint is fulfilled or violated. Next,
we consider a model with two periods and two buyers, for the case that the constraint
cannot be neglected. Here, the optimal mechanism is implemented by a fixed price in pe-
riod one and an asymmetric auction in period two. The asymmetry, which is introduced
to prevent the first buyer from buying in period one when his deadline is two, leads to
pooling of deadlines at the top of the type space.
Keywords: Dynamic Mechanism Design, Multidimensional Signals, Revenue Maximiza-
tion, Deadlines
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1. Introduction

In many situations, sellers face a changing population of heterogeneous buyers. Different

buyers arrive at different points in time. Some buyers are impatient and want to buy

immediately. Others are patient and willing to wait. Patient buyers can act strategically

and exploit their flexibility with respect to the time of a purchase in order to get better

prices. Typical examples of such scenarios are online auctions, the sale of flight tickets,

hotel reservations, or the sale of houses.

To capture heterogeneity in the degree of patience, we assume that buyer’s have id-

iosyncratic deadlines. A deadline can be viewed as an extreme form of time preferences,

as in the case of a traveler who needs to buy tickets before a certain date, in order to

be able to coordinate with other travel arrangements. Deadlines may also be imposed by

third parties. Consider a company that needs to buy a good from a seller in order to enter

a contractual relationship with a third party. This could be a physical object, an option
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contract, a license, a patent, etc. It is conceivable that the third party sets a deadline, after

which the contractual relationship is no longer available. Therefore, the good is worthless

for the company if it is purchased after the deadline.

We analyze the problem of a monopolistic seller with full commitment power, who sells

one (or more) unit(s) of a good. The seller wants to maximize revenue in a dynamic

environment, where buyers have independent private values, arrive over a finite number of

periods, and do not discount future payoffs. Each buyer is characterized by his arrival time,

his valuation, and his deadline. A buyer’s deadline and valuation are private information.

To focus on the effects of private information about time preferences, we assume that

arrival times are observable for the seller.

To solve the seller’s revenue maximization problem, we adopt a mechanism design ap-

proach. When there is no discounting, it is optimal to allocate to a buyer only if his dead-

line is reached. For this class of mechanisms, incentive compatibility can be characterized

by tractable one-dimensional constraints for the deadline and the valuation, respectively.

Building on this, the paper makes the following contributions.

First, we derive the relaxed solution, which ignores the incentive constraint for the

deadline. We show that the neglected incentive constraint for the deadline is violated if the

inverse hazard rate of the valuation is convex. If the inverse hazard rate is concave or linear,

the neglected constraint is fulfilled automatically. In the latter case, the relaxed solution

also solves the general problem. The reason for violations of incentive compatibility is an

interaction of the seller’s desire to extract rent and the dynamic arrival of new information

(due to the arrival of new buyers). Because of new arrivals, the allocation decision at a later

deadline is based on more information. We show that this leads to higher rent extraction

for later deadlines if the inverse hazard rate is convex. Hence, patient/strategic buyers

will mimic types with earlier deadlines to avoid rent extraction—the incentive constraint

for the deadline is violated. In the case of a concave inverse hazard rate, rent extraction is

higher for earlier deadlines. The impatient buyers, however, cannot profitably mimic later

deadlines. Therefore, incentive compatibility is preserved.

Second, we derive the optimal mechanism for the case that the relaxed solution is not

incentive compatible. In this case, the seller’s ability to extract rent from the patient

buyers is limited by the buyers’ ability to strategize and deviate to mimicking impatient

buyers. For tractability, we restrict the model to two periods and two buyers. The optimal

mechanism has a simple structure. In the first period, the seller sets a fixed price. If buyer

one does not accept, but indicates that he is patient and would be willing to purchase

in the second period, the seller waits and conducts an auction that gathers both buyers.

Otherwise, if the first buyer indicates that he is impatient, the object is offered to the

second buyer for a fixed price. The seller has two instruments to prevent a patient/strategic

type from choosing the fixed price in period one. He can increase the price in the first

period, and he can distort the auction format in the second period in favor of buyer one.

Both instruments increase the expected payoff from the auction compared to the fixed
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price and thereby reduce the incentive for the patient/strategic type to deviate. We derive

the optimal mechanism and show that the seller always uses both instruments.

The distortion leads to an asymmetric auction, even if both buyers have identically

distributed valuations. Moreover, buyer one wins with certainty if his valuation is suffi-

ciently high. In contrast to the relaxed solution, which fully separates buyers with different

types for a large class of type distributions, full separation is not optimal if the incentive

constraint for the deadline is binding. In particular, buyers with high valuations are not

separated with respect to their deadlines. It is not optimal for the seller to separate the

strategic/patient type from the impatient/non-strategic type if the valuation is too high.

In other words, the model predicts that the optimal mechanism provides incentives for

buyers with low valuations to wait until their respective deadlines before they make a

purchase. Buyers with higher valuations on the other hand, do not benefit from waiting

and may buy earlier.

Finally, the paper makes a methodological contribution. Formally, if the relaxed solution

is not incentive compatible, we have to solve an auction problem with a type-dependent

participation constraint. Patient/strategic buyers have the “outside option” to buy before

their deadlines. This is the first paper that solves such a problem. The solution resembles

Jullien (2000), who studies a principal-agent problem with a type-dependent participation

constraint. Methodologically, however, the auction problem requires a different approach

because of discontinuous winning probabilities and the additional capacity constraint in

the auction. We adopt an approach pioneered by Reid (1968), which seems to be new to

the mechanism design literature.1

1.1. Related Literature

The literature on dynamic revenue maximization can be broadly divided into two types

of models. On the one hand, there are models where all buyers are impatient and therefore

non-strategic with respect to the purchase time.2 This is also a standard assumption in

the revenue management literature.3 On the other hand, there are models in which all

buyers are assumed to be patient and strategic. In an infinite horizon model, Gallien

(2006) shows that under a condition on the inter arrival time distribution, the optimal

mechanism in the presence of patient/strategic buyers is the same as with impatient/non-

strategic buyers.4 Patient buyers are only served at the arrival and are never recalled later.

1Another problem arises because the usual hazard-rate assumption is not sufficient to guarantee mono-
tonicity of the winning probability in the distorted auction. Reid also shows how a monotonicity constraint
can be incorporated in a control problem. Hellwig’s (2008) version of Pontriyagin’s maximum principle
that allows for discontinuities and a monotonicity constraint cannot be applied here because of the capacity
constraint.
2See for example Das Varma and Vettas (2001); Vulcano et al. (2002); Gershkov and Moldovanu (2009a);
Dizdar et al. (2011).
3See Elmaghraby and Keskinocak (2003) for a survey. McAfee and te Velde (2007) survey airline pricing.
Su (2007) studies a model with patient buyers.
4The condition can also be found in the earlier literature on search with recall (Zuckerman, 1986).
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Board and Skrzypacz (2010) show that the no recall property fails if the time horizon is

finite.

In contrast to both these branches of the literature, we assume that there is hetero-

geneity in the patience of buyers and that buyers have private information about their

degrees of patience in the form of deadlines. This has also been studied by Pai and Vohra

(2008b), who focus on sufficient conditions for incentive compatibility of the relaxed so-

lution. These authors also allow for private information about the arrival time and do

not make restrictions on the number of periods or objects.5 For the deadline, they sug-

gest that the incentive constraint is slack if the hazard rate of the valuation is sufficiently

monotone in the deadline. The condition, however, cannot be applied directly to the the

type distribution. For the arrival time, they show that simple monotonicity of the hazard

rate in the arrival time is sufficient (cf. Section 5).

This paper is also related to a literature on static mechanism design with two-dimensional

private information, in which the second dimension is for example a budget constraint, a

minimal capacity, or a quality constraint.6 Such models are tractable because the second

dimension has a special structure:7 First, deviations are only possible in one direction

(e.g. only under-reports of the budget or of the deadline are possible). Second, the second

dimension is a constraint that does not enter the utility function as long as it is satisfied.

For example, the utility of a buyer is independent of his deadline as long as he gets a unit

before the deadline. Except for Szalay (2009), who considers a principal-agent problem,

this literature typically makes assumptions that guarantee that the relaxed solution is

incentive compatible.

Another interesting feature that has been introduced into dynamic mechanism design

models is learning. The literature on sequential screening considers situations in which the

seller faces a fixed population of buyers that learn about their valuation over time. Courty

and Li (2000) analyze the optimal contract in such a setting. Nocke and Peitz (2007),

Möller and Watanabe (2010) and Nocke et al. (2011) analyze optimal pricing schemes and

find that advance purchase discounts or clearance sales can be optimal.8 Recently, Ger-

shkov and Moldovanu (2009b,c, 2010) have studied dynamic mechanism design problems

in which the seller learns about future buyers’ type distributions from current buyers’

types. We abstract from learning both on the buyer- and the seller side by assuming that

types are uncorrelated and are fully learned upon arrival.

In a different strand of literature, Said (2008) considers a scheduling model with sto-

chastic arrival and exit of bidders. Pavan et al. (2008) consider a very general dynamic

5The results of the present paper can be generalized to many objects if there are only two time periods.
6See Beaudry et al. (2009) for an analysis of optimal taxation; Blackorby and Szalay (2008) and Szalay
(2009) for regulation; Iyengar and Kumar (2008) and Dizdar et al. (2011) for auction models with capac-
itated bidders; Che and Gale (2000), Malakhov and Vohra (2005) and Pai and Vohra (2008a) for models
with budget constrained buyers.
7The models of Rochet and Choné (1998) and Jehiel et al. (1999), in which all dimensions are symmetric,
rarely have explicit solutions (see Armstrong, 1996, for an exception).
8Related to this are also models where buyer’s types change over time. See for example Battaglini (2005),
Deb (2011) and references therein.
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mechanism design model with agents who receive one-dimensional private information in

every period. Finally, there is a literature on efficient dynamic mechanism design. (See

Parkes and Singh (2003), Bergemann and Välimäki (2010), and Athey and Segal (2007)

for existence results; Mierendorff (2009) for the construction of a simple payment rule). In

the context of the present paper, if the goal of the seller is value-maximization, the relaxed

solution is always incentive compatible. The interaction of rent extraction and dynamic

arrival of information vanishes because the seller is not concerned about rent extraction.

Organization of the Paper

Section 2 describes the model. Section 2.3 characterizes incentive compatibility. Section

2.4 states the seller’s problem. Section 3 presents the relaxed solution and conditions

for incentive compatibility, formal proofs are in Appendix A. Section 4 presents the

general solution for the bunching case. The formal derivation is in Appendix B. Section 5

concludes. The supplementary material in Appendix C contains some further proofs and

an extension of the results of Section 3 to multiple objects.

2. The Model

A seller wants to maximize the revenue from selling one indivisible object within T < ∞
time periods. The seller’s valuation is normalized to zero. In each period, a random number

of buyers Nt ∈ N0 arrives. The set of buyers who arrive in period t is denoted It and we

write I≤t =
∪t

τ=1 Iτ for the set and N≤t = |I≤t| for the number of buyers that arrive until

period t. A buyer i ∈ It is characterized by his arrival time ai = t, his valuation vi ∈ [0, v],

where v > 0, and his deadline di ∈ {t, . . . , T}. The object cannot be sold to a buyer before

his arrival time. Utility is quasi-linear. If buyer i has to make a total payment of yi, then

his total payoff is vi − yi if he gets the object in periods ai, . . . , di, and −yi otherwise.

Buyers are risk-neutral and maximize expected payoff. Neither the buyers nor the seller

discount future payoffs.9

The numbers of arrivals in different periods and the types of different buyers are in-

dependently distributed. Moreover, to focus on the novel insights that arise due to the

dynamic structure of the model, we assume that the deadline and valuation of a buyer are

independent. In section 3, we will discuss the consequences of correlations between the

deadline and the valuation. νt,n denotes the probability that n buyers arrive in period t.

To exclude uninteresting cases, we assume that in each period, there is a positive prob-

ability of new arrivals (∀t : νt,0 < 1). For given arrival time a, the probability that the

deadline of a buyer equals d is denoted ρa,d. The valuation has distribution function Fa(v)

and density fa(v). This notation implicitly assumes that buyers with the same arrival

period are ex-ante identical.

Information realizes over time. In period t, the numbers of future buyers Nt+1,

. . . , NT , and their types are not known to anybody. In particular, the decision to sell

9If only payments are discounted and all agents have a common discount factor, the results do not change.
See Section 5 for a discussion of discounting.
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a unit in period t cannot be based on this information. Upon arrival, each buyer privately

observes his valuation and his deadline. In order to focus on the incentive issues of private

information about deadlines, we assume that the seller observes arrivals.10 νt,n, ρa,d and

Fa(.) are commonly known from the first period on.

We assume that for all a, fa(v) is continuous in v and strictly positive for all v ∈ [0, v],

continuously differentiable in v for v ∈ (0, v), and that f ′
1(.) can be extended continu-

ously to [0, v]. To avoid additional technicalities, the following assumption is maintained

throughout the paper.

Assumption 1. For all a ∈ {1, . . . T}, the virtual valuation Ja(v) := v− 1−Fa(v)
fa(v)

is strictly

increasing in v.

The zero of Ja(.) is denoted v0a. For some results in Section 4, we will assume that the

monopoly profit from a buyer in the first period is concave:

Assumption 2. v(1− F1(v)) is concave for all v ∈ [v01, v].

2.1. Allocation Rules

A state st = (Ht, kt) consists of the history of buyer types Ht = (ai, vi, di)i∈I≤t
, and

the variable kt which indicates if the object is still available, (kt = 0), or has already been

allocated to some buyer i, (kt = i). The history of buyer types, excluding the type of

buyer i, is denoted H−i
t .

An allocation rule defines a winning probability xi(st) ∈ [0, 1] for each state st in which

kt = 0, and for each buyer i ∈ I≤t. If kt = 1, we set xi(st) = 0. With only one object

available, an allocation rule must satisfy the feasibility constraint

∀t, st :
∑
i∈I≤t

xi(st) ≤ 1. (F)

The probability that the object is not allocated in state st is denoted by x0(st) = 1 −∑
i∈I≤t

xi(st), and we set x0(st) = 0 if kt ̸= 0.

We say that an allocation rule allocates only at the deadline if xi(st) = 0 for all i ∈ I≤t

with di ̸= t. An allocation rule is symmetric if for all t, all states st with kt = 0, and all

i, j ∈ I≤t such that ai = aj , xi(st) = xj(σi,j(Ht), kt), where σi,j denotes the permutation

that interchanges the ith and the jth element of its argument.

A payment rule maps any state st and the realized current allocation decision kt+1 to

a payment yi(st, kt+1) for each buyer i ∈ I≤t. A payment rule is symmetric if for all t, st,

kt+1, and all i, j ∈ I≤t such that ai = aj , yi(st, kt+1) = yj((σi,j(Ht), σ̃i,j(kt)), σ̃i,j(kt+1)),

where σ̃i,j(k) = i if k = j and vice versa, and σ̃i,j(k) = k if k /∈ {i, j}.11

10See Section 5 for a discussion of private information about arrival times.
11Here, we implicitly assume that the payment in period t only depends on kt and kt+1. This is without
loss of generality and simplifies the definition of the state st.
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2.2. Mechanisms

The seller’s goal is to design a mechanism that has a Bayes-Nash-equilibrium which

maximizes his expected revenue. In general, a mechanism can be any game form with T

stages, such that only buyers from I≤t are active in stage t. We assume that the mechanism

designer has full commitment power and can choose to conceal any information about the

first t stages from the buyers that arrive in stages t+ 1, . . . , T .12

By the revelation principle, the seller can restrict attention to incentive compatible

and individually rational direct mechanisms, in which no information is revealed.13 Since

buyers who arrive in the same period are ex-ante identical, it is without loss of generality

to restrict attention to symmetric allocation and payment rules.

Definition 1. A direct mechanism consists of message spaces S1 = [0, v] × {1, . . . , T},
. . . , ST = [0, v]× {T}, and symmetric allocation and payment rules (x, y).

The interim winning probability for period t, of a buyer i ∈ Ia who reports (v′, d′), if all

other buyers (past, current and future) report their types truthfully, is given by

qta(v
′, d′) := E

[
xi(st)

∣∣(ai, vi, di) = (a, v′, d′)
]
.

The interim expected payment is given by

pa(v
′, d′) := E

[
T∑

τ=a

yi(sτ , kτ+1)

∣∣∣∣∣(ai, vi, di) = (a, v′, d′)

]
,

where we aggregate payments from different periods. (q, p) is called the reduced form of

(x, y) (explicit expressions can be found in Appendix C.3).

The interim expected utility from participating in a mechanism (x, y) with true type

(v, d) and report (v′, d′) is given by

Ua(v, d, v
′, d′) :=

[
d∑

τ=a

qτa(v
′, d′)

]
v − pa(v

′, d′). (2.1)

The expected utility from truth-telling is abbreviated Ua(v, d) := Ua(v, d, v, d).

Definition 2. (i) A direct mechanism (x, y) is (Bayesian) incentive compatible if for all

a ∈ {1, . . . , T}, v, v′ ∈ [0, v], and d, d′ ∈ {a, . . . , T},

Ua(v, d) ≥ Ua(v, d, v
′, d′). (IC)

(ii) A direct mechanism (x, y) is individually rational if for all a ∈ {1, . . . , T}, v ∈ [0, v],

and d ∈ {a, . . . , T},
Ua(v, d) ≥ 0. (IR)

12This assumption yields an upper bound on the revenue that can be achieved. We will see that this bound
can also be achieved in a periodic ex-post equilibrium, i.e., if buyers observe all information from past and
current stages.
13The standard revelation principle holds because the seller observes arrival times. Without this assump-
tion, the revelation principle still holds because each buyer could mimic all types with an arrival time
greater or equal than his own arrival time. Therefore the nested range condition is satisfied and the
revelation principle holds (Green and Laffont (1986); Bull and Watson (2007)).
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2.3. Characterization of Incentive Compatibility

Since valuations are not discounted, the seller can restrict attention to direct mechanisms

that allocate only at the deadline.

Lemma 1. Let (x, y) be a direct mechanism that satisfies (IC) and (IR). Then, there exists

an allocation rule x̂ that allocates only at the deadline, such that the direct mechanism (x̂, y)

also satisfies (IC) and (IR), and (x, y) and (x̂, y) yield the same expected revenue.

Proof. The proof can be found in Appendix C. �

Since we restrict attention to mechanisms that allocate only at the deadline, we write

qa(v, d) instead of qda(v, d). For this class of mechanisms, the two-dimensional incentive

constraint (IC) is equivalent to two one-dimensional constraints.

Theorem 1. Let (x, y) be a direct mechanism with reduced form (q, p) that allocates only

at the deadline. Then (x, y) is incentive compatible if and only if for all a ∈ {1, . . . , T},
all d ∈ {a, . . . , T}, and all v, v′ ∈ [0, v] :

v > v′ ⇒ qa(v, d) ≥ qa(v
′, d), (M)

Ua(v, d) = Ua(0, d) +

ˆ v

0
qa(s, d)ds, (PE)

Ua(v, d) ≤ Ua(v, d+ 1), if d < T, (ICDd)

and Ua(0, d) = Ua(0, d+ 1), if d < T. (ICDu)

Sketch of Proof. (M) and (PE) is the standard characterization of one-dimensional incen-

tive compatibility for the valuation (Myerson, 1981). (ICDd) rules out under-reports of

the deadline. Together with (M) and (PE), this also rules out simultaneous misreports of

an earlier deadline d′ < d and a valuation v′ ̸= v. Since the mechanism never allocates

after the reported deadline, the constraint takes this simple form because the utility of

under-reporting the deadline is independent of the true deadline (cf. (2.1)):

d′ ≤ d ⇒ Ua(v, d, v
′, d′) = Ua(v, d

′, v′, d′).

Incentive compatibility for the valuation implies that Ua(v, d
′, v′, d′), and therefore also

Ua(v, d, v
′, d′), is maximized by v′ = v. For v′ = v, (ICDd) rules out a downward deviation

in the deadline. Therefore, simultaneous deviations in the deadline and the valuation are

also ruled out. Necessity of (ICDd) is obvious.

For mechanisms that allocate only at the deadline, reporting d′ > d can only be prof-

itable if the mechanism pays a subsidy, i.e., if pa(v, d
′) < 0. (PE) implies that subsidies

are non-increasing in the valuation. Therefore, the highest subsidy (if any) is paid for

(0, d′). By (PE), v = 0 is also the valuation for which over-reporting the deadline is most

tempting. Hence, to rule out upward deviations, it suffices that Ua(0, d) = −pa(0, d) ≥
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−pa(0, d
′) = Ua(0, d, 0, d

′) = Ua(0, d
′). Together with (ICDd) for v = 0, this is equivalent

to (ICDu).14 �

Formally, the downward incentive constraint for the deadline resembles a type-dependent

participation constraint. A patient/strategic buyer with arrival time a and deadline d > a

has the“outside option”to report d′ < d. He only“participates”voluntarily with a truthful

report, if his payoff with d′ = d exceeds the payoff of his best “outside option.”

2.4. The Seller’s Problem

By the revelation principle and Lemma 1, the seller’s problem is to choose an incentive

compatible and individually rational direct mechanism that allocates only at the deadline,

to maximize

T∑
a=1

E[Na]E[pa(v, d)] =

T∑
a=1

[( ∞∑
Na=1

Na νa,Na

)
T∑

d=a

ρa,d

ˆ v

0
pa(v, d)fa(v)dv

]
.

Using (2.1) and (PE) to substitute the payment rule, integrating by parts and setting

Ua(0, d) = 0 for all a ∈ {1, . . . , T} and d ≥ a, the objective of the seller can be rearranged

to
T∑

a=1

[( ∞∑
Na=1

Na νa,Na

)
T∑

d=a

ρa,d

ˆ v

0
qa(v, d)Ja(v)fa(v)dv

]
.

Next, we substitute qa(v, d), and bring the seller’s maximization problem into a recursive

form. The resulting dynamic program is denoted R:

VT (sT ) := max
x(sT )

∑
i∈I≤T :di=T

xi(sT )Jai(vi), (R)

∀t < T : Vt(st) := max
x(st)

∑
i∈I≤t:di=t

xi(st)Jai(vi) + x0(st)Est+1 [Vt+1(st+1)|st, kt+1 = 0] ,

where the reduced form of the optimal policy x(.) must satisfy (M), (ICDd) and (PE),

where Ua(0, d) ≡ 0. As is common in one-dimensional auction problems, the sellers chooses

the virtually efficient allocation policy, i.e., the policy that maximizes the expected virtual

valuation of the winning buyer. An additional complication is introduced by the dynamic

incentive constraint (ICDd).

3. The Relaxed Solution

In order to derive conditions under which the constraint (ICDd) is binding, we first

solve R subject to (M) only. This is the relaxed problem and corresponds to the case where

deadlines are observed by the seller. As in the classic optimal auction problem, Assumption

14If v ∈ [v, v] with v > 0, then the upward incentive compatibility constraint for the deadline would be
Ua(v, d) ≥ −pa(v, d + 1) = Ua(v, d + 1) − qa(v, d + 1)v. In this case, a subsidy could be used to separate
buyers with different deadlines. One can show, however, that this instrument would not be used in the
optimal mechanism, unless the allocation rule is sufficiently distorted. The reason is that the cost of a
subsidy is of first order whereas the cost of distorting the allocation rule is of second order.
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1 guarantees that (M) is slack at the optimal policy (Myerson, 1981). Therefore, we can

ignore (M) in the derivation of the relaxed solution.

For a given state st, let ct := maxi∈I≤t:di=t Jai(vi) be the maximal virtual valuation

among the buyers with deadlines di = t. The relaxed solution allocates to a buyer i ∈
argmaxi∈I≤t:di=t Jai(vi) if the virtual valuation of that buyer exceeds the option value of re-

taining the object for the next period, formally, if Jai(vi) = ct ≥ Est+1 [Vt+1(st+1)|st, kt+1 = 0].

Otherwise, the object is retained for period t+ 1.

This allocation rule defines a critical virtual valuation ζdiai (H
−i
di
) for each buyer i, who

arrives in a period in which the object is still available. The critical virtual valuation

depends on the types of all buyers except buyer i, who arrive until his deadline di. Buyer

i wins the object if his virtual valuation exceeds the critical virtual valuation and does not

win if Jai(vi) < ζdiai (H
−i
di
).15

Ignoring ties, a buyer i with ai and di wins if and only if:

ct ≤ E[Vt+1(st+1)|st, kt+1 = 0] for all t ∈ {a, . . . , di − 1},

and Jai(vi) = max
{
E[Vdi+1(sdi+1)|sdi , kdi+1 = 0], cdi

}
,

where we set VT+1 ≡ 0. In words, the second condition ensures that i’s virtual valuation is

high enough to win in period di, given that the object is still available. The first condition

ensures that i’s virtual valuation is so high that it is optimal to retain the object in all

periods before his deadline.

In order to formalize the cutoff for buyer i’s virtual valuation, above which the first

condition is always fulfilled we make the following definition. Fix some period t and a

buyer i ∈ I≤t. Suppose that ct = c. We define the lowest virtual valuation of buyer i that

suffices to delay the allocation in period t by

zdt (c) := inf
{
J ≥ 0

∣∣ c ≤ Est+1

[
Vt+1(st+1)

∣∣Ht = (H−i
t , (a, J−1

a (J), d)), kt+1 = 0
]}

,

where we can select any a ≤ t. If at H−i
t , the object is not allocated in period t even if i

is not present, we have defined zt+1
d (ct) = 0.

With this notation, the critical type of a buyer i is given by

ζdiai (H
−i
di
) = max

{
zdiai (c

a), . . . , zdidi−1(c
di−1),

max
j∈I≤di

:dj=di,j ̸=i
Jaj (vj), E[Vdi+1(sdi+1)|sdi , kdi+1 = 0]

}
In every period t = ai, . . . , di − 1, i’s virtual valuation must exceed zt+1

di
(ct). Otherwise,

the object will be allocated before i’s deadline. If i’s deadline is reached, he must have

a virtual valuation that exceeds the virtual valuation of all other buyers with deadline di

and the virtual valuation must also exceed the option value of retaining the object for

period di + 1.

15All tie-breaking rules yield the same expected revenue.
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Theorem 2. Ignoring ties, the relaxed solution to R is given by

xrlxi (st) =

1 if di = t, kai = 0 and Jai(vi) ≥ ζdiai (H
−i
di
),

0 otherwise.

Together with the following payment rule, this allocation rule constitutes an optimal mech-

anism if deadlines are observable for the seller:

yrlxi (st, kt+1) =

J−1
ai (ζdiai (H

−i
di
)), if kt = 0 and kt+1 = i,

0 otherwise.

With the payment rule given in Theorem 2, the payment of a losing buyer is zero. The

winner pays the lowest valuation with which he could have obtained the object for a given

history of buyer arrivals until period d. Thus, truth-telling is a weakly dominant strategy

if the deadline is public and buyers only report their valuations.

Now we turn to the question whether the relaxed solution is incentive compatible if the

deadline is privately known. In the relaxed solution, Ua(0, d) = 0 for all a ∈ {1, . . . , T} and

d ∈ {a, . . . , T}. Hence, it suffices to check whether the expected payoffs for the payment

rule yrlx satisfy (ICDd).

The following observation is crucial for the comparison of expected payoffs for different

deadlines.

Lemma 2. For all states sa, and all i ∈ Ia,
(
ζda(H

−i
d )
)
d=a,...,di

is a martingale (with respect

to
(
H−i

d

)
d=a,...,di

): for all d ∈ {a+ 1, . . . , di},

EH−i
d

[
ζda(H

−i
d )
∣∣∣H−i

d−1

]
= ζd−1

a (H−i
d−1).

Furthermore, for all d ∈ {a, . . . , di − 1},[
ζda(H

−i
d )
∣∣∣sa] ≻SSD

[
ζdia (H−i

di
)
∣∣∣sa] ,

where ≻SSD denotes strict second-order stochastic dominance.

Proof. See Appendix A. �

Example 1. To illustrate the lemma, suppose that T = 2, I1 = {1, 2} and I2 = {3}. For
the sake of the example, suppose that buyer one may have deadline one or two, but buyer

two is always impatient (d2 = 1). In this case, the critical virtual valuations of buyer i = 1

for d1 = 1 and d1 = 2, respectively, are given by

ζ11 (H
−1
1 ) = max {J1(v2), Ev3 [max {0, J2(v3)}]} ,

and ζ21 (H
−1
2 ) = max

{
z21(J1(v2)), J2(v3)

}
,

where z21(J1(v2)) = min {z ≥ 0 |Ev3 [max {z, J2(v3)}] ≥ J1(v2)} .

Suppose that buyer two’s valuation is high enough so that it is optimal to allocate to

him in period one, unless buyer one overbids him, i.e., J1(v2) > Ev3 [max{0, J2(v1)}].
If buyer one reports deadline one, his virtual valuation is compared directly with buyer
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two and the critical virtual valuation is given by max{J1(v2), Ev3 [max {0, J2(v3)}]}. If

buyer one reports deadline two, however, a lower virtual valuation one suffices to prevent

an allocation to buyer two. Buyer one’s virtual valuation must exceed z21(J1(v2)) and

Ev3

[
max

{
z21(J1(v2)), J2(v3)

}]
= J1(v2) implies z21(J1(v2)) < J1(v2). On the other hand,

buyer one now directly competes with buyer three. His valuation must exceed J2(v3)

(rather than Ev3 [max {0, J2(v3)}]), to win against buyer three. Lemma 2 implies that in

expectation, competition is equally strong but it is more dispersed if a buyer has a later

deadline. The latter observation is obvious in this example because, conditional on s1 the

critical virtual valuation for d1 = 1 is constant whereas the critical virtual valuation for

d1 = 2 is a random variable. �

The ordering of the critical virtual valuations in terms of second-order stochastic dom-

inance implies that non-linear virtual valuations lead to different expected utilities for

different deadlines under the relaxed solution. The following theorem uses this to give a

sufficient conditions for incentive compatibility of the relaxed solution.

Theorem 3. (i) If Ja(v) is weakly convex for all a, then the relaxed solution is incentive

compatible and the mechanism from Theorem 2 constitutes an optimal mechanism if

deadlines are private information.

(ii) If Ja(v) is strictly concave for some a, then (ICDd) is violated for some type (a, v, d)

in the relaxed solution.

Proof. See Appendix A. �

Intuitively, non-linearity of Ja plays a role because the seller uses J−1
a as a pricing

function to determine the payment of the winning bidder. We can interpret the critical

virtual valuation as the (virtual) opportunity cost of selling to a buyer. J−1
a is the pricing

rule that translates the opportunity cost into the price that the buyer has to pay. This

pricing rule takes into account the information rent that the seller has to leave for the

buyer. If the pricing rule is non-linear, it matters for the expected price whether the

pricing rule is applied to the expected opportunity cost (e.g. in period one) or the actual

realization of the opportunity cost (e.g. in period two). In other words, the rent extraction

motive of the seller interacts with the dynamic arrival of information and this can leads

to violations of incentive compatibility. If the seller maximized value instead of revenue,

the pricing rule would be the identity and the relaxed solution would always be incentive

compatible. Moreover, if there was no information revelation over time but the seller

would maximize revenue, the relaxed solution would also always be incentive compatible.

The following example illustrates this point.

Example 2. Suppose that T = 2 and in each period, one buyer arrives. The first buyer

can have deadline one or two. The relaxed solution looks as follows: If d1 = 1 the seller

makes a take-it-or-leave-it offer of yrlx1 (v1, d1 = 1) to buyer one. If the offer is rejected, he

waits and makes an offer of yrlx2 ((v1, d1 = 1), v2) to buyer two. The optimal offer to buyer

two is determined by J2(y
rlx
2 ) = 0, which implies that the expected revenue of waiting
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for period two equals ζ11 = yrlx2 (1 − F2(y
rlx
2 )) = Ev2 [max{0, J2(v2)}]. The optimal offer in

period one is given by J1(y
rlx
1 (v1, d1 = 1)) = ζ11 . Hence we have

yrlx1 (v1, d1 = 1) = J−1
1 (Ev2 [max{0, J2(v2)}]).

If d1 = 2, no buyer reaches his deadline in the first period, therefore the mechanism

waits for period two. In period two, buyer one wins if J1(v1) ≥ max {0, J2(v2)} = ζ21 (v2)

and the price he has to pay in this case is given by16

yrlx1 ((v1, d1 = 2), v2) = J−1
1 (ζ21 (v2)) = J−1

1 (max{0, J2(v2)}).

Now suppose that the seller tries to implement the relaxed solution when the deadline

is private information. Then, he has to rely on buyer one’s claim about the deadline when

deciding whether to make the take-it-or-leave-it-offer or to wait for the second period. To

understand the sufficient condition for incentive compatibility, suppose that buyer one has

the highest possible valuation (v1 = v̄) and deadline two. Under this assumption, the

decision to reveal the deadline truthfully only depends on the expected payments, since

the buyer will get the object regardless of his report. Expected payments are given by

yrlx1 (v̄, d1 = 1) = J−1
1 (Ev2 [max{0, J2(v2)}]) if he reports d = 1,

and Ev2 [y
rlx
1 ((v̄, d1 = 2), v2)] = Ev2 [J

−1
1 (max{0, J2(v2)})] if he reports d = 2.

By Jensen’s inequality, the expected payment is strictly smaller for d = 1 if J1 is concave

(J−1
1 is convex). It is greater (equal) if J1 is convex (linear). Therefore, this type of buyer

one will not reveal his deadline truthfully, if J1 is convex.

If the seller is interested in value-maximization rather than revenue, valuations are not

transformed by the virtual valuation function. The take-it-or-leave-it-offer in period one

would be E[v2], and the price for buyer one in the second period would be v2. Hence,

expected payments would be the same for both deadlines and the buyer would not have

an incentive to lie about his deadline. This shows that dynamic arrivals alone do not lead

to a violation of incentive compatibility.

If the seller maximizes revenue, but no new information arrives in the second period, the

violation of incentive compatibility due to a concave virtual valuation also vanishes. To see

this, suppose that the valuation of buyer two is already known in the first period. In this

case, the mechanism in period two is unchanged, but the take-it-or-leave-it-offer in the

first period is now given by J−1
1 (max{0, J2(v2)}) rather than J−1

1 (Ev2 [max{0, J2(v2)}]).
Therefore, expected payments would be the same for both deadlines. Formally, the strict

second order stochastic dominance in Lemma 2 depends on new arrivals. Without new

arrivals, we have ζ11 = ζ21 and the expected payment is independent of the deadline. �

16If F1 = F2, this is the payment in a second-price auction. In general, however, the relaxed solution
cannot be implemented by a sequence of second-price auctions even in the case of identically distributed
valuations. In Example 1, buyer one has to pay J−1

1 (max{z22(v2), J2(v3)}). Here, the second-price auction
is augmented by a backward looking component that increases the price buyer one has to pay whenever
he was pivotal for delaying the allocation until period two.
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f(v) (support: [0, 1]) J(v) J ′′(v)

2v 1
2
3v2−1

v − 1
v3

< 0

1− k + 2kv (k ∈ (0, 1]) 2v−2kv+3kv2−1
1−k+2kv − 2k(1+k)2

(1−k+2kv)3
< 0

(k + 1)vk (k > 0) vk+2v−v−k

k+1 −v−2−kk < 0

12(v − 1
2)

2 2
3
v2(4v−3)
(2v−1)2

− 4
(2v−1)4

< 0

3
2 − 6(v − 1

2)
2 8v2−v−1

6v − 1
3v3

< 0

2− 2v 3v
2 − 1

2 0

1 (uniform) 2v − 1 0

(1 + k)(1− v)k (k+2)v−1
k+1 0

1− k + 2kv (k ∈ [−1, 0)) 2v−2kv+3kv−1
1−k+2kv − 2k(1+k)2

(1−k+2kv)3
> 0

Table 1. Distributions with strictly concave, linear,
and strictly convex virtual valuations.

Remark 1. Strict concavity of the virtual valuation is equivalent to

1− F (v)

(f(v))2
(f(v)f ′′(v)− 2(f ′(v))2) < f ′(v).

This implies that all distributions with an increasing density that is not too convex have

strictly concave virtual valuations. Conversely, decreasing densities that are not too con-

cave imply weak convexity of the virtual valuation. Table 1 shows densities and virtual

valuations for several distributions. For the first group, the virtual valuation is strictly con-

cave wherever it is non-negative. For the second group, it is linear and for the third group

it is convex. The relaxed solution violates incentive compatibility for all distributions in

the first group and satisfies incentive compatibility for all other examples.

Remark 2. Lemma 2 conditions on the state in the arrival period. This implies that the

incentive compatibility result of Theorem 3 also holds if buyers can condition their reports

on the state at their arrival time. In other words, under the conditions of part (i) of the

theorem, the relaxed solution is periodic ex-post incentive compatible. This shows that

the optimal solution does not rely on the seller’s ability to conceal information from earlier

periods.

Remark 3. Theorem 3 can be generalized in two directions. First, we have assumed so

far that the deadline and the valuation of a buyer are independently distributed. If we

allow for correlations, the distribution of the valuation will depend on the deadline. By

reporting the deadline, the buyer can then choose the distribution he comes from. It is

well known that a buyer would prefer to come from a weaker distribution because this

leads to less aggressive price setting by the seller. This implies that the relaxed solution is
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incentive compatible if the valuation distribution is weaker (in the hazard rate order) for

higher deadlines.17

Second, we show in Appendix C, that for the case of two time periods (T = 2), Lemma

2 also holds if the seller has a finite number of units of a good and sells to buyers with unit

demand. Therefore, Theorem 3 also holds in this framework. We state the generalizations

in the following theorem (where K denotes the number of units, and Ja(v|d) denotes the
virtual valuation conditional on the deadline d):

Theorem (3’). Suppose that K = 1 and T < ∞, or that T = 2 and K < ∞.

(i) The relaxed solution is incentive compatible if deadlines are private information if

for all a, d and d′ ∈ {a, . . . , d− 1},
(a) Ja(v|d′) ≤ Ja(v|d) for all v ∈ [0, v], and

(b) Ja(v|d) or Ja(v|d′) is weakly convex as a function of v.

(ii) (ICDd) is violated in the relaxed solution if for some type type (a, v, d) there exists

d′ ∈ {a, . . . , d− 1}, such that

(a) Ja(v|d′) ≥ Ja(v|d) for all v ∈ [0, v], and

(b) Ja(v|d) or Ja(v|d′) is strictly concave as a function of v.

4. Bunching

In cases where the relaxed solution is not incentive compatible, the analysis is signif-

icantly more complex. For tractability, we restrict the model to the case of two periods

(T = 2) and assume deterministic arrival of one buyer in each period (ν1,1 = ν2,1 = 1).

Furthermore, we will assume that the profit of a monopolist selling to the first buyer is

concave (Assumption 2). This assumption ensures that the optimal mechanism does not

use lotteries in the first period. For this case, we solve R subject to (M), (ICDd) and (PE).

While Assumption 2 is needed for a complete solution, we will argue that a main property

of the optimal solution, namely that deadlines are not separated for high valuations, is

robust.

In the following section, we will simplify the notation and decompose the seller’s problem

into two sub-problems: one for d1 = 1 and one for d1 = 2. These problems are only linked

by the incentive compatibility constraint for the deadline (ICDd). In Section 4.2, we show

that Assumption 2 rules out lotteries and solve the revenue maximization problem for

d1 = 1. Section 4.3 deals with the problem for d1 = 2 in the regular case where the

monotonicity constraint is slack. Assumption 1 guarantees that in the optimal solution,

(M) is slack for buyer two. For buyer one, however, it is not sufficient for monotonicity. In

Section 4.4, we show how the mechanism has to be ironed if (M) is binding at the optimal

solution. The reader may want to skip section 4.4 at the first read. Finally, we combine

the solutions for d1 = 1 and d1 = 2 to a solution of the general problem.

17The observation is not new. It can also be found in the previous literature on static models with
two-dimensional private information. See Section 1.1 and Footnote 6.
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4.1. Decomposition of the seller’s problem

Since N1 = N2 = 1, we write d instead of d1 and denote the probability that d = 1

by ρ instead of ρ1,1. Winning probabilities are written as x1(v1, 1), x1(v1, 2, v2), and

x1(v1, d, v2), where the second argument is always the deadline of buyer one. x1(v1, 1) is

the probability that buyer one gets the object if his deadline is one. xi(v1, d, v2) is the

probability that buyer i gets the object in period two, conditional on the event that the

object has not been allocated in the first period. Note that x is feasible if and only if for

all v1, v2 ∈ [0, v], d ∈ {1, 2}, and i ∈ {1, 2},

x1(v1, 1), xi(v1, d, v2) ∈ [0, 1] and x1(v1, 2, v2) + x2(v1, 2, v2) ≤ 1. (F)

The feasibility constraint for d = 1 is fulfilled automatically because x2(v1, 1, v2) is the

winning probability of buyer two conditional on the event that the object has not been

allocated in the first period.

Interim winning probabilities of buyer one are given by

q1(v1, 1) = x1(v1, 1), and q1(v1, 2) =

ˆ v

0
x1(v1, 2, v2)f2(v2)dv2.

The interim winning probability of buyer two, conditional on the deadline of buyer one

and the event that the object has not been allocated in period one, is given by

q2(v2|1) :=
ˆ v

0
x2(v1, 1, v2)

(1− x1(v1, 1))f1(v1)´ v
0 (1− x1(s, 1))f1(s)ds

dv1,

if d = 1 and by

q2(v2|2) :=
ˆ v

0
x2(v1, 2, v2)f1(v1)dv1,

if d = 2. Hence, we have

q2(v2) = ρ

(ˆ v

0
(1− x1(v1, 1))f1(v1)dv1

)
q2(v2|d = 1) + (1− ρ) q2(v2|d = 2).

With these definitions, R subject to (ICDd), (PE), and (M) for buyer one, can be

rewritten as the maximization problem P:

max
q

ρ

ˆ v

0

[
q1(v1, 1)J1(v1) + (1− q1(v1, 1))

ˆ v

0
q2(v2|1)J2(v2)f2(v2)dv2

]
f1(v1)dv1

+ (1− ρ)

ˆ v

0
q1(v, 2) J1(v) f1(v) + q2(v|2)J2(v) f2(v) dv (P)

subject to q being the reduced form of a feasible allocation rule,

∀d ∈ {1, 2},∀v, v′ ∈ [0, v] : v > v′ ⇒ q1(v, d) ≥ q1(v
′, d), (M1)

∀d ∈ {1, 2},∀v ∈ [0, v] : U1(v, d) =

ˆ v

0
q1(s, d)ds, (PE1)

and ∀v ∈ [0, v] : U1(v, 1) ≤ U1(v, 2), with equality if v = 0. (ICDd
1)
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Except for the incentive constraint for the deadline (ICDd
1), the expected revenues for

d = 1 (first line in the objective) and d = 2 (second line) can be maximized indepen-

dently. In order to decompose the seller’s problem, we introduce a function U : [0, v] →
[0, v], U(0) = 0, that separates U1(., 1) from U1(., 2):

∀v ∈ [0, v] : U1(v, 1) ≤ U(v) ≤ U2(v, 2), with equality if v = 0. (ICDd
U)

Using U as a parameter, the maximization problem can be rewritten as P ′:

max
U

ρ π1[U ] + (1− ρ) π2[U ] (P ′)

π1[U ] is defined as the maximal expected revenue that can be achieved if the deadline

is one and the expected payoff of the first buyer is constrained by U1(v, 1) ≤ U(v) for all

v ∈ [0, v]. This maximization problem is called P1:

π1[U ] := max
q

ˆ v

0

[
q1(v1, 1)J1(v1) + (P1)

(1− q1(v1, 1))

ˆ v

0
q2(v2|1)J2(v2)f2(v2)dv2

]
f1(v1)dv1

s.t. q1(v, 1), q(v|1) ∈ [0, 1], (PE1), (M1) and (ICDd
U)

π2[U ] is defined as the maximal expected revenue that can be achieved if the deadline

is two and the utility of the first buyer is constrained by U1(v, 2) ≥ U(v) for all v ∈ [0, v].

This maximization problem is called P2:

π2(U) := max
q

ˆ v

0
q1(v, 2)J1(v)f1(v) + q2(v|2)J2(v)f2(v)dv (P2)

s.t. (F),(PE1), (M1) and (ICDd
U).

If P1 and P2 are solved for the same U , we get a solution for P. The following lemma

shows that ICDd
U has to be checked only for the highest valuation if the seller does not

use lotteries in the first period.

Lemma 3. If x1 (v1, 1) ∈ {0, 1} for all v1 ∈ [0, v], then (ICDd
U) holds for any v, if it is

fulfilled for v = 0 and v = v.

Proof. q1(v, 1) jumps from zero to one at v = v−U1(v, 1) if the allocation is deterministic.

Therefore, the utility schedule for d = 1 is the lowest schedule that is consistent with

U1(0, 1), U1(v, 1) and (PE). If U1(0, 1) = U1(0, 2) and U1(v, 1) ≤ U1(v, 2), then U1(v, 2)

must necessarily be greater or equal than U1(v, 1) for all v ∈ [0, v]. �

This result is very useful. It implies that the points where the constraint is binding are

independent of the solution, as long as the seller does not use lotteries in the first period.

In particular, since U1(0, 1) = U2(0, 2) = 0 the incentive constraint for the deadline is

reduced to a single inequality.
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4.2. Solution to P1

If (ICDd
U) is ignored, P1 is equivalent to the problem of finding the optimal selling

strategy for a sequence of short-lived buyers. The optimal solution is a sequence of fixed

prices (Riley and Zeckhauser, 1983). Optimal prices are determined working backwards in

time. If the object was not sold in the first period, the optimal price in the second period is

r2 = v02. Hence, the option value of postponing the allocation is V opt
2 := v02(1− F2(v

0
2)) =´ v

v02
J2(v2)f2(v2)dv2. The optimal price in the first period, r1, is given by J1(r1) = V opt

2 .

This is the relaxed solution of P1.

If constraint (ICDd
U) is imposed, the optimal solution to P1 may involve lotteries.18 To

rule out this possibility we impose Assumption 2.

Lemma 3 implies that if the allocation rule is deterministic in the first period, (ICDd
U)

reduces to U1(v, 1) ≤ Ū , where we define Ū := U(v). We will thus treat π1 as a function

of Ū and write π1(Ū) instead of π1[U ] in this case. The optimal fixed price in period one

is now given by the lowest price that satisfies J1(r1) ≥ V opt
2 and v− r1 ≤ Ū . The optimal

price in period two is not affected by constraint (ICDd
U).

Theorem 4. Suppose f1 satisfies Assumption 2. Then,

(i) the optimal solution of P1 does not use lotteries. It is given by

q1(v1, 1) =

0, if J1(v1) < max{V opt
2 , J1(v − Ū)},

1, otherwise,

q2(v2, 1) =

0, if J2(v2) < 0,

1, otherwise.

(ii) π1(Ū) is continuously differentiable for Ū ∈ (0, v) and strictly concave in Ū for

Ū < v − J−1
1 (V opt

2 ).

Proof. The proof can be found in the Appendix C. �

To understand the role of Assumption 2, note that in the constraint U(v) ≥
´ v
0 q1(s, 1)ds,

winning probabilities are not weighted in the integral because incentive compatibility con-

straints are independent of the buyer’s own distribution function. In the objective, how-

ever, q1(v1, 1) is weighted by (J1(v1) − V opt
2 )f1(v1). Increasing the winning probability

q1(v1, 1) for valuations in [v, v + ε], and decreasing it by the same amount on [v′, v′ + ε],

with v′ + ε ≤ v, decreases U1(v1, 1) for v1 ∈ [v′, v+ ε] and leaves U1(v1, 1) unchanged oth-

erwise. Hence, such a change in q1 does not destroy incentive compatibility. On the other

hand, this shift of winning probability from low to high types increases the seller’s revenue

if (J1(v1)−V opt
2 )f1(v1) is increasing. Assumption 2 guarantees that (J1(v1)−V opt

2 )f1(v1)

18The no-haggling result of Riley and Zeckhauser (1983) is a consequence of a special structure of the
feasible set of the maximization problem. Manelli and Vincent (2007) show that the set of extremal points
of the feasible set, which contains the maximizers, is equal to the set of deterministic allocation rules. Due
to the additional constraint (ICDd

U), the set of extremal points changes. Rather than trying to extend
the results of Manelli and Vincent here, we use Assumption 2 as a sufficient condition for a deterministic
mechanism.
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is increasing whenever J1(v1) − V opt
2 ≥ 0. Therefore, the winning probability must jump

from zero to one at some point and the allocation is deterministic.

If Assumption 2 does not hold, raising the winning probability for a lower valuation

may be more profitable than for a higher valuation because it is sufficiently more likely

that buyer one has the low valuation. For this to be the case, the decrease in the density

must outweigh the increase in expected revenue, i.e., the virtual valuation.

4.3. Solution to P2 – The Regular Case

In this section, we solve P2, imposing (ICDd
U) only for v = v. By Lemma 3 and Theorem

4, this is sufficient for the general problem if Assumption 2 is fulfilled. In the derivation of

the optimal solution of P2, however, Assumption 2 is not used. Therefore, the results of

this and the following section also apply if the mechanism designer is exogenously restricted

to set a fixed price in the first period.

To state the optimal solution, we define the generalized virtual valuation of buyer one:

JpU
1 (v) := J1(v) +

pU
f1(v)

.

The parameter pU determines the magnitude of the distortion of the allocation rule away

from Myerson’s (1981) solution for P2 without (ICDd
U). (pU is the multiplier of the con-

straint (ICDd
U) in the underlying control problem.) Suppose we already know the optimal

pU . Then, the optimal allocation rule is given by

x1(v1, 2, v2) =

0, if JpU
1 (v1) < max{0, J2(v2)},

1, otherwise,

x2(v1, 2, v2) =

0, if J2(v2) ≤ max{0, JpU
1 (v1)},

1, otherwise.

(4.1)

For every Ū ∈ [0, v), let p∗
Ū

be the lowest value pU ≥ 0, such that the reduced form of

(4.1) satisfies
´ v
0 q1(v, 2)dv ≥ Ū .

Theorem 5. Fix Ū and suppose that J
p∗
Ū

1 (v1) is strictly increasing in v1. Then

(i) the reduced form of (4.1) for pU = p∗
Ū

is an optimal solution of P2 subject to (M1),

(PE1), and (ICDd
U) for v = v.

(ii) p∗
Ū
= −π′

2(Ū).

(iii) π2 is weakly concave.

Proof. Theorem 5 is a special case of Theorem 6 below. �

If the relaxed solution is incentive compatible, pU is zero and valuations (v1, v2) tie if

J1(v1) = J2(v2), as in Myerson’s solution. If the relaxed solution is not incentive com-

patible, pU is strictly positive and valuations tie if JpU
1 (v1) = J2(v2), which is equivalent

to

(J1(v1)− J2(v2))f1(v1) = −pU . (4.2)
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(J1(v1|2) − J2(v2))f1(v1|2) = −pU

Figure 4.1. Optimal allocation rule

Figure 4.1 sketches both cases for identically distributed valuations (f1 = f2). The solid

line is the Myerson-line, at which valuations tie in the relaxed solution. The dashed line

is the distorted Myerson-line, at which valuations tie in the general solution. Note that

for pU > 0, valuations tie in an area where the (standard) virtual valuation of buyer one

is strictly smaller than the virtual valuation of buyer two.

To understand condition (4.2), consider the effect on π2 of an increase of q1(., 2). Fix

any (v1, v2) on the distorted Myerson-line, such that 0 ≤ JpU
1 (v1) ≤ v. In the figure,

this corresponds to α ≤ v1 ≤ β. In order to increase q1(v1, 2), the allocation has to be

changed from buyer two to buyer one at (v1, v2). This leads to a marginal change in π2

of J1(v1)− J2(v2) < 0 per mass of type profiles for which the allocation is changed. This

mass of type profiles is proportional to f1(v1). Hence, the left-hand side of (4.2) quantifies

the marginal cost of increasing q1(v1, 2).

Along the distorted Myerson-line, the marginal cost of increasing q1(v1, 2) must be inde-

pendent of v1. The reason is that winning probabilities are not weighted in the constraint´ v
0 q1(s, 2)ds ≥ Ū . If the marginal cost of changing q1(v1, 2) varied with v1, we could

increase q1(v1, 2) where the marginal cost is small and decrease it where the marginal cost

is big. If we chose this variation such that U1(v, 2) =
´ v
0 q1(s, 2)ds were not changed, we

could increase the objective function without violating the constraints—a contradiction.

Hence, the marginal cost of increasing q1(., 2) must be constant and equal to pU for all

v1 ∈ [α, β]. As the utility of the highest type is given by U1(v, 2) =
´ v
0 q1(s, 2)ds, pU can

also be interpreted as the marginal cost of the constraint U1(v, 2) ≥ Ū .

Furthermore, note that the distortion is increasing in pU , and that by Assumption 1,

the marginal cost of a distortion is increasing in the distance from the Myerson solution

(the LHS of (4.2) is decreasing in v2). Therefore, (a) it is optimal to choose the lowest
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pU such that (ICDd
U) is satisfied, and (b) the cost of distortions is convex, which implies

concavity of π2 in Ū .

Finally, (4.2) implies that the distortion of the Myerson-line is bigger for types with

lower densities. Intuitively, the expected cost of a distortion is lower for types that are

less frequent. This implies that an increasing density can lead to non-monotonicities of

the winning-probability.

4.4. Solution to P2 – The Irregular Case

To ensure an increasing winning probability for buyer one, Theorem 5 requires that

J
p∗U
1 is strictly increasing. This is a condition on an endogenous object and Assumption 1

does not guarantee monotonicity of JpU
1 for all values of pU . A decreasing density f1(v)

together with Assumption 1 would be sufficient, but this is quite restrictive and rules out

most of the examples of concave virtual valuations in Table 1. To give a complete solution

without further assumptions, we show that Myerson’s ironing procedure can be used to

deal with non-monotonicities of JpU
1 .

Definition 3 (Ironing; Myerson, 1981). (i) For every t ∈ [0, 1], define

MpU
1 (t) := J1(F

−1
1 (t)) +

pU

f1(F
−1
1 (t))

,

as the generalized virtual valuation at the t-quantile of F1.

(ii) Integrate this function:

HpU (t) :=

ˆ t

0
MpU

1 (s)ds.

(iii) Take the convex hull (i.e. the greatest convex function G such that G(t) ≤ HpU (t)

for all t):

H̄pU (t) := convHpU (t).

(iv) Since H̄pU is convex, it is almost everywhere differentiable and any selection M̄pU
1 (t)

from the sub-gradient is non-decreasing.

(v) Reverse the change of variables made in (i) to obtain the ironed generalized virtual

valuation

J̄pU
1 (v1) := M̄pU

1 (F1(v1)).

In the irregular case, the optimal allocation rule depends on two parameters, pU and

x01, and has the following structure:

x̄1(v1, 2, v2) =


1, if J̄pU

1 (v1) > 0 and J̄pU
1 (v1) ≥ J2(v2)

x01, if J̄pU
1 (v1) = 0 and J2(v2) ≤ 0,

0, otherwise,

x̄2(v1, 2, v2) =

0, if J2(v2) ≤ max{0, J̄pU
1 (v1)},

1, otherwise.

(4.3)
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The optimal parameters are determined as follows. First, let p∗
Ū

be the minimal pU ≥ 0

such that the reduced form of (4.3) with x01 = 1 satisfies
´ v
0 q1(v, 2)dv ≥ Ū . Second, if

p∗
Ū
> 0, select x0∗1 ∈ [0, 1] such that

´ v
0 q1(v, 2)dv = Ū , otherwise set x0∗1 = 1.

The additional parameter x01 is only needed if J̄
p∗
Ū

1 (v1) = 0 on an interval [v01, v̄
0
1] of

positive length. In this case,
´ v̄01
v01

J
p∗
Ū

1 (v)dv = 0 and hence, U1(v, 2) can be varied at

constant marginal cost pU by changing the winning probability for all valuations in the

interval [v01, v̄
0
1]. Therefore, a single value of pU defines the ironed generalized virtual

valuation for different values Ū in a non-empty interval [a, b]. x01 is varied to achieve

different values of U1(v, 2) ∈ [a, b].

The allocation rule in (4.3) excludes buyer one if his valuation is smaller than v01. With

a valuation in [v01, v̄
0
1], he can win against buyer two if v2 ≤ v02, but he gets the object only

with probability x01.
19 To summarize, we have

Theorem 6. (i) The reduced form of (4.3) for p∗
Ū
and x0∗1 is an optimal solution of P2

subject to (M1), (PE1), and (ICDd
U) for v = v.

(ii) For almost every Ū , π′
2(Ū) = −p∗U .

(iii) π2 is weakly concave in Ū and strictly concave if pU > 0 and J̄pU
1 (v) = 0 has a unique

solution.

Proof. See Appendix B. �

Note that if JpU
1 is increasing, J̄pU

1 equals JpU
1 . Therefore, Theorem 5 is a special case

of Theorem 6.

4.5. Global Solution and Discussion

Under Assumption 2, P ′ reduces to the problem of choosing Ū optimally. The first

order necessary condition is

ρ π′
1(Ū) = −(1− ρ) π′

2(Ū).

By Theorem 6, π2 is concave and by Theorem 4 and Assumption 2, π1 is concave. There-

fore, the first-order condition is also sufficient. To determine the optimal distortion, it

suffices to compute the unique solution (Ū , pU ), pU ≥ 0 of

pU =
ρ

1− ρ
π′
1(Ū),

and Ū ≤
ˆ v

0
qpU1 (v, 2)dv1, with equality if pU > 0,

where qpU is the reduced form of (4.1) for given value of pU .
20 An explicit form of the

solution is not available. However, for given pU , U1(v, 2) =
´ v
0 qpU1 (v, 2)dv1 is easy to

19It is also possible to construct a deterministic allocation rule with the same reduced form. Choose v̂2
such that x0

1 = F2(v̂2)

F2(v
0
2)
. For v1 ∈ [v01, v̄

0
1 ], set x1(v1, 2, v2) = 1 if v2 ≤ v̂2 and x1(v1, 2, v2) = 0 otherwise.

This construction has the disadvantage, however, that the allocation decision for buyer one depends on
truthful reports of buyer two in cases when buyer two can never win the object.
20We only discuss the global solution for the regular case. The irregular case is similar.
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calculate and an explicit expression for π′
1 is given in the proof of Theorem 4. Hence, it

is easy to compute the optimal pU numerically. If Assumption 2 is violated, π1 may fail

to be concave and it may be necessary to compute all local maxima to find the global

solution. We will now discuss several properties of the general solution.

Monotonicity of q2. q2(v2|1), defined by the fixed price r2, and q2(v2|2), defined by the

reduced form of (4.3), are non-decreasing. This follows from Assumption 1. Therefore,

q2(v2) is also non-decreasing and the optimal solutions of P1 and P2 together fulfill all

constraints of P.

Distortions in Both Periods. By Theorem 4, π1(Ū) is continuously differentiable.

Therefore, pU > 0 implies that the allocation for d = 1 is distorted. Hence, the gen-

eral solution involves a distortion for both deadlines, whenever the relaxed solution is not

incentive compatible. As distortions are more costly at the deadline which occurs more

frequently, the relative magnitude of the distortions depends on ρ. If d = 1 is relatively

unlikely (ρ small), then the distortion of the fixed price is bigger and the auction is closer

to Myerson’s solution.

Distortions and Bunching of Deadlines. In the first period, the fixed price is max{Ū−
v, J−1

1 (V opt
2 )}. It is distorted upwards compared to the relaxed solution, to make the fixed

price less attractive. To analyze the distortions in the auction in period two, note that

∀v1 ∈ [0, v] : JpU
1 (v1) = J1(v1) +

pU
f1(v1)

> J1(v1),

if the relaxed solution is not incentive compatible (pU > 0). Therefore, the reserve price for

buyer one, which is given by JpU
1 (r) = 0, is smaller than in the relaxed solution. Secondly,

for all valuations above the reserve price, the winning probability is higher than in the

relaxed solution because v1 ties with a higher valuation v2. Finally, in contrast to the

relaxed solution, the winning probability of bidder two is strictly smaller than one for all

v2 ∈ [0, v]. For every pU > 0, there is a non-empty interval (c, v] such that JpU
1 (v1) > v

for all valuations v1 ∈ (c, v]. Buyer two cannot win against buyer one if v1 > c.

The fact that q1(v1, 2) = 1 = q1(v1, 1) for high valuations, together with the binding

incentive constraint for the deadline at v̄ (U1(v̄, 1) = U1(v̄, 2)) means that the utility of

buyer one is independent of the deadline if v1 > c, and that the expected payment in the

auction is equal to the fixed price in period one for these valuations. In other words, the

optimal allocation does not separate buyers with different deadlines if their valuations are

high. It can thus be implemented in a mechanism where buyers with valuations v1 > c can

buy immediately and buyers with lower valuations have to wait until their deadline. This

finding also holds without Assumption 2. It can be shown that the utility in period one

has to satisfy U1(v1, 1) ∈ [max{0, U1(v̄, 2) − (v̄ − v1)}, U1(v1, 2)] if the relaxed solution is

not incentive compatible. This implies that the incentive constraint for the deadline holds

with equality of the highest type. Since the relaxed solution is not incentive compatible,

an increase of U1(v1, 1) for high valuations has a first-order effect on expected revenue.
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Therefore, the allocation rule for d = 2 must also be distorted for high valuations which

implies q1(v1, 2) = 1 for v1 sufficiently high.

Dominant Strategies and Indirect Implementation. There are several ways to im-

plement the optimal auction in period two. For example, it can be implemented by a

generalized Vickrey auction. In this auction, the winning bidder pays the valuation for

which his (generalized) virtual valuation ties with the (generalized) virtual valuation of

the losing bidder. For buyer two, this mechanism is incentive compatible in dominant

strategies.21 Hence, the optimal mechanism does not rely on the seller’s ability to conceal

information about period one.

As in the static auction model, there is also an open format that corresponds to this

direct mechanism. Consider the following ascending clock auction. The auctioneer has

a clock that runs from zero to v. For each bidder i, the auctioneer’s clock value ca is

translated into a bidder-specific clock value ci. For bidder one, this is c1 = (JpU
1 )

−1
(ca).

For bidder two, this is c2 = J−1
2 (ca). The auctioneer raises ca continuously and bidders can

drop out at any time. If bidder i drops out, the clock stops immediately. Bidder j ̸= i wins

the object and has to make a payment equal to his bidder-specific clock-value cj . Given

the informational assumptions made in this paper, this auction is strategically equivalent

to the generalized Vickrey auction. It has the advantage that the winning bidder does not

have to reveal his true valuation to the auctioneer.

5. Conclusion

We have analyzed a dynamic mechanism design model, in which a seller wants to max-

imize the revenue from selling one (or multiple) unit(s) of a good to buyers that arrive

over time, within a finite time horizon. The main innovation of the model is that buyers

are privately informed about their deadlines for buying the good. This allows us to study

the optimal mechanism in the presence of a heterogeneous population of impatient/non-

strategic and patient/strategic buyers.

We found sufficient conditions for full separation. In this case, the incentive compat-

ibility constraint for the deadline is slack in the seller-optimal mechanism. The relaxed

solution, which neglects the constraint is fully optimal and the optimal mechanism fully

discriminates buyers with respect to their degrees of patience. We also found sufficient

conditions for violations of the neglected constraints. Both conditions exploit (a) non-

linearities in the virtual valuation function of a buyer, and (b) stochastic dependencies

between the deadline and the valuation of a buyer. While the latter effect can also be

found in static models with two-dimensional private information, the former effect is due

to the dynamic nature of the allocation problem. The critical virtual valuation that a

buyer has to overbid in order to get a unit is a martingale with respect to the information

about all buyer’s types. Therefore, critical virtual valuations for later deadlines are mean

preserving spreads of critical virtual valuations for earlier deadlines. This leads to lower

21If the auction is considered in isolation, it is also a dominant strategy for buyer one to bid his true
valuation. In the dynamic context, however, it is not a dominant strategy to report the deadline truthfully.
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(higher) payoffs for later deadlines in the case of concave (convex) virtual valuations and

destroys (guarantees) incentive compatibility.

We have also studied the case of bunching. If the relaxed solution is not incentive

compatible, the incentive constraint for the deadline is binding in the optimal mechanism.

Therefore, we have to solve a mechanism design problem with two-dimensional private

information. The fact that the second dimension is a deadline puts some structure on the

model. The two-dimensional problem is similar to a standard one-dimensional mechanism

design problem with a type-dependent outside option. We solved this problem for the case

of two time periods and deterministic arrival of one buyer in each period. We have shown

that the optimal mechanism has a very similar structure as the relaxed solution, but the

allocation rule is distorted in favor of buyers with later deadlines and earlier arrival. This

provides incentives to report the deadline truthfully. Our analysis also shows that it in

contrast to the relaxed solution, it is not optimal to separate types with different degrees

of patience if their valuations are large.

The analysis in this paper has several limitation which we will discuss in the follow-

ing. Some assumptions were made to ensure tractability, others merely to simplify the

exposition.

Discounting. The assumption of no discounting can be relaxed. If only payments are

discounted and buyers and the seller use a common discount factor, the analysis is almost

identical. On the other hand, if valuations are discounted, Lemma 1 may not be valid.

For example, it may be optimal to allocate a unit in the first period even if the deadline

of the winner is two, because the waiting cost due to discounting is too high. In this case,

it is more complicated to rule out upward deviations in the deadline.

The appropriate modeling choice depends on the application. In the example given

in the introduction, the buyer’s valuation is the present discounted value of the revenue

stream from the contractual relationship with the third party. This could for example be

a production contract. If production starts after the deadline and is independent of the

time at which the firm obtains the object (as long as it gets it before the deadline), it

seems reasonable that the firm only discounts payments. Similar arguments apply in any

situation where the buyer plans to use the good at a fixed time after the deadline as in

the case of flight tickets of hotel reservations.

Stochastic Exit. We have implicitly assumed that buyers are available until their dead-

line. In some situations, however, buyers may find other opportunities to purchase a

similar object if the seller does not sell in the period of arrival. Therefore, stochastic

exit, random participation as in Rochet and Stole (2002) or competition with other sellers

would be interesting extensions for future research.

Incentive Compatibility of the Relaxed Solution with Many Objects. For more

than two time periods, the proof of the martingale property of the critical virtual valuation

uses a property of the optimal allocation rule that is shown in Mierendorff (2009) for the

case of a single object. With one object, there is a unique bidder in each period that has a
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positive probability of winning. This greatly simplifies the analysis because in each state,

the type of only one buyer is relevant for the allocation rule and buyers who are irrelevant

in period t will not be recalled in the future. While a proof is not available, I conjecture,

that the ordering of critical virtual valuations w.r.t. second order stochastic dominance

generalizes to the case of many objects. If this conjecture is true, then the conditions for

incentive compatibility of the relaxed solution carry over to the case of multiple objects

and more than two time periods.

Privately Known Arrival Times. The arrival time has similar properties as the dead-

line. Misreports are only feasible in one direction and the arrival time does not enter the

utility function directly. Therefore, the analysis of a model with private arrival times is

similar to the analysis in the present paper. Pai and Vohra (2008b) show that the relaxed

solution is incentive compatible with respect to the arrival time if virtual valuations are

decreasing in the arrival time. This result is driven by correlations between valuations and

deadlines. The arrival time does not influence the time of the allocation, and therefore the

amount of information available to the seller is independent of the arrival time. This im-

plies that non-linearities of the virtual valuation do not distort the incentives to report the

arrival time truthfully as is the case of deadlines. We also note that there is an additional

effect that relaxes the incentive compatibility constraint for the arrival time. By delaying

the report of his arrival, a buyer runs the risk that units are allocated to buyers that he

could have overbid if he had reported his arrival truthfully. Therefore, a virtual valuation

that increases in the arrival time, does not automatically destroy incentive compatibility.

Generalizing the Bunching Case: More Bidders. Introducing more bidders who

arrive in the second period is straight forward. The assumption that there is only one

bidder in the first period is more important. It was used to show that the object is offered

to buyer one for a fixed price if he reports deadline one. We have shown that in this case,

misreporting deadline one instead of deadline two is most profitable for the buyer with the

highest valuation. Hence, we know exactly where the incentive compatibility constraint

for the deadline binds. If more than one buyer arrives in the first period, a fixed price is

no longer optimal and the incentive compatibility constraint for the deadline may bind for

interior types. The exact points where it binds arise endogenously in the optimal solution.

Generalizing the Bunching Case: Number of Periods. Increasing the number of

periods introduces several complications. Consider for example a model with three periods.

Suppose that in each period a single bidder arrives, whose deadline can be any period after

his arrival. Now, from period two onwards, there is more than one bidder who participates

in the mechanism. This introduces similar problems as the introduction of more bidders

in the first period, as discussed in the preceding paragraph. Additional complications will

arise because buyers from different periods will have to be treated asymmetrically. In the

third period, the mechanism designer has to design an optimal auction with three different

bidders, two of which have type-dependent participation constraints. In the case of two

periods and two bidders, the feasibility constraint could be used to eliminate the winning
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probability of one bidder (see Appendix B). A generalization of this approach to three

bidders is not obvious.

Appendix A. Proofs of Lemma 2 and Theorem 3

Proof of Lemma 2. To simplify notation, define cτa := maxj∈{i∈Ia|di=τ} Ja(vj) and cτ≤a :=

max{cτ1 , . . . , cτa}. With the definition of ct in the main text, we have ct = ct≤t. For

fixed i ∈ I≤τ define cτ,−i
a := maxj∈{ℓ∈Ia\{i}|dℓ=τ} Ja(vj) and cτ,−i

≤a := max{cτ,−i
1 , . . . , cτ,−i

a }.
Since the seller maximizes virtual surplus, we reformulate his problem in terms of virtual

valuations. We replace the type of a buyer (ai, vi, di) by (ai, ci, di) where ci = Jai(vi) is

the virtual valuation. Furthermore, instead of Ht and st we use H̃t = (ai, ci, di)i∈I≤t
and

s̃t = (H̃t, kt). With this notation, the seller’s maximization problem becomes

ṼT (s̃T ) = max
x(s̃T )

∑
i∈I≤T :di=T

xi(s̃T )ci,

Ṽt(s̃t) = max
x(s̃t)

 ∑
i∈I≤t:di=t

xi(s̃t)ci + x0(s̃t)E
[
Ṽt+1(s̃t+1)

∣∣∣H̃t, kt+1 = 0
] .

Mierendorff (2009) has shown that for this problem, for each state s̃t in which the object

is still available, there is a unique period θt ≥ t, in which the object will be allocated if it

is allocated to a buyer i ∈ I≤t. Therefore Ṽ (s̃t) = Ṽ ((θt, c
θt
≤t), kt). The expected surplus at

the relaxed solution only depends on the highest virtual valuation of buyers with deadlines

θt. Moreover, (up to ties) there is a unique buyer i ∈ I≤t who can possibly win the object.

This buyer is characterized by di = θi and ci = cθt≤t. We call this buyer the tentative

winner at state s̃t.

Since we want to prove a statement about critical virtual valuations for different dead-

lines, we first establish that the following claim is true:

Claim 1. For given H̃−i
d−1, z

d
t (c

t
≤t) = zdd−1(z

d−1
t (ct≤t)).

Proof of Claim 1. Note first that zτt (c
t
≤t) = 0 for some τ > t implies that zτt (c

t
≤t) = 0 for

all τ > t. To see this, note that zτt (c
t
≤t) = 0 if and only if ct≤t ≤ Es̃t+1 [Vt+1(st+1)|H̃t =

(H̃−i
t , (ai, 0, di)), kt+1 = 0], where ai and di > t can be selected arbitrarily since ci = 0.

Since the second condition is independent of τ , the first must also hold independently of

τ. Hence, it remains to show the claim for the case that zdt (c
t
≤t) > 0 and zd−1

t (ct≤t) > 0.

zdt (c
t
≤t) > 0 and zd−1

t (ct≤t) > 0 implies

Es̃t+1

[
Vt+1(s̃t+1)

∣∣∣H̃t = (a, zd−1
t (ct≤t), d− 1), kt+1 = 0

]
= ct≤t = Est+1

[
Vt+1(s̃t+1)

∣∣∣H̃t = (a, zdt (c
t
≤t), d), kt+1 = 0

]
.

The expected values are independent of H̃−i
t because ct≤t > Es̃t+1 [Vt+1(s̃t+1) | H̃t = (H̃−i

t , (ai, 0, di)), kt+1 =

0]. This implies that a buyer with type (a, zdt (c
t
≤t), d) has a positive probability of winning

the object if H̃t = (H̃−i
t , (a, zdt (c

t
≤t), d)). Therefore, (a, zdt (c

t
≤t), d) is the tentative winner

at this state and all other buyers j ∈ I≤t have a zero winning probability conditional
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on H̃t = (H̃−i
t , (a, zdt (c

t
≤t), d)). Their types are thus irrelevant for the seller’s expected

revenue.

If we insert Vt+1, Vt+2, . . . , Vd−1 we obtain

Es̃t+1

[
Vt+1(s̃t+1)

∣∣∣H̃t = (a, zd−1
t (ct≤t), d− 1), kt+1 = 0

]
(A.1)

=Es̃d−1

∑
j

xrlxj (s̃t+1)cj + xrlx0 (s̃t+1)

[∑
k

xrlxk (s̃t+2)ck + xrlx0 (s̃t+2) . . .

[∑
ℓ

xrlxℓ (s̃d−2)cℓ+

+ xrlx0 (s̃d−2)max
{
cd−1,−i
≤d−1 , zd−1

t (ct≤t), Esd [Ṽd(s̃d)|H̃d−1 = H̃−i
d−1, kd = 0]

}
︸ ︷︷ ︸

=:A

]

. . .

]∣∣∣∣∣H̃t = (a, zd−1
t (ct≤t), d− 1), kt+1 = 0

]
,

and

Es̃t+1

[
Vt+1(s̃t+1)

∣∣∣H̃t = (a, zdt (c
t
≤t), d), kt+1 = 0

]
(A.2)

=Es̃d−1

∑
j

xrlxj (s̃t+1)cj + xrlx0 (s̃t+1)

[∑
k

xrlxk (s̃t+2)ck + xrlx0 (s̃t+2) . . .

[∑
ℓ

xrlxℓ (s̃d−2)cℓ + xrlx0 (s̃d−2)×

×max
{
cd−1,−i
≤d−1 , Esd

[
Ṽd(s̃d)

∣∣∣H̃d−1 = (a, zdt (c
t
≤t), d), kd = 0

]
, Esd

[
Ṽd(s̃d)

∣∣∣H̃d−1 = H̃−i
d−1, kd = 0

]}
︸ ︷︷ ︸

=:B

]

. . .

]∣∣∣∣∣H̃t = (a, zdt (c
t
≤t), d), kt+1 = 0

]
.

In the second derivation we have used that because of the uniqueness of the tentative

winner,

Es̃d

[
Ṽd(s̃d)

∣∣∣H̃d−1 = (H̃−i
d−1, (a, z

d
t (c

t
≤t), d)), kd = 0

]
=max

{
Es̃d

[
Ṽd(s̃d)

∣∣∣H̃d−1 = H̃−i
d−1, kd = 0

]
, Es̃d

[
Ṽd(s̃d)

∣∣∣H̃d−1 = (a, zdt (c
t
≤t), d), kd = 0

]}
.

Now suppose by contradiction, that zdt (c
t
≤t) > zdd−1(z

d−1
t (ct≤t)). By the definition of zdd−1

this implies

Es̃d

[
Vd(s̃d)

∣∣∣H̃d−1 = (a, zdt (c
t
≤t), d), kd = 0

]
> zd−1

t (ct≤t),

and hence A ≤ B for all sd−1. This implies that

d−1∏
τ=t+1

xrlx0

(
s̃τ

∣∣∣H̃t = (a, zd−1
t (ct≤t), d− 1)

)
≤

d−1∏
τ=t+1

xrlx0

(
s̃τ

∣∣∣H̃t = (a, zdt (c
t
≤t), d)

)
.

Moreover, with strictly positive probability A = zd−1
t (ct≤t) < B. Hence (A.1) is strictly

smaller than (A.2), which is a contradiction. Similarly, zdt (c
t
≤t) < zdd−1(z

d−1
t (ct≤t)) leads to

a contradiction which proves the claim. �
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Now, consider the critical virtual valuation for deadline di − 1:

ζdi−1
ai (H−i

di−1) = max
{
zdi−1
ai (cai,−i

≤ai
), . . . , zdi−1

di−2(c
di−2,−i
≤di−2 ), cdi−1,−i

≤di−1 ,

Esdi

[
Vdi(sdi)

∣∣∣H−i
di−1, kdi = 0

]}
.

Claim 1 allows us to replace the cutoff values zdi−1
τ . ∀τ ∈ {ai, . . . , di − 2} :

zdi−1
τ (cτ,−i

≤τ ) = Esdi

[
Vdi(sdi)

∣∣∣(ai, zdidi−1(z
di−1
τ (cτ,−i

≤τ )), di), kdi = 0
]
,

= Esdi

[
Vdi(sdi)

∣∣∣(ai, zdiτ (cτ,−i
≤τ ), di), kdi = 0

]
.

Hence,

ζdi−1
ai, (H−i

di−1) =

=max
{
Esdi

[
Vdi(sdi)

∣∣∣(ai, zdiai (cai,−i
≤ai

), di), kdi = 0
]
, . . .

. . . , Esdi

[
Vdi(sdi)

∣∣∣(ai, zdidi−1(c
di−1,−i
≤di−1 ), di), kdi = 0

]
, Esdi

[
Vdi(sdi)

∣∣∣H−i
di−1, kdi = 0

]}
=Esdi

[
max

{
zdiai (c

ai,−i
≤ai

), . . . , zdidi−1(c
di−1,−i
≤di−1 ),

cdi≤di
, Esdi+1

[
Vdi+1(sdi+1)

∣∣∣H−i
di
, kdi+1 = 0

]}∣∣∣H−i
di−1

]
=EHdi

[
ζdiai (H

−i
di
, 1)
∣∣∣H−i

di−1

]
.

As
[
ζdi−1
ai (H−i

di−1)
∣∣∣H−i

di−1

]
is deterministic for each Hdi−1,[

ζdi−1
ai (H−i

di−1)
∣∣∣H−i

di−1

]
≻SSD

[
ζdiai (H

−i
di
)
∣∣∣H−i

di−1

]
and the lemma follows. �

Proof of Theorem 3. Consider a buyer i with type (a, v, d), where a < d ≤ T and let

d′ ∈ {a, . . . , d− 1}. Fix the state in the arrival period sa, and let

G(ζ) = Prob
{
ζda(Hd, ka) ≤ ζ

∣∣∣sa} ,

and G′(ζ) = Prob
{
ζd

′
a (Hd′ , ka) ≤ ζ

∣∣∣sa} .

Lemma 2 implies that G and G′ have the same mean and G′ ≻SSD G.

(i) Suppose that Ja(v) is convex. Conditional on sa we have for v > va0

Ua(v, d) =

ˆ Ja(v)

0
(v − J−1

a (ζ))dG(ζ),

= (v − J−1
a (0))G(0) +

ˆ Ja(v)

0

d

dζ
J−1
a (ζ)G(ζ)dζ,

≥ (v − J−1
a (0))G′(0) +

ˆ Ja(v)

0

d

dζ
J−1
a (ζ)G′(ζ)dζ = Ua(v, d

′)
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The last line follows because (a) v ≥ J−1
a (0) = va0 and G′(0) ≤ G(0) by SSD, and (b)

because d
dζJ

−1
a (v) is non-negative and non-increasing and for all non-negative and non-

increasing functions ϕ : [0, v] → R, we have

∀x ∈ [0, v] :

ˆ x

0
ϕ(s)G′(s)ds ≤

ˆ x

0
ϕ(s)G(s)ds.

For ϕ(s) = 1{s≤x} this follows directly from SSD and since any non-increasing function

ϕ : [0, v] → R can be uniformly approximated by non-increasing step functions the result

follows.

(ii) Suppose that v = v and that Ja(v) is strictly concave. Conditional on sa the

expected payoff of i is given by

Ua(v, d) =

ˆ v

0
(v − J−1

a (ζ))dG(ζ),

<

ˆ v

0
(v − J−1

a (ζ)dG′(ζ) = Ua(v, d
′).

In the second line we have used strict convexity of J−1
a (ζ) as a function of ζ. �

Appendix B. Proof of Theorem 6

It will be convenient to make the changes of variables t1 = F1(v1) and t2 = F2(v2).

Defining v1(t1) := F−1
1 (t1) and v2(t2) := F−1

2 (t2), we have

ti ∼ U [0, 1] for i = 1, 2,

v′1(t1) =
1

f1(v1(t1))
,

and v′2(t2) =
1

f2(v2(t2))
,

Furthermore, for i = 1, 2 we introduce

qi(t) = qi(vi(t), 2),

U(t) = U1(v1(t), 2),

M1(t) = J1(v1(t)) = v1(t)− (1− t)v′1(t)

M2(t) = J2(v2(t)) = v2(t)− (1− t)v′2(t)

t01 = F1(v
0
1).

and t02 = F2(v
0
2).

The objective of the seller becomes

R[q1, q2] :=

ˆ 1

0
q1(t)M1(t) + q2(t)M2(t)dt. (B.1)

The following Theorem formulates the feasibility constraint in terms of q.22

22The characterization is a generalization of Border’s (1991) characterization for symmetric allocation rules.
Matthews (1984) conjectured the result proved by Border (see also Chen, 1986). For an early application
of a special case of the result see Maskin and Riley (1984).
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Theorem 7 (Mierendorff, 2011). For i = 1, 2, let qi : [0, 1] → [0, 1] be non-decreasing.

(q1, q2) is the reduced form of a feasible allocation rule if and only if for all t1, t2 ∈ [0, 1],
ˆ 1

t1

q1(t)dt+

ˆ 1

t2

q2(t)dt ≤ 1− t1t2.

Now we can restate P2 as P ′
2:

π2(Ū) = sup
(q1,q2)

R[q1, q2] (P ′
2)

subject to

∀t ∈ [0, 1] : qi(t) ∈ [0, 1], (B.2)

∀t > t′, qi(t) ≥ qi(t
′), (B.3)

∀t1, t2 ∈ [0, 1] :

ˆ 1

t1

q1(θ)dθ +

ˆ 1

t2

q2(θ)dθ ≤ 1− t1t2, (B.4)

∀t ∈ [0, 1] : U(t) =

ˆ t

0
q1(θ)v

′
1(θ)dθ, (B.5)

and U(1) ≥ Ū . (B.6)

Using qi(Fi(vi)) = qi(vi, 2), a solution to P2 can be derived easily from a solution to P ′
2.

We can use the (non-standard) constraint (B.4) to eliminate q2 from the objective

function. For q1 : [0, 1] → [0, 1] non-decreasing, define the inverse as

q−1
1 (t) :=

1 if q1(1) < t,

inf{θ ∈ [0, 1] | q1(θ) ≥ t} otherwise.

Lemma 4. Let q1 : [0, 1] → [0, 1] be non-decreasing. Then an optimal solution to

sup
q2

ˆ 1

0
q2(t)M2(t)dt subject to (B.2)–(B.4),

is given by

q∗2(t) =

q−1
1 (t) if t ≥ t02,

0 otherwise.

The solution is unique for almost every t.

Proof. The proof can be found in the supplementary appendix. �

Using Lemma 4, (B.1) becomes
ˆ 1

0
q1(t)M1(t)dt+

ˆ 1

t02

q−1
1 (t)M2(t)dt. (B.7)

If q1 is absolutely continuous, substituting s = q1(t) in the second integral yields
ˆ 1

0
q1(t)M1(t) + tq′1(t)M̃2(q1(t))dt+

ˆ 1

q(1)
M̃2(t)dt, (B.8)

where we define M̃2(t) := max{0,M2(t)}.
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Monotonicity implies some regularity of q1. In particular q1 = qC1 + qJ1 where qC1 is a

continuous function and qJ1 is a pure jump function. This leaves two problems unresolved.

Firstly, we have to deal with jumps and secondly, absolute continuity of qC1 is not guar-

anteed. To deal with this we restrict q1 to be globally Lipschitz continuous with constant

K,

q1 ∈ LK := {q : [0, 1] → [0, 1] | ∀t, t′ ∈ [0, 1] : |q(t)− q(t′)| ≤ K|t− t′|}.

We define the maximization problem PK
2 as P ′

2 subject to the additional constraint q1 ∈
LK . The set of winning probabilities that satisfy (B.4) is weakly-compact (cf. Mierendorff

(2011) and Border (1991)). Since LK is sequentially compact standard arguments can be

used to prove existence.

Theorem 8. (a) An optimal solution of P ′
2 exists.

(b) For every K > 0, an optimal solution of PK
2 exists.

Proof. The proof can be found in the supplementary appendix. �

The next step is to show that Lipschitz solutions converge to the general solution if K

tends to infinity. The proof is based on Reid (1968).

Lemma 5. Let (qn1 , q
n
2 )n∈N a sequence of optimal solutions of PKn

2 where Kn → ∞ as

n → ∞. Then, there exists a solution (q1, q2) of P ′
2 and a sub-sequence (q

nj

1 , q
nj

2 )j∈N such

that q
nj

i (t)
j→∞−→ qi(t) for almost every t and R[q1, q2] = π2(Ū).

Proof. After taking a sub-sequence, we can assume that (qn1 , q
n
2 ) converges a.e. to a solution

(q̂1, q̂2) of P ′
2 (see proof of Theorem 8). To show optimality of (q̂1, q̂2), let (q1, q2) be an

optimal solution of P ′
2. We can extend q1 to R by setting q1(t) = 0 if t < 0 and q1(t) = 1

if t > 1. Define qd,1 : R → [0, 1] as

qd,1(t) :=
1

2d

ˆ t+d

t−d
q1(s)ds.

By the Lebesgue differentiation theorem qd,1(t) → q1(t) for almost every t ∈ [0, 1] as d → 0.

Since q1 is non-decreasing and q1(t) ∈ [0, 1], qd,1 also has these properties. Furthermore

qd,1 ∈ L
1
2d :

∀t > t′ : 0 ≤ qd,1(t)− qd,1(t
′) =

1

2d

(ˆ t+d

t−d
q1(s)ds−

ˆ t′+d

t′−d
q1(s)ds

)

=
1

2d

(ˆ t+d

t′+d
q1(s)ds−

ˆ t−d

t′−d
q1(s)ds

)
≤ 1

2d

ˆ t+d

t′+d
q1(s)ds

≤ 1

2d
(t− t′)
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Since qd,1 may violate
´ 1

0 qd,1(t)v
′
1(t)dt ≥ Ū , we define q̃d,1 := λd + (1− λd)qd,1 and

q̃d,2(t) :=

q̃−1
d,1(t), if M2(t) ≥ 0,

0, otherwise,

where λd := max

{
0,

Ū−
´ 1
0 qd,1(t)v

′
1(t)dt

v−
´ 1
0 qd,1(t)v

′
1(t)dt

}
. For every d, (q̃d,1, q̃d,2) is a solution of P

1
2d
2 . λd

converges to zero as d → 0. By Lemma 4, q2(t) = q−1
1 (t) for a.e. t such that M2(t) ≥ 0

and q2(t) = 0 otherwise. Hence, for i = 1, 2, q̃d,i → qi almost everywhere as d → 0. By the

dominated convergence theorem, R[q̃d,1, q̃d,2] → R[q1, q2] and R[qn1 , q
n
2 ] → R[q̂1, q̂2]. Define

dn = 1
2Kn

. Then, R[q̃dn,1, q̃dn,2] ≤ R[qn1 , q
n
2 ] and we have R[qn1 , q

n
2 ] → R[q1, q2] and hence

R[q̂1, q̂2] = R[q1, q2]. �

In the next section, we derive properties of the Lipschitz solution. Finally, we show that

there is a limiting solution that yields the same expected revenue as the solution proposed

in Theorem 6.

B.1. Solution on the class LK

Using Lemma 4, we rewrite PK
2 as a control problem. The state variables are the

expected utility of bidder one, denoted U(t), and the winning probability, denoted q(t),

(in the control problem we write q instead of q1). As q is absolutely continuous, we can

use u(t) = q′(t) as a control variable. The objective is defined as

Rc[U, q, u] :=

ˆ 1

0
q(t)M1(t) + tu(t)M̃2(q(t))dt+

ˆ 1

q(1)
M̃2(t)dt.

where u is a measurable control

u : [0, 1] → [0,K]. (B.9)

The evolution of the state variables is governed by

U ′(t) = q(t)v′1(t), (B.10)

q′(t) = u(t). (B.11)

We impose the state constraint

∀t ∈ [0, 1] : q(t) ≤ 1. (B.12)

Furthermore, we impose the following constraints on the start- and endpoints:

U(0) = 0, (B.13)

q(0) ≥ 0, (B.14)

U(1) ≥ Ū , (B.15)

To summarize, we have the following control problem:

max
(U,q,u)

Rc[U, q, u], subject to (B.9)–(B.15). (PK
C )
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(B.10) is (B.5) in differential form. (B.9) and (B.11) ensure that q ∈ LK and non-

decreasing. (B.9), (B.11) and (B.14) imply q(t) ≥ 0 for all t. Hence, we can dispense with

a second state constraint.

The Pontriyagin maximum principle yields the following necessary conditions for an

optimum.

Theorem 9 (Clarke (1983), pp. 210-212). Let (U, q, u) be a solution of PK
C . If (U, q, u)

is optimal, there exists ω ∈ {0, 1}, an absolutely continuous function p : [0, 1] → R2, the

components of which we denote by (pU , pq), and a non-negative measure µ on [0, 1], such

that the following conditions hold:

(i) For almost every t ∈ [0, 1],

p′U (t) = 0, (B.16)

p′q(t) = −ω
[
M1(t) + tu(t)M̃ ′

2(q(t))
]
− pUv

′
1(t). (B.17)

(ii) For almost every t ∈ [0, 1], u(t) maximizes[
ωtM̃2(q(t)) + pq(t) + µ[0, t)

]
u.

(iii) µ is supported on {q(t) = 1},
(iv) p satisfies the transversality conditions

pq(0) ≤ 0, (with equality if q(0) > 0, )

pU (1) ≥ 0, (with equality if U(1) > U, )

pq(1) = −ωM̃2(q(1))− µ[0, 1].

(v) ω + ∥p∥+ ∥µ∥ > 0.

Note that (B.16) implies that pU is constant. First, we show that trivial solutions do

not occur.

Lemma 6 (Non-triviality). If Ū < v, ω = 1.

Proof. Suppose that ω = 0. By (B.17), p′q(t) = −pUv
′
1(t). By the transversality conditions,

pU ≥ 0. pU = 0 implies, p′q(t) = 0 and pq(t) = pq(0) for all t. pU > 0 implies, p′q(t) < 0

and pq(t) < 0 for all t > 0.

Suppose pU > 0. By, the transversality condition this implies U(1) = Ū . By (ii), u(t)

maximizes (pq(t) + µ[0, t))u. If q(0) < 1, µ[0, t) = 0 for t close to zero and hence u(t) = 0.

As µ[0, t) cannot become positive we must have q(t) = q(0) < 1 for all t and consequently

µ[0, 1] = 0. The transversality condition therefore requires pq(1) = 0, a contradiction. If,

however, q(0) = 1 we would have U(1) = v > Ū . Again a contradiction.

Now suppose that pU = 0. If q(1) < 1, µ[0, 1] = 0 and by the transversality conditions,

p(t) = 0 for all t. This implies ω+∥p∥+∥µ∥ = 0, in contradiction to (v). Hence, q(1) = 1.

Since pq(t) = pq(1), we have pq(t) = −µ[0, 1]. To fulfill (v) we must have µ[0, 1] > 0. u(t)

maximizes (µ[0, t)−µ[0, 1])u. This implies that u(t) = 0 if q(t) < 1. Hence, we must have

q(t) = 1 for all t ∈ [0, 1]. This implies U(1) = v, which cannot be optimal if Ū < v. �
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Defining MpU
1 (t) := M1(t) + pUv

′
1(t), we can rewrite (B.17) as

−p′q(t) = MpU
1 (t) + tu(t)M̃ ′

2(q(t)), for a. e. t ∈ [0, 1]. (B.18)

Condition (ii) implies that for almost every t ∈ [0, 1],

u(t) = K if tM̃2(q(t)) + pq(t) > 0, (B.19)

u(t) ∈ [0,K] if tM̃2(q(t)) + pq(t) + µ[0, t) = 0, (B.20)

u(t) = 0 if tM̃2(q(t)) + pq(t) + µ[0, t) < 0. (B.21)

In (B.19), µ[0, t) was omitted because q(t) < 1 if u(t) = K. Integrating (B.18) yields for

s, t ∈ [0, 1]:

pq(t) = pq(s)−
ˆ t

s
MpU

1 (θ) + θu(θ)M̃ ′
2(q(θ))dθ

= pq(s)−
ˆ t

s
MpU

1 (θ)− M̃2(q(θ))dθ − tM̃2(q(t)) + sM̃2(q(s)). (B.22)

If we substitute (B.22) in (B.19)–(B.21) and define HpU (t) =
´ t
0 M

pU
1 (θ)dθ and mq(t) =´ t

0 M̃2(q(θ))dθ, we have that for almost every t ∈ [0, 1],

u(t) = K if pq(0) +mq(t) > HpU (t), (B.23)

u(t) ∈ [0,K] if pq(0) +mq(t) + µ[0, t) = HpU (t), (B.24)

u(t) = 0 if pq(0) +mq(t) + µ[0, t) < HpU (t). (B.25)

Lemma 7 (Reid (1968)). Suppose pq(0) + mq(t) = HpU (t) for t ∈ {t, t}, t < t and

q(t) < 1 for t < t. Let α, β ∈ R and l(t) = α + βt. If l(t) ≤ HpU (t) for all t ∈ [t, t], then

pq(0) +mq(t) ≥ l(t) for all t ∈ [t, t].

Proof. Suppose that mq(s) + pq(0) < l(s) for some s ∈ (t, t). Then there exists ε > 0 and

t < t1 < t2 < t such that mq(t)+ pq(0) < l(t)− ε for t ∈ (t1, t2), mq(t1)+ pq(0) = l(t1)− ε,

and pq(0)+mq(t2) = l(t2)− ε. This implies that m′
q(t) = M̃2(q(t)) cannot be constant on

(t1, t2). On the other hand, mq(t) + pq(0) + µ[0, t) = mq(t) + pq(0) < l(t)− ε < H(t) and

hence u(t) = 0 for t ∈ (t1, t2), which implies that m′
q(t) is constant, a contradiction. �

An immediate implication of the Lemma is that pq(0)+mq(t) ≥ H̄pU
[t,t]

(t), where H̄pU
[t,t]

(t)

denotes the convex hull of HpU restricted to [t, t], i.e. the greatest convex function G :

[t, t] → R such that G(t) < HpU (t) for all t ∈ [t, t]. Furthermore, pq(0) +mq(t) is convex

because q and M̃2 are non-decreasing. This yields the following

Corollary 1. Suppose pq(0) + mq(t) ≤ HpU (t) for all t ∈ [t, t], with equality at the

endpoints of the interval and q(t) < 1 for t < t. Then pq(0) + mq(t) = H̄pU
[t,t]

(t), for all

t ∈ [t, t].

IfMpU
1 is non-decreasing on [t, t], thenHpU (t) = H̄pU

[t,t]
(t). Differentiating pq(0)+mq(t) =

H̄pU
[t,t]

yields MpU
1 = M̃2(q(t)) for t ∈ [t, t].



36 KONRAD MIERENDORFF

If, however, MpU
1 is not monotonic on [t, t], differentiating yields M̄pU

[t,t]
(t) = M̃2(q(t)),

where M̄pU
[t,t]

=
dH̄

pU
[t,t]

(t)

dt is non-decreasing. Hence, Reid’s Lemma provides a control theo-

retic technique to show that Myerson’s ironing procedure can be used to solve irregular

instances of mechanism design problems.

Now we establish some properties of the optimal solution. Define

xpU (t) =


0, if MpU

1 (t) < M2(0),

M−1
2 (MpU

1 (t)), if MpU
1 (t) ∈ [M2(0), v]

1, if MpU
1 (t) > v,

,

and x[t,t]pU
(t) =


0, if M̄pU

[t,t]
(t) < M2(0),

M−1
2 (M̄pU

[t,t]
(t)), if M̄pU

[t,t]
(t) ∈ [M2(0), v]

1, if M̄pU
[t,t]

(t) > v.

,

The derivative of xpU is given by

x′pU (t) =
M ′

1(t) + pUv
′′(t)

M ′
2(xpU (t))

.

The assumptions on fi and Fi guarantee that x′pU (t) is continuous on [0, 1]. Let KpU :=

maxt∈[0,1] x
′
pU

(t). Then xpU ∈ LKpU . In what follows, we write H̄pU for H̄pU
[0,1] and M̄pU

1

for M̄pU
[0,1].

Lemma 8 (interior solution). Suppose u(t) ∈ (0,K) for a.e. t ∈ [t, t], t < t. Then for all

t ∈ [t, t],

(i) q(t) = xpU (t) if q(t) ≥ t02,

(ii) MpU
1 (t) = 0 if q(t) < t02.

Proof. If u(t) > 0, we must have µ[0, t) = 0. (B.23) – (B.25) imply that pq(0) +mq(t) =

HpU (t) for allt ∈ (t, t). Differentiating this w.r.t. t yields

M̃2(q(t)) = MpU
1 (t).

If q(t) ≥ t02, M̃2(q(t)) = M2(q(t)) and hence that q(t) = xpU (t). If q(t) < t02, M̃2(q(t)) = 0

and hence MpU
1 (t) = 0. By continuity, the results extend to t and t. �

Next, we derive necessary conditions for intervals where u(t) is in {0,K}.

Lemma 9 (constant q). Suppose q(t) = a ∈ [0, 1] on [t, t], t < t, and let [t, t] be chosen

maximally. Then

pq(t) + tM̃2(q(t)) = 0,

pq(0) +mq(t) = HpU (t),

for t = t if t > 0 and for t = t if t < 1, and furthermore

MpU
1 (t) ≥ M̃2(a), if t > 0, (B.26)
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and MpU
1 (t) ≤ M̃2(a), if t < 1. (B.27)

Proof. If q(t) is constant, then for almost every t ∈ (t, t), u(t) = 0 and therefore pq(t) +

tM̃2(q(t)) + µ[0, t) ≤ 0 and pq(0) +mq(t) + µ[0, t) ≤ HpU (t). As µ ≥ 0 and by continuity,

pq(t) + tM̃2(q(t)) ≤ 0 and pq(0) +mq(t) ≤ HpU (t) for t ∈ {t, t}.
Suppose t > 0 and let S− := {0 < t < t | u(t) > 0}. Since q(t) < a for t < t, and q is

absolutely continuous, S− ∩ [t − δ, t] has positive measure for every δ > 0. Hence, there

exists a sequence tn ↗ t with pq(tn) + tnM̃2(q(tn)) ≥ 0 and pq(0) +mp(tn) ≥ HpU (tn) for

all n. By continuity, the first two equalities in the Lemma follow for t > 0. For t < 1 set

S+ := {t < t < 1 | u(t) > 0}. S+ ∩ [t, t + δ] has positive measure for every δ > 0. Hence,

there exists a sequence tn ↘ t with pq(tn)+tnM̃2(q(tn)) ≥ 0 and pq(0)+mp(tn) ≥ HpU (tn)

for all n. By continuity, the first two equations in the Lemma follow for t < 1.

To show (B.26), note that for almost every t ∈ S−, pq(t) + tM̃2(q(t)) ≥ 0. (B.22) yields

pq(t) = pq(t)−
ˆ t

t
MpU

1 (θ)− M̃2(q(θ))dθ − tM̃2(q(t)) + tM̃2(q(t)).

With pq(t) = −tM̃2(q(t)) and pq(t) + tM̃2(q(t)) ≥ 0 this implies
ˆ t

t
MpU

1 (θ)− M̃2(q(θ))dθ ≥ 0,

for almost every t ∈ S−. If this inequality is fulfilled, there must be a t′ ∈ [t, t] with

MpU
1 (t′)− M̃2(q(t

′)) ≥ 0.

As S− ∩ [t − δ, t] has positive measure for every δ > 0, t and hence t′ can be chosen

arbitrarily close to t. By continuity this implies

MpU
1 (t)− M̃2(q(t)) ≥ 0.

To show (B.27), note that for almost every t ∈ S+, pq(t) + tM̃2(q(t)) ≥ 0. (B.22) yields

pq(t) = pq(t)−
ˆ t

t
MpU

1 (θ)− M̃2(q(θ))dθ − tM̃2(q(t)) + tM̃2(q(t)).

With pq(t) = −tM̃2(q(t)) and pq(t) + tM̃2(q(t)) ≥ 0 this implies
ˆ t

t
MpU

1 (θ)− M̃2(q(θ))dθ ≤ 0,

for almost every t ∈ S+. As above there exists t′ ∈ [t, t] such that the integrand is

non-positive at t′. t and t′ can be chosen arbitrarily close to t. Therefore, by continuity

MpU
1 (t)− M̃2(q(t)) ≤ 0.

�

Lemma 9 implies that there cannot be an interval where q is constant and q ∈ (0, 1) if

xpU is strictly increasing.
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Lemma 10. Suppose u(t) = K for almost every t ∈ (t, t), t < t. Let (t, t) be chosen

maximally. Then for t = t and for t = t if t < 1,

pq(t) + tM̃2(q(t)) = 0,

for t = t if t > 0 and for t = t if t < 1

pq(0) +mq(t) = HpU (t).

Furthermore,

MpU
1 (t) ≤ M̃2(q(t)), if t > 0, (B.28)

and MpU
1 (t) ≥ M̃2(q(t)), if t ∈ [0, 1]. (B.29)

Proof. The proof is very similar to the proof of the preceding Lemma. To show the first

equality for t = 0, the transversality condition can be used to obtain pq(0) ≤ 0. For t = 1,

(B.29) follows from MpU
1 (1) ≥ v and M̃2(q(t)) ≤ v. �

Setting q(t) = x0(t) for t ≥ t01 and q(t) = 0 otherwise, yields the optimal solution of My-

erson (1981). This is not surprising because pU would be zero if the incentive compatibility

constraint for the deadline were ignored. The following Lemma, which does not depend

on the maximum principle, excludes solutions that have lower winning probabilities than

the undistorted solution x0.

Lemma 11. For K > K0, let b ≥ t01 be the unique solution to (b − t01)K = x0(b). If

q(t) ≤ x0(t) for all t ∈ [t01, 1] and q(t) < x0(t) for some t ∈ [b, 1], then q is not optimal.

Proof. Suppose by contradiction that q is an optimal solution with the properties stated

in the Lemma. Let b′ ∈ [0, b] be the unique solution to q(t01) + (b′ − t01)K = x0(b
′). Define

q̃(t) =


q(t), if t < t01,

q(t01) + (t− t01)K, if t ∈ [t01, b
′],

x0(t), if t > b′.

Obviously, q̃ ∈ LK and Ũ(1) ≥ Ū . Since x0 is the optimal solution absent constraints, q̃

yields higher revenue than q. This contradicts the optimality of q. �

Lemma 12. If Ū < v, then pU ≤ p̄U := 1 + maxt∈[0,1]
v−v1(t)
v′1(t)

< ∞.

Proof. Suppose to the contrary that, pU > p̄U . Then MpU
1 (t) > M̃2(1) = v for all t ∈ [0, 1].

By Lemma 8.ii, this implies q(t) ≥ t02 if u(t) ∈ (0,K) on a maximal interval [t, t]. By

Lemma 8.i, this implies q(t) = xpU (t), for all t ∈ [t, t], but this contradicts u(t) > 0 if

MpU
1 (t) > v. Hence we have u(t) ∈ {0,K} for all t ∈ [0, 1].

Suppose u(t) = 0 on a maximal interval [t, t]. By Lemma 9, this implies t = 1. If

u(t) = K on a maximal interval [t, t], Lemma 10 implies t = 0. Therefore, there exists

a ∈ [0, 1] such that u(t) = K for t < a and u(t) = 0 for t > a. Suppose a > 0. Lemma 10

implies pq(0) = 0 if a > 0. As MpU
1 (t) > M̃2(q(t)) for all t, we have pq(t)+mq(t) < HpU (t)

for all t > 0. Hence, u(t) = 0 for all t > 0 and a = 0.
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If q(t) = q is constant, Lemma 11 implies that q > t02. Therefore, pq(0) = 0 by

the transversality condition. Using (B.22), we get pq(1) = −
´ 1
0 MpU

1 (t)dt < 0. The

transversality condition and pU > 0 imply U(1) = Ū . This yields q = Ū
v . If q < 1,

then µ[0, 1] = 0, and hence, pq(1) = −M̃2(q(1)) > −
´ 1
0 MpU

1 (t)dt by the transversality

condition. So we must have q = 1 and hence Ū = v, which is ruled out by assumption. �

Note that |x′pU (t)| ≤
M ′

1(t)+pU |v′1(t)|
minx∈[0,1] |M ′

2(x)|
. Defining K := maxt∈[0,1]

M ′
1(t)+p̄U |v′1(t)|

minx∈[0,1] |M ′
2(x)|

we have

xpU ∈ LK for all pU ≤ p̄U .

Lemma 13. Let (t, t) be a maximal interval such that u(t) = K for all t ∈ (t, t) and K >

K. Then q(t) < max{t02, xpU (t)} for all t ∈ [t, t). If t > 0, then q(t) < t02. Furthermore

t < 1.

Proof. If q(t) ≥ max{t02, xpU (t)}, then q(t) > max{t02, xpU (t)} because K > K. Hence

M̃2(q(t)) > MpU
1 (t), a contradiction by Lemma 10. If t > 0, q(t) < t02 because otherwise

(B.28) and K > K would imply q(t) ≥ max{t02, xpU (t)}, which is a contradiction. Finally,

t = 1 would imply q(t) < x0(t) for all t ∈ [t01, 1). This is also a contradiction by Lemma

11. �

Lemma 14. For K > K0, q(1) = 1.

Proof. Suppose q(1) < 1. By Lemma 11, q(1) > t02. By the transversality condition,

pq(1) = −M̃2(q(1)). Differentiating pq(t) + tM̃2(q(t)), we get d
dt(pq(t) + tM̃2(q(t))) =

p′q(t)+M̃2(q(t))+tM̃ ′
2(q(t))q

′(t) = M̃2(q(t))−MpU
1 (t). As q(1) < xpU (1) we have

d
dt(pq(t)+

tM̃2(q(t))) < 0, and thus p(t)+tM̃2(q(t)) > 0 for t sufficiently close to one. Hence u(t) = K

on a maximal interval [t, 1]. As K > K0, t > 0 and hence q(t) < t02 by Lemma 13. This

contradicts optimality by Lemma 11. �

Define c := min{t |q(t) = 1}. By the preceding Lemma, this is well defined for K > K0.

Lemma 15. For K > K,

pq(0) +mq(c) = HpU (c),

pq(c) + cM̃2(q(c)) = 0,

MpU
1 (c) = M̃2(1).

Proof. If c < 1 the first two equations are implied by Lemma 9. If c = 1, u(t) /∈ {0,K}
for a set of types with positive measure, arbitrarily close to one. (u(t) = 0 is ruled out by

c = 1, u(t) ̸= K follows from the same argument as in the proof of Lemma 14). Hence, the

first two equalities hold for t close to c and by Lemma 8 also the third equality holds for

t close to c. By continuity the equalities also hold for c. If c < 1, MpU
1 (c) ≥ M̃2(q(c)) by

Lemma 9. For K > K , u(t) = K for a maximal interval [t, c] is not possible as Lemma 10

requires MpU
1 (t) ≤ M̃2(q(t)). Hence u(t) /∈ {0,K} for a set of types with positive measure,

arbitrarily close to c. By Lemma 8 and continuity, the third equality follows for c. �

Lemma 16. Let (U, q, u) be an optimal solution to PK
C for K > K.
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(i) Let b = min{q(t) ≥ t02}. Then there exists b ∈ [b, c] such that u(t) = K for t ∈ [b, b],

and M̃2(q(t)) = M̄pU
[b,1]

(t) for t ∈ [b, c]. Furthermore, c = min{t | M̄pU
[b,1]

(t) = v}.

(ii) Let t
0
1 := max{t | M̄pU

1 (t) ≤ 0} and t
0
1 = 0 if M̄pU

1 (0) > 0 . Then b → t
0
1 and b → t

0
1

as K → ∞.

(iii) For almost every t < b,

u(t)


= 0, if pq(0) < HpU (t),

∈ [0,K], if pq(0) = HpU (t),

= K, if pq(0) > HpU (t).

Proof. (iii) follows directly from (B.23)–(B.25) as q(t) ≤ t02 for t < b and hence mq(t) = 0.

If pq(0) < HpU (t) for all t ∈ [0, 1], then pq(0) < 0 and therefore q(0) = 0 by the

transversality condition. Hence pq(0)+mq(t) < HpU (t), and q(t) = 0 for all t, contradicting

Lemma 11. Therefore pq(0) ≥ mintH
pU (t).

To show (i), we first show that M̃2(q(t)) = M̄pU
[b,c]

(t) for all t ∈ [b, c]. Three cases have

to be considered. To do this we need the following definitions:

p
q
:=

min{pq | λ{HpU (t) ≤ pq}K ≥ t02}, if λ{HpU (t) ≤ 0}K ≥ t02,

0, otherwise,

bmax := max{b | p
q
≥ HpU (b)},

where λ denotes the Lebesgue measure on [0, 1].

Case 1 : HpU (t) > 0 for all t > 0. (⇒ p
q
= 0, bmax = 0)

In this case, q(0) ≥ t02. Otherwise pq(0) +mq(t) < HpU (t) for all t > 0. This would imply

q(1) = q(0) < 1, a contradiction. Suppose u(t) = K for a maximal interval [t, t]. By

Lemma 13, t > 0 would imply q(t) < t02. Hence t = 0. Also by Lemma 13, q(t) ≤ xpU (t)

for all t ∈ [t, t] and hence q(0) < xpU (0). This implies pq(0) + mq(t) < HpU (t) for t

close to zero, contradicting u(t) = K. Hence u(t) < K for all t ∈ [0, 1]. This requires

pq(0)+mq(t) ≤ H(t) for all t by (B.23)–(B.25), and by Reid’s Lemma, we have M̃2(q(t)) =

MpU
[0,c](t) for all t ∈ [0, c]. With b = b = 0, this shows M̃2(q(t)) = M̄pU

[b,c]
(t) for all t ∈ [b, c]

in case 1.

Case 2 : HpU (t) ≤ 0 for some t > 0 and MpU
1 (bmax) = 0.

In this case, q(bmax) = t02. Suppose to the contrary that q(bmax) < t02. This implies

pq(0) ≤ p
q
. Hence pq(0) +mq(t) ≤ p

q
< HpU (t) for all t > bmax. This is a contradiction

to optimality. Next, suppose that q(bmax) > t02. This implies pq(0) ≥ p
q
and therefore

pq(0) + mq(b
max) > HpU (bmax). Therefore bmax is contained in an interval [t, t] where

u(t) = K. By Lemma 13, this is a contradiction. Therefore q(bmax) = t02. By (iii) we must

have pq(0) = p
q
and hence pq(0)+mq(b

max) = p
q
= HpU (bmax). Set b = b = bmax. Lemma

13 also implies that pq(0)+mq(t) ≤ HpU (t) for all t ∈ [bmax, c]. Reid’s Lemma then implies

that M̃2(q(t)) = M̄pU
[b,c]

(t) for all t ∈ [b, c] for case 2.

Case 3 : HpU (t) ≤ 0 for some t > 0 and MpU
1 (bmax) > 0.

In this case, q(bmax) > t02 because otherwise q(1) = q(bmax) < 1, which is a contradiction.
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This implies b < bmax and pq(0) ≥ p
q
. Since pq(0) ≥ p

q
, pq(0)+mq(b

max) > H(bmax) = p
q
.

Hence bmax is in the interior of a maximal interval [t, t] such that u(t) = K for all t ∈ [t, t].

By Lemma 13, q(t) < t02. This implies that b ∈ (t, bmax). By Lemma 10, pq(0) +mq(t) =

H(t) and by Lemma 13, pq(0) +mq(t) ≤ H(t), for t ∈ [t, c]. Hence, we can set b = t and

have thus shown M̃2(q(t)) = M̄pU
[b,c]

(t) for all t ∈ [b, c] for case 3.

Claim: M̃2(q(t)) = M̄pU
[b,1]

(t) for all t ∈ [b, c].

Note that M̄pU
[b,1]

(c) ≤ M̄pU
[b,c]

(c). To show the converse, note that as q is constant on [c, 1],

pq(0) +mq(t) + µ[0, t) ≤ HpU (t) for a.e. t ≥ c. This implies

pq(0) +mq(c) + (t− c)v + µ[c, t) ≤ HpU (c) +

ˆ t

c
MpU

1 (s)ds,

⇔
ˆ t

c
MpU

1 (s)ds ≥ v(t− c) + µ[c, t). (B.30)

If M̄pU
[b,1]

(c) < v, then
´ t
c M

pU
1 (s)ds = HpU (t) −HpU (c) ≤ HpU (t) − H̄pU (c) < (t − c)v for

some t > c. This would contradict (B.30) so we must have M̄pU
[b,1]

(c) ≥ v = M̄pU
[b,c]

(c). If

M̄pU
[b,c]

(c) = M̄pU
[b,1]

(c) we must have M̄pU
[b,c]

(t) = M̄pU
[b,1]

(t) for all t ∈ [b, c]. This proves the

claim and c = min{t | M̄pU
[b,1]

(t) = v} follows immediately. Hence we have shown (i).

It remains to show (ii): p
q
→ mint∈[0,1]H

pU (t) as K → ∞. This implies that bmax → t
0
1.

Furthermore b ≥ bmax ≥ b and b− b < 1
K . Hence b → t

0
1 and b → t

0
1 as K → ∞. �

Now we can turn to the limiting solution as K → ∞.

Proof of Theorem 6. The reduced form of x̄i as defined in (4.3) is

q̄1(v1, 2) =


0, if J̄pU

1 (v1) < 0

x01F2(v
0
2), if J̄pU

1 (v1) = 0

F2(J
−1
2 (J̄pU

1 (v1)), if 0 < J̄pU
1 (v1) ≤ v,

1, otherwise,

q̄2(v2, 1) =

0, if J2(v2) < 0,

F1((J̄
pU
1 )−1(J2(v2))), otherwise.

Changing variables, we have

q̄1(t) =


0, if t < t01,

x01t
0
2, if t ∈ [t01,t

0
1],

M−1
2 (M̄pU

1 (t)), if 0 < M̄pU
1 (t) ≤ v,

1, otherwise,

q̄2(t) =

0, if M2(t) < 0,

(M̄pU
1 )−1(M2(t)), otherwise,

where t01 = min{t|M̄pU
1 (t) ≥ 0}.
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Obviously, q̄2(t) = q̄−1
1 (t) if t ≥ t02 and q̄2(t) = 0 otherwise. Therefore, by Lemma 4, we

only have to show optimality of q̄1. Let (q
n
1 , q

n
2 ) be a sequence of optimal solutions of PKn

2

where K < Kn → ∞ as n → ∞. Denote the adjoint variables in these solutions by pnU and

pnq , respectively, and let (q1, q2) be the a.e.-limit of the sequence. By Theorem 5, (q1, q2)

is an optimal solution. We will show that (q̄1, q̄2) yields the same expected revenue as the

limit of any such sequence. Since M̄pU

[t
0
1,1]

(t) = M̄pU
1 (t) for all t ∈ [t

0
1, 1], Lemma 16 implies

that q1(t) = q̄1(t) for t > t
0
1 where pU = limn→∞ pnU .

Next we consider the limiting solution for t < t
0
1. If t

1
0 > 0, then q1(0) = 0 and u(t) = 0

for t ≤ t01 as for q̄1. Now suppose that t01 < t
0
1.

Claim: If q1(t) is not constant at t ∈ [t01, t
0
1], then HpU (t) = minθ H

pU (θ).

Suppose to the contrary that HpU (t) > minθ H
pU (θ). Then there exist ε > 0 and δ > 0

such that HpU (τ) > minθ H
pU (θ) + δ for all τ ∈ (t− ε, t+ ε). Since pnq (0) → minθ H

pU (θ)

for n → ∞, there exists N > 0 and ε′ ∈ (0, ε) such that for all n > N , pnq (0) < HpnU (τ) for

all τ ∈ (t − ε′, t + ε′). This implies that qn1 is constant on (t − ε′, t + ε′) for n > N , and

hence q1 is constant on (t− ε′, t+ ε′), which is a contradiction. This proves the claim.

Now set q0
1
=
[
(v1(t

0
1)− v1(t

0
1))
]−1 ´ t̄01

t01
q1(s)v

′
1(s)ds and let [t, t] be the interval where

q1(t) = q0
1
(if q1(t) ̸= q0

1
for all t, set t = t such that q1(t) < q0

1
if t < t and q1(t) > q0

1
if

t > t). With this definition, q1(t) < q0
1
for t < t and q1(t) > q0

1
for t > t, and q1 is not

constant at t and t. The claim implies that [t01, t] and [t, t
0
1] are unions of intervals [a, b] such

that either MpU
1 (t) = 0 for all t ∈ [a, b], or q1 is constant on [a, b] and

´ b
a MpU

1 (t)dt = 0.

Hence, setting q1(t) = q0
1
does not change the value of the objective and by definition of

q0
1
, U1(1) is left unchanged. Since, q

0
1
= x01t

0
2, the (q1, q2) yields the same expected revenue

as (q̄1, ¯q2). Uniqueness of pU and x01 are obvious.

For the proof of (ii) and (iii) note that π2 can be written as

π2(Ū) =

ˆ 1

0

[
x̄pŪ (t)M1(t) +

ˆ 1

x̄pŪ
(t)

M̃2(q)dq

]
dt.

We first show that π2(Ū) is Lipschitz. For Ū ′ > Ū ,∣∣π2(Ū ′)− π2(Ū)
∣∣ = ∣∣∣∣∣

ˆ 1

0

ˆ x̄pŪ′ (t)

x̄pŪ
(t)

M1(t)− M̃2(q)dqdt

∣∣∣∣∣ ,
≤
ˆ 1

0

∣∣∣∣∣
ˆ x̄pŪ′ (t)

x̄pŪ
(t)

M1(t)− M̃2(q)︸ ︷︷ ︸
|.|≤M<∞

dq

∣∣∣∣∣dt,
≤ M

ˆ 1

0
x̄pŪ′ (t)− x̄pŪ (t)dt,

≤ M

v′1
(Ū ′ − Ū),
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where v′1 = mint∈[0,1] v
′
1(t) > 0 by our assumptions on the type distributions. Next we

show that π′
2(Ū) = −pU . for almost every Ū . For h > 0,

1

h
(π2(Ū + h)− π2(Ū)) =

1

h

ˆ 1

0

ˆ x̄pŪ+h
(t)

x̄pŪ
(t)

M1(t)− M̃2(q)dqdt,

=
1

h

ˆ c(Ū)

t01(Ū+h)

ˆ x̄pŪ+h
(t)

x̄pŪ
(t)

M1(t)− M̃2(q)dqdt,

= −pŪ
1

h

ˆ c(Ū)

t01(Ū+h)

ˆ x̄pŪ+h
(t)

x̄pŪ
(t)

v′1(t)dqdt︸ ︷︷ ︸
=h

+

+

ˆ c(Ū)

t01(Ū+h)

1

h

ˆ x̄pŪ+h
(t)

x̄pŪ
(t)

MpU
1 (t)− M̃2(q)dqdt.

A similar expression can be derived for h < 0. t01 and c are are continuous in Ū for

almost every Ū (for all Ū if MpU
1 is strictly increasing). Hence, by the Lebesgue differenti-

ation theorem and dominated convergence, for almost every Ū (every Ū if MpU
1 is strictly

increasing),

π′
2(Ū) = lim

h→0

1

h
(π2(Ū + h)− π2(Ū)) = −pŪ +

ˆ c

t01

MpU
1 (t)− M̃2(x̄pŪ (t))dt,

= −pŪ +

ˆ c

t01

M̄pU
1 (t)− M̃2(x̄pŪ (t))dt,

= −pŪ .

Since π2(Ū) is Lipschitz continuous it is absolutely continuous and π2(Ū) = π2(0) −´ Ū
0 pU (s)ds. Therefore, as pU (Ū) is non-decreasing, π2 is weakly concave. If {t|M̄pU

1 (t)

= 0} is a singleton pU (Ū) is strictly increasing an hence π2 strictly concave. �
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Appendix C. Supplementary Material

C.1. Omitted Proofs

Proof of Lemma 1. x̂ is derived from x as follows. Whenever a buyer is allocated a unit

before his deadline is reached, this allocation is postponed to the deadline. Whenever a

buyer is allocated unit after his deadline has elapsed, the unit is withheld under the new

allocation rule. In all other cases, the new allocation rule is the same as the old one.

This implies that buyers who report their deadline truthfully enjoy the same expected

payoff in both mechanisms:

∀a ∈ {1, . . . T}, d ∈ {a, . . . T},∀v ∈ [0, v] :

d∑
τ=a

q̂a(v, d) =

d∑
τ=a

qa(v, d).

On the other hand, for d′ ̸= d, we have

d∑
τ=a

q̂a(v, d
′) ≤

d∑
τ=a

qa(v, d
′).

Hence,

Ûa(v, d) = Ua(v, d) ≥ Ua(v, d, v
′, d′) ≥ Ûa(v, d, v

′, d′).

�

Proof of Theorem 4. Substituting V opt
2 into the objective function we get

π1(U) = max
q1(.,1)

V opt
2 +

ˆ v

0
q1(v, 1)

(
J1(v)− V opt

2

)
f1(v)dv, (C.1)

subject to q1(v, 1) ∈ [0, 1], ∀v ∈ [0, v], (M1), (PE1) and (ICDd
U). This is a control problem

with state U1(v) = U1(v, 1) and measurable control q1(v) = q1(v, 1). The law of motion

for the state is U ′
1(v) = q1(v). We account for q1(v, 1) ∈ [0, 1] and (ICDd

U) by imposing

the state constraint U1(v) ≤ U(v), requiring the state to start at zero, U1(0) = 0, and the

control to take values between zero and one, q1(v) ∈ [0, 1]. (M1) will be neglected for the

moment.

The Hamiltonian of this problem is

H(U1, q1, p, v) = pq1 + q1

(
J1(v)− V opt

2

)
f1(v)

where p is the adjoint variable of the state U1. Let (U1, q1) be an optimal solution. By

the Pontryagin maximum principle (c.f. Clarke, 1983, pp. 211-212) we have that p(v) = p

is constant and p + µ[0, v] = 0, where µ is a non-negative measure supported on the set

{v | U1(v) = U(v)}. Furthermore, for almost every v, q1(v) maximizes H(U1(t), q1, p +

µ[0, v), v). This implies that for almost every v,

q1(v) = 1, if p+ µ[0, v) + (J1(v)− V opt
2 )f1(v) > 0,

q1(v) ∈ [0, 1], if p+ µ[0, v) + (J1(v)− V opt
2 )f1(v) = 0,

and q1(v) = 0, if p+ µ[0, v) + (J1(v)− V opt
2 )f1(v) < 0.
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Since p + µ[0, v) ≤ 0, q1(v) = 0 if J1(v) < V opt
2 . But if J1(v) ≥ V opt

2 , Assumption

2 implies that (J1(v) − V opt
2 )f1(v) is strictly increasing. Since µ[0, v) is non-decreasing,

p+ µ[0, v) + (J1(v)− V opt
2 )f1(v) = 0 implies p+ µ[0, v′) + (J1(v

′)− V opt
2 )f1(v

′) > 0 for all

v′ > v. Therefore there is a unique value r1 such that

q1(v1) =

0, if v1 < r1

1, if v1 > r1.

Obviously, any such solution satisfies (M1). r1 can be determined without resorting

to optimal control theory. As the mechanism is deterministic, it is the lowest value such

that J1(r1) ≥ V opt
2 and U1(v, 1) = v − r1 ≤ U(v). This yields the solution stated in the

Theorem.

If we set r1 = max{J−1
1 (V opt

2 ), v − Ū} and insert the optimal solution in the objective

function we obtain

π1(Ū) =

ˆ v

r1

J1(v)f1(v)dv + V opt
2 F1(r1).

π′
1(Ū) =

(J1(v − Ū)− V opt
2 )f1(v − Ū), if J1(v − Ū) > V opt

2 ,

0 otherwise.

For Ū → v− J−1
1 (V opt

2 ) we have π′
1(Ū) → 0 since f1 is bounded. Hence, π′

1(Ū) is continu-

ous. Using Assumption 2, we conclude that π′
1(Ū) is strictly decreasing if J1(v−Ū) > V opt

2

and hence π1 is strictly concave. �

Proof of Lemma 4. (B.4) can be rewritten as

∀t2 ∈ [0, 1] :

ˆ 1

t2

q2(θ)dθ ≤ min
t1∈[0,1]

[
1− t1t2 −

ˆ 1

t1

q1(θ)dθ

]
.

On the right-hand side we minimize a convex function. Therefore, the first order condition

is sufficient for a minimum and we have t2 ∈ [q1(t
−
1 ), q1(t

+
1 )] for all t2 ∈ [q1(0), q1(1)],

t1 = 0 if t2 < q1(0) and t1 = 1 if t2 > q(1). Hence t1 = q−1
1 (t2) is a minimizer for all t2.

Substituting this into (B.4) yields

∀t2 ∈ [0, 1] :

ˆ 1

t2

q2(θ)dθ ≤ 1− q−1
1 (t2)t2 −

ˆ 1

q−1
1 (t2)

q1(θ)dθ. (C.2)

q∗2 fulfills this constraint with equality for all t2 ∈ [0, 1].

Now consider an alternative solution q̃2 that differs from q∗2 on a set of positive measure.

If q̃2(t) > 0 for some t < t02, than it is not a maximizer. So suppose q̃2(t) = 0 for t < t02.

By (C.2) we must have
´ 1
t q̃2(θ)dθ ≤

´ 1
t q∗2(θ)dθ for all t ∈ [0, 1]. Since q̃ ̸= q∗, on a set

of positive measure,
´ 1
a q̃2(θ)dθ <

´ 1
a q∗2(θ)dθ for some a ∈ [t02, 1]. Let Q(t) be the concave

hull of

t 7−→


´ 1
t q̃2(θ)dθ, if t ̸= a,´ 1
a q∗2(θ)dθ, if t = a,
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and define q̂2(t) = −dQ(t)
dt for almost every t. By definition, Q(t) =

´ 1
t q̂2(θ)dθ ≤´ 1

t q∗2(θ)dθ. Hence q̂2 is a solution. Furthermore, there are a, ā such that

q̂2(t) =


q̃2(t), if t /∈ [a, ā],´ 1
a q̃2(θ)dθ−

´ 1
a q∗2(θ)dθ

a−a , if t ∈ [a, a),´ 1
a q∗2(θ)dθ−

´ 1
a q̃2(θ)dθ

ā−a , if t ∈ (a, ā].

Hence q̂2(t) < q̃2(t) for t ∈ (a, a), q̂2(t) > q̃2(t) for t ∈ (a, ā) and q̂2(t) = q̃2(t) otherwise.

Furthermore, ˆ a

a
q̂2(θ)− q̃2(θ)dθ =

ˆ ā

a
q̃2(θ)− q̂2(θ)dθ.

This implies that we have constructed q̂2 from q̃2 by shifting winning probability from

types in [a, a] to types in [a, a]. By Assumption 1, this increases the objective function.

Hence q̃2 cannot be optimal. �

Proof of Theorem 8. (i) Let (qn1 , q
n
2 )n∈N be a sequence of solutions of P ′

2 such thatR[qn1 , q
n
2 ] →

π2(Ū) for n → ∞. By Helly’s Theorem, for i = 1, 2 there exists a sub-sequence
(
q
nj

i

)
j∈N

and a non-decreasing function qi : [0, 1] → [0, 1], such that q
nj

i → qi almost everywhere.

If we consider the qi as elements of L2([0, 1]), the set of winning probabilities that satisfy

(B.4) is weakly-compact (cf. Mierendorff (2011) and Border (1991)). Therefore, after tak-

ing sub-sequences again, q
nj

i ⇀ qi and qi is feasible. As Mi ∈ L2([0, 1]) and v′1 ∈ L2([0, 1]),

weak convergence of q
nj

i implies that q1 fulfills (B.5)–(B.6), and R[q1, q2] = π2(Ū). There-

fore (q1, q2) is an optimal solution.

(ii) Let (qn1 , q
n
2 )n∈N be a sequence of solutions of PK

2 such that R[qn1 , q
n
2 ] → πK

2 (Ū). After

taking sub-sequences we can assume that this sequence converges to a solution satisfying

(B.2)–(B.6) as in (i). Let q1 be the limit of qn1 . Since qni ∈ LK , for all s, t ∈ [0, 1],

|q1(t)− q1(s)| = limn→∞ |qn1 (t)− qn1 (s)| ≤ K|t− s|. Hence q1 ∈ LK . �

C.2. Extension of Lemma 2 to the Case of Many Objects

In order to show that Lemma 2 holds for T = 2 and K ≥ 2, we need some additional

notation. A state is now given by st = (Ht,Kt) where Kt is the remaining number of

available objects.

For a given state st, define ct(1) ≥ . . . ≥ ct(K) as the K highest virtual valuations among

the buyers i ∈ I≤t with deadlines di = t. If K2 units are available in period two, we have

V2(H2,K2) =

K2∑
k=1

max
{
0, c2(k)

}
.

The marginal expected revenue in period two from the kth unit is given by

∆(s1, k) = Es2 [V2(s2)|s1,K2 = k]− Es2 [V2(s2)|s1,K2 = k − 1]

= Es2

[
max

{
0, c2(k)

}∣∣∣s1] .
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Obviously, ∆(s1, k) is decreasing in k. Hence, the optimal number of units to be retained

for period two is determined by

c1(K−K∗
2 )

> ∆(s1,K
∗
2 + 1) if K∗

2 < K,

and c1(K−K∗
2+1) ≤ ∆(s1,K

∗
2 ) if K∗

2 > 0.

If we denote the identities of the buyers with virtual valuations ct(1), . . . , c
t
(K) by i

t
(1), . . . , i

t
(K),

the set of winning buyers in periods t = 1, 2 is given by

W ∗
1 (s1) :=

{
i1(1), . . . , i

1
(K−K∗

2 (s1))

}
,

W ∗
2 (s2) :=

{
i2(1), . . . , i

2
(K∗

2 (s1))

}
∩ {i ∈ I≤2|Jai(vi) ≥ 0} .

Now we fix some buyer i ∈ I1. His virtual valuation determines whether he is in the set

of winning buyers at his deadline di for a given number of retained objects K2, but it may

also have an influence on the number of retained objects. The critical virtual valuation is

given by

ζ11 (H
−i
1 ) = inf

{
ζ
∣∣i ∈ W ∗

1 (((H
−i
1 , (1, J−1

a (ζ), 1)),K)
}
,

= inf
{
ζ
∣∣∣ζ ≥ c1

(K−K∗
2 (H

−i
1 ,(1,J−1

a (ζ),1)))

}
,

for di = 1, and by

ζ21 (H
−i
2 ) = inf

{
ζ
∣∣i ∈ W ∗

2 ((H
−i
2 , (1, J−1

a (ζ), 2)),K∗
2 (H

−i
1 , (1, J−1

1 (ζ), 2)))
}
,

= inf
{
ζ
∣∣∣ζ ≥ c2

(K∗
2 ((H

−i
1 ,(1,J−1

a (ζ),1)))

}
,

for d1 = 2.

Proof of Lemma 2 for T = 2 and K ≥ 2. Let ct,−i
(k) denote the kth highest virtual valuation

among the buyers with deadline t in I≤t\{i}. Fix any state s1 = (H1,K) and a buyer

i ∈ I1. Suppose that in state (H−i
1 ,K − 1), i.e., if buyer i is not present and one objects

less is available, K̄1 objects are allocated in period one and K̄2 = K − K̄1 objects are

retained for period two. We distinguish two sub-cases.

Case A—In state (H−i
1 ,K), K̄1 units are allocated in the first period and K̄2 + 1 units

are retained for the second period: If, in state ((H−i
1 , (1, vi, 1)),K), buyer i gets a unit in

the first period, then the remaining K − 1 units are allocated as in state (H−i
1 ,K − 1).

This means that K̄1 units are allocated to buyers other than i in period one and K̄2 units

are retained. Hence, i’s virtual valuation must exceed the option value of retaining the

K̄2 + 1st unit in order to get a unit in the first period. We have

ζ11 (H
−i
1 ) = Es2

[
max

{
0, c2,−i

(K̄2+1)

}∣∣∣H−i
1

]
In state ((H−i

1 , (1, vi, 2)),K), the number of units that are allocated in the first period

must also be K̄1. It is obvious that the arrival of buyer i with di = 2 cannot increase the

number of units allocated in the first period. On the other hand, suppose that in state
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((H−i
1 , (1, vi, 2)),K), only K̄1 − 1 units are allocated in the first period. Then

c1,−i
(K̄1)

≤ Es2

[
max

{
0, c2(K̄2+2)

}∣∣∣(H−i
1 , (1, vi, 2))

]
,

≤ Es2

[
max

{
0, c2(K̄2+2)

}∣∣∣(H−i
1 , (1, v, 2))

]
,

= Es2

[
max

{
0, c2(K̄2+1)

}∣∣∣H−i
1

]
,

< c1,−i
(K̄1)

,

where the last inequality follows from our assumption that in state (H−i
1 ,K−1), K̄1 units

are allocated in the first period. This is a contradiction. But if K̄1 objects are allocated

in the first period, then

ζ21 (H
−i
2 ) = max

{
0, c2,−i

(K̄2+1)

}
.

Hence, in case A, Es2 [ζ
2
1 (H

−i
2 )|H−i

1 ] = ζ11 (H
−i
1 ) and

[
ζ11 (H

−i
1 )|H−i

1

]
≻SSD

[
ζ21 (H

−i
2 )|H−i

1

]
.

Case B—In state (H−i
1 ,K), K̄1 + 1 objects are allocated in the first period and K̄2

objects are retained for the second period: Again, if in state ((H−i
1 , (1, vi, 1)),K), buyer i

gets an object in the first period, then the remaining K − 1 objects are allocated as in

state (H−i
1 ,K − 1). Hence, in case B we have

ζ11 (H
−i
1 ) = c1,−i

(K̄1+1)
.

In state ((H−i
1 , (1, vi, 2)),K), it depends on vi, how many objects are retained for the

second period. Define z by

c1,−i
(K̄1+1)

= Es2

[
max

{
0, c2(K̄2+1)

}∣∣∣(H−i
1 , (1, J−1

1 (z), 2))
]
.

If J1(vi) ≥ z, then K̄2 + 1 objects are retained, otherwise only K̄2 objects are retained.

Hence, we have

ζ21 (H
−i
2 ) =


c2,−i
(K̄2+1)

, if z < c2,−i
(K̄2+1)

,

z if c2,−i
(K̄2+1)

≤ z < c2,−i
(K̄2)

,

c2,−i
(K̄2)

if c2,−i
(K̄2)

≤ z.

Note that for H1 = (H−i
1 , (1, J−1

1 (z), 2)) this equals max
{
0, c2

(K̄2+1)

}
. So we have

E
[
ζ21 (H

−i
2 )
∣∣H−i

1

]
= Es2

[
max

{
0, c2(K̄2+1)

}∣∣∣(H−i
1 , (1, J−1

1 (z), 2))
]
,

= c1,−i
(K̄1+1)

,

= ζ11 (H
−i
1 ),

and hence
[
ζ11 (H

−i
1 )|H−i

1

]
≻SSD

[
ζ21 (H

−i
2 )|H−i

1

]
. �
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C.3. Reduced Forms

The probability that a buyer who has arrived in period ai, assesses for the event that

the number of arrivals in period ai is Nai , is given by23

Nai νai,Nai∑∞
r=1 rνai,r

.

The interim winning probability for period t of a buyer with type (ai, vi, di) is given by:

qtai(vi, di) =
∑

(N1,...,Nt)∈Nt
0

 Naiνai,Nai∑∞
r=1 rνai,r

∏
a∈{1,...,t}\ai

νa,Na

 T∑
d1=a1

. . .

T∑
di−1=ai−1

T∑
di+1=ai+1

. . .

T∑
dN≤t

=aN≤t

 ∏
j∈I≤t\i

ρaj ,dj

 ˙

v1...vi−1

˙

vi+1...vN≤t

(
xi(s1) + x0(s1)

[

. . . xi(sT )
]) ∏

j∈I≤t\i

faj (vj |dj)dvj

 .

The interim expected payment of a buyer with type (ai, vi, di) is given by:

pai(vi, di) =
∑

(N1,...,Nt)∈Nt
0

 Naiνai,Nai∑∞
r=1 rνai,r

∏
a∈{1,...,t}\ai

νa,Na

 T∑
d1=a1

. . .
T∑

di−1=ai−1

T∑
di+1=ai+1

. . .
T∑

dN≤t
=aN≤t

 ∏
j∈I≤t\i

ρaj ,dj

 ˙

v1...vi−1

˙

vi+1...vN≤t

 ∑
j∈I1∪{0}

xj(s1)yi(s1, k2 = j)+

+ x0(s1)

[ ∑
j∈I≤2∪{0}

xj(s2)yi(s2, k3 = j) + x0(s3)

[
. . .

∑
j∈I≤T∪{0}

xj(sT )yi(sT , kT+1 = j)

]] ∏
j∈I≤t\i

faj (vj |dj)dvj

 .

23See Myerson (1998) for a derivation of this expression.


