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Abstract

Unpredictable behavior is central to optimal play in many strategic situations because
predictable patterns leave players vulnerable to exploitation. A theory of unpredictable
behavior based on differential mental abilities is presented in the context of repeated two-
person zero-sum games. Each player’s mental ability is represented by a set of arithmetic
functions. That set is assumed to be closed under computability. A strategy in the re-
peated game is feasible for a player only if it is simple relative to that player’s mental
ability. When one player is more competent than the other, no equilibrium exists with-
out one player fully exploiting the other. If each player has an incompressible sequence
(relative to the opponent) according to the Kolmogorov complexity, an equilibrium exists
in which equilibrium payoffs equal to those of the stage game and all equilibrium strate-
gies are unpredictable. A criterion called stochasticity is used to tightly characterize

history-independent equilibrium strategies.
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1 Introduction

Unpredictable behavior is central to optimal play in many strategic situations, especially
in social interactions with conflict of interests. There are many illustrative examples from
competitive sports, such as the direction of tennis serves and penalty kicks in soccer. Other
relevant examples include secrecy in military affairs, bluffing behavior in Poker, and tax
auditing. A prototype example is the matching pennies game: two players simultaneously
present a coin and one player wins if the sides of the coins coincide while the other
wins if the sides differ. In these situations, it seems optimal for players to aim at being
unpredictable to avoid detectable patterns that leave them vulnerable to exploitation.
This intuition has been around since the beginning of game theory. Von Neumann and
Morgenstern [22] point out that, in a matching pennies game, a player will concentrate
on avoiding his or her intentions being found out even against a moderately intelligent

opponent.

The standard model of unpredictable behavior is mixed strategies. Since von Neu-
mann and Morgenstern [22], randomization has become the conventional interpretation
of mixed strategies. But this interpretation has encountered serious criticisms. Aumann
[2] argues “the idea that serious people would base important decisions on the flip of a coin
is difficult to accept,” and many authors share this opinion (see, for example, Rubinstein
28]).1 Another theory of mixed strategies has become more influential in the context of
one-shot games—the belief interpretation, which identifies mixed strategies with beliefs.
That theory makes predictions about beliefs instead of actions (see, for example, Harsanyi
[12] and Aumann and Brandenburger [3]). However, the belief interpretation is almost
completely unrelated to the pattern-detection intuition for unpredictable behavior. Be-
cause patterns exist only in repeated plays, to have a theory of unpredictable behavior

based on pattern detection in one-shot games seems very difficult, if not impossible.

This paper proposes a new theory of unpredictable behavior in the context of (in-

finitely) repeated two-person zero-sum games. In this context, unpredictable behavior is

IThese criticisms, however, are specifically against the use of randomization devices in one-shot games,

but not against the notion that unpredictability is useful in repeated strictly competitive games.



often discussed in terms of statistical patterns. My model, however, is not based on sta-
tistical patterns for the following reasons. Consider, for example, the repeated matching
pennies game. The play that alternates between heads and tails has an obvious pattern
and is not expected to be played in equilibrium. But such a sequence has the same prob-
ability as any other sequence according to the uniform distribution (which the analysis of
statistical patterns for repeated matching pennies would naturally use). That sequence
is excluded because of its simple pattern relative to other sequences, not because of its
probability of occurrence. Thus, my theory does not begin with statistical patterns but
with differential mental abilities, so that a pattern can be simple to one player while it is

complicated and not detectable to the other.

Each player is endowed with a set of arithmetic functions in my model. This set
represents the player’s mental ability to formulate and implement his or her strategies.?
A natural requirement for players’ mental abilities is closure under simplicity: if a function
is feasible for a player, that is, if that function belongs to the player’s endowed set, so is
any function simpler than that function. I employ the computability relation to define
complexity classes over arithmetic functions, and function f is simpler than function g
if f is computable from g. Intuitively, this means that there is a mechanical procedure
that transforms g into f. Such a procedure can in principle be performed by any rational
agent. Only strategies that are simple relative to a player’s mental ability are feasible
for that player in a repeated game. Given those feasible strategies, Nash equilibrium is
then directly applicable.® Those feasible strategies also determine detectable patterns
through equilibrium. For example, there is clearly a mechanical process to produce the
sequence that alternates between heads and tails, and hence that strategy is feasible for

both players. As a result, it is excluded as an equilibrium strategy.

Therefore, a more competent player can implement more complicated strategies and

detect more complicated patterns than a less competent one. Indeed, a player without

2In my representation only arithmetic functions (whose ranges are also natural numbers) are included
because any strategy can be identified with an arithmetic function under a adequate coding of actions

and finite histories of previous plays.
3However, unlike the standard model, no mixed strategies are allowed because of my motivation.



limits on his or her mental ability can perfectly predict any strategy played by the oppo-
nent in equilibrium. Equilibrium of the repeated game, then, depends on the joint mental
abilities. In fact, it is not clear whether equilibrium exists in this framework. The main
contribution here is to give sufficient conditions on players’ mental abilities for equilib-
rium existence. Moreover, I show that equilibrium strategies thus obtained have to be

unpredictable, and give a characterization of optimal unpredictable behavior.

My first result is a necessary condition for the existence of an equilibrium. I show
that if the two players share the same mental ability, then there is no equilibrium in
any repeated zero-sum game whose stage game has no equilibrium in pure strategies.
The proof is rather straightforward and I shall demonstrate the intuition in the context of
repeated matching pennies. Because they share the same set of feasible functions, player 1
can simulate any player 2’ strategy (via a computable operation) and has a strategy to win
against it at every stage. This implies that in equilibrium, if there exists one, player 1 does
win at every stage (as a result of the Minimax theorem). But a symmetric argument shows
that player 2 wins at every stage in equilibrium. This leads to a contradiction. A similar
logic shows that if one player is more competent than the other, then the more competent
player will fully exploit the other in equilibrium, if it exists. In this case, the strategy
played by the less competent player is perfectly predictable by the more competent. To
obtain an equilibrium where neither player fully exploits the other, it is then necessary
that each player has a feasible function that the other player cannot compute. Moreover,

in such an equilibrium, no equilibrium strategy is perfectly predictable by the opponent.

But this mutual uncomputability condition does not seem sufficient. Not every se-
quence that is incomputable from the opponent’s perspective is optimal. For example, in
the repeated matching pennies game, the sequence that plays heads at all stage games
with even indexes but uses an incomputable sequence of actions at odd indexes does not
seem optimal—it is vulnerable to exploitation along an identifiable subsequence of plays.
To resolve this issue I use another notion of complexity that refines the computability
relation, the Kolmogorov complexity [15], which measures how much a sequence can be

compressed. It refines the computability relation in that any sequence that is feasible for



a player is fully compressible from that player’s perspective while infeasible sequences can
have different degrees of compressibility. Whether an incompressible sequence exists from

a player perspective, of course, depends on that player’s mental ability.

My main result is a sufficient condition for equilibrium existence using the Kolmogorov
complexity, for which I need one additional assumption. An upper bound on players’
mental abilities is imposed: for each player, that there is a feasible function so that any
other feasible function is computable from it. It implies that the set of feasible functions
is countable. This assumption guarantees that there are incompressible sequences from
each player’s perspective, and those sequences have no detectable patterns. I show, under
this assumption, that if each player has a feasible sequence that is incompressible from
the other’s perspective, then the repeated game has a Nash equilibrium whose equilibrium

payoffs are the same as those of the stage game.*

This sufficient condition is called mutual complexity. Under mutual complexity, equi-
librium strategies are not perfectly predictable by the opponent, but not every incom-
putable strategy is optimal. I characterize equilibrium strategies with a concept called
stochasticity.> To explain this concept, consider the repeated matching pennies game. A
sequence is stochastic from a player’s perspective with respect to the distribution (%, %)
over heads and tails if, along all identifiable subsequences for that player’s mental ability,
the frequency of heads and tails is (1,1). I show that any (3, 3)-stochastic sequence is
optimal. A partial converse to this result is also obtained. These results give a formal

correspondence between frequencies of equilibrium strategies in a repeated game under

mutual complexity and equilibrium mixed-strategies in the associated stage game.

Here I give two remarks on the existence result. First, equilibrium strategies in my
framework are uncomputable and hence cannot be fully characterized constructively. This
result, however, is consistent with the requirement proposed by McKelvey [20] that an

equilibrium notion should be ‘publication-proof,” that is, it should survive its own pub-

4The stage game, being a finite zero-sum game, always has a Nash equilibrium in mixed strategies

and a unique equilibrium payoff under that equilibrium.
>This concept has appeared in von Mises [21] and is closely related to the calibration literature (see,

for example, Foster and Vohra [11]).



lication. In my context, this implies that equilibrium strategies cannot be simulated by
finite algorithms and hence have to be uncomputable. The aim here, therefore, is to pin
down the essential properties of equilibrium unpredictable behavior based on the intu-
ition commonly found in early game theoretic justifications of mixed strategies by limiting
players’ mental abilities in a precise sense. Based on Turing-computability and descrip-
tive complexity that limits how compactly a strategy can be described,® my results show
that the essential properties of equilibrium unpredictable behavior are characterized by

stochasticity:.

The second remark is concerned with payoff specification and the length of the repeated
game. [t can be shown that the discounting criterion is not consistent with equilibrium
existence in this framework and the long-run average criterion is adopted for the existence
result. This implies that exact equilibrium is not obtainable in finitely repeated games,
but it does not exclude the existence of e-equilibria. In fact, my main results, given their
asymptotic nature, suggest that the framework can be amended to accommodate long but
finitely repeated games with e-equilibrium. This would provide a solution to the problem

with discounting as well.”

These results also have implications for the empirical literature (including O’Neill [25],
Brown and Rosenthal [5], Walker and Wooders and [30], and Palacios-Huerta [26]) that
tests the equilibrium hypothesis in the context of a repeated zero-sum games. While
this literature generally employs statistical tests according to the i.i.d. distribution, I
show that there are equilibrium strategies that are inconsistent with any i.i.d. process
in terms of statistical regularities. Thus, not all statistical regularities are relevant to
the equilibrium hypothesis; those based on stochasticity are more relevant than others.

Moreover, the empirical findings suggest that equilibrium unpredictable behavior appears

6Tt seems possible to go below Turing-computability and consider computationally hard problems
to model unpredictable behavior. However, this approach does not resolve the issue of publication-
proofness, because no matter what notion of computability we begin with, equilibrium strategies cannot
be computable according to that notion. Turing-computability allows my analysis to focus on essential
properties of unpredictable behavior instead of detailed computational issues, and derive results that can

be modified to accommodate those issues in the future.
7See Section 4.3 for more details.



among professional sports players but not in experiments. My results suggest that, for
unpredictable behavior to emerge in equilibrium, it requires sufficient complexities in
players’ mental abilities to handle the strategic interactions, and such complexities would

appear only after a fair amount of experiences and competitions.

Here I turn to some related literature. The idea that players cannot comprehend the
full pattern in any sequence has already appeared in Piccione and Rubinstein [27], but
both their formal treatment and purpose are quite distinct from mine. In terms of formal
analysis, my model is closely related to that in Ben-Porath [4]. In that model, players
use finite automata to generate strategies in an infinitely repeated game. Hence, one can
interpret those automata as a representation of players’” mental abilities. That model
analyzes the effect of strategic complexity on equilibrium behavior. However, because
complexity is measured by the number of states in players’ automata, only one player can
have more complicated strategies than the other. Mixed strategies are necessary to obtain

equilibrium existence, and hence it cannot provide a theory of unpredictable behavior.

The rest of the paper is organized as follows. Section 2 formulates repeated games with
mental abilities and presents the nonexistence results. Section 3 formulates the notion
of incompressible sequences using Kolmogorov complexity, gives the general existence
result, and then gives a characterization of equilibrium unpredictable behavior. Section 4

discusses the results. Proofs appear in Section 5.

2 Mental abilities and repeated zero-sum games

This section formulates the model with two steps: the first step gives a representation of
players’” mental abilities; at the second step these abilities are used to determine the set
of feasible strategies for players in a repeated zero-sum game. This section ends with a

necessary condition for equilibrium existence.



2.1 Mental ability represented by arithmetic functions

In my model players use their mental abilities to formulate and implement strategies
in a repeated game. The representation of mental abilities in my framework satisfies
the following two properties: (i) it does not depend on the game being played; (ii) the
ability is such that if a player can implement a more complex strategy, he or she can
also implement any simpler strategy. Property (i) is desirable because mental ability can
then be regarded as an inherent characteristic of a player. Moreover, this property allows
my analysis to provide uniform conditions for equilibrium existence or nonexistence across
different games. Property (ii) requires players’ strategies be closed under simplicity, which

is a plausible requirement for a theory of rational players.

The representation is rather straightforward: each player is endowed with a set of
arithmetic functions. A function belonging to the set given to a player is said to be feasible
for that player. This representation does not depend on the game being played (property
(i)). On the other hand, because any strategy in a repeated game can be regarded as an
arithmetic function with actions and histories adequately encoded into natural numbers,
players’ strategies in a repeated game can be determined by their abilities. Property (ii)
requires a complexity structure on these functions. The computability relation is used for
this purpose: a function is more complex than another if the second function is computable
from the first. Closure under simplicity implies that if a function is feasible for a player,

so is any function computable from it.

Now I formalize the representation. I include also functions over vectors of natural
numbers in the set of feasible functions for a player. Because there is a constructive
method to encode vectors of natural numbers with natural numbers, this inclusion is
not substantial. However, it does simplify many definitions.® The set of all arithmetic
functions is denoted by F = [J;—,{f : N* — N}, where N = {0,1,2,...} is the set of

natural numbers. I give player i a subset P! of F, the set of feasible functions for player

8For example, the projection function U*(z1, ..., x,) = x; is very simple to express and understand as
a function over vectors of natural numbers, but it can look complicated if we translate it into a function

over natural numbers.



The computability relation provides a classification scheme for functions in F ac-
cording to their complexity. This relation is based on two notions: basic functions
and basic operations. The basic functions include (1) the zero function Z, defined by
Z(t) = 0; (2) the successor function S, defined by S(t) =t + 1; (3) the projection func-
tions Uy;, defined by Uy;(t1,...,tx) = t;, with & > 0, ¢ = 1,..,k. The basic operations
include (1) composition: from functions f(sy, ..., ), g1(t1, ..., tx), ..., and g;(tq, ..., tx), ob-
tain h = f(g1(t1, ., te), -y Gi(t1, -, tg)); (2) primitive recursion: from functions f and
g, obtain h defined as h(0,ty,....,tx) = f(t1,...,tx) and h(s,ty,....tx) = g(s — 1, h(s —
Lty .y ty), ty, ..., tg) for s > 0; (3) minimization: from f satisfying that for any (¢4, ..., )
there is some s such that f(s,ty,...,tx) = 0, obtain ¢ defined as ¢(t1,...,tx) = min{s :
f(s,t1, ..., t) = 0 and f(r,tq,...,t) is not zero for all r < s}. The computability relation

is defined as follows.

Definition 2.1. A function f € F is computable from a function g € F if there is a
sequence fi, ..., f, of functions in F such that f; = g, f, = f, and for each i = 2,....n,
fi is either a basic function or is obtained from functions in fi, ..., f;_1 through a basic

operation.

In principle, any player can implement these basic functions and basic operations.
If a function ¢g can be transformed into another function f via these basic operations
(with the aid of basic functions), then feasibility of g should imply feasibility of f for
any player. The following assumption requires players’” mental ability be closed under

simplicity defined via computability.
Assumption A1l If g € P and if f is computable from g, then f € P

A natural way to compare different players’ mental abilities is by set inclusion: player
i is more competent than player j if P/ C P’ Because the computability relation is
transitive, (Al) implies that if any function feasible for player j is simpler (in terms of
computability) than some function that is feasible for i, then ¢ is more competent than

j. Also, it gives a lower bound on players’ abilities: any Turing-computable function



is feasible for both players. The computability relation gives a partial order but not a

complete one, and hence the two players’ abilities may not be comparable.

2.2 Repeated games with mental abilities

Here I propose a model of repeated two-person zero-sum games with mental abilities. The
stage game is a finite two-person zero-sum game g = (X, Y, h), where X = {z1,...., 2z, }
is the set of player 1's actions, Y = {yi,...,yn} is the set of player 2’s actions, and
h: X xY — Q is the von Neumann-Morgenstern utility function for player 1, with Q
being the set of rational numbers. Throughout this paper, equilibrium is referred to Nash
equilibrium in pure strategies unless explicitly specified otherwise. My analysis focuses
on repeated games without equilibria in the stage games.? Player 1 is said to fully exploit

player 2 in the repeated game if player 1’s equilibrium payoff is min,ey max,ex h(z,y).

In a repeated game with mental abilities, a strategy is available to a player if and only if
it is feasible as an arithmetic function for that player. Hence, the complexity of strategies
feasible for a player is determined by his or her mental ability. This approach generalizes
the machine game literature which model mental abilities with finite automata. In that
literature, the complexities of strategies can be linearly ordered. In contrast, by assuming
closure under computability, there can be incomparable pairs of mental abilities in my

approach. The repeated games with mental abilities are formally defined as follows.

Definition 2.2. Let g = (X,Y, h) be a finite zero-sum game and let P!, P? be two sets
of functions satisfying (A1). The repeated game with mental abilities P*, P? based on the
stage game g, denoted by RG(g, P',P?), is a triple (X, Y, uy) such that

(a) X = {a: YN = X :a € P!} is the set of player 1’s strategies;

(b) Y ={b: XN =Y : b e P?} is the set of player 2’s strategies;'°

9If the stage game has an equilibrium, there are trivial equilibria in the repeated game as well where

unpredictability plays no role.
10Here the implicit assumption is that the sets X and Y are identified with a subset of natural numbers,

and any history, as a finite sequence of actions, is identified with a code number. Hence each strategy in

10



(c) up : XN x YN — R is player 1’s payoff function defined as

un(&, Q) —hmlnfz gt’Ct) (1)

while player 2’s payoff function is —uy,.

I adopt the long-run average criterion (1) for payoff specification in the repeated
game.'! Hu [14] gives an axiomatization of this criterion based on a frequentist inter-
pretation of the von Neumann-Morgenstern expected utility theory. Nash equilibrium is
then directly applicable, and my analysis focuses on the existence of a Nash equilibrium
and its properties. An alternative criterion to the payoffs would be the discounting crite-
rion; however, that criterion is not consistent with the existence of an equilibrium, as the

following proposition shows.

Proposition 2.1. Let g = (X,Y, h) be a two-person zero-sum game without any (pure)
equilibrium. If P* and P? satisfy (A1), then there is no equilibrium in the game (X, Y, vy,),
where X and Y are defined as in Definition 2.2, and vy, is defined by vy (§,¢) = (1 —

0) 22120 0" M, o).

The proof of this proposition is given in Section 5. The crucial observation is that
(A1) implies that each player can simulate any finite initial segment of the opponent’s
strategy and hence can fully exploit that part, and under the discounting criterion, that is
sufficient for a player to obtain an overall payoff that is close to full exploitation. However,
this does not mean that my framework cannot be used to study the discounting criterion.
One possibility is to consider e-equilibrium with more restrictive sets of feasible functions

that do not satisfy (Al). See more discussions on this in Section 4.3.

the repeated game can be identified with a function in F. Assumption (A1) ensures that the encoding
method is irrelevant. Moreover, notice that a strategy only depends on previous actions from the opponent
instead of on the joint actions. This definition is without loss of generality because the two are equivalent,

and this equivalence is preserved under computability. Again, (A1) is crucial for this to hold.

T, C’)}T 1 may not have a limit, it is necessary to introduce limit

"Because the sequence {>_,_,
inferior, limit superior, or other such notions that extend long-run averages. My main results are robust

to any such notion between the limit inferior and limit superior.

11



Now I begin the equilibrium analysis of repeated games with mental abilities. First
notice that a new structure is added to Nash equilibrium in my formulation: a pair of
strategies constitute a Nash equilibrium if for each player, there is no detectable pattern
in the opponent’s strategy that the player can employ another strategy to exploit it better
than his or her equilibrium strategy. Of course, whether a pattern is detectable depends
on the player’s mental ability. My first result (Proposition 2.2) shows how this depen-
dence affects equilibrium: strategies with simple patterns are not played in equilibrium,
unless one player is fully exploited by the other. Here, a pattern is simple for a player
if it can be generated by a function feasible for that player. This result confirms the
intuition that simple strategies, like the one that alternates between heads and tails in
the repeated matching pennies game, should not be observed in equilibrium. The proof

of Proposition 2.2 is given in Section 5.

Proposition 2.2. Let g = (X, Y, h) be a two-person zero-sum game without any equilib-

rium. Suppose that P! and P? satisfy (Al).
(a) If Pt = P2, then there is no equilibrium in RG(g, P, P?).

(b) If P> C P, then the equilibrium payoff (if an equilibrium exists) in RG(g, P, P?) for

player 1 is mingey max,ex h(z,y).'?

The intuition behind the proof is rather straightforward. Consider the matching pen-
nies game gM? = ({Heads, Tails},{Heads, Tails}, h) with

h(Heads, Heads) = 1 = h(Tails, Tails) and h(Heads, Tails) = 0 = h(Tails, Heads).

Suppose that P! = P? and suppose that, by contradiction, that there is an equilibrium
in the repeated game. For any player 1’s equilibrium strategy, player 2 has a feasible
function that simulate that strategy and so player 2 can generate a strategy that exactly
mismatch that strategy. Hence, the equilibrium payoff for 2 has to be 1. On the other
hand, a symmetric argument holds for any player 2’s equilibrium strategy and hence the

equilibrium payoff for player 1 has to be 1 as well. This leads to a contradiction. Part (b)

12There is no information about the existence of an equilibrium here, because in this case the existence

depends on the payoff specification.
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follows a similar logic. Although this intuition does not seem to rely on the computability
structure, assumption (A1) is indispensable in this proposition. Arbitrary restrictions on
players’ strategy sets will not, obviously, generate these results. The crucial observation

is that simulating the other player’s strategy is a computable operation.

As a corollary of Proposition 2.2, if an equilibrium exists and neither player fully ex-
ploits the other in equilibrium, then each player’s equilibrium strategy is not feasible for
the opponent and hence each player has a feasible function infeasible for the opponent.
This result gives a necessary condition for the existence of an equilibrium where neither
player fully exploits the other: players’ mental abilities have to be incomparable, or, in
symbols, Pt — P? = () and P? — P! # (). I call this condition mutual uncomputability.
This condition, however, does not seem sufficient. Consider the repeated game based on
matching pennies. Suppose that player 1 plays heads at odd periods and uses an uncom-
putable sequence (from player 2’s perspective) at even periods. The resulting strategy is
uncomputable from player 2’s perspective, but player 2 can easily exploit it by playing
tails at odd periods. This kind of partial predictions can be a barrier to equilibrium
existence. In the next section, I introduce another notion of complexity to resolve this

difficulty and obtain an existence result.

3 Complexity and unpredictable behavior

So far I have focused on the complexity of players’ mental abilities in terms of computabil-
ity. Through this notion a necessary condition is derived for the equilibrium existence,
but that condition does not seem sufficient. In this section I strengthen this condition
so that each player has a function that is not only infeasible for the other player, but is
highly complicated from the other player’s perspective. This condition is formalized with
Kolmogorov complezity, which measures how incompressible a function is. I show that if
each player has a function that is highly incompressible from the other player’s perspec-
tive, then there exists an equilibrium. After the existence result I give a characterization

of equilibrium strategies.

13



3.1 Kolmogorov complexity and existence

In this section I give a sufficient condition on players’ mental abilities that guarantee the
existence of an equilibrium in a repeated game with mental abilities. This condition on
mental abilities for existence is uniform across all repeated games with finite stage games,
and hence shows a close connection between complexity and unpredictability. The idea
for this sufficient condition comes from the Algorithmic Randomness literature.!> The
central theme in that literature is to find a satisfactory notion of random sequences, and
the goal is to identify crucial properties of a deterministic sequence that fit our intuition

of a random sequence. Computability structure plays a crucial role in its development.

For my analysis, the essential insight from that literature is the connection between
complexity and unpredictability—a sequence is unpredictable if it is complex. A more
precise notion of unpredictability, called stochasticity, will be discussed later in this sec-
tion; roughly speaking, a sequence is stochastic if there is no detectable statistical pattern
in it in terms of long-run frequencies. The notion of complexity is the prefix-free Kol-
mogorov complexity (Chaitin [7]), which refines the computability relation and measures
complexity of incomputable sequences according to their compressibility. Here I give a

quick overview of Kolmogorov complexity.

Kolmogorov complexity [15] measures the complexity of a finite object in terms of
its minimum description length for a given language. A language is a mapping from
words (typically finite strings over {0,1}) to objects that are to be described. Here
I consider the complexity of finite binary sequences o € {0,1}<N. Hence a function
L:{0,1}<N — {0,1}<N is called a language. Its domain consists of words and its range
consists of objects to be described. It turns out that prefiz-free languages give fruitful
results in terms of unpredictability (see, for example, Chaitin [7]). To formalize prefix-free
languages, we need partial functions L :C {0,1}<N — {0, 1}<N, which may not be defined
over some strings. The set of strings over which L is defined is called the domain of L,

denoted by dom(L). A languages L is prefix-free if its domain has the following property:

13For an overview of that literature, see Nies [23]. That literature begins with Kolmogorov [15], Martin-

Lof [19], and Chaitin [7], and the ideas can be traced back to ideas in von Mises [21].
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for any words o, 7 € dom(L), o is not an initial segment of 7. Notice that if a language
L is prefix-free, then L is a partial function, i.e., dom(L) # {0,1}<N. The Kolmogorov

complexity of a sequence o is defined as
Ki(o) = min{|7| : 7 € {0,1}N, L(7) = o},

and K (o) = oo if there is no 7 € dom(L) such that L(1) = o.

To apply the Kolmogorov complexity in my framework, a language is said to be feasible
for a player if, as an arithmetic function, it is computable from some feasible function for
that player. But to consider prefix-free languages, the definition of computability needs to
be expanded to incorporate partial function. This can be done with an extended version

of the minimization operator:

(3’) minimization: from function f obtain ¢ defined as

g(t1, ..., tg) =min{s : f(s,t1,....,tx) =0 and f(r,ty,...,t;) is defined for all r < s}
if for some s, f(s,tq,...,tx) = 0;

g(t1, ..., 1) is undefined otherwise.

Adding this new minimization operator as a basic operator, the definition of computability
in Definition 2.1 is extended to partial functions as well.!* A prefix-free language L is
feasible for P? if and only if f;, is computable from some g € P? under this new definition,

where f;, is the representation of L with codes for binary strings.!®

When P? consists of Turing computable functions only, there is a universal prefix-free
language among feasible functions for P that gives shortest descriptions asymptotically
and hence is an optimal language to use. However, this is not the case for general P%s.

One more assumption is added to guarantee the existence of a universal language:

Assumption A2 There is a function f* € P? such that any function f € P?is computable

from f*.

1411 the extended definition of computability, partial functions are also allowed in composition and

primitive recursion. In those applications, an output is defined only if all the inputs are.
150ne encoding is as follows: for the string o € {0,1}<N, the code for o is Z‘;l(;l(ot +1)2¢.
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Assumption (A1) gives a lower bound on what P has to contain; assumption (A2), on
the other hand, gives an upper bound. In particular, (A2) implies that P’ is countable.
Given (A2), it can be shown that there is a universal prefix-free language L™ for P’ in
the following sense: for any prefix-free language L for P?, there is a constant by, for which

K, pi(0) < Kr(0) + by, for all binary strings 0.

Now we can discuss Kolmogorov complexity from player ¢’s perspective. To apply
Kolmogorov complexity to functions, I translate a function into a binary sequence as
follows: first identify a function f with its graph {(0, f(0)), (1, f(1)),..., (¢, f(2)), ...},
which can be further identified with an infinite sequence &/ over {0,1}.17 It is known
that functions which are feasible have low Kolmogorov complexity: if f € P? then
limy,oo K, i (§/[T)/T = 0. On the other hand, sequences whose initial segments exhibit-
ing high Kolmogorov complexities are unpredictable. 1 borrow that insight and apply this

notion in my framework.

Definition 3.1. Let P’ be a set of functions satisfying (A1) and (A2). A sequence
€ €40,1} is an incompressible sequence relative to P' if there is a constant by, such that

for all T > 0, K, pi (£[T]) > T — by.

Two sets P!, P? are mutually complex if there are functions f! € P!, f? € P2 such
that for both ¢ = 1,2, ¢/ (recall that &7 " is the binary sequence corresponding to the
graph of the function f?) is an incompressible sequence relative to P~*. First I give a
proposition regrading the existence of mental abilities satisfying mutual complexity. Its

proof is given in Section 5.
Proposition 3.1. There are uncountably many different pairs of sets P! and P?* that

satisfy (A1), (A2), and mutual complexity.

Mutual complexity, together with (A1) and (A2), guarantees the existence of an equi-

librium, as stated in Theorem 3.1. Its proof is given in Section 5.

16The argument for the case where P! consists of Turing-computable functions can be found in Downey

et al. [10]. The general case is an easy extension of the arguments there.

1"More precisely, the infinite binary sequence &/ corresponding to f is defined as §tf =1 if and only if

t=2°%2f(s)+ 1) — 1 for some s.
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Theorem 3.1. (Eristence) Let g be a finite zero-sum game. Suppose that P, P? satisfy
both (A1) and (A2) and are mutually complex. Then there exists a (pure) equilibrium in
RG(g, P, P?) with the same equilibrium payoffs as those in the mized equilibrium of g.

The proof of Theorem 3.1 consists of two steps: first I give a lemma which states that if
mutual complexity holds, then for any frequency of actions, each player can generate a
sequence that is unpredictable from the other player’s perspective and is consistent with
that frequency. This lemma is rather technical and requires knowledge in the Algorithmic
Randomness literature. Then I give a theorem which states that any sequence that is
unpredictable and is consistent with a stage-game mixed equilibrium frequency is an

equilibrium strategy in the repeated game.

The precise notion of unpredictability that is relevant for the analysis here is called
stochasticity. To define this notion we need one more concept. For any given finite set
X, a selection function for X is a total function r : X<N — {0, 1}, which, as mentioned
earlier, can be identified with a total function over natural numbers.!® Given a sequence
€ € XN r can be used to choose a subsequence & from € as follows: & = q(t), Where
g(0) = min{t : r(£[t]) = 1}, and g(¢t) = min{s : r(¢[s]) = 1, s > g(t — 1)} for t > 0.1
Obviously, such a selection function may produce not an infinite subsequence, but only
a finite initial segment. I use A(X) to denote the set of probability distributions over
X with rational probability values, i.e., A(X) = {p € ([0,1]NQ)* : > xp. = 1}

Stochasticity is defined formally as follows.

Definition 3.2. Let p € A(X) be a probability distribution and let P be a set of functions.
A sequence £ € XV is p-stochastic relative to P if for any selection function r € P for X
such that £" is an infinite sequence,

T-1
1 =p, forall x € X,
im Z T p, for all =

T—oo
t=0

where ¢, (y) = 1 if z = y, and ¢,(y) = 0 otherwise.

18Selection functions are closely related to the notion of checking rules studied in Lehrer [16] and

Sandroni et al. [29]. The only difference is that there are no forecasts in my model.
197 at some ¢, there is no s > g(t — 1) such that r(£[s]) = 1, then g(t) is undefined.
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The following lemma states that if P! and P? satisfies (A1), (A2), and mutual com-
plexity, then each player can generate a stochastic sequence consistent with any frequency

relative to the other player’s mental ability.

Lemma 3.1. Let P’ be a set of functions satisfying (A1) and (A2). Suppose that & is
incompressible relative to P'. Then for any p € A(X), there exists a p-stochastic sequence

relative to P* that is computable from €.

The proof of this lemma is in the Appendix. In fact, two more powerful theorems (The-
orem 6.2 and Theorem 6.5), of which Lemma 3.1 is a direct corollary, are proved there
and will be useful for later results. Those theorems, which are more technical in nature
and requires more background knowledge, generalize the main results in Zvonkin and
Levin [31] in two directions. First, only binary sequences are discussed there while here 1
accommodate sequences based on any finite set. Second, results there only apply to only
stochasticity relative to Turing computability (which is the minimum set satisfying (A1)

and (A2)) while here the result applies to any set satisfying (A1) and (A2).

The next step is to show that if p € A(X) is an equilibrium mixed strategy in the
stage game for player 1, then a p-stochastic sequence will guarantee player 1 a minimum
payoff of the stage-game equilibrium payoff in the repeated game under mutual complexity.
Aside from the formal statement some informal arguments in the context of the matching
pennies game ¢M” may be useful. To simplify the arguments, let’s assume that players
can only use history-independent strategies. To be an equilibrium strategy, a strategy
€ € {Heads, Tails}Y has to satisfy the following condition: for any player 2’s strategy
¢, & can guarantee an overall payoff of % The crucial observation is that the strategy
¢ is equivalent to two selection functions rf and rT defined as r(t) = 1 if and only if

¢ = Heads and 77 (t) = 1 — rf(¢t) for all ¢t. If £ is (3, 3)-stochastic relative to P?, then

both §TH and frT have the same frequency (%, %) This guarantees that the payoff against
( is at least % Of course, one has to deal with history-dependent strategies as well in
the repeated game, and that is taken care of in the proof. Notice that in the definition of

stochasticity, the selection functions are history-dependent as well.
The following theorem (Theorem 3.2), whose proof appears in Section 5, shows that
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stochasticity is a sufficient property for a sequence to be optimal in repeated games under
mutual complexity. Here the constructed equilibrium strategies are history-independent:
a strategy (for player 1) a : YN — X is history-independent if there is a sequence £ € XN
such that for all o € YN, a(0) = §,). I identify such a strategy a with the sequence &.

Similar definition applies to player 2’s strategies as well.

Theorem 3.2. (Stochasticity as a sufficient requirement for optimality) Suppose that
P, P? satisfy (A1), (A2), and mutual complexity. For any player 1’s equilibrium mived-
strategy p € A(X) in g, the set of p-stochastic sequences relative to P? in X, which is not
empty, is a subset of player 1’s equilibrium strategies in RG(g, Pt, P?).

Theorem 3.1 is then a direct corollary of Lemma 3.1 and Theorem 3.2. Theorem 3.1
gives a sufficient condition on mental abilities for equilibrium existence that is uniform
across all games. Moreover, under mutual complexity, it shows that there exists an
equilibrium where neither player fully exploits the other (for repeated games whose stage
games have no equilibria), and hence, together with Proposition 2.2, it implies that any
equilibrium strategy is uncomputable from the other player’s perspective. But not every
uncomputable strategy is an equilibrium strategy. The rest of this section is devoted to

examine what kind of patterns could and could not exist in an equilibrium strategy.

3.2 Unpredictable behavior under mutual complexity

Here I give a tight characterization of equilibrium history-independent strategies in re-
peated games under mutual complexity. In addition to the fact that history-independent
strategies are easier to characterize, these strategies are of special interest in my context.
These strategies capture the intuition that in a repeated zero-sum game where unpre-
dictability is crucial for optimality, players would focus on avoiding exploitable patterns
instead of detecting patterns in the opponent’s behavior. The main results here suggest
that the criterion stochasticity is the crucial property, and that the usual i.i.d. requirement

of unpredictability is too strong for optimality.
The first theorem here gives a partial converse to Theorem 3.2. One more definition
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is needed for that: for any p = (p.)zex € A(X), € € XV is a p-sequence if for all z € X,

T-1
lirnT—>c>o ZtZOTCI(&) = Dz-

Theorem 3.3. Suppose that g has no pure equilibrium and that Pt, P? satisfy (A1), (A2),
and mutual complexity. Then, for any equilibrium p-sequence £ € X in RG(g, P, P?) and
any selection function r € P* for X such that {r(&[t])}2, is a (a, 1 — a)-sequence with

a <1, if & is a p'-sequence, then p' is an equilibrium mized-strategy in g.

Theorem 3.3, whose proof appears in Section 5, gives a stronger condition than un-
computability for sequences that have limit frequencies. It excludes all uncomputable se-
quences with limit frequencies that are inconsistent with any equilibrium mixed-strategy
of the stage game. However, it is clearly weaker than stochasticity. 1 am not able to
characterize equilibrium strategies without well-defined limit frequencies because they
seem to rely on how the long-run average criterion is extended to sequences of average
payoffs without limits. Moreover, different subsequences may have different limit frequen-
cies because of possible multiplicity of stage-game mixed-equilibria. If player 1 has two
equilibrium mixed-strategies p and p’ in g, then playing a p-stochastic sequence at odd
periods and playing a p’-stochastic sequences at even periods is an equilibrium strategy
in the repeated game. This naturally follows from the fact that any convex combination
of p and p’ is also an equilibrium strategy in the stage game.?° This issue, of course, does
not arise if the stage game has a unique equilibrium, and in that case we have p’ = p in

Theorem 3.3.

These results show that stochasticity is the relevant properties for optimality, but it
is not exactly those used in the empirical literature to test the equilibrium hypothesis in
the context of repeated zero-sum games. Instead, tests based on statistical regularities
according to the i.i.d. distribution generated by a mixed equilibrium of the stage game

are generally employed for that purpose.?! Stochasticity can be regarded as a subclass of

20T do not give a formal proof of this fact. However, the proof is available upon request.
21A statistical regularity can be regarded as a describable event that has probability 1. The term

‘describable’ can be defined with respect to the set of feasible functions in a similar fashion as I have done
for Kolmogorov complexity, and in the Appendix (Section 6.1) I give a formal definition of statistical

tests in this sense.
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those statistical regularities, but are all statistical regularities that are expected from an

i.i.d. distribution satisfied by the equilibrium strategies?

In the Appendix (see Theorem 6.2) I show that, under mutual complexity, there exists
an equilibrium strategy that satisfies all the statistical regularities with respect to the i.i.d.
distribution generated by a stage-game mixed equilibrium in the repeated game under
mutual complexity. Moreover, I show there that mutual complexity is also necessary for
that to happen. Here I show that there are equilibrium strategies that violate a particular
statistical regularity called the Law of the Iterated Logarithm (LIL). Consider a finite set
X and a distribution p € A(X). The ii.d. distribution u, over X" generated by p is
defined as follows: for all 0 € XN 1,({¢ € XN : 0 = ([|o|]}) = H‘t‘;‘glpat. LIL states
that the following condition holds for almost all £ in X (with respect to p,,):

T
T =T T

lim sup | 2=0 (&) —Tpa]

T—o0 +/2p.(1 — p,)T loglog T

(2)

This law gives the exact convergence rate of the frequency in an i.i.d. sequence. The
following theorem shows that there is an equilibrium strategy in the repeated game under

mutual complexity that violates this regularity. Its proof is given in Section 5.

Theorem 3.4. Suppose that P!, P? satisfy (A1), (A2), and mutual complezity. Let p*
be an equilibrium mized-strateqy of player 1 in g such that 0 < p; < 1 for some x € X.
There exists an equilibrium strategy & in RG(g, P, P?) that is p*-stochastic and satisfies

Mg Cal&) =Tr,
=00 \/2p3(1 — p3)T loglog T

(3)

Theorem 3.4 shows that, although certain patterns are detectable, it may not be
feasible to transform them into a strategy that exploits them. Moreover, this result shows
that, in repeated zero-sum games failure of certain statistical regularities does not entail
the rejection of the equilibrium hypothesis. As a result, the common practice which rejects

the equilibrium hypothesis by using statistical tests may require further reconsideration.

21



4 Discussion

This section discusses the implications of my results for the literature, and gives some
interpretations of Nash equilibrium in my framework. The discussion ends with a potential

extension.

4.1 Unpredictability in game theory

The proposed theory is intended to capture the intuition that unpredictable behavior
is optimal in repeated zero-sum games because it avoids detectable patterns. My ap-
proach formalizes this intuition with a model of players with limited mental abilities.
The main result is a sufficient condition for the existence of an equilibrium, which re-
quires players’ mental abilities be sufficiently complex relative to one another. Under this
condition, unpredictable behavior emerges in equilibrium. Unpredictable strategies are
optimal because the opponent has limited mental abilities and hence cannot detect pat-
terns to exploit them. Moreover, the characterization result suggests that stochasticity
is the relevant concept of unpredictability in repeated zero-sum games. Compared to the
standard theory of mixed strategies, in my approach equilibrium strategies are determin-
istic sequences and they are ex post optimal. The standard theory can only discuss the
probability of a set of sequences being observed in equilibrium, while my theory predicts

a definite set of sequences that would emerge in equilibrium.

Empirically, my approach gives different implications than the standard theory. First,
Turing-computable strategies are ruled out as equilibrium strategies. This result captures
the intuition that simple strategies are vulnerable to exploitations, and this approach
formalizes what simple strategies means by the computability structure. The standard
theory does not have similar implications. The second empirical implication is concerned
with statistical regularities in the context of repeated zero-sum games. It is generally
believed that only i.i.d. sequences are consistent with the equilibrium hypothesis. How-

ever, my results suggest that not all tests are relevant to the equilibrium hypothesis., but
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only those for stochasticity.?> They also show that not all detectable patterns can be

transformed into exploitable opportunities.

Of course, these empirical implications are subject to conditions on players’ men-
tal abilities. Unpredictable behavior emerges only if those abilities are mutually incom-
putable, and equilibrium exists with unpredictable behavior if those abilities are mutually
complex. These conditions are at least in principle testable (see Theorem 4.1 below).
Therefore, whether equilibrium unpredictable behavior will emerge becomes an empirical
question contingent on both players’ mental abilities. In the literature, there is some
empirical support of equilibrium unpredictable behavior in zero-sum games played by
professional players (Walker and Wooders [30], Hsu et al. [13], and Palacios-Huerta [26]),
while the results are generally negative in experiments. My results suggest that this dif-
ference, at least partially, is related to different mental abilities of the players in these
different situations. Experienced professional players may have developed sufficient com-
plexity in their mental abilities to handle relevant strategic situations in the field, while
players in experiments usually do not have sufficient experiences of the game being played

and of players they encounter.

4.2 Interpretation of Nash equilibrium

My model adopts Nash equilibrium as the solution concept. Here equilibrium can be
interpreted as a stability condition. Formally this condition says that, given the oppo-
nent’s strategy, no player has a profitable deviation. What is conceptually novel in my
framework, however, is about deviations that come from detectable patterns. In games
such as matching pennies, only this kind of deviations is relevant. Equilibrium guarantees
that there be no detectable pattern in the opponent’s strategy that is not used to increase
a player’s payoff, and thus can be interpreted as a stability requirement in the sense that

the system has no detectable pattern that is not exploited.

22Tests based on checking rules may be useful to develop tests for stochasticity. However, the extant
literature on checking rules (see, for example, Lehrer [16] and Sandroni et al. [29]) focuses on testing

experts and hence may not be directly applicable.
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A related interpretation appeals to the maximin criterion. In a zero-sum game, a
strategy is an equilibrium strategy if and only if it maximizes the security levels, defined
as the minimum payoff that could result from playing that strategy. If players in a
repeated game are convinced that mutual complexity holds, then Theorem 3.2 gives a
recipe to construct the optimal strategies out of the incompressible sequences (relative to
the opponents’ abilities) they have.? The following theorem, which is proved in Section

5, shows that mutual complexity can be verified at least in principle:

Theorem 4.1. Suppose that P! and P? satisfy (A1), (A2), and mutual complexity. There
is a sequence & € {0, 1} in Pt such that, if ( € P? is incompressible relative to T, then
ED( defined as (£ D)oy = & and (£ D ()orr1 = ( for all t € N is incompressible relative
to T .24

Theorem 4.1 gives several potentially falsifiable implications of mutual complexity. First,
both players have a feasible incompressible sequence (relative to Turing computability).
Moreover, among these pairs of incompressible sequences, at least one of them can be

combined into a incompressible sequence.

4.3 Extensions to finite sequences

Many results in the paper can be extended to finitely repeated games. One approach to
accomplish this is to consider asymptotic properties of unpredictable behavior in long but
finitely repeated games. One way to model mental abilities in finitely repeated games
is to give resource restrictions on players’ computational powers but maintain the basic
structure of mutual complexity. The proof of Theorem 3.2 suggests that, given any
resource restrictions, any pair of equilibrium strategies that are stochastic also constitute

an g-equilibrium in a long but finitely repeated game (taking their initial segments as

23 Another interpretation is to take P* and P? as technological constraints on strategy implementation
instead of as mental abilities, such as in Chatterjee and Sabourian [8]. Under this interpretation players

can be free from mental constraints, and Maximin principle is directly applicable.
24Recall that T is the set of Turing-computable functions. It is also the minimum subset (in terms of

set-inclusion) of F that satisfies both (A1) and (A2).
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the strategies in the finite game) with ¢ vanishing as the length of the game approaches
infinity, as long as that pair is feasible as well. Notice that if e-equilibrium can be obtained
in a finitely repeated game, then e-equilibrium with discounting is not hard to get by

manipulating the e’s.

5 Proofs

Proof of Proposition 2.1: Because the stage game g has no pure equilibrium, v, =g
max,e x Minyey h(x,y) < v3 =gep mingey max,ex h(z,y). Suppose, by contradiction, that
(a*,b*) is an equilibrium. Let ¢ = max(, )exxy |h(x,y)|. For each T' € N, I will construct
a strategy b” € Y such that vy(a*,07) < vy + 67 (c —vy). b7 is constructed as follows:

for all o0 € X<N pT (o) = Y¢p» With ¢ defined as

(o = min{i : y; € arg mi}r/l h(a*(€),y)}(e is the empty string); (4)
ye
fort=1,....,T,  =min{i: y,; € argmi}rfl h(a*(yc[t]),y) }:
=

fort >T+1, ¢, =1.

Because (; is constant for all t > T', ¢ € P? and so bT € Y. For each T,

T o)
v(a* b)) < (1=6)) o+ (1-68) Y e=wv 4+ (c—w).
t=0 t=T+1

Because (a*,b*) is an equilibrium, v(a*, b*) < v(a*,b7) < vy + 67 (c — v;) all T. Hence,
v(a*,b*) < lim v, + 6" (c—v)) = vy.
T—o0
Symmetrically, v(a*,b*) > vy. It follows that v; < vy < wv(a*,b*) < vy, a contradiction. O
Proof of Proposition 2.2:

(a) This part is implied by part (b) as follows. Because g has no pure equilibrium,
U1 = MaXgex Minyey h(z,y) < mingey max,ex h(z,y) = vo. By part (b) implies that,
if equilibrium exists, the equilibrium payoff of player 1 is v; if P* C P? while it is vy
if P2 ¢ P So P! = P? implies that, if equilibrium exists, v; = v,. This leads to a

contradiction.
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(b) Index the actions in X as X = {x1,...,x,,}. Suppose that there is an equilibrium,
and hence the equilibrium payoff for player 1 is infyey sup,cy un(a,b). I will show that
for any b € Y, there is strategy o’ € X’ such that uy(a’,b) > vy. Given b, a’ is constructed

as follows: for all o € Y<N, d/(0) = 2, with ¢ defined as

(o = min{i : z; € arg max h(z,b(e))}, and
TE

fort >0, ¢, = min{i : z; € arg max h(x,b(zc[t]))},

with z¢[t] = (x¢, e, 1) ¢ € P? because b € P? and P? is closed under com-
putability. a' € X because P? C P'. By construction, for all ¢ € N, h(¢;, b(z[t])) >
mingey maxgex h(x,y) = vyo. Hence, up(a’,b) > liminfr . vy = vy It follows that
SUp,ex un(a,b) > ve. Now, let y* € arg ming,ey (max,cx h(z,y)). Let b € P? be such that

b(t) = y* for all 7 € X<N. Then sup,cr un(a,b) = vy and minyey sup,c v up(a,b) = vy. O

Proof of Proposition 3.1: (In this proof I use Martin-Lof randomness [19]; its definition
and basic properties are presented in Section 6.1.) By Theorem 6.1, for any &,¢ € {0, 1},
if £ is p1(1 1)-random relative to C (¢) (C(¢) denotes the set of functions computable from
(), then ¢ is incompressible relative to C'(¢). Moreover, by Theorem 12.17 in Downey et
al. [10], if € & ¢ (where £ ® (ot = & and £ B (o1 = G for all ¢) is u(%é)—random, then
y-random relative to C'(¢) and vice versa. Hence, C(§) and C(() are mutually

complex. Now, by Proposition 6.1, the set

A={{Dd(:{D (s p 1yrandom} C { @ ¢ : C(§) and C(¢) are mutually complex}

11
272

has measure 1. Therefore, the set A is uncountable. Because for any &, the set of sequences
¢ such that C(§) = C(&') is countable, there are uncountably many different pairs of sets
satisfying (A1) and (A2) that are mutually complex. O

Now I turn to the existence results. As mentioned in Section 3, Lemma 3.1 is a direct
corollary of Theorem 6.2 and Theorem 6.5 in the Appendix and hence its proof is skipped.
To prove Theorem 3.2, I first give a lemma (Lemma 5.1) concerning expected values that
is used repeatedly in what follows. Recall that Theorem 3.1 is a direct corollary of

Lemma 3.1 and Theorem 3.2.
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Lemma 5.1. Let X be a finite set. Suppose that P satisfies (A1) and (A2). Letp € A(X)
be a distribution and let h : X — Q be a function. If € is a p-stochastic sequence relative

to P, then, for any selection function v for X in P such that & € XV,

Tl
Zh

zeX

T—>oo

Proof. Let r be a selection function in P such that &” € XN. Then, for any z € X,

limz 00 ZT .= ét) = p,. Therefore, limp_, ZT L A ét =limy 00 ) Lex f:_ol —Cz(étTT)h(x) =

Y sex Poh(T). O

Proof of Theorem 3.2: For any strategy profile (a,b) € X x Y, let 8¢ be the sequence of
actions obtained by playing this profile, i.e., 7" = (#2"% 62" with 62" = a(6**Y[t])
and 02" = b(*>X[t]). By Lemma 3.1, there exists a p*-stochastic sequences &* € X
relative to P? and a ¢*-stochastic sequence ¢* € Y relative to P!. I show that (£*,(*) is

an equilibrium (as history-independent strategies).

First I show that for all a € X,

T-1 *
. h(67¢)

lim su 5
T—>oop =0

< h(p*, q"). (5)

Suppose that a € X, and so a € P'. For each x € X, let r® : Y<N — {0,1} be the

selection function such that r*(o) =1 if a(o) = z, and r*(c) = 0 otherwise. Define
L (T)=[{tcN:0<t<T—1, r*(C*[t]) = 1}| and ¢* = (¢*)"".
It is easy to see that r® is in P* because a is. Let
:{xeX:Tlil%oLx(T):oo} andSQZ{wGX:leI;OLx(T)<m}.

For each © € &2, let B, = limy o L,(T) and let C, = 3272 h(z,¢F). Then, for any
r € £, by Lemma 5.1, limp_,o ZT ! M = h(z,q*) < h(p*,q¢*). (Because (p*,q*) is

an equilibrium of the game g, h(z,¢*) < h(p*,¢*) for all z € X.)

I claim that for any ¢ > 0, there is some T” such that T" > T" implies that
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Fix some € > 0. Let T} be so large that 7" > T} implies that, for all z € £!,

£
<h(P", ") + 57 (7)
X

and, for all x € &2, % < . Let T" be so large that, for all x € &, L,(T") > T;. If
T > T', then

S ), ) Lo(T) "N~ b, G) s TN Bl )
— T - ; T tz LI(T) o ; T
L,(T) .
S; + (h(p" +|X| +;& 7) +e. (8)

Notice that L, is weakly increasing, and L,(T) < T for all T. Thus, T" > T’ implies
that L,(T) > L,(T") > T, and so T" > T;. This proves the inequality (6), and it in turn

implies (5).

Now I show that (£*,(*) is an equilibrium. Inequality (5) implies that for all a € X,

aC
hnig;fz UG (p*,q"). 9)

Symmetric arguments show that for all b € Y, limsupy_,. ) _h(eT B < —h(p*, q%),

where £* is identified with the strategy a* is such that a*(c) = {, for all o € Y<N. This
implies that for all b € Y,

T-1

h(p*, q"). (10)

By (9), for all a € X, up(a,¢*) < h(p*,q*). By (10), for all b € Y, up(£*,0) > h(p*, q*).
Therefore, u,(£*,¢*) < h(p*, q*) < up(€,¢*). This, together with (9) and (10), implies

that (£*,(*) is an equilibrium.

On the other hand, if ¢ € X is a p’-stochastic sequence for some equilibrium mixed-
strategy p’ in g, then, because g is a zero-sum game, h(p’,¢*) = h(p*, ¢*). All the above

arguments hold for (¢, (*) as well and hence ¢’ is also an equilibrium strategy. O

Proof of Theorem 3.3: I consider two cases (recall that {r({[t])}2, is an (a, 1 — a)-

sequence with a < 1, £ is an equilibrium p-sequence, and £" is a p’-sequence):
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Case 1: limy o, 3.1 7(£[t])/T = 1. Suppose, by contradiction, that p' is not an equi-
librium mixed-strategy of g. Then for some action y; € Y, h(p',y1) < v, where v is the
equilibrium payoff for player 1 in g. Then the sequence y; can be identified with the
strategy b defined as b(c) = y; for all 0 € X<N. Let 1 — r be the selection function such
that (1 —7)(c) =1 —r(o) for all 0 € X<N, and let S(T) = 3/ r(£]t]) for all T € N.

1—r
Then, limy_,o, ZT 1 h(€,y1y) = limge,o Zt o -1 h(ét Y1) + limy o ZT S(T)-1 h(stT, U

T
(T)—1 h(ft v1) = limp_, th() - %hmT%O@ ST = h(p',y) <w

Let C = max,exyey |h(w,y)]. Then, YISO e )l o @=Sm)C

Clearly, limp_, Z P

— 0, and so

1—r
limy_, o ZT S(T)=1 M = 0. Therefore, u;(£,y1) < v and hence ¢ is not an equilib-

rium strategy, a contradiction.
Case 2: limr o0 Y, r(€[t])/T=1—a < 1.

First I show that the sequence £7" has limit relative frequency for all x € X. For

each x € X (recall that p, = limy o >, & & and S(T) = >.,_, r(&[t]) for all T € N),

M2 M2 T T 5T
G —rER) = T
= fim £ T jm > 7 S(T)
T-1 T-1 T-1
~ (lim &) N @l | S )) Jim T
T—0c0 — T T—0c0 — S(T) T—oc0 T—00 — T — S(T)

Suppose, by contradiction, that p’ is not an equilibrium mixed-strategy of g. Then for
some action y; € Y, h(p,y) < v, where v is the equilibrium payoff for player 1 in g, and
for some action y» € Y, h(£(q — (1 — a)p), y2) < v. Define b € Y as follows: b(c) = y; if
r(0) =1 and b(c) =y if 7(¢) = 0. Then (S(T) = 3., r(£[t]) for all T € N),

T—=1, b S(T)-1 .. T-S(T)~1 , , 1_,
h(67") _ . hELy) h(& ", y2)
;g;T-wg;—Tﬂg;;—ﬁf—
S(T)—1 T—8(T)—
_ h& y) . S(T) ,yQ) . T —5(T)
= 2 Tgay AT pr T A
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1
— (1— )h(p. ) + ah(+(q — (1= ap).) <v
Therefore, uy,(€,b) < v and so £ is not an equilibrium strategy, a contradiction. O

Proof of Theorem 3.4: (I use the Martin-Lo6f randomness directly in this proof; see
Section 6.1 for a formal definition.) Recall that p* is an equilibrium strategy with 0 <

pi < 1. Let 2’ # x be such that p, > 0. Such 2’ exists because p} < 1.

For any real number s, let LsJ be the largest integer less than or equal to s. Construct

the sequence p = (p°,p',...) as follows (7 is the smallest ¢ such that (t**, > —):

T

(a) pl, = p} if y # = and y # 2;

T

(b) pt =ptif t <t and pt = p — Lto—l% otherwise;
(c) pt, = pi if t <7 and p, = pi + -5 otherwise.

By construction, p! = 0 if and only if p¥ = 0, and lim,_,, p* = p*. Clearly, p is com-
putable. By Theorem 6.2, there is a pp-random sequence ¢ relative to P? in P'. Now,
let Xo = {y € X : p, > 0}, then the sequence ¢ is pp-random can be regarded as a
sequence in X|\. Therefore, Theorem 6.5 is applicable and so £ is p*-stochastic. Thus, by
Theorem 3.2, ¢ is an equilibrium strategy for player 1 in RG(g, P!, P?).

By Theorem 6.6,

lim sup |Zt = (CI(&) ;)| =t (11>
T—00 Q(Zt o px( —pt))loglog \/_Zt 0 pL(1—pL))

7 _Tie@ T SleE) el ¥

For any T >t = .
Y " \/2Tp;(1—-p;)loglog T /2Tp3(1—p;)loglog T~ \/2Tp3(1—p;)loglog T

I claim that

T-1 1

lim t=t+1 (04, = 00: (12)
T—oo \/2Tp%(1 — pt) loglog T

and there exists some B > 0 such that for all T" large enough,
T-1 ot
V2Tpi(1 — p;)loglog T

The theorem follows directly from (12) and (13).
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Now I prove the claim. For all ¢, .t%41 < %% and so 7z < —5r. Then,

~
L
=

1 -1 1 T-1
>y = > / e e —1> (T —1)*° —2.
il B =1

Therefore, for T' large enough,

T-1 1

[ S 0 5T0.6 TO.l
t=t+1 04 > . — C (14>
V2T px(1 —pr)loglog T — +/2Tp:(1 — px)loglog T Vloglog T
for some constant C' > 0. Because limy_,«, % = 00, (14) implies that (12).
Because of (11), to prove (13), it suffices to show that for T large enough,
V2T (1 - p)) loglog /(50 pi(1 —pt) )
V2T pi(1 — p2)loglog T
is bounded. Now, for T" large enough,
T—1 1y -1
SRR =Tl -+ @~ 1) Y e — Y () (16)
=0 t=t+1 t=t+1

Because for t large enough, $t%4 < %%, there is a constant A > 0 such that

T—1
> t04 < Z—+A<2T°6+A
t=t+1 t=t+1

Similarly, there is a constant A’ > 0 such that

-1 1y
2 / 0.2 /
t=t+1 t=t+1
T—1 * * ’
Hence, W < 1+T°'24|12)1£?1_—1;);) + |2£;£(11|i4£;‘ + 70w 461 Ty and so, for T" large enough,

T—-1
ZA}W < 2. Equation (16) also implies that, for T" large enough,

T-1
> ph(1—pl) < (2125 — 1| +5+pi(1—p)T = AT,
t=0
and hence
T—1 ¢ ot "
log log \/_Zt o PL(1—pl)) < log(log T+ log A”) < log2 + loglog T
loglog T - loglog T - loglogT
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loglog /(125" vt (1-p}))
loglog T’

So for T' large enough, < 2. Thus, the expression in (15) is bounded

by 2, and this proves (13). O

Proof of Theorem 4.1: (I use the Martin-Lof randomness directly in this proof; see
Section 6.1 for a formal definition.) Let £ € P! be incompressible relative to P2 ¢
exists because of mutual complexity. Let ¢ € P? be incompressible relative to 7. This is
equivalent to say that £ is ML-random relative to ¢ and ¢ is ML-random in Nies [23] (see
also Section 6.1 for a definition of ML-randomness and its basic properties; in Nies [23],
ML-randomness refers to ML-randomness w.r.t. the uniform distribution). By the van
Lambalgen’s theorem (Theorem 3.4.6 in Nies [23]), £ & ( is then incompressible relative
to 7. O

6 Appendix

The Appendix gives some preliminary background knowledge in Algorithmic Randomness
(for a comprehensive overview of that literature, see Nies [23]) and presents some results
that are extensions of extant results in that literature. Results here are technical in nature

but are extensively used in the proofs in the first part.

6.1 Martin-Lof randomness

Here I discuss Martin-Léf randomness [19] (henceforth ML randomness) that is used in
various proofs in Section 5. This concept defines random sequences in terms of statistical
regularities. Its definition begins with a formulation of idealized statistical tests, which
requires some further notations. Let X be a finite set. The set of infinite sequences XN
over X is endowed with the product topology. Any open set can be written as a union of
basic sets, where a basic set has the form N, = {¢ € X" : o = ([|o]|]} for some o € X<N.

A formal definition of ML-randomness is given in the following.

Definition 6.1. Let X be a finite set and let P be a set of functions satisfying (A1) and
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(A2). Suppose that u is a computable probability measure over X% i.e., the mapping
o — u(N,) is recursive. A sequence of open sets {V;}°, is a p-test relative to P if it

satisfies the following conditions:

(1) There is a function f: N — N x X<Nin P such that for all t € N,
V= J{No - Gn)(f(n) = (t,0))}-

(2) For all t € N, p(V;) < 271

A sequence & € XN is p-random relative to P if it passes all u-tests relative to P, i.e., for

any pi-test {V;}52, relative to P, £ ¢ (2, Vi

The crucial part of this definition is to define a “describable” event with probability
1.26 Martin-Lof [19] defines “describable” by saying that an event with probability 1 is
describable if there is a constructive proof for that fact. A test {V;}°, is used to establish
the statistical regularity corresponding to the complement of (2, V;. Conditions (1) and
(2) require that this test, as a sequence of open sets, be generated by functions in P,
and hence is constructive with respect to P. A sequence is random if it passes all such
tests. If P satisfies both (Al) and (A2), then for any computable probability measure
i, the set of p-random sequences relative to P has probability 1 with respect to u (see
Downey et al. [10]), as stated in the following proposition. Its proof for a special case
can be found in Martin-Lof [19] (with some minor modifications to accommodate general
computable measures). See also Nies [23], p.123. The proof can be easily extended to

cover the general case.

Proposition 6.1. Suppose that X is a finite set and ji is a computable measure over X™.

Let P satisfy (A1) and (A2). Then u({€ € XN : € is p-random relative to P}) = 1.

25In the definition, I implicitly assume that (N, ) is always a rational number for u to be computable.
In the literature, the computability of a measure is defined more generally, but this definition is sufficient

for my purpose.
26The quantifier “describable” is necessary (because there exists no sequence belonging to all events

with probability 1), but hard to define.
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Here the most relevant measures are Bernoulli measures, measures generated by a distri-
bution over X in an i.i.d. manner. In what follows, ML-randomness, without reference to

a specific probability measure, means ML randomness with respect to an i.i.d. measure.

6.2 Generating random sequences

Here I give a theorem which shows that incompressible sequences can be used to generate
ML-random sequences. I first cite a result (Theorem 6.1) which shows that a sequence is
incompressible if and only if it is random w.r.t. the uniform distribution. Its proof can

be found in Nies [23], p. 122.

Theorem 6.1. Suppose that P satisfies (A1) and (A2). Then, £ € {0,1} is an incom-
pressible sequence relative to P if and only if £ is a A-random sequence relative to P,

where A(N,) = 271! for all o € {0,1}<N,

The next theorem (Theorem 6.2) is the main result of this section. It shows that, if
mutual complexity holds, each player can generate a pip-random sequence relative to the
other player for any p, where pu, is defined as pp(0) = Hi‘ialpt(at), with p = (p°, p!, ...)
being a sequence of probability measures over X. The proof for the case | X| = 2 can be
found in Zvonkin and Levin [31]. T follow a similar logic, which is based on a computable
version of the well-known result that one can generate a random variable with an arbitrary
distribution function from the uniform distribution. In the following theorem and the

subsequent pages, I assume that p is computable and p!, > 0 for all z € X and all t € N

unless stated otherwise.

To prove this theorem, some additional tools from Recursion theory is necessary. For
my purpose here, it is more convenient to consider Turing machines with oracle inquiries
(c.f. Odifreddi [24]). Given a finite set X, an element ¢ in XV is regarded a Turing oracle.
Thus, if P satisfies (A1) and (A2), then P = {f : N* — N| f is computable from ¢} for

some oracle £.27 Here, however, I consider also partial functions. I use C(£) to denote the

2"By (A2) we know that this is true for some total function f; we can then use the graph of f, which

is also computable from f, to construct the oracle £. For more details, see Odifreddi [24].
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set of partial functions that are computable from &, and gpékm denotes the partial function
that is computed by the machine with Goédel number e and with oracle £. It is known
that the predicate gog? ’E[S}(tl, ..., tg) = r, which indicates whether the machine with index
e halts (using (1, .., ) as inputs and & as the oracle) within s steps and produce output
r, is computable. If it halts within s steps, then it is denoted by gogks) el (t1,...,tg) 4. This
result is usually called the Enumeration Theorem in the literature (see Downey et al.
[10]). T can then define recursively enumerable sets, which will be useful in what to come.
Consider a sequence {V;}22, of subsets of XN. Such a sequence is recursively enumerable

in €, or is of LV if there is a total function f: N — N x X<N in C(¢) such that for all
t € N and for all ¢ € XV,

¢eVie ([@n)(f(n) = (t,0) Ao = ([lo]]). (17)
In this case, there is a total function h € T such that?®

¢ €Vie [@s)phr0) |, (18)

This result transform the relation in (17) into a parameterized form in (18).

Theorem 6.2. Suppose that P satisfies (A1) and (A2). Let X be a finite set. Suppose
that &€ € {0,1} is an incompressible sequence relative to P. Then, there is a jp-sequence

¢ € XV relative to P in C(§).

Proof. First I remark a known fact: there is a A¥-random sequence & € XY relative to
P that is in C(€), where AX(N,) = | X|7I°l for all 0 € X<V (i.e., the uniform distribution
over XM). For a proof, see Calude [6], Theorem 7.18.

I will construct a partial computable functional ® : XN — XN such that if ¢ is a
A¥-random sequence, then ®(¢') is a pp-random sequence. @ is constructed through a

computable function ¢ : X<V — X <N such that

for any o,7 € XN, ¢ C 7 implies ¢(c) C ¢(7). (19)

28This follows directly from the Parametrization Theorem for relative computability. See Downey et

al. [10] for a more detailed discussion.
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Then I define ® as ®(£); = ¢({[min{k : |¢(£[k])| > t}]):. Notice that ® is well defined if
limy o ¢([t]) = 0o and it outputs a finite sequence otherwise (i.e., for large t’s, ®(§); is

not defined). I will show that & satisfies the following properties:
1. ® is well-defined over any sequence in X~ that is not computable.
2. XX (®71(A)) = pp(A) for any measurable A.
3. If ¢ is a A¥-random sequence, then ®(¢’) is a pp-random sequence.

(Construction of ¢) ¢ is constructed through the distribution function of pp. Define
the mapping I between X and [0, 1] as
- 1
I'(¢) = Z L(Q)ﬁ,
=0
where X = {z1,...,2,} and «(z) = i—1 if and only if x = z;. I is onto but not one-to-one.

However, the set {¢ € XY : T'(¢) = I'(¢’) for some ¢’ # ¢} is countable, since for any such

¢, T'(¢) is a rational number. ' can be extended to X <N by defining I'(o) = LU:'()_l ;(ffl)

Given I', there distribution function of u, over [0, 1] is defined by g : [0,1] — [0,1] as

9(r) = pp({C: T(C) < 7}).

Define h = g~ '; h exists because u, has no atoms. Therefore, r < g(s) if and only if

h(r) < s. Hence,

pp(T7H([0,7])) = g(r) = AX(TH([0,g(r)]) = A* (T (R7H([0,7])))-

Now I construct the function ¢ using the distribution function g. The idea of con-
struction is the following: Because ¢ is continuous, any open interval has a converse that
is also open. Because each finite sequence in X <N can be regarded as an open interval,
it can be mapped into another via g. As the length of the finite sequence increases, the

interval shrinks and finally the functional ® obtains.

Let € be the empty string. Define ¢°(¢) = 0 and g'(¢) = 1. For 7 € X<N — {¢}, define

(>-0=0) 1
9"(r) =Y {pp(No) : T(0) < T(r) = =, |o| = |7[};

nlrl’
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g'(r) = {np(No) : T(0) < T(r), Jo] = |7]}.
For any ¢ € X, I'(¢) < I'(r) if and only if I(¢[|7]]) < T'(7) — =& or T'(¢) = I'(7), and
I'(¢) < T(7) + == if and only if T(¢[|7]]) < T(r) or I'(¢) = I'(7) + —i=. Because j, has
no atoms, g°(7) = g(I'(7)) and g'(7) = g(I'(7) + —15). Therefore, for each ¢ > 0, the class

of intervals
{[8°(),g" (7)) : 7 € X<V, || =t} (20)

forms a partition of [0, 1].

Construct ¢ as follows: given a string o € X <N (recall that | X| = n), let

1

a, =I'(0) and b, =I'(0) + T

Let ¢(o) be the longest 7 with |7| < |o| such that [a,,b,] C [¢°(7), ¢*(7)]. ¢(o) is well-
defined, because the intervals in (20) forms a partition and [¢°(¢), g'(€)] = [0, 1]. Clearly

¢ is recursive.

(¢ satisfies property 1.) First I show that ¢ satisfies (19). Suppose that ¢ C o’
and 7 = ¢(0), 7 = ¢(0’). It is easy to check that a, < a, and b, < b,. Now, if
L) > T(r) + ﬁ, then a,r > ¢°(7') = g(T'(7")) > g(T(7) + -) = g'(7) > by > by, a

n‘7'|

1

n“’“ .

contradiction to a, < b,. Hence, I'(7") < I'(7) +

By construction of ¢, |7/| > |7|. If I'(7') < ['(7), then I'(7") < T'(1) — —, and hence,

n"’" ?

by < by < gH(7) = g(T(7') + =) < g(D(7)) = ¢°(7) < ao, a contradiction to a, < b,.

n‘T/‘

Therefore, T'(1) < T(7') <T(7) + -7 and so 7 C 7.

Then I show that, for any sequence ¢ such that h(I'(¢)) # 7 for any m, n,t € N (recall
that h = g7 1), lim;_, ¢(C[t]) = oo. Consider any such ¢. For any given K, there exists
some [ € N such that h(T'(¢)) € (=%, 52). Let

e = min{h(D(Q)) — . ot ~ AT}

Because h is continuous, there is some 7T such that ¢ > T" implies that

min[A(bgq) — H(O(C))] IB((Q) ~ hlaga)l} < 5 and so [hlag). hlbcig)] € (. o)
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Thus, if t > max{T, K}, then

l [+1

laci, beg] € [g(n_K)’g(n—K)] = [90(—;()791(—;()]7

and so |¢(¢[t])| > K. Clearly, any sequence ¢ that satisfies h(I'(¢)) = % for some m,n,t €

N is computable, and so if ®(() is not well-defined, ¢ is computable.

(® satisfies property 2.) I first claim that if ® is well-defined over { (the set of such
(’s is denoted by D(¢)), then I'(®(¢)) = h(I'(¢)). Let £ be given, and let K be so
large that ¢ < # Since ( € D(¢), there exists T such that t > T implies that
[¢(C[t])] = K. Then, for all t > T, h(I'(()) € [h(acpy), h(bey)] € lasc), bec], and so
h(I(¢)) = T((C[t]) < 7r < e Thus, T(2(C)) = limye0 T((C[t])) = R(T'(C)). Moreover,
for almost all 7 € [0, 1] (except for countably many of them), there is a sequence ¢ € XN

such that I'(®({)) = r, because h is strictly increasing and is continuous. Also,
L(2(¢)) = [(2(¢")) & () = T(¢). (21)

I show that Ay = pp by demonstrating that they share the same distribution function

g, where A3 (A) = XX (®71(A)): for any (*,
Ao ({¢:T(0) < T(R(¢M))}) = A ({¢: T(2(Q)) < T(2(C)})

=M ({C:T(¢) ST(¢}) =T(¢") = g(T(2(¢M)).

(Recall that, for all but a countable set of numbers r € [0, 1], there is a (* such that
['(®(¢*)) = r. The gaps may be filled by assigning arbitrary values on ® when it is not
well-defined. The first equality comes from the definition of A\ and the second comes

from equation (21).)

(® satisfies property 3.) Recall that ® is well-defined over any incomputable sequence.
Thus, if £ is AX-random relative to P, £ € D(¢). Let ¢’ = ®(¢'). Now I show that ¢’ is
pp-random relative to P. Suppose not. Then there is a up-test {V;}2, relative to P such
that ¢’ € (2, V4. Specifically, suppose that P = C(n) for some n € {0,1}* and for some
total function A in T,

Vo ={C: 3s)ehy®0) 1.
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Define U; as (0 @ 1oy = 0 and 0 @ 79,1 = 7, for all ¢t < |o|; the function does not halt if

9(C)] < 9)
Ur = {¢: (39)3 )y 0) 43

Because ¢ is computable, {U;}22, is of X", It is easy to check that
®~' (V) N D(¢) C Uy C ©7H(V;) U (X" — D(9)).

Because A¥(D(¢)) =1 by property 1, for all t, AX(U;) = pp(V;) < 5.

Therefore, {U;}2, is a A*-test relative to P. But &' € ()2, Us since ¢’ € (2, Vi, a

contradiction. Since ¢ is computable, (' € C'(¢') € C(€). ]

Here I show that there is always an equilibrium strategy in the repeated game un-
der mutual complexity that satisfies all statistical regularities with respect to the i.i.d.

distribution generated by the stage-game mixed equilibrium.

Theorem 6.3. Suppose that P', P? satisfy (A1), (A2), and mutual complexity. Let p*
be an equilibrium strategy of player 1 in g. There exists an equilibrium strategy & € X for

player 1 that is p,y-random relative to P? in RG(g, P, P?).

Proof. Let p be an equilibrium strategy of player 1 in g. By Theorem 6.2, there exists a
py-random sequence relative to P? in X. By Theorem 6.5, such a sequence is p-stochastic

and hence is an equilibrium strategy in both the repeated game. O

6.3 Martingales and stochastic sequences

Here I prove that any pp-random sequence is p-stochastic if lim; o, p* = p. This requires

a new concept called martingales, defined as follows.

Definition 6.2. Let X be a finite set and let p = (p° p',...) be a computable se-
quence of distributions over X such that p, > 0 for all x € X and for all ¢ € N.
A function M : XN — R, is a martingale with respect to u, if for all 0 € X<N,

M(o)=>,cx p'f'M(a(I)) (o(x) denotes the sequence that adds = to ¢ in the end).
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Let P C F satisfy (A1) and (A2). A martingale M is P-effective if there is a sequence of

martingales {M;}$°, that satisfies the following properties:
(a) My(o) € Q, for all t € N and for all 0 € X<N;

(b) the function g defined as ¢(t,0) =qe5 M;(0) belongs to P;
(c) lim; oo My(0) 1 M (o) for all ¢ € X<N.

In this case, the sequence {M,}?°, is said to support M.

The following theorem characterizes randomness in terms of martingales. The proof
for a special case of this theorem can be found in Downey et al. [10]. I provide a short

sketch of the proof for self-containment.

Theorem 6.4. Suppose that P satisfy (A1) and (A2). Let p be a computable sequence
such that pt. > 0 for allz € X and for allt € N. A sequence & € X" is up-random relative

to P if and only if for any P-effective martingale M w.r.t. py, limsup,_, . M(£[t]) < oo.

Proof. (=) Suppose that limsup;_,. M ([T]) = oo and M is a P-effective martingale.
Let V, = {&: (3s)(M(&[s]) > 21)}. Tt is easy to show that for any o and any prefix-free
set AC{r:7Co}, Y catp(N)M(T) < pip(Ny)M(0). Thus, pup(Vy) < 5. It is routine
to check that {V;} is a pp-test relative to P because M is P effective. Then & € (2, V4

and hence is not pp-random.

(<) Suppose that £ € (2, Vi for a pp-test {V;} relative to P. Let M*(c) = pp(Vi N
N,)/pp(Ny) and let M = Y72 M*. It is routine to check that M" is a martingale.
M(e) =20 ip(Ve) = 1 and for any o, M*(0) < M(e)/pp(N,) and so M is well-defined.
It is easy to show that M is P-effective because {V;} is a up-test relative to P. & € (2, Vi
implies that lim sup,_,.. M (¢[T]) = oo. O

Here is the main result of this subsection. Theorem 6.5 shows that any pp-random
sequence is also p-stochastic. As a corollary, any p,-random sequence is also p-stochastic.

Moreover, by Theorem 6.2, if mutual complexity holds, then each player can generate
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a pp,-random sequence for any p relative to the other player and hence can generate a

p-stochastic sequence relative to the other player.

Theorem 6.5. Suppose that P satisfies (A1) and (A2). Suppose that & is pip-random
relative to P with pt. > 0 for allt € N and for all x € X and lim;_,, p* = p. Then, £ is a

p-stochastic sequence relative to P.

Proof. By Theorem 6.4, for any P-effective martingale M w.r.t. pp, imsup,_, . M(£[t]) <
00. Suppose, by contradiction, that there is a selection function r for X in P such that &”
is a total function and assume that there exists some ¢ > 0 and a sequence {7} }7°, such

that for all £ € N,

T,—1
(&)
>
E T Pz + E.

t=0

I construct a martingale (w.r.t. p1,) such that limsup,_,. M(£[t]) = oco.
(Construction) Define M as follows:

(a) M(e) = 1;

(b) M(o(z)) = (1 + s(1 — Pl M (5) and M(o(y)) = (1 — kpl?M () for all y # = if
r(o) = 1;

(c) M(a(y)) = M(0) for all y € X if r(o) = 0.

Here, k is a fixed rational number whose value will be determined latter. Clearly, by

construction, M € P because r € P and p is computable.

(Verify that M is a martingale) If (o) = 1, then

S B M (o (5)) = 2L+ 5(1 — HEN)M(0) + 31— w0 (o)

yeX y#T
= M(0) + kM (o) (plf'(1 = plf1) — (1 = pl7)p!) = M (0);
if 7(0) =0, then Y2, py M (o(y)) = 3=,y by M(0) = M(0).
(M satisfies limsup,_, . M(&[t]) = oo) For k > 1, define
Dy={t<k—-1:r¢t]) =1,& =a}and By ={t <k —1:7(t])) =1, &1 # x}.
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Then, M(§[k]) = [I,ep, (1 + (1 — pit)) [Tiep, (1 — kpttl). Let I, = (L8)~(T}). Since &
is total, [, is well defined for all k € N.

Let 0 = min{p,,1 — p,, 5}. Since limy_,o, p* = p, let T be so large that ¢ > T implies
that [p!, — p,| < d. Let K be the first k such that T}, > T. Then, for all £ > K,

M) = [T @+r@ =) [T -t

tEle tEElk
> [T G+r=p T (1= mp) (1 + 51— pe— 6)P Pl (1= ripy — 16) P Fic].
tEDlK tEElK
I1 (L+w(1-pz )T (1-rpz)
Let A = — - e , where L' = |Dy,.| and L* = |E;,|. Since for

<1+~(1—pz—6))“(1—npz—ms)
each k, | D, | > Typ. + Te,

M (E[l]) > A((L+ K(1 = po — 0)) (1 = kipy — £8)' %) T,

Define F(k) = (1 + (1 — p, — 8))P=™(1 — kp, — kd)!7P=~¢. We have In F(0) = 1 and
(InF)'(0) = (pz +)(1 —pp —0) = (1 = pp — €)(pe +9) = & — 0 > 0. Thus, for x small
enough, F(k) > 1, and so limsup,_,. M (&[T]) = oo. O

6.4 Law of the Iterated Logarithm

Here I give a general Law of the Iterated Logarithm that is satisfied by any pp-random

sequemnce.

Theorem 6.6. Suppose that £ is a j,-random sequence relative to T withp = (p°, p, ..., p', ...).

Then, for any x € X,

lim sup |Zt 0 (Cm(ft) 28] —1, (22)

o \/ 2(3"2 pL(1—pt)) 10g10g\/ (Yo (1 —pt))

Proof. The positive part of equation (22) is equivalent to the following two conditions:

(a) for all rational € > 0,

’ﬂ

-1 T-1 T-1

BS)(VT > 8)> (ea(&) — ph) < [2(1+ ) ph(1 — ph))loglog | (> ph(1 = pL)).

t

Il
o
~+
i
(=)
~~
i
o



(b) for all rational € > 0,

~

-1 T-1 T-1

(VS)AT > ) (&) —ph) > |20 =)D ph(l —ph))loglog | (Y ph(l — pl)).

t t=0 t=0

Il
=)

I show that (a) and (b) hold and the negative part is completely symmetric. Let

~

Br = {0 Y el) ) > 200+ (X ph(1 — pt)) loglog | (3 pb(1 — pi)),

\ t=0 t=0

-
i
=)

and

S
-

Fp = {0 (6 — 1) < | 200 — ) (S (L — ) loglog | (X pi(1 — )}

\ t=0 t=0

Clearly, condition (a) is equivalent to § ¢ (o_, Ur.s EF and condition (b) is equiva-

lent to £ ¢ Ug_oNp=s F5. By Theorem 7.5.1 in Chung [9],

~+
Il
o

Np(ﬂ U E7) =0 and Hp(U ﬂ Fr)=0.
S=0T=S S=0T=S

It then follows that i, (g F77) = 0 for any S € N. Because FJ is computable (uniformly
in T), {F7}5_g is a pp-test for any S (notice that p,(F7) is also computable). Therefore,
£ ¢ UeroNrs F7. This proves (b)

On the other hand, the set E5 is computable (uniformly in 7') and so the set | J7_g EF is
of Y (uniformly in S). For {{J7_g E5}3, to be a test, we need to show that up,(U7_g E5)
has a computable upper bound for all S. From the proof in Theorem 7.5.1 in Chung [9],
we know that there exists a constant A > 0 and a number k > 0 such that for all k£ > &

(with the provision that ¢*(1+ %) <14¢), c.f. p. 216),

TkJrl_].

fip ( U E7) <

T=T)

A
(klogc)'tts’

where T}, = max{T : \/ZtT:opZ(l —p!) < ¢} and ¢ = 14+ & (for € small enough,
A(l+5) <1l4e).
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Let’s define Gy = I, B and Gy = ;‘:le_l E% for k > 0. Clearly,

NUa=NUE.
§=0k=5 S=0T=5
Now, because T}, is a computable function of k, {{Jy—gGr}2, is also a sequence of

uniformly 9 sets. I now show that there is a computable mapping i — S; so that

tp(Upzs, Gr) < 5. Tt is easy to verify that

. A > A e e
Zﬁﬁ/ —H%:(S_l) 2(logc) ™72,

—s-1 (zlogc)

Let B € N be such that B > (A(logc)™*2)% and let N € N be such that N > 2. Take
S; = B2V + 1, and it follows that up(Up—g, Gi) < 57

This shows that {{J;— ¢ G }3 is a pip-test, and s0 & ¢ Na_g Ures G = Naeo Ureg E5-
This proves (a). O
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