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ABSTRACT

This paper considers estimation of the coefficient vector in a semiparametric
monotone index model where one needs to condition on control variables to deal
with unobserved heterogeneity. Examples that fit this framework are weakly-
separable models with sample selection, triangular endogeneity, or a partially-
linear index specification. The proposed estimator is based on a local ranking of
the observations, given nonparametric estimates of the controls. Rank estimation
is conceptually elegant, demands mild shape restrictions that can readily follow
from an economic model, and offers robustness against contamination of the data.
At the same time, it does not require estimating nuisance functions. Sufficient
conditions are given under which the estimator converges to a Gaussian process
at the parametric rate. In doing so, distribution theory is derived for two-step
estimators that does not require the objective function to be differentiable. These
results should prove complementary to the asymptotic theory that underlies the
estimators derived from smooth moment conditions. The theory is also generalized
to cover three-step estimators whose criterion function depends on the local-rank
estimator, by deriving an estimator of a nonparametric transformation model.
Simulation experiments serve to illustrate the implementation of the procedure
and to evaluate its small-sample effectiveness.
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I INTRODUCTION

There is now a large literature on semiparametric estimation of econometric models.
Motivated by a desire to relax functional-form assumptions while simultaneously cir-
cumventing the curse of dimensionality, modeling approaches featuring index restrictions
are particularly widespread; see Stoker (1986), Powell, Stock, and Stoker (1989), and
Ichimura (1993) for seminal work, Powell (1994) and Horowitz (2009) for overviews, and
Horowitz and Lee (2002) for a critical assessment of such approaches. A particular class
of estimators for these models is based on pairwise comparisons of observations. Rank-
based estimation techniques fall into this category, as do pairwise-differencing methods.
Inference procedures based on ranks are known to have superior robustness properties
over other methods such as (semiparametric) least squares or maximum likelihood, for
example. At the same time, their implementation does not require the estimation of
nuisance functions or the choice of smoothing and trimming parameters. Examples of
rank estimators can be found in Han (1987), Cavanagh and Sherman (1998), and Khan
and Tamer (2007), among others.

In many important problems, conditioning on control variables—or, simply, controls
for short—is required to obtain moment conditions that identify the parameters of in-
terest. In several such situations, a prior estimation step is needed to construct an
empirical counterpart to these identifying restrictions. A prime example of this scenario
is the instrumental-variable estimation of a linear structural equation with endogenous
regressors via two-stage least-squares; another one is the estimation of a linear model in
the presence of sample selection through the familiar Heckman (1979) procedure. This
type of methods has been extended to semiparametrically-specified nonlinear models.
Ai and Chen (2003), for example, have derived theory for GMM estimators defined by
conditional moment restrictions. For pairwise-differencing estimators, Aradillas-Lopez,
Honoré, and Powell (2007) have extended the work by Ahn and Powell (1993) and
Honoré and Powell (1994) to allow for the inclusion of controls into a class of estimators
for nonlinear models that is defined through assumptions of concavity and smoothess
on the associated criterion functions.

Here, I consider including nonparametrically-specified controls into rank estimators.
I will focus on a modification of a class of estimators proposed by Cavanagh and Sherman
(1998). However, the distribution theory will apply more generally to estimators that
maximize U-processes of order two; see Jochmans (2010) for details. The resulting
estimator is based on a local ranking of observations, which is to be understood as

ranking only those observations whose controls are approximately equal. It can be

2]



applied to many popular econometric models, including binary-choice models, censored
regression models, and transformation models. Because of the step-function nature of
the objective function that is inherent to any estimator based on ranks, the large-sample
behavior of its maximizer can not be readily established using the results available in the
literature. Therefore, I derive distribution theory that takes into account the influence
of the first-step nonparametric estimation error while allowing the maximand to be
non-differentiable. The theory builds on the work by Sherman (1993,1994a,1994b) and
generalizes the aforementioned results of Aradillas-Lépez, Honoré, and Powell (2007).
This extension is not merely technical, as the requirements of smoothness and concavity
in the latter paper can substantially restrict the scope of the approach if one is unwilling
to impose additional parametric structure; see, for example, Honoré and Powell (2005)
for a discussion.

The work that is most closely related to what follows is Blundell and Powell (2004),
who suggest a three-step estimator for the index coefficients in a semiparametric binary-
choice model with triangular endogeneity. While their procedure is also applicable to a
more general class of models, the rank approach advocated here essentially sidesteps the
need for their second estimation step, which involves a nonparametric regression on both
the covariates and nonparametrically generated regressors. In addition to this and the
other favorable properties of rank procedures mentioned earlier, the local-rank estimator
builds on weaker shape and smoothness restrictions. The theory laid out below is useful
in a variety of applications because such weak shape restrictions often follow under mild
assumptions that do not involve a parametric specification of link functions or of the
distribution of the model’s latent components. The structural dynamic-optimization
problem of Hong and Shum (2010), for example, is open to local-rank estimation. In
their model, the relevant shape restriction involves the first-order conditions to a utility-
maximization problem and follows directly from economic principles.

The paper proceeds as follows. I first state the general form of the model and
argue for its usefulness by means of three examples. Next, the local-rank estimator
is introduced and intuition for its form is provided. An analysis of its large-sample
properties follows. Conditions are given under which the estimator is consistent and
converges at the parametric rate. The limiting distribution is derived and a consistent
estimator of its variance is given. I then turn to the estimation of other parameters of
interest in a third estimation round. The usefulness of such an additional estimation
step is motivated using a nonparametric transformation model, and asymptotic theory
for this estimator is obtained. The paper ends with an overview of results from Monte
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Carlo experiments in models with triangular endogeneity or sample selection. Three
appendices contain intermediate lemmata, proofs, and a description of the optimization
routine used to compute the local-rank estimator.

II  THE MODEL AND MOTIVATING EXAMPLES

Let the vector of observable random variables D = (Y, X, E, Z) have distribution P.

Define the vector-valued function

Vo(E, Z) = g(E) = pa() (Z)

for chosen functions g : Z4mF) — gdm) and a : FINE) - pdmWo). o (2)
denotes the expectation of a(FE), given Z = z, and dim(A) refers to the dimension of
a vector A. Suppose that the outcome variable, Y, is a scalar whose mean conditional
on realizations of the covariates X and ¥y(F, Z) depends on X only through the linear
index X'0y. Some overlap between X and (F, Z) will be allowed. Then, in line with the
conventional notation for multiple-index models (see, e.g., Ichimura and Lee, 1991),

Y = ll,y(Xle(),ﬁo(E, Z)) —l—{ (21)

Y0) — % and a disturbance ¢ that has mean

for a conditional-mean function gy : 22+
zero given realizations of X and ¥o(E, Z). This model is semiparametric because the
functions uy and ¥y are unknown. Our intention is to infer fy (up to normalizations)
from a random sample without imposing additional parametric structure. The main
statistical restriction that will be maintained is a weak-monotonicity condition. It will
be assumed that py (2’6, ) is nondecreasing and nonconstant in z’6 for each value ¥
of the control.

Two special cases of particular interest are covered by these assumptions. The first

one has the outcome variable generated as
Y:f(X’GO—I—g[Q?O(E,Z)],U), ULX,E, Z), (2.2)

where U is a latent disturbance vector, f : #Z'+t4mU) — % is weakly increasing in
its first argument, and g : Z9™%) — % is smooth, but f and g are otherwise left
unspecified. This is a partially-linear-index formulation of the generalized regression
model introduced by Han (1987) and, in the absence of ¥y(E, Z), it can be seen to cover
many popular models; standard versions of binary-choice models, censored regression
models, and duration models are a few examples. The model as specified in (2.2) can
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be understood to extend Han'’s in a manner analogous to how Robinson (1988) modified
the linear regression model to allow some covariates to affect the outcome variable in
a nonparametrically-specified way. Besides the nonlinearity, another difference with
Robinson’s model is that J(E, Z) depends on the unobserved conditional expectation
ta(e)(Z), which will have to be estimated, leading to the presence of generated regressors.
If the distribution of U is parametrically specified, this model fits the framework of
Aradillas-Lépez, Honoré, and Powell (2007) for various f.

A second special case arises on modifying (2.2) to
Y = f(X'00,U), ULX|9(E,Z) =1 for all 9, (2.3)

which allows Jy(F, Z) to influence the distribution of Y through the distribution of
U. This formulation captures models with nonparametric control functions and can
be of use when estimating certain simultaneous-equation systems such as a generalized
regression model with sample selection or with endogenous covariates, bringing us closer
to the main points of focus in Ahn and Powell (1993) and Blundell and Powell (2004);
see the examples below. In all these cases, avoiding parametric specifications on f and
the error distribution circumvents several instances of misspecification and allows for
generality in the nature of the process under consideration.

To motivate the generic structure of the model it is useful to sketch some situations
of practical interest that can be cast into it.

Example 1 (decisions based on expectations). Suppose that agents choose Y based on
observable characteristics X and on their expectations about the realization of a random
variable E, given realizations of Z. Unless X and Z are independent, ignoring the effect
of expectations on outcomes will generally cause inferential statements on the impact
of X to be biased. However, provided that observations on E are available, pg(z) is
nonparametrically identified and estimable, and can thus be conditioned upon by the

econometrician.

One potential application of this framework is in market-entry models with few players,
where a firm’s decision to enter the market depends on its anticipation of the other
players’ decision ; see, e.g., Berry (1992) and Aradillas-Lépez (2010). Accounting for
the impact of expectations on outcomes can be traced back at least as to Manski (1991),
who considered the estimation of preference parameters in a parametric discrete-choice
setting; see also Ahn and Manski (1993) and Ahn (1997).

The next example is a nonlinear model with sample selection.
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Example 2 (endogenous sample selection). Suppose that Y* is determined through a
model of the form Y* = f(X'0y,Usy) but that only Y = EY™ is observed along with
(X, E,Z), where

E=1(9(Z) > U), (Uy,Us)L(X,Z), and the cdf Fy, is strictly increasing on X.

Here, the mean of Y given (X, E,Z) = (x,1, z) varies with z. Conditioning on Z = z
can make the identification and estimation of 6y troublesome if X and Z have elements in
common. However, independence implies that Us|(X, E, Z) = (z, 1, 2) £ Uslg(z) > Uy,
so that Uy is i.i.d. given g(Z) = g(z) and E = 1. The invertibility of Fy, implies
that conditioning on g(Z) = g(z) is identical to conditioning on ug(Z) = pe(z), as
9(z) = F;'(ug(2)). This leads to a double-index formulation for the mean of Y given
realizations of (X, Z) in the subpopulation with E = 1, with indices X'0y and ug(Z).

Self selection is a common worry when dealing with microeconomic data; see, e.g., Olley
and Pakes (1996) and Borjas (1987) for relevant and well-known applications. The
pioneering contributions on the estimation of parametric linear sample-selection models
are Gronau (1973) and Heckman (1974, 1979). Various semiparametric alternatives have
since then been formulated. A recent suggestion is in Newey (2009), which also contains
further references. The approach most closely related to what follows is Ahn and Powell
(1993), who derived a pairwise-differenced least-squares estimator while allowing for a
nonparametric selection equation as in Example 2. A nonparametric proposal for a
model with an additively-separable disturbance was made by Das, Newey, and Vella
(2003). In the context of nonlinear models, however, the issue has received relatively
little attention; some nonparametric identification results, conditional on selection, are
given in Newey (2007).

The final illustration concerns endogeneity bias as induced by simultaneity or by

measurement error in covariates, for example.

Example 3 (triangular endogeneity). Assume that the outcome variable is generated
as Y = f(X'0y,Us), where X partitions as (X1, E')'. Suppose that E depends on Z =
(X1, X3) through
E=pp(Z) + U,

and that the distributional exclusion restriction Us|(X, E, Z) = (z,e, z) £ Us|Uy = uy
holds. Then Uy and E are dependent through their dependence on Uy, rendering a
single-indez-based estimator inconsistent. Here, Vo(FE,Z) = E — up(Z) = Uy has an
interpretation as an omitted variable. It follows that the conditional mean of Y has a
multiple-index representation as in (2.1).



Endogeneity remains a pervasive problem in models with non-additive disturbances;
Chesher (2007) outlines some of the most recent attacks. Example 3 is essentially an
application of the control-function approach to identification in simultaneous-equation
models as put forward by Smith and Blundell (1986) and many others in a parametric
setting, by Blundell and Powell (2004) in a semiparametric binary-choice model, and by
Chesher (2003) and Imbens and Newey (2009) in a fully nonparametric framework. An
extensive overview, a thorough discussion, and many more references are provided by
Blundell and Powell (2003).

III LOCAL-RANK ESTIMATION

This section introduces a local-rank estimator to learn about 6y from a random sample
of observations from P. As with virtually all semiparametric approaches, we will at best
be able to identify and estimate 6y up to normalizations. Therefore, a constant term is
excluded from X and, hereafter, 0, refers to its versor, i.e., 8y/||60o||, where ||-|| will be
used to indicate both the Fuclidean norm and the matrix norm.

To describe the estimator, denote the data by {D;}®,, let V; = (Y;, X;), and let
W; = (FE;, Z;). For a deterministic function m : #Z — % that is increasing on % and
for each § in © = {0 € Z#9™X) . ||0|| = 1}, define the score contribution of the pair of

observations (i, j) as
s(Vi, Vj,0) = m(Y;) 1(X]0 > X;0) +m(Yj) 1(X;0 < X}0). (3.1)

Also, let a(w) indicate a nonparametric estimator of ¥o(w). The proposed estimator of
0y, then, is defined as

0= (0
arg maxdp (6),

where the objective function is the following ‘weighted average’ of score contributions

a0 () >y V;’mvi;f (ﬁ(Wi)f(W”)uznt(Zj). (32)

=1 i<j

Here, k : #9™%) — % is a chosen symmetric kernel function and oy is an associated
(scalar) bandwidth that goes to zero as n grows large. The function t : Z9™(%) — 7+
serves to trim away observations for which @(w) is an unreliable estimator; the necessity
for its inclusion will become clear below.

The estimator has an interpretation that explains its form. Monotonicity implies
that a ranking of the conditional expectation of m(Y’) given realizations of X and (W)
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allows one to deduce an ordering on the associated indices X’6,.! Moreover,
Hm(Y) (x/l(%, ’19) > Pm(Y) (x’200, 19) = Illeo > $/290, (33)

in obvious notation. Consequently, one fruitful approach to learning about 6 is choosing
as an estimate that value that best mimics (3.3) in the sample.? Denote the density of
Y given (X, 9o(W)) by py|x,9,w). Because

Lim(y) (2'60,9) = /m(y) Py |x,90w) (YT, ¥) dy,

it is easy to see that the expected score function in (3.1) is concordant with (3.3) when
evaluated at 6, but not necessarily at any other € ©. As the model only enforces
an ordering conditional on the control, the score function should be fed only pairs (i, j)
for which J(W;) — ¥o(W;) lies in a shrinking neighborhood of zero. In (3.2), this is
achieved by means of the kernel weights, with nonparametric estimates of the control
substituting for the unobserved ¥o(W;) and Jo(W;).

The data-dependent weighting constitutes the main difference with the estimator
advocated by Cavanagh and Sherman (1998), whose objective function is recovered
from (3.2) on assigning the same weight to each pair of observations in the sample.
Accordingly, 0 has an interpretation as a two-step local implementation of their approach
to estimating monotone single-index models. Conditions under which this procedure
leads to asymptotically-valid inferential statements about ¢, will be given below.

Before plunging into the large-sample theory, however, a word on the function m.
While an obvious choice would be simply to set m(Y') = Y, its presence is not vacious.
One attractive feature of specifying 0 in terms of general m is that it covers more robust
choices. It is well known that estimation based solely on ranks can enjoy a larger
degree of robustness than do other methods, although this robustness will typically
come at a cost in terms of efficiency loss.> Choosing m thus allows to strike a certain

!The ordering need not be complete, as the reverse statement in (3.3) only holds under a strength-
ening of the assumption of weak monotonicity to invertibility. This would lead us back to what is
essentially Blundell and Powell’s (2004) model.

2The need for location and scale normalizations manifests itself here, as (3.3) conveys no information
on an intercept term and continues to be satisfied for all positive-scalar multiples of 6. For a discussion
on the need for normalizations in semiparametric estimation, see Horowitz (2009).

3Not surprisingly, rank estimators generally do not achieve semiparametric efficiency bounds such
as those derived for binary-choice models and censored regression models by Chamberlain (1986) and
Cosslett (1987), or the efficiency bound for the single-index model computed by Newey (1990) (as cited
by Ichimura, 1993). Nevertheless, efficiency can be improved by a weighting approach. Moreover,
Subbotin (2008b) has demonstrated that properly-weighted versions of rank estimators can achieve the
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balance between robustness and efficiency. To illustrate, the influence of outliers could
be dampened by setting m(Y) =y 1(Y <y)+Y 1(y <Y <7) +7 1(y < Y) for chosen
bound values y and 7.4 As a limiting case, inference about 6, could be based solely on
the sign of Y.

IV  LARGE-SAMPLE PROPERTIES

Let P be the product measure P ® P on the product space supp(D) ® supp(D). By
analogy to P, define P,, as the empirical measure generated by independent sampling
from P and define P, similarly, that is, as the random probability measure that places
mass 1/n(n — 1) on each ordered pair (D;, D;). Following the notational conventions
from the literature on empirical processes, write P[f(:)] = f(P) for the expectation of
a measurable function f under P. Similarly, refer to the expectation under the product
measure as P[f(-,-)] = f(P,P).

Observe that, for each 6 in O, q,(0) is a U-statistic of order two; exploit symmetry

to write it compactly as

a0~ () L 6000 = Rli-0)

i=1 i<j

A large block of the available distribution theory for estimators defined as maximizers of
U-processes was derived by Sherman (1993, 1994b); see also Pollard (1984) and Arcones
and Giné (1993). The problem here differs from his setup in two important respects.
The first is the presence of kernel weights in q,(#), the second is its dependence on a
first-step nonparametric estimator.

While, in principle, any nonparametric estimator—such as, inter alia, series-, nearest-

neighbor-, or locally-linear regression—could be used to form the weights, here, I work

semiparametric efficiency bound for certain models, including the nonlinear regression model and the
binary-choice model. Presumably, a similar argument can be applied here. Croux and Dehon (2010)
study robustness and efficiency of rank-based measures of statistical association.

4Cavanagh and Sherman (1998) also discussed the use of the rank of Y;, that is, m(Y;) =
>or_y 1(Y: > Yy); see also Sherman (1994b). Here, the use of the rank function would translate
into an objective function of the form

1/n\ ' L(Y; > Vi) L(X[0 > X30) 9(W;) — D(W,)N. (9(W;) — D(Wy)
6(3) ;;k;:] 0_12(dinl(190) ’ k( Ok ’ )k< Ok : )

Notice the additional weighting to ensure that Y; is ranked only relative to observations k for which

I(Wy) — 1/9\(W1) converges to zero as n — oo. While I restrict m to be deterministic, ruling out the rank
function, this case could be dealt with under suitable modifications to the arguments that follow.

[9]



with a kernel estimator. It takes the form
n z2—27;
> it a(Ey) 1( a1 )
n Z—Zi
Z’Lil 1( g1 >

for a kernel function 1 : Z49™(%) — % and a smoothing parameter ;. The Nadaraya-

I(w) = gle) — fam (2) = gle) —

(4.1)

Watson estimator will prove a convenient choice for our purposes. However, the limiting
distribution of 8 will not depend on the particular choice for the first-step estimator, so
long as it satisfies certain conditions.

Because bias induced by kernel weighting can be dealt with under the usual regularity
and smoothness conditions on the kernels and density functions involved, the largest
chunk of our subsequent endeavors will be devoted to establishing the impact of first-
step estimation error on the asymptotic variance of 9. In doing so, it will be useful to
interpret q,, () as an approximation to

(6 () DPIE Vé:mvf;f (PO 7)1 = Buln - o))

=1 i<j

This would be the objective function of choice if ¥Jo(w) was directly observable; the
difference q,(6) — q,(0) is entirely due to the noise in 2/9\(10).5

4.1 Distribution theory
I begin by stating conditions on the kernel function and bandwidth sequence used in

the construction of the first-step estimator. For vectors A and B of equal length, let
|A| = Z?i:“i(’q) AU and let BY = ijl(B(j))A(j).

Assumption 1. For a positive mteger [, 111 a symmetric [th-order kernel function.
That is, 1(n) ), J1(n) =1, [0 ln) dyp =0 for |I| = 0,....,0 — 1, and
[lIn 1 1) dn < 00. In addztwn 1 is bounded and a-Hélder for some a > 0.

Assumption 2. The bandwidth oy is nonnegative and proportional to n=>, where X €

(L 1—e
207 2dim(Z

) for some € > 0.
A kernel that satisfies Assumption 1 may be composed by making use of formulae
provided by Miiller (1984). As usual, a larger number of regressors requires both a
kernel of a higher order and a bandwidth that shrinks to zero more slowly.

The dimension of Z also affects the degree of differentiability that is required from

its density, as is apparent from the following assumption.

®The trimming in q,(0) is obsolete because Jo(W) is assumed known. It is maintained here for
convenience, however, as this infeasible criterion function will be of use later on.
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Assumption 3. Let Z have Lebesque density pz and let 2 be a compact subset of
supp(Z) so that inf,c» pz(z) > 0 and sup,c» pz(2) < co. Then, for each z in Z,
pz(2) and papy(2) are [-times continuously differentiable with bounded derivatives. In
addition, under P, the function a has an envelope whose fourth moment exists and whose
conditional variance given Z = z 1§ continuous in z.

In addition to imposing smoothness conditions, Assumption 3 introduces a subset of the
support of the regressors on which pz is known to be bounded away from zero. This
is a technical requirement that prevents the denominator of the first-step estimator
from getting arbitrarily close to zero. It also avoids jia(g)(2) from converging too slowly
due to boundary effects. The demand for all components of Z to be continuous is
motivated primarily by notational simplicity. The presence of discrete regressors would
require a rewriting of Assumption 3 in terms of conditional densities and a corresponding
adjustment to the kernel function in (4.1); see, e.g., Ahn (1997) for details. It is well
known that the speed of convergence of nonparametric estimators does not depend
on the number of discrete regressors present but does deteriorate with the number of
continuously distributed ones.

Assumptions 1-3, in tandem, lead to a uniform rate of convergence and a linear

representation result for [, g)(2) — pam)(2).
Lemma 1. Let Assumptions 1-3 hold. Then

ne/?2

no,

I 1 G RE) )] 2 Z n?
(ii) Hiae)(2) = Ha(e)(2) =—gmz > 1( o )“LOP(mdim(Z))

no, i1 pz(2) )

ﬁa(E)(Z) - Ma(E)(Z>

(i) sup
2%

uniformly over Z .

Lemma 1 is similar to Theorem 1 in Aradillas-Lépez, Honoré, and Powell (2007) and
will prove useful in handling the sample noise in J(w).
The next assumption brings us to the second estimation step and is concerned with

identification.

Assumption 4. The vector X has at least one component whose distribution conditional
on the remaining dim(X) — 1 components and the control has an everywhere positive
Lebesgue density, and the support of X given ¥o(W) = ¥ is not contained in a proper
linear subspace of Z#Y™X) g.e. V.
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Semiparametric point identification of (scaled) index coefficients, in general, requires
stronger conditions on the distribution of the covariates to hold than in parametric
problems; see, again, Horowitz (2009) for a discussion. Assumption 4 is a straightforward
modification to the support conditions in Manski (1985), Han (1987), Cavanagh and
Sherman (1998), and many others. Besides the conventional ‘full-rank’ condition, which
serves to prevent problems of global underidentification, it requires one covariate to
have a density with large support, given realizations of the remaining covariates and the

control. This is stronger than necessary but implies that the set

{(351, w2) €supp(X [Jo(W) = 0) xsupp (X [ (W)= 0) :sgn[(z1 —22)'0] # Sgn[(ﬂfl—ﬂ?z)leo]}

has non-zero measure under P for all ¥ in supp(dg(W)) and each 6 in © except for
0 = 0y. This will lead to 6y uniquely maximizing the large-n probability limit of q,(0).
Assumption 5 helps to ensure that the objective function is well behaved.

Assumption 5. The second moment of m(Y) under P exists and the function t is
of the form t(z) = 1(z € Z) i(z), where i : ZY™%) — ZF is bounded and [-times

differentiable with bounded derivatives.

Refer to Assumption 3 to recall that the trimming set serves to keep the kernel weights
well defined. The fixed trimming procedure prescribed here comes at a cost in terms of
asymptotic efficiency as it implies that a fraction of the data is ignored asymptotically.
It is, however, convenient for proving consistency and asymptotic normality of the local-
rank estimator and has been applied elsewhere; Ichimura (1993) and Newey (1994a) are
two of many examples. Arguably, the analysis below could be adjusted to allow for
this fraction to converge to zero slowly with the sample size, as in Stoker (1991), for
example.
The second-step kernel and bandwidth are governed by the next two assumptions.

Assumption 6. For a positive integer kK, k is a symmetric Kth-order kernel function.
That is, k(n) = k(-n), [k(n) dy = 1, [*k(n) dn = 0 for |k| = 1,...,k — 1, and
[l k(n)|] dn < oo for |k| € {0,&}. In addition, k is bounded, of bounded variation,

and twice differentiable with bounded derivatives k' and k”.

K

Assumption 7. The bandundth oy is nonnegative and proportional to n=", where kK €

(L 17672dim(Z))\)
2k 2(dim(d9)+2) /-

Imposing symmetry on k is natural given that the weight that is assigned to the score
contribution of a pair of observations should not depend on the order in which these
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observations enter s.° Assumptions 6 and 7 have a similar purpose as do Assumptions 1
and 2, that is, aid in ensuring the bias induced by kernel-weighting to be asymptotically
negligible.

To state the accompanying smoothness condition on the density of the control, and
to support our future work, additional notation is useful. Let

7(d,8) = h(d,P,0) and 7(d,0) = lim 7(d,0) = t(z) ®(v,Yo(w),0),

n—oo

where

@(01;19;9) = /S(U17U2,9) t(zz) dP(v,Z)wo(W)(UQ;ZzW) Pﬁo(w)(ﬁ)

and h(d, P, 0) refers to the expectation of h(, -, 6) given its first argument. Notice that
2(V;,99(W;), 0) is the expected score contribution of observation ¢ in the subpopulation
for which Yo(w) = ¥o(W;) (and z € &), scaled by the density of the control evaluated
at the same point.

The second-step analog of Assumption 3 now follows.

Assumption 8. For each 0 in O, v in supp(V), and w in supp(W), the function
?(v,00(w), 0) is (K + 1)-times differentiable in its second argument, and the derivatives
are uniformly bounded. Furthermore, the first derivative, Vyp(v,J(w),0), is [-times

differentiable in z, and the derivatives are uniformly bounded.

This differentiability condition, in combination with the previous assumptions, implies
that 7(d,0) = 7(d, ) + o(1//n) uniformly over ©. The limiting objective function for
our problem then is

a(0) = plim G,(6) = 7(P, ),

where the convergence is again uniform.
The above conditions suffice for § = argmaxpee G(A) = argmaxgee q(6) = 6o.”

Theorem 1 summarizes our progress so far.

Theorem 1. Let Assumptions 1-8 hold. Then Hg— Ol = 0,(1).

6Symmetry of k has additional advantages. First, it implies symmetry of h and thus leads to
{h(,-,-,0) : 0 € ©} being a U-process with a symmetric ‘kernel’; this is convenient for the large-sample
analysis. Second, it facilitates the construction of a higher-order kernel. In any case, most garden-
variety kernels are symmetric; see, e.g., Li and Racine (2007) for a discussion.

"Clearly, the consistency of 9 for 0y holds under weaker assumptions; all that is required is that
7(d,0) = 7(d, ) + o(1) uniformly over ©® and that 6, is the sole global maximizer of G(f) on ©. The
higher-order kernel and differentiability conditions, and the undersmoothing will, however, prevent bias
terms from appearing in the asymptotic distribution of \/n(6 — 6y).

[13]



Continuing on to the asymptotic distribution of the local-rank estimator requires
establishing the impact of the first-step estimation error, which calls for a somewhat
more delicate argument. Let

C(w,6) = ~t2)ale) = (2} 5216, 3(2,0) = Vap(v,9u(w). 6) dPawy z(v. wl2).

The vector-valued derivative V@ (v, Jo(w), f) is a measure of variability of the expected
score to changes in the components of the control; §(z,6) is its expected value given
Z = z. The more sensitive this latter function is to changes in the control, the greater
the extent to which first-step estimation noise affects the asymptotic variance of 5, this
point will be made more precise below.

The following lemma shows that @, (0) asymptotically behaves like the sum of two
U-statistics and is key in deriving the limiting distribution of \/ﬁ(é\ —0p).

Lemma 2. Let Assumptions 1-8 hold. Then

Gn(0) = qa(0) + 2Z(P"’ 0) +op <%>

uniformly over ©.

Recall that q, (@) is the infeasible criterion function in which 5(10) does not appear.
Lemma 2 thus implies that we can handle the variation that is induced through the
first estimation step separately from the analysis of an infeasible estimator that assumes
Jo(w) to be observable.

The proof to asymptotic normality builds on Lemmata A and B in the Appendix.
The first of these deals with q,(f) and uses Assumption 9. The second auxiliary lemma
concerns ¢ (w,#) and relies on Assumption 10.

Assumption 9. Let A" denote a neighborhood of 6y. For each d in supp(D) and 0 in
A, all mized second partial derivatives of T(d,0) exist and there exists an integrable
function M,(d) so that ||V (d,0) — VeeT(d,6p)|| < M.(d) ||0 — 6o]|. In addition,
the moments P[||VoT(-,00)|1?] and P[||VeoT(-,60)||] exist, and P[Va7(-,60)] is negative
definite.

Assumption 10. For each 6 in A and w in supp(W), all mized second derivatives
of ((w,0) exist and there exists an integrable function M¢(w) so that ||Vee((w,8) —
Vool (w, 00)|| < Mc(w) [0 — boll. In addition, P[[[VeC(-,00)[] and P[[VeeC(-,00)]]
extst.

[14]



These last two assumptions postulate conditions that allow for expansions of 7(d, §) and
((w, ) in a neighborhood of 6. They are in line with conventional restrictions which,
in the context of rank regressions, first appeared in Assumption A4 of Sherman (1993).
Also imposed is the existence of certain moments of the derivatives of 7(-, ) and ¢(-, )
under P. This allows the application of a standard law of large numbers and a central
limit theorem.

All the necessary ingredients are now available to validate the linear representation
~ 2 -
_ = -1 =(D.
V(0 — 0y) = =V (P, 0) % ;:1 S(D;y, 6p) + 0,(1),

where ¢(d, 0y) = Vo7(d, 00)+VeC(w,8p). On noting that —2V 7 (P, y) '<(+, #) has zero
mean and finite variance under P, the main result of this subsection follows. Theorem

2 provides it.

Theorem 2. Let Assumptions 1-10 hold. Then
V(@ —6,) 5 N (0,772 T,
where ¥ = P[S(+,00)3(+,00)'] and T = 1¥V4e7(P, 65) .

The two-step local-rank estimator converges in probability to 6, at the parametric rate,
and \/ﬁg converges in distribution to a Gaussian process that is centered at 6. The
influence-function representation is convenient for evaluating the impact of having to
settle with noisy estimates of the control, which is captured by the term V4((w, ) in
S(d, 6p). Notice that this adjustment does not depend on the particular form of the first-
step estimator used. This is in line with Newey’s (1994b) treatment of semiparametric
estimators with estimated nuisance functions under conventional smoothness conditions
on the objective function. The effect on the asymptotic variance of working with 1/9\(10)
rather then with Jg(w) is apparent from the form of 3.

On letting = arg maxgeo q,(0), an immediate consequence of the analysis that
leads to Theorem 2 is that

~

\/ﬁ(@ — g) = —VQQT(P, 00)_1% i V@Z(Wz, 90) + Op(1>,

from which the next result follows easily.

Corollary 1. Let Assumptions 4-9 hold and let 1/9\(w) = Yo(w). Then Theorem 1 still
holds and Theorem 2 continues to go through on replacing 5(d, 6y) by Vo7 (d, 6y).

[15]



Corollary 1 essentially provides the asymptotic distribution for the local-rank estimator
when the control is observable. This result is of interest in its own right, as it can be
applied when dealing with nonseparable versions of Robinson’s (1988) partially-linear-
index model. Of course, in such a situation, one would work with an objective function

from which the trimming functions have been removed.

4.2 Variance estimation
In order to conduct inference an estimator of the asymptotic variance in Theorem 2 is
needed. The derivation of such an estimator is a somewhat more cumbersome task than
in conventional estimation problems due to the non-smooth nature of the objective
function. I follow a kernel-based approach in the spirit of Abrevaya (1999b), among
others. An alternative would be to rely on numerical-derivative methods (see, e.g.,
Pakes and Pollard, 1989 or Sherman, 1993), to use derivatives of a smoothed objective
function (as in Chen, 2002), or simply to use the bootstrap, although this latter option
would be computationally more demanding.®

For ease of notation, let I(z,w) = (2'0y, Jo(w)’)" and write pr(I(z, w)) for the density
of I(X,W) at I(z,w). Define

po(z)x (I(w,w))
Iut(Z)([(xv w))

X(w,w) = t(2) iz (I, w) [ -
and let $(y1,¢) =m(y1) — [ m(y2) dPyrcx,w)(y2le); observe that S(Y,¢) has mean zero.
Impose the additional regularity conditions below.

Assumption 11. The functions S(y,t) and p;(¢) are differentiable with respect to v and
the second moment of t(Z)X under P exists.

We can then obtain the following result.

Lemma 3. Let Assumption 11 hold. Then the components of <(d,0) are
Vor(d,0p) =  X(z,w) S(y, I(z,w)) pr(I(z,w)) and
Vol (w1, 6p) = —/x(l'z,w) Sa(y, I (w2, wo)) pr (I (w2, w2) ) AP 1(x w2 (I (w2, w2)| 21)

X [a(61) - ,Ua(E)(zl)]a

while T = [ [X(z,w) X(z,w)] S (y,I(z,w)) pr(I(z,w)) dP(z,w), Here, Si(y,¢) and
S2(y,t) denote the derivatives of S(y, I(x,w)) with respect to the indices, evaluated at ¢.

8 Numerical-derivative methods are known to give unstable results. A strategy based on a smoothed
objective function is straightforward to implement; conditions for consistency are easily found. Recent
work by Subbotin (2008a) is concerned with validity of the bootstrap in rank estimation problems.
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Except for the presence of trimming, the form of Vy7(d, §y) and Vo7 (P, 0y) are natural
generalizations of the building blocks of the asymptotic variance of the estimator in
Cavanagh and Sherman (1998); compare them with the expressions in Ichimura and Lee
(1991), for example. A further beautification of the formula for the influence function is
hindered, however, due to the presence of the term that arises from the nonparametric
estimation of p,(g(2).

Now let j : Z'T4m0) — % be a kernel indexed by the bandwidth o;. A kernel

estimator of p; (I(x, w)), for example, is

~

- B 1 2 Iz w) — (X, W)
Pr (I(ZE‘, w)) = no’.dim(ﬂo)—i_l ZJ( >

Jj

J =1

o~

for I(z,w) = (;v’é\, ﬁ(w)’)’. Estimators of all the objects in Lemma 3 are collected in
the Appendix. These can be combined and averaged across observations to obtain the
plug-in estimators T and X, say.

Suppose that j is constructed in concordance with Assumption 12.

Assumption 12. The function j is twice differentiable with bounded derivatives, j' and

i", [i(n) dn =1, and o; is nonnegative and proportional to n™/ for a positive scalar j.

Then the consistency of the estimator of the asymptotic variance can be established
under standard regularity conditions.

Assumption 13. Both pz)(¢) and jiyz)x (1) are once continuously differentiable while
Pm(v) (L) and pr(t) are twice continuously differentiable.

Theorem 3 states the consistency result.

Theorem 3. Let Assumptions 1-13 hold. Then
N Vi R G Yl

1—e/2—Adim(Z)

pmvided that] < W

The slow rate at which o is restricted to approach zero is due to the presence of the
first-step estimator, which retard convergence. This is in contrast to Abrevaya (1999b),
where the shrinkage speed of o; was dominated by a \/n-consistent plug-in estimator.
Another difference with his result is that the second term in <(-,6,) causes T and 3 to
require the same degree of smoothing to be consistent.

[17]



4.3 Comments and extensions

While the focus here has been on a particular estimator, the distribution theory just
derived can be applied to a much broader class of estimators. Because the regularity
conditions used here do not impose smoothness of the objective function, this class
includes rank-based approaches as well as pairwise-difference techniques. Examples of
estimators that can be augmented with nonparametric controls in this manner are Han'’s
(1987) maximum-rank correlation estimator, the partial-rank estimator of a duration
model with covariate-dependent censoring introduced by Khan and Tamer (2007), and
the estimator of Abrevaya (1999a) for the two-period panel data transformation model.
It suffices to merely redefine the score function s for both the consistency and asymptotic
normality results go through, provided that s is Euclidean with a square-integrable
envelope; see Jochmans (2010) for details. Lemma 3 and Theorem 3 generalize on
redefining S(y,¢) in light of this change.

Similarly, one could pursue modifications of rank estimators that maximize higher-
order U-processes to deal with controls. An example of an estimator open to such an
exercise is Bhattacharya’s (2008) monotone permutations estimator. The key difference
between his proposal and Cavanagh and Sherman’s (1998) is that it ranks observations
within m-tuples of data points, where m > 2. While such a procedure might improve
the accuracy of inferences for m > 2—as is suggested by his Monte Carlo evidence—
the computational burden rapidly becomes insurmountable as m increases, even for very
small n. In addition, it is not clear a priori that such a finite-sample improvement carries
over to inference from a kernel-weighted version of a higher-order U-process. The reason
is that a local ranking within an m-tuple would require the inclusion of m — 1 kernel
weights in the objective function.

Throughout the large-sample analysis the bandwidths were taken to be deterministic
functions of n. From a practical point of view, however, it would be of interest to have
theoretical guidance on choosing the smoothing parameters when dealing with small
samples. Allowing for such data-dependent bandwidths is technically challenging as
they enter the objective function nonlinearly and their convergence rates are interrelated.
These problems are not unique to our framework and many others—including Ahn and
Powell (1993), Ahn (1997), and Aradillas-Lépez, Honoré, and Powell (2007)—faced them
as well. Common practice so far has been to employ cross-validation techniques in the
hope that they would work well; see, e.g., Newey, Powell, and Walker (1990) and Hérdle,
Hall, and Ichimura (1993). I follow the same strategy below. However, these are not
necessarily optimal smoothing choices for estimating the index parameters.

18]



Other questions that are left for future work relate to testing the specification. As an
example, test statistic for omitted regressors or for the validity of the index restrictions
could be formed by extending the proposals of Fan and Li (1996) for single-index models.
The properties of such a test would, however, not follow straightforwardly as dJq(w)
is not estimable at rate y/n. Similarly, for testing the key monotonicity assumptions
underlying the local-rank estimator or Blundell and Powell’s (2004) approach, one could
pursue modifications of a variety of tests for the shape of a nonparametric regression

curve; see, for example, Ghosal, Sen, and van der Vaart (2000).

V  THREE-STEP ESTIMATION OF ADDITIONAL PARAMETERS

Besides being of direct use, the estimator just analyzed and the distribution theory
underlying it can be helpful in learning about other parameters of interest. I discuss
two applications here.

5.1 Transformation models

Many econometric models, and duration models in particular, have an outcome variable
that is assumed to be generated through an invertible transformation of covariates and a
latent disturbance. One example is Ridder’s (1990) generalized accelerated failure-time

model. A generic formulation of the transformation model, augmented with controls, is
Po(Y) = X'0p + g[do(W)] + U, ULX|9g(W) =1 forall 9, (5.1)

where g : Z — % is an unknown strictly monotonic function, normalized increasing,
and the coefficient vector has already been normalized to live in ©. Notice that (5.1) fits
the general specification in (2.1) and so, under Assumptions 1-10, fis an asymptotically-
linear estimator of the scaled index coefficients in the transformation model. In this
subsection our primary interest lies in additionally infering ¢(y) at various values y in
supp(Y).

Doing so requires an additional normalization because the location of the distribution
of U is not identified. A convenient choice is to set ¥y(yo) to zero for some chosen
baseline value yy. Following the discussion in Chen (2002), a local-rank estimator of
Yo(y) — Yo(yo) = Yo(y) is

~ A
Y(y) = arg max as(v,0),

where the parameter space, W, is a compact subset of the real line and, for (¢, ) in

[19]
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This function differs from (3.2) only in the score contributions that are being averaged,
which now also depends on an additional unknown parameter. Here,

1

5[1(}/1- > y) = 1(Y; 2 )] 1[(Xi = X;)'0 = o]
1
+ 5 [10G = y) = 1(Y: 2 )] 1[(X; = X)'0 > ¢].

The motivation behind the estimator comes from an insight that is similar to that

s'(Vi, Vi, 0, 0) = 53)

envoked before. Moreover, because

/1(91 > y2) Pyix.gow)(Y1]z1,Y) dyr =1 — Pr [U < 1po(y2) — 2100 — 9(19)},

it follows that (x; — x2)'0y > o (y) if

/1(y1 > y) Py |x.00w) (Y1 |z1,9) dyy — / L(y2 > o) Py |x.00w)(Y2|T2, ) dya > 0;

notice that the function g does not appear directly. In (5.2), this implied ordering is
enforced on the sample of data using a plug-in estimate of 6,. The weights again serve to
keep the pairwise comparisons in check. So, ?Z(y) constitutes a feasible three-step local-
rank estimator of 1y(y). Given the effort made so far, deriving the pointwise asymptotic
behavior of @/Z)\ (y) requires little additional work.

Restricting the extra notational burden to a minimum, and keeping the analogy to

our old problem as tight as possible, write
-1 n
n ~ ~y
a0 = (5) 3% VD0 0.0) = BT 0.0)
i=1 i<j

and let a4 (¢, 0) = Pu[b/(-,-,1,0)], where h¥(, -, 0) is just 1'(-,0) with do(1W;)
replacing 3(Wz) for each i = 1,...,n. To establish the large-sample distribution of w( )
for fixed y, we will also be needing the functions

7(d,¢,0) =h¥(d,P,+,0) and 7Y(d,,0) = lim 7(d,¥,0) = t(z) B*(v, Vo(w), ¥, 0),

where

@(%19,9) = /Sy(U1702>¢,9) T(Zz) dP(V,Z)|z90(W)(U2732|79) pﬁo(W)(ﬁ)'

[20]



As before, 7Y(-, 1, «/9\) is the kernel of the empirical process that drives the asymptotic
behavior of ¥(y) = arg maxyew 4% (1, f). Under Assumption 15 below, it converges to
7Y(d, ), 5) sufficiently fast so that the bias induced by kernel weighting is a non-issue,
asymptotically. The variability of the first-step kernel estimator affects the limiting
distribution of zZ(y) through the partial derivatives of

Zy(wv 77[]’ 9) = —t(z)[a(e) - ,ua(E)(z)], Sy(zv 77[]7 9)’
where

gy(z,l/),g) = /Vg@y(v,ﬁo(w),w,e) dPw,w)z(v, wlz).

The interpretation of these quantities is again clear on noting their resemblance with
((w, ) and 6(z,6) above.
Now, maintain Assumptions 1-10 and consider the following additional restrictions.

Assumption 14. There exist values yi, and yy in supp(Y) so that, for some ¢ > 0,
[o(yL — €),vo(yy +€)] C ¥, and ¥ is a known compact interval of %.

Assumption 15. For each y in [y, yul, ¥ in ¥, v in supp(V), and w in supp(W),
?Y (v, 9o(w), v, 0) is (K+1)-times differentiable in its second argument over an Oy(1/4/n)
neighborhood of 6y, with the derivatives being uniformly bounded. Furthermore, the first
derivative vector, Vyp¥ (v, 9o(w), ), is [-times differentiable in z, and the derivatives

are uniformly bounded.

Assumption 16. Let ¥, denote a neighborhood of (o(y),6o). For eachy in [yi, yu], d
in supp(D), and (v, 0) in A, all mized third partial derivatives of 79(d, 1, 0) exist and
there is an integrable function M¥(d) so that ||V yu7Y(d, 1, 0) — VyuTY(d, 0(y), 0)|| <
MYl = o)l In addition, PIVy7Y( ¢o(y), 00)°], PV (-, ¢0(y), bo)l] and
PV (-, %0(y), o) l] exist, and P[VyyT(-;0(y), bo)] < 0.

Assumption 17. For each y in [yL,yu], w in supp(W), and (¢,0) in A, all mized
third partial derivatives ofzy(w, ¥, 0) exist and there exists an integrable function Mé’(w)
50 that ||V C (w, 1, 0) — Vo (w, 10 (y), )| < ME(w) [ —o(y)l|. In addition, the

moments P[||V,¢" (-, %0 (y), 00) 1121, PV’ (- (), 00)ll], and PV C” (-, (1), 60)]
exist.

The first of these assumptions, imposing compactness of the parameter space, is standard
when analyzing estimators that have no closed-form solution.’ The need for Assumption

9The same assumption was made on O, albeit implicitely. One of the attractive features of the scale
normalization on the index coefficients maintained here is that it implies (i) © to be compact; and (ii)
6y to be interior to ©.

[21]



15 has already been discussed. Assumptions 16 and 17 comprise smoothness conditions
and the existence of moments analogous to Assumptions 9 and 10, guaranteeing limit
quantities to be well defined. The need for mixed third- rather than second partial
derivatives of 7Y(d, 1, 6) to exist stems from the presence of 6.

These assumptions imply that, for each y in [yr,, yu], plim, . % (¢, 5) = q’(v, 6p)
for @¥ (v, 00) = 7Y (P, 1), 0y) uniformly over W. The limiting function is continuous in v
and reaches its unique global maximum on ¥ at ¢y(y). This statement follows imme-
diately from Assumption 4, the same assumption that was previously envoked for the

consistency of 0. Consequently, we have that

~

D1y — (. 0) L (. 0n) — :
Y(y) = argmax @, (¥, 0) = argmaxq, (1, 6o) = to(y);
zZ(y) is consistent for ¢y(y) for each y in [y, yu].

Furthermore, by smoothness of the objective function, the use of a bias-reducing
kernel, and the /n-consistency of 6, the estimation error in 1)(y) asymptotically behaves

like the sample average of a zero-mean random variable. Moreover,

i(y) — o(y) = =V T (P>¢0(y)>90)1% Z ky(Di,wo(y),@O) +§y(Di,w0(y)790)},

i=1

up to 0,(1/4/n), for functions ?y(d, o(y), 90) =V, 7Y (d, o(y), 90) + szy (w, o(y), 90)
and

2 (d,o(y), bo) = %VwGFy(P7¢o(y)>90) v(d, 0o),

where v(d, 6) is shorthand for the influence function of # evaluated at d. This latter
term renders the asymptotic variance of our current problem more complicated than
before and arises because of the additional noise induced by having to estimate 6y next
to Yo(w). Nevertheless, Assumptions 16 and 17 imply that, when multiplied by /n,
the sample average above converges to a zero-mean random variable whose variance is

finite. From this, the next asymptotic-normality result follows.

Theorem 4. Let Assumptions 1-10 and 14-17 hold. Then, for each y in [y, yu|, we
have that (i) HzZ(y) — o(y)|| = 0,(1); and that (ii)

Vi (D(y) = o)) 5 N (0, T () "Sy) Ty)™),

where (y) = P[(Y (-, vo(y), 00) + 0% (-, o(y), 60)) (¥ (- o (y), 0o) + 27 (-, Yo (y), 90)),} and
T(y) = %vﬂ”ﬁ?y(P?wO(y)u 90)
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Under regularity conditions, a consistent estimator of the asymptotic variance can again
be obtained via nonparametric techniques, using a plug-in estimator for v(D;, 6y), i =
1,...,n. Theorem 4 deals with pointwise asymptotics. The result can be strengthened
to hold uniformly over W by considering a strategy based on rearrangement as proposed
by Chernozhukov, Fernandez-Val, and Galichon (2009). This additional step is required
because a higher-order kernel k was used to eliminate asymptotic bias. Because such
functions have to take on negative values on subsets of their support, it can be shown
that @/Z)\ (y), as a function of y, is no longer guaranteed to be monotonic.

Our analysis of the transformation model ends with a derivative result to Theorem

4 that parallels Corollary 1.

Corollary 2. Let Assumptions 4-9 and Assumptions 1/—16 hold, and let 5(11)) = Jo(w).
Then Theorem /(i) still holds and Theorem j(ii) continues to go through on replacing

SY(d, o(y), 00) by VyT¥(d, o(y), Oo).

5.2 Policy parameters

Many quantities of interest have as an elementary building block 5y (X0, 99(W)) for
a function f : Z — % that will depend on the problem at hand. While such type
of parameters may be identified nonparametrically, knowledge of the index structure
allows for dimensionality reduction in estimation and a relaxation of support conditions
required for identification.

One important area of application is in triangular models. There, policy parameters
typically take the form of partial means over the control. As an illustration, the average
structural function at X = z (Stock, 1989; Blundell and Powell, 2003, 2004) is defined
as

(@) = [ iy @00,9) Doy (9) 49 2 [ iy (@'80,9) pagvyc(9le) 0 = v (o)

and provides the expected value of the outcome for exogenously determined values of
the covariates. This function can aid in the construction of counterfactual quantities or
summary measures, by averaging fiy (X) over a chosen distribution for the covariates
in an additional step, for example. In models of the form in (2.2) or (2.3), another
parameter that can be recovered by marginal integration over the control is the quantile
structural function (Imbens and Newey, 2009). The value of the ath-quantile structural

function at X = x is that ¢, that solves
a = fli(y<g)(T), [fiy<e(T) = / fa(y <) (200, 0) Pao(w (V) do.
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This second example also illustrates how index restrictions allow a relaxation of support
conditions that are needed to ensure that pigyy(2'6p, 9o(W)) is identified over the entire
support of the density of the control; see Imbens and Newey (2009) for the original
discussion. The method of marginal integration has been considered by Newey (1994a)
and Linton and Nielsen (1995). Mammen, Rothe, and Schienle (2010) recently extended
these results to averages over generated regressors. Our model falls into this latter
category.

While our primary motivation for the inclusion of ¥(W) into the analysis was to
merely control for heterogenous effects, knowledge of p5y)(X 6y, 99(W)) can also be of
use to learn about the impact of the control on the outcome variable. Recall Manski’s
(1991) approach to infering the effect of expectations on outcomes (cfr. Example 1).
While in his model—as in Ahn’s (1997)—this influence was specified to run through
index parameters, here, counterfactual analyses can be performed semiparametrically.
For example, the expected ceteris paribus effect of a change in expectations on outcomes
at (X, W) = (z,w) is Vyuy (2’0, Yp(w)). Summary measures for the population or
policy-relevant variables can again be formed by looking at the mean or the quantiles
of the distribution of Vyuy (X'0y, J9(W)) obtained on integrating out the covariates or
the control using a chosen distribution.

VI SMALL-SAMPLE ASSESSMENT

To shed some light on the practical implementation of the local-rank estimator, and to
position it against alternative techniques, Monte Carlo experiments are useful. Here,
I report on results from applications to a model with an endogenous covariate and a

model with sample selection.

6.1 A triangular model

The prime example of a control-function application is the estimation of the index
coefficients in a linear simultaneous-equation model. I generated data from the following
underlying model. Outcomes Y and E are related through

Y =X0" + B0 +U,,  E=XA"+ X+ Us (6.1)

for disturbances (Uy, Us) and regressors (Xi, X3). These random variables were drawn

Uy L pu X1 L px
(UQ)NN(pU 1) and (XQ)NN(pX 1), (6.2)

[24]

as



respectively. This configuration is as in Example 3, with the conditional-mean functions
for the outcome variables linear in parameters. The variable E is endogenous in the
equation for Y unless py = 0. The disturbance Us can be interpreted as an omitted
regressor which captures unobserved heterogeneity across units. So, here, Z = (X, X3)’
and

9o(E,Z) = Uy = E — X174V + XY

is the control function.

The designs for which I report results in Tables 1-3 below have 6, = (.7071, —.7071)’,
so ||6o|| = 1, estimated from a sample of size n = 100. The strength of the dependence
between the latent variables and the covariates considered are all combinations of py; and
px in {—.50,—.25,.25,.50}. To manipulate the explanatory power of the instrumental
variables I vary the concentration parameter (Basmann, 1963), u2, from 100 to 20.
Given that there are two elements in Z, these values lead to an F-statistic of 50 and
10, respectively (evaluated at the true 7). This latter value is commonly taken as the
rule-of-thumb cut-off between weak and strong instruments in two-stage least squares
(2SLS) regressions; see Stock, Wright, and Yogo (2002) for a motivation and formal
derivation. To keep the explanatory power of the instruments fixed across simulation

runs I used

1
o \/Z:-L:l o (X1, X2i)' (X4, Xoi)mo
to generate observations on E. Here, 7y is a bivariate coefficient vector that was set
to either (2,2) (balanced design; Table 1), (2,1)" (skewed-left design; Table 2), or
(1,2)" (skewed-right design; Table 3). The variation in m, enables shifting the relative

o

importance of X; and X5 as sources of exogenous variation in F, and thus influences
the degree to which the regressors in the equation for Y covary.

For this setup, 2SLS (é\QSLS) is the optimally-weighted GMM estimator, and it gives
a useful benchmark to evaluate the performance of other techniques against. The other
estimators are the kernel-weighted pairwise-differenced least-squares estimator of Ahn
and Powell (1993) (é\Ap), its nonlinear analog proposed by Blundell and Powell (2004)
(Agp), and the local-rank estimator (6rx) for m(Y) = Y.10 Including the Ahn-Powell
estimator allows evaluating the impact of introducing kernel-weights on the one hand,
and the efficiency cost of avoiding the linearity assumption on the other.

10Recall that 2SLS is equivalent to adding the residual from a least-squares regression of E on Z
to the second-step regression model. For 2SLS and the Ahn-Powell estimator, I rescaled the point-
estimates by their norm to ensure that they lie in ©. For 2SLS, a constant term was also included in
the first- and second estimation step.
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To ensure that a proper comparison between the kernel-based estimators can be
made, all were computed using the same kernel k and bandwidth oy, and the same
estimates of Jg(E, Z). As is agreed upon in the literature, bias-reducing kernels only
give a worthwhile improvement over kernels of order two for reasonably large samples;
see, e.g., Jones and Signorini (1997). In additional simulation experiments not reported
on here I reached the same conclusion. Thus, because n = 100, the results below
were obtained by means of the standard-normal density function as kernel in the first
and second estimation step, with each of their arguments scaled down by their empirical
standard deviation.!! The bandwidths o} and o} were obtained using least-squares cross-
validation methods; see, again, Li and Racine (2007) for details. The cross-validated oy
relates to a nonparametric mean regression of Y on Xy, F, and 5(E , Z). The resulting
estimates also serve as inputs for ng.

Tables 1-3 give the bias, standard deviation (STD), interquartile range (IQR), root
mean-squared error (RMSE), and root mean-absolute error (RMAE) of the estimators
considered. The numbers were obtained over 10,000 Monte Carlo runs. Only the local-
rank estimator requires an optimization procedure. To obtain the point estimates I
modified the maximum-score algorithm of Manski and Thompson (1986). The procedure
is described in the Appendix and was found to perform well. For the case of only two
regressors, as here, the procedure is guaranteed to find a global maximizer of q,(@).

Start with the balanced design with the concentration parameter set to 100. Both
@SLS and é\AP have very small bias, and none consistently outperforms the other in
terms of this measure. The Blundell-Powell estimator and the local-rank estimator have
a larger bias throughout, with that of the former by far being the largest. Nevertheless,
the average of the local-rank estimates is still very close to the true parameter values.
When looking at the STD, §Ap and QARK perform best. The standard error of 2SLS goes
up by a factor of as much as four compared to the ones of these two approaches. The
STD of é\Bp also tends to be larger than that of the other kernel-based estimators. In
terms of IQR, all of §QSLS, é\AP, and §RK are roughly equally precise. The Blundell-Powell
estimator has the highest mid spread throughout. For the combined measures of bias
and variability, that is, RMSE and RMAE, kernel-weighted least-squares does best; @\Bp
is on the other side of the spectrum. The local-rank estimator performs well according to
both statistics of estimator risk, consistently reporting numbers that are close to those
of the Ahn-Powell estimator. In allmost all designs, too, it outperforms 2SLS.

HTt is well established that the choice of the particular form of the kernel matters far less than does
the choice of the bandwidth in nonparametric estimation. Indeed, in additional experiments, I found
very similar results as given here when using the quartic kernel and the cosine kernel.
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On weakening the instrument strength by setting 2 = 20 all estimators report higher
bias numbers, but their relative performance remains largely unaltered. Moreover, @SLS
and /e\Ap continue to provide the most accurate point estimates, on average; /G\RK remains
close to é\Ap throughout. The Blundell-Powell estimator has the largest bias across all
entries. Lowering the concentration parameter affects the variability of the estimators
too. This effect is particularly noticable on 2SLS, whose STD and IQR go up by 100%
or more. This is well documented in the literature. The other estimators’ volatility is
far less influenced by this design change. In fact, in some cases, their STD and IQR can
be seen to decrease. Measured by their RMSE and RMAE, the Ahn-Powell estimator
and the local-rank estimator perform best overal, as they also did when g2 = 100. This
implies that, when evaluating performance in terms of estimator risk, these estimators
are to be prefered over the optimal GMM estimator for the linear model with endogenous
regressors, at least in the designs considered here.

When the main source of exogenous variation in F comes from X, the covariate in
the main equation of interest, and 2 is reset to 100, é\QSLS and é\AP tend to report slightly
higher biases. The average error of the Blundell-Powell estimator, in contrast, has a
tendency to decrease relative to the balanced design. The local-rank estimator reacts
more erratic to this parameter shift, with its average across simulation runs sometimes
being further away from the true value, and sometimes closer to it. Nevertheless, the bias
remains reasonably small and comparable in magnitude to that of é\AP. When looking at
the STD and IQR we can see that the kernel-based estimators behave differently than
does 2SLS. The latter’s precision decreases, as would be expected; the former’s does so
to a much smaller extent and actually decrease in many of the situations. In terms of
RMSE, é\Ap and éRK report the best numbers, often drastically superior to (/9\25LS. Now,
also §Bp positions itself competitively against 2SLS. The same pattern, although less
pronounced, emerges when looking at the RMAE.

Lowering p32 to 20 has a similar effect as it did in the balanced case. That is, the
bias increases and there is a mixed effect on the precision of the estimators. A look
at the results for the skewed-right design in Table 3 reveals them to be in line with
what has been observed before. The most important difference compared to Table 2 is
that 2SLS tends to be less variable. This should be no surprise as, here, more of the
exogenous variation in £ comes from X5, the instrumental variable that was excluded
from the equation for Y. So, we find that the local-rank performs solid across the
designs considered, positioning itself competitively against the alternative procedures
considered.



Figure 1: Estimates of the transformation function in the triangular model
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¥ (y) (solid), ¥o(y) (dotted), pointwise 95% confidence bound (dashed) using an estimated
standard error obtained over 200 bootstrap replications.
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Figure 2: Estimates of the transformation function in the triangular model (contd.)
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Y(y) (solid), ¥o(y) (dotted), pointwise 95% confidence bound (dashed) using an estimated
standard error obtained over 200 bootstrap replications.
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Figures 1-2 collect estimates of the transformation function in the balanced design
with g2 = 100. For each of the combinations of px and py considered in Table 1 one
estimate of ¢y was calculated at equally-distant points in [—1.85, 1.85], with a step size of
.05, using gRK as the first-step estimator.!? The kernel function and bandwidth used to
perform the weighting in the second estimation step were taken to be the same as those
in the first step, and yo = 0 for graphical elegance. Pointwise 95% confidence bounds
are also reported. The standard errors used to form the bounds were obtained as the
standard deviation of the empirical distribution function of the estimator obtained over
200 bootstrap replications.

Given the small sample size, the estimator does fairly well. All graphs suggest 12 to
be fairly antisymmetric around yg, overestimating (underestimating) 1 (y) for y < yo
(y > yo). Not surprisingly, ||zZ(y) — Yo(y)|| is largest for y furthest away from ypo.
Given the design, the empirical density of y has its largest concentration of mass around
zero, implying that very few observations contribute to Zj}’z(w,é\) for y in the tails of
the aformentioned distribution. This leads to @/D\ being essentially flat on the edges of
the interval considered. The little information in the data about the transformation
function in these areas is also reflected in the standard errors, with the confidence
intervals tending to become more wide as y moves further away from yy. Nevertheless,
the confidence bounds appear informative about the shape of ¢y. They present clear
evidence against 1y being highly-nonlinear and tend to contain vy on a large subset of
the interval considered.

6.2 A sample-selection model

The second Monte Carlo experiment is centered around the linear sample-selection model
Y = Ex (X600 + X002 + 1)),  E=1X1" + X8 + X7 > 1), (6.3)

Here, the disturbances (Uy, Us) were again standard-normal with correlation py, as in
(6.4). The designs considered vary in the dependence between these disturbances and

in the correlation between the regressors, which were drawn as

Xl 1 PX1Xs PX1X3
X2 ~ N PX1Xs 1 PX2Xs . (64>
X3 PX1Xs PX1Xo 1

In this setup, which fits into Example 2, Z = (X, X5, X3)" and
Yole, z) = pp(z) = Pr[E = 1|7 = 2],

12The Blundell-Powell estimator could be used here as well, but its higher variability is transmitted
into the rank estimator of the transformation function.
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which is free of FE.

Throughout, 8, was kept fixed at (.7071,—.7071)" and 7o was set as in the previous
Monte Carlo exercise, with 7y = (1,1,1,)" and p2 = 300. Several combinations of
PU, PX1 X5 PX1Xs, a0d px,x, in {—.50,—.25,.25,.50} were considered. For each design
point, 6, was again estimated 10,000 times from a sample of n = 500. With the
chosen parameter constellations, this resulted in an average sample size of about 250
observations for the second estimation step. The standard deviation on this effective
sample size ranged from 70 to 90 observations across designs. In Tables 4 and 5, the
column for n contains the average effective number of observations used in the second
estimation step; the standard deviation around this mean is stated in parenthesis below
each entry.

The estimators reported on are the three kernel-weighted estimators from before,
that is, é\AP, ng, and 5RK. The Ahn-Powell estimator, which was designed with the
linear sample-selection model in mind, would be the optimal choice from this set. The
choice for the kernel functions and the data-driven procedure to select the bandwidths
from the previous Monte Carlo experiment was maintained here.

Tables 4 and 5 show that the Ahn-Powell estimator tends to perform well, reporting
solid numbers throughout. Overal, the results do not lean in favor of one estimator
in particular. The local-rank estimator again closely mimics the kernel-weighted least-
squares estimator, with the differences between their respective bias and spread being
consistently small. In several design, the Blundell-Powell also performs well. In other
cases, however, it is heavily biased and behaves very volatile. As a consequence, also its
RMSE and RMAE takes on large values in such cases. The numbers are particularly
worrysome when X; and X, are negatively correlated. The performance is worst when
px,x, equals —.50, the strongest negative correlation considered. In such cases the bias
of (/9\Bp can be as much as 35 times larger than that of the others. Similarly, its variance
inflates by a factor of 10 compared to those of é\AP and é\RK- No such variability across
the designs is observed for these latter two estimators.

Thus, the local-rank estimator performs well. It was found not to be dominated by
the optimal GMM estimator for the triangular model and its performance was similar to
that of the Ahn-Powell estimator, both when estimating the triangular model and the
sample-selection model. It compares favorably Blundell and Powell (2004), which is the
most general alternative currently available, being more stable in performance across
designs, and often much less biased and far less volatile. The local-rank estimator thus
seems a strong candidate for the estimation of weakly-separable models with controls.
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APPENDIX A: PRELIMINARIES AND INTERMEDIATE LEMMATA

Euclidean properties. The class of functions 2 = {s(-,-, )t(-)t(-)k((- — -)/ox) :
¢ € ©} with o > 0 and lim, .0 = 0 is Euclidean for the envelope H(-,:) =
Sup,, e gaimg) [[k(M)[| [[[m(-) +m(-)]t(-)t(-)[|. To see this, notice that # is a subclass
of the class 7 = {s(-,-,)t(-)t()k((- —)/o) : 0§ € ©,0 > 0} = LA, with ./ =
{s(-,,t()t(-) : 8 € ©} and # = {k((- — +)/o) : ¢ > 0}. By Assumption 6,
the class ¢ is Euclidean for the constant envelope sup, cguaime) [[k(n)||; see Example
2.10 in Pakes and Pollard (1989). Likewise, the class .7 is Euclidean for the envelope
||m(-) + m(-)]t(-)t(-)|]. This follows by Assumption 5 together with the discussion in
Cavanagh and Sherman (1998). The envelope H(, ), then, follows from Lemma 2.14 in
Pakes and Pollard (1989).

To prevent some expressions in the Appendix from becoming overly lenghty, it is useful
to define ahead the functions H'(:,-) = sup,cgameo) ||k ()] [|[m(-) + m(-)Jt(-)t(-)|| and
H(-,+) = sup,egpamoy [k’ ()] [[m(-) + m(-)Jt(-)t(-)||, where notation has been abused
slightly to keep the analogy to H(-,-) transparent. Notice that these functions are well
behaved because, by Assumption 6, both k" and k” are bounded.

Lemma A. Let Assumptions 5-9 hold. Then q,(6) — q.(6o) is
,VooT(P, 0) (0 —6y)
2 v

uniformly over 0,(1/ aﬁim(%)n) = 0,(1) neighborhoods of 6.

(6—60) (0—00)+ [2VAVaT(P,, 00) +0,(1)] 0, (18— B0l) + 0, )

Lemma B. Let Assumption 10 hold. Then

€2 8) = TP ) = L [P, 00)] + 0416~ 60l

uniformly over 0,(1) neighborhoods of 6.

Estimators of the components of the influence function. Rosenblatt-Parzen

kernel estimates of p;(I(x, z)) and its first derivative are

~ ~

S 1 "L (2, w) — I( X, Wh)
prl(z,2) = ——7=—= ) ] and Al
e, 2) = s LT ) (A1)
~ (T _ 1 - N f(x>w)_f(Xi7I/Vi)
D (T, w)) = e D3 = ). (A2)

j i=1 J
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respectively.

Nadaraya-Watson estimates of juyz)(I(z,w)), pez)x(I(z,w)), and pmy(I(z,w)) are

given by
L t(Z;) I(z, w) — T(X,;, W;)
I(x,w)) = = ’ A3
:ut(Z)( ( )) no d1m(19() +1 ZZ; ﬁ I(IL','UJ ) < Jj ) ( )
. ~ = t<Zz>Xz A( ) j\(Xlu WZ)
I(x,w)) = — , and A4
,Ut(Z)X( ( >> no dlm 190 +1 Z ﬁ[ (I(l’, w ) < Oj ) ( )
P L) I w) - T(X, W)
. vw)) = u 7 A5
M (Y)( ( )) dlmﬁo +1 Zﬁ[(](x7w)~]< oy ) ( )
respectively
Then X(z,w) = t(z) ﬁt(Z)(f(x7 w)) [x B %] and
3y, (2, w)) = m(y) = fimr Lz, w)) (4.6)

constitute plug-in estimates of X (z,w) and S(y, I (x,w)), respectively. On differentiating
this latter quantity, we find estimates of $(y, I(z,w)) and S»(y, I(z,w)). For the former
quantity, for example, the estimate § (y, 1 (z,w)) is

. j\ ) _-/[\Xz;Wl Am -/[\wi p _/[\.I',IU
dlm 790 +2 ZA Hi ( (x w) ( )>_'u (Y)( (A A)> le( ( >) (A7)
it br(I(x % p:(1(z,w))
where j; and Py are the first components of j’ and P}, respectively. Observe that the
derivatives of $(y, I(z,w)) are free of .
Finally, for v(z,w) = X(z,w) S(y,I(z,w))pr(I(z,w)) and p,(x,w)(2), the necessary
kernel estimates are

~

D(x,w) = X(2,w) Sy, (2, w)) Br(I(x,w)) and (A.8)
Ay (xwy (2 Z (X3, Wi) wil2), (A.9)

where w;(2) = <Z Z)/ZN 1<zazz>

Lemma C. Let the conditions for Lemma 3 and Assumptions 12-13 hold. Then, if j <

% the kernel estimators in (A.1)—(A.9) consistently estimate their population

counterparts.



APPENDIX B: PROOFS

Proof of Lemma 1. The proof follows from standard kernel-smoothing arguments;
see, e.g., Collomb and Hardle (1986) and Aradillas-Lépez (2010). O

Proof of Theorem 1. Given random sampling, and by the construction of ©, showing
consistency of 8 for 6, amounts to verifying that (i) supgee ||Gn(8) — a(8)|| = 0,(1); and
that (ii) q(¢) is continuous and reaches its unique global maximum on © when evaluated
at Op; see, e.g., Newey and McFadden (1994).

To show (i), observe that the triangle inequality provides the bound

sup| |G, (6) = a(6) | <sup |[du(6) — au(6) | + sup |[a.(6) — a(6)|
0coO 0co 0o (Bl)
+sup Hq(9) - G(G)H,

where q(6) = P[h(-, -, 0)].

The first right-hand side term in (B.1) captures the estimation error in the controls.

Recall that G, (6) — q,(8) = P,[ h(-,-,0) — h(-,-, )] or, equivalently,

T ZZ ‘/;a‘/},zmﬂo))( Z;) [k(ﬂ(Wi)

7,1]751

—mm»

Ok

(ﬂo(m) —ﬁo(Wj)ﬂ‘

Ok

-k

Take a first-order expansion of k(%ﬂwﬂ) around %j(’(wj) and next exploit
I

symmetry to write supyeg||dn () — dn(6)

SupH(g>_1izS(%Vja_e)t(zz)t(zj) BOV:) — 9o(Wa) K ()],
i=1 j£i

9co O_lc(ilm(ﬁo)Jrl

IW)—IW;) g

where k'(x) is k' evaluated in a dim(dy)-vector that lies inbetween
Do(Wi)—do(W;)

o ; the x-notation will be reserved for such purposes throughout. Then

" D, e o () = 1agiy (2
up [0 (6) — au(0)| < 2 B [pe/(, o)) TR Hall)
00 o

1 ne/?2
S (9( T >:0(1).
O_l((hm(ﬁo)—&-l p nO'ldlm(Z) p



The first step follows by Assumption 6 and the Euclidean properties of the class .
above, and the next two transitions follow by Lemma 1(i) and by Assumptions 2 and 7,

respectively.

The second right-hand side term in (B.1) involves a zero-mean U-process of order
two. Because the class 7 is Euclidean for an envelope whose second moment exists by
Assumption 5, Corollary 7 of Sherman (1994b) can be applied to get

sup
0cO

‘ = sup
G

h(, -,9)} _P[h<'7’79)] H = ﬁop<%> = 0y(1),

with the last transition following again by Assumption 7.

For the non-stochastic term in (B.1), finally, recall that q(f) = 7(P,0). Standard
kernel-smoothing arguments, as validated by Assumptions 6-8, can be used to show
that supyce||7(P,0)|| = supyeol|lT(P,0)]| + o(1). Because such arguments will be used
at various subsequent stages of the Appendix, it is detailed only here. First, rewrite
7(d, ) as a kernel-weighted average of @(v, Jo(W), ) under P, i.e.,

#(d,0) = t() / aﬁ;ﬁ;ﬁ) k(%(w) =) as

Ok

Next, observe that, by a mean-value expansion of @(v, ¢, ) around Jy(w) followed by a

change of variable from ¢ to n = W,
sup |v(d, 6) — 7(d, o)
G
<sup Ht ?(v,Y9(w), 8) —7(d, 0)” + oy sup "t(z)/V0¢(v, x,0) nk(n) dnH
=) =E)

<o t() [ s [ Tug(w. 0] [l ] dn = Ol
Then, by dominated convergence and Assumption 7,

sup a(6) (6| = (1) = 01),

This establishes (i).

Assumption 4 ensures (ii). This can be shown by small modifications to the argument
in Cavanagh and Sherman (1998); see also Manski (1985) and Han (1987), among others.
Because the details are standard and lengthy, they are omitted here. O

[40]



Proof of Lemma 2. Let d,(#) = q.(0) — q.(0). The proof then boils down to

characterizing d,,(f) up to 0,(1/4/n). The point of departure is a second-order expansion
Yo (Ws) =90 (W;)
ox

o ( ) ZZ %’Vﬁiwa@ ) 5wy - owy k/(ﬁo(Wﬂ

1=1 j#i

of q,(#) around . On invoking symmetry,

- 790(%))

Ok

up to a remainder term r,(6), say, that captures the contribution of

~

[W» —I(W;) (W) — ﬁo<wj>]f

K" (+) [19(Wz') —9(W;) _ 9e(Wi) = ﬁo(Wj)}

Ok Ox Ok Ok

to d,,(f). The remainder term can be ignored for our purposes because

1, (0) <2 P, [H"(-,-)]

SUP.e o [[Fa(e) (2) — paey (A)|* _ (L)
Uﬁim(ﬁo)+2 P \/ﬁ ’

The inequality follows from the Euclidean properties of the class . together with As-
sumption 6, and the rate of convergence can be seen to hold on combining Lemma 1(i)

with Assumption 7.
Next, recall that Lemma 1(ii) implies that

€/2

I(W;) — Do(W;) = — dlmz>Z MaE>(Z)]1(Zi—Zk>+Op< n

o no_;ilm(Z) )

for each Z; € 2. Plug this expression into d,(f) and use Assumptions 1-3 and 6-7 to

do(0) = é(g) B i NN b(Di, D, Dy 6) + op(%) (B.2)

i=1 j#i ki

where b(Di, D;, Dy, 0) is defined as

s(Vi V5, 0)(Z0)4(Z5) [alEk) = pawey (2], <190<Wz-)
chjim(ﬁo)JrlUldim(Z) p2(Z:)

write

- 790(W}‘>>I<Zi - Zk)'

Ok g1

The influence of the remainder term in the linear representation of 1/9\(10) — Yo(w) on
d,(0) is

0= (3) LT A (Mo, (),

[41]




on recycling constructive notation. In (B.2), r,(6) is absorbed into the 0,(1/y/n) term;
argue as in the proof to Theorem 1 to see that

ne/2

s 0] < 2200 ir) = on ()

Likewise, uniformly over ©, the contributions of the terms with k =i or k = j to d,,(6)
are bounded by

H _liz S e)H CANO) ) 2 T (Dis D) [[alE:) — prag (Z0)]
L7 B n2(n — 1)Odim(190)+10dim(2)
i=1 j#i

k 1
[dim(99)+1]k+dim(Z) A

o (M ()

and

H (n) ‘12”:2 b(D;, D;, D;,0) H 4 10) 2251 2250 H'(Di, Dy) [[alE)) — praey (Z))]

nQ(n _ 1)0_lfim(190)+10_1dim(2)

i=1 ji
[dim(99)+1]x+dim(Z)

-0, — o (),

respectively, and are thus asymptotically negligible.

To make further progress it is useful to ‘symmetrize’ the third-order U-statistic in
(B.2). To this end, let

b(D;, D;, Dy, 0) = b(D;, D;, Dy, 0) + b(D;, Dy, D;,0) + b(D;, Dy, Dy, 6)

and rewrite (B.2) as

d,(0) = %(Z) - Zb(Di, D;, Dy, 0)+ op<%>,

where 13 = (i, j, k) ranges over the n(n — 1)(n — 2) ordered triplets of distinct integers
from the set {1,2,...,n}. It is immediately verified that |b(P,P,P,0)||?/n is O(1) so
that

n

d,,(0) = %b(P,P,P,Q) + %Z [b(D;, P, P,0) — b(P,P,P,0)] +op< !

> P, PP, %> (B.3)

[42]



by Lemma A.3 in Ahn and Powell (1993). (B.3) further simplifies upon calculation
of the expectations involved, which requires evaluating each of the six components of
b(D;, P, P,0).

The contribution of the first four components of b(-, -, -, ) to b(D;, P, P, ) is asymp-
totically negligible. To see this, consider the first of these components, bi,jyk(Di, P,P,6),
in obvious shorthand notation; the remaining three can be dealt with similarly. Observe

that, uniformly over ©,

[a(e) — pam)(Zi)]
pz(Z ) dim(Z)

< |f- Vi;ﬁim)k(ﬁfkﬂ) poio(dl)po(9) d(d, )|

big(Ds, P, P, 6) | < 1(Z

1(Z2)psizlel2) p(a)de. 2

The explicit conditioning on ¢; = ¥o(W;) is feasible as ¥y(w) is noise-free. By iterated
expectations and Assumptions 1-3, the first of these right-hand side terms is

[ (5 e e - otet = ().

as can be shown using standard arguments. Next, iterate expectations on the second

t(Z;)

right-hand side term and use the definition of @ to write

oV, v, 0 19 —
bii n(Di, P, P, 0) H < H/ d ) dﬁH.
Sup || bi e o 7 ggg 0] S
On changing variable from ¥ to n = ¥
o(Vi, 9, 0 29 —

su i dﬁH—su H/v - 9 — 1o, O)k dH
eegH/ dlm(ﬁo H Ok 968 92 (Vi, Vi = i 6)k(n) dn

= sup HVMO Vi, Oo(W, H + O( ak)

0c0

where the last transition follows again by a Kth-order expansion and Assumption 8.3
Deduce from this and Assumption 7 that

. 1 . 1
sup||b; i (Ds, P, P, 6 :o(—), sup||b:; (P, D;, P, 6 :o(—),
supllbn (D PP 0)] =0 =) suplbyan®. D) = o

. 1 : 1
supbies(Ds, P, P,0) | = 0( =), supllbei; (P, Dy, PL0)| = o —=
[USS) [USS)

=) =)

13The term aW%;W“’(")k(n)|—fz vanishes because k(n) Inli=pe by Assumption 6.

(B.4)

[43]



so that it remains only to work out ijkvi(P, P, D;,0) and bk,j,i(P, P, D;,0).

Iterate expectations and argue as in the previous paragraph to write bj,k,i(P, P, D;,0)
as

- [ 9t ). ) + O () apm)

Integrate (V, E) against the density p(y,g)z and recall that O(o) = o(1/y/n). Next,
use an [th-order expansion around Z;, a change of variable, and Assumption 2 to see
that

bji(P, P, D, 0) = —t(Z) [a(E;) — ptagm)(Zi)] 8(Z:,0) + 0(%)
(B.5)

= C(W;,0) +o(%),

Also, because l.)kyjyi(P, P, D;,0) has an identical structure,

bugaP. P D18) = ~4(2) [o(5) — (2] 3(20) + o)
(B.6)

=070 +o( =),

by the same reasoning.

Combine (B.4), (B.5), and (B.6) with (B.3) to obtain

d,(0) = —gb(P, P.Po) > Cw6) + op(%).

The proof is complete on noting that

b(P,P,P,0) = o(%);

use the fact that [a(e) prz(e|z) de = par)(z) to deduce that the dominant term in
both (B.5) and (B.6) has mean zero conditional on Z = Z;. O

Proof of Lemma A. Let d,(0) = q,(0) — q.(6p) and let d(0) = P[d,(6)]. Then,
by an application of a Hoeffding decomposition (see, e.g., Serfling, 1980; Sherman,
1993,1994b),

d,,(0) = d(0) + 2[7(Py, 0) — 7(Py, 00) — d(0)] + P, [x(-, -, 0)], (B.7)

[44]



where, on letting b(D;, D;,0) = [b(D;, D;,0) — h(D;, D;,6,)], the remainder takes the
form

I'(DZ', Dj, 9) = d(@) + b(Dz, Dj, 9) — b(Dl, P, 9) — b(P, Dj, 6)

Observe that d(0) = 7(P,0) —7(P, 0y). Furthermore, by the arguments used in the proof

of Lemma 2,

7(d, 0) = t(2) B(v, 9o(w),0) + O(at) = 7(d, 0) + O(%) (B.8)

uniformly over ©. The current proof then parallels the proofs in Sherman (1993) and

Jochmans (2010), with some modifications.

fix # in 4. Call upon the differentiability of 7(d, #) as postulated under Assumption
9 to expand 7(d, ) around #y. Then

7(d,0) — 7(d,0y) = (6 — 0y)'Ve7(d, )

1

+ =(0 — 00)'VooT(d, 0) (6 — ) (B.9)

+

N — N

(0 = 60) [Vo(d, ) — Vos7(d, )] (0 — o) + O(%)

on linking 7(d, 0) — 7(d, 0y) to 7(d,0) — 7(d, 0y) through (B.8).

Envoke the Lipschitz condition in Assumption 9, take expectations, and use the fact
that Vo7 (P, 60y) = 0 by the first-order condition for a maximum of the limiting objective
function to see that

,VQQ?(P, 60)

a(6) = (6 — oy~

(0= 60) +o(l6 = 6ol) +o(—=)  (B.10)

Si-

uniformly over 0,(1) neighborhoods of 6.

Subtract (B.10) from (B.9) and average across observations. Then

(0 —6y)
\/ﬁ

uniformly over 0,(1) neighborhoods of , because

7(Pn, ) = 7(Pn, 6h) — d(0) = Vo (P, fo) + @p(l)} +0,(10 —0]*) (B.11)

(6 = 60) [VooT (P, %) — Vg (Pr, 00)](0 = o) || < M(P,,)||0 — 90H3

and (6 — 60y)' [VeoT (P, 600) — Voo (P, 00)](0 — 6y) = 0,(1) by Assumption 9 (that is, the
integrability of the Lipschitz constant) and a law of large numbers, respectively.

[45]



Combine the Euclidean properties of the class .7 with Corollary 17 and Corollary 21
in Nolan and Pollard (1987) to sce that the class {o0™")r(-,-,6) : 6 € O} is Euclidean
for an envelope whose second moment under P exists. Further observe that r(-,-,0) is
P-degenerate on supp(D) ® supp(D), that r(-,-,0) = 0, and that ||r(-,-,6p)]|| is bounded
by a multiple of [H/(P, P)+H(-,-)]/ou™). refer to the bound as #(-,-) /o0 ™) Apply
Theorem 3 in Sherman (1994a) with, in his notation, ©,, = 6, 7, = 1, and any « € (0, 1)

to see that .

Pofr(-,-,0)] = op(w) = 0,(1)

uniformly over ©. Reset 7, = B, [#(-, )] /ot and let §, = 1/(1/ot™"n). Then,

on setting « sufficiently close to unity, by another application of the same theorem, in

tandem with Assumption 7,

Pofr(-,-,0)] = ngﬁ%’o;)] op(w”z”)a) —o, (%) (B.12)

uniformly over O (1 /4] oim (@) ) = 0,(1) neighborhoods of 6.

Plug (B.10), (B.11), and (B.12) into (B.7). The proof is complete on collecting
terms. u

Proof of Lemma B. Let d,(8) = ((P,,0) — ((P,,0). Envoke Assumption 10 to

expand ((w, ) around #y. On averaging,

8,(0) = (0 00 V(P 0)+ (0= by~ 2P g g

Refer to the Lipschitz continuity in Assumption 10 and a law of large numbers to

dispense with the quadratic term. Rearrange to complete the proof. O

Proof of Theorem 2. Combine Lemma 2 with Lemmata A and B. On collecting
terms,

An(0) = dn(bo) + (0 — 0@/@

(6= 00)+ (0062
uniformly over O (1 /4] odimo) ) neighborhoods of 6y, where D,, = v/n3(P,,) + 0,(1).
v/n-consistency follows 1mmed1ately from Theorem 1 in Sherman (1994a). Next, refer to
Assumptions 9 and 10 to see that D, AN (0,%). Then, because Vo7 (P, 0y) is negative
definite, the asymptotic-distribution result follows on applying Theorem 2 in Sherman
(1994a). 0

1
+0,(10 = 60l1®) + 0, )

[46]



Proof of Corollary 1. Kill the randomness in the first-step estimates, i.e., set fia(z)(2)
to fia(p)(2) for each z in 2. Then Lemma 2 becomes superfluous and the result follows
from the proof to Theorem 2 on replacing D,, by \/nV7 (P, 6y) + 0,(1) . O

Proof of Lemma 3. The strategy followed is similar to the arguments that lead to
Theorem 4 in Sherman (1993) and to those used in the proof of Theorem 1 in Abrevaya
(1999b). Observe that 7(d, ) can be written as

t(z1)/ t(2) 5(y1,f($2,wl))pI(I(IQ,wl)) PX,Z|I(X,W) (x2,22|l(x2,w1)) d(z2, 22)
x'0<x) 6

+t(zl)/t(22)/m(yz) dP; (I (a2, w2)) pr(1(z2, w1))px zircx,w) (T2, 22| I (@2, wr)) d(2, 22).

The second term is free of §. Hence, on letting u® be the unit vector with ith-element
equal to one, because V)7 (dy, 0p) = limy,_o %[?(dl, 0o+ hu(i)) —T(dl, 80)] by definition,
Vo 7(d1, 00) equals

t(zl)/t(@)(wgi)—xg)) S(y1, L (2, w1)) pr(I(z1, w2))px,zirx,w) (22, 22| (21, w1)) d(w2, 22)

for each i = 1,...,dim(X). Perform the integration and stack the components to get

the expression for Vy7(dy, 0) as stated in the lemma.

Next, rearrange and differentiate under the integral to get
Vol (wy,bp) = /Veﬁ(dQ,eo) dPpiz(da]z1) [pa(my(z1) — aler)]

= /X(xmwz) 52(y2,[(l‘27w2)), PI(I(@,UJQ)) dPx wyz(r2, wa|21)

X [pa(e)(21) — aler)].
The second transition above follows again from an application of the moment condition

[ Sy, I(z,w)) dPrxwy(I(z, w)) = 0.

Finally, calculations similar to those used to arrive at the expression for V47 (d, 6y)
in combination with the existence of the second moment of t(Z)X lead to the expression

for the second-derivative term Vg7 (P, 6p). O

Proof of Lemma C. Let Z = supp(Y) x supp(X) x supp(E) x Z. To see that

~

pr(I(z,w)) is consistent for p;(I(x,w)), apply the triangle inequality to get that
1B (2, w)) =pr (1 (x,w)) | < [[Br (T, w) =B (1, w)) || +][1 (1w, w)) —pr (1, w) ) |

[47]



uniformly over . For the first right-hand side term,

~ o~

1(190)+1 z”:J< (X, W;) — J(x,w)> _j([(XZ-, W;) — I(x,w)) H

sup

dey najdim i1 0j gj
1. 1 ~ -
< | S ma {1 ==l 1=l 2509 i () i )]

o (1), 0. 5)) -
=————— max — ), — ) =
O_jdlm(ﬁo)-i-Q p \/ﬁ p no_ldlm(Z) p
by Assumptions 2 and 12, Lemma 1, and Theorem 2 provided that j is smaller than
(1—e/2—Adim(Z))/2(dim(g)+2). The second right-hand side term is free of generated
regressors and thus 0,(1) uniformly over & by standard arguments; see, e.g., Silverman

(1978).

-~ ~

Showing that ﬁt(z)(f(x, w)), fez)x ((z,w)), and fimyy (I (z,w)) are consistent then
reduces to proving the consistency of their numerators. Because of Assumption 13, this
follows by the same arguments as in the previous paragraph. This is so because the
presence of t(Z;), t(Z;)X;, and m(Y;) creates no additional difficulty. The consistency
of X(z,w) for X(z,w), then, follows from Slutsky’s theorem. The same conclusion can
be drawn for S(y, I(z, w)).

For the derivative estimates /S\j (y, f(:c, w)), =12,

sup HEJ (y, f(x, w)) — :5} (y, I(x, w)) H + sup ||3J (y, I(x, w)) -5 (y, I(x, w)) H
de? e

is an upper bound for sup,c ||§j(y, f(x, w))—S$;(y, I(z,w))||. Under Assumption 13, the
second part of this bound can again be dispensed with by following Silverman (1978).
For the first part, the only new terms involve ’p}j(f (z,w)). So, it remains to establish
that supdegHﬁU(f(x,w)) — pr;j(I(z,w))|| = 0p(1) for j = 1,2. Because j” exists and is
bounded, a mean-value expansion—again in combination with Assumptions 2 and 12,
Lemma 1, and Theorem 2—provides the result.

finally, turn to supgcy Hﬂp(x,w)(z) — ,ul,(x,w)(z)H, which is no greater than

sup || oew) () — Aoy (2)[| + sup [[Aew) (2) = ey (2)))-
deg 1S4

Because D(z,w) 2 v(z,w) uniformly over & by Slutsky’s theorem, and because 1 is
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bounded (Assumption 1),

ox,w)(2)
ey dey

<j§:|h%

Observe that fi,(x,w)(2) is again a Nadaraya-Watson estimator of 1, (xw)(2). Deduce

[P(X5, W) = (X )]

v(z,w) — V(:L‘,w)H = 0,(1).

that sup,c » ||fux,w) (2) = toixw)(2)|| = 0,(1) to complete the proof. O

Proof of Theorem 3. Let v(d,#) = —T'5(d,#). Combine the kernel estimates
of the components of this influence function to obtain the plug-in estimates v(D;, «/9\),
i =1,...,n. Then we can write TS Y1 = P[u(-,60)v(-,6)] and TS T =
P, [0(-,0)5(-, 0Y].

By Lemma 1, Lemma C, Theorem 2, and Slutsky’s theorem,
P, [0(-,0)0(-,0)'] = Pu[v(-,80)v (-, 60)'] + 0,(1). (B.13)

Also, Assumptions 9-10 and the law of large numbers imply that

P, [v(,00)v(-,00)] = P[v(-, 00)v(-,00)]. (B.14)

Put together, (B.13) and (B.14) yield TS Y=y vy 0,(1). The proof is
complete. O

Proof of Theorem 4. Fix y in [y, yu|; then ¢y(y) is interior to ¥ which is a compact
interval by Assumption 14. By Assumption 4, @¥(1, 6) is continuous in ¢ and uniquely
maximized at 1o(y). The proof to these claims is again identical as to when the control
is absent. For the consistency of QZ(y) for 1 (y) it remains only to establish the uniform
convergence of q¥ (1, 5) to @¥ (1, 6p).

Let q¥(¢,0) = P[hY(-, -, 4, 0)]. Apply the triangle inequality to obtain

~

sup |[@(6,0) - @(v, 00)|| < sup |[@(e,9) - at(w,0)| + sup s (. 8) — (. 0)|
Ppew Ppew Ppew
+ sup |0¥(4,0) = a¥(, 00) [+ sup [ (16, 00) = (0, 60) |
pevw Yevw




Observe that the class {sY(-,-,¢,0) : ¥ € ¥,0 € O} is Euclidean for the constant
envelope of unity; use Example 2.11 in Pakes and Pollard (1989). Consequently, by
applying the same arguments as in the proof to Theorem 1,

sup
Ppew

.0 = a1, 9)]| = 0,(1) and  sup

Ppevw

a(6,0) - a(¥,8)|| = 0,(1).

Next, by Theorem 2 and Assumption 4, ||(/9\— 0ol = Op(1/+4/n) and ¥ (1, 0) is continuous
in 6. Hence,

q? (1, 8) — q* (4, o)

sup
Yew

_ Wop (%) = 0,(1),

on employing Assumption 7. For the remaining component, finally, use Assumptions 6,
7, and 15 to obtain

Q*(¥,60) = @ (¥, 00)|| = O(01) = o()

sup
YeET

by applying the usual trick. Thus, sup,,cg/q¥ (¥, 0) — q (1, 00)|| = 0,(1); statement (i)
of Theorem 4 follows.

The proof of Theorem 4(ii) proceeds in three steps. first, recall the symmetry of
h¥(-, -, a, 0) and the Euclidean properties of the classes # and {s¥(-,-,«,0) : ¢ € U, 0 €
©}. Then, for each y in [yr,, yul,

n

~

~ 2 1
@0~ = - DT W) + oy () (B.15)

i=1

uniformly over W. Notice that (B.15) can be shown by applying the same arguments as

those contained in the proof of Lemma 2.

To handle q%(w,@\), proceed as in the proof of Lemma A. fix (¢,6) in .4, define

the functions d¥ (v, 0) = q% (1, 0) — q%(o(y),0) and d¥(i), 0) = P[d¥ (¢, 6)], and apply a
Hoeffding decomposition. The resulting approximation is

d%(wa 0) = dy(wv 9) +2 [Ty(Pna ¢7 9) - Ty(Pna ¢0(y), 0) - dy(wa 0)]

and the remainder term that can be dispensed with in the usual way. Start with
d¥(y,0) = 1Y(P,,0) — 7Y(P,¢o(y),0). Envoke Assumptions 6, 7, and 15 to write



7Y(d,,0) as 7V(d,,0) + o(1/+/n). Taylor-expand 7¥(d, ¢, 0) around 1y(y) and then
around #y. On taking expectations,

o VTV (P, 0o (y), 0o)
2

d¥(1,0) = (¢ — vo(y))VyeT? (P, vo(y), 00)(0 — 00) + (¥ — 1o(y))

+o((v = ¥o(y))*) + (1|6 — bo*) +0(%)

uniformly over o,(1) neighborhoods of (¢(y), 6); make use of the Lipschitz condition
in Assumption 16 and notice that V,7Y(P,¢(y),0y) = 0. On evaluating at 0,

A0, 8) = (&~ Yoly) Vo (P, n(4), )0 (Pu, 60) + (1 — ()~ 2T L 00 o)
+o(( — o(y))*) + op(%) (B.16)

follows by applying Theorem 2 and absorbing all terms that are asymptotically negligible
into the 0,(1/y/n) term. Similarly,

~

Ty(Pm va 0) - Ty(an ¢O(y)7 6.) - dy(% 0) = (w - wO(y))Viﬁ?y(Pn? %(?/)a 90)

ol — v +o,(7=)  (B17)

uniformly over 0,(1) neighborhoods of ¢ (y).
Finally, consider ¢’ (P,, v, 5) Taylor-expand around ¢y (y) and 6y, in turn. Use the

Lipschitz condition and the finiteness of the population moments in Assumption 17 to
dispense with V,C” (P, %0(y),60). Because || — 6|| = O,(1/+/n) by Theorem 2 and
szy(Pn, Yo(y),0p) = ngzy(P, Yo(y),00) = 0 by the law of large numbers,

C'(Ppy0,8) = C' (P, v0(), ) = (¥ — %o(1)) [VC" (P 1o (y), 6) + 0p(1)]
+ 0, (¥ — o(y))?).

uniformly over 0,(1) neighborhoods of 1y (y).

(B.18)

Combine (B.15)—(B.18) and rearrange to see that, uniformly over o,(1/ aﬁim(%)n)

~ ~

neighborhoods of u(y), G (v, 8) — @(¢o(y), f) equals

V7Y (P, N 2Dy 1
2 T LR0) 1 (5 = ) 278 + opl(w = o)) + 00 (),
where DY = \/n[c¥ (P, ¥o(v), 00) + 0% (Pn, ¥0o(y), 00)] +0,(1). By Assumptions 16 and 17,

S
DY AEN (0,%(y)). The proof is complete on unleashing Theorems 1 and 2 in Sherman

(¥ —o(y))

(1994a), in turn, on the above expression. O
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Proof of Corollary 2. The result follows on making the same modifications to the
proof of Theorem 4 as exposed in the proof of Corollary 1. O

APPENDIX C: COMPUTATIONAL DETAILS'

The optimization routine consists of a user-determined maximum number of rounds.
Each such round consists of a series of iterations, followed by a series of stability checks,
with maxima again set by the user.

A single iteration, say the kth, proceeds as follows. For an initial value for é\, 0, € ©

say, an orthonormal set of dim(X)-vectors d;, = (‘51(:)7 e ,5,(€dim(X)_1))—each of which is
orthogonal to f—is drawn. The great circles connecting 6y, to a 5,(;) (l=1,...,dim(X)—

1), that is, the sets of points 0, (\) for A € [0,27) and
9,(;)()\) = cos(A) O + sin()) (5,(;),

provide a collection of orthogonal search directions along ©. Next, @ ~(0) is sequentially
maximized along each of these directions.!® The first sequence starts at 6, and delivers
0,(:), the [th sequence starts at H,Ef—l) and delivers 9,?).

If an(ﬁ,(cdim(X)*l)) > Qn(fk), the (k + 1)th iteration commences with starting value
Opi1 = Hl(gdim(x)*l). This process continues until a given set of search directions provides
no further increase in the objective function. The final point estimate that results from
this routine is declared a trial maximizer of q,(6).

Next, the trial maximizer is subjected to a number of stability checks. These are
necessary because the behavior of q,(#) is only investigated along a finite number of
search directions, so that the trial maximizer may, in fact, be only a local maximizer.
A stability check consists of drawing at random an orthonormal set of search directions
from ©—each again being orthogonal to the trial maximizer—and evaluating the ob-
jective function along these directions. If an increase in q,(6) is found, the check is
terminated and the algorithm reverts to the next round, iterating around the new point
estimate. If all checks are passed, the trial maximizer is declared stable and called 0.

As the number of stability checks increases to infinity, the randomization in drawing

14The algorithm discussed in this section is a modified version of the optimization routine for the
maximum-score estimator introduced by Manski and Thompson (1986).

15Because in any given direction G, (0) takes at most 2n(n — 1) +2 different values (see below), there
is generally a subinterval of [0, 27) on which the objective function is maximized. Any of these points
may be chosen as the new (intermediate) maximizer, but the mean or median of this subinterval seem
natural choices. The results in the main text where obtained by using the latter.
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search directions ensures that § will be the global maximizer of q,(0) with probability
approaching one.

Evaluating the objective function along the great circle connecting 6, and 5,(;) boils
down to computing an(e,@(A)) for A € [0,7). For A\ € [m,27), the corresponding val-
ues of the objective function follow immediately. This is so because an(e,(f)()\ + 7)) =
Gu(—6, (1)) and

8= O) = gy Do m) @8 ) (eRY

n(n—1) =

The first right-hand side term in the above expression does not contain any unknown
parameters and ﬁn(eg)()\)) has already been computed. Because the weights do not
depend on A, it suffices to focus on the dynamics of s(-, -, Gg)()\)).

Fix a pair of observations (i, j) and consider )\;;, the solution to (X —Xj)’Q,(cl)()\) =0
on [0,m). If (X; — X,) 0 is nonzero, \;; is unique and partitions [0, 7) into two sub-
intervals, each on which d(D;, D, G,E:l)()\)) is constant. Moreover,

(Xi = X;)'0, > 0= (Xi = X500 (\) > 0 if A € [0,\)
Y (X — X000 <0 if A e (A7)

while

(X~ X,)0, < 0= Ki™ X0 (0) <0 if A e [0,A)
Y (X; = X000 >0 if A e (A7)
If (Xz - Xj)lek = 0, then )\ij =0 and

(X; — X;)0: > 0= (X; — X;)6 > 0 for all A € [0, ),
(X; — X;)0, < 0= (X; — X;)0" <0 for all X € [0,\).

It then follows that, for a given A, s(DZ-, D;, 0,(;)()\)) equals
m(Y;) [1((@ — (X = X)) 0 > 0) + 1((X; — X)) > 0)1((X; — X,)6), = o)}
+m(Y;) [1(()\13' = N(X; = X;)0, < 0) + 1((X; = X;)/5,) < 0)1((X; = X;)/0) = 0)}

Because \;; = \j;, there are at most n(n — 1)/2 unique such \;;. They partition [0, )
into n(n — 1) + 1 intervals, each on which the objective function is constant in A. The
dynamics of the score contributions as a function of A\ displayed above, together with
(C.1), make it easy to compute q,(6) on the entire interval [0,27) and along any given

direction.
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