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Abstract

This paper builds a framework for analyzing models with multiple time-varying
treatments when selection into treatment is sequential and varies across treatment
statuses. The key challenge is to separate the time-varying effect of treatment from
dynamic selection into treatment based on unobservables. To address this problem, we
develop a method that is a hybrid between a control function and a generalized fixed
effects approach. Using a factor structure, we recover the distribution of the unobserv-
ables that jointly determine selection into treatment and the effect of treatment. A
useful feature of our method is that it can recover the distribution of heterogeneous
treatment effects across unobservable types. We apply our strategy to study grade
retention using the Early Childhood Longitudinal Study of Kindergartners. We find
evidence of dynamic selection into retention and that the treatment effect of retention
varies considerably across grades and unobservable abilities of students.
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1 Introduction

Most policy evaluation problems in social science do not fit into the simple binary treatment
framework that is the focus of much of the literature. In some cases, there are multiple
potential treatments. For instance, individuals who lose their job may be assigned to several
different types of welfare programs with different effects on the duration of unemployment,
as in Nekipelov (2008). An important special case that applies to many settings is that
of time-varying treatment effects, where the effect of treatment varies according to time of
treatment. In the case of the return to an advanced degree like an MBA (e.g., Arcidiacono,
Cooley, and Hussey, 2008), the return may depend on the number of years that have elapsed
since bachelor’s completion. In the analysis of fertility, the timing and spacing of children
is important (e.g., Heckman, Hotz, and Walker, 1985; Heckman and Walker, 1990). In the
analysis of health outcomes, the time between a negative health shock and treatment receipt
is crucial. For example, the total cost of treatment (or the survival rate) for breast cancer
may be different for women who take longer to get a mastectomy after diagnosis. In the
case of grade retention, it is not only whether a child repeats a grade that may affect his
test scores but also the grade in which he is retained. In all of these cases, the timing of
treatment may be as important a part of the decision process as whether or not to receive
treatment. Furthermore, effects may differ depending on how much time has elapsed since
treatment.

In this paper, we develop a simple framework for the analysis of models with multiple
treatments, particularly focusing on the analysis of time-varying treatment effects. We focus
on a setting where the effect of treatment varies based on the time it is received and/or the
time elapsed since receipt. The leading example in our paper, and the question we address in
our application, is the effect of being held back at different grades (i.e., grade retention) on
student achievement. Grade retention is a controversial education policy and the evidence
is mixed.(e.g., Holmes, 1989; Jimerson, 2001; Jacob and Lefgren, 2004) Yet, many nations
permit and encourage grade retention to varying degrees. For instance, in the United States,
it is becoming increasingly common, with the advent of nationwide accountability policies, to
tie grade promotion to performance on state standardized exams. We provide new evidence
on the dynamic effects of grade retention, with the goal of informing both how the timing of
retention decisions affects outcomes and how effects may vary across student types.

Like in the static binary framework, the key identification challenge is separating the
effect of treatment from selection of different unobservable types into treatment. The added
complication in our setting is that selection is dynamic, in the sense that the decision to be
treated today depends on the decision yesterday and different types may select into treatment
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at different times. For example, students who just miss being retained in kindergarten may
be more likely to be retained in first grade. Furthermore, students who are retained in earlier
grades may differ in unobservable ways from students who are retained in later grades. In
the absence of adequate controls, the time-specific treatment effect of retention cannot be
separated from dynamic selection.

We propose a new approach to account for dynamic selection, which can be understood
as a hybrid between the control function and a generalized fixed effect approach. We assume
that a low dimensional set of unobservables affects both selection into treatment and the
outcome of treatment. This strategy effectively places restrictions on the covariances between
unobservables in the outcome and selection equations, a generalization of the semiparametric
factor structure of Carneiro, Hansen, and Heckman (2003).1 It is a control function approach
because we use information from the selection equation to help control for selection. For
example, the same unobserved abilities affect both test scores and the probability of being
retained.

Comparable to a fixed effects approach, which controls for a time-invariant unobserv-
able through time differences, the factor structure we propose also assumes time-invariant,
individual-specific unobservable attribute. However, unlike the fixed effects approach, our
factor structure permits the unobservable to have different marginal effects on selection and
the outcome equations at different points in time. For instance, ability can play a more domi-
nant role in later relative to earlier retention decisions, and the effect of ability on achievement
can vary across grades. Furthermore, unlike a fixed effect which is single-dimensional, the
factor structure permits the unobservable attribute to be multidimensional (e.g., behavioral
and cognitive ability) and for there to be persistent shocks to outcomes over time (e.g., the
effect of a bad teacher or parental divorce).

The factor structure can also be understood as an alternative form of matching where the
match is based not only on observables but also on the unobservable factors. Identification of
the factor structure follows both through restrictions on the covariances between unobserv-
ables in the outcome and selection equations and potentially through exclusion restrictions
(variables that affect selection into treatment but not the outcome directly). The main intu-
ition is that, by using the multiple noisy measures of the factors observed in the data (e.g.,
test scores), one can infer features of the unobservable factors (e.g., their distributions).

While many methods exist to deal with endogenous treatment assignment in the static
binary framework when there is selection on unobservables, such as difference-in-differences,
regression discontinuity or instrumental variable approaches, these methods are often diffi-

1See also Bonhomme and Robin (2010) and Cunha, Heckman, and Schennach (2010) for recent develop-
ments.
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cult to extend to a multiple heterogeneous treatment setting and considerably less research
has focused on the case of multiple endogenous treatments.2 Nekipelov (2008) provides a
useful generalization of the instrumental variable approach to a multiple treatment setting.
However, this relies on a monotonicity assumption that would be difficult to extend to our
framework.

We build on the small literature on the analysis of treatment effects in dynamic models.
Our approach to modelling time-varying treatments is close to that in Heckman and Navarro
(2007). However, we focus on how factor analytic methods can aid in identification and
interpretation of time-varying treatment effects. We generalize the factor structure results
used in other settings (Carneiro, Hansen, and Heckman, 2003, Bonhomme and Robin, 2010).
Our generalization is appealing not only because it is likely to be useful in other settings,
but also because it is less data hungry, a common criticism of factor models. Furthermore,
we link the assumptions used in factor structure models to better known fixed effects and
regression discontinuity approaches.3

Our analysis is similar in spirit to that of Ham and LaLonde (1996) who point out the
potential pitfalls of applying standard static methods to models where time since treatment
matters, a problem we also study. However, as in Abbring and Van den Berg (2003), we
also allow for an endogenously selected time of treatment to affect outcomes.4 Unlike Ham
and LaLonde (1996) and Abbring and Van den Berg (2003), our model does not rely on the
proportional hazards assumption. Hence, we can allow for the unobservable to be multidi-
mensional and for different unobservables to enter the model as time elapses. Furthermore,
we permit the effect of the unobservables to change over time and with treatment status.
Thus, our model supports more general forms of treatment heterogeneity than in either Ham
and LaLonde (1996) (where treatment effects are homogeneous), or Abbring and Van den
Berg (2003) (where treatment heterogeneity can be allowed at the expense of ruling out the
endogenously selected time at treatment to affect outcomes).

While there is a literature that allows for time at treatment to determine treatment effects
(Gill and Robins, 2001; Murphy, 2003; Lechner, 2004), it is based on sequential conditional
independence assumptions and so rules out selection on unobservables. Furthermore, Cellini,
Ferreira, and Rothstein (2010) provide a useful generalization of the regression discontinuity
approach to deal with dynamic selection, i.e., that individuals who are just below the thresh-
old for treatment one period may be more likely to select into treatment the next. However,
a key assumption for their model is that treatment effects do not vary by individual types.

2See Frölich (2004) for a discussion and Cataneo (2009) for recent developments.
3In Online Appendix C we provide further comparisons with other commonly employed methods.
4Abbring and Van den Berg (2003) show the nonparametric identifiability of a model similar to Ham and

LaLonde (1996) in the context of a continuous time mixed proportional hazards model of duration.
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In contrast, we consider the case where heterogeneity and selection based on unobservables
are an important part of the problem. This type of heterogeneity is important in many
cases. We find that these generalizations (i.e., the timing of treatment, heterogeneity in
effects by unobservable student ability and selection on unobservables) play important roles
in our application.5

We apply our method to study the effect of retention on achievement using data from the
Early Childhood Longitudinal Study of Kindergartners (ECLS-K). We provide new insight
into how treatment effects vary by students of different abilities as well as by the timing of
and time elapsed since retention. We find evidence of dynamic selection and heterogeneous
treatment effects by unobservable student abilities. For instance, while the average treatment
effect of kindergarten retention is positive in the long run, the treatment effect on students
who are actually retained in kindergarten is negative. We further find that the negative
effect of retention on treated students generally diminishes as time since retention passes.
In comparison, since the simpler fixed effect approach only provides at best estimates of the
average treatment effect, it would lead to erroneous policy conclusions as the average student
is not the typical student retained.

We also consider the effect of a change in retention policies to make it harder to retain
students at the margin. Given considerable heterogeneity in treatment effects by ability, the
effect for the marginal students is an important policy parameter, since the marginal student
is very different from both the average student and the average student who is retained.

The paper proceeds as follows. In Section 2, we describe the basic framework and define
treatment effects for the dynamic case. In Section 3, we specialize the framework to our
proposed factor structure. We show that the model is semiparametrically identified. We
discuss our application in Section 4.

2 The Framework

Consider the problem of evaluating the efficacy of a potentially time-varying treatment.6 Let
t = 1, 2, ..., t̄ index calendar time and i = 1, ..., I index the individual. Since we allow for the

5Furthermore, our focus is not on the design of optimal treatment regimes as in Murphy (2003) but
rather on the identification of treatment effects. This distinction is important since the design of an optimal
treatment regime, depending on the definition of optimality, may require the identification of different aspects
than those we focus on. That is, while our results can be used to analyze and improve policy, they may not
be enough (or may be more than required) to design a policy that satisfies particular requirements (i.e., to
be “optimal” in some sense).

6Since in our empirical application we analyze the time-varying effects of grade retention, we continually
use it as an example in the text to help fix ideas. There are many other examples in the literature that one
could fit into this framework: how soon after pregnancy to stop smoking, when to participate in a training
program for the unemployed, when to start (or stop) taking a drug, when to install a machine, etc.
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treatment to be taken at different times (e.g., for children to be retained at different grades),
we define a random variable Ri (whose realization we denote by r) that indicates the time at
which treatment is received (e.g., the grade in which a student is retained). We assume that
treatment is taken at most once.7 We let Ri = {R,R+ 1, ..., R̄− 1, R̄,∞}, where R ≥ 1 and
R̄ ≤ t̄ allows for the possibility that treatment can be taken only on a subset of the observed
time periods. We adopt the convention of letting Ri =∞ for the “never” treated state.8

The (possibly vector-valued) outcome of interest at time t for an individual i who receives
treatment at time Ri = r is denoted by Yi (t, r).9 For notational simplicity, we keep all
conditioning on covariates implicit. Finally, we define a random variable Di (r) that takes
value 1 if an individual receives treatment at time r and 0 otherwise. For individual i the
observed outcome in period t will be given by

Yi (t) =
R̄∑
r=R

Di (r) [Yi (t, r)− Yi (t,∞)] + Yi (t,∞) . (1)

As opposed to the standard binary treatment case, we now have many possible potential
outcomes. That is, while the standard case only has the treated and untreated potential
states, we have the untreated, the treated at time R, the treated at time R+ 1, etc. Because
of the sequential nature of the problem, by letting Yi (t, r) depend on treatment time r, we
allow for the possibility that the effect of treatment depends not only on receipt but on the
time at which treatment is received. For example, there is no single effect of retention, but
rather an effect of retention in kindergarten, in first grade, etc. Furthermore, there is no
single effect of retention in kindergarten (for example), as the effects depend on the time
elapsed since retention. This setting can also be interpreted as depending on the time since
treatment (t− r), making it straightforward to analyze the outcomes as durations, counts,
etc.

Following Abbring and Van den Berg (2003) we also impose that

A-1 Yi (t, r) = Yi (t,∞) = Yi (t) for r ≥ t and r 6=∞.

That is, we rule out that potential outcomes differ because in the future treatment times
will be different. In our application this means, for example, that after conditioning on all

7Extending the framework to allow for the possibility of treatment being taken more than once can be
done at the cost of introducing a lot more notation, by letting Ri be a random vector characterizing the
times at which an individual receives treatment.

8Depending on the situation this case may be more accurately described as the “not treated yet” or “not
treated in the sample period.”

9These could be a vector of continuous test scores given a retention status (as in our application), a vector
of discrete random variables (measuring attendance for example), strings of discrete random variables (as in
a duration model, time until graduation for example) or combinations of these.
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prior information, the fact that a student will be retained in second grade does not directly
affect her performance in first grade. While Abbring and Van den Berg refer to this as the
no anticipations assumption, importantly this should not be confused with the assumption
that individuals are not forward looking. Assumption A-1 does not rule out that individuals
may predict that they are more likely to get treated at a particular time r (i.e., have some
anticipation as to treatment time).10

We further write the outcomes as

Yi (t, r) = Φ (t, r) + εi (t, r) , (2)

where, because of A-1, we impose Φ (t, r) = 0 and εi (t, r) = εi (t) if r ≥ t and r 6=∞.11

We assume that selection into treatment and treatment time are determined by a single
spell duration model that follows a sequential threshold crossing structure as in Heckman
and Navarro (2007). If we define the treatment time specific index Vi (r) = λ (r) + Ui (r),
then treatment time is selected according to

Di (r) = 1
(
Vi (r) > 0 | {Vi (h) < 0}r−1

h=1

)
= 1

(
Vi (r) > 0 | {Di (h) = 0}r−1

h=1

)
,

where 1 (a) is an indicator function that takes value 1 if a is true and 0 otherwise. The
selection process is dynamic in the sense that today’s choice depends on yesterday’s choice:
treatment time r can only be selected if treatment has not been taken before.

This framework can be thought of as a midpoint between the standard static treatment
literature that does not model the selection process explicitly and a fully specified structural
dynamic discrete choice model. In many situations it is not clear how to fully specify the
selection process. Our application provides a good example of this, since the decision to
have a student repeat a grade is the result of some complex process involving many actors.
Our analysis provides an alternative to the fully-specified structural model by extending the
standard selection model to account for dynamics. Cunha, Heckman, and Navarro (2007)

10What it rules out is that, after conditioning on the information available at the pre-r period of interest
t, the actual event of getting treated at time r has an effect on pre-time r outcomes. It is in this sense that
it is closer to a “no perfect foresight” assumption although this is not necessary for A-1 to hold. We can
accommodate cases in which A-1 does not hold, but we keep the assumption for simplicity. See Abbring
and Van den Berg (2003) and Heckman and Navarro (2007) for a discussion.

11We treat the outcome as continuous for convenience. We can easily work with discrete and mixed
discrete/continuous outcomes by defining them as random variables arising from other latent variables
crossing thresholds. For example, if the outcome were binary, we can define a latent variable Y ∗i (t, r) =
Φ (t, r) + εi (t, r) so that the measured outcome Yi (t, r) would be Yi (t, r) = 1 (Y ∗i (t, r) > 0) where the func-
tion 1 (a) takes value 1 if a is true and 0 if it is not. Furthermore, additive separability in outcomes is not
strictly required, it can be relaxed using the analysis in Matzkin (2003).
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provide conditions under which structural dynamic discrete choice models can be represented
by a reduced form approximation as above. Furthermore, since extending it to the case in
which treatment is not an absorbing state (i.e., treatment can be received more than once)
is straightforward it can be applied in more complex situations. 12

The observed outcome in period t is then given by

Yi (t) = Φ(t,∞)+εi(t,∞)+

min{t,R̄}∑
r=R

Di (r) (Φ (t, r)−Φ(t,∞))+

min{t,R̄}∑
r=R

Di (r) (εi (t, r)−εi (t,∞)) .

If there is no selection based on unobservables, then the problem is easier and we can recover
an unbiased estimate of the effect of treatment on outcomes. In general this is not the case,
and some of the same unobservables that determine the outcome determine the selection
process. For instance, higher ability students may be less likely to be retained and more likely
to have higher test scores. Our goal in general is to allow (εi (t, r) , εi (t

′, r′′) , Ui (r
′′′) , Ui (r

′′′′))

all to be correlated.

2.1 Defining Treatment Effects

Before turning to the identification problem, we first consider the problem of defining what
constitutes “the” effect of treatment at the individual level. We can define at least two
different candidates for the individual effect of treatment. The first parameter

∆1
i (t, r, r′) = Yi (t, r)− Yi (t, r′)

= Φ (t, r)− Φ (t, r′) + εi (t, r)− εi (t, r′) ,

measures the effect at period t of receiving treatment at time r versus receiving treatment at
time r′. If we let r′ =∞, this parameter would measure the effect at t of receiving treatment
at time r versus not receiving treatment at all. An example of this first parameter would
be the difference in test scores at age 11 for a student if he repeats first grade versus if he
repeats third grade.

The second individual parameter of interest

∆2
i (τ, r, r′) = Yi (r + τ, r)− Yi (r′ + τ, r′)

= Φ (r + τ, r)− Φ (r′ + τ, r′) + εi (r + τ, r)− εi (r′ + τ, r′) , for τ > 0

12In this case, we would generalize the threshold crossing model into a multiple spell model, where the
whole sequence of prior treatments/no treatments potentially affects the decision each period. Ri would be
a vector containing the treatment history up to t, and an individual would choose treatment every time the
index becomes positive (not only the first time).
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measures the difference in the effect of receiving treatment τ periods after treatment time for
two different treatment times r and r′. An example of this parameter would be the difference
in wages one year after taking a training program if the individual takes the training 3 months
after the unemployment spell starts versus 6 months after the spell begins.

Regardless of how one defines the effect of treatment, we can consider what happens as
time since treatment elapses. The effect is potentially individual specific even conditional on
covariates. Relative to the static binary case, in the time-varying setting there are many more
possible population average parameters, both of the average treatment effect and treatment
on the treated type. For example, we can define the average effect of receiving treatment at
time Ri = r versus not receiving treatment

ATE (t, r) = E (Y (t, r)− Y (t,∞)) = Φ (t, r)− Φ (t,∞) ;

the average effect of treatment at time t for people who receive treatment at time Ri = r

TT (t, r) = E (Y (t, r)− Y (t,∞) |Ri = r)

and so on. In our example, this could be the average effect on third grade test scores of being
retained in kindergarten versus not being retained, for those children who were retained in
kindergarten. Because of the multiplicity of treatments available, we can define many more
mean treatment parameters like the average effect of receiving treatment at Ri = r versus
receiving treatment at Ri = r′

ATE (t, r, r′) = E (Y (t, r)− Y (t, r′))

or the effect of treatment at Ri = r versus treatment at Ri = r′ for people who are actually
treated at time Ri = r′′

TT (t, r, r′, r′′) = E (Y (t, r)− Y (t, r′) |Ri = r′′) ,

etc. For instance, we may want to know the return to retaining students in kindergarten
who were actually retained in first grade.

In general, depending on whether we assume the mean component Φ (t, r) and/or the
unobserved component of the outcome εi (t, r) depend on r or not, the effect of treatment is
time-varying. In the same manner, depending on whether εi (t, r) varies across individuals,
the effect is heterogeneous in the population. Under certain assumptions that limit the
heterogeneity of treatment effects some of these parameters may equal one another. We
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focus on the more general case, where the treatment effect is allowed to vary over time
and by unobserved individual characteristics. Both of these types of heterogeneity prove
important in our application.

3 Identification

The primary challenge to identifying treatment effects in the static framework is that indi-
viduals differ in unobservable ways that help determine both selection into treatment and
the effect of treatment. For instance, lower ability students are more likely to be retained
and may also learn at a slower rate than higher ability students leading to a different effect
of grade retention. The problem is similar in our dynamic setting, with the added challenge
that selection is dynamic and that treatment effects vary both by the unobservable type of
the individual and over time.

In this section, we develop a methodology based on a factor-analytic approach for dealing
with dynamic selection and heterogeneous, time-varying treatment effects. We focus on the
case where returns are heterogeneous both because this case is arguably empirically more
relevant and because applying standard instrumental variables methods under homogeneity
of treatment effects is a straightforward GMM problem.13 We then describe conditions such
that the model is semiparametrically identified.

Our approach can be understood as a hybrid between the control function and a gen-
eralized version of the fixed effect approach. As with all control function based methods,
identification is more transparent and easier to achieve when instruments are available, but
they are not strictly required. In contrast to the standard fixed effect approach, we can allow
for the individual effects to be multidimensional, time-varying and treatment-specific (e.g.,
the effect of ability can differ in the retained relative to the non-retained states).14

3.1 Factor Structure

For illustration, consider a simple 3 period example where treatment can be taken in either
of the first 2 periods (R = 1, 2), e.g., students can be retained in kindergarten or first grade.
The policy is evaluated according to its effect on some ex-post outcome measured at period
t: Yi (t, r), e.g., third grade test scores. For example, the potential outcomes in period 3 can

13Notice that, because of the dynamic nature of the model, even if we only have one instrument Z, but it is
time varying it can potentially be used as an instrument for all Di (r) since the choices are made sequentially
over time.

14In Online Appendix C we briefly discuss some of the advantages and shortcomings of applying commonly
employed approaches in the static treatment literature in our dynamic setting.
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be given by
Yi (3, r) = Φ (3, r) + εi (3, r) for r = 1, 2,∞,

and the observed outcome can be written as

Yi (3) = Φ (3,∞) +Di (1) [Φ (3, 1)− Φ (3,∞)] +Di (2) [Φ (3, 2)− Φ (3,∞)]

+εi (3,∞) +Di (1) [εi (3, 1)− εi (3,∞)] +Di (2) [εi (3, 2)− εi (3,∞)] . (3)

The (observed) outcome equation in period 3 is a regression model with dummy indicators
for the time at which an individual receives treatment. Notice that this is not a standard
binary treatment model both because we now have more than one treatment indicator and
because the effect of treatment is potentially heterogeneous. In the language of Heckman,
Urzua, and Vytlacil (2006), we have a situation in which essential heterogeneity is present
if the decision of when to receive treatment is correlated with the unobservable (to the
econometrician) gains of choosing each treatment. That is, in our case Di (r) and/or Di (r

′)

are likely to be correlated with εi (3, r) − εi (3, r
′) for r 6= r′. In the retention example,

essential heterogeneity exists if the students who are retained are more likely to experience
higher (lower) gains from retention.

One way to account for essential heterogeneity is to identify and estimate the joint distri-
bution of all the unobservables (Ui, εi) . This would permits us to describe how the treatment
effect varies across unobservable individual types. Imposing a factor structure simplifies the
problem and permits us to recover the joint distribution of the unobservables. In particular,
we assume:

A-2 (Factor structure) εi (t, r) = θiα (t, r) + εi (t) and Ui (r) = θiρ (r) + υi (r) where θi is
a vector of mutually independent “factors” and we assume that εi (t) ⊥⊥ εi (t

′) for all
t 6= t′, υi (r) ⊥⊥ υi (r

′) for all r 6= r′ and υi (r) ⊥⊥ εi (t) for all r and t where ⊥⊥ denotes
statistical independence.15

We impose A-2 for convenience, even though it is stronger than required.16 The factor
structure assumption is a convenient dimension reduction technique: it reduces the problem
of recovering the entire joint distribution of (Ui, εi) to that of recovering the factor “loadings”
α (t, r) and ρ (r) and the marginal distributions of the elements of θi and of εi (t) , υi (r) ∀t, r.

The factor structure also has an appealing interpretation, since we can now talk about
15If A-1 holds, α (t, r) = α (t,∞) = α (t) for r ≥ t.
16Following the analysis of measurement error models in Schennach (2004) and Hu and Schennach (2008)

we can relax the strong statistical independence assumptions and replace them with a combination of general
dependence and weaker mean independence assumptions.
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a low dimensional set of common “causes.”17 The same set of unobservables (the vector
θi) that determines the effect of treatment also determines selection into treatment. In our
grade retention example, if θi is a vector of unobserved “abilities,” essential heterogeneity
arises because unobserved ability affects both the gain in test scores across two years and
the probability of being retained. We can then consider questions such as whether less able
students in our model are more likely to be retained earlier or later and test the implications
for the effect of treatment on these students.

To understand how the factor structure assumption helps address the identification prob-
lem associated with unobserved heterogeneity, consider our three period example. If A-2
holds, the choice process is determined by

Vi (r) = λ (r) + θiρ (r) + υi (r) .

The observed outcomes are

Yi (1) = Φ (1) + εi (1) + θiα (1) ,

Yi (2) = Φ (2,∞)+Di (1) [Φ (2, 1)− Φ (2,∞)]+εi (2)+θiα (2,∞)+Di (1) θi [α (2, 1)− α (2,∞)] ,

and

Yi (3) = Φ (3,∞) +Di (1) [Φ (3, 1)− Φ (3,∞)] +Di (2) [Φ (3, 2)− Φ (3,∞)] + εi (3)

+θiα (3,∞) +Di (1) θi [α (3, 1)− α (3,∞)] +Di (2) θi [α (3, 2)− α (3,∞)] .

In this case, essential heterogeneity is present when α (3, r) 6=α (3,∞) or α (2, r) 6=α (2,∞),
since now the unobserved gains in the test score

εi (t, r)− εi (t,∞) = θi [α (t, r)− α (t,∞)]

are correlated with the choice indicator because the same θi determines both.
If we could recover (or condition on) the unobserved θi, thenDi(1) andDi(2) are no longer

endogenous and we can obtain consistent estimates of the treatment effect. This is the key
intuition behind the factor model, to condition not only on observable covariates but also on
the unobservable vector θi in order to recover the conditional independence assumption of
quasi-experimental methods. There are many normalizations under which the distribution of
θi can be recovered (see Cunha, Heckman, and Schennach, 2010 and Bonhomme and Robin,

17See Jöreskog and Goldberger (1975) for a discussion and Carneiro, Hansen, and Heckman (2003) and
Cunha, Heckman, and Navarro (2005) for recent developments.
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2010 for examples).
To understand how the factor model we propose attempts to generalize the fixed effect

model, take differences between the period 2 and period 1 outcomes to difference out the
individual effect θi, so that

Yi (2)− Yi (1) = Φ (2,∞)− Φ (1) +Di (1) [Φ (2, 1)− Φ (2,∞)] + εi (2)− εi (1)

+θi [α (2,∞)− α (1)] +Di (1) θi [α (2, 1)− α (2,∞)] .

For the differencing strategy to work we need to impose two restrictions. First, we would
need to rule out essential heterogeneity, i.e., α (2, 1) = α (2,∞) = α (2). Second, we would
additionally have to assume that the marginal effect of θi does not change over time so
α (2) = α (1) = α. First differencing eliminates θi only when these two restrictions hold. As
more periods pass, more assumptions are required for the fixed effect model to work. For
instance, to identify the effect on period 3 outcomes, we would need to impose the additional
assumption that α (3, 2) = α (3, 1) = α (3,∞) = α (3).

Alternatively, by relaxing the fixed effects assumption slightly, we could employ a double
differencing strategy. We continue to rule out essential heterogeneity, but now allow for time
trends. In other words, we substitute the assumption of a time-invariant marginal effect of θi
with α (t) = α0 +α1t. Under these assumptions, subtracting Yi (2)−Yi (1) from Yi (3)−Yi (2)

would recover Φ (3, 2)−Φ (3,∞) and Φ (3, 1)−Φ (3,∞)−2 (Φ(2, 1)− Φ(2,∞)) so we cannot
separate the effect of being treated in period 1 on outcomes in periods 2 and 3. Note that
under the assumptions that make the differencing strategy possible, the average treatment
effect is the same as the treatment on the treated. In many cases, including our application,
this is not a reasonable assumption. Hence, using an identification strategy that allows for
essential heterogeneity is important.

The main goal of the factor structure, as we propose it, is to allow for the possibility
of essential heterogeneity, multidimensional abilities and the marginal effects of abilities to
vary by treatment status. To illustrate how the factor structure works, consider a simple
example in which only one factor (e.g., the first element of θi: θi,1) affects the outcome and
selection equations in period 1, i.e., the standard case in which one assumes that unobserved
ability is uni-dimensional. Suppose the outcome in period 1 is free of selection,18 so

Yi (1) = Φ (1) + θi,1α1 (1) + εi (1) .

18Alternatively if we have access to an exclusion restriction (i.e., an instrumental variable) we can control
for selection nonparametrically as in Heckman (1990) and Heckman and Smith (1998) and work with selection
corrected outcomes.
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It is straightforward to show that the joint distribution of εi (1) = θi,1α1 (1) + εi (1) and
Ui (1) = θi,1ρ1 (1) + υi (1) is nonparametrically identified (e.g., Heckman and Smith, 1998).
From it, normalizing ρ1 (1) = 1,19 we can form

E (ε2i (1)Ui (1))

E (εi (1)U2
i (1))

=
α2

1 (1)E
(
θ3
i,1

)
α1 (1)E

(
θ3
i,1

) = α1 (1) .

With α1 (1) in hand it follows from a Theorem of Kotlarski (1967)20 that the distribution
of θi,1 (and of εi (1) and υi (1)) is nonparametrically identified. For example, suppose these
distributions are such that they can be characterized by their moments (see Billingsley, 1995
for conditions). Then, intuitively, identification of the distribution of θi,1 follows from the
fact that we can recover all its moments from E

(
εki (1)Ui (1)

)
= αk1 (1)E

(
θk+1
i,1

)
for k > 0.

Formally, one wants to characterize a distribution using its characteristic function and not
moments, and this is precisely what the Kotlarski argument does.

Next consider the (selection corrected) second period outcomes

Yi (2, r) = Φ (2, r) + θi,1α1 (2, r) + θi,2α2 (2, r) + εi (2) for r ∈ {1,∞}

and selection equation

Vi (2) = λ (2) + θi,1ρ1 (2) + θi,2ρ2 (2) + υi (2) ,

where we now allow for a new element of θi (θi,2) to enter the model. θi,2 can be interpreted
as a correlated shock, i.e., an unobserved shock that affects outcomes and selection equa-
tions from period 2 onward, with the potential that its effect may change as time elapses.
Alternatively, one can think of it as an ad-hoc way of letting unobserved ability evolve over
time. By taking cross moments over time (i.e., Yi (1) with the selection corrected Yi (2, r)),
we can identify the elements associated with θi,1 in period 2 equations. Then, by taking
cross moments within period 2 equations, we can identify the elements associated with the
correlated shock (θi,2), as well as the nonparametric distributions of the unobservables.

19Given that θ1 is latent, this normalization implies no restriction since θi,1ρ1 (1) = θi,1κ
ρ1(1)
κ for any

constant κ.
20The theorem states that, if X1, X2 and X3 are independent real-valued random variables and we define

Z1 = X1 −X2

Z2 = X1 −X3;

then, if the characteristic function of (Z1, Z2) does not vanish, the joint distribution of (Z1, Z2) determines
the distributions of X1, X2 and X3 up to location. For a proof see Kotlarski (1967) or Prakasa Rao (1992)
theorem 2.1.1.
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We extend this analysis to the case in which unobserved ability (θi) is multidimensional
beyond the correlated shocks (i.e., gaining a new element of θi each period). Associated with
ability is a set of tests or markers that measure these components of ability imperfectly. In
our empirical example, these correspond to the initial tests given to students in kindergarten
before any grade repetition takes place. The existence of selection-free initial test scores is
not crucial (provided we can correct for selection), but we keep it because a) it is common
to many situations and b) it simplifies the exposition of the identification argument.21

In our empirical application we consider a normalization of θi that is particularly relevant
to retention decisions we propose that true ability at the initial period consists of three inde-
pendent components (Ai, Bi, Ci). In particular, assume we have access to Nc ≥ 2 measures
(or tests) of cognitive functions ζi,j, and Nb ≥ 2 measures of behavioral functions, βi,j, that
are measured free of selection. As before, we keep all conditioning on covariates implicit to
simplify notation. We write the jth demeaned cognitive test as

ζi,j = Aiαζ,j + Ciπζ,j + εi,ζ,j, (4)

and the jth demeaned behavioral test as

βi,j = Aiαβ,j +Biφβ,j + εi,β,j. (5)

Under this interpretation, tests are noisy measures of the components of ability. De-
pending on the nature of the measure, some (like math and reading test scores) are markers
of cognitive ability Ci and general ability Ai and some (like measures of class disruptive
behaviors or habits) are noisy measures of the behavioral ability Bi and general ability Ai.
This is not to say that cognitive ability plays no role in behavioral aspects or vice versa
but rather that whatever is common between these functions is captured by the general
ability component Ai. The cognitive ability component Ci and the behavioral component
Bi measure the part of ability that is used exclusively for the corresponding function. Other
normalizations are possible, but the present normalization may also be applicable to other
settings with multidimensional unobservables.

Semiparametric identification follows similarly to the one factor model. Now we take
moments across cognitive and behavioral equations to recover the α parameters and the
nonparametric distribution of A. We then take cross moments within cognitive tests and
within behavioral tests to recover the π and φ parameters, as well as the nonparametric

21There is nothing special about ability and tests. In a different setting, we could refer to abilities as
general and specific unobservables, and to test scores as measurements. For ease of exposition, however,
we continue referring to these unobserved factors as general, behavioral and cognitive abilities and to the
measurements associated with them as test scores.
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distributions of B,C and the ε′s.
Formally, without loss of generality, we impose the following normalizations αζ,1 = 1,

πζ,1 = 1 and φβ,1 = 1.22 We first take cross moments between cognitive and behavioral
measures

E ((ζj)
n βk) = αnζ,jαβ,kE (A1+n)

E (ζj (βk)
m) = αζ,jα

m
β,kE (A1+m)

. (6)

and form
E (ζj (βk)

n)

E (ζ1 (βk)
n)

=
αζ,jα

n
β,kE (A1+n)

αnβ,kE (A1+n)
= αζ,j

to recover all of the general ability loadings on cognitive tests, αζ,j, for j = 2, . . . , Nc. We
can then, for example, form

E
(
ζ1 (βk)

2)
E
(
(ζ1)2 βk

) =
α2
β,kE (A3)

αβ,kE (A3)
= αβ,k

and recover the general ability loadings on behavioral tests.
To show that the distribution of A is identified, without loss of generality, take any two

tests, for example a cognitive and a behavioral one, and form

ζi,j
αζ,j

=

[
Ci
πζ,j
αζ,j

+
εi,ζ,j
αζ,j

]
+ Ai,

βi,k
αβ,k

=

[
Bi
φβ,k
αβ,k

+
εi,β,k
αβ,k

]
+ Ai.

Then, using Kotlarski (1967), the distribution of A (and of
[
C
πζ,j
αζ,j

+
εζ,j
αζ,j

]
and

[
B
φβ,k
αβ,k

+
εβ,k
αβ,k

]
)

is nonparametrically identified.
With all of the parameters associated with general ability A as well as its distribution

identified, we can then take the system of cognitive tests and form

E (ζj (ζk)
n)− αζ,jαnζ,kE

(
A1+n

)
= πζ,jπ

n
ζ,kE

(
C1+n

)
,

for any j 6= k with j, k = 1, ..., Nc. By, for example, forming

E
(
ζ1 (ζk)

2)− αζ,1α2
ζ,kE (A3)

E
(
(ζ1)2 ζk

)
− α2

ζ,1αζ,kE (A3)
=
π2
ζ,kE (C3)

πζ,kE (C3)
= πζ,k,

we can recover πζ,k for k = 2, ..., Nc. By iteratively applying the Kotlarski argument, we
22Given that A,B, and C are all latent, these normalizations imply no restriction since Aαζ,j = Aκ

αζ,j
κ

for any constant κ.
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can nonparametrically recover the distributions of C and εζ,j for j = 1, ..., Nc. Finally, by
applying the same argument to the system of behavioral tests, we can recover φβ,j and the
nonparametric distributions of B and εβ,j for j = 1, ..., Nb.

Once we have recovered the distribution of (Ai, Bi, Ci), we can proceed to the next period.
Now some children will be treated (i.e., will repeat kindergarten), and so the test scores
in period 2 will be contaminated with selection. By using the selection equation, we can
correct period 2 test scores using semiparametric selection correction methods like the control
function approach.23 We can then repeat the arguments above and recover the loadings and
the distribution of the ε′s. However, since we now know the distribution of abilities in
advance, we can let all three types of ability enter all equations (whether behavioral or
cognitive) without having to normalize some loadings to zero. The normalization that Bi

only enters β equations and Ci only enters ζ equations need only apply to the first period.
By proceeding iteratively, we can recover all of the outcomes of interest.

Here we assume that the only determinants of selection are the A,B,C components of
ability. Since we can identify those elements in period 1, we can add new elements to θ over
time to allow for new persistent unobserved (to the econometrician) shocks every period, as
in the example where ability is single-dimensional.

Formally, consider a modified version of the model of equations (4) and (5) in a multi-
period setting. In period 1 the model is given by:

ζi,j,1 = Aiαζ,j,1 + Ciπζ,j,1 + εi,ζ,j,1,

βi,j,1 = Aiαβ,j,1 +Biφβ,j,1 + εi,β,j,1.

Identification of these period 1 equations follows exactly as before. Moving forward in time
we have that the demeaned selection corrected period t cognitive tests for retention status r
are written as

ζi,j,r,t = Aiαζ,j,r,t +Biφζ,j,r,t + Ciπζ,j,r,t +
t∑

τ=2

η
(τ)
i δ

(τ)
ζ,j,r,t + εi,ζ,j,t. (7)

First, notice that we now allow for behavioral ability to determine cognitive tests after period
1. Second, we also add a new unobservable η(τ)

i every period. Since this new unobservable
is individual specific and affects all outcomes (and retention decisions) from period τ on, it

23Notice that the selection equation in period 1 only depends on (Ai, Bi, Ci) and so, strictly speaking, an
exclusion restriction is not required for nonparametric identification as in Heckman (1990) and Heckman
and Smith (1998). See Heckman and Robb (1985) and Navarro (2008) for use of control functions to control
for selection.
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can be interpreted as a permanent shock that first affects outcomes in period τ (hence the
superscript). While the shock itself is permanent, we allow for its effects to change both over
time and across retention statuses for all equations in the model.

Now consider identification of equation (7) in period 2 for an arbitrary retention status
r. We can form cross second moments between period 2 and period 1 cognitive tests:

E (ζj,r,2, ζj,1) = αζ,j,r,2
[
αζ,j,1E

(
A2
)]

+ πζ,j,r,2
[
πζ,j,1E

(
C2
)]

E (ζj,r,2, ζk,1) = αζ,j,r,2
[
αζ,k,1E

(
A2
)]

+ πζ,j,r,2
[
πζ,k,1E

(
C2
)]
.

The terms in square brackets are all known from our period 1 analysis. Provided a standard
rank condition holds, this system can be solved for both αζ,j,r,2 and πζ,j,r,2 for j = 1, ..., Nc.
Then, by taking cross second moments with period 1 behavioral tests we can form:

E (ζj,r,2, βk,1)− αζ,j,r,2 [αβ,k,1E (A2)]

φβ,k,1E (B2)
= φζ,j,r,2

and recover the behavioral ability loadings φζ,j,r,2 for j = 1, ..., Nc.
In order to identify the terms related to the new unobservable (i.e., the period 2 perma-

nent shock η(2) and its loadings δ(2)
ζ,j,r,2), a normalization on the scale of the unobservable is

required. We impose that δ(2)
ζ,1,∞,2 = 1. We form cross moments between period 2 equations

for the r =∞ retention status and get[
E (ζj,∞,2, ζk,∞,2)− αζ,j,∞,2αζ,k,∞,2E (A2)

−φζ,j,∞,2φζ,k,∞,2E (B2)− πζ,j,∞,2πζ,k,∞,2E (C2)

]
[

E (ζ1,∞,2, ζk,∞,2)− αζ,1,∞,2αζ,k,∞,2E (A2)

−φζ,1,∞,2φζ,k,∞,2E (B2)− πζ,1,∞,2πζ,k,∞,2E (C2)

] = δ
(2)
ζ,j,∞,2

to identify the loadings on the permanent shock for all cognitive scores j = 1, ..., Nc and
retention status r = ∞.24 We can then apply Kotlarski to any pair of equations j, k for
r = ∞ and identify the nonparametric distributions of η(2) and εζ,j,2, εζ,k,2. To identify the
loadings for retention statuses r 6=∞, we can form[

E
(
ζj,r,2, ζ

2
k,r,2

)
− αζ,j,r,2α2

ζ,k,r,2E (A3)

−φζ,j,r,2φ2
ζ,k,r,2E (B3)− πζ,j,r,2π2

ζ,k,r,2E (C3)

]
[

E (ζj,r,2, ζk,r,2)− αζ,j,r,2αζ,k,r,2E (A2)

−φζ,j,r,2φζ,k,r,2E (B2)− πζ,j,r,2πζ,k,r,2E (C2)

]E
((
η(2)
)2
)

E
(

(η(2))
3
) = δ

(2)
ζ,k,r,2.

24Notice that we cannot form cross moments for equations with different retention indices r, since we can
only observe a student in the retention status he actually receives.
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Applying the same arguments recursively, it is clear that we can add a new permanent
shock every period and still identify all of the loadings and nonparametric distributions of
the unobservables. The factor structure has other advantages. For example, we can correct
for potential biases due to selective sample attrition (e.g., children moving to a different
school if they know they will be retained in their current school) by adding an equation for
missing data (say a binary model for attrition) that depends on the same common vector θi
.

4 The Effect of Retention on Test Scores

Most research on the effects of grade retention treats it as a single treatment (being retained
versus not being retained) by focusing on the outcomes at a single grade. These studies
generally find that retention at best has no effect and at worse has considerable negative
effects.25 In some recent studies, Jacob and Lefgren (2004) and Nagaoka and Roderick (2005)
use a regression discontinuity design to study test-based promotion in Chicago public schools
that applied to third and sixth graders. Both studies find that retention leads to small short
term gains on test scores for third graders, but no effects on sixth graders. This disparity in
the estimated effect of retention across third and sixth grade, however, could also follow if
the marginal student differs in unobservable ways across grades (i.e., dynamic selection).

Another study by Jacob and Lefgren (2009) considers long run effects using a similar
design and finds no effects on high school completion for students who were retained in sixth
grade under the Chicago policy. As discussed by Cellini, Ferreira, and Rothstein 2010 in
their implementation of a dynamic RD design, a difficulty with evaluating long run effects
in this framework is that students who are just above the margin for passing in sixth grade
(i.e., the control group) may also be more likely to be retained later, contaminating the
control group. Thus, while these studies provide important insight into the effects of grade
retention, they can only tell us about the effect of retention at the certain grades where the
policy applies, for students on the margin of being retained under that policy, and for a
particular type of long run effect.26 We bring new insight to this literature by estimating
how the effect of grade retention varies across different grades, as time since retention passes
and by different types of students.

We study the effects of grade retention using the ECLS-K, a nationally representative
survey of kindergartners in 1998/99. It follows the students as they progress through school,

25See Holmes (1989) and Jimerson (2001) for comprehensive meta-analyses.
26Furthermore, as the authors discuss, these studies focus on a setting where retention is linked to high

stakes testing, and is thus associated with a set of incentives for teachers and students that may not apply
to the effect of retention in other settings.

18



with follow-up surveys in the 1999/2000, 2001/02 and 2003/04 school years. A benefit of
this data set is that we observe the whole history of a student’s schooling beginning at
kindergarten, and it covers the earlier years when retention is relatively more common.
Roughly 10% of our sample is retained between kindergarten and fourth grade. We restrict
the sample to students who were retained only once, did not skip grades, and were taking
kindergarten for the first time in 1998/99.27 Because of the nature of the survey, we are able
to form three different retention indicators: kindergarten, early (first or second grades) and
late (third or fourth grades).28 That is, our dynamic treatment time indicator takes values
Ri = 1, 2, 3,∞, where Ri =∞ means the child is never retained, Ri = 1 that he is retained
in kindergarten, Ri = 2 that he is retained early and Ri = 3 that he is retained late.

Each year of the ECLS-K includes cognitive tests measuring students’ science,29 reading
and math skills. We focus primarily on the effect of retention at different grades on the math
and reading tests, using the log of the item response theory (IRT) scores. For behavioral
measures we use teacher ratings on students’ behavioral and social skills—the approach to
learning, self-control and interpersonal skills components of the Social Rating Scale (SRS).

A logical difficulty in evaluating the effect of grade retention is that it is impossible to
hold both the grade and age fixed when determining the gains in achievement for a retained
student. Depending on the policy question of interest, it may be more appropriate to focus
on measuring effects holding grade fixed or holding age fixed. The effect holding grade fixed
would address, for instance, whether a student learns more by the end of fifth grade than he
would if he had not repeated fourth grade. This would attribute maturation (or age) effects
to the estimated effect of grade retention. Alternatively, holding age fixed would measure
whether a student learns more, say, by age 11 if he repeats fourth grade than he would have
if he had been promoted to the fifth grade and exposed to new material. We focus on the
effect of retention holding age fixed, which the test scores in the ECLS-K are better-suited
for measuring.

The ECLS-K contains a very rich set of covariates. We use characteristics of the children,
the family, the class and the school as controls in our model. Class and teacher characteristics
are taken from teacher surveys.30 School administrator surveys provide information about

27The number of students who we observe being retained twice in the raw data is about .3% of the sample.
After restricting to the sample with the necessary set of covariates, this number would be even smaller. We
lose about 100 students in the restricted sample, when we drop students who are taking kindergarten for the
second time in the base year or about 1% of our restricted sample.

28In principle we could separate early and late into the four grades at which retention takes place. This,
however, can only be done for less than half of the sample.

29In the first two periods students are given a general knowledge test, rather than a science test, which
measures science skills. However, the science and the general knowledge tests are not directly comparable.

30For the 2003/04 school year, both math/science and reading teachers fill out surveys, resulting in po-
tentially different classroom and teacher characteristics for math/science and reading. We use the relevant
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the school characteristics, and parent surveys provide information about the family.
Table 1 shows descriptive statistics for the covariates we include in all our equations for

the first year of the survey (1998/99) in columns 2 to 4. We restrict the sample to students
who have any test score measure in the first year and the full set of conditioning covariates.
Thus, the number of observations differs across test scores and covariates. We do this so
that we can include as much of the data as possible in estimating the different outcome
equations. A potentially important concern with a panel study of this type is non-random
sample attrition. Column 6 of Table 1 shows the mean 1998/99 characteristics for students
who are still in the sample in 2003/04 (the last year of the survey that we use for estimation).
The number of observations decreases substantially across these years, from 7832 in the base
year to 2106 in the last year. Comparing summary statistics, we see suggestive evidence of
non-random attrition. For instance, 77% of the participants are white in 2003/04 compared
to only 65% in 1998/99. Students in 2003/04 sub-sample also have higher SES and come
from schools/classrooms with lower percentages of minorities than the initial sample. Our
estimator controls for non-random sample attrition, as discussed in Section 4.1.

Table 2 describes how characteristics vary by retention statuses.31 A total of 630 students
in our base year sample are retained either in kindergarten, early or late. Only 87 are
retained late, whereas 255 and 288 are retained in kindergarten and early, respectively.
Retained students have lower average test scores than non-retained students, though it is
less pronounced for reading tests. Among retained students, early retainees stand out as
having the lowest test scores. Males are more likely to be retained than females, particularly
in kindergarten and early. Nonwhite students are more likely to be retained than whites.
Furthermore, students who are retained early or late are more likely to be nonwhite than
students who are retained in kindergarten. In particular, 36% of kindergarten retainees
are black or Hispanic, compared to 48% for early retainees and 46% for late retainees.
Comparisons are similar across other characteristics, with retained students generally facing
lower school and teacher quality, particularly students retained early or late. These summary
statistics suggest that students not only differ in observables across whether they are retained
or not, but also by when they are retained, providing some motivating evidence that dynamic
selection on unobservables may also be a concern.

The ECLS-K also includes information on the schools’ retention policies for the 1998/99,
1999/00 and 2001/02 survey years. We use these variables as exclusions, under the assump-

classroom measures for each test in estimating the outcome equations.
31Note that the total number of students added across categories is smaller than that reported in Table

1 (7668 compared to 7832). This is because not all students have retention indicators. However, we can
still use test observations for students with missing retention indicators in the initial period to calculate our
factors.
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tion that, conditional on the other covariates including observable school characteristics,
they do not directly determine the child’s test score but they do affect the probability that
a child repeats a grade. These policies include whether the school has a policy that allows
children to be retained in any grade (this policy only applies to grades after kindergarten),
to be retained because of immaturity, to be retained at the parents’ request, to be retained
without parental authorization, to be retained multiple times or multiple times in a given
grade. As shown in Table 2, retention policies vary considerably across schools and also to
a less extent across retention statuses. In general, students who are retained early or late
attend schools with more “liberal” retention policies than students who are not retained or
who are retained in kindergarten. For instance, in the 1998/1999 school year 44% of schools
in the non-retained sample permit retention without parental permission, compared to 61%
and 58% for students who are retained early or late.

While the summary statistics provide some suggestive evidence of dynamic selection, we
further investigate selection in the raw data and potential evidence of time-varying treatment
effects in Table 3. To test for dynamic selection, we regress the kindergarten cognitive tests,
which took place prior to any retention decisions, on period-specific indicators of whether
the child is retained in the future. We also control for covariates related to the child, his
family, school and class, as described in Table 1 above. Column 2 of Table 3 presents
results for reading and math in Panels A and B respectively. Not surprisingly, children who
will be retained have lower kindergarten test scores than those who will not be retained.
Furthermore, we reject the hypothesis that the coefficients on being retained at different
grades in the future are the same. The p-values for these joint tests are included at the
bottom of the table. Reading scores are 18% lower for kindergarten retainees, and 20% and
12% lower for early and late retainees. Math scores are even more striking, 27%, 32% and
22% lower for kindergarten, early and late retainees respectively. These results suggest not
only the presence of selection but also dynamic selection on cognitive test scores in the sense
that different types of students are being retained at different grades.

We then look for evidence of time-varying treatment effects by regressing test scores in the
last sample period (2003/04 school year) on retention in different grades. As shown in column
3 of Table 3, being retained is associated with worse outcomes than not being retained. The
coefficients on the different retention statuses are also significantly different from each other.
This is not direct evidence of time-varying treatment effects, since differences in the estimated
effects across grades could be a result of time-varying treatment effects or a result of dynamic
selection, i.e., different types of students being retained in different grades.

One way to begin to control for a static component of selection is to include various per-
formance measures in kindergarten, prior to any retention decisions taking place. Columns
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4 and 5 present results controlling for kindergarten cognitive test scores and then behavioral
test scores. Consistent with the existence of selection, the negative effects of retention be-
come smaller but do not disappear. For instance, the coefficient on kindergarten retention
is cut in half for both reading and math, from -18% without initial test controls to -9%
with test controls. Furthermore, we can reject the formal test of equality of the effects for
different retention times, again providing evidence for potentially time-varying treatment
effects.32 After including all initial test controls, retention in kindergarten is estimated to
lower achievement by 9%, early retention by 14% and late by only 4% in both reading and
math.

While this provides suggestive evidence of both time-varying treatment effects and dy-
namic selection, it is far from conclusive. The assumption that kindergarten test scores
control for dynamic selection is a very restrictive one, in that it assumes a static ability that
determines whether one is retained in kindergarten, early or late. In addition, under our
interpretation of tests scores as noisy measures of true latent abilities, using the kindergarten
measures as controls may actually worsen the bias in the estimated treatment effects.33 Fur-
thermore, this analysis does not capture heterogeneous effects of treatment by student type,
which is a central contribution of our paper.

4.1 Estimating a Multidimensional Model of Ability and Retention

We follow the discussion of identification in Section 3.1 and impose the following normaliza-
tions. We normalize the general ability loading on the first period general knowledge test
to 1, so A can be interpreted as a trait that is associated positively with higher scores in
the general knowledge test.34 The loading on cognitive ability is normalized to 1 on the first
period math test, so C is associated with higher math scores. Finally, we normalize the
behavioral loading on the self-control marker to 1.

Let ζi,j,1 be our jth cognitive measure for individual i in period 1 (kindergarten) and
similarly for behavioral measures. Our kindergarten measures are modeled as

ζi,j,1 = Xi,1γζ,j,1 + Aiαζ,j,1 + Ciπζ,j,1 + εi,ζ,j,1 (8)

and
βi,j,1 = Xi,1γβ,j,1 + Aiαβ,j,1 +Biφβ,j,1 + εi,β,j,1. (9)

32The same pattern holds for the other cognitive tests and behavioral measures.
33See Heckman and Navarro (2004).
34In all cases our cognitive test scores are measured as the log of the IRT scores, while our behavioral

measures are defined to be the standardized SRS scores.
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Our model for test scores in the following years is given by

ζi,j,t = Xi,tγζ,j,t + Aiαζ,j,∞,t +Biφζ,j,∞,t + Ciπζ,j,∞,t +
t∑

τ=2

η
(τ)
i δ

(τ)
ζ,j,t + εi,ζ,j,t

+
t−1∑
r=1

Di (r) [Φt,r + Ai [αζ,j,r,t − αζ,j,∞,t] +Bi [φζ,j,r,t − φζ,j,∞,t] + Ci [πζ,j,r,t − πζ,j,∞,t]] .

(10)

We restrict the observable covariates (except for the constant) to have the same marginal
effect across time for a given subject. We also restrict the effect of the permanent shock (ητi )

to be the same regardless of retention status.35 Φt,r then measures the average effect of being
retained at r in period t. Importantly, note that this specification corresponds to the general
case discussed above, in that the treatment varies over time as does the effect of unobservable
“abilities.” Hence the effect of treatment is both heterogeneous and time-varying.

The decision to retain a child is the solution to some complicated game being played
between the parents, the teachers, the child and the school. While in principle we can think
of modelling such a game, we choose to instead approximate it with a threshold crossing
model as described in Section 2. As shown in Heckman and Navarro (2007), this model is
in fact nonparametrically identified using the same arguments as in Section 3.1.

The actual form of the model for retention we use is the following.36 We write the latent
index V as

Vi (r) = λ0,r+Xi,rλx,r+Zi,rλz,r+AiρA,r+BiρB,r+CiρC,r+
r∑

τ=2

η
(τ)
i ψ(τ)

r +υi,r for r = R, ..., R̄.

Di (r) would then be defined as

Di (r) = 1
(
Vi (r) > 0|{Vi (h) ≤ 0}r−1

h=1

)
.

Notice that, consistent with our data, we allow for exclusions in the index, so that some
variables (Z) are included in the retention equations but not in the outcomes. In the data
this corresponds to the 7 binary measures of the retention policies summarized in Table
2.37 As discussed in Section 3.1, given that test scores in kindergarten are free of selection,

35The main reason we do this is to save on the number of parameters we are estimating. Preliminary
reduced form regressions suggested that the marginal effects did not vary much across grades.

36Since we know the latent index is nonparametrically identified, we could instead write it as a polynomial
on the variables instead of a linear function. Given that the number of parameters we are estimating is
already 616, and the number of parameters would increase considerably, we stick with the linear form.

37We examine whether these are valid exclusions in a simple two stage least squares regression and find
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the additional assumption of valid exclusion restrictions is not necessary, but rather aids
in identification. Similarly, given valid exclusions, the assumption of initial test scores free
of selection is not necessary for identification. Furthermore, to address non-random sample
attrition, we estimate a similar selection equation for students who select out of the sample.

The distributions of the unobservables (A,B,C, {η(τ)}t̄τ=2, ε, υ) in the model are non-
parametrically identified, as shown in Section 3.1. However, for estimation purposes, we
specify all of the distributions and allow them to follow mixtures of normals with either two
or three components. Furthermore, while our identification arguments are presented in a
sequential fashion and lead naturally to a multi-step estimation procedure, we estimate all
of the parameters in the model jointly by maximum likelihood in a single step.

4.2 Results

In Online Appendix Tables D1 and D2 we present evidence of the fit of the model. We show
that the model fits the means and variances of all the test measures very well, and we cannot
reject that the values predicted by the model equal those in the data. The same is true for
the probabilities of retention in the data. We cannot reject the hypothesis of equality of
predicted and actual probabilities.38

Figure 1 presents evidence of selection on the different components of ability. Not sur-
prisingly, students who are not retained have higher general and cognitive ability than those
who are retained. In general, students who are retained early have lower ability than stu-
dents who are retained in other grades. Kindergarten retainees generally have higher ability
than early retainees but lower ability than late retainees. Interestingly, the distribution of
behavioral ability is somewhat comparable for late retainees and students who are not re-
tained in terms of the lower tail, but the upper tail of behavioral ability is actually higher
for late-retainees.

These patterns can be understood by considering that a) the kindergarten retention
decision is not as closely related with the abilities of the child, and b) dynamic selection.
Because of a), early retention is more closely related to the abilities of the child. Hence,
early retainees have lower abilities than kindergarten retainees. Then, because of b), late
retainess have higher abilities than early retainees since the worse students have already been
retained.

To place our estimates in context, Table 4 compares estimates of average treatment
effects in reading scores (Panel A) and math scores (Panel B) using OLS, fixed effects and
our factor method. The model is estimated jointly in each case, allowing a separate effect of

that they satisfy the test of overidentifying restrictions in this setting.
38Parameter estimates and standard errors are available in Online Appendix D.
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retention in different years. For OLS, the math scores are used to control for selection (or
unobservable “ability”) in the reading equation and reading scores control for selection in the
math equation. In what follows, we focus the discussion on results for reading in Panel A,
though similar observations apply to math.

The initial effect of kindergarten retention on reading in 1999/00 is negative and takes
similar values across estimation methods, ranging from -24% with OLS, -26% with our
method and -28% using individual fixed effects. However, by 2001/02 (column 3) the results
become qualitatively different across the methods. OLS predicts that achievement decreases
by 7% for students retained in kindergarten, whereas our model predicts that it increases by
4%. The fixed effect estimate is approximately 0. Similarly, OLS predicts a bigger negative
initial effect of early retention of -15%, in contrast to smaller estimated effects of -5% for
fixed effect and 0 for our model. Notice that OLS only controls for unobservable abilities in
one dimension and through contemporaneous test scores in the other subject, whereas the
measure of ability in our model takes into account the whole history of test scores, as well
as controlling for different dimensions of ability. Particularly given the changing importance
of different components of ability over time (as evidenced in the variance decomposition in
Tables D3 and D4), it is not surprising that the results differ more across the two models
as time passes. Furthermore, the fixed effect model, in assuming that ability is fixed and
one-dimensional, cannot capture changing patterns of selection across different components
of ability over time.

By 2003/04, OLS still estimates a negative effect of kindergarten and early retention,
though the negative effect of early retention is smaller in magnitude than the initial effect in
2001/02. In contrast, the fixed effect estimator predicts a positive effect of kindergarten and
early retention. Our model also predicts positive effects, but they are smaller in magnitude
than the fixed effects. At the very least, this comparison suggests that the positive average
treatment effects we estimate are not unique to our model.

Table 4 only compares estimates of average treatment effects across the OLS, fixed effect
and our estimator. A key contribution of our estimator is to provide a method for estimating
heterogeneous treatment effects that vary by unobservable student abilities. The OLS and
fixed effect estimators are poorly equipped for such comparisons. For instance, if the retained
students make smaller gains in the absence of retention (essential heterogeneity), the average
treatment could overstate the benefits to retaining those students.

With this observation in mind, Table 5 also describes treatment on the treated (and the
untreated) parameters for both reading and math test scores (Panels A and B respectively)
in the 2003-04 school year. The predicted levels of achievement from which these gains are
calculated are included in Online Appendix Table D5. The columns correspond to actual
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treatment statuses, whereas the rows compare potential gains across treatment statuses
relative to not being retained. In other words, the first row describes the treatment effect
of being retained in kindergarten versus not being retained. The last column describes the
average treatment effects (as reported in the last column of Table 4) for comparison.

Considering first the treatment on the treated parameters, students who are actually
retained in kindergarten perform 6% lower in reading and math by 2003-04 than if they had
not been retained. Students who are retained early perform about 11% lower in reading and
10% lower in math than if they had not been retained. The results for late retention vary
across math and reading, with late retainees experiencing gains of 2% in reading but losses
of 5% in math, although these results are not statistically significantly different from 0.

Thus, the treatment on the treated parameters suggest that the effect of retention is
generally negative, in contrast to the average treatment effects reported in the last column
(and in Table 4), which predict that the effect of retention in kindergarten is small or 0 and
positive for early retention. Again, the effect is not statistically significantly different from
0 for late retention. We can see that these non-negative average treatment effects are driven
by the untreated students. The finding that students who are not retained would actually be
better off from retention than students who actually are retained is important. We provide
some intuition behind this finding below.

4.2.1 Heterogeneity in Treatment Effects by Abilities

An advantage of our method is that we can provide new insight into the differences between
the average treatment effect and the treatment on treated parameters by describing how
treatment effects vary by the unobservable abilities of the student. Figure 2 shows how
the treatment effect of being retained at different grades varies across the percentiles of the
general, behavioral and cognitive ability distributions for reading and math by 2003/04.
Comparing across graphs, we see that generally lower ability students experience losses (or
are no better off) due to retention whereas the higher ability students benefit from retention.
Thus, what the main pattern shows is that a high ability student would actually perform
better by 2003/04 if retained relative to not being retained and receiving an additional year
of course material. The opposite is true for low ability students. While at first these results
may be surprising, they are intuitively appealing for several reasons.

First, the test scores reported in the ECLS-K are not actually those used to determine
retention decisions. Thus, while we recognize the student as high ability from the history
of their performance on these standardized exams, his performance in the classroom could
suggest otherwise. This is further supported by the observation that, even if we restrict the
sample to students whose achievement is below the median, this sample does not capture
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all retainees. Second, we permit the factor loadings to vary based on retention status. As
shown in Online Appendix Table D10, generally the factor loadings are larger for the retained
than for the not retained outcomes and positive in cognitive and general ability. Given that
ability has mean 0, this means roughly that high ability students experience achievement
gains relative to not being retained, whereas low ability students experience losses relative
to not being retained.

High ability students may benefit from being retained if, by being retained, they are put
in the position of teaching other students or gain confidence as they see that they are able
to perform well next to the new cohort of students. In contrast, low ability students who
are retained may not be in a position to offer help to their new cohort of peers. They may
even lose self- esteem if they find that they continue to perform worse next to their younger
cohort.39

Additionally, it may be that teachers and/or parents put more resources into students
who are retained. If high ability students are better-equipped to take advantage of these
additional resources than low ability students, this may explain the difference across abil-
ity types. Furthermore, high ability students may have higher ability parents (assuming
intergenerational transmission of human capital). These parents may be better-equipped
to ensure that when their child is retained he gets the best teachers and the attention (and
resources) he needs. Thus, resources may be invested disproportionately more in high ability
students who are retained than in low ability students. Finally, high ability students who
are retained may attend better schools, further reinforcing our argument.

4.2.2 Time-Varying Treatment Effects

The results so far also illustrate considerable heterogeneity in treatment effects across re-
tention times. On the one hand, this heterogeneity would follow if there is something sub-
stantively different about retention at these different grades, such as the repetition of first
grade producing larger benefits on average than the repetition of kindergarten. On the other
hand, it could be that the disparities are driven by the time elapsed since retention and
our choice to focus on 2003/04 outcomes. For instance, for the case of late retention, the
results reported in Table 5 and Figure 2 are short run effects, achievement gains 1 to 2 years
after retention. For kindergarten retention, the effects are longer run, i.e., 4 to 5 years after
treatment.

To consider how treatment effects vary over time, Figures 3 and 4 compare treatment
effects of kindergarten and early retention at the different periods we observe in the data.

39This finding is further supported by research by Bedard and Dhuey (2006) and others suggesting that
the age relative to other children in the classroom matters for performance.
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The left hand side figure depicts the evolution over time of the average treatment effect
and the right hand side figure depicts the treatment on the treated for kindergarten and
early retention respectively.40 Figure 3 shows that the initial effect of being retained in
kindergarten is fairly strongly negative, with students performing on average 26% lower in
reading and 12% lower in math than if they had not been retained. However, 2 years later
(2001) the average treatment effect is somewhat positive at 4%, and goes down to 3% for
reading and 0 for math in 2003. Thus, while the initial effect of retention is negative and
large, students on average appear to catch up in the long run.

The right hand side panel of Figure 3 shows a similar pattern for the treatment on the
treated, i.e., students who are actually retained in kindergarten. The initial effect of retention
is slightly more negative than the sample on average, -28% in reading and -19% in math.
However, 2 years later the students have made significant progress and only perform about
9% lower in reading and 7% lower in math. The treatment on the treated remains negative
in 2003/04 at about -6%. Thus there is some evidence that students catch up with where
their achievement would be if not retained, though the rate of convergence diminishes over
time.

With early retention, we can only compare the short run effect (in 2001) to the effect 2
years later (in 2003). In contrast to kindergarten retention, the initial effect of early retention
for the average student is much smaller, approximately 0 for reading and -5% for math. The
longer run effect is positive, 5% for reading and 7% for math, on average. Furthermore, the
initial effect of early retention for early retainees is worse in reading than in math, -15%
and -7% respectively. Notice that the initial shock for early retention is much smaller than
for kindergarten. This could potentially be explained by the fact that early retainees can
be retained in either first or second grade, so their initial effect may be up to 2 years after
retention occurred. As in kindergarten, there is evidence that reading scores catch up over
time. This does not appear to be the case for math.

The fact that the average treatment effect is, in general, less negative than the treatment
on the treated over time is consistent with our findings in Section 4.2.1. Online Appendix
Figures D1 and D2 show that, as before, this patterns follow because higher ability students
generally fare better than low ability students when retained.

Overall evidence from considering the time elapsed since treatment suggests that stu-
dents begin to recover from the initial negative shock from retention 2 years later (with the
exception of early retainees in math). There is also evidence that the gains may level off
over time, with the treatment effects remaining negative for the treated in our sample period.

40Online Appendix Tables D8 and D9 show the gains and standard errors for different time periods and
correspond to the different points in these figures.
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Interestingly, these findings contrast to evidence in the literature which suggests that any
gain in retention may actually be short-lived.41 Given that the initial effect of late retention
is approximately 0 for reading and math, it could be the case that students in later grades
actually experience long run gains, if similar patterns hold.

4.2.3 Marginal Policy Change

The evidence presented so far shows that the individuals who are actually retained are very
different from the average individual. This is reflected in the fact that average treatment
effects are significantly different than their treatment on the treated counterparts. The
average treatment effect is helpful when evaluating a universal policy, while treatment on
the treated is relevant for evaluating the effect of the retention policies already in place.
However neither tells us, necessarily, about the effect of a marginal change in the retention
policy.

As Figure 2 shows, there is considerable heterogeneity in treatment effects by abilities.
Hence, the effect of a marginal change in retention policy will depend on the abilities of the
students affected by the change. As a result, its effect could differ considerably from the
effects for the average, the average treated student or the average untreated student.

We consider the effect of a marginal change in retention policies in Table 6. In particular,
we simulate the effects of changing the retention policy dummies in Table 2 to take value
0, making it harder for all schools to retain students. We present three sets of results. In
column 3, we show the gains in achievement for those students who are no longer retained
as a consequence of the policy change. For comparison, column 4 shows the average coun-
terfactual gain to not being retained for students in the original retention status (i.e. the
negative of the treatment on the treated parameter in Table 5), while column 5 shows the
average counterfactual gain to not being retained for students who are not retained (i.e. the
negative of the treatment on the untreated parameter).

For example, the first row of panels A and B, considers the case where students are
originally retained in kindergarten but are now no longer retained because of the policy
change for reading and math respectively. In column 3, we see that these marginal students
gain 3% in both and math from the change in retention status to not being retained. In
contrast, the average student who is not retained would lose 3% in reading and 1% in math
by not being retained relative to being retained in kindergarten. The average student already
being retained in kindergarten would gain 6% in reading and in math if he were not retained.
Except for the case involving late retention in reading, where the estimate is very imprecise,

41See Frederick and Hauser (2006) for a summary of the literature.
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the point estimate of the effect for the marginal student affected by the policy lies in between
the average effects for students in the original and new retention statuses.

The return to the marginal student is closer to the treatment on the treated estimate
than it is to the treatment on the untreated one. This is to be expected since there is a
wider range of abilities in the untreated sample. The students affected by the policy have
higher abilities than the average student already retained and lower abilities than those not
retained. Given the general positive relationship between ability and the benefits of retention
described above, the marginal students will not benefit as much from not being retained as
the average student who is already retained (i.e., the marginal students are not hurt as much
by retention).

5 Conclusion

In this paper, we develop and apply a framework for the analysis of multiple treatment
effects, focusing on the case of time-varying treatments. In our model, each treatment
is associated with a treatment time. The main challenge is to distinguish the effects of
treatment at different times from selection of different unobservable types into treatment
at different times. Our method accounts for essential heterogeneity, i.e., that the gains to
treatment vary by unobservable types and are taken into account in the selection decision.
The additional challenge in the dynamic context is that selection into each treatment time
is sequential. As a result of dynamic selection, existing methods that estimate static binary
treatment effects cannot be easily extended to estimate time-varying treatment effects.

Our analysis of grade retention shows the importance of extending the standard static
framework to estimate time-varying treatment effects. First, we find evidence of dynamic
selection, which is not accounted for in previous studies in the literature. In particular,
students who are retained in first or second grade have lower ability, in several dimensions,
than students who are retained in kindergarten or third/fourth grade.

We also find that the effect of repeating a grade on tests scores varies considerably by
student type, by the time at which the student is retained and by time elapsed since retention.
In general, we find that the effect of retention is large and negative in the short run and
that this effect diminishes (or even becomes positive) as time since retention passes. The
effects tend to be more negative for the students being retained (treated students) than for
the average student. Thus, estimates for the average student would not be very useful for
policy.

The disparity between the treatment on the treated and treatment effect for the average
student is because of unobserved ability. A key contribution of our approach is that it allows
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us to recover the distribution of the unobservables nonparametrically. Thus, we can show
directly how the treatment effects vary by the abilities of the students. We find that the
losses for retention are larger for low ability students. In fact, high ability students can even
benefit from being retained in some cases. Overall, these results suggest that grade retention
does not improve the performance of low achieving students.

Our findings also help illustrate the potential limitations of applying static methods to
estimate time-varying treatment effects. Regression discontinuity designs can be a useful
approach for estimating the effect of retention at a given grade. However, when there is a
higher threshold for students to be promoted to the next grade, higher ability students will
be retained. A regression discontinuity design that focuses on students close to this threshold
may find a positive effect of retention, even if lower ability students are being hurt by the
policy. Furthermore, if there is dynamic selection, comparing these policies across grades
may not be straightforward, as the students at the margin of being retained are likely to
differ across grades.

Our findings also suggest that differences in the estimated effect of retention across studies
(see Holmes, 1989 and Jimerson, 2001) that focus on different grades may not be surprising.
One source of these disparities is simply that different types of students are retained at
different grades. A second reason is that, even after controlling for dynamic selection, we
find that the effect of retention varies across grades.

Many policy evaluation problems are dynamic and would face similar challenges as those
we have highlighted in our application. The method we develop can be applied to identify
causal treatment effects in many other settings where heterogeneity in the effect of treatment
across time and unobservables is likely to be important.

31



References

Abbring, J. H., and G. J. Van den Berg (2003): “The Nonparametric Identification of
Treatment Effects in Duration Models,” Econometrica, 71(5), 1491–1517.

Angrist, J. D., and G. W. Imbens (1995): “Two-Stage Least Squares Estimation of Aver-
age Causal Effects in Models with Variable Treatment Intensity,” Journal of the American
Statistical Association, 90(430), 431–442.

Arcidiacono, P., J. Cooley, and A. Hussey (2008): “The Economic Return to an
MBA,” International Economic Review, 49(3), 873 – 899.

Bedard, K., and E. Dhuey (2006): “The Persistence of Early Childhood Maturity: Inter-
national Evidence of Long-Run Age Effects,” The Quarterly Journal of Economics, 121(4),
1437–1472.

Billingsley, P. (1995): Probability and measure, A Wiley-Interscience publication. Wiley,
New York, 3. ed edn.

Bonhomme, S., and J.-M. Robin (2010): “Generalized Non-parametric Deconvolution
with an Application to Earnings Dynamics,” Review of Economic Studies, 77(2), 491–533.

Carneiro, P., K. Hansen, and J. J. Heckman (2003): “Estimating Distributions of
Treatment Effects with an Application to the Returns to Schooling and Measurement
of the Effects of Uncertainty on College Choice,” International Economic Review, 44(2),
361–422, 2001 Lawrence R. Klein Lecture.

Cataneo, M. D. (2009): “Efficient Semiparametric Estimation of Multi-Valued Treatment
Effects Under Ignorability,” Journal of Econometrics, In Press, Corrected Proof.

Cellini, S. R., F. Ferreira, and J. Rothstein (2010): “The Value of School Facil-
ity Investments: Evidence from a Dynamic Regression Discontinuity Design,” Quarterly
Journal of Economics, 125(1), 215–261.

Cunha, F., J. Heckman, and S. Schennach (2010): “Estimating the Technology of
Cognitive and Noncognitive Skill Formation,” NBER Working Papers 15664, NBER.

Cunha, F., J. J. Heckman, and S. Navarro (2005): “Separating Uncertainty from
Heterogeneity in Life Cycle Earnings, The 2004 Hicks Lecture,” Oxford Economic Papers,
57(2), 191–261.

32



(2007): “The Identification and Economic Content of Ordered Choice Models with
Stochastic Cutoffs,” International Economic Review, 48(4), 1273 – 1309.

Frederick, C. B., and R. M. Hauser (2006): “Have We Put an End to Social Promotion?
Changes in Grade Retention Rates among Children Aged 6 to 17 from 1972 to 2003,”
Unpublished manuscript, University of Wisconsin-Madison.

Frölich, M. (2004): “Programme Evaluation with Multiple Treatments,” Journal of Eco-
nomic Surveys, 18(2), 181–224.

Gill, R. D., and J. M. Robins (2001): “Causal Inference for Complex Longitudinal Data:
The Continuous Case,” The Annals of Statistics, 29(6), 1785–1811.

Hahn, J., P. E. Todd, and W. Van der Klaauw (2001): “Identification and Estimation
of Treatment Effects with a Regression-Discontinuity Design,” Econometrica, 69(1), 201–
209.

Ham, J. C., and R. J. LaLonde (1996): “The Effect of Sample Selection and Initial Condi-
tions in Duration Models: Evidence from Experimental Data on Training,” Econometrica,
64(1), 175–205.

Heckman, J. J. (1990): “Varieties of Selection Bias,” American Economic Review, 80(2),
313–318.

Heckman, J. J., V. J. Hotz, and J. R. Walker (1985): “New Evidence on the Timing
and Spacing of Births,” American Economic Review, 75(2), 179–184, Papers and Proceed-
ings of the Ninety-Seventh Annual Meeting of the American Economic Association.

Heckman, J. J., and S. Navarro (2004): “Using Matching, Instrumental Variables, and
Control Functions to Estimate Economic Choice Models,” Review of Economics and Statis-
tics, 86(1), 30–57.

(2007): “Dynamic Discrete Choice and Dynamic Treatment Effects,” Journal of
Econometrics, 136(2), 341–396.

Heckman, J. J., and R. Robb (1985): “Alternative Methods for Evaluating the Impact
of Interventions,” in Longitudinal Analysis of Labor Market Data, ed. by J. Heckman, and
B. Singer, vol. 10, pp. 156–245. Cambridge University Press, New York.

Heckman, J. J., and J. A. Smith (1998): “Evaluating the Welfare State,” in Econo-
metrics and Economic Theory in the Twentieth Century: The Ragnar Frisch Centennial
Symposium, ed. by S. Strom, pp. 241–318. Cambridge University Press, New York.

33



Heckman, J. J., S. Urzua, and E. J. Vytlacil (2006): “Understanding Instrumental
Variables in Models with Essential Heterogeneity,” Review of Economics and Statistics,
88(3), 389–432.

Heckman, J. J., and E. J. Vytlacil (2007): “Econometric Evaluation of Social Programs,
Part II: Using the Marginal Treatment Effect to Organize Alternative Economic Estima-
tors to Evaluate Social Programs and to Forecast Their Effects in New Environments,”
in Handbook of Econometrics, Volume 6, ed. by J. Heckman, and E. Leamer. Elsevier,
Amsterdam, Forthcoming.

Heckman, J. J., and J. R. Walker (1990): “The Relationship Between Wages and
Income and the Timing and Spacing of Births: Evidence from Swedish Longitudinal Data,”
Econometrica, 58(6), 1411–1441.

Holmes, C. T. (1989): “Grade-level retention effects: A meta-analysis of research studies,”
in Flunking grades: Research and policies on retention, ed. by L. Shepard, and M. Smith,
pp. 16–33. The Falmer Press, London.

Hu, Y., and S. M. Schennach (2008): “Instrumental Variable Treatment of Nonclassical
Measurement Error Models,” Econometrica, 76(1), 195–216.

Imbens, G. W., and J. D. Angrist (1994): “Identification and Estimation of Local Average
Treatment Effects,” Econometrica, 62(2), 467–475.

Jacob, B. A., and L. Lefgren (2004): “Remedial Education and Student Achievement: A
Regression-Discontinuity Analysis,” Review of Economics and Statistics, 86(1), 226–244.

(2009): “The Effect of Grade Retention on High School Completion,” American
Economic Journal: Applied Economics, 1(3), 33–58.

Jimerson, S. R. (2001): “Meta-analysis of grade retention research: Implications for prac-
tice in the 21st century,” School Psychology Review, 30(3), 420–437.

Jöreskog, K. G., and A. S. Goldberger (1975): “Estimation of a Model with Multiple
Indicators and Multiple Causes of a Single Latent Variable,” Journal of the American
Statistical Association, 70(351), 631–639.

Kotlarski, I. I. (1967): “On Characterizing the Gamma and Normal Distribution,” Pacific
Journal of Mathematics, 20, 69–76.

Lechner, M. (2004): “Sequential Matching Estimation of Dynamic Causal Models,” Dis-
cussion Paper 2004, IZA Discussion Paper.

34



Matzkin, R. L. (2003): “Nonparametric Estimation of Nonadditive Random Functions,”
Econometrica, 71(5), 1339–1375.

Murphy, S. A. (2003): “Optimal Dynamic Treatment Regimes,” Journal of the Royal
Statistical Society, Series B, 65(2), 331–366.

Nagaoka, J., and M. Roderick (2005): “Retention Under Chicago’s High-Stakes Testing
Program: Helpful, Harmful, or Harmless?,” Educational Evaluation and Policy Analysis,
27(4), 309–340.

Navarro, S. (2008): “Control Function,” in The New Palgrave Dictionary of Economics.,
ed. by S. N. Durlauf, and L. E. Blume. Palgrave Macmillan Press, London, second edn.

Nekipelov, D. (2008): “Endogenous Multi-Valued Treatment Effect Model under Mono-
tonicity,” Unpublished manuscript, Berkeley.

Prakasa Rao, B. (1992): Identifiability in Stochastic Models: Characterization of Proba-
bility Distributions, Probability and mathematical statistics. Academic Press, Boston.

Schennach, S. M. (2004): “Estimation of Nonlinear Models with Measurement Error,”
Econometrica, 72(1), 33–75.

35



Variables Observation Mean Standard 
Deviation Observation Mean Standard 

Deviation

General Test Score 7549 3.09 0.35 2078 3.14 0.33
Reading Test Score 7608 3.36 0.28 2078 3.39 0.27
Math Test Score 7794 3.10 0.36 2101 3.14 0.35
Approach to Learning 7829 0.05 0.98 2104 0.13 0.95
Self-Control 7808 0.03 0.97 2097 0.11 0.94
Interpersonal Skills 7782 0.02 0.98 2095 0.09 0.96

Male 7832 0.50 0.50 2106 0.49 0.50
White 7832 0.65 0.48 2106 0.77 0.42
Black 7832 0.12 0.32 2106 0.07 0.26
Hispanic 7832 0.14 0.34 2106 0.09 0.28
Body Mass Index 7832 16.25 2.13 2106 16.21 2.10
Age 7832 5.62 0.34 2106 5.63 0.34
Number of Siblings 7832 1.42 1.11 2106 1.41 1.07
Socioeconomic Status Index 7832 0.10 0.78 2106 0.20 0.74
Attended Full Time Kindergarten 7832 0.58 0.49 2106 0.52 0.50
TV Rule at Home 7832 0.89 0.32 2106 0.89 0.31
Mother in Household 7832 0.01 0.11 2106 0.01 0.11
Father in Household 7832 0.17 0.37 2106 0.12 0.32
Number of Books at home 7832 80.54 60.75 2106 88.76 60.23

Minority Students in School between (1%,5%) 7832 0.20 0.40 2106 0.20 0.40
Minority Students in School between (5%,10%) 7832 0.15 0.36 2106 0.12 0.33
Minority Students in School between (10%,25%) 7832 0.10 0.30 2106 0.05 0.22
Minority Students in School >25% 7832 0.16 0.36 2106 0.09 0.29
Public School 7832 0.78 0.42 2106 0.73 0.44
TT1 Funds Received by School 7832 0.62 0.49 2106 0.63 0.48
Crime a Problem 7832 0.46 0.58 2106 0.36 0.52
Students Bring Weapons 7832 0.16 0.37 2106 0.13 0.34
Children or Teachers Physically Attacked 7832 0.36 0.48 2106 0.35 0.48
Security Measures in School 7832 0.55 0.50 2106 0.58 0.49
Parents Involved in School Activities 7832 2.97 0.90 2106 3.10 0.83

Teacher has a Master's Degree 7832 0.35 0.48 2106 0.34 0.48
Teacher Experience 7832 14.31 9.03 2106 14.39 8.97
Student's Class Size 7832 20.40 5.00 2106 19.89 4.80
Teacher's Rating of Class Behavior 7832 1.56 0.78 2106 1.52 0.77
Minority Students in Class between (1%,5%) 7832 0.08 0.26 2106 0.09 0.29
Minority Students in Class between (5%,10%) 7832 0.13 0.33 2106 0.16 0.36
Minority Students in Class between (10%,25%) 7832 0.18 0.39 2106 0.18 0.38
Minority Students in Class >25% 7832 0.42 0.49 2106 0.28 0.45

Source: ECLS-K Longitudinal Kindergarten-Fifth Grade Public-Use Data File

Table 1: Summary Statistics

Note: For our counter-factual analyses, we only use data on students whose covariates and retention history are observable (i.e. not missing) for all time periods.  Thus, we end up with fewer observations at the 
2003-04 school year. 

2003-04 School Year
Value of Variables in 1998-99 School Year for Observations Included in:

1998-99 School Year
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Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

General Test Score 3.12 0.33 2.85 0.37 2.72 0.33 2.78 0.32
Reading Test Score 3.39 0.27 3.13 0.21 3.08 0.18 3.15 0.17
Math Test Score 3.14 0.35 2.77 0.32 2.67 0.26 2.74 0.25
Approach to Learning 0.12 0.94 -0.72 0.99 -0.91 0.95 -0.40 0.98
Self-Control 0.06 0.96 -0.31 1.02 -0.41 1.03 -0.09 0.93
Interpersonal Skills 0.06 0.96 -0.36 0.95 -0.53 1.00 -0.21 1.01

Male 0.49 0.50 0.66 0.48 0.63 0.48 0.54 0.50
Black 0.11 0.31 0.14 0.35 0.29 0.46 0.28 0.45
Hispanic 0.13 0.34 0.12 0.32 0.19 0.39 0.18 0.39
Age 5.64 0.34 5.39 0.28 5.50 0.32 5.52 0.33
Attended Full Time Kindergarten 0.57 0.49 0.62 0.49 0.61 0.49 0.72 0.45
Number of Siblings 1.39 1.08 1.65 1.27 1.80 1.41 1.52 1.25
Socioeconomic Status Index 0.13 0.77 -0.12 0.80 -0.33 0.69 -0.54 0.60
TV Rule at Home 0.89 0.31 0.90 0.30 0.83 0.37 0.90 0.31
Father in Household 0.16 0.37 0.19 0.39 0.28 0.45 0.38 0.49
Number of Books at home 82.52 60.84 71.20 60.34 50.19 49.66 45.00 42.67

Minority Students in School >25% 0.15 0.36 0.16 0.37 0.27 0.44 0.38 0.49
Public School 0.77 0.42 0.73 0.44 0.91 0.28 0.93 0.25
TT1 Funds Received by School 0.62 0.49 0.61 0.49 0.76 0.43 0.79 0.41

Teacher has a Master's Degree 0.35 0.48 0.32 0.47 0.40 0.49 0.33 0.47
Teacher Experience 14.37 9.02 14.19 9.29 13.74 8.90 12.51 9.14
Student's Class Size 20.46 4.96 19.48 5.49 20.76 4.70 20.63 4.47
Minority Students in Class >25% 0.40 0.49 0.42 0.50 0.63 0.48 0.66 0.48

Policy: Can be Retained for Immaturity 0.76 0.43 0.78 0.41 0.72 0.45 0.68 0.47

Policy: Can be Retained at Parents Request 0.75 0.43 0.76 0.43 0.79 0.41 0.76 0.43

Policy: Can be Retained due to Academic 
Deficiencies 0.88 0.33 0.83 0.38 0.91 0.29 0.88 0.32

Policy: Can be Retained Any Grade More 
than Once 0.10 0.30 0.13 0.33 0.14 0.35 0.15 0.36

Policy: Can be Retained More than Once in 
Elementary School 0.35 0.48 0.30 0.46 0.43 0.50 0.50 0.50

Policy: Can be Retained Without Parents 
Permission 0.44 0.50 0.45 0.50 0.61 0.49 0.58 0.50

Observations 7038 255 288 87

Source: ECLS-K Longitudinal Kindergarten-Fifth Grade Public-Use Data File

Table 2: Summary Statistics for Selected Variables by Retention Status (1998/1999 School Year)

Note: For our counter-factual analyses, we only use data on students whose covariates and retention history are observable (i.e. not missing) for all time periods. Thus, we end up with fewer 
observations at the 2003-04 school year. The last line lists the total number of usable observations (i.e. observations that contain at least one test/rating). Hence, the number of usable observations 
for any particular test/rating does not necessarilly correspond to the number of observations in the last line. Notice that the last line does not sum to the total number of observations in table 1 
(7832). This is because we don't know every childrens' retention status. Regardless, these observations can still be used in period 1, when no selection has taken place.

Not Retained Retained LateRetained in Kindergarten Retained Early
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Panel A: Reading Score

Dependent Variable
Kindergarten 

Reading Score#

Retained in Kindergarten -0.1775* -0.1791* -0.0948* -0.0926*
Retained Early (1st or 2nd grade) -0.2014* -0.2306* -0.1450* -0.1374*
Retained Late (3rd or 4th grade) -0.1222* -0.1192* -0.0498 -0.0358
Student's Characteristics Yes Yes Yes Yes
Family Characteristics Yes Yes Yes Yes
School Characteristics Yes Yes Yes Yes
Age and Age Squared Yes Yes Yes Yes
Kindergarten Cognitive Tests -- No Yes Yes
Kindergarten Behavioral Ratings -- No No Yes
No. of Observations 5319 2040 2014 1998

P-value for KI = EA = LA+ 0.003 0.019 0.026 0.012
P-value for KI = EA 0.189 0.099 0.079 0.113
P-value for EA = LA 0.001 0.006 0.009 0.003
P-value for KI = LA 0.028 0.148 0.192 0.092
R squared 0.312 0.385 0.530 0.530

Panel B: Math Score

Dependent Variable
Kindergarten 

Reading Score#

Retained in Kindergarten -0.2735* -0.1804* -0.0727* -0.0889*
Retained Early (1st or 2nd grade) -0.3172* -0.2450* -0.1463* -0.1396*
Retained Late (3rd or 4th grade) -0.2240* -0.1697* -0.0875* -0.0387
Student's Characteristics Yes Yes Yes Yes
Family Characteristics Yes Yes Yes Yes
School Characteristics Yes Yes Yes Yes
Age and Age Squared Yes Yes Yes Yes
Kindergarten Cognitive Tests -- No Yes Yes
Kindergarten Behavioral Ratings -- No No Yes
No. of Observations 5462 2043 2017 1998

P-value for KI = EA = LA+ 0.006 0.094 0.086 0.012
P-value for KI = EA 0.097 0.071 0.038 0.076
P-value for EA = LA 0.002 0.079 0.097 0.004
P-value for KI = LA 0.136 0.813 0.684 0.141
R squared 0.408 0.357 0.531 0.522
* Statistically significant at 5% level
# 1998-99 School Year

Note: P values less than 0.05 are shaded, and indicates rejection of the hypothesis of equality at the 5% confidence level.  Yes/No 
indicates if each group of variables is included as controls.

Table 3: Evidence for Dynamic Selection and Treatment Effect

Reading Score for 2003-04 School Year

Reading Score for 2003-04 School Year

+ KI, EA, and LA stand for the coefficient of the dummy variable for "retained in kindergarten", "retained early", and "retained late", 
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Panel A: Reading Score
Outcome Equation in 1999-

2000 School Year
Outcome Equation in 2001-

02 School Year
Outcome Equation in 2003-

04 School Year

OLS -0.241 -0.068 -0.065

Fixed Effect -0.283 -0.008 0.051

Model -0.263 0.041 0.025

OLS -- -0.146 -0.080

Fixed Effect -- -0.049 0.062

Model -- 0.004 0.046

OLS -- -- 0.014

Fixed Effect -- -- 0.074

Model -- -- 0.056

Panel B: Math Score
Outcome Equation in 1999-

2000 School Year
Outcome Equation in 2001-

02 School Year
Outcome Equation in 2003-

04 School Year

OLS -0.025 -0.050 -0.049

Fixed Effect -0.099 0.071 0.151

Model -0.117 0.039 0.004

OLS -- -0.040 -0.060

Fixed Effect -- 0.039 0.116

Model -- -0.053 0.066

OLS -- -- -0.091

Fixed Effect -- -- 0.075

Model -- -- 0.083

Table 4: Estimated Coefficients for Retention Variables in Outcome Equation

Note: For the OLS and fixed effect regressions to better correspond to the estimated model, they are run on the pooled data set.  The coefficients for the 
covariates are not allowed to change over time.  Year dummies and interactions of year dummies and retention indicators are included.  In addition, OLS 
regressions control for math scores (Panel A) and reading scores (Panel B).

Retained Early

Retained Late

Retained in Kindergarten

Retained Early

Retained Late

Retained in Kindergarten

A-4



Panel A: Reading Score

ATE

Not Retained Retained in 
Kindergarten Retained Early Retained Late

(unconditional)

0.034 -0.057 -0.086 -0.023 0.025
(0.014) (0.013) (0.018) (0.027) (0.012)

0.058 -0.092 -0.111 -0.046 0.046
(0.019) (0.019) (0.023) (0.046) (0.017)

0.058 0.026 0.016 0.022 0.056
(0.112) (0.058) (0.080) (0.084) (0.101)

Panel B: Math Score

ATE

Not Retained Retained in 
Kindergarten Retained Early Retained Late

(unconditional)

0.011 -0.057 -0.084 -0.071 0.004
(0.024) (0.019) (0.021) (0.031) (0.022)

0.079 -0.058 -0.095 -0.016 0.066
(0.021) (0.015) (0.017) (0.036) (0.019)

0.098 -0.075 -0.112 -0.052 0.083
(0.337) (0.142) (0.162) (0.258) (0.309)

Note: Let R = 1,2, 3, or ∞ represent the actual retention status of a student: retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 4), never retained, 
respectively. Let  ζ(i) be the potential test score if the student were retained at time i=1,2,3,∞. The row i, column j element of this table calculates E[ζ(i) - ζ(∞) | R=j].  For example, the math test 
score of a student who was actually not retained would increase by 0.079 if he were retained at 1 or 2 grade instead. Bootstrap standard errors are in parentheses.

(i.e. conditional on the retention status being:)

  Retained in Kindergarten                              
vs                                           

Not Retained

 Retained Early                                   
vs                                                 

Not Retained

 Retained Late                                          
vs                                              

Not Retained

  Retained in Kindergarten                              
vs                                           

Not Retained

 Retained Early                                   
vs                                                 

Not Retained

 Retained Late                                          
vs                                              

Not Retained

Table 5: Average Test Score Gain by Retention Status: 2003-04 School Year

Average Gain

Average Gain

A student who is actually

(i.e. conditional on the retention status being:)
    A student who is actually                                                                     
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Panel A: Reading Score

Old Policy New Policy Changing to Not 
Retained

Original Retention 
Status Not Retained

Kindergarten Not retained 0.032 0.057 -0.034
Early Not retained 0.066 0.111 -0.058
Late Not retained -0.096 -0.022 -0.058

Panel B: Math Score

Old Policy New Policy Changing to Not 
Retained

Original Retention 
Status Not Retained

Kindergarten Not retained 0.029 0.057 -0.011
Early Not retained 0.070 0.095 -0.079
Late Not retained -0.033 0.052 -0.098

Table 6: Policy Simulation Treatment Parameters: 2003-04 School Year

Retention Status Average Test Score if Not Retained minus Test Score if 
Retained Conditional on:

Retention Status Average Test Score if Not Retained minus Test Score if 
Retained Conditional on:

Note: We fix all retention policy variables in Table 2 to 0 for all individuals. That is we make it harder for children 
to be retained. Let R0 denote the retention status under the old policy and let R1 be the retention status under the 
new policy. Let 0 denote the test score under original policy and 1 denote the test score under the new policy. 
Column 3 reports E( 1- 0 | R1 R0, R1= ), column 4 reports E( 1- 0 | R0) and column 5 reports E( 1- 0 | R1= ). 
Notice that while some people switch to other states besides R1=  as a consequence of the policy, there are 
very few and the results are harder to interpret so we focus only on the R1=  subgroup.
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Figure 1: Densities of Abilities by Retention Status

Not Retained Retained in K
Retained Early Retained Late

Note: Let f(X) denote the probability density function of ability X={A,B,C}. We allow f(X) to follow a mixtureof normals distribution. Let R={1,2,3,∞ } denote retention status:  
retained in kindergarten, retained early (1 or 2 grade), retained late (3 or 4) and not retained. The graph shows f(X|R=r) for each retention status.
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Figure 2: Achievement Gains in 2003/04 by Ability Quantiles

Note: Let ζ(t,r) and ζ(t,∞) be the potential test scores at period t if the student is retained at r and if the student is not retained at all, respectively.  Let X denote 
one kind of ability (i.e., etiher A,B or C). The graphs show E[ζ(t,r)-ζ(t,∞)|X=q] where q is the qth quantile of the X-type of ability distribution.

Retained in K vs. not retained Retained early vs. not retained Retained late vs. not retained
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Figure 3: Achievement Gains for Kindergarten Retention over Time
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Figure 4: Achievement Gains for Early Retention over Time
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Note: Let ζ(t,1) and ζ(t,∞) be the potential test scores at time t if the student is retained in kindergarten and if the kid is not retained at all, respectively. Let R={1,2,3} 
indicate the period a student is retained at. The Average Treatment E�ect graph shows E[ζ(t,1)-ζ(t,∞)] for t=1,2, and 3 for each test score. The Treatment on the Treated 
graph shows E[ζ(t,1)-ζ(t,∞)|R=t].

Note: Let ζ(t,1) and ζ(t,∞) be the potential test scores at time t if the student is retained in kindergarten and if the kid is not retained at all, respectively. Let R={1,2,3} 
indicate the period a student is retained at. The Average Treatment E�ect graph shows E[ζ(t,1)-ζ(t,∞)] for t=2, and 3 for each test score. The Treatment on the Treated 
graph shows E[ζ(t,1)-ζ(t,∞)|R=t].
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