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Abstract
Bayesian rational prior equilibrium requires agent to make rational sta-

tistical predictions and decisions, starting with first order non informative
prior and keeps updating with statistical decision theoretic and game theo-
retic reasoning until a convergence of conjectures is achieved.
The main difference between the Bayesian theory of games and the current

games theory are:
I. It analyzes a larger set of games, including noisy games, games with

unstable equilibrium and games with double or multiple sided incomplete
information games which are not analyzed or hardly analyzed under the
current games theory.
II. For the set of games analyzed by the current games theory, it generates

far fewer equilibria and normally generates only a unique equilibrium and
therefore functions as an equilibrium selection and deletion criterion and,
selects the most common sensible and statistically sound equilibrium among
equilibria and eliminates insensible and statistically unsound equilibria.
III. It differentiates between simultaneous move and imperfect informa-

tion. The Bayesian theory of games treats sequential move with imperfect
information as a special case of sequential move with observational noise
term. When the variance of the noise term approaches its maximum such
that the observation contains no informational value, there is imperfect in-
formation (with sequential move).
IV. It treats games with complete and perfect information as special cases

of games with incomplete information and noisy observation whereby the
variance of the prior distribution function on type and the variance of the
observation noise term tend to zero. Consequently, there is the issue of
indeterminacy in statistical inference and decision making in these games as
the equilibrium solution depends on which variances tends to zero first. It
therefore identifies equilibriums in these games that have so far eluded the
classical theory of games.
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1. Introduction
Current prevailing games theory solves by asking which combinations of

strategies are equilibria. Agents are assumed to know the strategies adopted
by the other agents and which equilibrium they are in. If there are incomplete
information, then it is required that the beliefs about the type of the other
agents be consistent with the equilibrium combination of strategy.
The Bayesian theory of games, in contrast, solves by assuming that the

agents start with first order uninformative prior probability distribution func-
tions on the strategy of the other agents and the agents have no idea which
equilibrium they are in. The agents then keep updating their prior beliefs
with game theoretic and statistical decision theoretic reasonings, until con-
vergences of prior beliefs or conjectures are achieved.
Why starts with the first order noninformative prior? This is to let the

game solves itself and selects its own equilibrium, rather than being imposed
or affected by the informative first order priors. Selten and Harsanyi (1988)
has a tracing precedure to select the most reasonable equilibrium among
multiple Nash equilibria. The Bayesian solution concept for simultaneous
games is quite similar to the tracing procedure of Selten and Harsanyi (1988).
However, the Bayesian approach to simultaneous games does not start its
tracing with only Nash equilibria but all possible actions or strategies of
the playes. Another difference is that the equilibrium selection precedure of
Selten and Harsanyi (1988) will always has an equilibrium if there is at least
a Nash equilibrium. In contrast, the Bayesian might yields no equilibrium
when there is a mixed strategy Nash equilibrium. This difference arises
because when a player is indifferent among different actions, the Bayesian
approach treats his response as stochastic. In contrast, the current games
theory arbitrarily assumes that the player will selects a particular action.
Section 2 presents the Bayesian approach to noisy sequential games, sec-

tion 3 presents the Bayesian approach to simultaneous games, section 4 deals
with the difference between simultaneous move and imperfect information,
section 5 presents sequential games with incomplete but perfect information
and section 6 concludes the paper.
2. Noisy Sequential Games with Incomplete Information
Nnoisy sequential games are sequential games with inaccurate observation

clouded by noises. In present modelling of incomplete information sequential
games, there is the uncertainty about the type of one or more players. The
uncertainty about the type of a player is modelled by a prior distribution
function on the type of that player held by other players. This prior dis-
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tribution function is normally assumed to be a common knowledge.1 Other
players normally either observe accurately the action of the player whose
type is unknown or they do not observe his action at all. In simultaneous
move Bayesian games, the action of the player whose type is unknown is not
observed by the other players before they make their moves. They choose
their optimal strategy given their prior beliefs about the type of the player
with unknown type. The equibrium so obtained is termed the Bayesian Nash
equilibrium. In most of the sequential Bayesian games, for instance, the sig-
nalling games, the action of the player whose type is unknown is accurately
observed by the other players. After observing the action of the player with
unknown type, the other players use game theoretic reasoning and the Bayes
rule to update their prior beliefs about the type of the player with unknown
type. They then choose their optimal strategy given their posterior beliefs
about the type of the player with unknown type. The equilibrium so obtained
is termed the perfect Bayesian Equilibrium.
The stipulation that the action of the player with unknown type is either

accurately observed or completely unobserved is too restrictive. Given this
restriction, there is no statistical inference involved in these Bayesian games
though Bayes rule is used to update the beliefs on the type of the player
with unknown type. This restriction will be relaxed. This section analyzes
the game theoretic situation where the other player observes inaccurately the
action of the player with unknown type. Inaccurate observation means that
the other player observes the action of the player with unknown type with a
noise term or there is a positive probability that they will make observational
error due to the noise term. He therefore must makes statistical inference
on the action of the player with unknown type. He does so bases upon two
sources of information. One source of information is the inaccurate obser-
vations on the action of the player with unknown type. This is the sample
data. The other source of information is the evidence which concerns the
motive of the player with unknown type constructed through game theoretic
reasoning, basing upon knowledge such as the prior distribution function on
the type of the player with unknown type and the structure of the game.
The information so constructed gives a belief about the probability of possi-
ble actions taken by the player with unknonw type. This belief is the prior
distribution function on the action of the player with unknown type.
Given the need for statistical inference and decision, the player has to

1Refer to Harsanyi (1967, 1968a, 1968b).
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decide which statistical decision rule to use. Since in games theory, the basic
assumption is that the player is rational, the decision rule has to be a Bayes
rule. A decision rule is a Bayes rule if it attains the infimum of the expected
loss function or the supremum of the expected utility function.2 On the other
hand, the knowledge that the player has about the game will affect his belief
about what action the other player is likely to take. That is to say, he will
have a prior distribution on the action of the other player. Therefore, in a
Bayesian game with inaccurate observation, there could be many possible
equilibria given that there are many possible statistical decision rules and
many possible Bayesian decision rules with their different prior beliefs.
To narrow down the number of equilibria, one has to further strengthen

the concept of Bayesian Nash equilibrium and perfect Bayesian equilibrium.
Presently in games theory there are no equilibrium concept for sequential
Bayesian games with incomplete information and inaccurate observation of
actions. This section uses the concept of Bayesian rational prior equilibrium
to fill in this gap. Rational prior refers to the rational prior distribution func-
tion on the action of the player with unknown type. The rational prior dis-
tribution function is formed through iterative reasoning, starting with a first
order uninformative prior distribution function on the action of the player
with unknown type and keeps being updated by game theoretic and statisti-
cal decision theoretic reasoning until a convergence of the prior distribution
function is achieved, thereby incorporating all available useful information
such as the structure of strategic interaction, the prior distribution function
on the type of the player with unknown type and the nature of the game
theoretic equilibrium. A rational prior distribution function is consistent
with the equilibrium it supported. Bayesian rational prior equilibrium rules
out equilibria that are based on prior beliefs that are inconsistent with the
equilibria they supported. The Bayesian decision rule starting with first or-
der uninformative priors and ending with rational priors consistent with the
equilibrium they supported is an undominated decision rule, attaining the
supremum of the expected utility of the player making the inference.3

Sequential games with incomplete and perfect information where play-
ers accurately observe the actions of the other players and sequential games
with incomplete and imperfect information where players completely do not

2A decision rule is a Bayes rule if it attains the infimum of the expected loss function
or the supremum of the expected utility function. Other criteria for selecting decision rule
include the minimax rule and admissibility. Refer to Berger (1980).

3Teng (2004).
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observe the actions of the other players are both then special cases of noisy
sequential games with incomplete information. When the inaccurate obser-
vation of action is so poor that no valuable information is contained in the
observation, a noisy sequential game becomes an imperfect information se-
quential game. On the other hand, when the inaccurateness in observation
is so small that the posterior distribution function on action depends only
on the sample data and not on the prior distribution function at all, a noisy
sequential game becomes a perfect information sequential game.
2.1. Example: Market Leadership
There are two players: Firm 1, the market leader and Firm 2, the market

follower. Firm 1 moves first by setting its output level. Firm 2 observes
imperfectly the output level of Firm 1 due to a confounding noise term.
Firm 2 makes rational Bayesian inference on the output level of Firm 1 and
then sets its output level.
The structure of the game is common knowledge. The cost efficiency of

Firm 1 which determines the type of Firm 1, is choosen by Nature from
a predetermined distribution function which is common knowledge. Once
chosen, the type of Firm 1 is private knowledge. The type of Firm 2 is
common knowledge. Firm 2 therefore must makes inference on the type and
action of Firm 1. The distribution function of the noise term that confounds
the observation by the Firm 2 on the actual output level of Firm 1 is common
knowledge.
The Model
q1, the output level of Firm 1, is the action of Firm 1. q2, the output

level of Firm 2, is the action of Firm 2. Total level of output in the market
is Q. The price level is P = D − Q. The payoff function of Firm 1 is
π1 = (D− q1 − q2 − c1) q1. c1 is the average and marginal cost of production
of Firm 1. c1 decides the type of Firm 1. Firm 1 knows c1 but not Firm 2
does not know c1. c1 has a normal distribution which is common knowledge:
c1˜N

³−
c1, ζ

´
. The action of Firm 1 is imperfectly observed by Firm 2 with

a noise term: R = q1 + ². ² is the noise term. ² has a normal distribution:
²˜N (0,κ) . The above leads to the following sampling distribution on R:
R | q1˜N (q1,κ) and the likelihood function: q1 | R˜N (R,κ) .
The game is solved starting with a non-informative first order prior. Firm

2 solves
q2maxE (π2) =

R∞
−∞ (D − q1 − q2 − c2) q2f (q1 | R) dq1. The optimal solu-

tion is q2 = D−R−c2
2

. Firm 1 being the first mover, anticipates the stochastic
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response of firm 2 and solves q1maxE (π1) =
R∞
−∞
¡
D − q1 − D−R−c2

2
− c1

¢
q1f (²) d².

The optimal solution is q1 = D+c2−2c1
2

. Therefore, q1˜N
µ
−
q1, ζ

¶
and

−
q1=

D+c2−2−c1
2

, which is the second order prior. The second order posterior is

q1 | R˜N
µ
ˆ
q1,

ˆ
ρ

¶
,
ˆ
q1=

ζ
κ+ζ
R + κ

κ+ζ

−
q1= θR + (1− θ)

−
q1 where θ = ζ

κ+ζ
and

ˆ
ρ= ζκ

κ+ζ
.

Firm 2 solves q2maxE (π2) =
R∞
−∞ (D− q1 − q2 − c2) q2f (q1 | R) dq1. The

optimal solution is q2 = D−ˆq1−c2
2

and q2 | q1˜N
Ã
D−c2−

µ
θq1+(1−θ)

−
q1

¶
2

, θ
2

4
κ

!
.

Firm 1 solves q1maxE (π1) =
R∞
−∞

µ
D − q1 − D−c2

2
+

ˆ
q1
2
− c1

¶
q1f (²) d². The

optimal solution is q1 =
D+c2+(1−θ)

−
q 1−2c1

2(2−θ) . Therefore, the third order prior

is q1˜N
µ
−
q1, ρ

¶
,
−
q1=

D+c2−2−c 1
3−θ , ρ =

¡
1
2−θ
¢2

ζ. The third order posterior is

q1 | R˜N
µ
ˆ
q1,

ˆ
ρ

¶
,
ˆ
q1=

ρ
κ+ρ
R + κ

κ+ρ

−
q1= θR + (1− θ)

−
q1 where θ = ρ

κ+ρ
and

ˆ
ρ= ρκ

κ+ρ

Firm 2 solves q2maxE (π2) =
R∞
−∞ (D− q1 − q2 − c2) q2f (q1 | R) dq1. The

optimal solution is q2 = D−ˆq1−c2
2

and therefore q2 | q1˜N
Ã
D−c2−

µ
θq1+(1−θ)

−
q1

¶
2

, θ
2

4
κ

!
.

Firm 1 solves

q1maxE (π1) =
R∞
−∞

µ
D − q1 − D−c2

2
+

ˆ
q1
2
− c1

¶
q1f (²) d². The optimal

solution is q1 =
D+c2+(1−θ)

−
q 1−2c1

2(2−θ) and therefore the fourth order prior is

q1˜N

µ
−
q1, ρ

¶
,
−
q1=

D+c2−2−c1
3−θ , ρ =

¡
1
2−θ
¢2

ζ. At this point, the process con-

verges.
The rational prior density function of Firm 2 on the output level of Firm

1 is:
q1˜N

³−
q1, ρ

´
,
−
q1=

D+c2−2−c1
3−θ ,ρ =

¡
1
2−θ
¢2

ζ and therefore q1 = D+c2
3−θ −

1
2−θ

³
c1 +

1−θ
3−θ

−
c1

´
Ex ante q1and q2 have the following joint distribution function:



7⎛⎝ q1
q2

⎞⎠ ˜N
⎛⎝⎛⎝ −

q1
−
q2

⎞⎠ cov (q1, q2)
⎞⎠

⎛⎝ −
q1
−
q2

⎞⎠ =

⎛⎝ D+c2−2−c1
3−θ

D(2−θ)−c2(4−θ)−2−c1
2(3−θ)

⎞⎠
cov (q1, q2) =

⎛⎝ ¡
1
2−θ
¢2

ζ −θ
2

¡
1
2−θ
¢2

ζ

−θ
2

¡
1
2−θ
¢2

ζ θ2

4

³¡
1
2−θ
¢2

ζ + κ
´⎞⎠

2.2. Perfect and Complete Information and Indeterminacy.
The next few paragraphs let the variance of the type distribution function

(ζ) tends to zero and let the variance of the noice term (κ) tends to either its
zero or positive infinity. The variance of the prior distribution function on
action (ρ) therefore tends to zero as well. Now let ρ→ 0limκ→ 0limθ = 14.
In this case, at BRPE,

q1 =
D+c2+(1−θ)−q1−2c1

2(2−θ) = D+c2+(1−θ)q1−2c1
2(2−θ) = D+c2

2
− c1

and
q2 =

D−c2
2
− θ(q1+²)+(1−θ)−q1

2
= D−c2

2
− θ(q1+²)+(1−θ)q1

2
= D−c2−q1

2
= D

4
− 3c2

4
+ c1

2

This is the Stackelberg solution for the complete and perfect informa-
tion game. To verify, note that in choosing q2, Firm 2 solves q2maxπ2 =
(D− q1 − q2 − c2) q. The optimal solution is q2 = D−c2−q1

2
. Firm 1, being the

first mover, anticipates the reaction of Firm 2. In determining the optimal
level of output, Firm 1 solves q1maxπ1 =

¡
D − q1 − D−q1−c2

2
− c1

¢
q1. The

optimal solution is q1 = D+c2
2
− c1.

Next let ρ→ 0limκ→∞limθ = 0. In this case, at BRPE,

q1 =
D+c2+(1−θ)−q1−2c1

2(2−θ) = D+c2−2c1
3

q2 =
D−c2
2
− θ(q1+²)+(1−θ)−q1

2
= D−2C2+C1

3

This is the Cournot solution for the complete and imperfect informa-
tion (or simultaneous) game. To verify, note that in choosing q2, Firm
2 solves q2maxπ2 = (D − q1 − q2 − c2) q. The optimal solution is q2 =
D−c2−q1

2
. In determining the optimal level of output, Firm 1 solves q1maxπ1 =

(D− q1 − q2 − c1) q1. The optimal solution is q1 = D−q2−c1
2

. Solving the two
first order conditions simultaneously gives
q1 =

D+c2−2c1
3

4The case presented here assumes that the inferring agent bases his statistical inference
and decision entirely on his observation and not prior reasoning.
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q2 =
D−c2−q1

2
= D−2C2+C1

3

At the Bayesian rational prior equilibrium, firm 2 produces q2 = D−c2
2
−

θ(q1+²)+(1−θ)−q1
2

.

The rational prior density function of Firm 2 on the output level of Firm

1 is: q1˜N
³−
q1,ρ

´
,
−
q1=

D+c2−2−c1
3−θ , ρ =

¡
1
2−θ
¢2

ζ and therefore q1 = D+c2
3−θ −

1
2−θ

³
c1 +

1−θ
3−θ

−
c1
´
. The slope of the reaction function is ∂q2

∂q1
= − θ

2

Now let the variance of the type distribution function (ζ) and variance
of the noice term (κ) both tend to zero. The variance of the rational prior
distribution functino on action (ρ) therefore tends to zero as well. The equi-
librium q1 and q2 when all the three variances tend to zero depend upon the
value of κ→ 0limρ→ 0limθ. If

ρ→ 0limκ→ 0limθ = 0, then q1 =
D+c2+(1−θ)−q1−2c1

2(2−θ) = D+c2+(1−θ)q1−2c1
2(2−θ) =

D+c2−2c1
4

+1
4
q1 =

D+c2−2c1
3

and q2 = D−c2
2
− θ(q1+²)+(1−θ)−q1

2
= D−c2

2
− θ(q1+²)+(1−θ)q1

2
=

D−c2−q1
2

= D−2C2+C1
3

. This is the same as the Cournot solution for the com-
plete and imperfect information game.

κ→ 0limρ→ 0limθ could take on any value from 0 to 1. For instance, it

could be that κ→ 0limρ→ 0limθ = 0.5. In this case, q1 =
D+c2+(1−θ)−q1−2c1

2(2−θ) =

2(D+c2−2c1)
5

and q2 = D−c2
2
− θ(q1+²)+(1−θ)−q1

2
= 2

5
D − 7

10
C2 +

2
5
C1

The example is illustrated in the diagram below:
In the above disgram, C is the solution when θ = 0, S is the solution

when θ = 1, G is the solution when θ = 1
2
.

3. Sequential Games with Incomplete but Perfect Information
In current games theory, the solution algorithm of sequential games with

incomplete and perfect information starts with the assumption of equilibrium
strategy of the first moving player with uncertain type. Given the equilib-
rium strategy of the first moving player with uncertain type, upon perfectly
observing the action of the first moving player, the second moving player
infers about the type of the first moving player and decides his own strategy.
Finally, the decisions of the first and second moving players are checked if
they accord with the initially assumed equilibrium. If so, the initially as-
sumed equilibrium is the perfect Bayesian equilibrium or any of its many
refinements. The assumption that players know the equilibrium of the game
and strategy of the other player removes much of the inherent uncertainty
about the strategy of the other player in games of incomplete information.
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Figure 0.1:

The Bayesian approach to games investigates how the conjectures of play-
ers about the strategies of the other players and their conjectures converges
to an equilibrium, the Bayesian rational prior equilibrium. In solving sequen-
tial games with incomplete and perfect information, the Bayesian approach
assumes that players do not know the other player’s strategy nor the equi-
librium of the game, though the second moving player observes perfectly the
action of the first moving player. The conjectures of players about the other
player’s strategy and his conjectures are conditional upon the fact that the
action of the player who moves earlier are perfectly observed by the player
who moved later and that this is common knowledge. Both the first moving
player and the player who moves later conjecture about the strategy and
conjectures of the other player. The conjectures about the strategies and
actions of the other player start with first order uninformative priors. The
point of convergence of such conjectures constitute the Bayesian raitonal
prior equilibrium for the incomplete and perfect information game.

In a sequential game of incomplete and perfect information, the second
moving player does not know the type of the first mover. Therefore, despite
the fact that he observes the action of the first moving player perfectly, he
must still infer about the strategy of each type of the first moving player
through game theoretic and statistical decision theoretic reasonings. The
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first mover of course must also conjecture about the strategy and conjectures
of the second moving player when selecting his strategy. That means the
agent cannot condition his strategy upon the other player’s strartegy: Player
1 cannot connot do so for he moves first and player 2 cannot do so for player
1 has more than one type and player 2 observes player 1’s action but not
strategy.
3.1. Example.
The following example shows the Bayesian approach to solving a game

of incomplete and perfect information. It also illustrates the relationship
between incomplete and perfect information sequential games and complete
and perfect information sequential games. When the variance of type tends
to zero, a sequential game with incomplete and perefect information becomes
a sequential game with complete and perfect information where the player
relies upon the observation totally for his statistical inference and decision
and not the prior. The equilibrium of the latter must equal to the equilibrium
of the former in the limiting case. The Bayesian approach passes this test
while the PBE approach fails to.

Example: coordination game.
This example is important for the intuitive criterion cannot eliminate the

unreasonable equilibrium but Bayesian Rational Prior Equilibrium approach
could.
There are two equilibria by the classical PBE approach, both separating:
i. (L, R; u(L), d(R)). This equilibrium is socially optimal.
ii. (R, L; d(L), u(R)). This equilibrium is socially suboptimal.
Refinements by determining the off equilibrium beliefs would not work

here since there is no off equilibrium belief.
Solving by the Bayesian Rational Prior Equilibrium approach:
Let the probability that the receiver plays U when observed L be a and

the probability that the receiver plays U when observed R be b. Let the
probability that the type 1 sender plays L be x and the probability that the
type 2 sender plays L be y.
When L is observed, the receiver plays U if
2x (0.5) > x (0.5) + 5y (0.5)
x > 5y

E (a) =
1

0
R 1

0
R
a (x, y) dxdy = 1

10

When R is observed, the receiver plays U if
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Figure 0.2:

Figure 0.3:
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Figure 0.4:

5 (1− x) (0.5) + (1− y) (0.5) > 2 (1− y) (0.5)
4
5
+ y

5
> x

E (b) =
1

0
R 1

0
R
b (x, y) dxdy = 9

10

Type 1 sender plays L if
2a+ (1− a) > 5b
1
5
+ a

5
> b

E (x) =
1

0
R 1

0
R
x (a, b) dadb = 3

10

Type 2 sender plays L if
5 (1− a) > b+ 2 (1− b)
3
5
+ b

5
> a

E (y) =
1

0
R 1

0
R
y (a, b) dadb = 7

10

Starting with E (x) and E (y), p = 3
10
and q = 7

10
. So when L is observed,

the receiver plays D since
2
¡
3
10

¢
< 3

10
+ 5

¡
7
10

¢
When R is observed, the receiver plays U since
5
¡
7
10

¢
+ 3

10
> 2

¡
3
10

¢
Anticipating the receiver’s responses, type 1 sender plays R and type 2

sender plays L. The equilibrium is (R, L; D, U).
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Figure 0.5:

Figure 0.6:
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Figure 0.7:

Consider the following game case where the probability of player 1 being
type 1 and type 2 is r and 1− r.
There are three equilibria by the classical PBE approach: i. Separating

equilibrium (L, R; u(L), d(R)). ii. Separating equilibrium (R, L; d(L), u(R)).
iii. Pooling equilibrium (R, R; u(L), u(R); p>5

6
). Equilibrium iii is ruled out

by intuitive criterion. Since only type 2 sender has incentive to deviate from
the equilibrium and switch from R to L, p = 0.
Solving by the Bayesian Rational Prior Equilibrium approach: Let the

probability that the receiver plays U when observed L be a and the probabil-
ity that the receiver plays U when observed R be b. Let the probability that
the type 1 sender plays L be x and the probability that the type 2 sender
plays L be y.
When L is observed, the receiver plays U if
2x (r) > x (r) + 5y (1− r) or x (r) > 5y (1− r)
When R is observed, the receiver plays U if
5 (1− x) (r)+(1− y) (1− r) > 2 (1− y) (1− r) or 5 (1− x) (r) > (1− y) (1− r)
Type 1 sender plays L if
2a+ (1− a) > 5b or 1

5
+ a

5
> b

E (x) =
1

0
R 1

0
R
x (a, b) dadb = 3

10
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Figure 0.8:

Type 2 sender plays L if
5 (1− a) > b+ 2 (1− b) or 3

5
+ b

5
> a

E (y) =
1

0
R 1

0
R
y (a, b) dadb = 7

10

Starting withE (x) andE (y), r→ 1limp =
3
10
(r)

3
10
(r)+ 7

10
(1−r) = 1 and r → 1limq =

7
10
(r)

7
10
(r)+ 3

10
(1−r) = 1. So when L is observed, the receiver plays U since 2 (p) >

p+5 (1− p) .When R is observed, the receiver plays U since 5 (q)+(1− q) >
2 (1− q). Anticipating the receiver’s responses, type 1 sender plays R and
type 2 sender plays R. The equilibrium is (R, R; U, U). It is the equilibrium
iii of the PBE approach which is ruled out by intuitive criterion.
Note that the BRPE for the limiting case sequential incomplete and per-

fect information game agrees with the equilibrium for the sequential complete
and perfect information game which is represented by the diagram below:
The equilibrium is (R; u(L), u(R)). This is derived through backward

induction. The above examples casts doubt about the validity of the intu-
itive criterion as a refinement of PBE. The intuitive criterion eliminates the
most logical equilibrium and is no help in selecting among the remaining two
equilibria.
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Figure 0.9:

Example: Two Sided Incomplete Information Sequential Game with Per-
fect Information
In the above game, there are two types of senders, wimpy and surly, and

two types of receivers, bully and patrollers. The probability of wimpy is 0.1
and the probability of surly is 0.9. The bully type enjoys picking on the
wimpy type. The left hand side of the game is therefore the Beer-Quiche
game. The patroller type, on the other hand, has the duty of challenging
the surly type when the surly orders beer and only if the surly orders beer.
However, if the patroller challenges the wimpy, the patroller is humiliated.
The probability of bully is 0.1 and the probability of patroller is 0.9.
Let the probability that the bully plays duels when Beer is observed be

u, the probability that the bully plays duels when Quiche is observed be v,
the probability that the patroller plays duels when Beer is observed be s and
the probability that the patroller plays duels when Quiche is observed be t.
Please note that when Quiche is observed, the patroller has the dominant
strategy of choosing No Duel and therefore t = 0. Let the probability that
the surly plays Beer be x and the probability that the wimpy plays Beer be
y.
Given u, v, s and t, the surly chooses beer if
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(0.1) [u+ 3 (1− u)] + (0.9) [s+ 3 (1− s)] >
(0.1) 2 (1− v) + (0.9) 2 (1− t)
or 1 > (0.2) (u− v) + (1.8) (s− t)
The above is the combination of [u+ 3 (1− u)− 2 (1− v)] > 0 and [s+ 3 (1− s)− 2 (1− t)] >

0 and weighted by 0.1 and 0.9. The expected value of x is therefore E (x) = 7
8

Given u, v, s and t, the wimpy chooses beer if
(0.1) [2 (1− u)] + (0.9) [2 (1− s)] >
(0.1) [v + 3 (1− v)] + (0.9) [t+ 3 (1− t)]
or (0.2) (v − u) + (1.8) (t− s) > 1
The above is the combination of [2 (1− u)− v − 3 (1− v)] > 0 and [2 (1− s)− t− 3 (1− t)] >

0 and weighted by 0.1 and 0.9. The expected value of y is therefore E (y) = 1
8

Given x and y, when observed Beer the bully reasons that
(−1) ¡7

8

¢ ¡
9
10

¢
+ (1)

¡
1
8

¢ ¡
1
10

¢
< 0

The bully therefore chooses No Duel when observed Beer and u = 0.
Given x and y, when observed Quiche the bully reasons that
(−1) ¡1

8

¢ ¡
9
10

¢
+ (1)

¡
7
8

¢ ¡
1
10

¢
< 0

The bully therefore chooses No Duel when observed Quiche and v = 0.
Given x and y, when observed Beer the patroller reasons that
(1)
¡
7
8

¢ ¡
9
10

¢
+ (−1) ¡1

8

¢ ¡
1
10

¢
> 0

The patroller therefore chooses Duel when observed Beer and s = 1.
Therefore at this stage of reasoning, u = 0, v = 0, s = 1 and t = 0. For

the Surly, the payoff of playing Beer is
(0.1) [u+ 3 (1− u)] + (0.9) [s+ 3 (1− s)] = 1.2
For the Surly, the payoff of playing Quiche is
(0.1) 2 (1− v) + (0.9) 2 (1− t) = 2
The Surly therefore chooses Quiche.
For the Wimpy, the payoff of playing Beer is
(0.1) [2 (1− u)] + (0.9) [2 (1− s)] = 0.2
For the Wimpy, the payoff of playing Quiche is
(0.1) [v + 3 (1− v)] + (0.9) [t+ 3 (1− t)] = 3
The Wimpy therefore chooses Quiche.
At this stage of reasoing, x = 0 and y = 0.
Given x and y, when observed Quiche the bully reasons that
(−1) (0.9) + (1) (0.1) < 0
The bully therefore chooses No Duel when observed Quiche and v = 0.
At this stage of reasoing, v = 0 and t = 0. From last stage, u = 0 and

s = 1.
For the Surly, the payoff of playing Beer is
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(0.1) [u+ 3 (1− u)] + (0.9) [s+ 3 (1− s)] = 1.2
For the Surly, the payoff of playing Quiche is
(0.1) 2 (1− v) + (0.9) 2 (1− t) = 2
The Surly therefore chooses Quiche and x = 0.
For the Wimpy, the payoff of playing Beer is
(0.1) [2 (1− u)] + (0.9) [2 (1− s)] = 0.2
For the Wimpy, the payoff of playing Quiche is
(0.1) [v + 3 (1− v)] + (0.9) [t+ 3 (1− t)] = 3
The Wimpy therefore chooses Quiche and y = 0.
The process therefore converges here with u = 0, v = 0, s = 1, t = 0, x = 0

and y = 0.
4. Simultaneous Games
This section illustrates the Bayesian algorithm of solving simultaneous

games. Starting with first order uninformativce priors, probability density
distribution functions are constructed from reaction functions and second or-
der priors are derived. The process of constructing higher order priors keep
reinterated until convergence of conjectures is achieved, if there is conver-
gence. The convergent prior distribution functions and the equilibrium they
supported is the Bayesian rational prior equilibrium.
In a simultaneous move game, none of the players observed what the

other players are doing and they all makes their decisions simultaneously
and all these are common knowledge. By the very definition of simultane-
ous move, even if one of players will play a particular equilibrium strategy
prescribed by the concept of Nash equilibrium, be it either a pure strategy
or a mixed strategy, the other players still do not observe the action of the
other players. They therefore have to conjecture about the move. Since what
the players think or conjecture will affect their decisions, it therefore follows
that the players must conjecture about the other player’ conjectures, besides
conjecturing what the other players are doing or will do.
There is a strong need for a new solution concept for simultaneous games.

The existing concept, Nash Equilibrium, generates too many equilibria. Many
of these equilibria do not make sense. Mixed strategy equilibrium poses par-
ticular problem for not only in many cases it does not make sense, there
are also many different interpretations of mixed strategy and mixed strategy
equilibrium and games theorists are at a loss here. For instance, it is said that
mixed strategy is adopted by a player who randomizes to confuse opponent.
A good example is the matching pennies games which has only mixed strat-
egy equilibrium and no pure strategy equilibrium. Another interpretation is
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that the player are unsure of the other player’s strategy and the probability
of mixed strategy reflects the subjective probability interpretation about the
other player’s possible strategy. A good example of this interpretation is
the battle of sexes game. None of the interpretations is totally satisfactory
and game theorists have an ambivalent attitude towards mixed strategies
equilibrium.5

The conjectural variations literature is one of the response. Conjectures
play an important role in the Bayesian rational prior equilibrium approach.
The Bayesian rational prior equilibrium solution of a simultaneous game
traces out the whole statistical decision process starting with non informa-
tive first order priors and updates the priors by game theoretic reasoning
to achieve convergence in conjectures, if there is any. The equilibrium con-
jectures are consistent with the equilibrium they supported. On this point,
the Bayesian rational prior equilibrium approach agrees with the equilibrium
consistent conjectural variations literature.6

The way the Nash equilibrium approach solves a simultaneous move game
is to get the interaction points of the reaction functions. Implicit in this
solution algorithm is that there is perfect information and the moves are
sequential. That is what a reaction function means: the reaction of one
player to the action of the other player. That implies perfect information
for you must observe the action of the other party before you could react
to his aciton. If there are simultaneity in moves and the players do not
observe the moves of the other players, then they could not react to the
actions of the other players. In this situation, a player would react to the
expected values or predictive distribution functions of the actions of the other
players. It is clear that conjecture plays a central role here. The reaction
functions of a simultaneous game are therefore not really reaction functions
as those of a perfect information sequential game and are best named as
virtual reaction functions for differentiation from the real reaction functions
of a perfect information sequential game.
By the Bayesian rational prior equilibrium approach, players forms ra-

tional prior or expectation of the actions of the other players and update
the priors or expecations rationally using game theoretic reasoning. The
Bayesian Rational Prior Equilibrium, if it exists, is the point of convergence
of these rational conjectures. In the situation where there are more than one

5Aumann (1985) and Harsanyi and Selten (1988).
6Check references here.
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stable Nash equilibria, the Bayesian Rational Prior Equilibrium approach
selects the most sensible stable Nash equilibrium as the Bayesian Rational
Prior Equilibrium.
Note that by the present classical games theory approach in which the

players take no expectation or make no prediction on the other players’s
strategies, the Nash equilibrium or equilibria could be reached only by chance
in a simulataneous game. This is so for in a simultaneous game, you can-
not condition your strategy or move on your opponent’s strategy or move.
In contrast, in the Bayesian Rational Prior Equilibrium approach, players
make predictions or expectations and the resultant equilibrium is not arrived
haphazardly .
4.1. 2X2 Simultaneous Game Examples
Four types of equilibria could arise in the BRPE approach to 2X2 simul-

taneous games. The first is a unique pure strategy equiuilibrium where all
conjectures that start from the different first order priors on each player’s
strategy converge to the same pure strategy equilibrium. This is in fact the
focus point or Schelling point brought up by Schelling (1960). Example 1
Coordination Game is such a case. The Bayesian approach selects the most
sensible of the Nash equilibria in this case, if there are multpile pure strat-
egy Nash equilibria. The second scenario is multiple pure strategy equilibria
where conjectures starting from different first order priors on each player’s
strategy converge to different pure strategy equilibria. Example 2 Battle of
Sexes game is such a case. The third is a stochastic response equilibrium in
which players are indifferent between a range of possible strategies. Example
3 Matching Pennies is such a case. The Bayesian rational prior equilibrium
though looks very much like the mixed strategy equilibrium, has very differ-
ent interpretative meaning from the latter. The fourth situation is where no
convergence of conjectures is achieved. Example 4 Conflict Game is such a
case. The unique mixed strategy Nash Equilibrium of current games theory
is ruled out by the Bayesian approach in this case.
Example 1: Coordination Game

player 1\player 2 L (y) R (1− y)
U (x) a, a 0, 0

D (1− x) 0, 0 1, 1

a > 1. The game has two pure strategy Nash equilibria: (U,L) (or x =
1, y = 1) and (D,R) (or x = 0, y = 0) and a mixed strategy Nash equilibrium:
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Figure 0.10:

x = 1
1+a
, y = 1

1+a
where x is the probability that Player 1 plays U and y is

the probability that Player 2 plays L.

The reaction functions are: x (y) = 1 if y > 1
1+a
, x (y) ∈ [0, 1] if y =

1
1+a
, x (y) = 0 if y < 1

1+a
and y (x) = 1 if x > 1

1+a
, y (x) ∈ [0, 1] if x =

1
1+a
, y (x) = 0 if x < 1

1+a
.

Note that at the mixed strategy Nash equilibrium, as a increases, the
probability that Player 1 plays U and Player 2 plays L decreases. This is not
sensible.

Starting with first order uninformative priors and given x (y) and y (x),
the expected value of x and y are: E (x) = 01x (y) dy = a

1+a
and E (y) =

01y (x) dy = a
1+a
. Starting with E (y) = a

1+a
, the outcome is x

¡
a
1+a

¢
= 1

and y (1) = 1. Starting with E (x) = a
1+a
, the outcome is y

¡
a
1+a

¢
= 1 and

x (1) = 1. Consequently, the unique Bayesian Rational Prior Equilibrium is
x = 1, y = 1.

Example 2: Battle of Sexes
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Figure 0.11:

Tom\Mary Boxing (y) Opera (1− y)
Boxing (x) 10, 5 0, 0

Opera (1− x) 0, 0 5, 10

The reaction functions are: x (y) = 1 if y > 1
3
, x (y) ∈ [0, 1] if y =

1
3
, x (y) = 0 if y < 1

3
and y (x) = 1 if x > 2

3
, y (x) ∈ [0, 1] if x = 2

3
, y (x) = 0 if

x < 2
3
.

Given x (y) and y (x), the expected value of x and y are: E (x) =
01x (y) dy = 2

3
and E (y) = 01y (x) dy = 1

3
. Starting with E (x) , y

¡
2
3

¢ ∈
[0, 1] , E

£
y | x = 2

3

¤
=

1

0
R
ydy =

h
y2

2

i1
0
= 1

2
, x
¡
1
2

¢
= 1, y (1) = 1, x (1) = 1. So

starting with E (x) and the point of convergence of conjectures is x = 1, y =

1. Starting with E (y) , x
¡
1
3

¢ ∈ [0, 1] , E £x | y = 1
3

¤
=

1

0
R
xdx =

h
x2

2

i1
0
=

1
2
, y
¡
1
2

¢
= 0, x (0) = 0. So starting with E (y) and the point of convergence of

conjectures is x = 0, y = 0. There are two Bayesian rational prior equilibria:



23

Figure 0.12:

(x = 1, y = 1)and (x = 0, y = 0).
Example 3. Matching Pennies

1\2 H (y) T (1− y)
H (x) −1, 1 1,−1

T (1− x) 1,−1 −1, 1
There is no pure strategy Nash equilibrium but only mixed strategy Nash

equilibrium, (x = 1
2
, y = 1

2
). The reaction functions are x (y) = 0 if y >

1
2
, x (y) ∈ [0, 1] if y = 1

2
, x (y) = 1 if y < 1

2
and y (x) = 1 if x > 1

2
, y (x) ∈ [0, 1]

if x = 1
2
, y (x) = 0 if x < 1

2
.

The expected values of x and y are: E (x (y)) = 1
2
and E (y (x)) = 1

2
.

Starting with E (x) , y
¡
1
2

¢ ∈ [0, 1] , E
£
y | x = 1

2

¤
=

1

0
R
ydy = 1

2
, x
¡
1
2

¢ ∈
[0, 1] ,E

£
x | y = 1

2

¤
=

1

0
R
xdx = 1

2
and so on. Starting with E (y) , x

¡
1
2

¢ ∈
[0, 1] ,E

£
x | y = 1

2

¤
=

1

0
R
xdx = 1

2
, y
¡
1
2

¢ ∈ [0, 1] , E £y | x = 1
2

¤
=

1

0
R
ydy = 1

2
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Figure 0.13:

and so on. So the conjectures stay at E (x) = 1
2
and E (y) = 1

2
and do not

converge to a pure strategy equilibrium and that is the stochastic response
Bayesian Rational Prior Equilibrium where x ∈ [0, 1] and y ¡1

2

¢ ∈ [0, 1].
Example 4: Conflict Game

1\2 H(y) T (1− y)
H(x) −2, 2 3,−1

T (1− x) 1,−2 −3, 3
There is no pure strategy Nash equilibrium but only mixed strategy Nash

equilibrium, (x = 5
8
, y = 2

3
). The mixed strategy Nash equilibrium is hard to

explain. The equilibrium value of x is decided by the reaction function of y
and the equilibrium value of y is decided by the x reaction function.
The reaction functions are x (y) = 0 if y > 2

3
, x (y) ∈ [0, 1] if y = 2

3
, x (y) =

1 if y < 2
3
and y (x) = 1 if x > 5

8
, y (x) ∈ [0, 1] if x = 5

8
, y (x) = 0 if

x < 5
8
. Starting with first order uninformative priors, the expected values of

x and y are E (x (y)) = 2
3
and E (y (x)) = 3

8
. Starting with E (x) , y

¡
2
3

¢
=

1, x (1) = 0, y (0) = 0, x (0) = 1, y (1) = 1, x (1) = 0 and so on. Starting with
E (y) , x

¡
3
8

¢
= 1, y (1) = 1, x (1) = 0, y (0) = 0, x (0) = 1, y (1) = 1 and so on.

There is no convergence of conjectures and therefore no Bayesian Rational



25

Prior Equilibrium.

Note that if x = 5
8
, then y˜U (0, 1) , and then E (y) = 1

2
, and x

¡
1
2

¢
=

1, y (1) = 1, x (1) = 0, y (0) = 0, x (0) = 1, y (1) = 1 and so on. And if

y = 2
3
, then x˜U (0, 1) , and then E (x) = 1

2
, and y

¡
1
2

¢
= 0, x (0) =

1, y (1) = 1, x (1) = 0 and so on. So (x = 5
8
, y = 2

3
) is not an equilibrium

point but just a random point.

Example 5. Hybrid Equilibrium

1\2 L (y) R (1− y)
U (x) 2, 2 0, 2

D (1− x) 0, 1 1, 1

There are two pure strategy Nash equilibria, (U,L) and (D,R), and
a whole range of mixed strategy Nash equilibria: x = 0, y ∈ £0, 1

3

¤
; x ∈

[0, 1] , y = 1
3
; x = 1, y ∈ £1

3
, 1
¤
.

In this game, player 2 is always indifferent between L and R whatever
the action of player 1. The game therefore degenerates into an economics of
uncertainty exercise. The optimal action for player 1 is U or x = 1. The
answer of economics of uncertainty exercise is x = 1, y ∈ [0, 1] which is not a
subset of Nash equilibria.

The example shows that Nash equilibrium has no decision theoretic foun-
dation.

Solving by the Bayesian approach:

Given the first order uninformative priors, E (x) = 2
3
; y ∈ [0, 1] and

E (y) = 1
2
;x = 1; y ∈ [0, 1] and the process converges here.

Starting with y (x), y ∈ [0, 1] and E (y) = 1
2
; x = 1; y ∈ [0, 1] and the

process converges here.

Both processes converge to a hybrid Bayesian rational prior equilibrium:
x = 1, y ∈ [0, 1] which is the same as the answer of the economics of uncer-
tainty exercise.

Example 6. Equilibrium by Iterative Elimination of (Weakly) Dominated
Strategies.

Very frequently one comes across examples of 2X2 simultaneous game
the equilibrium of which could be attained by iterative elimination of weakly
dominated strategies. The following game is an example.
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Figure 0.14:

1\2 L R

U 0, 1 1, 1

D 1, 1 1, 0

There are two Nash equilibria: (D,L) and (U,R). Howecer, only one of
them makes sense: (D,L) . (U,R) would be weeded out by the elimination of
(weakly) dominated strategy.
Note that the Nash equilibrium (x = 1, y = 0) is eliminated for Pr [x ∈ (0, 1)] =

0 and Pr [y ∈ (0, 1)] = 0. Therefore (x = 0, y = 1) is the unique Bayesian Ra-
tional Prior Equilibrium. This example, as well as example 8a, shows that
the Nash equilibrium approach is fundamental flawed.
Example 7. Cournot Competition
Production costs are 10q1 and 10q2.
π1 =

¡
210− q1

2
− 6

5
q2 − 10

¢
q1

π2 =
¡
210− q2

2
− 11

10
q1 − 10

¢
q2

∂π1
∂q1
= 200− q1 − 6

5
q2 = 0

∂2π1
∂(q1)

2 = −1
∂2π1
∂q1∂q2

= −6
5
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Figure 0.15:

∂π2
∂q2

= 200− q2 − 11
10
q1 = 0

∂2π2
∂(q2)

2 = −1
∂2π2
∂q2∂q1

= −11
10

∂2π1
∂(q1)

2
∂2π2
∂(q2)

2 − ∂2π1
∂q1∂q2

∂2π2
∂q2∂q1

= − 32
100
< 0

q1 (q2) = 200− 6
5
q2

q1 (0) = 200
q1
¡
500
3

¢
= 0

q2 (q1) = 200− 11
10
q1

q2 (0) = 200
q2
¡
2,000
11

¢
= 0

Nash equilibrium (interior and unstable):
q1 = 125, π1 = 62.5
q2 =

125
2
,π2 = 31.25

(There are two other Nash equilibria: q1 = 200, q2 = 0; q1 = 0, q2 = 200.
These are corner solutions and they are stable.)
Strangely, though q2 is a better substitute for q1 than the reverse, firm 2

has only half of firm one’s market share and profits. A convenient example for
comparison is the symmetrical case, that is, π1 =

¡
210− q1

2
− 6

5
q2 − 10

¢
q1

and π2 =
¡
210− q2

2
− 6

5
q1 − 10

¢
q2. The symmetrical Nash equilibrium is
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q1 = q2 =
1,000
11

and π1 = π2 = 45.4545. By having a product that cuts deeper
into the rival’s demand, firm 2 ended up with a smaller market share, out-
put level and profits while the rival that is supposedly disadvantaged ended
up with a larger market share, output level and profits. The Nash equilib-
rium therefore does not make any sense. Please take note that the interior
Nash equilibrium is strategically unstable while the corner Nash equilibria
are strategically stable. Classical games theory does not provide guidelines
on how to analyze situations such as this. The Bayesian rational prior equi-
librium approach solution is presented below:

E [q1 (q2)] =
3
500

500
3

0
¡
200− 6

5
q2
¢
dq2 = 100

E [q2 (q1)] =
11
2,000

500
3

0
¡
200− 11

10
q1
¢
dq1 = 100

Through reiterations
E (q2) = 100;

q1 (100) = 80; q2 (80) = 112;

q1 (112) = 65.6; q2 (65.6) = 127.84;

q1 (127.84) = 46.592; q2 (46.592) = 148.7488...

Starting from the other expectation,
E (q1) = 100;

q2 (100) = 90; q1 (90) = 92;

q2 (92) = 98.8; q1 (98.8) = 81.44;

q2 (81.44) = 110.416; q1 (110.416) = 67.5008...

Both processes converge at q1 = 0; q2 = 200.This is therefore the Bayesian
Rational Prior Equilibrium. At the Bayesian Rational Prior Equilibrium,
π1 = 0, π2 = 20, 000.
Example 8: Investment Entry Game.
Double and multiple sided incomplete information games with simulta-

neous moves or sequential moves are hardly analyzed under current classical
theory of games. The probable existence of multiple equilibria makes the
solution of such games a daunting task. This example is a double sided in-
vestment entry game. Both incumbent firm 1 and the potential entrant firm
2 have two types, high cost or low cost.
Now let the high investment cost firm 1 when facing the high cost firm 2

has the following payoff matrix:
High investment cost firm 1 (probability 1

4
); low cost firm 2 (probability

9
10
).
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Figure 0.16:
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1\2 Enter (y) Refrain (1-y)

Modern (w) 0,−2 7, 0

Antique (1-w) 4, 2 6, 0

(Three Nash equilibria: (Antique, Enter), (Modern, Refrain), (w = 1 for
y < 1/5, w ∈ [0, 1] for y = 1/5 and w = 0 for y > 1/5; y = 1 for w < 1/2,
y ∈ [0, 1] for w = 1/2, y = 0 for w > 1/2).)
When facing the low cost firm 2, the high investment cost firm 1 has the

following payoff matrix:
High investment cost firm 1 (probability 1

4
); high cost firm 2 (probability

1
10
).

1\2 Enter (z) Refrain (1-z)

Modern (w) 0,−5 7, 0

Antique (1-w) 4, 1 6, 0

(Three Nash equilibria: (Antique, Enter), (Modern, Refrain), (w = 0 for
z > 1

5
, w ∈ [0, 1] for z = 1

5
and w = 1 for z < 1

5
; z = 0 for w > 1

6
, z ∈ [0, 1] for

w = 1
6
, z = 1 for w < 1

6
.)

Low investment cost (probability 3
4
); low cost firm 2 (probability 9

10
).

1\2 Enter (y) Refrain (1-y)

Modern (x) 3,−2 7, 0

Antique (1-x) 4, 2 6, 0

(Three Nash equilibria: (Antique, Enter), (Modern, Refrain), (x = 1 for
y < 1/2, x ∈ [0, 1] for y = 1/2 and x = 0 for y > 1/2; y = 1 for x < 1/2,
y ∈ [0, 1] for x = 1/2, y = 0 for x > 1/2).)
Low investment cost (probability 3

4
); high cost firm 2 (probability 1

10
).

1\2 Enter (z) Refrain (1-z)

Modern (x) 3,−5 7, 0

Antique (1-x) 4, 1 6, 0

(Three Nash equilibria: (Antique, Enter), (Modern, Refrain), (x = 1 for
z < 1/2, x ∈ [0, 1] for z = 1/2 and x = 0 for z > 1/2; z = 1 for x < 1/6,
z ∈ [0, 1] for x = 1/6, z = 0 for x > 1/6).)
The reaction functions are:
I.
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Figure 0.17:

w (y, z) = 1 if
¡
9
10

¢
(7− 7y)+¡ 1

10

¢
(7− 7z) > ¡ 9

10

¢
(6− 2y)+¡ 1

10

¢
(6− 2z)

w (y, z) ∈ [0, 1] if ¡ 9
10

¢
(7− 7y)+¡ 1

10

¢
(7− 7z) = ¡ 9

10

¢
(6− 2y)+¡ 1

10

¢
(6− 2z)

w (y, z) = 0 if
¡
9
10

¢
(7− 7y)+¡ 1

10

¢
(7− 7z) < ¡ 9

10

¢
(6− 2y)+¡ 1

10

¢
(6− 2z)

II.
x (y, z) = 1 if

¡
9
10

¢
(7− 4y)+¡ 1

10

¢
(7− 4z) > ¡ 9

10

¢
(6− 2y)+¡ 1

10

¢
(6− 2z)

x (y, z) ∈ [0, 1] if ¡ 9
10

¢
(7− 4y)+¡ 1

10

¢
(7− 4z) = ¡ 9

10

¢
(6− 2y)+¡ 1

10

¢
(6− 2z)

x (y, z) = 0 if
¡
9
10

¢
(7− 4y)+¡ 1

10

¢
(7− 4z) < ¡ 9

10

¢
(6− 2y)+¡ 1

10

¢
(6− 2z)

III.
y (w, x) = 1 if

¡
3
4

¢
(2− 4w) + ¡1

4

¢
(2− 4x) > 0

y (w, x) ∈ [0, 1] if ¡3
4

¢
(2− 4w) + ¡1

4

¢
(2− 4x) = 0

y (w, x) = 0 if
¡
3
4

¢
(2− 4w) + ¡1

4

¢
(2− 4x) < 0

IV.
z (w, x) = 1 if

¡
3
4

¢
(1− 6w) + ¡1

4

¢
(1− 6x) > 0

z (w, x) ∈ [0, 1] if ¡3
4

¢
(1− 6w) + ¡1

4

¢
(1− 6x) = 0

z (w, x) = 0 if
¡
3
4

¢
(1− 6w) + ¡1

4

¢
(1− 6x) < 0

The Bayesian theory of games solution is presented below. The expected
values of w,x, y and z are: E (w (y, z)) = 1

6

E (x (y, z)) = 1
2

E (y (w, x)) = 1
2
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Figure 0.18:

Figure 0.19:
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Figure 0.20:

E (z (w, x)) = 2
27

Starting with E (w) and E (x) ,
y
¡
1
6
, 1
2

¢
= 1, z

¡
1
6
, 1
2

¢
= 0 and w (1, 0) = 0, x (1, 0) = 0 and y (0, 0) =

1, z (0, 0) = 1 and w (1, 1) = 0, x (1, 1) = 0 and the point of convergence is
(0, 0, 1, 1) .

Starting with E (y) and E (z) the process converges to (0, 0, 1, 1) as well.
So the unique Bayesian Rational Prior Equilibrium is w = 0, x = 0, y =
1, z = 1.

5. Difference Between Simultaneous Move and Imperfect Information.
For illustration, an example of imperfect information sequential market

competition game is presented below. The simultaneous game version has
been solved in example 7 of section 3. In this imperfect information sequential
game, there are two players: Firm 1, the market leader and Firm 2, the
market follower. Firm 1 moves first by setting its output level. Firm 2
observes imperfectly the output level of Firm 1 due to a confounding noise
term. Firm 2 makes Bayesian rational prior inference on the output level of
Firm 1 and then sets its output level. The structure of the game is common
knowledge. The cost parameter of Firm 1 which determines the type of Firm
1 is choosen by Nature from a predetermined distribution function which is
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common knowledge. Once chosen, the type of Firm 1 is private knowledge.
The type of Firm 2 is common knowledge. Firm 2 must makes inference on
the type and action of Firm 1. The distribution function of the noise term
that confounds the observation by Firm 2 on the actual output level of Firm
1 is common knowledge.
q1, the output level of Firm 1, is the action of Firm 1. q2, the output

level of Firm 2, is the action of Firm 2. The price level faced by firm 1 is
P1 = 210−1

2
q1− 6

5
q2. The price level faced by firm 2 is P2 = 210− 1

2
q2− 11

10
q1. q2

is a better substitute for q1 than the other way round. The average production
cost of firm 2 is 10. There is no fixed cost. c1 is the average cost of production
of Firm 1. The is no fixed cost. c1 decides the type of Firm 1. Firm 1 knows
c1 but not Firm 2 does not know c1. c1 has a normal distribution which is
common knowledge. Firm 2 is almost absolutely sure that c1 is 10, that
is, c1˜N

³−
c1, ζ

´
and ζ → 0limc1 = 10. The action of Firm 1 is imperfectly

observed by Firm 2 with a noise term: R = q1 + ². ² is the noise term. ²
has a normal distribution: ²˜N (0,κ) . The noise term variance approaches
positive infinity, that is, κ→∞. The above leads to the following likelihood
function: q1 | R˜N (q1,κ)
In solving the game for its Bayesian rational prior equilibrium, the first

round of reasoning starts with an uninformative prior. In choosing q2, Firm 2
solves q2maxE (π2) =

R∞
−∞
¡
210− 1

2
q2 − 11

10
q1 − 10

¢
q2f (q1 | R) dq1. The op-

timal solution is q2 = 200− 11
10
q1. Firm 1, being the first mover leader, antici-

pates the reaction of Firm 2. In determining the optimal level of output, Firm
1 solves: q1maxE (π1) =

R∞
−∞
¡
210− 1

2
q1 − 6

5

¡
200− 11

10
q1
¢− 10¢ q1f (²) d².

The optimal solution is the corner solution of q1 = 200. The second or-
der prior distribution function of Firm 2 on the output level of Firm 1 is
therefore q1˜N (200, 0)
Given that, Firm 2 sets q2 = 0. Firm 1 anticipates this and sets q1 =

200. The process of conjectures converges here. The BRPE of the imperfect
information sequential game of market competition is therefore q1 = 200 and
q2 = 0. The profit levels are π1 = 20, 000 and π2 = 0.
6. Conclusions.
The examples above illustrated the strengths of the Bayesian theory of

games. They are all games of two stages. A natural agenda is to extend the
framework to repeated games, finite and infinite.
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