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Abstract

We study a dynamic, decentralized market environment with asymmetric infor-
mation and interdependent values between buyers and sellers, and characterize the
complete set of equilibria. The model delivers a stark relationship between the severity
of the information frictions and market liquidity. We use this framework to under-
stand how asymmetric information has contributed to the “frozen” credit market at
the core of the current financial crisis, and to characterize optimal policy responses to
this market failure.
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1 Introduction

A central problem in the current financial crisis has been the inability of financial institutions

to sell illiquid assets on their balance sheets. More specifically, banks holding large amounts

of structured asset-backed securities, such as collateralized debt obligations and credit default

swaps, have been mostly unable to find buyers for these assets. This “frozen” market has

posed perhaps the greatest risk to the economy as a whole; if financial institutions can not

acquire liquid assets (e.g. cash) in exchange for these illiquid assets, they can not make loans.

As a result, consumers have more difficulty buying cars and homes, and businesses cannot

acquire the financing they need for new investment. This, in turn, can lead to a further

decrease in asset prices and a decline in economic growth. Given the danger associated

with this downward spiral, the task of identifying the underlying frictions in this market,

and understanding the inefficiencies introduced by these frictions, is of crucial importance.

Without such an understanding, market participants remain unsure of how this market will

behave in the future, and policymakers remain unsure of the optimal form of intervention.

While one could point to a number of potential reasons that trade in this market has

broken down, many believe that the primary cause was asymmetric information. The story

is simple: at the onset of the financial crisis, it became apparent that many assets being

held by financial institutions were worth considerably less than had been previously claimed;

they were of low quality or, in the language of Akerlof (1970), they were “lemons.” Of

course, these financial institutions also held assets of higher quality, whose fundamental

value (though difficult to discern) was likely at or near pre-crisis evaluations. However, as

these assets tend to be relatively complex, it was quite difficult to differentiate high quality

from low. Thus the market had many of the basic ingredients of Akerlof’s classic “market

for lemons”: sellers possessed assets that were heterogeneous in quality, and they were more

informed about the quality of their assets than potential buyers. The most basic theory

would predict that, in this type of environment, trade can break down completely.

However, there are several important features of this particular market that are not

consistent with the assumptions typically embedded in existing models of markets with
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asymmetric information. For one, the market is decentralized ; in contrast to the standard

competitive paradigm, where the law of one price prevails, buyers and sellers in this market

typically negotiate bilaterally. Therefore, a model of this market must allow the exchange of

different quality assets to take place at potentially different prices. Moreover, the market is

inherently dynamic and non-stationary ; any serious analysis has to consider the manner in

which the composition of assets in the market evolves over time, and how this affects both

prices and the incentive of market participants to delay trade.

The purpose of this paper is to develop a rigorous economic model that captures the

important features of the market discussed above, and to use this model as a laboratory for

understanding the effects of informational asymmetries on the patterns of trade in dynamic,

decentralized market settings. To be more specific, we consider an discrete time, infinite

horizon, one-time entry model with a continuum of buyers and sellers. Sellers each possess a

single good of heterogeneous quality (high or low), and this quality is private information. In

each period, buyers and sellers are randomly matched, and buyers make a price offer chosen

from an exogenously specified set of prices. The parameters are such that there are strictly

positive gains from trade in every match. If a seller accepts the buyer’s offer, trade ensues

and the pair exits; if the seller rejects, the pair remain in the market and are randomly

matched again the following period. Finally, we assume that agents are subject to stochastic

discount factor shocks in each period, which we interpret as liquidity shocks across agents

and over time.1

Within this environment, we address a variety of questions that are relevant in the current

financial crisis. The first of these questions are positive: Will this market eventually clear

and, if so, how long will it take? How does this length of time depend on the initial com-

position of high- and low-quality assets? What are the welfare costs associated with buyers

being imperfectly informed? We will study these questions when the degree of informational

asymmetry is exogenous, and when it is endogenous; i.e. when financial institutions can

choose the quality of the assets they hold, and when potential investors can choose the de-

gree to which they are uninformed about the quality of an asset before engaging in bilateral

1This assumption also allows us to focus on pure strategies.

3



negotiations.

Then we will turn to normative questions: Can government intervention increase welfare?

If so, what is the optimal policy? This last point is particularly important in light of the

variety of policy responses that have been either proposed or implemented since the financial

crisis began. For example, one proposed policy has been for the federal government to buy

assets directly from the sellers. An alternative, that has been implemented recently, is to

essentially subsidize private-sector buyers to purchase assets from sellers. An important, open

question that we intend to address is whether one of these policies implies larger efficiency

gains than the other.

1.1 Related Literature

Our work builds on the literature that studies dynamic, decentralized markets with asym-

metric information and interdependent values. The primary focus of this literature has been

to determine what happens to equilibria in a decentralized environment as market frictions

vanish.2 See Inderst (2005) and Moreno and Wooders (2009) for a steady-state analysis of

this issue, and Moreno and Wooders (2002) and Blouin (2003) for analysis of this issue in

a one-time entry model. Janssen and Roy (2002) also study a dynamic environment with

asymmetric information and interdependent values; however, they assume is assumed takes

place in a sequence of Walrasian markets. Though the framework we develop shares certain

features in common with several of these papers, the focus will be quite different. We are in-

terested in studying the relationship between information frictions and market liquidity, and

the manner in which both market participants and policymakers can respond to overcome

these frictions.

Our paper, and those discussed above, are also closely related to the literature that

studies sequential bargaining between a single seller and a single buyer in the presence of

2Note that this was an exercise first conducted in a perfect information setting by Rubinstein and Wolinsky
(1985) and Gale (1986a, 1986b). A parallel literature has emerged that studies dynamic, decentralized
markets with imperfect information and private values; see, for example, Satterthwaite and Shneyerov (2007)
and the references therein.
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asymmetric information.3 Most relevant to the current project is the work of Vincent (1989),

Evans (1989), and Deneckere and Liang (2006), who study the dynamic bargaining game in

which a seller has private information about the quality of her good, a buyer makes offers in

each period, and the buyer’s valuation of the good is correlated with the seller’s valuation.

Equilibria in this environment tend to have the property that buyers use time to screen the

different types of sellers: initially buyers will make low offers that only very low type sellers

would accept.4 If the seller rejects such an offer, the buyer learns that the seller is not a very

low type, and updates his posterior accordingly. In the following period, his offer increases,

and so on.

This notion of using price dispersion over time to overcome the problem of adverse selec-

tion is central to our work, as well as the majority of papers cited above.5 What is different

about the market setting we consider, as opposed to the single buyer/seller setting consid-

ered in much of the bargaining literature, is that complementarities can arise in a market

setting between e.g. a buyer and other buyers. For example, in our setting multiple equi-

libria can arise, precisely because a single buyer will have greater incentive to delay trade

if other buyers are doing the same. This type of complementarity between agents on the

same side of the market is not present in an environment where there is only one agent on

each side of the market; this is why there is generally a unique sequential equilibrium in the

environments studied by Vincent (1989), Evans (1989), and Deneckere and Liang (2006).

Finally, this paper also adds to the class of models that provide a theory of endogenous

market liquidity based on information frictions. In one strand of this literature, which as-

sumes that trade takes place in a centralized competitive market, the pooling equilibrium

price decreases as the number of lemons increases, thus decreasing a seller’s ability to ex-

change their good for cash. In this sense, a lemons problem reduces liquidity; see Eisfeldt

(2004) for an early contribution in this literature, and Kurlat (2009) for a more recent ap-

plication. While the assumption of a competitive market tends to buy tractability, there are

3Seminal contributions in this literature include Fudenberg et al. (1985) and Gul et al. (1986), among
others.

4A “low type seller” is a seller with a good of very low quality.
5This basic idea goes back to, at least, Wilson (1980).
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several issues that we want to address that cannot be framed within the context of such a

model. For example, it would be conceptually difficult to think about a market in which

some (but not all) buyers could distinguish high quality from low within the context of a

centralized, competitive market. Thus, such a model would not be appropriate for analyz-

ing the incentives of buyers to acquire information about the quality of an asset; here, the

assumption of bilateral trade would be more appropriate. More generally, there are a vari-

ety of mechanisms that one could allow for in a model of bilateral exchange that could be

useful in easing the frictions implied by asymmetric information. Many of these mechanisms

have been explored in the search-theoretic literature on the micro-foundations of money;

Rocheteau (2009) provides an excellent survey.6

2 The Model

Time is discrete, and begins in period t = 0. There is an equal measure of infinitely lived

buyers and sellers, which we normalize to one. At t = 0, each seller possesses a single,

indivisible asset, which is either of high (H) quality or low (L) quality. The fraction of sellers

with a high quality asset at t = 0 is denoted by q0 ∈ (0, 1). We describe below the payoffs

to a buyer and a seller from each type of asset.

In each period, each agent’s discount factor δ is drawn from a continuous and strictly

increasing c.d.f. F with support [0, δ], where δ < 1. These draws are i.i.d. across both

agents and time. This is meant to capture the idea that buyers and sellers have different

liquidity needs at different times. At a given time, some sellers may need to sell their asset

urgently, while others may be more patient. Likewise, at a given time some buyers may desire

consumption urgently, while others may be more patient. Across time, each individual agent

may be more or less patient in any given period.7 The assumption that F is strictly increasing

6A different strand of this literature, pioneered by Glosten and Milgrom (1985) and Kyle (1985), also uses
informational asymmetries to generate differences in liquidity by focusing on the problem of a market-maker,
and treating the size of the bid-ask spread as a measure of liquidity.

7Note that all types of agents draw their discount factors from the same distribution F . Though this is
non–essential, we think that it is reasonable. For a deeper look at the use of random discount factors, see
Higashi et al. (2009).
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rules out mass points in the distribution of discount factors. An asset of quality j ∈ {L, H}

yields flow utility yj to a seller in each period that he holds the asset. It will be convenient to

denote the present discounted lifetime value of a type j ∈ {L, H} asset to a seller, computed

before the seller draws his discount factor, by cj, where

cj =
yj

1− E[δ]
, (1)

with E[δ] =
∫

δdF (δ) < 1. We normalize yL to zero, so that cL = 0. When a buyer purchases

the asset, we assume that he receives instantaneous utility uj.
8 We assume that

uH > yH + δcH > uL > cL = 0. (2)

The assumptions that uH > yH + δcH and uL > 0 assure us that there are gains from trade

in every match.9 The assumption that yH + δcH > uL generates the lemons problem, as

the price that buyers are willing to pay for a low quality asset would not be accepted by a

sufficiently patient high quality seller.

In every period, after the agents draw their discount factors, buyers and sellers are

randomly and anonymously matched in pairs. Discount factors and the quality of the seller’s

asset are private information. Once matched, the buyer can offer one of two prices, which

are fixed exogenously: a high price ph ∈ (yH + δcH , uH) or a low price p` ∈ (0, uL).10 The

seller can accept or reject. If a seller accepts, trade ensues and the pair exits the market;

there is no entry by additional buyers and sellers. If a seller rejects, no trade occurs and the

8Since buyers exit the market upon trading, it is easiest to model this as an instantaneous payoff. One
could define uj as the expected discounted lifetime value of flow payoffs to a buyer, but this would make the
analysis more cumbersome without providing any additional insights. More precisely, if buyers receive flow
payoffs yB

j > yj and we define uj = yB
j + δyB

j /(1− E[δ]), since buyers have heterogeneous discount factors,
they would be heterogeneous with respect to uj as well. The current formulation allows for sellers to receive
flow payments while they own the asset, without introducing any additional heterogeneity in the buyers’
payoffs.

9As in Duffie et al. (2005), our preference specification is such that buyers and sellers receive different
levels of utility from holding a particular asset. This can arise for a multitude or reasons: agents can have
different levels of risk aversion, financing costs, regulatory requirements, or hedging needs. In addition, the
correlation of endowments with asset returns may differ across agents. The current formulation is a reduced-
form representation of such differences; see Duffie et al. (2007), Vayanos and Weill (2008), and Gârleanu
(2009).

10Exogenous prices in these types of models have been used extensively; see, for example, Wolinsky (1990)
and Blouin and Serrano (2001).
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pair remains in the market. This ensures that there is always an equal measure of buyers

and sellers. We assume that uH − ph > uL − p`, so that a buyer would choose to transact

with a type H seller if he could choose. We also assume that

yH + δph ≤ ph. (3)

As it turns out, (3) implies sellers accept an offer of ph regardless of their discount factors.

The history for a buyer is the set of all of his past discount factors and (rejected) price

offers. However, a buyer has no reason to condition behavior on his past history: this

history is private information, discount factors are i.i.d., and the probability that he meets

his current trading partner in the future is zero, as there is a continuum of agents. Moreover,

since there is no aggregate uncertainty, the buyer’s history of past offers is not helpful in

learning any information about the aggregate state. Thus, a pure strategy for a buyer is a

sequence p = {pt}∞t=0, with pt : [0, δ] → {p`, ph} measurable for all t ≥ 0, such that pt(δ) is

the price the buyer offers in period t if he is in the market in this period and his discount

factor is δ.

A history for a seller is the set of all of his past discount factors and all price offers that

he has rejected. The same argument as above implies that a seller has no reason to condition

behavior on his past history. Thus, a pure strategy for a type j seller (i.e. a seller with a type

j ∈ {L, H} asset) is a sequence aj = {aj
t}∞t=0, with aj

t : [0, δ]× {p`, ph} → {0, 1} measurable

for all t ≥ 0, such that aj
t(δ, p) is the seller’s acceptance decision in period t as a function

of his discount factor and the price offer he receives. We let aj
t(δ, p) = 0 denote the seller’s

decision to reject and aj
t(δ, p) = 1 denote the seller’s decision to accept.

We consider symmetric pure–strategy equilibria. A strategy profile can then be described

by a list σ = (p, aL, aH). In order to define equilibria we need to specify what happens

when there is a zero measure of agents remaining in the market; more specifically, when

all remaining agents trade and exit the market in the current period, we must specify the

(expected) payoff to an individual should he choose a strategy that results in not trading. In

order to avoid imposing ad hoc assumptions, we adopt the following procedure for computing

payoffs.
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Suppose that, in every period t, the probability an agent gets the opportunity to trade

is α ∈ (0, 1], and that this probability is independent of his discount factor. Thus, in every

period t, a fraction α ∈ (0, 1] of the buyers and sellers in the market are matched in pairs,

and the remainder do not get the opportunity to trade. The definition of strategies when

α < 1 is the same as when α = 1.11 However, when α ∈ (0, 1), in every period t there is a

positive mass of agents who have not traded.

Let us denote by V j
t (a|σ, α) the expected payoff to a seller of type j ∈ {L, H} who is in

the market in period t following strategy a, given the strategy profile σ for all other agents.

The payoff V j
t is computed before the seller gets the draw for his discount factor and learns

whether he can trade or not. For α ∈ (0, 1), V j
t is well–defined for all t ≥ 0, and satisfies the

following recursion:

V j
t (a|σ, α) = (1− α)

∫ [
yj + δV j

t+1(a|σ, α)
]
dF (δ)

+α
∑

i∈{`,h}

ξt(pi)

∫ {
aj

t(δ, pi)pi +
[
1− aj

t(δ, pi)
] [

yj + δV j
t+1(a|σ, α)

]}
dF (δ), (4)

where ξt(p) is the fraction of buyers who offer p ∈ {p`, ph} in period t. Note that ξt(p) is the

probability that a buyer who can trade draws a discount factor δ with pt(δ) = p. In words,

with probability 1−α a seller is not matched in period t, enjoys flow utility yj, and proceeds

to period t+1. With probability α the seller is matched, in which case he either accepts the

buyer’s offer and exits the market, or rejects the offer and stays in the market.

Similarly, we denote by V B
t (p|σ, α) the expected payoff to a buyer who is in the market in

period t following strategy p, given the strategy profile σ for all other agents. The payoff V B
t

is also computed before the buyer gets the draw for his discount factor and learns whether

he can trade or not. Again, for α ∈ (0, 1), V B
t is well–defined for all t ≥ 0, and satisfies the

11Now a history for a player also includes the periods in which he was able to trade; for the same reasons
given above, a player has no motive to condition his behavior on this information.

9



following recursion:

V B
t (p|σ, α)

= (1− α)δV B
t+1(p|σ, α) + α

∑
i∈{`,h}

ξt(pi)
{
qtA

H
t (pi)[uH − pi] + (1− qt)A

L
t (pi)[uL − pi]

+ [1− qtA
H
t (pi)− (1− qt)A

L
t (pi)]δV

B
t+1(p|σ, α)

}
= δV B

t+1(p|σ, α) + α
∑

i∈{`,h}

ξt(pi)
{
qtA

H
t (pi)

[
uH − pi − δV B

t+1(p|σ, α)
]

+ (1− qt)A
L
t (pi)

[
uL − pi − δV B

t+1(p|σ, α)
]}

, (5)

where qt is the fraction of H sellers in the market in period t and Aj
t(p) is the likelihood that

a seller of type j ∈ {L, H} in the market in period t accepts an offer p ∈ {p`, ph}, i.e.

Aj
t(p) =

∫
aj

t(δ, p)dF (δ).

In words, with probability 1 − α a buyer is not matched in period t, enjoys no utility, and

proceeds to period t + 1. With probability α a buyer is matched, in which case his partner

either accepts his offer (and the buyer exits the market) or rejects his offer (and the buyer

stays in the market).

Standard dynamic programming arguments show that for each σ, a, p, and t ≥ 0, the

payoffs V j
t (a|σ, α) and V B

t (p|σ, α) are continuous functions of α in the interval (0, 1). Hence,

the limits of both V j
t (a|σ, α) and V B

t (p|σ, α) are well–defined as α converges to one.

Definition 1. Let σ be the strategy profile under play. The payoff to a buyer who is in

the market in period t following the strategy p is V B
t (p|σ) = limα→1 V B

t (p|σ, α). The payoff

to a seller of type j ∈ {L, H} who is in the market in period t following the strategy a is

V j
t (a|σ) = limα→1 V j

t (a|σ, α).

We can now define equilibria in our environment.

Definition 2. The strategy profile σ∗ =
(
p∗ = {p∗t}, a∗L = {aL∗

t }, a∗H = {aH∗
t }

)
is an equilib-

rium if for each t ≥ 0 and j ∈ {L, H}, we have that:

(i) p∗t (δ) maximizes

qtA
H
t (p)

[
uH − p− δV B

t+1(σ
∗)

]
+ (1− qt)A

L
t (p)

[
uL − p− δV B

t+1(σ
∗)

]
10



for all δ ∈ [0, δ], where V B
t (σ∗) = V B

t (p∗|σ∗);

(ii) For each p ∈ {p`, ph}, aj∗
t (δ, p) = 1 if, and only if,

p ≥ yj + δV j
t+1(σ

∗), (6)

where V j
t (σ∗) = V j

t (a∗j |σ∗).

Note that (6) implies that in equilibrium a seller accepts any offer that he is indifferent

between accepting and rejecting. This is without loss since F has no mass points, and so

the probability that a seller is ever indifferent between accepting and rejecting is zero.

3 Properties of Equilibria

For a given strategy profile, we say that the market “clears” in period t if all sellers remaining

in the market accept the price offer made by the buyers. In this section we establish that the

market clears in finite time in every equilibrium and that, in every period before the market

clears, the fraction of type H sellers in the population strictly increases.

We first show that the market clears in period t if, and only if, all buyers in the market

offer ph. From (4) and (6), we have that for any equilibrium σ∗,

V j
t (σ∗) =

∑
i∈{`,h}

ξt(pi)

∫
max

{
pi, yj + δV j

t+1(σ
∗)

}
dF (δ)

for all t ≥ 0. Given (3), it should be obvious that V j
t (σ∗) ≤ ph for all t ≥ 0, so that all

sellers in the market always accept an offer of ph. Thus, the market clears in period t if all

buyers offer ph. Now observe that since a seller has the option of always rejecting any offer

he receives, V j
t (σ∗) ≥ cj for all t ≥ 0. Thus, letting δ = (uL − yH)/cH , we have

yH + δV H
t+1(σ

∗) ≥ yH + δcH = uL > p`.

Therefore, a type H seller with discount factor δ ≥ δ always rejects an offer of p`. Since

δ < δ by (2), there is always a strictly positive mass of such sellers. Hence, the market does

not clear in period t if a positive mass of buyers offers p`.
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So, in any equilibrium σ∗ the market clears in the first period in which all remaining

buyers offer ph, which we denote by T = T (σ∗); we set T = ∞ if in every period t a positive

mass of buyers offers p`. For all t < T , a positive mass of buyers offer p`, and the fraction

of type j sellers who accept p` in t is F
[
(p` − yj)/V

j
t+1(σ

∗)
]
. Since all sellers who receive an

offer of ph accept the offer and exit the market, we then have that

qt+1 =

qt

[
1− F

(
p` − yH

V H
t+1(σ

∗)

)]
qt

[
1− F

(
p` − yH

V H
t+1(σ

∗)

)]
+ (1− qt)

[
1− F

(
p`

V L
t+1(σ

∗)

)] . (7)

Now notice that an option for a type H seller is to replicate the behavior of a type L

seller. Since yH > yL, we then have that V H
t (σ∗) ≥ V L

t (σ∗) for all t ≥ 0.12 Hence, since

F ((p` − yH)/V H
t+1(σ

∗)) ≤ F (δ) < 1 and F is strictly increasing in its support,

F

(
p` − yH

V H
t+1(σ

∗)

)
< F

(
p`

V L
t+1(σ

∗)

)
(8)

for all t ≥ 0; that is, whenever buyers offer p`, the fraction of type L sellers who accept

this offer is larger than the fraction of type H sellers who accept the same offer. This is a

fundamental feature of this environment: type H sellers are de facto more patient than type

L sellers because their flow payoff from not trading is larger. Looking at the law of motion

for {qt}T
t=0, equation (7), a consequence of this fact is that the fraction of type H sellers in

the population increases strictly over time before the market clears.

Proposition 1. Let q0 ∈ (0, 1). In any equilibrium, the market clears in finite time.

The proof of Proposition 1 is in the Appendix. The intuition for this result is as follows.

Suppose, by contradiction, that there is an equilibrium in which, in every period t, the mass

of buyers who offer p` is positive. We know the sequence {qt}∞t=0 is strictly increasing, and

thus convergent (since it is bounded above). If we denote the limit of this sequence by q∞,

it cannot be that q∞ = 1. Indeed, the payoff from offering ph converges to uH − ph as the

fraction of type H sellers in the market converges to one. Since the highest payoff possible for

12Indeed, yH > yL implies that V H
t (aL|σ∗, α) > V L

t (aL|σ∗, α) for all α ∈ (0, 1) and t ≥ 0. Taking the
limit as α converges to one implies the desired result.
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a buyer is uH − ph, and buyers discount the future (δ < 1), there is a fraction q∗ < 1 of type

H sellers in the market above which all buyers find it optimal to offer ph. However, q∞ < 1

implies that eventually the fraction of type H sellers who accept an offer of p` is arbitrarily

close to the fraction of type L sellers who accept the same offer; roughly speaking, as t →∞,

all sellers with discount rate δ ∈ [0, δ] behave the same independently of the quality of their

asset. This, however, is not possible given (8).

In what follows, we will present the case where the lemons problems is most severe by

assuming that p` < yH , so that no type H seller accepts p`. Relaxing this assumption does

not substantively change any of our results. We also assume that

δ ≤ (uL − p`)/(uH − ph), (9)

which ensures that the buyer would never prefer to simply not make an offer.

4 Characterizing Equilibria

In this section we provide a complete characterization of the set of equilibria. We start with

a characterization of the equilibria in which the market clears immediately (i.e. at t = 0).

We refer to such equilibria as 0–step equilibria. In general, we refer to equilibria in which

the market clears in period k, with k ≥ 0, as k–step equilibria.

0–step equilibria

Denote by πB
i (q, δ, vL, vH , vB) the payoff to a buyer who offers pi, with i ∈ {`, h}, when: (i)

the fraction of type H sellers in the market is q ∈ (0, 1); (ii) the buyer’s discount factor is

δ; (iii) the continuation payoff to a seller of type j who chooses not to trade is vj ≥ cj; and

(iv) the continuation payoff to the buyer should he not trade is vB ∈ (0, uH − ph].
13 We

know that sellers always accept an offer of ph. So,

πB
h (q, δ, vL, vH , vB) ≡ πB

h (q) = q[uH − ph] + (1− q)[uL − ph].

13Note that in any equilibrium σ∗, it must be that V B
t (σ∗) > 0 for all t ≥ 0. The reason is that a buyer

always has the option to offer p` as long as there is a positive mass of type L sellers in the market, and the
expected payoff from doing so is strictly positive: since V L

t (σ∗) ≤ ph, the probability that a type L seller
accepts p` is at least F (p`/ph) > 0, in which case the buyer’s payoff is uL − p` > 0.
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We also know that a type H seller always rejects an offer of p`. So,

πB
` (q, δ, vL, vH , vB) ≡ πB

` (q, δ, vL, vB)

= (1− q)F

(
p`

vL

)
[uL − p`] +

{
q + (1− q)

[
1− F

(
p`

vL

)]}
δvB,(10)

where F (p`/vL) is the fraction of type L sellers who accept p`. Note that πB
` (q, δ, vL, vB) is

strictly increasing in vB. Since vB > 0, πB
` (q, δ, vL, vB) is also positive and strictly increasing

in δ. Moreover, since vB ≤ uH − ph, (9) implies that δvB ≤ uL − p`, and so πB
` (q, δ, vL, vB)

is non–increasing in vL.

Consider now the candidate 0–step equilibrium σ0 in which, in every t ≥ 0, pt(δ) = ph

for all δ ∈ [0, δ], and type j sellers accept an offer p if, and only if, δ ≤ (p − yj)/ph. It is

immediate to see that for all t ≥ 0,

V B
t (σ0) = πB

h (q0) ≡ v0
B(q0) and V j

t (σ0) = ph ≡ v0
j .

Note that we have introduced the following notation: in a 0–step equilibrium, the expected

payoff to a buyer given q0 is v0
B(q0) and the expected payoff to a type j seller is v0

j , which is

independent of q0.
14 In what follows, we will denote by vk

B(·) and vk
j (·) the ex–ante expected

payoffs to a buyer and type j seller, respectively, in period t = 0 of a k–step equilibrium

(before agents draw discount factors).15

The strategy profile σ0 is an equilibrium only if v0
B(q0) > 0 (for otherwise V B

0 (σ0) ≤ 0,

which cannot happen in equilibrium) and in every period t all buyers find it optimal to offer

ph, which is true as long as

πB
h (q0) ≥ πB

`

(
q0, δ, v

0
L, v0

B(q0)
)

(11)

for all δ ∈ [0, δ]. Since v0
B(q0) > 0 implies that πB

` (q0, δ, v
0
L, v0

B(q0)) is strictly increasing in δ,

a necessary and sufficient condition for (11) is that

πB
h (q0) ≥ πB

`

(
q0, δ, v

0
L, v0

B(q0)
)
. (12)

14In general, we will adopt the convention that a numerical subscript refers to a particular time period,
while a numerical superscript refers to the number of periods it takes for the market to clear in equilibrium.
In addition, we will use lower case v to denote equilibrium payoffs.

15Note that vk
B(·) and vk

j (·) are also the ex–ante expected payoffs to a buyer and type j seller, respectively,
in period t > 0 of a (k + t)–step equilibrium; what’s important is that this payoff is calculated k steps before
the market clears, and before the agent draws his period t discount factor.
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Condition (12) is slightly more subtle than it may appear. The left side is clearly the

payoff to a buyer from offering ph. The right side is the payoff to a buyer from offering p`

in the current period and ph in the ensuing period, conditional on all other buyers offering

ph in the current period. There are two things to notice. First, that when all other buyers

offer ph and exit the market, the payoff to a buyer who remains in the market and offers ph

in the next period is v0
B(q0). This comes directly from our refinement for computing payoffs

when the mass of agents in the market is zero. Indeed, under σ0, when the fraction of buyers

and sellers who are matched in each period is α < 1, all buyers who get the opportunity to

trade exit the market, and so the fraction of type H sellers among the sellers who remain in

the market stays the same. Second, as we show in the proof of Proposition 2 below, (12) is

the loosest possible constraint on q0 that ensures that a buyer finds it optimal to offer ph at

t = 0 when he believes that all other buyers in the market offer ph as well.

Proposition 2. Let q0 ∈ (0, 1) denote the unique value of q satisfying (12) with equality.

There exists a 0–step equilibrium if, and only if, q0 ≥ q0.

The sketch of the proof of Proposition 2 is as follows; the details are in the Appendix.

We first show that (12) is satisfied, and so σ0 is an equilibrium if, and only if, q ≥ q0.

This follows from the fact that the payoff difference πB
h (q) − πB

`

(
q, δ, v0

L, v0
B(q)

)
is strictly

increasing and continuous in q. We then show that there is no 0–step equilibrium if q0 < q0.

Consider any strategy profile σ̃0 that specifies p0(δ) = ph for all δ ∈ [0, δ], so that markets

clear at t = 0.16 It is possible to show that it must be that V B
1 (σ̃0) ≥ v0

B(q0) if σ̃0 is to be

an equilibrium. Since V L
1 (σ̃0) ≤ ph and q0 < q0 implies that πB

`

(
q0, δ, v

0
L, v0

B(q0)
)

> πB
h (q0),

we then have

πB
`

(
q0, δ, V

L
1 (σ̃0), V B

1 (σ̃0)
)
≥ πB

`

(
q0, δ, v

0
L, v0

B(q0)
)

> πB
h (q0)

for all q0 < q0. Thus, there exists δ′ < δ such that it can not be optimal for a buyer with

discount factor in (δ′, δ] to offer ph at t = 0 if q0 < q0, so that the market clearing immediately

cannot be an equilibrium outcome.

16Note, however, that we haven’t placed any restrictions on pt(δ) for t > 0.
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Notice that q0uH + (1 − q0)uL ≥ ph > yH + δcH for any q0 in the interval [q0, 1), since

a buyer is only willing to offer ph if his payoff from doing so is non–negative. Hence, ph

corresponds to a market clearing price in a Walrasian equilibrium. Thus, when the lemons

problem is relatively small, i.e., when the fraction of type H sellers is sufficiently large, the

market behaves as if it were Walrasian.

We will now show that when the lemons problem gets severe, the market outcomes no

longer resemble those of a centralized Walrasian market; instead, these markets appear more

like standard decentralized search markets, in the sense that it takes time for buyers and

sellers to trade, and they do so at potentially different prices. The following convention will

be useful. For any strategy profile σ, let σ+ be the strategy profile such that for all t ≥ 0,

the agents’ behavior in period t is given by their behavior in period t + 1 under σ.

1–step equilibria

As the next step, we characterize the set of 1–step equilibria. For this, let

q+ (q, vL) =
q

q + (1− q) [1− F (p`/vL)]
, (13)

with q ∈ (0, 1). By construction, q+(q, vL) is the fraction of type H sellers in the market in

the next period if this fraction is q in the current period, a positive mass of buyers offer p`,

and the continuation payoff to a type L seller in case he rejects a price offer is vL. Since

vL ≤ ph, F (p`/vL) ≥ F (p`/ph) > 0, and so q+(q, vL) > q for all q ∈ (0, 1). Also notice that

q+(q, vL) is strictly increasing in q if p`/vL < δ and that q+(q, vL) ≡ 1 if p`/vL ≥ δ.

Consider a strategy profile σ1 such that a positive mass of buyers offer p` in t = 0 and

all buyers offer ph in t = 1. In order for σ1 to be an equilibrium, it must be that (i) σ1
+ is

a 0–step equilibrium when the initial fraction of type H sellers is q′ = q+(q0, v
0
L), and (ii) a

positive mass of buyers find it optimal to offer p` in t = 0 when the market clears in t = 1.17

17It must also be the case that the type j sellers accept an offer of p in t = 0 if, and only if, δ ≤ (p−yj)/ph.
This optimal behavior of sellers will be implicitly assumed throughout the analysis.
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Formally, the following conditions are necessary and sufficient for σ1 to be an equilibrium:

q+(q0, v
0
L) = q′ (14)

q′ ≥ q0 (15)

πB
h (q0) < πB

`

(
q0, δ, v

0
L, v0

B(q′)
)
. (16)

Condition (14) is simply the law of motion for qt from period zero to period one; notice that

q′ is strictly increasing in q0. Condition (15) follows from Proposition 2. It ensures that the

fraction of type H sellers in t = 1 is high enough for market clearing in this period to be an

equilibrium outcome. Since q′ ≥ q0 implies that v0
B(q′) > 0, πB

` (q0, δ, v
0
L, v0

B(q′)) is strictly

increasing in δ. Thus, the incentive of a buyer to offer p` in t = 0 when a positive mass of the

other buyers also offer p` and the market clears in t = 1 increases with the buyer’s patience.

Condition (16) then ensures that a positive mass of buyers indeed find it optimal to offer

p` in t = 0 when the strategy profile under play is σ1; if it is optimal for the most patient

buyer to offer ph in t = 0, then every other buyer prefers to offer ph as well. The proposition

below fully characterizes the set of 1–step equilibria; the proof is in the Appendix.

Proposition 3. Let q1 denote the unique value of q0 satisfying (16) with equality and define

q1 to be such that q+(q1, v0
L) = q0 if p`/v

0
L < δ and q1 = 0 if p`/v

0
L ≥ δ. Then q1 < q0 < q1 < 1

and there exists a 1–step equilibrium if, and only if, q0 ∈ [q1, q1) ∩ (0, 1).

In words, if q0 = q1 then the most patient buyer is exactly indifferent between offering p`

and ph when a positive mass of the other buyers are offering p`; for any q0 > q1 the payoff to

such a buyer from immediately trading at price ph is greater than the payoff from offering p`

and not trading with positive probability, in which case the buyer trades at price ph in the

ensuing period (with a higher fraction of type H sellers in the market). When p`/v
0
L < δ,

q1 is the unique value of q0 such that if a positive mass of buyers offer p`, then the fraction

of high quality sellers in the next period is q0, the minimum value of the fraction of type H

sellers needed for market clearing; notice that q1 > 0 in this case. If even the most patient

type L seller would rather accept an offer of p` today than wait one period for an offer of ph,

i.e., if p`/v
0
L ≥ δ, then we have q1 = 0.
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The fact that q0 < q1 implies that there are multiple equilibria when q0 ∈
[
q0, q1

)
. In

this region, if all other buyers are offering ph, it is optimal for an individual buyer to offer

ph. However, if a positive mass of other buyers are offering p`, the market does not clear at

t = 0 and the payoff to trading at t = 1 increases, rendering it optimal for patient buyers to

offer p` and incur a chance that they trade only in the next period.

The payoff to a buyer in a 1–step equilibrium is

v1
B(q0) =

∫
max

{
πB

h (q0), π
B
`

(
q0, δ, v

0
L, v0

B

[
q+

(
q0, v

0
L

)])}
dF (δ) ≥ πB

h (q0).

We denote the fraction of buyers that offer ph at t = 0 in a 1–step equilibrium by

ξ1(q0) =

∫
I{πB

h (q) ≥ πB
`

(
q, δ, v0

L, v0
B

[
q+(q, v0

L)
])
}dF (δ),

where I represents the indicator function. Thus, the payoff to a type L seller is

v1
L(q0) = ξ1(q0)ph + (1− ξ1(q0))

∫
max

{
p`, δv

0
L

}
dF (δ) ≤ v0

L. (17)

In Lemma 4 in the Appendix we show that ξ1(q0) is continuous and increasing in q0, and

it converges to one as q0 increases to q1. Therefore, the average price, ξ1(q0)ph+[1−ξ1(q0)]p`,

is increasing in q0 in the region of 1–step equilibria, and converges to ph as q0 converges to

q1. Moreover, since q+(q0, v
0
L) is continuous in q0, it is easy to see that both v1

B and v1
L

are continuous and increasing in q0, and they converge to v0
B(q1) and v0

L, respectively, as q0

increases to q1. In what follows, we write v1
L(q1) to denote the limit of v1

L(q0) as q0 increases

to q1.

2–step equilibria

We now provide a complete characterization of 2–step equilibria. As it turns out, the process

of characterizing k–step equilibria is nearly identical for all k ≥ 2. Thus, the methodology

developed here will allow for a complete characterization of equilibria in the next part. Since,

by Proposition 3, there are only 0–step and 1–step equilibria when p`/ph ≥ δ, we assume

that p`/ph < δ in what follows.
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Consider a strategy profile σ2 such that a positive mass of buyers offer p` in the first two

periods, and then all buyers offer ph. By construction, the fraction of type H sellers in the

market in t = 1 is q′ = q+(q0, V
L
1 (σ2)) > q0. So, in order for σ2 to be an equilibrium, it must

be that (i) σ2
+ is a 1–step equilibrium when the initial fraction of type H sellers is q′, and

(ii) a positive mass of buyers find it optimal to offer p` in t = 0 when behavior from t = 1 is

given by σ2
+. Hence, the following three conditions are necessary and sufficient for σ2 to be

an equilibrium:

q+ (q0, v
1
L(q′)) = q′ (18)

q′ ∈
[
q1, q1

)
; (19)

πB
h (q0) < πB

`

(
q0, δ, v

1
L(q′), v1

B(q′)
)
. (20)

Though conditions (18) to (20) appear very similar to conditions (14) to (16), there are

two differences that warrant discussion. First, as we show in the Appendix, (18) and (19)

imply (20). Intuitively, we show that the incentive of the most patient buyer to choose p`

in t = 0 is even greater than his incentive to choose p` in t = 1, when the fraction of type

H sellers in the market is q′ > q0. Therefore, if the most patient buyer strictly prefers to

choose p` in t = 1, which is guaranteed by (19), then he will also strictly prefer to offer p` at

t = 0 and (20) will be satisfied. Hence, (18) and (19) are necessary and sufficient conditions

for a 2–step equilibrium. Second, as is clear from (18), q′ is no longer defined by a simple

function, as in (14), but rather q′ is the solution to a fixed point problem: if the type L

sellers expect their continuation payoff to be that of a 1–step equilibrium where the initial

fraction of type H sellers is q′, then the fraction of type L sellers who accept an offer of p`

in t = 0 must be such that this conjecture is correct.

Let q2 be such that

q+(q2, v1
L(q1)) = q1. (21)

Notice that q2 is unique and that q2 > q1. Indeed, since v1
L(q1) = v0

L, q1 > q0, and

q+(q2, v0
L) = q1 > q0 = q+(q1, v0

L),
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the result that q2 is unique and q2 > q1 follows immediately from the fact that q+(q0, vL) is

strictly increasing in q0 for any vL such that p`/vL < δ. Now let q2 be such that

q+(q2, v1
L(q1)) = q1 (22)

if pL/v1
L(q1) < δ and q2 = 0 if pL/v1

L(q1) ≥ δ; q2 is unique for the same reason that q2 is. In

the Appendix we show that there is q0 ∈ (0, 1) for which (18) and (19) are satisfied if, and only

if, q0 ∈ [q2, q2)∩ (0, 1), and that for each q0 in this set there is only one q′ ∈ [q1, q1) for which

(18) holds. Moreover, we show that the map Q2
+ : q0 7→ q′ defined by (18) is continuous and

strictly increasing; in words, Q2
+(q0) is the value of q1 in a 2–step equilibrium, given initial

q0. To summarize, we have established the following result.

Proposition 4. Suppose that δ > p`/ph. There exists a 2–step equilibrium if, and only if,

q0 ∈ [q2, q2) ∩ (0, 1). Moreover, for each q0 ∈ [q2, q2) ∩ (0, 1), there is a unique q′ ∈ [q1, q1)

such that q′ is the value of q1 in a 2–step equilibrium when the initial fraction of type H

sellers is q0, and the map Q2
+ : q0 7→ q′ is strictly increasing and continuous.

The payoff to a buyer in a 2–step equilibrium is

v2
B(q0) =

∫
max

{
πB

h (q0), π
B
`

(
q0, δ, v

1
L(Q2

+(q0)), v
1
B(Q2

+(q0))
)}

dF (δ) ≥ πB
h (q0). (23)

Denote the fraction of buyers that offer ph at t = 0 in a 2–step equilibrium by

ξ2(q0) =

∫
I{πB

h (q) ≥ πB
`

(
q, δ, v1

L(Q2
+(q0)), v

1
B(Q2

+(q0))
)
}dF (δ). (24)

The payoff to a type L seller is then given by

v2
L(q0) = ξ2(q0)ph + (1− ξ2(q0))

∫
max

{
p`, δv

1
L(Q2

+(q0))
}

dF (δ) ≤ v0
L. (25)

In Lemma 2 in the Appendix, we show that v2
B is continuous in q0 and converges to v1

B(q2)

as q0 increases to q2, while v2
L is also continuous and increasing in q0, and it converges to

v1
L(q2) as q0 increases to q2. This completes the characterization of 2–step equilibria.

20



A Full Characterization

We know from Proposition 4 that if δ ≤ p`/v
1
L(q1), then there are only 0–step, 1–step, and

2–step equilibria. Let δ > pL/v1
L(q1) and suppose, by induction, that there exist k ≥ 3 and

finite sequences {qs}k−1
s=0 and {qs}k−1

s=0 , with 0 < qs < qs−1 ≤ qs for all s ∈ {1, . . . , k − 1} and

q0 = 1, such that (i) a s–step equilibrium exists if, and only if, q0 ∈ [qs, qs) and (ii) the

payoffs vs
B(q0) and vs

L(q0) to buyers and type L sellers in a s–step equilibrium are uniquely

defined; this is true when k = 3 by Propositions 2 to 4.

The same argument as in the previous part shows that the following conditions are

necessary and sufficient for a k–step equilibrium to exist:

q+
(
q0, v

k−1
L (q′)

)
= q′; (26)

q′ ∈
[
qk−1, qk−1

)
; (27)

πB
h (q0) < πB

`

(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)
. (28)

Several crucial features of 2–step equilibria are true for all k ≥ 3. First, (26) and (27) imply

(28), so the necessary and sufficient conditions are given by (26) and (27). Second, if we

define qk to be such that

qk = q+(qk, vk−1
L (qk−1))

and qk to be such that

qk =

 0 if p`/v
k−1
L (qk−1) ≥ δ

q+(qk, vk−1
L (qk−1)) = qk−1 if p`/v

k−1
L (qk−1) < δ

,

then qk < qk−1 ≤ qk and there is a k–step equilibrium if, and only if, q0 ∈ [qk, qk) ∩ (0, 1).

Moreover, for each q0 ∈ [qk, qk) ∩ (0, 1), there is a unique q′ ∈ [qk−1, qk−1) such that q′ is the

value of q1 in a k–step equilibrium when the initial fraction of type H sellers is q0, and the

map Qk
+ : q0 7→ q′ is continuous and strictly increasing.

The payoffs in a k–step equilibrium are then given by

vk
B(q0) =

∫
max

{
πB

h (q0), π
B
`

(
q0, δ, v

k−1
L (Qk−1

+ (q0)), v
k−1
B (Qk−1

+ (q0))
)}

dF (δ) (29)

vk
L(q0) = ξk(q0)ph + (1− ξk(q0))

∫
max

{
p`, δv

k−1
L (Qk−1

+ (q0))
}

dF (δ), (30)
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where

ξk(q0) =

∫
I{πB

h (q) ≥ πB
`

(
q, δ, vk−1

L (Qk−1
+ (q0)), v

k−1
B (Qk−1

+ (q0))
)
}dF (δ) (31)

is the fraction of buyers that offer ph at t = 0 in a k–step equilibrium. The last crucial feature

of 2–step equilibria that is true for all k ≥ 3 is that vk
L is continuous and increasing in q0,

and has the property that limq0→qk vk
L(q0) = vk−1

L (qk). To following proposition summarizes

the induction step; its proof is in the Appendix.

Proposition 5. A k–step equilibrium exists if, and only if, q0 ∈ [qk, qk)∩(0, 1). Moreover, for

each q0 ∈ [qk, qk)∩ (0, 1), there is a unique q′ ∈ [qk−1, qk−1) such that q′ is the value of q1 in a

k–step equilibrium when the initial fraction of type H sellers is q0, and the map Qk
+ : q0 7→ q′

is continuous and strictly increasing. Finally, the payoff vk
L to a type L seller in a k–step

equilibrium is continuous and increasing in q0, and is such that limq0→qk vk
L(q0) = vk−1

L (qk).

The inductive process described above continues as long as p`/v
k−1
L (qk−1) < δ, in which

case qk > 0. We have thus established the following result, which provides a complete

characterization of the equilibrium set.

Theorem 1. There exist N ≥ 1 and sequences {qk}N
k=0 and {qk}N

k=0, with qN = 0, q0 = 1,

and qk < qk−1 ≤ qk < 1 for all k ∈ {1, . . . , N}, such that a k–step equilibrium exists if,

and only if, q0 ∈ [qk, qk) ∩ (0, 1). Moreover, for each q0 ∈ [qk, qk) ∩ (0, 1), there is a unique

q′ ∈ [qk−1, qk−1) such that q′ is the value of q1 in a k–step equilibrium when the initial fraction

of type H sellers is q0, and the map Qk
+ : q0 7→ q′ is continuous and strictly increasing.

The payoffs for buyers and sellers are uniquely defined in every equilibrium and are de-

termined recursively as follows: (i) v0
B(q0) = q0[uH − ph] + (1− q0)[uL− ph] and v0

L(q0) ≡ ph;

(ii) for all k ∈ {1, . . . , N}, vk
B and vk

L are given by (29) and (30), respectively.

The cutoffs {qk}N−1
k=0 and {qk}N

k=1 are defined recursively as follows: (i) q0 is the unique q

such that πB
h (q) = πB

`

(
q, δ, v0

L, v0
B(q)

)
and q+(qk, vk−1

L (qk−1)) = qk−1 for k = 1, . . . , N−1; (ii)

q1 is the unique q such that πB
h (q0) = πB

`

(
q0, δ, v

0
L, v0

B[q+(q0, v
0
L)]

)
and q+(qk, vk−1

L (qk−1)) =

qk−1 for k = 2, . . . , N .

Theorem 1 characterizes a sequence of cutoffs which partition the parameter spaces in to

regions that take at least (or, alternatively, at most) k ≥ 0 periods for the market to clear,
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for k = 1, 2, . . .. Figure 1 below illustrates.

Figure 1: Equilibrium Cutoffs

0 1q0q1q2· · · q1q2q3

Notice that there is a natural monotonicity to the equilibria: for any 0 < q0 < q̃0 < 1, if

there exists a k–step equilibrium beginning at q0, then there also exists a k̃–step equilibrium

beginning at q0 such that k̃ ≥ k.

5 Discussion

The theory developed above can provide insight into two types of issues. First, conditional

on the initial composition of high and low quality assets (i.e. q0), we can study how market

prices, trading volume, and average quality evolve over time. Given a full characterization

of equilibrium dynamics, we can study how different types of interventions could potentially

alter these dynamics, and the subsequent welfare consequences.

Second, we can study how market behavior – and in particular market liquidity – differs

across values of q0. A market is typically considered liquid if a good can be sold quickly

and at little discount. In many models, trade is instantaneous by construction, and thus the

only measure of liquidity is the between the actual price and the frictionless, market-clearing

price; time is simply not a margin that can adjust. In the current model, if we focus on high

quality goods, the opposite is true: ph is the only price that can clear the market, and so

the appropriate measure of liquidity is the expected amount of time it takes to sell a high

quality good. We focus on this measure.

Consider a k–step equilibrium with an initial fraction q0 ∈
[
qk, qk

]
∩ (0, 1) of high quality
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assets. Let

ηs(q, δ) = πB
h (q)− πB

`

(
q, δ, vs−1

L

[
Qs

+(q)
]
, vs−1

B

[
Qs

+(q)
])

(32)

and define δs(q) such that

δs(q) =

 0 if ηs(q, 0) ≤ 0

ηs(q, δs(q)) = 0 if ηs(q, 0) > 0

for s = 1, 2, . . . , k. In words, when the market is s steps (or periods) away from clearing and

the fraction of high quality assets is q, all buyers with δ < δs(q) offer ph and all buyers with

δ ≥ δs(q) offer p`. By construction, δ0(q) ≡ δ̄, since all buyers offer ph in the final period of

trade. Given q0, and defining q1, q2, . . . , qk by the recursion

qt+1 = Qk−t
+ (qt)

for t = 0, 1, . . . , k− 1, we can define the expected number of periods it takes to sell an asset

of quality H in a k–step equilibrium by

Ek
H(q0) =

k−1∑
s=0

{[
s∏

t=0

{
1− F

[
δk−t(qt)

]}]
F

[
δk−s−1(qs+1)

]
(s + 1)

}
. (33)

As we established earlier, for each q0 there may exist multiple equilibria that take a different

number of periods for the market to clear. Let

K∗(q0) = {k : ∃ a k–step equilibrium given q0} .

Below we use a simple numerical example to illustrate the relationship between our notion

of liquidity and the initial fraction of high quality assets. The parameter values are chosen

such that q3 = 0, so that there only exist 2–, 1–, and 0–step equilibria. We plot Ek
H(q0),

letting k = maxk K∗(q0) at each point. In general, what we find is that the expected amount

of time it takes to sell a high quality asset is decreasing in q0; this result is independent of

our equilibrium selection criterion, so long as we are consistent across values of q0.

INSERT FIGURE 1 HERE
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This finding has important implications for a variety of issues in macroeconomics and

finance, where the ability to transact instantaneously at a single, market-clearing price is

typically taken as given. This abstraction may seem like a fine approximation to the way

that many financial markets behave most of the time: in many markets, trades are routinely

executed quickly and there is little price dispersion. However, during times of crisis, when the

value of many existing assets becomes highly uncertain, the theory developed here suggests

that markets will not behave as in the frictionless, Walrasian model. Instead, trade will

take time, and the terms of trade will vary across matches. Thus, it will be precisely in

those states of the world in which sellers typically need liquidity the most that it will also be

most difficult to sell. As a result, those assets that are more vulnerable to adverse selection

should, in equilibrium, pay a greater rate of return to compensate for this illiquidity risk. In

summary, the theory developed here has important implications for issues relating to asset

pricing, the equity premium, and the rate-of-return dominance puzzle.
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6 Appendix

6.1 Proof of Proposition 1

Let σ∗ be an equilibrium and assume, towards a contradiction, that T (σ∗) = ∞. First notice

that there is q∗ ∈ (0, 1) such that

q∗[uH − ph] + (1− q∗)[uL − ph] = max
{
uL − p`, δ[uH − ph]

}
.

Since the highest payoff possible for a buyer is uH − ph, the right–hand side of the above

equation is the highest payoff possible for a buyer who offers p`. The definition of q∗ then

implies that if the fraction of type H sellers in the market is above q∗, then all buyers offer ph

and the market clears. Thus, for all t ≥ 0, the fraction qt of type H sellers in the market in

period t is bounded above by q∗, and so is the limit q∞ of the sequence {qt}. Now notice that

the sequences {V L
t (σ∗)} and {V H

t (σ∗)} are bounded, and so have convergent subsequences.

Dropping subscripts if necessary, we can assume that both sequences converge. Denote their

respective limits by V L
∞ and V H

∞ and note that V H
∞ ≥ V L

∞, given that V H
t (σ∗) ≥ V L

t (σ∗) for

all t. Since the c.d.f. F is continuous, the law of motion (7) for qt implies that

q∞ =

q∞

[
1− F

(
p` − yH

V H
∞

)]
q∞

[
1− F

(
p` − yH

V H
∞

)]
+ (1− q∞)

[
1− F

(
p`

V L
∞

)] ,

from which we obtain that

q∞

[
1− F

(
p` − yH

V H
∞

)]
+ (1− q∞)

[
1− F

(
p`

V L
∞

)]
= 1− F

(
p` − yH

V H
∞

)
.

However, q∞ < 1, and so the last equation implies that F (p`/V
L
∞) = F [(p` − yH)/V H

∞ ], a

contradiction since (p` − yH)/V H
∞ < p`/V

L
∞. Thus, the market must clear in finite time.

6.2 Proof of Proposition 2

Let η0(q, δ) = πB
h (q) − πB

` (q, δ, v0
L, v0

B(q)). Straightforward algebra shows that η0(q, δ) is

strictly increasing in q. Since η0 is continuous in q, η0(0, δ) < 0, and η0(1, δ) > 0, there is a

unique q ∈ (0, 1), that we denote by q0, such that η0(q0, δ) ≥ 0 if, and only if q ≥ q0. Since
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v0
B(q) ≤ uH − ph, (9) then implies that πB

`

(
q, δ, v0

L, v0
B(q)

)
> 0, and so vH

B (q0) = πB
h (q0) > 0.

This assures that the strategy profile σ0 is an equilibrium if q0 ≥ q0.

As the next step, suppose that q0 < q0 and consider a candidate 0–step equilibrium σ̃0

with the necessary property that all buyers offer ph in t = 0. One alternative for a buyer is

to offer ph in every period. Let p̃ denote this strategy. If σ̃0 is to be an equilibrium, then it

must be that V B
t (σ̃0) ≥ V B

t (p̃|σ̃0) for all t ≥ 0. Now observe that when the probability that

an agent can trade in a period is α ∈ (0, 1),

V B
t (p̃|σ̃0, α) =

∞∑
τ=1

α(1− α)τ−1(E[δ])τ−1v0
B(qα

t+τ−1),

where qα
t+τ−1 is the fraction of type H sellers in the market in period t + τ − 1. It is easy to

see that

qα
t+1 =

qα
t [1− α + αξt(p`)]

qα
t [1− α + αξt(p`)] + (1− qα

t )
{
1− α + αξt(p`)

[
1− F

(
p`/V L

t+1(σ̃
0|α)

)]} ,

where ξt(p`) is the probability that a buyer who gets the opportunity to trade in period t

offers p`. Clearly the sequence {qα
t }∞t=0 is non–decreasing. Hence,

V B
t (p̃|σ̃0, α) ≥

∞∑
τ=1

α(1− α)τ−1(E[δ])τ−1v0
B(q0),

which implies that V B
t (p̃|σ̃0) ≥ v0

B(q0). From the main text we know that this last fact, along

with the fact that V L
t (σ̃0) ≤ v0

L, imply that a positive mass of buyers do not find it optimal to

offer ph in t = 0, so that the market clearing immediately cannot be an equilibrium outcome.

6.3 Proof of Proposition 3

Recall that q+(q, v0
L) is strictly increasing in q when p`/v

0
L < δ and that q+(q, v0

L) ≡ 1

otherwise. From this it is immediate to see that there exists q1 < q0 such that q+(q0, v
0
L) ≥ q0

if, and only if, q0 ∈ [q1, 1]. Note that q1 = 0 if p`/v
0
L ≥ δ and q1 is such that q+(q1, v0

L) = q0

otherwise. Now, let η1(q, δ) = πB
h (q)− πB

` (q, δ, v0
L, v0

B [q+(q, v0
L)]). It is easy to see that

∂η1

∂q
(q, δ) = F

(
p`

ph

) {
uL − p` − δv0

B[q+(q, ph)]
}

+(uH − uL)

{
1− δ

{
q + (1− q)

[
1− F

(
p`

ph

)]}
∂q+

∂q

}
.
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Thus, from (9) and the fact that

{q + (1− q) [1− F (p`/ph)]}
∂q+

∂q
= 1− qF (p`/ph)

q + (1− q) [1− F (p`/ph)]
< 1,

we can conclude that ∂η1/∂q > 0 regardless of the value of p`/ph. Since η1(0, δ) < 0 and

η1(1, δ) > 0, there exists q1 ∈ (0, 1) such that η1(q, δ) < 0 if, and only if q0 ∈ [0, q1). Hence,

πB
h (q0) < πB

`

(
q0, δ, v

0
L, v0

B [q+(q0, v
0
L)]

)
if, and only if q0 ∈ [0, q1). To finish, observe that since

v0
B[q+(q, ph)] > v0

B(q) for all q ∈ (0, 1),

πB
`

(
q0, δ, v0

L, v0
B[q+(q0, ph)]

)
> πB

`

(
q0, δ, v0

L, v0
B(q0)

)
= πB

h (q0).

Thus, η1(q0, δ) < 0, from which we obtain that q1 > q0.

6.4 Lemma 1 and Proof

Lemma 1. The probability ξ1(q0) that a buyer offers ph in t = 0 in a 1–step equilibrium is

continuous and increasing in q0, and it converges to one as q0 increases to q1.

Since πB
` (q0, δ, v

0
L, v0

B[q+(q0, v
0
L)]) is strictly increasing in δ, the function η1 in the proof of

Proposition 3 is strictly decreasing in δ. Let then δ1(q0), with q0 ∈ [q1, q1) ∩ (0, q1), be such

that

δ1(q0) =

 0 if η1(q0, 0) ≤ 0

η1(q0, δ
1(q0)) = 0 if η1(q0, 0) > 0

Since η1(q1, δ) = 0 and η1 is strictly increasing in q by the proof of Proposition 3, δ1(q0)

is uniquely defined. By construction, δ1 is the cutoff discount factor below which a buyer

finds it optimal to offer ph in t = 0. Hence, the probability ξ1(q0) that a buyer offers ph in

t = 0 is equal to F (δ1(q0)). Since η1 is jointly continuous, it is easy to see that δ1 depends

continuously on q0. Moreover, the cutoff δ1(q0) is strictly increasing in q0 if η1(q0, 0) > 0,

as η1 is strictly increasing in q. The desired result follows from the fact that the c.d.f. F is

continuous and strictly increasing and limq0→q1 δ1(q1) = δ (given that η1(q1, δ) = 0).

6.5 Proof of Proposition 4

We first show that (18) and (19) imply (20), so that conditions (18) and (19) completely

determine the range of initial values of q0 for which there exists a 2–step equilibrium. Before
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we start, notice that {
q + (1− q)

[
1− F

(
p`

vL

)]}
q+(q, vL) = q

for all q ∈ (0, 1) and vL ≥ p`. Hence,

πB
`

(
q, δ, vL, πB

h

[
q+(q, vL)

])
= δπB

h (q) + (1− q)F

(
p`

vL

)
[uL − p` − δ(uL − ph)] (34)

for all q ∈ (0, 1) and δ ∈ [0, δ].

Suppose that q′ ∈
[
q1, q1

)
. In order to prove that (20) is satisfied, it is sufficient to show

πB
h (q′)− πB

h (q0) ≥ πB
`

(
q′, δ, v0

L, v0
B[q+(q′, v0

L)]
)
− πB

`

(
q0, δ, v

1
L(q′), v1

B(q′)
)

(35)

for all δ ∈ [0, δ]. Condition (35) implies that the incentive of a buyer to choose p` in t = 0 is

even greater than his incentive to choose p` in t = 1, when the fraction of type H sellers in

the market is q′ > q0; in particular, this is true for the most patient buyer. First, note that

πB
`

(
q′, δ, v0

L, v0
B

[
q+

(
q′, v0

L

)])
= πB

`

(
q′, δ, v0

L, πB
h

[
q+

(
q′, v0

L

)])
= δπB

h (q′) + (1− q′) F

(
p`

v0
L

) [
uL − p` − δ(uL − ph)

]
.

Second, since v1
B(q′) ≥ πB

h (q′), we have

πB
`

(
q0, δ, v

1
L(q′), v1

B(q′)
)
≥ πB

`

(
q0, δ, v

1
L(q′), πB

h (q′)
)

= δπB
h (q0) + (1− q0)F

(
p`

v1
L(q′)

) [
uL − p` − δ(uL − ph)

]
;

the second equality follows from (18) and (34). Therefore,

πB
`

(
q′, δ, v0

L, v0
B

[
q+

(
q′, v0

L

)])
− πB

`

(
q0, δ, v

1
L(q′), v1

B(q′)
)

≤ δ
[
πB

h (q′)− πB
h (q0)

]
+

{
(1− q′)F

(
p`

v0
L

)
− (1− q0)F

(
p`

v1
L(q′)

)} [
uL − p` − δ(uL − ph)

]
.

Since v0
L > v1

L(q′) for all q′ ∈
[
q1, q1

)
, uL < ph, and q′ > q0, the second term on the right–hand

side of the above inequality is negative, which confirms (35).

We now show that there exists a 2–step equilibrium if, and only if, q0 ∈ [q2, q2) ∩ (0, 1).

Since 0 < q1 < q1 < 1, (18) and (19) can be satisfied only if the denominator of

q+(q0, v
1
L(q0)) =

q0

q0 + (1− q0)[1− F (p`/v1
L(q′))]
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is greater than q0. In other words, for a given q′ ∈ [q1, q1), there is q0 ∈ (0, 1) such that (18)

is satisfied only if p`/v
1
L(q′) < δ. Now observe that if p`/v

1
L(q′) < δ, then

q−(q′) =
q′ [1− F (p`/v

1
L(q′))]

1− q′F (p`/v1
L(q′))

belongs to the interval (0, 1) and is such that q+(q−(q′), v1
L(q′)) = q′. Thus, (18) is satisfied

for q′ ∈ [q1, q1) if, and only if, p`/v
1
L(q′) < δ. Moreover, it is immediate to see that q−(q′) is

the only possible value of q0 for which (18) and (19) can hold.

Since v1
L(q′) is increasing in q′, p`/v

1
L(q̃) < δ implies that p`/v

1
L(q′) < δ for all q′ > q̃.

Let then q̃1 be such that q̃1 = 0 if p`/v
1
L(q1) < δ and q̃1 = sup{q′ ∈ [q1, q1) : p`/v

1
L(q′) = δ}

if p`/v
1
L(q1) ≥ δ; q̃1 is well–defined since p`/v

1
L(q1) = p`/v

0
L < δ. By construction, there is

q0 ∈ (0, 1) such that (18) and (19) are satisfied if, and only if, q′ ∈ [q1, q1)∩ (q̃1, 1), in which

case q0 = q−(q′). Since F and v1
L are continuous in δ and q′, respectively, it is easy to see

that q− is continuous in q′. Moreover, since v1
L is increasing in q′, straightforward algebra

shows that q− is strictly increasing in q′. Thus, we have that: (i) when p`/v
1
L(q1) < δ, there

exists a 2–step equilibrium if, and only if, q0 ∈ [q−(q1), q−(q1)); (ii) when p`/v
1
L(q1) ≥ δ,

there exists a 2–step equilibrium if, and only if, q0 ∈ (q−(q̃1), q−(q1)). It is immediate to see

that q−(q1) = q2. We are done if we show that q−(q̃1) = 0 when p`/v
1
L(q̃) ≥ δ. This follows

from the fact that limq′→eq1 F (p`/v
1
L(q′)) = 1.

To finish the proof, notice that since q−(q′) is continuous and strictly increasing in q′, it

is invertible and its inverse is strictly increasing and continuous. Thus, the map Q2
+ that

takes an initial fraction q0 of type H sellers into the value of q1 in a 2–step equilibrium is

continuous and strictly increasing.

6.6 Lemma 2 and Proof

Lemma 2. Suppose that δ > p`/v
0
L. Then: (i) v2

B is continuous in q0, and it converges to

v1
B(q2) as q0 increases to q2; (ii) v2

L is continuous and increasing in q0, and it converges to

v1
L(q2) as q0 increases to q2.

We have shown that Q2
+ is continuous, strictly increasing, and converges to q1 as q0 increases

to q2. Given these properties, along with the continuity of v1
B and v1

L, it follows immediately
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that v2
B is continuous as well. Since v1

L(q1) = v0
L and v1

B(q1) = v0
B(q1) = v0

B[q+(q2, v0
L)], we

then have that

lim
q0↑q2

v2
B(q0) =

∫ δ

0

max
{
πB

h (q2), πB
`

(
q2, δ, v0

L, v0
B[q+(q2, v0

L)]
)}

dF (δ) = v1
B(q2).

Let η2(q0, δ) = πB
h (q0) − πB

`

(
q0, δ, v

1
L(Q2

+(q0)), v
1
B(Q2

+(q0))
)
. An argument similar to the

one used in the Proof of Proposition 3 shows that for each q0 ∈ [q2, q2) there is a unique

δ2 = δ2(q0) in [0, δ), depending continuously on q0, such that η2(q0, δ) ≥ 0 if, and only if

δ ≤ δ2(q0). Thus, ξ2(q0) = F (δ2(q0)) is continuous and increasing in q0 (strictly increasing

when δ2(q0) < δ), from which we obtain that v2
L is continuous and increasing in q0. To finish,

notice that

lim
q0↑q2

η2(q0, δ) = πB
h (q2)− πB

` (q2, δ, v1
L(q1), v1

B(q1))

= πB
h (q2)− πB

` (q2, δ, v0
L, v0

B[q+(q2, v0
L)]) = η1(q2, δ),

so that limq0↑q2 ξ2(q2) = ξ1(q2), from which we can conclude that

lim
q0↑q2

v2
L(q0) = ξ1(q2)ph + (1− ξ1(q2))

∫ δ

0

max
{
p`, δv

0
L

}
dF (δ) = v1

L(q1).

6.7 Proof of Proposition 5

We omit many of the details, as the proof follows that of Proposition 4 very closely. Suppose,

by induction, that the following holds for all s ∈ {1, . . . , k− 1}: (i) for all q0 ∈ [qs, qs) there

is a unique q′ ∈ [qs−1, qs−1) such that q′ = Qs
+(q0) is the value of q1 in a s–step equilibrium

when the initial fraction of type H sellers is q0; (ii) if q′ = Qs
+(q0), then

ηs−1(q′, δ) = πB
h (q′)− πB

`

(
q′, δ, vs−1

L (Qs
+(q′)), vs−1

B (Qs
+(q′))

)
≥ ηs(q0, δ) = πB

h (q0)− πB
` (q0, δ, v

s
L(q′), vs

B(q′)) (36)

for all q0 ∈ [qs, qs) and δ ∈ [0, δ]; (iii) vs
L is continuous and increasing in [qs, qs) and vs

L(q0)

converges to vs−1
L (qs) as q0 increases to qs. Conditions (i) to (iii) are true when k = 3 by

Propositions 3 and 4 and Lemmas 1 and 2.
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First notice that qk < qk−1 ≤ qk. This fact follows from (iii) (and the definition of qk)

and its proof is identical to the proof that q2 < q1 ≤ q2; simply replace the superscripts “1”

and “2” with “k − 1” and “k”, respectively.

We now show that if q′ = q+(q0, v
k−1
L (q′)) and q′ ∈ [qk−1, qk−1), then ηk−1(q′, δ) ≥ ηk(q0, δ)

for all δ ∈ [0, δ]. For this, note that

πB
`

(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)

= (1− q0)F

(
p`

vk−1
L (q′)

)
[uL − p`] + δ

{
q0 + (1− q0)

[
1− F

(
p`

vk−1
L (q′)

)]}
vk−1

B (q′)

= (1− q0)F

(
p`

vk−1
L (q′)

)
[uL − p`] + δ

{
q0 + (1− q0)

[
1− F

(
p`

vk−1
L (q′)

)]}
πB

h (q′)

+ δ

{
q0 + (1− q0)

[
1− F

(
p`

vk−1
L (q′)

)]} [
vk−1

B (q′)− πB
h (q′)

]
= δπB

h (q0) + (1− q0)F

(
p`

vk−1
L (q′)

)
[uL − p` − δ(uL − ph)]

+ δ

{
q0 + (1− q0)

[
1− F

(
p`

vk−1
L (q′)

)]} [
vk−1

B (q′)− πB
h (q′)

]
where the last equality follows from (34). Similarly, one can show that

πB
`

(
q′, δ, vk−2

L (q′′), vk−2
B (q′′)

)
= δπB

h (q′) + (1− q′)F

(
p`

vk−2
L (q′′)

)
[uL − p` − δ(uL − ph)]

+ δ

{
q′ + (1− q′)

[
1− F

(
p`

vk−2
L (q′′)

)]} [
vk−2

B (q′′)− πB
h (q′′)

]
,

where q′′ = Qk−1
+ (q′). By (36) and Lemma 3 below, we then have that

vk−1
B (q′)− πB

h (q′) ≥ vk−2
B (q′′)− πB

h (q′′),

so that

πB
`

(
q0, δ, v

k−1
L (q′), vk−1

B (q′)
)
− πB

`

(
q′, δ, vk−2

L (q′′), vk−2
B (q′′)

)
≤ δ

[
πB

h (q0)− πB
h (q′)

]
+

{
uL − p` − δ

(
uL − ph −

[
vk−1

B (q′)− πB
h (q′)

])} {
(1− q′)F

(
p`

vk−2
L (q′′)

)
−(1− q0)F

(
p`

vk−1
L (q′)

)}
. (37)
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Since q′ ≥ q0 and vk−1
L (q′) < vk−2

L (q′′) by Lemma 4 below, we have that

(1− q′)F

(
p`

vk−2
L (q′′)

)
− (1− q0)F

(
p`

vk−1
L (q′)

)
< 0.

In addition, uL < ph and uL − p` ≥ δ(uH − ph) > δ
[
vk−1

B (q′)− πB
h (q′)

]
. Hence, (37) implies

that

πB
`

(
q, δ, vk−1

L (q′), vk−1
B (q′)

)
− πB

`

(
q′, δ, vk−2

L (q′′), vk−2
B (q′′)

)
< πB

h (q)− πB
h (q′),

which is the desired result. Consequently, (ii) holds when s = k. Since ηk−1(q′, δ) < 0 for

all q′ ∈ [qk−1, qk−1), as the most patient buyer must strictly prefer to offer p` in t = 0 in a

(k − 1)–step equilibrium when k ≥ 3, we then have that (26) and (27) imply (28).

Now observe that the same argument used in the proof of Proposition 4 shows that there

is a k–step equilibrium if, and only if, q0 ∈ [qk, qk)∩ (0, 1), that for each q0 ∈ [qk, qk)∩ (0, 1),

there is a unique q′ ∈ [qk−1, qk−1) such that q′ is the value of q1 in a k–step equilibrium when

the initial fraction of type H sellers is q0, and that the map Qk
+ : q0 7→ q′ is continuous

and strictly increasing; simply replace the superscripts “1” and “2” with “k − 1” and “k”,

respectively. In particular, (i) holds when s = k.

To finish, notice that the same argument used in the proof of Lemma 2 shows that (iii)

holds when s = k; once more just replace the superscripts “1” and “2” with “k − 1” and

“k”, respectively.

6.8 Lemma 3 and Proof

Lemma 3. Given q′ = q+

[
q, vk−1

L (q′)
]
, vk

B(q)− πB
h (q) ≥ vk−1

B (q′)− πB
h (q′).

Let η̃k(q, δ) = −ηk(q, δ). Moreover, let δk(q) denote the maximum of zero and the value of

δ such that η̃k(q, δ) = 0. Then (36) implies that δk−1(q′) ≥ δk(q). This fact, along with
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η̃k(q, δ) ≥ η̃k−1(q′, δ) for all δ, implies

vk
B(q)− πB

h (q) =

∫ δ

δk(q)

η̃k(q, δ)dF (δ)

≥
∫ δ

δk(q)

η̃k−1(q′, δ)dF (δ)

≥
∫ δ

δk−1(q′)

η̃k−1(q′, δ)dF (δ) = vk−1
B (q′)− πB

h (q′).

6.9 Lemma 4 and Proof

Lemma 4. vk−1
L (q′) < vk−2

L (q′′).

Proof to be added.
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Figure 2: Liquidity and Lemons
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