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Abstract

We study participation decisions and bidding behaviour in Michigan Department of
Transportation procurement auctions. Patterns in the bidding data suggest that bidders’
participation behaviour has a forward looking component. To fully understand the extent
of these effects on auction outcomes, we construct and estimate a dynamic asymmetric
auction model with endogenous participation. We develop an estimation approach which
builds on Guerre, Perrigne and Vuong (2000) and recently developed dynamic discrete
game estimators. We then quantify the level of inefficiencies under the current auction
rules and then consider how alternative auction rules affect efficiency. We also analyse
the effect of ignoring dynamics in this market by estimating a static version of our model.
This approach results in misleading conclusions concerning auction efficiency.

1 Introduction

Most of the literature on the structural estimation of auctions has looked at auctions in isola-

tion, focusing on bidding behaviour and taking participation to be exogenous. However, the

context in which an auction operates is as important as the rules governing bidding. This is es-

pecially true when considering the participation behaviour of asymmetric bidders, as discussed

in Klemperer (2002)1, who cites that different auction rules could explain large differences in

auction revenues.

We analyse these issues in the context of procurement auctions run by the Michigan De-

partment of Transportation. The data suggest there are dynamic linkages between auction

rounds. Specifically, previous round competition has an effect on current procurement costs.

There is also evidence that dynamic synergies in participation exist. These synergies effectively

create an asymmetry between bidders that will have a bearing on auction efficiency. To fully
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j.r.groeger@lse.ac.uk. I would like to thank my advisors Martin Pesendorfer and Philipp Schmidt-Dengler for
invaluable guidance and advice. I am also grateful to Pasquale Schiraldi for detailed discussions. I would also
like to thank Sue Powers at the Michigan Department of Transportation for providing me with the data and
Victor Ortego-Marti, Sorawoot Srisuma and Dimitri Szerman for helpful discussions. Any remaining errors are
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1Klemperer (2002) points out that sealed bid formats may favour weak bidders and encourage entry.
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understand these features and their effect on auction outcomes, we construct and estimate a

dynamic auction game. The level of inefficiencies due to auction rules is quantified and changes

to the auction environment are considered. We then explore the effect of ignoring dynamics in

estimation and find that this will result in misleading conclusions concerning efficiency.

This paper considers a dynamic auction game in which participation is decided in every

period. Entry into an auction is costly and bidders must pay an information acquisition cost

to learn their private completion costs,which are equated to the opportunity cost of preparing

a bid. Bidders compare the expected profit stream from participation and non-participation to

determine entry. There are information acquisition synergies between auction rounds. Specifi-

cally, a bidder can improve the information cost draws in the next period by participating in an

auction in the current round. Once a bidder decides to enter an auction the bidders engage in a

first price sealed bid procurement auction. We observe data on bids, auction characteristics and

entry decisions. Private completion costs are inferred using a variation on Guerre et al. (2000)

estimation approach. The distribution of entry costs for bidders is estimated using the asymp-

totic least squares estimator for dynamic games proposed by Pesendorfer & Schmidt-Dengler

(2008).

Our paper complements a growing literature on estimating static auctions with endogenous

participation2, for example, Athey et al. (2008), Li & Zheng (2009), Bajari & Hortacsu (2003)

and Krasnokutskaya & Seim (2005)3 by incorporating dynamic considerations. The only other

paper we are aware of that estimates a dynamic auction using highway procurement data

is Jofre-Bonet & Pesendorfer (2003). That paper looks at how capacity constraints affect

bidding behaviour and participation is taken to be exogenous. There are also a number of

papers that look at entry into markets using dynamic frameworks, these include Collard-Wexler

(2006) and Ryan (2006). Auguirregabiria & Mira (2007) also provide an application of their

pseudo-maximum likelihood methods to firm entry and exit in local retail markets. Other

papers that look at estimating dynamic games are Bajari et al. (2007) and Pakes et al. (2007).

These papers all make use of the insights from Hotz & Miller (1993)4. Procurement auctions

have been analysed by Porter & Zona (1993), Bajari & Ye (2003), Hong & Shum (2002) and

Krasnokutskaya (2003). Paarsch (1992), Laffont et al. (1995) and Guerre et al. (2000) have

developed empirical methods to estimate private information in static auction environments

with exogenous participation.

2The theoretical literature on entry in auctions is more mature than the empirical one, with papers from
Samuelson (1985), McAfee & McMillan (1987), Levin & Smith (1994). Hendricks et al. (2003) also consider
first price auction models with endogenous participation. However, their paper is concerned with testing the
implications of the theoretical model rather than estimating its primitives.

3These papers makes use of static participation games which suffer from multiple equilibria and the typical
approach has been to select an equilibrium or to provide conditions that guarantee uniqueness. An alternative
is to due to Manski & Tamer (2003) and Tamer (2003). These approaches estimate parameter bounds that
are consistent with all equilibria implied by the model. As pointed out by Pesendorfer & Schmidt-Dengler
(2008), our formulation as a Markovian game, avoids a priori selection of a specific equilibrium. The Markovian
assumption therefore guarantees that a single time series has been generated by only one equilibrium.

4In particular, Hotz & Miller (1993) establish that conditional choice probabilities at each state can be used
in an inversion to infer value functions.
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The remainder of the paper is organised as follows. In Section 2 we provide a description

of the data and reduced form analyses on the role of participation dynamics on auction out-

comes. Section 3 outlines the theoretical model. We then show in Section 4 how the primitive

parameters of our model can be estimated. Section 5 outlines the main estimation outputs and

Section 6 summarises the results of our efficiency measurement and policy analysis. We then

consider the effect of ignoring dynamics in participation by estimating a static version of our

model in Section 7.

2 The Procurement Process in Michigan

In this section the data source and some aspects of the procurement process are described.

Reduced form evidence of dynamic linkages between auction rounds is presented. In particular,

we look at the effect of previous round competition on current round procurement costs. We

then explore whether dynamic effects also exist when we look directly at an individual bidder’s

participation and bid level decisions. The results suggest that past round competition lowers

procurement costs by a small amount in current round auctions. There is also evidence that

potential dynamic synergies exist in bidders’ participation behaviour and that past participation

has an effect on bidding behaviour in current auctions.

The Awarding Process: Contracts are awarded by the Michigan State Department of Trans-

portation (MDOT) in bi-monthly rounds using a first price sealed bid procurement auction.

MDOT requires that bidders pre-qualify before bidding5. An average of 50 contracts are

awarded in a round of bidding. The average project size is $1.476 million and the maximum

project size in our data set is $165 million. The timing of contract rounds for the year is known

in advance, however the contract characteristics are not fully known. Prior to the awarding of

the contract, bidders can purchase plans for contracts, which detail the location of a project,

the nature of the work and the estimated cost. The list of bidders who have purchased these

plans, i.e. the plan holders, is publicly known and posted on the internet. However, some

plans can be downloaded free of charge from the MDOT website, where bidders’ identities are

not revealed. Bids can be submitted in person or electronically. On the letting day, all bids

are unsealed and ranked. The lowest total cost bidder wins the auction, i.e. the bottom line

cost of the project determines the winner. Bidders must also provide a bid deposit that is

a pre-determined percentage of the contract value, as determined by the engineer’s estimate,

prior to bidding. Once a contract has been awarded the primary contract winner is allowed to

subcontract up to 60% of the contract value to subcontractors6.

5This entails a check on the financial status of the firm. The information required for qualification includes:
The identity of the owners, shareholder and managers of the company, any affiliations with other contractors,
recently completed contracts and identity of clients, previous sales, an average of the firm’s backlogs over the
past three years, activities in other states, connections to other pre-qualified bidders, firm’s Balance sheet.
MDOT also has a disadvantaged business programme to encourage participation from smaller or disadvantaged
firms, however this occurs only on a small fraction of contracts.

6We do not have any data on subcontracting and exclude this from our analysis.
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Table 1: Summary Statistics

Number Of Mean Standard Minimum Maximum

Observations Deviation

Number of 4927 4.943 2.731 1 19
Bidders
Log of Engineer’s 4927 13.284 1.203 8.517 18.922
Estimate
Ranked2-Ranked1

Ranked1 4832 0.074 0.081 0 0.880
Ranked1-Estimate

Estimate 4927 -0.069 0.146 -0.198 0.626

Summary Statistics for all Bidders: We focus our attention on general construction con-

tracts. Table 1 and Table 2 provide summary statistics of the data. Table 1 reports that on

average an auction attracts 5 bidders, with some contracts having only one bidder and others

with 19 participating bidders. The third row of Table 1 presents data on ”money left on the

table”, which can give an indication of the level of uncertainty in the market. This is the

percentage difference between the winning bid and the lowest losing bid. On average there is a

difference of about 7% with a standard deviation of 8%. This suggests that there are substantial

informational asymmetries.

Table 2: Summary Statistics by Number of Bidders

Number of 1 2 3 4 5 6 7 8 9-10 11-19
Bidders:

Obs. 91 742 999 781 618 534 376 272 286 228

Estimate

Mean 12.838 13.208 13.334 13.108 13.290 13.372 13.411 13.459 13.339 13.336

Standard 1.030 1.093 1.176 1.297 1.286 1.262 1.221 1.087 1.157 1.053
Deviation

Ranked1-Est.
Est.

Mean 0.008 -0.015 -0.045 -0.052 -0.062 -0.089 -0.084 -0.101 -0.112 -0.130

Standard 0.128 0.133 0.152 0.161 0.163 0.1323 0.138 0.120 0.113 0.119
Deviation

Ranked2-Ranked1
Ranked1

Mean 0.113 0.082 0.082 0.063 0.059 0.053 0.048 0.043 0.041

Standard 0.121 0.078 0.088 0.059 0.060 0.051 0.048 0.041 0.049
Deviation

Table 2 summarises the data by number of bidders. The ”Observations” row of the table

reveals that 91 auctions attracted one bidder, 742 auctions attracted two bidders and so on.

Table 2 also reproduces money left on the table data by number of bidders. It can be seen

that money left on the table decreases with the number of bidders. However, the average

amount of money left on the table is still substantial but is in line with other studies, see for

example Krasnokutskaya (2003). Table 2 indicates that informational asymmetries matter in

procurement competition. As the number of bidders increases the relative difference between the

lowest bid and the engineer’s estimate falls. Also, notice that larger projects do not necessarily

attract more bidders, the degree of competition in an auction is not related to the engineer’s
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estimate.

We now turn to the key question of whether procurement costs are affected by previous

participation decisions and whether entry dynamics matter. To establish whether this feature

is present in the data, we run a regression on the log winning bid and a set of covariates, which

include the log number of previous round bidders, the engineer’s estimate of the project cost and

geographic variables. Table 3 summarises the results of an OLS regressions. The log number of

previous round bidders and its squared component are individually statistically significant at

5% and are jointly significant at 5%. The regression results imply that increasing the number

of previous round participants initially increases the winning bid level but after the number of

previous round bidders exceeds roughly 3 bidders procurement costs start to decrease slightly,

however the marginal effect of an additional bidder is very small. If we consider increasing the

average number of bidders in a previous round by 10 bidders from 82 to 92 we see a 1% decrease

in the procurement cost in a current auction. We next turn to the individual bidder’s

Table 3: Regression Results of Winning Bid on Covariates

Variable Coefficient
Dependent Variable: Log Winning Bid (Std. Err.)

OLS
Log of Engineer’s Estimate 1.0058 ∗∗

(0.0020)

Log Number of Bidders in Previous Round 0.0338 ∗

(0.0122)

Log Number of Bidders in Previous Round Squared -0.0137 ∗∗

(0.0024)

Bay Region Dummy 0.0093
(0.0090)

Grand Region Dummy 0.0049
(0.0093)

Metro Region Dummy 0.0068
(0.0089)

North Region Dummy 0.0117
(0.0092)

Superior Region Dummy 0.0408 ∗∗

(0.0097)

University Region Dummy 0.0006
(0.0089)

Log Number of Auctions in Previous Round 0.0441 ∗∗

(0.0090)

constant -0.1913 ∗∗

(0.0303)

Number of Observations: 4880

participation decisions. We first provide summary statistics on participation. To analyse an

individual bidder’s participation decision we estimate probit models of the probability of entry
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by an individual bidder on a set of covariates including a measure of previous round competition.

Participation Decisions of Regular Bidders: The tables presented here focus on the behav-

iour of large and small regular bidders. A regular bidder has participated in more than 100

auctions and a large bidder is one with more than six plants in Michigan State. We use six

plants as a cutoff since plant sizes for bidders are clustered around one and two plants or more

than six plants7. Participation rates are 7% of all auctions with the most frequent participating

bidder entering 17% of the auctions of which they win on average 1.5%. Bidders on average

are plan holders of around 11% of the contracts. Participation in Auction Rounds: Given

that contracts are awarded in rounds we also provide some information on participation per

round. Bidders participate in roughly 70% of the auction rounds. They enter in roughly 8% of

auctions in a round, with an average of 50 contracts on offer per round which translates roughly

to participation in four auctions in a round. Bidders participate in most of the auctions for

which they hold plans but there is still uncertainty, being a plan holder does not guarantee

participation. Figure 1 shows a plot of the number of plan holders for a project, i.e. bidders

who have requested hard copies of plans and who then are listed on the webpage,versus the

number of bidder who bid on the same contract. We might believe that there could be a back-

ward bending relationship between the two, since bidders might be discouraged from bidding if

they see a large number of plan holders. However, there is no such pattern. Moreover, we can

see that sometimes the number of actual bidders exceeds the number of plan holders, i.e. there

are data points above the 45o line. This occurs when plans can be downloaded anonymously

from the MDOT website, introducing uncertainty into the actual number of bidders.

Only one large bidder is active across Michigan whereas only 1/3 of small bidders are active

across the entire state of Michigan. It therefore seems plausible that geographic factors might

affect participation and ignoring them could be misleading. The majority of small bidders bid

on all types of contracts, and only one large bidder bids on all types. Again, this suggests

that ignoring contract characteristics for the participation decisions will lead to potentially

misleading estimates. However, some contract types do not occur very often, for example New

Construction contracts represent 1% of the total number of contracts offered, Traffic operations

are only 8% of total contracts and Roadside Facilities are only 5%.

Existence of Dynamic Synergies in Participation: We now present reduced form evidence on

the probability of participating in an auction. The descriptive analysis here seeks to determine

the existence and qualitative features of dynamic synergies in participation. We estimate a set

of Probits to determine whether participation in at least one auction in the previous period has

an effect on participation in auctions in the current period. This would give an indication of

whether there is evidence for synergies between rounds of auctions. The average participation

rate in auctions is about 7.2%. We can see from Table 4 that participation in an auction in the

previous round increases the probability of participating in a current auction round from 7.2%

7This excludes the possibility that a bidder might have plants in neighbouring states and use those to mobilise
equipment to complete a project. We will be investigating this in future.
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Figure 1: Plan Holder versus Number of Actual Bidders
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to 9.5%. We also control for regular opponent’s previous round entry behaviour. In particular,

NS ,NL is the number of small and large regular bidders who participated in the previous

round of bidding. NS ,NL are jointly significant in this specification. The effect persists when

we include bidder fixed effects. However, the bidder fixed effects reduce the magnitude of the

effect. The dynamic effects also persist when other contract characteristics are included such

as the type of project and the location of the contract. Yet, the effect of state variables is

reduced, while the effect of own participation remains at the same level. We also considered

specifications including a bidder size variable and another specification with bidder fixed effects.

In all specifications these dynamic effects persist in their statistical significance.

Effect of Capacity Constraints on Participation: As shown in Jofre-Bonet & Pesendorfer (2003)

capacity constraints affect bidding behaviour as well as participation behaviour which could

also have a bearing on participation in our market. We abstract from this issue, since capac-

ity constraints would complicate estimation. Bajari & Ye (2003) discuss the possibility of a

simplification which we will explore in future.

Bid Level Decision: Table 5 summarises results from Heckman estimates of the bid level deci-

sion. The engineer’s estimate is clearly the strongest influence on the bid level. State variables

do not have a statistically significant effect on bid levels. In particular, own participation status

has no statistically significant effect on bid levels. The large bidder dummy has a negative sign,

which indicates potential asymmetries between large and small bidders. We also consider a

specification with bidder fixed effects for each regular type bidder. In this specification the own

participation variable is significant and leads to a 7% increase in the bid level. This is evidence
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Table 4: Probit Estimates
Variable Coefficient
Dependent Variable: Participation (Std. Err.)
Participation in 0.1952∗∗

Previous Round (0.0185)

constant -1.5156∗∗

(0.0095)

Large Bidder Dummy 0.2835∗∗

(0.0141)

State Variables
NS -0.004∗

(0.0014)

NL -0.0185∗

(0.0078)

Number of Auctions: 4927
Number of Bidders: 30

that there might be dynamic effects on bidding behaviour from previous round participation.

To summarise, the reduced form evidence suggests that dynamic linkages between auctions

do exist and can have an impact on procurement costs for MDOT. Previous round competition

has a statistically significant effect on current auction procurement costs. There is a positive

effect of previous round participation on current auction participation, which indicates the

existence of some form of synergies. Previous round competition and participation have little

effect on the bid level decision. These results merely indicate patterns in the data and are by

no means causal relationships. This prevents us from making stronger statements about the

causal nature of these outcomes. To understand these effects more fully, we therefore proceed

to construct a structural econometric model that will allow us to understand the dynamic

strategic effects that might be operating in this market and quantify their effect. The next

section outlines the theoretical framework we take to the data.

3 Participation and Auction Game

3.1 Setup and Assumptions

This section outlines the theoretical bidding model. The focus of the analysis is on risk neutral8

long-lived bidders who participate in more than 100 auctions in our data set. Bidders who

participate in fewer auctions are categorised as short lived fringe bidders. Throughout it is

assumed that participation is solely determined by information acquisition costs. These costs

can be interpreted as bid preparation costs, i.e. the opportunity cost of having to discuss the

8The assumption of risk-neutrality can be justified by realising that most regular bidders are large corpora-
tions and are active in various states. We can therefore use a portfolio diversification argument.

8



Table 5: Bid Level Estimates (Heckman)

Variable Coefficient
Dependent Variable: Log of Bid Level (Std. Err.)
Log(Engineer Estimate) 0.9751∗∗

(0.0016)

Participation in 0.0166
Previous Round (0.0106)

constant 0.3862∗∗

(0.0780)

Large Bidder Dummy -0.0323 ∗

(0.0104)

State Variables
NS -0.0009

(0.0006)

NL -0.0038
(0.0033)

Number of Auctions: 4927
Number of Bidders: 30

completion of a project. It is also assumed that once private costs are known, a bidder will

participate in the auction9.

Time is discrete with an infinite horizon. There are two types of regular bidders, large

bidders NL = {1, ..., NL}, who have more than six plants in the state, small bidders NS =

{NL + 1, ..., NL + NS}, who have up to six plants, and a fixed set of fringe bidders NF =

{NL + NS + 1, ..., NF + NS + NL}. We will sometimes denote the total number of bidders as

N = NL + NS + NF . A typical bidder of either type will be denoted by i. The number of

bidders of each type does not vary over time.

The Stage Game: Each time period t is broken down into two stages, the Participation Stage

followed by the Auction Stage. The sequence of events is as follows:

1. Participation Stage

(a) Each bidder i receives a draw from a private information acquisition cost distribution

at the beginning of period t

(b) All bidders decide simultaneously whether to enter the auction

2. Auction Stage

9An alternative participation model is by Samuelson where bidders already know their valuations when they
make their entry decision but have to pay a cost to learn their values. Here the set of bidders will be a selected
sample of bidders who have valuations above a certain threshold value. It is possible that the true participation
decision is a hybrid between the Samuelson (1985) and Levin & Smith (1994) participation game. Li & Zheng
(2009) estimate these different auction models in their paper.
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(a) Contract characteristics c0,t are revealed to all bidders

(b) Without observing the outcome of the first stage, each bidder learns their own com-

pletion cost privately

(c) All participating bidders simultaneously submit bids without knowing the actual

number of bidders participating

(d) The contract is awarded to the low bidder

This setup is similar to Li & Zheng (2009)’s specifications of the entry game. Krasnokutskaya

(2003) assumes that bidders know the identity of their opponents. We assume that bidders

ignore plan holder information, since our data is from a period where it was also possible

to download plan anonymously. The published plan holder list will therefore not always be

complete and there is still uncertainty about the actual level of competition for a contract.

However, if we did choose to include the plan holder information, the only difference from our

model would be the inclusion of an extra stage prior to the participation stage, which determines

plan holder status. This has been excluded for simplicity and, as described previously, the fact

that plan holder status is not recorded for all bidders. We have also undertaken some reduced

form analyses on plan holders and found that the dynamic synergies discussed in the previous

section persist when controlling for plan holder status10. In addition, the inclusion of plan holder

information would require the state space of the dynamic game to be expanded which will make

the estimation more computationally burdensome. We have also assumed that bidders decide

on entry prior to contract characteristics being revealed. However, in future we will correct

these issues by allowing for plan holder information as well as some contract characteristics,

such as project locations, to be used.

As mentioned before, the procurement auctions under investigation are run in rounds, where

up to 100 construction contracts are auctioned off at once. This might introduce scope for possi-

ble synergies between contracts offered in the same round or possible exposure problems, where

bidders win too many contracts at once. These possibilities are not considered in this model,

due to the lack of further information on ex post costs and the department of transportation

not offering contracts in packages. Moreover, only intertemporal substitution of auctions and

not within round substitutions are considered. The rest of the setup is as follows:

Reserve Price: The Michigan Department of Transportation requires that the winning bid be

lower than 110% of the engineer’s estimate. If the Department wishes to accept a bid higher

than this threshold, it is required to write a justification for doing so. The data have a number

of projects being awarded for more than the threshold. This suggests that these restrictions

10To establish this, we turn our attention to participation behaviour of bidders, given that they are plan
holders. In particular we look at the probability of participation given state variables as before for the subset
of bidders who have expressed an interest in the contract. The results suggests that the effects of that state
variables persist with a reduced magnitude. Specifically, the probability of participating is increased by 10% if
a bidder participated in the previous round of bidding. In other words, it does seem that even when controlling
for plan holder status the between round synergies we posited still exist.
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do not come into effect very often. We follow Krasnokutskaya (2003) and assume there is no

binding reserve price. We also follow Li & Zheng (2009) to address the issue that there is a

chance a bidder will face no competitors and could then bid an infinite amount. To avoid this

Li & Zheng (2009) suggest that when a bidder is the only entrant he must compete with the

Department. We, therefore, assume that when a bidder is the sole participant, he will then

face the DOT that draws a completion cost from a regular large bidder’s cost distribution.

Contract Characteristics at time t are denoted by c0,t ∈ C0 and are drawn from the known

exogenous distribution F0(.). Future contract characteristics are unknown to all bidders. The

contract characteristics are the physical attributes of the contract. Our analysis restricts at-

tention to the engineer’s estimate of the project size.

Private Completion Costs: Bidder i of type j = L,S,F draws private costs, ci,t ∈ Cj, indepen-

dently and identically from the cost distribution Fj(ci,t|c0,t) on [c, c], conditional on c0,t. The

assumption of independent private values can be justified by assuming that differences in cost

estimates are due to firm specific factors such as differences in opportunity costs and input

prices.

An action for bidder i in period t is given by the participation decision and the bid submitted

at the auction stage, ai,t ∈ Ai = {0, 1} ∪ [0,∞). Sometimes, the participation decision will be

denoted separately by di,t ∈ {0, 1} and the bid by bi,t ∈ [0,∞).

Public States for Regular Bidder i: Bidder i is characterised by a publicly observable state

variable si,t ∈ Si ≡ {0, 1} that affect its actions. The state is the participation status of a

bidder in the previous round of bidding, i.e. si,t = di,t−1. The vector of all bidders’ state

variables is given by st = (s1,t, ..., sN,t) ∈ S = ×Nk=1Sk. We will sometimes use the notation

s−i,t = (s1,t, s2,t, ..., si−1,t, si+1,t, ...sN,t) ∈ S−i = ×l 6=iSl to denote the vector of state variables

excluding bidder i. The cardinality of the state space S equals ms = 2N .

Private States for Regular Bidder i of type j: Information Costs, φi,t ∈ Φj = [1,∞), are drawn

independently and identically from the conditional distribution Hj(φi,t|si,t) with associated

density hj(φi,t|si,t), and are unobserved by other bidders and the econometrician. Information

costs have a Markov structure and have following transition probability:

hj(φi,t|si,t) = αj(si,t)φ
−αj(si,t)−1
i,t (1)

where log[αj(si,t)] = α0,j + α1,jsi,t. Both parameters are unknown to the econometrician but

known to the bidders. Rivals’ actions and states do not affect the private costs of informa-

tion acquisition. We have experimented with alternative specifications of the information cost

distributions and estimated the model with them, including the exponential and half-logistic,

however neither of these distributions comes close to matching the estimated choice probabili-

ties. We, therefore, settled for the Pareto which provided a better fit. Note, that the structure
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of the information cost distribution is such that participating in an auction in this period will

allow bidders to draw information costs from a more advantageous distribution, i.e. a distrib-

ution with lower mean, in the next period. It is possible to make the information cost depend

on more than one previous period and to allow for cumulative cost advantages. However, this

has been excluded in the current analysis but will be explored at a later date.

Information Costs for Fringe Bidders: Fringe bidder i needs to pay information cost K to learn

her private completion costs.

Discounting: Bidders discount the future with common discount factor β ∈ (0, 1), known to

the econometrician and the bidders and fixed over time. The annual discount factor equals

β = 0.9. Note that this imposes forward-looking behaviour of regular bidders. Hendricks &

Porter (2007) discuss possible strategies for identifying the discount factor using exogenous

variation in the bidding environment.

Conditional Independence: As in Rust (1987), it is assumed that the unobserved information

costs are conditionally independent of observable states. Also note that the structure of the

problem already embodies the usual assumption that the private ”shocks”, here the information

costs, are additively separable. For further discussion of these assumptions see Rust (1994).

Bidder Strategies: Strategies for bidder i of type j are restricted to be Markovian for the entry

game. The strategy for bidder i of type j = L,S,F consists of a participation strategy dσi,j(s, φi)

and a bidding strategy bσi,j(s, ci, c0) and will be denoted σi,j = (dσi,j(s, φi), b
σ
i,j(s, ci, c0)). Formally,

a Markov strategy is a map, σi,j : S×Φj ×Cj ×C0 → Ai. Fringe bidder strategies are denoted

separately by σi,F and the set of all fringe strategies is denoted σF = {σi,F : i = 1, ..., NF}.
Strategies consist of a bidding strategy and an entry strategy dσF .

Beliefs on the Probability of Participation: To form the necessary expectations and to compute

the probability of a bidder winning an auction bidders’ beliefs of the likely number of bidders

based on the decision rules of bidders must be defined. Beliefs are

qi,j(st) ≡ Pr(i of type j enters|si,t, s−i,t) =
∫ ∞

1
1{dσi,j(st, φ) = 1}hj(φ|si,t)dφ (2)

The above is the expected behaviour of firm i of type j when i follows its participation strategy

in σ. The integration is over private information costs φ.

Characterisation of Payoffs for Regular Bidders: A bidder decides whether to enter an auction

and incur the information cost by comparing the value of participation and non-participation.

Let W j
i0(st;σ, σF) be the value of not participating at state st with all opponents following their

strategies prescribed in σ and W j
i1(st;σ, σF) be the value of non participation. We will define

these values more carefully after introducing some more notation. The Bellman equation for

bidder i of type j is then:

W j
i (st, φi,t;σ, σF) = max

{
W j
i1(st;σ, σF)− φi,t,W j

i0(st;σ, σF)
}

(3)
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Next define the ex ante value function as the integrated version of the above Bellman equation,

where all private information is integrated out:

V j
i (st;σ, σF) =

∫ ∞
1

W j
i (st, φ;σ, σF)αj(si,t)φ

−αj(si,t)−1dφ, ∀st (4)

We can then write the choice specific values as:

W j
i1(st;σ, σF) = Ec,c0

[
max
b

[b− c] Pr(i wins|si,t, s−i,t, b, c0;σ, σF)
]

+β
∑

s′t+1∈S
Pr(s′t+1|st, di,t = 1;σ, σF)V j

i (s′t+1;σ, σF) (5)

and the value of not participating

W j
i0(st;σ, σF) = 0 + β

∑
s′t+1∈S

Pr(s′t+1|st, di,t = 0;σ, σF)V j
i (s′t+1;σ, σF) (6)

The value function can equivalently be written as

V j
i (st;σ, σF) = qi,j(st)(W

j
i1(st;σ, σF)− Eφ[φ|φ ≤ ζj(st;σ, σF)]) + [1− qi,j(st)]W j

i0(st;σ, σF) (7)

where ζj(st;σ, σF) = W j
i1(st;σ, σF) − W j

i0(st;σ, σF) and we have made use of an individual

bidder’s decision rule, as defined in (2). This formulation will be useful for estimation later on.

The probability of a bidder winning an auction is given by,

Pr(i wins) = Pr

 i wins against
NL potential L
type bidders

× Pr

 i wins against
NS potential S
type bidders

× Pr

 i wins against
NF potential F

type bidders

 (8)

where if bidder i is of type j and k = 0, 1 indexes the participation status of a bidder

Pr

 i wins against Nj
potential j type

bidders

 = (9)

N0,j − 1{si,t=0}

N1,j − 1{si,t=0}∑
n0,j = 0

n1,j = 1{j=L}

∏
k=0,1

[
CNk,j − 1{si,t=k}

nk,j

]
qj(sk,t)

nk,j (1− qj(sk,t))Nk,j−1{si,t=k}−nk,j [1−Gj(bi,t|c0,t, sk,t)]
nk,j

where Gj(.|co,t, sk) is the equilibrium bid distribution at state sk,t = (k, s−i,t) where k = 0, 1

is the bidder’s own participation status, s0,t and s1,t are then states for a bidder who did not

participate in a previous round and a bidder that did participate, respectively. C
Nk,j−1{si,t=1}
nk,j =(

Nk,j − 1{si,t=k}
nk,j

)
are the usual binomial coefficients, and Nk,j is the total number of bidders

who have participation status k = 0, 1 and 1{j=L} is an indicator. The indicator captures the

aforementioned assumption that a bidder will always face at least one large bidder, either an
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actual large bidder or the Department. 1{si,t=k} is an indicator that equals one if the bidder

has participation status k. If a bidder i is not of type j then the above is simply:

Pr

 i wins against Nj
potential j type

bidders

 =

N0,j ,N1,j∑
n0,j = 0

n1,j = 1{j=L}

∏
k=0,1

[
CNk,j
nk,j

]
qj(sk,t)

nk,j (1− qj(sk,t))Nk,j−nk,j [1−Gj(bi,t|c0,t, sk,t)]
nk,j (10)

Note, that the main difference between (9) and (10), is that in (9) we are correcting for the

number of opponent players that are of the same type as player i. For fringe bidders the

equivalent expression is:

Pr

 i wins against NF
potential F type

bidders

 =
NF∑
nF=0

Pr(nF |st)[1−GF(bi,t|c0,t, st)]
nF (11)

We discuss in detail how we specify the term Pr(nF |st) in the next section.

Markov Perfect Equilibria: A MPE in this game is a set of strategy functions σ∗ such that for

any i of type j and for any (s, φi, ci, c0) ∈ S× Φi ×Cj ×C0,

dσ
∗

i,j(s, φi) = arg max
di∈{0,1}

{
di(W

j
i1(s;σ∗, p∗F)− φi) + (1− di)(W j

i0(s;σ∗, p∗F))
}

(12)

and

bσ
∗

i,j(s, ci, c0) ∈ arg max
bi∈B

[bi − ci] Pr(i wins|s, bi, c0;σ∗, σ∗F) (13)

where B = [0,∞).

Existence of Equilibrium in the Participation Game: Following Auguirregabiria & Mira (2007)

and Pesendorfer & Schmidt-Dengler (2008), the existence of equilibria of the participation game

is analysed in probability space. A bidder will enter an auction if

W j
i1(st;σ, σF)− φi,t ≥ W j

i0(st;σ, σF) (14)

(14) characterises the optimal decision rule. The above can be evaluated before the information

acquisition costs are observed which yields the ex ante optimal choice probabilities, induced by

σ∗, given perceptions of opponents’ entry strategies, σ and σF .

pi,j(st;σ, σF) =
∫ ∞

1
1{W j

i1(st;σ, σF)−W j
i0(st;σ, σF) ≥ φ}dHj(φ|si,t) ≡ Λi,j(st;σ, σF) (15)

pi,j is therefore the optimal choice probability induced by the MPE σ∗ defined previously.

Equilibrium existence of the participation game is easily shown by looking at the ex ante

optimal choice probabilities defined previously. Let the set of ex ante choice probabilities be
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given by Λ(q) = {Λi,j(st;σ) : i = 1, ..., N & j = L,S}, these are the choice probabilities induced

by the strategies in σ, where q = {qi,j(s′) : i = 1, ..., N & j = L,S & s′ ∈ S} is the set of entry

decision rules for all regular bidders, as defined in 2. Equilibrium points are therefore fixed

points, i.e. let p be the set of optimal choice probabilities for every state and every bidder then

p = Λ(p), (16)

since beliefs in equilibrium are consistent. These choice probabilities are well defined and

continuous in the compact set of bidder’s choice probabilities. Brouwer guarantees that at least

one set of beliefs exist for this system.

Existence of Equilibrium in the Auction Game: The auction game resembles existing static auc-

tions considered in the theoretical literature. First note that the following hold: the completion

cost space Cj is a separable metric space with measurable partial order, the joint density of

types is bounded and atomless, action space is compact, and payoffs are continuous for every

c ∈ [c, c]. In our case the interim payoffs are log supermodular and therefore single crossing

holds. Following Reny (2008), the auction game we consider has an equilibrium in monotone

pure strategies.

4 Estimation

Our data consists of repeated observations of bids, participation decisions for all players and

contract characteristics for T periods.

data = {bi,t, di,t, c0,t : i = 1, ..., N ; t = 1, 2, ..., T} (17)

In this section we show how private costs can be inferred from observed bids. We then show

how the participation model can be estimated using an asymptotic least squares estimator.

The first step requires the estimation of auxiliary parameters of the model, i.e. the optimal

choice probabilities of participation pi,j(st) and the equilibrium bid distributions. We then use

the first order condition for an optimal bid to compute an expression for privately known costs

as a function of the submitted bid, the equilibrium bid distribution and the optimal choice

probabilities. We then outline an optimal minimum distance estimator that finds parameters

which minimise the distance between the non-parametrically estimated choice probabilities and

the choice probabilities implied by our model.

4.1 Optimal Choice Probabilities

Per period profits do not depend on the identity of the bidder but merely on the number of

each type of bidder, i.e. the number of large and small bidders, all relevant information in

{di,t−1 : i = 1, 2, ..., N} can be captured in a bidder’s own participation status di,t−1 and the

number of competitors of each type, defined as NL,t =
∑NL
k∈NL\i dk,t−1 & NS,t =

∑NS
k′∈NS\i dk′,t−1.
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Following Auguirregabiria & Mira (2007), the optimal conditional choice probabilities at some

state sm = (s̃, ÑL, ÑS) are estimated by simple frequency estimators, for states not observed

the nearest neighbour is used. The estimator has the following form:

p̂j(s̃, ÑL, ÑS) =

∑
i∈Nj

∑T
t 1{di,t = 1, si,t = s̃, NL,t = ÑL, NS,t = ÑS}∑

i∈Nj

∑
k=0,1

∑T
t 1{di,t = k, st = s̃i, NL,t = ÑL, NS,t = ÑS}

(18)

Ideally, we would make use of kernels to smooth over states that we do not observe and are

exploring possible approaches to this. We use these probabilities as inputs into the computation

of the transition matrices and the period payoffs. The estimation routine does not require us

to use nearest neighbours. We could equally only use choice probabilities for observed states

and then estimate the structural parameters. However, this would be inconsistent with the

auction game, since bidders take expectations over all possible number of bidders and not just

over observed bidder configurations. At a later stage we will explore alternative methods that

will not require the use of unobserved states.

Fringe Bidders:Fringe bidders enter with same probability p∗ conditional on state variables, as

specified by their entry strategy in σ∗F . With a large number of potential bidders, we model

the number of fringe bidders in an auction as a poisson process with parameter δ depending on

s, similar to Bajari & Hortacsu (2003). In other words, the probability of observing nF fringe

bidders is given by:

Pr(nF |s̃) =
e−δ(̃s)δ(s̃)nF

nF !
(19)

where log[δ(s̃)] = δ0 + δ1ÑS + δ2ÑL.

4.2 Bid Distributions

Following Athey et al. (2008) and Jofre-Bonet & Pesendorfer (2003), bid distributions are

estimated parametrically and assumed to follow Weibull distributions. We assume that the

shape parameter, ψ1,j and scale parameter, ψ2,j, depend on the contract size and the state

variables. The bid distributions have the following functional form,

Gj(bi,t|c0,t, si,t, s−i,t) = 1− exp

−( log(bi,t + 1)

ψ2j(c0,t, si,t, s−i,t)

)ψ1j(c0,t,si,t,s−i,t)
 (20)

where ψk,j(.) is given by lnψk,j(c0, si,t, s−i,t) = ψk,0j + ψk,1jc0,t + ψk,2jsi,t + ψk,3jNL,t + ψk,4jNS ,

for j = L,S & k = 1, 2.

Fringe Bidders: We assume that the fringe bid distribution is also described by a Weibull

distribution.

GF(bi,t|c0,t, st) = 1− exp

−( log(bi,t + 1)

ψ2F(c0,t, st)

)ψ1F (c0,t,st)
 (21)

where logψk,F(c0,t, st) = ψk,F ,0 + ψk,F ,1c0,t + ψk,F ,2NS + ψk,F ,3NL for k = 1, 2, where the last

two terms in the expression are the number of large and small bidders who participated in an

auction in the previous round.
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4.3 Private Costs

The first order condition for an optimal bid can be re-written to yield an expression for private

information ci,t, in terms of observables:

ci,t = bi,t − [ηL(bi,t, st, c0,t;σ
∗) + ηS(bi,t, st, c0,t;σ

∗) + ηF(bi,t, st, c0,t;σ
∗
F)]−1 (22)

where

ηj(bi,t, st, c0,t;σ
∗) =

∂ Pr
(

i wins against Nj
potential j type bidders bi,t, st, c0,t;σ

∗
)
/∂bi,t

Pr
(

i wins against Nj
potential j type bidders bi,t, st, c0,t;σ∗

)
 (23)

The second term in (22) is the markup term. The exact form of (23) can be found in the

appendix. The above closely follows Guerre et al. (2000), except that expectations are taken

over the number of actual competitors with the number of potential competitors constant

over time. Quasi-valuations can be computed by estimating the equilibrium bid distributions

Gj(.|c0,t, si,t, s−i,t) and substituting these into expression (22). This allows for point-wise esti-

mation of the private cost distribution.

4.4 Parameters of the Participation Game

The primitives are estimated by finding parameters that minimise the distance between the non

parametrically estimated choice probabilities and the choice probabilities implied by the model.

Values can be computed from the data conditional on the structural parameters, these can then

be used to compute optimal choice probabilities for our model. Let θ = (α0,L, α1,L, α0,S , α1,S).

Given the Pareto distribution assumption on information costs this allows for a simple form of

the value function. We can use equation (7) together with the Pareto assumption to re-write

the value function for bidder of type j as:

V j(si,t, s−i,t;σ
∗, σ∗F , θ) = (24)

γj(st, σ
∗)W j

1 (si,t, s−i,t;σ
∗, σ∗F , θ) + [1− γj(st, σ∗)]W j

0 (si,t, s−i,t;σ
∗, σ∗F , θ) +

αj(si,t)

1− αj(si,t)

where γj(st, σ
∗) = pj(st)−αj(si,t)

1−αj(si,t)
11. The next step involves substituting the expression for an

optimal bid into the expected period payoff function. Specifically, changing the variable of

integration from cost, c to bids b yields

πj(si,t, s−i,t;σ
∗, σ∗F) = Ec0

[∫ b

0

Pr(i wins|si,t, s−i,t, b, c0;σ∗, σ∗F)

ηL + ηS + ηF
gj(b|si,t, s−i,t, c0)db

]
(25)

11This result follows if one computes the conditional expectation defined in (7) using the Pareto assumption.
Specifically, in equilibrium pj(s)Eφ(φ|φ ≤ ζj(st)) =

∫ ζj(st)

1
φαjφ

−αj−1dφ = αj/(1 − αj)(W
j
1 − W j

0 )−αj+1 −
αj/(1− αj). The result follows if we then note that 1− pj = (W j

1 −W
j
0 )−α
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where ηL, ηS and ηF are as defined in (23). The above can be used in the ex-ante value function

which is then given by

V j(si,t, s−i,t;σ
∗, σ∗F , θ) = bj1(st, σ

∗)πj(si,t, s−i,t;σ
∗, σ∗F) (26)

+β

γj(st, σ∗) ∑
s′t+1∈S

Pr(s′t+1|st, di,t = 1;σ∗) + [1− γj(st, σ∗)] Pr(s′t+1|st, di,t = 0;σ∗)



×V j(s′t+1;σ∗, σ∗F , θ) +
αj(si,t)

1− αj(si,t)

Now let Πj(σ∗, σ∗F) = [πj(s′;σ∗, σ∗F)]s′∈S be the vector of expected period payoffs , V j(σ∗, σ∗F , θ) =

[V j(s′;σ∗, σ∗F , θ)]s′∈S be the vector of values, P j(st) = [pj(di,t = 1|s′;σ∗)]s′∈S is the vector of

choice probabilities, Γj(σ∗) = diag([γj(s′, σ∗)]s′∈Si
) and M j

1 (σ∗) is the ms ×ms transition ma-

trix induced by participation in the current round of auctions. In other words, row s ∈ S of

the transition matrix is given by [Pr(s′|s, d = 1;σ∗)s′∈S]. And let Aj = diag([αj(s
′)]s′∈Si

) be a

ms ×ms diagonal matrix. The matrix equation for the value function can then be written as

follows:

V j(σ∗, σ∗F ; θ) = Γj(σ∗)Πj(σ∗, σF) + β[Γj(σ∗)(M j
1 (σ∗)−M j

0 (σ∗)) +M j
0 (σ∗)]V j(σ∗, σ∗F ; θ) (27)

+(I − Aj)−1Aj · ι

where ι is a ms × 1 vector of ones. The above can be re-arranged to yield

V j(σ∗, σ∗F ; θ) = [I − βΓj(σ∗)(M j
1 (σ∗)−M j

0 (σ∗))− βM j
0 (σ∗)]−1 (28)

×[Γj(σ∗)Πj(σ∗, σ∗F) + (I − Aj)−1Aj · ι]

To compute the value function estimates of the choice probabilities, defined above, and the

period payoffs are required. The period payoffs can be computed by numerically integrating the

expression in (25). To compute the expectation with respect to bi,t in (25) Gaussian quadrature

methods are applied as outlined in Judd (1998) and with respect to contract characteristics

the payoffs are evaluated at a fixed random sample of 50 contract characteristics and simple

averages are taken. Given the above we can then compute the optimal choice probabilities

implied by our model. The probability that a bidder enters an auction, given her participation

in the previous round of bidding, is given by

pj(si,t, s−i,t;σ
∗, σ∗F) = (29)

Hj

{[
πj(st;σ

∗, σ∗F) + β
∑

s′t+1∈S
[Pr(s′t+1|st, di,t = 1;σ∗)− Pr(s′t+1|st, di,t = 0;σ∗)]V j(s′t+1;σ∗, σ∗F)

]
si,t

}
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Stacking the above expression over states and bidder types yields p = Λ(p; θ). The estimator

forces the equality constraints p− Λ(p; θ) = 0 to estimate the structural parameters. In other

words the estimator given first stage estimates is given by

min
θ

(p̂− Λ(p̂; θ))′ Ŵ (θ) (p̂− Λ(p̂; θ)) (30)

where W is the optimal weight matrix which depends on the covariance matrix of auxiliary

parameters and the bid distributions and the derivatives of the estimating equations with

respect to the auxiliary parameters and the parameters of the bid distribution functions12.

Specifically, the optimal W is given by

W (θ) =
([

(I : 0)−5(p,Ψ)′Λ(p; θ)
]

Σ
[
(I : 0)−5(p,Ψ)′Λ(p; θ)

]′)−1

(31)

0 is a (2∗ms)×mψ matrix of zeros, where mψ is the number of parameters in the bid distribution

function, Ψ is the vector of bid distribution parameters, and Σ is the variance covariance matrix

of the choice probability estimator and of the bid distribution parameters. The optimality of

this weight matrix follows from the conditions presented in Gourieroux & Monfort (1995).

Asymptotic normality of this estimator is also established there. Our estimator is different

from Pesendorfer & Schmidt-Dengler (2008) since payoffs are known and computed in the first

stage of estimation. As a result, our weight matrix will not only depend on the variance

covariance matrix of the optimal choice probabilities but also on the bid distribution estimates.

Given that our first stage estimates are consistent and asymptotically normal we can directly

apply the results in Gourieroux & Monfort (1995).

4.5 Identification

Identification of the latent values of bidders follows directly from the conditions from Guerre

et al. (2000). In particular as pointed out by Athey & Haile (2007), the identification result

from Guerre et al. (2000) can be re-interpreted as being conditional on the realisation of auction

specific covariates and state variables. For identification we require monotonicity of the markup

term in (22) conditional on auction covariates and state variables.

The parameters of the dynamic game are overidentified. This can be established follow-

ing Pesendorfer & Schmidt-Dengler (2008). In particular, we can also write an equilibrium

characterization linear in the unknown parameters for a bidder that is just indifferent between

entering and not. This equation system will have more equations than unknowns. In our case

period payoffs are known, except for the bid distribution and the optimal choice probabilities.

The only unknown parameters of the dynamic game are therefore those of the information cost

distribution. The best estimator for our problem is the asymptotic least squares estimator

outlined above making use of the optimal weight matrix.

12Note that the special feature of auction participation games as opposed to standard market entry games, is
that the payoffs do not contain any unknown parameters. As a result, for certain information cost specifications
we can directly compute the information cost parameters, for example this is the case with the exponential
distribution.
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5 Results

This section presents results of the estimation. We begin by summarising the estimation of

the auxiliary parameters followed by estimation results on period payoffs and the structural

parameters. In each section we provide evidence on the goodness of fit of each estimator.

5.1 Optimal Choice Probabilities

We estimate choice probabilities by frequency estimators, as shown in (39), and use these two

compute the transition matrices. Goodness of Fit : To test the goodness of fit we compare

the average number of large and small bidders across all auctions in our data with simulated

numbers computed using our choice probability estimates. For each realisation of the state

variables observed in the data, we select the associated choice probability and draw a uniform

random variable on [0, 1], if the choice probability is greater than the uniform variable the

bidder enters. We complete this procedure for large and small bidders separately. We compute

the mean simulated number of large and small participants across all auctions and compare

with the data. We find that the mean actual number of bidders is 0.457 and the simulated

mean is 0.448, with standard deviations given by 0.656 and 0.637, respectively. The means are

not statistically different at 99% confidence. The average number of small bidders is 1.723 with

standard deviation 1.754. The simulated number is 1.7290 with standard deviation 1.251. The

means are not statistically different at 99% confidence.

5.2 Bid Distribution Estimates

The parameters of the bid distributions are shown in Table 6. Goodness of Fit : To test the

goodness of fit of the bid distributions, we follow Jofre-Bonet & Pesendorfer (2003) and Athey

et al. (2008) and compute the mean and standard deviation of the observed bids across all

auctions and compare with means and standard deviations of bids generated by the estimated

distribution. The computation of the means proceeds as follows. First we extract the bids,

the number of bids submitted in each auction and the associated auction covariates including

the state variables from the data. We compute the mean and standard deviation of all bids

observed in our data. We then use the data on the number of bids submitted in an auction

and the covariates to draw bids from our estimated distribution. We then compute the mean

and standard deviation across all drawn bids. This computation is done separately for large

and small bidders.

For large bidders the mean of observed log bids is 13.503 and the simulated mean is 13.5116,

with standard deviations given by 1.1298 and 1.1232. The difference between the two means

is statistically not significant at 99% confidence. Similar results are found for the small bidder

distributions, with an observed mean of 13.512 and a simulated mean of 13.596, with standard

deviations 1.1232 and 1.2287, respectively. The two means are not statistically different at 99%

confidence. We conduct similar tests for the fringe bidder distributions and find similar results.
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We also simulate a low bid from the distributions. This test is more appropriate since

the minimum bid determines the procurement costs of MDOT. We take the minimum bid in

each auction by large and small bidders across all auctions, the number of large and small

bids submitted and the associated auction covariates. We compute the mean and standard

deviation across the entire set of minimum bids for each type of bidder separately. We then

draw the same number of bids as observed in the data from our estimated distribution for each

set of auction. We then compute the minimum bid in each auction and compute the mean and

standard deviation across all auctions.

For this test, we follow Athey et al. (2008) and we consider the means and distribution

of the bid residuals. Specifically, given the Weibull distribution we can write a bid from

bidder i of type j as bi,t = ψ2,j(c0,t, si,t, s−i,t)εi,t(c0,t, si,t, s−i,t) which can be re-arranged as

bi,t/ψ2,j(c0,t, si,t, s−i,t) = εi,t(c0,t, si,t, s−i,t). We then compute the bid residuals for the observed

minimum bids and for our simulated minimum bids. We find that for large bidders the means

of the residuals are given by 0.994 and 0.988, for the actual and simulated bids, respectively.

The standard deviation for the observed bids is 0.013 and for the simulated it is 0.020. The

means are not statistically different at 95% confidence. For small bidders the observed mean is

0.985 with standard deviation 0.019 and the simulated mean is 0.939 with standard deviation

0.068. The means are statistically not different at 95% confidence. We therefore find that the

fit is good for both distributions.

Effect of Individual Variables on Large Bid Distribution: We compute the mean of our estimated

Weibull distribution for the average engineer’s estimate and value of the state variables.

Log of Engineer’s Estimate: Increasing the engineer’s estimate by 0.01 increases the mean from

by 1%, the variance decreases from 0.0453 to 0.0452.

State Variables: Increasing NL by one increases the mean of the distribution by 0.8% and the

variance increases to 0.0535. Increasing NS by one increases the mean by 6.8% and the variance

increases to 0.2623. Very similar results are found for the small bidders distribution.

5.3 Estimation of Private Costs and Markups

Recall that markups over costs are defined in (22). We substitute the estimated density and

bid distribution into this expression evaluated at the observed bid and its associated covariates.

On average the observed markup for large bidders is equal to 21.46%. The average markup

for a winning bid is equal to 25.89%. The average markup for a small bidders is 21.08%. The

average markup for a winning small bid is 23.76%. The average markup for a fringe bidder is

equal to 24.27%.

Krasnokutskaya (2003) estimates her model using MDOT data as well, however for a dif-

ferent time period, and finds markups in the order of 8% and for a winning bid the markup

is 16%. The main difference between these results and ours is the inclusion of unobserved

heterogeneity which reduces the amount of variation due to private information. It is possible,
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Table 6: Bid Distribution Estimates Whole Sample

Variable Coefficient
(Std. Err.)

Large Small Fringe
ψ10, constant 1.8385 1.8351 1.4342

(0.1062) (0.0408) (0.0020)

ψ11, engineer 0.1897 0.1898 0.2122
(0.0092) (0.0033) (0.0002)

ψ20, constant 1.6591 1.6593 1.6488
(0.0104) (0.0221) (0.0001)

ψ21, engineer 0.0702 0.0702 0.0710
(0.0007) (0.0014) (0.0000)

State Variables

ψ12, i’s state, si,t = di,t−1 0.0299 0.0263
(0.0698) (0.0263)

ψ13, # of large bidders in previous round, NL 0.0071 0.0069 0.0003
(0.0029) (0.001) (0.0001)

ψ14, # of small bidders in previous round, NS -0.0602 -0.0573 -0.0363
(0.0316) (0.0071) (0.0004)

ψ22, i’s state, si,t = di,t−1 0.0018 0.0018
(0.0023) (0.003)

ψ23, # of large bidders in previous round, NL -0.0002 -0.0002 0.0001
(0.0001) (0.0003) (0.0001)

ψ24, # of small bidders in previous round, NS 0.0010 0.0010 -0.0008
(0.0014) (0.0015) (0.0000)

Number of Auctions= 4927
Number of Bidders= 30
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Figure 2: Bid Function for Large Bidders
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as in Athey et al. (2008), to include parametric unobserved heterogeneity into the bid distri-

butions here and estimate a Weibull-Gamma mixture. We aim to implement this feature in

the future. Jofre-Bonet & Pesendorfer (2003) find markups that exclude dynamic effects on

average roughly equal to 20%. Bajari et al. (2006) and Bajari et al. (2004) estimate markups

that are equal to 6%.

In Figure 3 we plot the cost distributions for the sample average of the engineer’s estimate

and at the most frequently observed state variables, which occurs in 13% of the auctions. We

can see that the large bidder distribution has a lower mean, which we would expect given that

a large bidder is more able to mobilise equipment across the state of Michigan. Note, that this

was not imposed during the estimation. The average cost for a large bidder is $521,130.04 and

for a small bidder the mean is $836,069.91. Moreover, the difference in costs is statistically

significant at 99% confidence.

Bidding Function: Given our estimates we can compute the bidding function. We use

(22) to compute an optimal bid for different completion costs. The bid function is plotted by

holding the state variables fixed, taking an average of the engineer’s estimate and varying the

completion cost. The results can be seen in Figure 2. The bid function approaches the 45◦ line.

We also find that for bids at the lower end of the bid support, we compute negative costs which

we find implausible. When we find negative costs we set these equal to zero, as in Jofre-Bonet

& Pesendorfer (2003).

We can also compare how bidding behaviour changes as a bidder’s own participation status

changes, i.e. when si,t = 0 and when si,t = 1 and all other state variables remain unchanged.
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Figure 3: Completion Cost Distributions For Most Frequently Realised State
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Figure 4: Bid Function for Large Bidders
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The results are shown in Figure 4. It can be seen that a bidder who has si,t = 1 bids higher.

Participation in a previous round improves a bidder’s cost position. As a result, bidders who

did not participate in a previous round of bidding, even if they are of the same type as their

opponent, are more likely to have worse entry cost draws. They will then bid more aggressively.

Recall that from the reduced form analysis we found a positive effect of own participation on

the bid level. The effect of own participation status was stronger and statistically significant

when including bidder fixed effects. This would be in line with our previous intuition and the

computed bidding functions.

5.4 Period Payoffs

We compute ex ante expected period payoffs using (25) yielding payoffs as a function of public

states. These results will be used as inputs in the estimation of the structural parameters. The

average period payoff over all possible states for a large bidder is $111,901.14 and for a small

bidder it is $43,539.92.

5.5 Information Costs

The parameters for the participation game are presented in Table 7. Given the parameters

we can compute the average expected sunk information cost, i.e. Eφ(φ|φ ≤ W j
1 (st;σ

∗, σ∗F) −
W j

0 (st;σ
∗, σ∗F)) averaged over all states. The information cost amounts to $9212.10 for a large

bidder and $3979.90 for a small bidder. For states where a bidder participated in the previous

round the average information cost is then $8052.30 and for states where a bidder did not

participate is given by $10,371.97. For small bidders the average information cost for states

where they participated in the previous round is given by $4043.30 and for states they did not

the average information cost is $3916.50. Average information cost sunk by smaller bidders are

lower than large bidders, since small bidders require very low draws for the information costs in

order to enter. As shown in the previous section, small bidders’ period payoffs are on average

much lower than large bidders, therefore a small bidder requires a much lower information cost

to induce participation, since the expected profits from participation are not as high as a large

bidder.

Goodness of Fit: To test the goodness of fit of our model we simulate the number of entrants

for all observed states and compute the average number of bidders across all auctions. We

draw information costs from our estimated distribution for φ and compare this to the value of

entering given by the difference W j
1 (st;σ

∗, σ∗F) −W j
0 (st;σ

∗, σ∗F). The average number of large

bidders is 0.4572 with standard deviation 0.6555. The model predicts an average number of

0.3920 with standard deviation 0.5930. The model underpredicts the number of entrants on

average. On average there are 1.7233 small bidders with standard deviation 1.7537. The model

predicts an average number of entrants equal to 1.4210 with standard deviation 1.1528.
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Table 7: Structural Parameter Estimates
Variable Coefficient

(Ltd. Err.)
αL,0 -4.8346

(0.0101)

αL,1 0.2245
(0.0064)

αS,0 -5.2267
(0.003)

αS,1 0.1322
(0.0001)

6 Inefficiencies

6.1 Inefficiencies due to Auction Format

When bidders are asymmetric it is possible that a first price sealed bid auction will lead to

inefficient outcomes. In our model there are two potential sources of asymmetry. The first is

through the size of the bidder which affects the completion costs and the other is through the

dynamic synergies in participation. To determine whether this is the case in the MDOT data

we use the primitives to estimate how often the low bidder does not win the auction, holding

the entry process fixed.

We take a random sample of 250 contract characteristics and compute the simulations

for the same set of contracts 1000 times. The steps of the simulation are as follows. We

draw information costs from our estimated information cost distribution and use the estimated

strategies of large and small bidders to determine entry. For fringe bidders we use the estimated

poisson model to determine the number of entrants. After the entrants have been determined

we draw bids and use the inverse bidding strategy to compute costs. We then compute the

fraction of auctions the low bid does not correspond to the lowest cost. We find that this occurs

on average in 10.84% of the auctions. The average difference between the low bidder and the

winner’s cost is 4.31% of the engineer’s estimate. Krasnokutskaya (2003) estimates the average

probability of inefficient outcomes in her MDOT data at 5%. Jofre-Bonet & Pesendorfer (2003)

find a 32% average probability of the low bidder not winning.

6.2 Changing the Auction Format: Open Auctions

Given that there are inefficiencies due to auction format we consider changing the auction rule.

The open auction rule can lead to efficient outcomes, when bidders play the dominant strategy

equilibrium in which they bid their costs truthfully. We exclude fringe bidders in this analysis,

since we have not explicitly estimated the primitives that drives fringe participation behaviour.

As mentioned before, we focus on the dominant strategy equilibrium where all bidders bid their

costs. We then look at the change in procurement costs relative to the original format and the
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presence of fringe bidders. We simulate this auction using the same random sample of 250

contracts used in the efficiency measurement exercise.

As mentioned before, conditional on entry, the auction stage game can be easily simulated

given that the strategies we focus on take the simple of form of bidding one’s costs. We draw

costs for the entrants and compute the auction price and profits. If there is only one bidder in

an auction, they must compete against the MDOT who draw their costs from a regular large

bidder completion cost distribution. The next step is to compute an equilibrium for the entry

game. The main challenge we face here is that there are potentially multiple entry equilibria,

as described in Doraszelski & Satterthwaite (2009). We initially search for equilibria using the

estimated entry choice probabilities as starting values.

The first step in this exercise is to compute the expected period payoffs for the auction stage

game at all states for a player of type j.

πIIj (s) =
NF∑
nF

NS − 1{j=S}∑
nS

NL − 1{j=L}∑
nL

Pr(nF , nS , nL)Ec0,c,x[(x− c)1(c < x)|s] (32)

where x = min{ck}nF+nS+nL
k=1 , is the lowest cost of the participating opponent bidders. To

evaluate the above integral, we apply Monte Carlo techniques. Given the payoffs we can then

search for the optimal set of choice probabilities that are fixed points of the aforementioned

equilibrium condition

p = Λ(p) (33)

There are potentially multiple fixed points for the above, however for this counterfactual exercise

we follow Ryan (2006) and will focus on only one. Procurement Costs: We now compare the

procurement costs in the simulated open auction with the realised procurement costs. Using

the same intuition as in Athey et al. (2008), we would expect the open auction to discourage

entry from small bidders, since their chances of winning are reduced as large bidders no longer

shade their costs more than small bidders. As a result, this could then also lead to an increase

in the procurement costs. In our case the procurement cost in the open auction are on average

133.33% of the engineer’s estimate with standard deviation 24% and the observed procurement

costs are 95.51% with standard deviation 14%. The mean procurement costs are statistically

different. We also compare the procurement costs if we made information costs zero, excluded

fringe bidders and used an open auction format. In this environment all bidders enter since

participation is costless and the dynamic effects have been removed in this market. In this case

the average procurement costs are 11.94% of the engineer’s estimate.

7 A Brief Comparison to a Static Participation Model

In this section we present and estimate a static version of our dynamic game in order to

determine the effect of ignoring dynamic linkages in these auctions. The estimation approach
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we take here is similar to the dynamic game estimator presented previously. However, the

simple structure of these auction games, specifically the fact that period payoffs are known and

do not contain unknown parameters aside from the bid distributions and entry probabilities,

allows for an even more straightforward estimation approach.

The static model echoes our dynamic participation game. Bidder’s participation decision is

again completely determined by the information cost which is unobserved by the other players.

Bidders compare the information acquisition cost with the expected profit from entering the

auction, if this difference is positive they enter, if not they stay out.

7.1 Setup

Bidders are risk-neutral and are categorised as large (L), small (S) and fringe (F) bidders, as

in the main paper. Denote the set of bidders of type j as Nj. The game is structured as before.

Private Completion Costs: Bidder i of type j = L,S,F draws private costs, ci ∈ Cj, indepen-

dently and identically from the cost distribution Fj(ci|c0) on [c, c], conditional on c0,t.

Information Costs for type j bidder: All types of bidders draw information costs from a Pareto

distribution with density

h̃j(φi) = α̃jφ
−α̃j−1
i (34)

Let H̃j denote the distribution of φ for type j.

Strategies consist of a bidding strategy and an entry strategy. A bidding strategy maps from

the completion cost to a bid. The entry strategy specifies a cut-off value for entry costs. Denote

the participation choice separately as dj for bidder of type j. Denote the set of strategies for

each type separately σ̃ = {σi,j, i = 1, ..., N &j = L,F ,S}. Let qj be the ex ante expected

entry probability for a bidder of type j, in other words

q̃j =
∫ ∞

1
1{dσ̃j (φ) = 1}h̃j(φ)dφ (35)

The above is the entry probability of a bidder if they follow their strategies specified in σ̃j.

Payoffs: A bidder’s expected profit conditional on entry is given by:

π̃j(c0, ci, σ̃) = max
b

[b− ci] Pr(i wins|b, c0; σ̃) (36)

where

Pr(i wins) = Pr

 i wins against
NL potential L
type bidders

× Pr

 i wins against
NS potential S
type bidders

× Pr

 i wins against
NF potential F

type bidders

 (37)

and where
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Pr

 i wins against Nj
potential j type

bidders

 = (38)

Nj−1{i∈Nj}∑
nj=1{j=L}

(
Nj − 1{i∈Nj}

nj

)
q̃
nj

j (1− q̃j)Nj−1{i∈Nj}−nj [1−Gj(bi,t|c0,t)]
nj

where 1{i∈Nj} is an indicator that equals one if bidder i is of type j

Equilibrium: A type symmetric equilibrium is a collection of bidding strategies for each type

of bidder and entry strategies with property that, bidder’s bid strategy maximises profits con-

ditional on entering and each bidder only enters if the expected profits, prior to revelation of

contract characteristics, exceeds information acquisition cost. Denote the equilibrium strategies

as σ̃∗. Denote the equilibrium entry probability for a bidder of type j as pj.

7.2 Estimation

7.2.1 Entry Probability

We estimate the entry probability for each regular bidder type separately and non-parametrically

by a simple frequency estimator.

p̂j =

∑
i∈Nj

∑T
t 1{di,t = 1}∑

k=0,1

∑T
t 1{dj,t = k}

(39)

Entry probabilities for large players is given by 11.43% and for small players 6.63%. We test

the goodness of fit of these estimates by assessing whether the estimator can reproduce the

average number of entrants of each type. We find that they indeed can.

For fringe bidders we estimate entry probabilities by assuming that the number of fringe

bidders follows a poisson process with distribution given by:

Pr(nF) =
e−δ̃ δ̃nF

nF !
(40)

7.2.2 Private Costs

We assume that all bidder types have the same functional form for their bid distributions. All

types have bid distributions that follow a Weibull distribution, with shape and scale parameters

functions of the contract size.

G̃j(bi,t|c0,t) = 1− exp

−( log(bi,t + 1)

ψ2j(c0,t)

)ψ1j(c0,t)
 (41)

for j = F ,L,S where logψk,j(c0,t) = ψk,j,0 + ψk,j,1c0,t for k = 1, 2. The fit of the bids is tested

following the same procedure outlined in the main paper. We find that the bid distributions fit

well. We then use the first order condition for an optimal bid to infer private costs as described

previously. In other words private costs can be estimated by computing:

ci,t = bi,t − [η̃L(bi,t, c0,t; σ̃
∗) + η̃S(bi,t, c0,t; σ̃

∗) + η̃F(bi,t; σ̃
∗)]−1 (42)
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where and

η̃j(bi,t, c0,t; σ̃
∗) =

∂ Pr
(

i wins against Nj
potential j type bidders bi,t, c0,t; σ̃

∗
)
/∂bi,t

Pr
(

i wins against Nj
potential j type bidders bi,t, c0,t; σ̃∗

)
 (43)

The above expression will have a similar structure to the dynamic version.

7.2.3 Entry Cost Distribution

Given the first stage estimates we can directly compute the parameters of the entry cost distrib-

ution. The first step involves computing the expected profits from an auction, prior to contract

characteristics being revealed. This involves substituting the expression for an optimal bid into

the payoff function in (36). We then integrate over private costs and contract characteristics.

A change of variable of integration from c to b yields

πj(σ̃∗) = Ec0

[∫ b

0

Pr(i wins|b, c0; σ̃∗)

η̃L + η̃S + η̃F
g̃j(b|c0)db

]
(44)

We use Gaussian quadrature to evaluate the integral with respect to bids and take a random

sample of 50 contract characteristics and take simple averages. A bidder will enter an auction

if

π̃j(σ̃∗) ≥ φi (45)

This optimality condition can be evaluated before the information costs are known, by inte-

grating over information cost acquisitions, which yields the ex ante optimal entry probabilities

pj =
∫ ∞

1
1{πj(σ̃∗) ≥ φ}h̃j(φ)dφ = H̃(π̃j(σ̃∗)) = 1− [π̃j(σ̃∗)]−α̃j (46)

We can now simply rearrange the above expression to infer the value for αj for each type of

bidder, which yields

α̃j = − log(1− pj)
log(π̃j(σ̃∗))

(47)

Everything on the right hand side is known and we can therefore infer the value of α̃j.

7.3 Results and Comparison to Dynamic Model

We summarise the main results of the estimation below.

• Markups are comparable to the dynamic model, average markups across all auctions for

large bidders is 25.08% and for small bidders is 24.13%.

• Completion costs are on average higher for small bidders than for large bidders. We

compute costs for a bidder at the average engineer’s estimate. We find that average

costs for a large bidder are $475,376.40 and $570,297.98 for a small bidder, with standard

deviations $134,688.55 and $568,837.87 for large and small players respectively. The

means are statistically different at 95% confidence.
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• Entry costs sunk by bidders are on average $3553.28 for large bidders, and $4283 for small

bidders.

• Inefficiencies: Holding the entry process fixed, we simulate auctions for the same random

sample of 250 auction covariates used previously, and repeat the experiment 1000 times.

We test the efficiency of the auctions using the same procedure outlined in the main

paper. It turns out that only 0.1% of the auctions are inefficient with an average cost

difference of 0.29% of the engineer’s estimate.

To summarise, the estimated entry costs are on average lower than the dynamic model. Average

markups are roughly in line with the dynamic estimates. However, the major discrepancy

between the two approaches are in the measurement of inefficiencies due to the first price auction

rule. The static estimates imply virtually zero inefficiencies. One possible reason for the low

level of inefficiencies is due to the fact that the asymmetry between bidders who participated in

a previous round of bidding has been removed from the static framework. Recall the discussion

of the bidding function in the previous section. In Figure 4 we saw that bidders of the same

type bid differently for participation statuses si,t = 1 and si,t = 0. The static model, on the

other hand, does not allow for this asymmetry between bidders of the same type. Ignoring this

asymmetry between bidders who are of the same type but have different states would make

the first price auction seem less inefficient than it actually may be. Unfortunately, we cannot

compare these results with other papers that consider static auctions with participation such

as Athey et al. (2008) or Li & Zheng (2009) since they either do not measure inefficiencies due

to auction rules or only consider symmetric auction models.

8 Conclusion

This paper demonstrates the feasibility of estimating a dynamic auction game with participation

and that dynamics in participation should not be ignored. This paper analyses procurement

auctions of the Michigan State Department of Transportation. We find evidence of dynamic

linkages between auction rounds. In particular, past participation has an influence on current

procurement costs. We also find evidence for participation synergies between rounds of bid-

ding. To fully account for these features we propose an estimation procedure for auctions with

endogenous participation in a dynamic framework. Private completion costs and parameters

affecting information acquisition costs and participation are estimated. We then quantify the

level of inefficiencies due to the use of a first price auction rule. The probability of an inefficient

outcome is roughly 11%. We find that changing the auction rule from a first price auction

rule to an open auction, increases the average procurement costs, however it does eliminate the

inefficiencies caused by asymmetries of bidders in first price auctions. We find that the driving

force behind higher procurement costs, is that smaller bidders are discouraged from entering.

There is also scope to analyse the efficiency of entry in this setup. We could, for example,
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consider limiting potential competition. These policy simulations will be pursued at a later

date.

We then compare our results to a static participation model. The estimation output lead to

misleading conclusions concerning the inefficiency of the auctions. In particular, we find that

the probability of an inefficient auction is close to zero. This divergence can be attributed to

the removal of a source of asymmetry between bidders in the static model, namely synergies in

participation between rounds. This result emphasizes the importance of considering potential

dynamic effects in auction markets.
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A Appendix

A.1 Computation of Markups

To compute the expressions in (23) we require the derivative of the probability of a bidder. Let
gj(.|c0,t, si,t, s−i,t) be the associated density of the equilibrium bid distribution. When bidder i
is of type j this derivative equals

−
∂ Pr

 i wins against Nj
potential j

type bidders


∂bi,t

=

N0,j − 1{si,t=0}

N1,j − 1{si,t=0}∑
n0,j = 0

n1,j = 1{j=L}

∑
k=0,1

[
C
Nk,j−1{si,t=k}
nk,j

]
pj(sk)

nk,j (1− pj(sk))Nk,j−1{si,t=k}−nk,j [1−Gj(bi,t|ck,t, sk,t)]nk,j

× nk,jgj(bi,t|c0,t, sk,t)

1−Gj(bi,t|c0,t, sk,t)

×
[
CN−k,j
n−k,j

]
pj(s−k)

n−k,j (1− pj(s−k))N−k,j−n−k,j [1−Gj(bi,t|c0,t, s−k,t)]
n−k,j (A-1)

for regular bidders and if i is not of type j then the above is equal to:

−
∂ Pr

 i wins against Nj
potential j

type bidders


∂bi,t

=

N0,j ,N1,j∑
n0,j = 0

n1,j = 1{j=L}

∑
k=0,1

[
CNk,j
nk,j

]
pj(sk)

nk,j (1− pj(sk))Nk,j−nk,j [1−Gj(bi,t|ck,t, sk,t)]nk,j−1nk,jgj(bi,t|ck,t, sk,t)

×
[
CN−k,j
n−k,j

]
pj(s−k)

n−k,j (1− pj(s−k))N−k,j−n−k,j [1−Gj(bi,t|c−k,t, s−k,t)]n−k,j (A-2)

and for fringe bidders

−
∂ Pr

 i wins against NF
potential F
type bidders


∂bi,t

=
NF∑
nF=0

Pr(nF |s)nF [1−GF(bi,t|c0,t, st)]
nF

gF(bi,t|c0,t, st)

1−GF(bi,t|c0,t, st)
(A-3)
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