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Abstract

The paper introduces a notion of complementarity (substitutability) of two signals which
requires that in all decision problems each signal becomes more (less) valuable when the
other signal becomes available. We provide a general characterization which relates com-
plementarity and substitutability to a Blackwell-comparison of two auxiliary signals. In
a setting with a binary state space and binary signals, we find an explicit characteriza-
tion that permits an intuitive interpretation of complementarity and substitutability. We
demonstrate how these conditions extend to more general settings.
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1 Introduction

Suppose that two signals are available to a decision maker, and that each signal contains
some information about an aspect of the world that is relevant to the decision maker’s
choice. In this paper we ask under which conditions these two signals are substitutes, and
under which conditions they are complements. Roughly speaking, we mean by this that
the incentive to acquire one signal decreases as the other signal becomes available (in the
case of substitutes), or that it increases as the other signal becomes available (in the case
of complements).

The incentives to acquire signals depend, of course, on the decision for which the
information will be used. When we call signals complements or substitutes in this paper,
then we mean that the conditions described above are satisfied in all decision problems.
Hence we say that signals are substitutes if in all decision problems the value of each signal
decreases as the other signal becomes available. The signals are complements if in all
decision problems the value of each signal increases as the other signal becomes available.
The conditions that we shall provide will thus not refer to any particular decision problem,
but only to the joint distribution of signals, conditional on the various possible states of
the world. We identify features of the joint distribution of signals that are necessary or
sufficient for these signals to be substitutes or complements. Our approach is in the spirit
of Blackwell’s comparison of the informativeness of signals (see Chapter 12 of Blackwell
and Girshick, 1954).

We now give a simple example that indicates how signals can be complements. Suppose
that you can observe in a war the enemy’s coded communication, and that you have access
to the enemy’s encryption code. Then observing the enemy’s communication is of no use
if you do not know how it is coded, and understanding the encryption code is of no use if
you don’t have any access to communication that uses this code. However, together the
two pieces of information are potentially valuable. Your incentive to acquire any one is
larger if you already have the other.

One result of this paper shows for a setting with two possible states of the world, and
only two possible realizations per signal, that complementary signals are characterized by
a property that is very closely related to the main feature of the above example. This
property is that the meaning of a realization of one signal depends on the realization of
the other signal. The second signal thus provides the key that is needed to unlock the
first signal. More technically, the result shows that, in the specified setting, signals are
complements if and only if there is a realization of one signal that may increase, but
also decrease, the decision maker’s subjective probability that some state has occurred,
depending on what the other signal is.

Dow and Gorton (1993) give the example of a technology company that is observed
by two analysts. One analyst learns whether the company’s lead engineer is leaving
the company to create an independent competitor, and the other learns whether the
technology that the engineer is working on is likely to succeed. If the technology is likely
to succeed and the engineer stays, then this is good news. If the technology is likely to
fail, and the engineer leaves, that is also good news because the company is likely to stay
dominant in its market. However, the remaining cases are bad news, because either a
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competitor with a promising technology is created, or because a dubious project will be
continued further. The interpretation of each analyst’s signal may be reversed by the
other analyst’s signal.

The strong reversal result that we have just illustrated will be shown in this paper for
the specified setting only. However, we also explore the extent to which it generalizes. We
show that in many cases it is necessary for complementarity of signals that the meaning
of the realization of one signal can be reverted by a realization of the other signal. We
also show that this condition is in general not sufficient.

A simple example that indicates how signals can be substitutes in the sense of our
paper is also easily constructed. Suppose you have two advisors, and you know that they
both work with the same sources, and will tell you exactly the same thing. Then each of
them will have positive value, but once you have heard what one of them says, you do
not derive any additional benefit from hearing what the other one says.

For the setting with two states and two realizations per signal we shall show that a
related property is necessary and sufficient for signals to be substitutes. Interestingly,
however, perfect correlation, as in the example, is not necessary for signals to be substi-
tutes, not even in the special setting. In general, we obtain that a similar condition is
necessary, but not sufficient for signals to be substitutes.

The results described so far provide interesting, but partial insights into the nature of
the complementarity and substitutability relations among signals. We also offer in this
paper completely general characterizations of complements and substitutes. These results
show that two signals are complements (resp. substitutes) if and only if, among two other
signals that are derived from the two original signals, one dominates the other in the sense
of Blackwell (1951), that is, is more valuable in all decision problems. We thus reduce
the problem of determining whether two signals are complements (resp. substitutes) to
the problem of determining whether among two other signals one Blackwell-dominates the
other. This is useful because it allows us to use well-known characterizations of Blackwell-
dominance to find out whether two signals are complements (resp. substitutes).

After establishing this general result, the paper’s objective is to obtain characteriza-
tions of complements and substitutes that offer more immediate insights than the general
result does. This leads us to the results outlined earlier in the Introduction. As is well
known, Blackwell comparisons are qualitatively different in the case of two states, and in
the case of three or more states, with the case of two states being much easier to study.
In the same way we find that we have particularly strong results for the case of only two
states, and somewhat weaker result for the general case, as explained above.

Many pairs of signals are neither complements nor substitutes if our definitions are
used. This is because our definitions of these terms require certain conditions to be true
in all decision problems. This is in the spirit of Blackwell’s comparison whose ordering
of signals is incomplete. More signals will satisfy the conditions for being substitutes or
complements if we restrict attention to smaller classes of decision problems. In the context
of Blackwell’s original work this line of investigation has been pursued by Lehmann (1988),
Persico (2000), Athey and Levin (2001) and Jewitt (2007). A similar research agenda is
feasible in our context, and we present in this paper a first step in this direction.
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Radner and Stiglitz (1984) consider a setting in which a one-dimensional real parame-
ter indexes the quality of a signal. They show that the value of the signal in any decision
problem is weakly increasing but not everywhere concave as the quality of information
increases. In particular, a non-concavity occurs for any decision problem in the neighbor-
hood of the parameter value for which the signal is entirely uninformative. Non-concavity
of the value of a signal as the quality of the signal improves indicates increasing returns
to scale in information. It may be possible to interpret an improvement in the quality of
a signal as “making a further signal available”, and one might be able to interpret a non-
concavity of the value of information as a complementarity between an existing signal,
and a further signal that might be made available. We have not yet explored whether we
can make these analogies precise.

The idea that signals may be complements or substitutes has previously appeared in
some applied work. An example is the paper by Sarvary and Parker (1997), who take
consumers’ valuations of signals as exogenously given, and focus on competition among
information providers. Complementarity and substitutability of signals has previously
also been referred to in an auction context by Milgrom and Weber (1982) and in a voting
context complementarity of voters’ information has been emphasized by Persico (2004). In
auction or voting contexts, different signals are held by different individuals, whereas our
paper focuses on a single person decision problem. All papers listed, moreover, consider
complementarity or substitutability in very specific settings, whereas we seek characteri-
zations of signals that are in all decision problems complements or substitutes.

The paper is organized as follows: Section 2 provides definitions. Section 3 contains
our result on the relation between substitutability, complementarity, and Blackwell com-
parisons. Section 4 studies in detail the special case that there are only two states of
the world. Section 5 investigates the extent to which the findings of Section 4 generalize
when the number of states of the world is arbitrary. In Section 6 we specialize to the case
in which the state of the world is a real number, and the utility function is linear in the
state of the world. The results of Section 4 can be transferred to this setting. Section 7
concludes. Some of the proofs are relegated to the appendix.

2 Definitions

The state of the world is a random variable ω̃ with realizations ω in a finite set Ω. The
probability distribution of ω̃ is denoted by π. Without loss of generality we assume that
each state in Ω occurs with the same probability: π(ω) = 1/|Ω| for all ω ∈ Ω.1 Two
signals are available: s̃1 with realizations s1 in the finite set S1 where S1 has at least
two elements, and s̃2 with realizations s2 in the finite set S2 where S2 also has at least
two elements. We assume without loss of generality that S1 ∩ S2 is empty. The joint
distribution of signals s̃1 and s̃2 conditional on the state being ω ∈ Ω is denoted by p12,ω.

1Our results in Sections 3-5 would not be different if the prior was any other distribution with support
Ω. This follows from the relation between our analysis and the Blackwell comparison of signals that
is pointed out in Proposition 1 below, and from the fact that the Blackwell comparison of signals is
independent of the prior as long as the prior has full support. In Section 6, by contrast, the prior
distribution of the state will matter, and we shall then relax the assumption of a uniform distribution.
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The probability assigned by this distribution to some realization (s1, s2) ∈ S1 × S2 is
denoted by p12,ω(s1, s2). The unconditional distribution of (s̃1, s̃2) is denoted by p̄12 and
is given by: p̄12(s1, s2) = π(ω)

∑
ω∈Ω p12,ω(s1, s2) for all (s1, s2) ∈ S1×S2. The probability

distribution on Ω conditional on observing signal realization (s1, s2) ∈ S1 × S2 (where
p̄12(s1, s2) > 0) is denoted by qs1,s2 and is given by:

qs1,s2(ω) = π(ω)
p12,ω(s1, s2)

p̄12(s1, s2)
for all ω ∈ Ω. (1)

For i = 1, 2 the marginal distribution of signal s̃i conditional on the state being ω ∈ Ω
is denoted by pi,ω. The probability assigned by this distribution to some realization si ∈ Si
is denoted by pi,ω(si). For i = 1, 2 the unconditional distribution of s̃i is denoted by p̄i
and it is given by: p̄i(si) = π(ω)

∑
ω∈Ω pi,ω(si) for all si ∈ Si. Without loss of generality

we assume that p̄i(si) > 0 for all si ∈ Si. For i = 1, 2 the probability distribution on Ω
conditional on observing signal realization si ∈ Si is denoted by qsi

and is given by:

qsi
(ω) = π(ω)

pi,ω(si)

p̄i(si)
for all ω ∈ Ω. (2)

To define when the two signals are substitutes or complements we need some auxiliary
definitions.

Definition 1. A decision problem is a pair (A, u) where A is some finite set of actions
and u is a utility function: u : A× Ω→ R.

Definition 2. For given decision problem (A, u):

• The value of not having any signal is:

V∅(A, u) ≡ max
a∈A

∑
ω∈Ω

(u(a, ω)π(ω)) . (3)

• For i ∈ {1, 2} the value of having signal s̃i alone is:

Vi(A, u) ≡
∑
si∈Si

p̄i(si) max
a∈A

∑
ω∈Ω

(u(a, ω)qsi
(ω)). (4)

• The value of having both signals is:

V12(A, u) ≡
∑
s1∈S1

∑
s2∈S2

p̄12(s1, s2) max
a∈A

∑
ω∈Ω

(u(a, ω)qs1,s2(ω)). (5)

The two key definitions of this paper are:

Definition 3. Signals s̃1 and s̃2 are substitutes if for all decision problems (A, u) we
have:

V1(A, u)− V∅(A, u) ≥ V12(A, u)− V2(A, u) (6)

and
V2(A, u)− V∅(A, u) ≥ V12(A, u)− V1(A, u). (7)
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Figure 1: Example 1 (signals are complements)

Definition 4. Signals s̃1 and s̃2 are complements if for all decision problems (A, u) we
have:

V12(A, u)− V2(A, u) ≥ V1(A, u)− V∅(A, u) (8)

and
V12(A, u)− V1(A, u) ≥ V2(A, u)− V∅(A, u). (9)

Note that the two inequalities in Definition 3, and also the two inequalities in Definition
4, are equivalent.

For a simple interpretation of the inequalities in Definitions 3 and 4 suppose that the
decision maker’s not explicitly modeled overall utility is additive in the expected utility
from decision problem (A, u) and money. Then the inequalities in Definitions 3 and 4
compare the decision maker’s willingness to pay for signals in different scenarios. For
example, the inequality in Definition 3 says that the willingness to pay for signal s̃1 is
larger if signal s̃2 is not available than if it is available. It seems natural to call signals
substitutes in this case. Without postulating the existence of money, and additive utility,
one could interpret the inequalities in Definitions 3 and 4 using an idea in von Neumann
and Morgenstern (1953, p. 18). They argue that inequalities that involve differences of
von Neumann Morgenstern utility reflect differences in the intensity of a preference. For
example, in the case of Definition 3, this interpretation says that the preference for having
signal s̃1 over not having signal s̃1 is more intense when signal s̃2 is not present than when
it is present. This interpretation of the difference of von Neumann Morgenstern utilities
is not universally accepted, however.2

We next give two examples, one of complements and one of substitutes.

Example 1. The state is the product of two i.i.d signals each of which equals +1 or -1
with probability 0.5 each. Thus: Ω = S1 = S2 = {−1,+1}. We display the two conditional
distributions p12,+1 and p12,−1 in Figure 1. Rows correspond to realizations of signal s̃1, and
columns correspond to realizations of signal s̃2. Each signal by itself is uninformative, and
therefore has marginal value zero. However, together the two signals completely reveal the
state. Therefore, the marginal value of each signal is non-negative, and typically positive
if the other signal is also available. Therefore, signals are complements.

2Luce and Raiffa (1957, p. 32) regard this interpretation as a fallacy, whereas Binmore (2009, p. 67)
is sympathetic to this interpretation. We return to von Neumann and Morgenstern’s argument in more
detail in Remark 1 below.

5



+1 −1

+1 3
4

0

−1 0 1
4

+1 −1

+1 1
4

0

−1 0 3
4

ω = +1 ω = −1

Figure 2: Example 2 (signals are substitutes)

Example 2. We assume Ω = S1 = S2 = {−1,+1}. The conditional distributions of
the signals is shown in Figure 2. Each signal by itself is partially informative about the
true state. Signals are perfectly correlated. Each signal by itself has non-negative, and
typically positive expected value. However, if one signal is already available, the marginal
value of the other signal is zero because the realization of the first signal reveals what the
realization of the second signal will be. Therefore, signals are substitutes.

3 Connection With Blackwell Dominance

To obtain a general characterization of signals that are complements or substitutes, we
define two auxiliary signals, s̃S and s̃C . Informally, the signal s̃S can be described as
follows. An unbiased coin is tossed. If “head” comes up, the decision maker is informed
about the realization of s̃1. If “tails” comes up, the decision maker is informed about the
realization of s̃2. Formally, the signal s̃S has realizations in the set SS ≡ S1∪S2.3 For given
state ω ∈ Ω, the probability that s̃S has realization s1 ∈ S1 is pS,ω(s1) ≡ 1

2
p1,ω(s1), and

the probability that s̃S has realization s2 ∈ S2 is pS,ω(s2) ≡ 1
2
p2,ω(s2). The unconditional

distribution of s̃S is denoted by p̄S and is given by p̄S(sS) = π(ω)
∑

ω∈Ω pS,ω(sS) for all
sS ∈ SS. The conditional distribution on Ω conditional on observing signal realization
sS ∈ SS is the distribution qsS

that was defined in equation (2).

The second auxiliary signal, s̃C , is intuitively constructed as follows. An unbiased coin
is tossed. If “head” comes up, the decision maker is informed about the realizations of
s̃1 and s̃2. If “tails” comes up, the decision maker receives no information. Formally, the
signal s̃C has realizations in the set SC ≡ (S1 × S2) ∪ {N}. Here, the symbol N denotes
the case that the decision maker receives no information. For given state ω ∈ Ω, the
probability that s̃C has realization (s1, s2) ∈ S1 × S2 is pC,ω(s1, s2) ≡ 1

2
p12,ω(s1, s2), and

the probability that s̃C has realization N is pC,ω(N) ≡ 1
2
. The unconditional distribution

of s̃C is denoted by p̄C and is given by p̄S(sS) = π(ω)
∑

ω∈Ω pS,ω(sS) for all sS ∈ SS.
The conditional distribution on Ω conditional on observing signal realization sC ∈ SC is
the distribution qsC

that was defined in equation (1) if sC ∈ S1 × S2, and it is the prior
distribution π if sC = N . We shall write for this distribution also qN .

Definition 5. For given decision problem (A, u) and for k ∈ {S,C}, the value of having

3Recall that we assume that S1 ∩ S2 is empty.
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signal s̃k is:

Vk(A, u) ≡
∑
sk∈Sk

p̄k(sk) max
a∈A

∑
ω∈Ω

(u(a, ω)qsk
(ω)). (10)

Proposition 1. (i) Signals s̃1 and s̃2 are substitutes if and only if signal s̃S Blackwell
dominates signal s̃C, i.e. in all decision problems (A, u):

VS(A, u) ≥ VC(A, u). (11)

(ii) Signals s̃1 and s̃2 are complements if and only if signal s̃C Blackwell dominates signal
s̃S, i.e. in all decision problems (A, u):

VC(A, u) ≥ VS(A, u). (12)

Proof. For part (i) note that in all decision problems (A, u) the inequality that defines
substitutes, V1(A, u) − V∅(A, u) ≥ V12(A, u) − V2(A, u) is equivalent to: 1

2
(V1(A, u) +

V2(A, u)) ≥ 1
2
(V12(A, u)+V∅(A, u)). But by definition the expression on the left hand side

is the same as VS, and the expression on the right hand side is the same as VC . Thus (i)
follows. The proof of part (ii) is analogous.

Remark 1. This result is related to von Neumann and Morgenstern’s (1953, p. 18)
discussion of the meaning of comparisons of utility differences to which we alluded before.
Roughly speaking,4 their argument is as follows. If a, b, c, and d are outcomes, then the
comparison of utility differences u(a) − u(b) > u(c) − u(d) can be inferred from choices
among lotteries because it is equivalent to: 0.5u(a) + 0.5u(d) > 0.5u(b) + 0.5u(c), and
hence to the preference of the lottery that gives a and d each with probability 0.5 over the
lottery that gives b and c each with probability 0.5. This preference can be interpreted as
an expression of an intensity of preferences because it means that, starting from a lottery
that gives b and d each with probability 0.5 the decision maker rather has b be replaced by
a than d by c. Hence the step from b to a seems larger to the decision maker than the step
from c to d. In our setting a, b, c, d are replaced by signals on which the decision maker can
base a choice. Our Proposition 1 is then a formal statement of the way in which choices
among lotteries express, according to von Neumann and Morgenstern, comparisons of
utility differences.

Blackwell and Girshick (1954, Theorem 12.2.2.) offer a variety of characterizations
of Blackwell dominance. A well-known characterization is that one signal Blackwell-
dominates another if the dominated signal is a garbling of the dominating signal (The-
orem 12.2.2., Condition (2), Blackwell and Girshick (1954)). Another condition is that
the posteriors resulting from the dominating signal are a mean-preserving spread of the
posteriors resulting from the dominated signal (Theorem 12.2.2., Condition (5), Blackwell
and Girshick (1954)). We now show an example in which this latter condition can be used
to easily verify that signals are complements and substitutes.

4Our rendition of von Neumann and Morgenstern’s argument follows Binmore’s (2009, p. 67). Von
Neumann and Morgenstern’s original argument is slightly different, involving only 3 outcomes. In sub-
stance it is the same.
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α̂ β̂ γ̂

α 0 0 ρ

β 0 0 0

γ 1− ρ 0 0

α̂ β̂ γ̂

α 0 0 0

β 0 0 ρ

γ 0 1− ρ 0

ω = a ω = b

Figure 3: Example 3 (signals are complements and substitutes)

Example 3. Ω = {a, b}, S1 = {α, β, γ} and S2 = {α̂, β̂, γ̂}. The distributions p12,a and
p12,b are displayed in the same way as in Examples 1 and 2. Intuitively, in this example
signal s̃1 reveals the state with probability ρ. If signal s̃1 reveals the state, signal s̃2 is
uninformative and has realization γ̂. Similarly, signal s̃2 reveals the state with probability
1 − ρ, and if signal s̃2 reveals the state, signal s̃1 is uninformative and has realization
γ. To verify that signals are complements and substitutes in Example 3 one can easily
check that sS and sC imply identical posterior distributions: (1

2
, 1

2
) with probability 0.5,

and (1, 0) and (0, 1) with probability 0.25 each. Therefore, by the characterization of
Blackwell dominance quoted above, sS (weakly) Blackwell dominates sC and vice versa,
and by Proposition 1 signals are complements and substitutes.

4 The Case of Two States

It is easier to verify Blackwell dominance when there are only two states of the world,
and therefore beliefs are one-dimensional, than when there are more than two states of
the world, and therefore beliefs are multi-dimensional. The qualitative difference between
the one-dimensional case and the case of two or more dimensions is explained in Section
12.4 of Blackwell and Girshick. In the one-dimensional case the convex value function5

arising from an arbitrary decision problem can be approximated arbitrarily closely by
linear combinations of a very simple subclass of piecewise linear, convex functions. No
such approximation result is known in the two or more-dimensional case. The relevance
of having a dense class of simple value functions is that one can correspondingly restrict
attention to a simple class of decision problems when checking Blackwell dominance.

The results cited in the previous paragraph, and the close connection between our
concepts and Blackwell dominance shown in the previous section, motivate why we begin
our study here with the case in which there are only two states of the world. We label
them: Ω = {a, b}. The key property of the two states model is that we can restrict
attention to two-action decision problems where A = {T,B} and u is given by Figure 4.

Lemma 1. In the two states model, signals are complements (substitutes) if and only if
they are complements (substitutes) in all two-action decision problems given by Figure 4

5Value functions map posterior beliefs into the expected utility that the decision maker obtains when
holding those beliefs and choosing optimally. Every decision problem gives rise to a convex value function.
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ω = a ω = b

T 0 x

B 1− x 0

Figure 4: A two-action decision problem

with x ∈ (0, 1).

Proof. The main argument in the proof of Theorem 12.4.1. in Blackwell and Girshick
(1954) demonstrates that in the two states case a signal s̃ Blackwell-dominates another
signal s̃′ if and only if s̃ is more valuable than s̃′ in all two-action problems of the form
shown in Figure 4.6 We can then apply Proposition 1 to infer Lemma 1.

4.1 Substitutes

We focus in this subsection on the case that each signal has only two realizations. The
next section will offer a strong characterization of substitutes in the case of arbitrary finite
state and signal spaces. We denote the realizations of signal s̃1 by α and β, and those
of signal s̃2 by α̂ and β̂. To avoid trivial cases, we assume that each signal realization
individually is informative, that is, leads to a posterior belief that is different from the
prior belief. Without loss of generality we assume that observing α or α̂ (resp. β or β̂)
alone raises the decision maker’s belief that the state is a (resp. b): qα(a) > π(a) and
qα̂(a) > π(a). We refer to the model with two states and two realizations per signal as
the “binary-binary” model.

Proposition 2. In the binary-binary model, signals are substitutes if and only if the joint
realizations (α, α̂) and (β, β̂) each have strictly positive probability in at least one state,
and

qα,α̂(a) = max{qα(a), qα̂(a)}, and (13)

qβ,β̂(b) = max{qβ(b), qβ̂(b)}. (14)

Call a realization of a single signal “extreme” if it provides the strongest evidence
for state a, or state b, among all four individual signal realizations. The conditions in
Proposition 2 say that conditional on an extreme realization of a signal the other signal
is uninformative. Thus, in the binary-binary model substitutability amounts to a form of
conditional uninformativeness of signals.

Signal distributions that satisfy the conditions of Proposition 2 can be classified into
two types. For signal distributions of the first type the two extreme realizations are

6Blackwell and Girshick’s proof refers to a decision problem that is as in Figure 4 but with the first
row of payoffs replaced by (−(1 − x), x), where x ∈ (0, 1), and the second row of payoffs replaced by
(0, 0). The same argument that Blackwell and Girshick use can be used to demonstrate that a signal s̃
Blackwell-dominates another signal s̃′ if and only if s̃ is more valuable than s̃′ in all two-action problems
of the form shown in Figure 4. We omit the details.
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α̂ β̂

α η · ρ η · ϕ

β ϕ′ ρ′

α̂ β̂

α ρ ϕ

β µ · ϕ′ µ · ρ′

ω = a ω = b

Example 4 (α and β are extreme signal realizations)

α̂ β̂

α ρ 0

β ϕ 1− ρ− ϕ

α̂ β̂

α ρ′ 0

β ϕ′ 1− ρ′ − ϕ′

ω = a ω = b

Example 5 (α and β̂ are extreme signal realizations)

Figure 5: Two different types of substitutes

different realizations of the same signal, whereas for signal distributions of the second
type, the two extreme realizations are realizations of two different signals. We illustrate
these two types in Figure 5.

Example 4 illustrates the first type. We show the case in which both extreme signal
realizations come from signal s̃1. It then has to be the case that, conditional on the
realization of signal s̃1, signal s̃2 is always uninformative. This happens if conditional on
any realization of signal s̃1, the likelihood ratios of joint signal realizations are the same
for all realizations of signal s̃2. The corresponding information structure is displayed in
Example 4 where the likelihood ratios are denoted by η and µ which are both greater
than 1.7

Example 5 illustrates the second type of signal distributions that make signals substi-
tutes. In this type, the two extreme realizations come from different signals. We show the
case in which α and β̂ are the extreme realizations. In this case, signals are substitutes
if and only if signal s̃1 is uninformative conditional on β̂, and signal s̃2 is uninformative
conditional on α. It is not hard to see that this is equivalent to the realization (α, β̂)
having zero probability in both states. Accordingly, the information structure is of the
form shown in Example 5.8

7Of course, the entries in each table in Example 4 have to sum to one. Moreover, since (α, α̂) and
(β, β̂) occur with positive probability, we have ρ, ρ′ > 0 while ϕ,ϕ′ ≥ 0. Finally, to satisfy our assumption
that α̂ indicates state a, we need that ηρ+ ϕ′ > ρ+ µϕ′.

8In accordance with Proposition 2 we need ρ, ρ′ > 0 and ϕ,ϕ′ ≥ 0. To satisfy our assumption that α
and α̂ indicate state a, we need that ρ > ρ′ and ρ+ϕ > ρ′ + ϕ′. To ensure that α is the strongest signal
for state a we need: ρϕ′ ≥ ρ′ϕ, and finally, to ensure that β̂ is the strongest signal for state b we need:
(1− ρ)ϕ′ ≤ (1− ρ′)ϕ.
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An important special case of both examples is the boundary case when the two signals
induce identical posteriors, that is, signals are symmetric. Then signals are substitutes if
and only if each signal is uninformative conditional on the other signal. This means that
signals are perfectly correlated (ϕ = ϕ′ = 0 in both examples).

We prove the sufficiency of the conditions in Proposition 2 in the Appendix. The proof
is by calculation, using the fact that according to Lemma 1 we can restrict attention to
a one parameter class of decision problems with two actions only. We show the necessity
of the conditions in Proposition 2 in the next section, where we shall derive the necessity
from a more general result.

Remark 2. Among all pairs of conditional joint distributions of signals s̃1 and s̃2 in the
binary-binary model the ones shown in Figure 5 are rare. One way of saying this formally
is to identify pairs of conditional joint distributions of the two signals with vectors in
8-dimensional Euclidean space, and to endow the set of all joint distributions with the
relative Euclidean topology. The set of distributions that are not like the distributions
in Figure 5 is then an open and dense subset of the set of all joint distributions, and is
thus generic. This is mathematically obvious given Proposition 2. It may also appear
to be intuitively plausible given how stringent the requirement that defines substitutes is,
however, as we will point out below, in the same topological sense, complements, although
their definition seems equally stringent, are not rare.

4.2 Complements

We begin again by considering the binary-binary model introduced in the previous subsec-
tion. Note that the assumptions of this model rule out Example 1 which we used earlier
to illustrate complements. This example is ruled out because in that example, contrary to
the assumptions of the binary-binary model, nothing can be inferred from the realization
of just a single signal.

Proposition 3. In the binary-binary model, signals are complements if and only if the
joint realizations (α, α̂) and (β, β̂) each have strictly positive probability in at least one
state, and one of the following conditions holds:9

qα,α̂(a) ≤ π(a) or (15)

qβ,β̂(b) ≤ π(b). (16)

Inequality (15) says that if the decision maker receives signal (α, α̂) the decision
maker’s posterior probability of state a is less than or equal to 0.5, even though individu-
ally both α and α̂ move the decision maker’s probability of state a above 0.5. Inequality
(16) says that if the decision maker receives signal (β, β̂) the decision maker’s posterior
probability of state b is not more than 0.5, even though individually both β and β̂ move
the decision maker’s probability of state b above 0.5. In both cases, two signals which by
themselves move the decision maker’s beliefs into one direction, if received together move

9As we note in Remark 4 the two conditions are mutually exclusive. In any particular example, at
most one of them can be true.
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α̂ β̂

α ρ ν − ρ

β ν − ρ 1 + ρ− 2ν

α̂ β̂

α ϕ µ− ϕ

β µ− ϕ 1 + ϕ− 2µ

ω = a ω = b

Figure 6: Example 6 (signals are complements)

the decision maker’s beliefs into the opposite direction. The “meaning” of these signals
is reversed if they are received together.

We prove the sufficiency of the conditions in Proposition 3 in the Appendix. We derive
the necessity in the next section from a more general result. Example 6 shows a class of
complements. If ν > µ, the signal realizations α and α̂ by themselves raise the decision
maker’s belief that the true state is a. If ρ ≤ ϕ, then the joint signal realization (α, α̂),
by contrast, reduces the decision maker’s probability that the true state is a or leaves it
unchanged.10

Remark 3. Whereas substitutes are rare, as we noted in Remark 2, complements are
not. To express this formally, we again endow the set of all pairs of joint conditional
probability distributions of the two signals with the relative Euclidean topology, and note
that the set of distributions that correspond to complements has an open subset. For
example, a small open ball around a pair of full support distributions that satisfy one of the
conditions in Proposition 3 as a strict inequality11 is a subset of the set of all distributions
that correspond to complements. This mathematically trivial fact is intuitively surprising
given how stringent the requirement that defines complements is.

Remark 4. The two conditions in Proposition 3, inequalities (15) and (16), are mutually
exclusive. To see this, suppose (15) were true: qα,α̂(a) ≤ 0.5. Because, by assump-

tion, qα(a) > 0.5, signal realization (α, β̂) then must have positive prior probability, and:
qα,β̂(a) > 0.5. Hence qα,β̂(b) < 0.5. But because, also by assumption, qβ̂(b) > 0.5, sig-

nal realization (β, β̂) then must have positive prior probability and: qβ,β̂(b) > 0.5, i.e.
inequality (16) is false.

We generalize the sufficiency part of Proposition 3 to obtain a sufficient condition for
complementarity in the case when signals have arbitrarily many realizations. Let si (resp.
s̄i) be the realization of signal s̃i, which provides the weakest (resp. strongest) support

10Example 6 captures all conditional joint probability distributions of the two signals in the binary-
binary model for which condition (15) holds, and for which in each state the probabilities of the two signal
realizations (α, β̂) and (β, α̂) are the same. (There are, of course, other conditional joint distributions
of the two signals for which signals are complements.) All suitable values for the four parameters in
Example 6 can be found by making choices allowed in the following procedure: First pick ν such that
0 < ν < 1. Then pick µ > 0 such that 2ν − 1 ≤ µ < ν. Then pick ϕ ≥ 0 such that 2ν − 1 ≤ ϕ ≤ µ.
Finally, pick ρ ≥ 0 such that 2ν − 1 ≤ ρ ≤ ϕ.

11With a suitable choice of parameters in Example 6, condition (15) holds as a strict inequality.
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for state a: qsi
(a) = minsi

qsi
(a) and qs̄i

(a) = maxsi
qsi

(a). Let

x ∈ X ≡
(
max{qs1(a), qs2(a)},min{qs̄1(a), qs̄2(a)}

)
(17)

be larger than the smallest posterior probability of a that is induced by any realization
of a single signal, and smaller than the largest posterior probability of a induced by any
realization of a single signal. We partition the set Si of realizations of signal s̃i into two
subsets, depending on whether they induce posterior beliefs qsi

(a) that are smaller or
larger than x:

Sβi (x) = {si ∈ Si | qsi
(a) ≤ x}, Sαi (x) = {si ∈ Si | qsi

(a) > x}. (18)

Now imagine that, instead of observing each realization of signal s̃i, the decision maker
only observes whether a realization is in one of the two partitions. This amounts to
observing a signal with two realizations. We call this binary signal t̃i(x) and denote the
realization of t̃i(x) by tβi (x) if si ∈ Sβi (x) and by tαi (x) if si ∈ Sαi (x).

Proposition 4. In the two state case, if for all x ∈ X the signals t̃1(x) and t̃2(x) are
complements, then the signals s̃1 and s̃2 are complements.

Proof. We denote the expected utility that the decision maker receives when maximizing
expected utility in some arbitrary decision problem (A, u) after observing the realization
of t̃i(x) by Vi,x(A, u) and we denote the expected utility that the decision maker receives
when maximizing expected utility in decision problem (A, u) after observing the joint
realization (t̃1(x), t̃2(x)) by V12,x(A, u). Let the auxiliary signals t̃C(x) and t̃S(x) be defined
analogously to s̃C and s̃S, and denote the expected utility that the decision maker receives
when maximizing expected utility in decision problem (A, u) after observing these signals
by VC,x(A, u) and VS,x(A, u).

By Lemma 1 it is sufficient to verify complementarity for the two-action problem of
Figure 4 for all x ∈ (0, 1). For x 6∈ X, there is at least one signal s̃i which is uninformative.
Hence, signals are trivially complements. Let x ∈ X, and let (A, u) for the purposes of this
proof be the corresponding two-action decision problem. By Proposition 1, it is sufficient
to show that VC(A, u) ≥ VS(A, u).

To demonstrate this, we begin with two observations. The first observation is that
Vi(A, u) = Vi,x(A, u). This is so since in the two-action problem at hand, all that matters
for the decision maker’s optimal action after observing realization si of signal s̃i is whether
the posterior belief qsi

(a) is smaller or larger than x. But this is precisely the information
provided by signal t̃i(x). We omit the formal proof. The second observation is that,
evidently, the signal (s̃1, s̃2) is (weakly) more informative than the signal (t̃1(x), t̃2(x)).
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Hence, V12(A, u) ≥ V12,x(A, u). Using these two observations, we can deduce:

VC(A, u) = 0.5V12(A, u) + 0.5V∅(A, u)

≥ 0.5V12,x(A, u) + 0.5V∅(A, u)

= VC,x(A, u)

≥ VS,x(A, u) (19)

= 0.5V1,x(A, u) + 0.5V2,x(A, u)

= 0.5V1(A, u) + 0.5V2(A, u)

= VS(A, u),

where the inequality in the fourth line follows because by assumption t̃1(x) and t̃2(x) are
complements. This proves the claim.

To use Proposition 4 in practice one notices that the distribution of t̃1(x) and t̃2(x)
are determined by the underlying distributions of s̃1 and s̃2, and that Proposition 3
characterizes when t̃1(x) and t̃2(x) are complements. The following example illustrates
how Proposition 4 can be applied.

Example 7. Ω = {a, b} and for i = 1, 2: Si = {si1, si2, si3}. The distribution of signals
conditional on the state is shown in Figure 7. Note that for n < m, the realization sin
provides stronger support for state a than the realization sim. Note also that the two signals
are symmetric. There are only two partitions into which realizations can be grouped:
For x ∈ (qsi3

(a), qsi2
(a)), we have to consider the signals that arise from the partition

{{si3}, {si2, si1}}. And for x ∈ [qsi2
(a), qsi1

(a)), we have to consider the signals that arise
from the partition {{si3, si2}, {si1}}. The induced signals t̃1(x) and t̃2(x) are described by
the information structures in Figure 8. Observe that in both cases shown in Figure 8, the
signals t̃1(x) and t̃2(x) are complements since condition (15) from Proposition 3 is met.

s21 s22 s23

s11 6/100 0 24/100

s12 0 40/100 0

s13 24/100 0 6/100

s21 s22 s23

s11 10/100 0 10/100

s12 0 40/100 0

s13 10/100 0 30/100

ω = a ω = b

Figure 7: Example 7 (signals are complements)

In Subsection 5.3 we give an example that illustrates that the condition in Proposition
4 is not necessary for complementarity.
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tα2 (x) tβ2 (x)

tα1 (x) 46/100 24/100

tβ1 (x) 24/100 6/100

tα2 (x) tβ2 (x)

tα1 (x) 50/100 10/100

tβ1 (x) 10/100 30/100

ω = a ω = b

tα2 (x) tβ2 (x)

tα1 (x) 6/100 24/100

tβ1 (x) 24/100 46/100

tα2 (x) tβ2 (x)

tα1 (x) 10/100 10/100

tβ1 (x) 10/100 70/100

ω = a ω = b

Figure 8: Signals t̃1(x) and t̃2(x) for Example 7 and partition {{si3}, {si2, si1}} (top) and
partition {{si3, si2}, {si1}} (bottom)

5 The General Case

5.1 Substitutes

As we explained earlier, the case that there is an arbitrary finite number of states is
harder to analyze than the case of two states. We present partial results and focus
on the extent to which our characterizations for the binary-binary model correspond to
necessary conditions in the general model. For substitutes, we showed in the previous
section that in the binary-binary model a necessary and sufficient condition is that a
signal is uninformative conditional on the other signal having a realization that induces
extreme posteriors. We now show that a similar condition is in general necessary for
substitutes.

We begin with a useful auxiliary result. In the following lemma, and subsequently, we
regard the conditional distributions qs1,s2 and qsi

that were defined in Section 2 as vectors
in R|Ω|. For any subset C of a finite-dimensional Euclidean space we denote by “coC” the
convex hull of C.

Lemma 2. If signals are substitutes, then for every (s1, s2) ∈ S1×S2 such that p̄12(s1, s2) >
0:

qs1,s2 ∈ co {qsi
|i ∈ {1, 2}, si ∈ Si} . (20)

Proof. By part (i) of Proposition 1, if signals are substitutes, s̃S Blackwell dominates
s̃C . By condition (5) of Theorem 12.2.2. in Blackwell and Girshick (1954) this means
that the posteriors after observing sS are a mean-preserving spread of the posteriors after
observing sC . Therefore, the posteriors after observing sC are contained in the convex
hull of the posteriors after observing sS. This implies Lemma 2.

We now state our main result on substitutes. Recall that an element of a convex set
C is called an “extreme point” of C if it is not a convex combination of two different
elements of C where each of these elements has strictly positive weight.
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Proposition 5. Suppose signals are substitutes. If for some i ∈ {1, 2} and some s∗i ∈ Si
the vector qs∗i is an extreme point of co {qsi

|si ∈ Si, i ∈ {1, 2}} , then qs∗i ,sj
= qs∗i for all

sj ∈ Sj where j 6= i and p̄12(s∗i , sj) > 0.

Observe that the condition in Proposition 5 is a generalization of the condition in
Proposition 2. Proposition 2 is for the binary-binary model only, and it shows for that
model that the condition is necessary and sufficient for substitutes. In general, the con-
dition is only necessary. An example that we present in subsection 5.3 will show that the
condition in Proposition 5 is in general not sufficient for substitutes.

Proof. Indirect. Suppose qs∗i ,sj
6= qs∗i for some sj ∈ Sj with p̄12(s∗i , sj) > 0. By standard

properties of posteriors qs∗i can be written as a convex combination of the vectors qs∗i ,sj

(sj ∈ Sj). We can infer that qs∗i ,sj
6= qs∗i for at least two sj ∈ Sj with p̄12(s∗i , sj) > 0,

and that both of these vectors qs∗i ,sj
receive positive weight in the convex combination

that makes up qs∗i . By Lemma 2 for every sj ∈ Sj with p̄12(s∗i , sj) > 0 the vector qs∗i ,sj

is an element of co {qsi
|si ∈ Si, i ∈ {1, 2}}. We have thus inferred that qs∗i can be written

as the convex combination of at least two different elements of co {qsi
|si ∈ Si, i ∈ {1, 2}}

where each element receives positive weight. Next, one can easily see that this implies
that one can also express qs∗i as the convex combination of exactly two different elements
of co {qsi

|si ∈ Si, i ∈ {1, 2}} where each element receives positive weight. This contradicts
our assumption that qs∗i is an extreme point of co {qsi

|si ∈ Si, i ∈ {1, 2}} .

The following result adds to Proposition 5 the observation that under a mild assump-
tion there are at least two signal realizations to which the condition of Proposition 5
applies. The assumption is that at least one realization of some signal s̃i is by itself
informative in the sense that observing it changes the decision maker’s beliefs.

Corollary 1. Suppose signals are substitutes and for some i∗ ∈ {1, 2}: qsi∗ (ω) 6= π(ω)
for at least one si∗ ∈ Si∗ and ω ∈ Ω. Then there are i, j ∈ {1, 2} and s∗i ∈ Si, s∗j ∈ Sj
such that s∗i 6= s∗j and qs∗i ,sk

= qs∗i for all sk ∈ Sk where i 6= k and p̄12(s∗i , sk) > 0, and
qs∗j ,sk

= qs∗j for all sk ∈ Sk where j 6= k and p̄12(s∗j , sk) > 0.

Proof. The inequality in the first sentence of the corollary implies that the set {qsi
|i ∈ {1, 2},

si ∈ Si} has at least two elements. Hence co {qsi
| ∈ {1, 2}, si ∈ Si} has at least two ex-

treme points: by the Krein-Milman Theorem (Ok, 2007, p. 659) co {qsi
| ∈ {1, 2}, si ∈ Si}

is the closed convex hull of its extreme points, and if it had only one extreme point, it
would therefore have to have only one element. By Milman’s Converse to the Krein-
Milman Theorem (Ok, 2007, p. 660), all extreme points of this set are elements of
{qsi
|i ∈ {1, 2}, si ∈ Si}. The result follows from Proposition 5.

We can use Proposition 5 to prove the necessity of the condition in Proposition 2.

Proof of the Necessity Part of Proposition 2. The necessity of the condition in Proposi-
tion 2 is an immediate consequence of Proposition 5 once we show that the signal re-
alizations (α, α̂) and (β, β̂) have strictly positive probability in some state. We prove
this indirectly. Suppose the realization (α, α̂) had zero probability in both states. Then
p1,ω(α) = p12,ω(α, β̂) for both ω, and, because each realization of each signal occurs with
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strictly positive prior probability: p12,ω(α, β̂) > 0 for some ω. Hence, the posterior condi-

tional on observing (α, β̂) is well-defined and we have qα,β̂(a) = qα(a). Now suppose that

β̂ provides the weakest individual evidence for state a, i.e. qβ̂(a) is an extreme point of

the convex hull of {qsi
(a) | si ∈ Si, i ∈ {1, 2}}. Then because p12,ω(α, β̂) > 0 for some

ω, we can apply Proposition 5 and infer that qα,β̂(a) = qβ̂(a). Hence, the two previous
equalities yield qα(a) = qβ̂(a), a contradiction to our assumption that α indicates state

a, and β̂ indicates b. If, on the other hand, β provides the weakest individual evidence
for state a, then an analogous argument yields the contradiction qα̂(a) = qβ(a). A similar

argument shows that (β, β̂) cannot have zero probability in both states.

Clearly, if signals are perfectly correlated, then they are substitutes. In the remainder
of this subsection we ask when the converse is true, i.e. when substitutes need to be
perfectly correlated. We begin by defining perfect correlation formally.

Definition 6. Signals s̃1 and s̃2 are perfectly correlated if there is a one-to-one function
f : S1 → S2 such that

p̄12(s1, s2) > 0⇔ s2 = f(s1). (21)

The following is obvious:

Proposition 6. If signals are perfectly correlated, then they are substitutes.

A converse to this proposition can be proved under additional assumptions.

Proposition 7. Assume:

(i) qsi
6= qs′i for all i ∈ {1, 2} and si, s

′
i ∈ Si where si 6= s′i;

(ii) qsi
/∈ co{qsj

|j ∈ {1, 2}, sj ∈ Sj, qsj
6= qsi

} for all i ∈ {1, 2} and si ∈ Si.
If signals are substitutes, then they are perfectly correlated.

Assumption (i) in Proposition 7 is mild. It requires that no two different signal real-
izations give rise to the same posterior. Assumption (ii) is more restrictive. It says that
the posterior qsi

resulting from any signal realization si is not contained in the convex
hull of the set of posteriors arising from all signal realizations if one removes from that
set any posterior that is identical to qsi

.

Proof. Condition (ii) in Proposition 7 implies that the set of extreme points of co {qsi
|

i ∈ {1, 2}, si ∈ Si} includes {qsi
|si ∈ Si, i ∈ {1, 2}}. On the other hand, by Milman’s

Converse to the Krein-Milman Theorem (Ok, 2007, p. 660), all extreme points of co {qsi
|

i ∈ {1, 2}, si ∈ Si} are in {qsi
|si ∈ Si, i ∈ {1, 2}}. Therefore, the set of extreme points of

co {qsi
|i ∈ {1, 2}, si ∈ Si} equals {qsi

|si ∈ Si, i ∈ {1, 2}}.
Consider any s1 ∈ S1, and suppose s2 ∈ S2 is such that p̄12(s1, s2) > 0. Then, by

Proposition 5 we have qs1,s2 = qs1 and qs1,s2 = qs2 , and therefore qs1 = qs2 . There must
be at least one such s2 ∈ S2, and by assumption (i) in Proposition 7 there can be only
one such s2 ∈ S2. We define: f(s1) ≡ s2. This can be done for every s1 ∈ S1. The
function f satisfies, by construction, p̄12(s1, s2) > 0 ⇔ s2 = f(s1). The function f is
one-to-one because f(s1) = f(s′1) implies by construction qs1 = qs′1 which, by condition
(i) of Proposition 7 implies s1 = s′1.
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5.2 Complements

In the previous section we showed that a form of “meaning reversal” was necessary and
sufficient for signals to be complements in the binary-binary example. The next result
shows that in general, with more than two states, under an additional assumption meaning
reversal is necessary for complements. Note that, unlike in the case of the binary-binary
model, the result does not assert that meaning reversal is sufficient for complements.
Indeed, in the next subsection we shall show an example where the meaning reversal
condition presented in this subsection is satisfied, and where signals are substitutes.

The following result looks formidable. We unpack the statement of the result for the
reader in the text that follows the result.

Proposition 8. Suppose signals are complements. Consider any r ∈ R|Ω|. Define e ≡ rπ.
If for each i ∈ {1, 2} there is a partition (SEi , S

R
i ) of Si such that the following three

conditions are satisfied:

(i) For each i ∈ {1, 2}:

e ≥ rqsi
for all si ∈ SEi and e > rqsi

for at least one si ∈ SEi , (22)

and
rqsi
≥ e for all si ∈ SRi and rqsi

> e for at least one si ∈ SRi ; (23)

(ii) For each k ∈ {E,R} there is at least one (s1, s2) ∈ Sk1 × Sk2 such that

p̄12(s1, s2) > 0; (24)

(iii) For each (k, `) ∈ {(E,R), (R,E)}:

e ≥ rqs1s2 for all (s1, s2) ∈ Sk1 × S`2 with p̄12(s1, s2) > 0, (25)

or
rqs1s2 ≥ e for all (s1, s2) ∈ Sk1 × S`2 with p̄12(s1, s2) > 0; (26)

then
rqs1s2 ≥ e for some s1 ∈ SE1 , s2 ∈ SE2 with p̄12(s1, s2) > 0, (27)

or
e ≥ rqs1s2 for some s1 ∈ SR1 , s2 ∈ SR2 with p̄12(s1, s2) > 0. (28)

This result indicates in lines (27) and (28) that a form of meaning reversal is a necessary
condition for complementarity. To interpret the result suppose the decision maker wants
to learn from the signals whether the expected utility of a risky action R whose payoffs
are given by the vector r is larger or smaller than the expected utility from a safe action
E that yields payoff e in all states. Assume that r and e are such that with the prior
belief π the decision maker is indifferent between the two actions. We denote the set
of realizations of signal s̃i which imply a posterior belief for which action E has higher
expected utility than action R by SEi , and we denote the set of realizations of signal s̃i
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which imply a posterior belief for which action R has higher expected utility than action
E by SRi . Beliefs for which the decision maker is indifferent can be assigned arbitrarily
to one of these two sets.

Signal realizations in SEi by themselves indicate that the expected value rqsi
is not

larger than e. But according to (27) for some joint realization where both realizations
are in SEi we have (almost12) the reverse: rqs1s2 ≥ e. In the same way, (28) is a form of
meaning reversal. At least one of these two meaning reversals must occur according to
Proposition 8.

Note, however, that the meaning reversal is necessary only if conditions (24), (25)
and (26) hold. Among these, (24) is a mild regularity condition. The remaining two
conditions are more restrictive. They refer to the case that the decision maker receives
“mixed messages” from the two signal. There are two possible types of mixed messages:
the first type is when s1 is in SE1 but s2 is in SR2 ; the second type is when s1 is in SR1 but
s2 is in SE2 . The conditions require that for each of the two types of mixed signals one
can say unambiguously which signal is “stronger,” irrespective of the specific realization
of the signals. Thus either for all mixed realizations of the first type the expected value of
action E is at least as large as that of action R, and hence signal s̃1 is stronger, or for all
mixed realizations of the first type the expected value of action R is at least as large as
that of action E, and hence signal s̃2 is stronger. An analogous condition needs to hold
for all mixed realizations of the second type, but it is not necessary that the same signal
is stronger for mixed realizations of both types.

Proof. Indirect. Assume for some r ∈ R|Ω| and e ∈ R there were partitions (SEi , S
R
i ) (for

i ∈ {1, 2}) that satisfy the conditions (i)-(iii) of the Proposition, but neither (27) nor (28)
were true. Consider the decision problem with two actions, R and E, where the payoff
of action R in state ω is given by the ω-th component of r, and the payoff of action E is
equal to e in all states of the world. For an arbitrary belief q the expected payoff of action
R is rq, and the expected payoff of E is e. By assumption, the prior π is such that rπ = e,
that is, the agent is indifferent between the two actions based on the prior. We shall show
that the signals are not complements in this decision problem. For the remainder of this
proof, (A, u) will denote this particular decision problem.

Suppose for (k, `) = (E,R) condition (25) were true, and for (k, `) = (R,E) condition
(26) were true. Together with the assumption that neither (27) nor (28) are true, we
can deduce that, conditional on observing any joint signal realization (s1, s2), one optimal
action for the decision maker is E whenever s1 ∈ SE1 , independent of the realization
of signal s̃2, and R whenever s1 ∈ SR1 , again independent of the realization of signal
s̃2. Therefore, V12(A, u) − V1(A, u) = 0. On the other hand, the strict inequalities in
conditions (22) and (23), applied to i = 2, imply that V2(A, u) − V∅(A, u) > 0. Thus,
signals are not complements. The case that for (k, `) = (E,R) condition (26) is true, and
for (k, `) = (R,E) condition (25) is true, is analogous, with the roles of signals 1 and 2
swapped.

Now consider the case that for both admissible (k, `) condition (25) holds. We shall
calculate V1(A, u)−V∅(A, u) and V12(A, u)−V2(A, u). To calculate these value differences

12Ignoring the possibility of indifference.
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we recall that a positive marginal value from a signal arises only when the signal changes
the decision maker’s optimal choice. As the prior makes the decision maker indifferent,
we can pick the decision maker’s choice when holding the prior as is convenient for our
proof. We pick it to be R. Then we have:

V1(A, u)− V∅(A, u) =
∑
s1∈SE

1

p̄1(s1)(e− rqs1) (29)

=
∑
s1∈SE

1

∑
s2∈S2:

p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2), (30)

where the second line equals the first because the expected value of the posterior belief
conditional on the realizations of both signals is the posterior belief conditional on the
realization of signal s̃1. Focusing again on signal realizations that change the set of optimal
choices for the decision maker we also calculate:

V12(A, u)− V2(A, u) =
∑
s1∈SE

1

∑
s2∈SR

2 :
p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2). (31)

This equation follows from the assumption that (25) holds for both admissible (k, `) and
that neither (27) nor (28) are true. Subtracting (31) from (30), we find:

V1(A, u)− V∅(A, u)− (V12(A, u)− V2(A, u)) =
∑
s1∈SE

1

∑
s2∈SE

2 :
p̄12(s1,s2)>0

p̄12(s1, s2)(e− rqs1,s2). (32)

By condition (24), applied to k = E, in Proposition 8, the sum on the right hand side of
the last equality is over at least one pair (s1, s2). Moreover, because (27) does not hold for
any (s1, s2) ∈ SE1 × SE2 , this sum is negative, and therefore signals are not complements.
The remaining case, when for both admissible (k, `) condition (26) holds, is analogous,
with the optimal choice under the prior taken to be E.

Remark 5. For the case of two states, we have a sufficient condition for complements in
Proposition 4, and a necessary condition for complements in Proposition 8. The example
in Subsection 5.3 will show that neither of these results is a complete characterization,
that is, the sufficient condition is not necessary, and the necessary condition is not suf-
ficient. For the case of more than two states we only have the necessary condition for
complements of Proposition 8, and we don’t have a general sufficient condition. It is in-
teresting to observe that the proof of Proposition 8 makes reference only to choice problems
in which there are only two actions. The condition in Proposition 8 would therefore even
be necessary if we required signals to satisfy the complementarity inequality only in all
two action choice problems. One way in which one could try to find a more restrictive
necessary condition would be to consider arguments involving decision problems with more
than two actions.

Proposition 8 has the following corollary that provides a necessary condition that is
easier to check than the necessary condition in Proposition 8 because no reference is made
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to the vector r and the number e. Instead, a condition is provided under which a suitable
vector r and a number e can be constructed. The proposition’s necessary condition does
not make the connection with meaning reversal obvious. This is why we have first stated
Proposition 8.

Corollary 2. If signals are complements, then for every signal realization (s′1, s
′
2) with

p̄12(s′1, s
′
2) > 0 we have:

π ∈ co {qs1,s2|(s1, s2) ∈ S1 × S2 \ {(s′1, s′2)} and p̄12(s1, s2) > 0} . (33)

Proof. The proof is indirect. Denote the convex hull to which the corollary refers by C
and suppose π /∈ C. Then there is a hyperplane through π that does not intersect with
C. Let r be the orthogonal vector of this hyperplane, and define e ≡ rπ. We can choose r
such that rq < e for all q ∈ C. We now show that with this choice of r and e the necessary
condition of Proposition 8 is violated. For i = 1, 2 define SEi ≡ Si \ {s′i} and SRi ≡ {s′i}.
We first verify conditions (22) and (23) of Proposition 8. Let i ∈ {1, 2} and j 6= i. Because
for every si ∈ SEi and every sj ∈ Sj we have: qsi,sj

∈ C, we can conclude: rqsi,sj
< e.

Because qsi
is a convex combination of qsi,sj

for sj ∈ Sj, this implies: rqsi
< e, and thus

(22) holds. Now consider qs′i . If this belief satisfied: rqs′i ≤ e, then we could infer rπ < e,
because π is a convex combination of qsi

for si ∈ Si, which contradicts e = rπ. Therefore:
rqs′i > e, which verifies (23). Next, we note that (24) holds by construction, and that also
by construction (25) is true for both (k, `). On the other hand, (27) and (28) are violated
by construction. Thus, Proposition 8 implies that signals are not complements.

We now use Corollary 2 to derive the necessity part of Proposition 3.

Proof of the Necessity Part of Proposition 3. We begin by proving that p̄12(α, α̂) > 0 and
p̄12(β, β̂) > 0. The proof is indirect. Suppose first that both probabilities were zero.
Then the signals would be perfectly correlated, and therefore not be complements. Next
suppose p̄12(α, α̂) = 0 but p̄12(β, β̂) > 0. Because α and α̂ occur with strictly positive
prior probability probability, we have to have: p̄12(α, β̂) > 0 and p̄12(β, α̂) > 0. Because
α and α̂ indicate that the state is more likely to be a, it must be that qα,β̂(a) > 0.5 and
qβ,α̂(a) > 0.5. But then the condition of Corollary 2 is violated if we take (s′1, s

′
2) to be

(β, β̂). A symmetric argument applies if p̄12(α, α̂) > 0 and p̄12(β, β̂) = 0. We conclude
that (α, α̂) and (β, β̂) have strictly positive prior probability.

We now prove that qα,α̂(a) ≤ 0.5 or qβ,β̂(b) ≤ 0.5. The proof is indirect. Suppose

qα,α̂(a) > 0.5 and qβ,β̂(b) > 0.5. (34)

We begin with the case that the two mixed realizations (α, β̂) and (α̂, β) both have strictly
positive prior probability so that posteriors conditioning on these signal realizations are
well-defined. We go through different possible orderings of the posterior beliefs, and
show that none of them is compatible with signals being complements. Consider first the
following two cases:

qα,β̂(a) ≥ 0.5 and qβ,α̂(a) ≤ 0.5, (35)

qα,β̂(a) ≤ 0.5 and qβ,α̂(a) ≥ 0.5. (36)
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Condition (35) together with (34) implies that in the decision problem of Figure 4 with
x = 0.5, which we shall denote by (A, u) in this proof, the marginal value of signal s̃2

conditional on signal s̃1 is zero for both signal realizations of signal s̃1. Thus, V12(A, u)−
V1(A, u) = 0, and signals are not complements (note that V2(A, u)− V∅(A, u) > 0 by the
assumption that signal s̃2 is informative and x = 0.5.) For ordering (36) the argument is
the same with the roles of signals 1 and 2 swapped.

We are left with the orderings

qα,β̂(a) > 0.5 and qβ,α̂(a) > 0.5, (37)

qα,β̂(a) < 0.5 and qβ,α̂(a) < 0.5. (38)

If (37) holds in combination with (34), the necessary condition in Corollary 2 is violated
if we choose (s′1, s

′
2) = (β, β̂), and if (38) holds in combination with (34), the necessary

condition in Corollary 2 is violated if we choose (s′1, s
′
2) = (α, α̂).

It remains to discuss the cases in which at least one of (α, β̂) and (β, α̂) does not have
strictly positive prior probability. Suppose first that both realizations (α, β̂) and (β, α̂)
have zero prior probability. This means that signals are perfectly correlated and therefore
the marginal value of a signal when the other signal is available is zero. Hence, signals
are not complements. Suppose next that (α, β̂), but not (β, α̂) has zero probability. If
qβ,α̂(a) ≤ 0.5, then the same argument as for ordering (35) can be used, and if qβ,α̂(a) ≥
0.5, the same argument as for ordering (36) can be used. For the remaining case that
(β, α̂), but not (α, β̂) has zero probability, the argument is analogous.

5.3 A Counterexample

In this subsection we present an example that shows that the conditions in Proposition 5
for substitutes and Proposition 8 for complements are only necessary, but not sufficient.
The example also shows that the sufficient conditions for complements in Proposition 4
are not necessary for complements.

Example 8 is shown in Figure 9.13 The example is a two state example: Ω = {a, b}.
Each individual signal s̃i has two informative realizations: αi, βi, and two uninformative
realizations: σi, σ

′
i. Among all individual and joint signal realizations, the posterior

belief that the state is a can take on only three values: it equals 1/(1 + λ) > 1/2 for
the realizations αi, (σ1, σ2), (σ′1, σ

′
2); it equals 1/2 for the realizations σi, σ

′
i; and it equals

λ/(1 + λ) < 1/2 for the realizations βi, (σ1, σ
′
2), (σ′1, σ2).

Lemma 3. In Example 8 signals are substitutes if 2ϕ ≤ ρ and complements if 2ϕ ≥ ρ.

Proof. Individually, a signal is informative with probability (1 + λ)ρ. If it is informative,
it induces the same posteriors as a signal with likelihood ratios 1/λ and λ. Therefore, the
marginal value of an individual signal is the same as the marginal value of a signal with
likelihood ratios 1/λ and λ multiplied by the probability (1 + λ)ρ.

13To ensure that all probabilities are non-negative and sum to one, we have to choose the parameters
ρ, ϕ, λ ∈ (0, 1) such that (1 + λ)(ρ+ 2ϕ) = 1.
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α2 σ2 σ′2 β2

α1 ρ 0 0 0

σ1 0 ϕ λϕ 0

σ′1 0 λϕ ϕ 0

β1 0 0 0 λρ

α2 σ2 σ′2 β2

α1 λρ 0 0 0

σ1 0 λϕ ϕ 0

σ′1 0 ϕ λϕ 0

β1 0 0 0 ρ

ω = a ω = b

Figure 9: Example 8 (signals are substitutes if 2ϕ ≤ ρ and complements if 2ϕ ≥ ρ)

Conditional on being informative, signals are perfectly correlated. Therefore, if one
signal is available and is informative, then the other signal’s marginal value is zero. On
the other hand, if one signal is available and uninformative, the other signal induces the
same posteriors as a signal with likelihood ratios 1/λ and λ. Therefore, the marginal
value of a signal given the other signal is already available is the same as the marginal
value of a signal with likelihood ratios 1/λ and λ multiplied by the probability that the
other signal is uninformative, which is 1− (1 + λ)ϕ.

It follows that signals are substitutes if and only if 1− (1+λ)ϕ ≤ (1+λ)ϕ, and signals
are complements if and only if 1− (1 + λ)ϕ ≥ (1 + λ)ϕ. With (1 + λ)(ϕ+ 2ρ) = 1, these
conditions are equivalent to 2ϕ ≤ ρ resp. 2ϕ ≥ ρ.

We shall now show that the example satisfies, for all parameter combinations, the
necessary conditions in Proposition 5 for substitutes and Proposition 8 for complements.
We shall thus show that neither set of conditions is sufficient. Consider first the conditions
in Proposition 5. The realizations of signal s̃i which individually induce the most extreme
posteriors are αi and βi. Conditional on such an extreme realization, signals are perfectly
correlated. In particular, once an extreme realization is observed, no realization of the
other signal changes the decision maker’s belief. This means that the necessary condition
for substitutes in Proposition 5 is met for both signals s̃i. However, for 2ϕ > ρ, signals
are not substitutes.

Next, we show that the example satisfies all conditions of Proposition 8. It is easy
to see that for any r and e for which some partition of S1 and S2 satisfies condition
(i) of Proposition 8, the equation rq ≥ e is equivalent to q(a) ≥ 0.5 or q(a) ≤ 0.5.
Without loss of generality we assume it is equivalent to q(a) ≥ 0.5. For each of the two
sets Si there are four partitions that satisfy condition (i) of Proposition 8. We must
have αi ∈ SRi and βi ∈ SEi , but σi and σ′i can each be allocated to either of the two
sets. This yields 16 pairs of partitions, all of which satisfy condition (ii) of Proposition
8. One can check that condition (iii) is violated by the two pairs of partitions for which
σi and σ′i are both in SEi for some i ∈ {1, 2} and σj and σ′j are both in SRj for j 6= i.
Ignoring these two cases, one can check that in all other cases there is some meaning
reversal. For example, if SR1 = {α1, σ1}, SE1 = {σ′1, β1}, SR2 = {α2, σ

′
2}, and SE2 = {σ2, β2},

then meaning reversal occurs for the signal realizations (σ1, σ
′
2). This shows that the
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example satisfies the necessary condition for complementarity in Proposition 8. However,
for 2ϕ < ρ, signals are not complements.

The example also demonstrates that the sufficient condition in Proposition 4 for com-
plementarity is not necessary. To see this, pick some x such that λ/(1+λ) < x < 0.5, and
note that Sαi (x) = {αi, σi, σ′i} and Sβi (x) = {βi} for i = 1, 2. The information structure
for the derived signals t̃1(x) and t̃2(x) is shown in Figure 10. Observe that t̃1(x) and t̃2(x)
are perfectly correlated and therefore are not complements.

tα2 (x) tβ2 (x)

tα1 (x) 1− λρ 0

tβ1 (x) 0 λρ

tα2 (x) tβ2 (x)

tα1 (x) 1− ρ 0

tβ1 (x) 0 ρ

State a State b

Figure 10: Signals t̃1(x) and t̃2(x) for the counterexample and partition {{σ′i, σi, αi}, {βi}}

6 Linear Decision Problems

Many pairs of signals are neither complements nor substitutes. This is because the require-
ments that define complementarity and substitutability are stringent in that they require
the complementarity or substitutability inequalities to hold in all decision problems. In
applications, only subclasses of decision problems might be of interest. Restricting at-
tention to subclasses of decision problems gives rise to notions of complementarity or
substitutability that apply to more pairs of signals. In the literature on the Blackwell
comparison of the informativeness of signals, this line of research has been pursued by
Lehmann (1988), Persico (2000), Athey and Levin (2001), and Jewitt (2007). These au-
thors restrict attention to decision problems where states and actions are real numbers.
Only decision problems for which the utility function u satisfies some form of monotonic-
ity, for example a single crossing condition, are considered. These authors then provide
informativeness comparisons for real valued signals that are assumed to satisfy the mono-
tone likelihood ratio condition. In particular, Jewitt (2007, Propositions 1, 3 and 4) shows
that informativeness comparisons in this restricted set-up are equivalent to Blackwell com-
parisons that are carried out for each pair of possible states, pretending in each case that
these two states were the only possible states of the world. Our insights into comple-
mentarity and substitutability in the case of only two states can therefore be extended to
settings with more than two states if one restricts attention to the same class of decision
problems as the authors quoted above, and if one makes use of the close relation between
complementarity, substitutability, and Blackwell comparisons. However, to proceed along
these lines one needs to impose conditions on the joint conditional distribution of signals
that ensure that both auxiliary signals that were constructed in Section 3 satisfy the
monotone likelihood ratio condition. The investigation of such conditions goes beyond
the scope of this paper.
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We focus instead on a different subclass of decision problems, linear decision problems,
for which we can extend our results without strong conditions for the signal distributions.
We assume that states, though not necessarily signals, are real numbers and we only
consider decision problems where the utility function is linear in the state. Our results
in this section will show that complementarity or substitutability in the linear model is
equivalent to complementarity or substitutability in an auxiliary model in which there
are only two states. Therefore, our earlier analysis of the two state case can be extended
in a straightforward way to obtain an analysis of substitutability and complementarity in
linear decision problems.

An important conceptual feature of the analysis that follows is that it depends on
the prior distribution π over the state space Ω. In the linear model, signals that are
complements or substitutes for one prior need not be complements or substitutes for
some other prior. This is different from the case in which we allow all possible utility
functions, as in the previous sections. In that case the prior can be fixed, but which prior
is chosen does not affect the analysis. These considerations motivate the reference to the
prior distribution in the following definition.14

Definition 7. Suppose Ω is a finite subset of R, and suppose ω ≡ min Ω = 0 and
ω̄ ≡ max Ω = 1. Let π be a prior distribution over Ω. Signals s̃1 and s̃2 are linear
substitutes given π if for all decision problems (A, u) such that for any given a ∈ A the
utility function u(a, ω) is a linear function of ω we have:

V1(A, u)− V∅(A, u) ≥ V12(A, u)− V2(A, u). (39)

Signals s̃1 and s̃2 are linear complements given π if for all decision problems (A, u) such
that for any given a ∈ A the utility function u(a, ω) is a linear function of ω we have:

V12(A, u)− V2(A, u) ≥ V1(A, u)− V∅(A, u). (40)

Now consider some arbitrary signal s̃ with realizations in the finite set S. We shall
associate with s̃ another, auxiliary signal ŝ that is defined in an auxiliary model with only
two states, ω = 0 and ω̄ = 1, and which has realizations in the same finite set S in which
also the realizations of s̃ are contained. To specify this auxiliary model we thus have
to specify the prior probabilities π̂(ω) and π̂(ω̄) of the two states, and the conditional
probabilities p̂ω(s) and p̂ω̄(s) of all signal realizations s ∈ S. We shall specify these below.
We shall then apply this construction of an auxiliary signal to the particular case that
the signal s̃ is (s̃1, s̃2) to obtain an auxiliary signal (ŝ1, ŝ2). Our main result will be that
s̃1 and s̃2 are linear substitutes given a prior π if and only if ŝ1 and ŝ2 are substitutes,
and that an analogous result holds for complements.

We now construct the auxiliary signal ŝ. We denote by E[ω̃] the expected value of ω̃,
and we denote by E[ω̃|s] the expected value of ω̃ conditional on some signal realization
s. We set Ω̂ = {ω, ω̄}, we specify the prior probabilities π̂ as follows:

π̂(ω̄) = E[ω̃] and π̂(ω) = 1− E[ω̃], (41)

14The assumption in this definition that min Ω = 0 and max Ω = 1 is a normalizing assumption that is
without loss of generality.
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and we define the conditional signal probabilities by setting for any s ∈ S:

p̂ω̄(s) =

∑
ω∈Ω

[π(ω)pω(s)ω]

E[ω̃]
and p̂ω(s) =

∑
ω∈Ω

[π(ω)pω(s)(1− ω)]

1− E[ω̃]
. (42)

It is easy to verify that these are non-negative numbers whose sum is 1.

By construction, the prior expected value of the state in the auxiliary model is the
same as in the original model. The next lemma shows that the auxiliary signal that we
have constructed also induces the same distribution of conditional expected values of ω̃
as the original signal.

Lemma 4. For every signal realization s ∈ S: (i) the prior probability of observing signal
realization s is in the auxiliary model the same as it was in the original model; and (ii)
the conditional expected value of the state, conditional on observing signal realization s,
is in the auxiliary model the same as it was in the original model.

Proof. To prove (i), note that in the auxiliary model the prior probability of observing s
is:

π̂(ω̄)p̂ω̄(s) + π̂(ω)p̂ω(s)

= E[ω̃]

∑
ω∈Ω

[π(ω)pω(s)ω]

E[ω̃]
+ (1− E[ω̃])

∑
ω∈Ω

[π(ω)pω(s)(1− ω)]

1− E[ω̃]

=
∑
ω∈Ω

[π(ω)pω(s)] , (43)

which is equal to the prior probability of observing s in the original model.

To prove (ii), note that in the auxiliary model the conditional expected value of the
state is:

π̂(ω̄)p̂ω̄(s)∑
ω∈Ω̂

π̂(ω)p̂ω(s)
=
E[ω̃]

P
ω∈Ω

[π(ω)pω(s)ω]

E[ω̃]∑
ω∈Ω

[π(ω)pω(s)]
=

∑
ω∈Ω

[π(ω)pω(s)ω]∑
ω∈Ω

[π(ω)pω(s)]
= E[ω̃|s]. (44)

In the particular case in which signal s̃ is equal to (s̃1, s̃2), the above construction
yields an auxiliary signal (ŝ1, ŝ2) with realizations in S1 × S2. We denote the signals
that result if the decision maker observes only the first, or only the second, of the two
components of the auxiliary signal by ŝ1 and ŝ2. Since equation (42) is additive in the
conditional probabilities pω(s), ŝi and the auxiliary signal associated with s̃i have the same
distribution conditional on each state. Consequently, (ŝ1, ŝ2), ŝ1 and ŝ2 induce the same
distribution of conditional expected values of the state as (s̃1, s̃2), s̃1 and s̃2. In addition,
when utility is linear, the decision maker’s expected utility of any action only depends on
the expected value of the state ω and not on any other feature of the distribution of ω.
This explains the main result of this section.
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Proposition 9. Signals s̃1 and s̃2 are linear substitutes given π if and only if the auxiliary
signals ŝ1 and ŝ2 are substitutes. Signals s̃1 and s̃2 are linear complements given π if and
only if the auxiliary signals ŝ1 and ŝ2 are complements.

Remark 6. Proposition 9 refers to signals s̃1 and s̃2 as linear complements or substitutes
given the prior π, but refers to signals ŝ1 and ŝ2 as complements and substitutes without
reference to a prior. This is because in the auxiliary two state model all utility functions
are linear with respect to the state, and therefore there is no difference between linear
complementarity or substitutability, and complementarity or substitutability in the sense
of the previous sections. Moreover, as was emphasized before, the complementarity and
substitutability notions of the previous section are independent of the prior. Note that the
prior π does, of course, enter into the definition of signals ŝ1 and ŝ2

Proof. Consider any decision problem (A, u) where u is linear in ω. There is a related
decision problem (Â, û) in the auxiliary model where the action set is Â = A, that
is, the same as in the original decision problem, and where the utility function û is
obtained from the utility function u in the original model by setting û(a, ω) = u(a, ω) and
û(a, ω) = u(a, ω) for any a ∈ Â. Thus, û is the restriction of u to A× {ω, ω̄}. For every
decision problem (A, u) there is a corresponding decision problem (Â, û), but also vice
versa, for every given decision problem (Â, û), there is a unique corresponding decision
problem (A, u) such that u is linear in ω.

Denote by V̂∅(Â, û) the decision maker’s expected utility when choosing optimally in
the auxiliary model with no information, for i = 1, 2, denote by V̂i(Â, û) the decision
maker’s expected utility when choosing optimally after observing the realization of ŝi in
the auxiliary model, and denote by V̂12(Â, û) the decision maker’s expected utility when
choosing optimally after observing the realization of (ŝ1, ŝ2) in the auxiliary model. Our
proof strategy is to show:

V̂∅(Â, û) = V∅(A, u), V̂i(Â, û) = Vi(A, u) for i = 1, 2, and V̂12(Â, û) = V12(A, u). (45)

This equation immediately implies that the same inequalities that determine whether s̃1

and s̃2 are complements or substitutes also determine whether ŝ1 and ŝ2 are complements
or substitutes, and thus proves the result.

To prove our claims we observe first that, when utility is linear, the decision maker’s
expected utility only depends on the expected value of the state ω̃, not on the distribution
of ω̃. Therefore, Lemma 4 (ii) implies that, when maximizing expected utility in decision
problem (A, u) conditional on some signal realization s, the decision maker obtains the
same maximal expected utility in the auxiliary model using the auxiliary signal as he
obtained in the original model using the original signal. Second, Lemma 4 (i) says that
all signal realizations s have the same prior probability in the auxiliary model as in
the original model. Because the ex ante expected utilities to which we refer above are
calculated as the sum over all signal realizations of the probability of that signal realization
times the maximal expected utility obtainable after observing that signal realization, our
assertion follows.
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As a consequence of this proposition, we can check whether any two signals are linear
complements or linear substitutes by checking complementarity and substitutability, re-
spectively, in an associated two-state model. For this latter purpose we can use the results
of Section 4 for two state models. Consider, for instance, a linear model in which indi-
vidual signals each only have two possible realizations: S1 = {α, β} and S2 = (α̂, β̂}, and
assume that E[ω̃|α] > E[ω̃|β] and E[ω̃|α̂] > E[ω̃|β̂]. Then we can infer from Proposition 2
that signals are substitutes if and only if (α, α̂) and (β, β̂) each have strictly positive prob-
ability and E[ω̃|(α, α̂)] = max{E[ω̃|α], E[ω̃|α̂]} and E[ω̃|(β, β̂)] = min{E[ω̃|β], E[ω̃|β̂]}.
Similarly, we can infer from Proposition 3 that signals are complements if and only if
(α, α̂) and (β, β̂) each have strictly positive prior probability and E[ω̃|(α, α̂)] ≤ E[ω̃] or
E[ω̃|(β, β̂)] ≥ E[ω̃]. Intuitively, one obtains characterizations in terms of conditional ex-
pected values of the state because in the auxiliary model, where the state is either 0 or 1,
the conditional probabilities equal conditional expected values, and because conditional
expected values in the auxiliary model equal conditional expected values in the original
model by part (ii) of Lemma 4.

7 Conclusion

This paper has provided some insights into the nature of substitutability and comple-
mentarity relations among signals. Our most general conditions for substitutability and
complementarity in the case that there are more than two states are only necessary, not
sufficient, and therefore give us only a partial description of signals that are substitutes
or complements. As the necessary condition for substitutes is obviously very restrictive,
whereas the necessary condition for complements is not obviously as restrictive, perhaps
the most intriguing open question is how large the class of complements is if there are
more than two states. It is for this question useful to note a simple way of generating
examples of complements that we came across while working on this paper. Consider a
two stage lottery where in the first stage some parameter η is drawn from a probabil-
ity distribution that is independent of the true state, and in the second stage the signal
realization s is drawn according to a distribution that depends on both η and the state
ω. In such a construction η and s are always complements, because η by itself has no
informational value, but in combination with s increases the informational value of s.
A simple example is: s = ω + η, which is the common setting where the signal equals
the true state plus noise.15 Another example is s = ω + ηε where ε is state-independent
noise and η reflects the precision of s. It seems a productive line of further research could
build on such examples to develop sufficient conditions for complements, and then try
to close the gap between sufficient and necessary conditions. As discussed in Section 6,
a further study of complementarity and substitutability in the case that attention is re-
stricted to decision problems in which the decision maker’s utility function satisfies some
monotonicity condition seems also feasible.

A further line of work is to pursue the implications of complementarity and substi-
tutability in economic settings. In this context it is interesting that complementarity and

15We are assuming in this example and the next that all variables are real numbers.
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substitutability of signals may not only matter in single person decision problems, but also
in games when agents hold private signals, and each agent’s preferences depend on all sig-
nal realizations, that is, in contexts with interdependent preferences. Such contexts arise
naturally in auctions or in voting games. It seems worthwhile to explore the implications
of complementarity and substitutability in those contexts. Finally, complementarity of
signals may also matter when agents acquire signals sequentially. In this case, the second
signal may be acquired when the agent already knows the realization of the first signal.
By contrast, in our setting, each signal is acquired without knowing the realization of the
other signal. Extending our results to a setting where agents evaluate signals knowing
the realization of other signals is another project for future work.
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Appendices

A Proof of the Sufficiency Part of Proposition 2

We only consider the case in which the realization α provides the strongest individual
evidence for state a: qα(a) ≥ qα̂(a). The other case can be dealt with analogously.
There are two further cases: we first consider the case in which β provides the strongest
individual evidence for b: qβ(b) ≥ qβ̂(b). In this case, conditions (13) and (14) become:

qα,α̂(a) = qα(a), qβ,β̂(a) = qβ(a). (46)

We now argue that signal s̃2 does not affect the decision maker’s belief if he has observed
signal s̃1. Indeed, if the realization (α, β̂) has strictly positive probability in some state,
then since qα(a) is a convex combination of qα,s2(a), s2 ∈ {α̂, β̂}, the left equality above

implies that qα,β̂(b) = qα(b). Moreover, if (α, β̂) has zero probability in all states, then
clearly the decision maker maintains his belief after having observed the realization α
with probability 1. In sum, we have shown that the probability that a realization of
signal s̃2 changes the decision maker’s belief if realization α of signal s̃1 has been observed
is zero. Symmetrically, the probability that a realization of signal s̃2 changes the decision
maker’s belief if realization β of signal s̃1 has been observed is zero. But this means that
the marginal value of signal s̃2, if signal s̃1 is available, is zero in all decision problems.
Hence, signals are substitutes.

We next consider the case qβ̂(b) ≥ qβ(b). In this case, conditions (13) and (14) become:

qα,α̂(a) = qα(a), qβ,β̂(b) = qβ̂(b). (47)

We first argue that this implies

p12,a(α, β̂) = p12,b(α, β̂) = 0. (48)

Indeed, suppose the contrary were true. Then because for i, j, qsi
(a) is a convex combi-

nation of qsi,sj
(a), sj ∈ Sj, (47) would imply that qα,β̂(a) = qα(a), and qα,β̂(a) = qβ̂(a),

a contradiction to our assumption that realization α indicates state a and realization β̂
indicates state b.

We now demonstrate that signals are substitutes. Suppose first that the realization
(β, α̂) has zero probability in all states. Then (48) implies that signals are perfectly
correlated. Therefore, the probability that a realization of one signal changes the decision
maker’s belief if the other signal is available is zero. Hence, signals are substitutes.

Suppose next that (β, α̂) has strictly positive probability in some state. (47) together
with the fact that for i, j, qsi

(a) is a convex combination of qsi,sj
(a), sj ∈ Sj and the

assumption that α provides the strongest and β̂ the weakest individual evidence for state
a implies the ordering:

qβ,β̂(a) = qβ̂(a) ≤ qβ(a) ≤ qβ,α̂(a) ≤ qα̂(a) ≤ qα(a) = qα,α̂(a). (49)
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We now use Lemma 1 to demonstrate that signals are substitutes. By Lemma 1, it is
sufficient to verify that signals are substitutes in all two-action problems of Figure 4 for
all x ∈ (0, 1). We show that for any x there is a signal s̃i so that V12(A, u)−Vi(A, u) = 0.

• x ≤ qβ,β̂(a) or x ≥ qα,α̂(a): Then all realizations of (s̃1, s̃2), s̃1, s̃2 induce the same
optimal action, so that V12(A, u)− V1(A, u) = V12(A, u)− V2(A, u) = 0.

• x ∈ (qβ,β̂(a), qβ,α̂(a)]: Then the probability that a realization of signal s̃1 moves the

decision maker’s belief when realization β̂ of signal s̃2 has been observed is zero,
and no realization of signal s̃1 changes the optimal action if realization α̂ of signal
s̃2 has already been observed. Therefore, V12(A, u)− V2(A, u) = 0.

• x ∈ (qβ,α̂(a), qα,α̂(a)]: Then the probability that a realization of signal s̃2 moves the
decision maker’s belief if realization α of signal s̃1 has been observed is zero, and no
realization of signal s̃2 changes the optimal action if realization β of signal s̃1 has
already been observed. Therefore, V12(A, u)− V1(A, u) = 0.

B Proof of the Sufficiency Part of Proposition 3

We begin with the observation that the conditions in Proposition 3 imply that all signal
realizations have strictly positive prior probability. Suppose, for example, (15) were true
and p̄12(α, β̂) = 0. Then qα(a) = qα,α̂(a) ≤ 0.5 which would contradict our assumption
that qα(a) > 0.5. The argument can be completed by repeating this step a number of
times.

By Lemma 1, it suffices to verify complementarity for all two-action problems described
in Figure 4. Below, we shall assume that x ≤ 0.5. If x ≤ 0.5, then it is optimal under
the prior belief to choose B. We shall assume that qβ(a) < x and qβ̂(a) < x so that after

observing β or β̂ it is strictly optimal to choose T . If this were not true, at least one of
the signals would by itself never provide a strict incentive to switch away from the action
that maximizes expected utility under the prior, and thus this signal by itself would have
zero value. Signals would then trivially be complements.

A signal has positive value by itself if it sometimes induces the decision maker to
switch to T , and the value of the signal is the expected utility increase arising from these
switches. If the decision maker attaches probability q(a) < x to state a, and switches
from B to T , then the increase in expected utility is:

(1− q(a))x− q(a)(1− x) = x− q(a). (50)

Observing a second signal realization sometimes induces the decision maker to switch
back from T to B. If some signal observation induces the decision maker to hold beliefs
q(a) > x, and to switch from T to B, then the increase in expected utility is:

q(a)(1− x)− (1− q(a))x = q(a)− x. (51)
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Building on these considerations, we can now calculate:

V2(A, u)− V∅(A, u) = p̄2(β̂)[x− qβ̂(a)]

= p̄12(β, β̂)[x− qβ,β̂(a)] + p̄12(α, β̂)[x− qα,β̂(a)]. (52)

The first line uses the assumption qβ̂(a) < x. The first and the second line are equal
because the expected value of the posterior belief after observing both signal realizations,
taking expected values over the realizations of signal 1, is the posterior belief after ob-
serving the realization of signal 2 only. We next compute the marginal value of signal s̃2

when signal s̃1 is available:

V12(A, u)− V1(A, u) = p̄12(β, α̂)[qβ,α̂(a)− x]+ + p̄12(β, β̂)[qβ,β̂(a)− x]+

+p̄12(α, α̂)[x− qα,α̂(a)]+ + p̄12(α, β̂)[x− qα,β̂(a)]+. (53)

Here, we use for any real number z the following notation: z+ ≡ z if z ≥ 0, and z+ ≡ 0
if z < 0. We have also made use of our assumption qβ(a) < x.

We now prove first that (15) implies that signals are complements. Condition (15)
implies that qβ,α̂(a) > 0.5 > x because otherwise we could not have qα̂(a) > 0.5. Thus,

V12(A, u)− V1(A, u) ≥ p̄12(β, α̂)[qβ,α̂(a)− x]. (54)

Therefore, we obtain for the difference:

V12(A, u)− V1(A, u)− (V2(A, u)− V∅(A, u))

≥ p̄12(β, α̂)[qβ,α̂(a)− x] + p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[qα,β̂(a)− x]. (55)

Now we add and subtract p̄12(α, α̂)[qα,α̂(a) − x] on the right hand side. Using the fact
that

∑
(s1,s2)∈S1×S2

p̄12(s1, s2)qs1,s2(a) = 0.5, the right hand side of (55) becomes equal to

0.5− x− p̄12(α, α̂)[qα,α̂(a)− x] ≥ 0.5− x− p̄12(α, α̂)[0.5− x] ≥ 0. (56)

The first inequality follows because qα,α̂(a) ≤ 0.5 by (15). The second inequality follows
because x ≤ 0.5 and since p̄12(α, α̂) < 1. This establishes that (15) implies that signals
are complements.

We next prove that (16) implies that signals are complements. Condition (16) implies:
qβ,β̂(a) ≥ 0.5 ≥ x, and hence we have:

V12(A, u)− V1(A, u) ≥ p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[x− qα,β̂(a)]+. (57)

Thus,

V12(A, u)− V1(A, u)− (V2(A, u)− V∅(A, u))

≥ p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[x− qα,β̂(a)]+

+p̄12(β, β̂)[qβ,β̂(a)− x] + p̄12(α, β̂)[qα,β̂(a)− x] ≥ 0. (58)

The sum in (58) is non-negative since qβ,β̂(a) ≥ 0.5 ≥ x by (16), and because the sum of
the second and the fourth term is always non-negative. Thus we have again shown that
signals are complements.
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