Redistributive Taxation in a Partial-Insurance Economy

Jonathan Heathcote

Federal Reserve Bank of Minneapolis and CEPR

Kjetil Storesletten

Federal Reserve Bank of Minneapolis and CEPR

Gianluca Violante

New York University, CEPR and NBER

Conference on "Debt, Financial Markets and Monetary Policy" Federal Reserve Bank of St. Louis, October 15-16, 2009 Redistributive taxation

Three principles that instruct the policy debate:

- 1. Distortions to labor supply Feldstein (1973), Sandmo (1976), Prescott (2002), Rogerson (2008)
- 2. Insurance against earnings shocks Eaton-Rosen (1980), Floden-Linde (2001), Krueger-Perri (2007)
- 3. Public good provision Citation (2001)

Questions

• Positive: how does progressivity affect the supply of labor and consumption insurance?

Questions

- Positive: how does progressivity affect the supply of labor and consumption insurance?
- Normative: what is the optimal rate of progressivity? How does it depend upon...
 - 1. The elasticity of labor supply
 - 2. The amount of privately-provided insurance
 - 3. The taste for public goods

Questions

- Positive: how does progressivity affect the supply of labor and consumption insurance?
- Normative: what is the optimal rate of progressivity? How does it depend upon...
 - 1. The elasticity of labor supply
 - 2. The amount of privately-provided insurance
 - 3. The taste for public goods
- Our contribution:
 - Tractable framework that delivers insights on the trade-offs

The Model (H-S-V, 2009)

- Equilibrium heterogeneous-agents model featuring:
 - 1. differential labor productivity, and idiosyncratic productivity risk
 - 2. endogenous labor supply

The Model (H-S-V, 2009)

- Equilibrium heterogeneous-agents model featuring:
 - 1. differential labor productivity, and idiosyncratic productivity risk
 - 2. endogenous labor supply
 - 3. risk-free bond plus additional private risk-sharing
 - we remain agnostic about sources of additional insurance
 - we use data to measure its magnitude

The Model (H-S-V, 2009)

- Equilibrium heterogeneous-agents model featuring:
 - 1. differential labor productivity, and idiosyncratic productivity risk
 - 2. endogenous labor supply
 - 3. risk-free bond plus additional private risk-sharing
 - we remain agnostic about sources of additional insurance
 - we use data to measure its magnitude
 - 4. government redistribution via progressive tax/transfer system

Commodities, technology, and resource constraint

- Two commodities traded competitively:
 - 1. Final consumption good (numeraire)
 - 2. Effective hours worked $(w_i h_i)$

Commodities, technology, and resource constraint

- Two commodities traded competitively:
 - 1. Final consumption good (numeraire)
 - 2. Effective hours worked $(w_i h_i)$
- Aggregate technology linear in effective labor:

$$Y = \int w_i h_i di \equiv \int y_i di$$

• Resource constraint:

$$Y = \int c_i di + G$$

Demographics and preferences

- Perpetual youth demographics with constant survival probability δ
 - Each cohort has size $(1 \delta) \Rightarrow$ population with measure one

Demographics and preferences

- Perpetual youth demographics with constant survival probability δ
 - Each cohort has size $(1 \delta) \Rightarrow$ population with measure one
- Preferences over sequences of cons., hours, and public good:

$$U(\mathbf{c}_i, \mathbf{h}_i, \mathbf{G}) = \mathbb{E}_0 \sum_{t=0}^{\infty} (\beta \delta)^t u(c_{it}, h_{it}, G_t)$$

with period-utility:

$$u(c_{it}, h_{it}, G_t) = \frac{c_{it}^{1-\gamma} - 1}{1-\gamma} - \widetilde{\varphi} \, \frac{h_{it}^{1+\sigma}}{1+\sigma} + \chi \frac{G_t^{1-\rho} - 1}{1-\rho}$$

Individual endowments

- Agents born with zero initial financial wealth
- Individual endowments of efficiency units of labor:

 $\log w_{it} = \alpha_{it} + \varepsilon_{it}$

Individual endowments

- Agents born with zero initial financial wealth
- Individual endowments of efficiency units of labor:

 $\log w_{it} = \alpha_{it} + \varepsilon_{it}$

• α_{it} component follows unit root process

$$\alpha_{it} = \alpha_{i,t-1} + \omega_t$$
 with $\omega_{it} \sim F_\omega$ and $\alpha_{i0} \sim F_{\alpha_0}$

Individual endowments

- Agents born with zero initial financial wealth
- Individual endowments of efficiency units of labor:

 $\log w_{it} = \alpha_{it} + \varepsilon_{it}$

• α_{it} component follows unit root process

$$\alpha_{it} = \alpha_{i,t-1} + \omega_t$$
 with $\omega_{it} \sim F_\omega$ and $\alpha_{i0} \sim F_{\alpha_0}$

• ε_{it} component is transitory

$$\varepsilon_{it}$$
 i.i.d. with $\varepsilon_{it} \sim F_{\varepsilon}$

Financial and insurance markets

- Assets traded competitively (all in zero net supply)
 - Perfect annuity against survival risk
 - Complete markets for ε shocks
 - Non-contingent bond

Financial and insurance markets

- Assets traded competitively (all in zero net supply)
 - Perfect annuity against survival risk
 - Complete markets for ε shocks
 - Non-contingent bond
- Market structure
 - $v_{\varepsilon} = 0 \Rightarrow$ bond economy
 - $v_{\alpha} = 0 \Rightarrow$ full insurance
 - In between: "partial insurance"

Government

• Runs a progressive tax/transfer system, finances public good G

Government

• Runs a progressive tax/transfer system, finances public good G

• Post-government (disposable) earnings:

 $\tilde{y}_i = \lambda y_i^{1-\tau}$

• Government budget constraint (no debt):

$$G = \int \left[y_i - \lambda y_i^{1-\tau} \right] di$$

• Given (G, τ) , λ balances the budget in equilibrium

Our model of fiscal redistribution

• The parameter τ measures the rate of progressivity:

$$\log(\tilde{y}_i) = const + (1 - \tau)\log(y_i)$$

1.
$$\tau = 0 \rightarrow \tilde{y_i} = \lambda y_i$$
: no redistribution, i.e. flat tax

2.
$$\tau = 1 \rightarrow \tilde{y_i} = \lambda$$
: full redistribution

Our model of fiscal redistribution

• The parameter τ measures the rate of progressivity:

$$\log(\tilde{y}_i) = const + (1 - \tau)\log(y_i)$$

1.
$$\tau = 0 \rightarrow \tilde{y_i} = \lambda y_i$$
: no redistribution, i.e. flat tax

2.
$$\tau = 1 \rightarrow \tilde{y_i} = \lambda$$
: full redistribution

- Then, if $\tau > 0$:
 - 1. The system is progressive
 - 2. The system generates a transfer for low earnings

Empirical content of our model for fiscal redistribution

- CPS 1980-2006, positive labor income: 1,080,347 obs.
- Estimated slope of model line ($R^2 = 0.88$) yields $\tau = 0.26$

Empirical content of our model for fiscal redistribution

- CPS 1980-2006, positive labor income: 1,080,347 obs.
- Estimated slope of model line ($R^2 = 0.88$) yields $\tau = 0.26$

"No bond trading" equilibrium

• Equilibrium of incomplete-markets economies requires solving for the distribution of wealth (endogenous state variable)

"No bond trading" equilibrium

- Equilibrium of incomplete-markets economies requires solving for the distribution of wealth (endogenous state variable)
- There exists a bond price $q^* > \beta$ s.t. the intertemporal dissaving motive equals the precautionary saving motive, for all agents
 - Agents start with zero initial wealth \Rightarrow wealth distribution remains degenerate $\Rightarrow (\alpha, \varepsilon)$ only (exogenous) state variables
 - Extension of Constantinides-Duffie (1996), and H-S-V (2009) to a setting with redistributive taxation

"No bond trading" equilibrium

- Equilibrium of incomplete-markets economies requires solving for the distribution of wealth (endogenous state variable)
- There exists a bond price $q^* > \beta$ s.t. the intertemporal dissaving motive equals the precautionary saving motive, for all agents
 - Agents start with zero initial wealth \Rightarrow wealth distribution remains degenerate $\Rightarrow (\alpha, \varepsilon)$ only (exogenous) state variables
 - Extension of Constantinides-Duffie (1996), and H-S-V (2009) to a setting with redistributive taxation
- In equilibrium: ε shocks insured, α shocks uninsured by markets

Equilibrium allocations: hours worked

$$\ln h^{*}(\alpha, \varepsilon) = \underbrace{\frac{1}{(1-\tau)\left(\widehat{\sigma}+\gamma\right)} \left[(1-\gamma)\ln\lambda^{*} + \ln(1-\tau) - \varphi \right]}_{\text{Representative agent}}$$

$$-\underbrace{M_{h}(v_{\varepsilon})}_{\text{Wealth effect}} + \underbrace{\frac{1-\gamma}{\widehat{\sigma}+\gamma}\alpha}_{\text{Unins. shock}} + \underbrace{\frac{1}{\widehat{\sigma}}\varepsilon}_{\text{Insurable shock}}$$

Heathcote-Storesletten-Violante, "Redistributive Taxation" - p. 13/25

Equilibrium allocations: hours worked

• Tax-modified Frisch elasticity (decreasing in τ):

$$\frac{1}{\widehat{\sigma}} \equiv \frac{1-\tau}{\sigma+\tau}$$

• γ measures the relative strength of income vs. substitution effect

Equilibrium allocations: consumption

$$\ln c^{*}(\alpha) = \underbrace{\frac{1}{\widehat{\sigma} + \gamma} \left[(1 + \widehat{\sigma}) \ln \lambda^{*} + \ln(1 - \tau) - \varphi \right]}_{\text{Representative agent}} + \underbrace{M_{c}(v_{\varepsilon})}_{\text{Wealth effect}} + \underbrace{\pi(\gamma, \sigma, \tau)\alpha}_{\text{Uninsurable shocks}}$$

Equilibrium allocations: consumption

$$\ln c^{*}(\alpha) = \underbrace{\frac{1}{\widehat{\sigma} + \gamma} \left[(1 + \widehat{\sigma}) \ln \lambda^{*} + \ln(1 - \tau) - \varphi \right]}_{\text{Representative agent}} + \underbrace{M_{c}(v_{\varepsilon})}_{\text{Wealth effect}} + \underbrace{\pi(\gamma, \sigma, \tau)\alpha}_{\text{Uninsurable shocks}}$$

• The transmission coefficient of a permanent uninsured shock:

$$\pi(\gamma, \sigma, \tau) = \underbrace{(1 - \tau) \left[\frac{\sigma + \gamma}{\sigma + \gamma + \tau (1 - \gamma)} \right]}_{\text{TAX PROGRESSIVITY}} \underbrace{\frac{1 + \sigma}{\sigma + \gamma}}_{\text{LABOR SUPPLY}}$$

Equilibrium allocations: consumption

$$\ln c^{*}(\alpha) = \underbrace{\frac{1}{\widehat{\sigma} + \gamma} \left[(1 + \widehat{\sigma}) \ln \lambda^{*} + \ln(1 - \tau) - \varphi \right]}_{\text{Representative agent}} + \underbrace{M_{c}(v_{\varepsilon})}_{\text{Wealth effect}} + \underbrace{\pi(\gamma, \sigma, \tau)\alpha}_{\text{Uninsurable shocks}}$$

• The transmission coefficient of a permanent uninsured shock:

$$\pi(\gamma, \sigma, \tau) = \underbrace{(1 - \tau) \left[\frac{\sigma + \gamma}{\sigma + \gamma + \tau (1 - \gamma)} \right]}_{\text{TAX PROGRESSIVITY}} \underbrace{\frac{1 + \sigma}{\sigma + \gamma}}_{\text{LABOR SUPPLY}}$$

• Quantitatively:

$$0.60 = 0.74 \times 1.07 = 0.79 \times 0.75$$

Optimal progressivity and public good provision

To Be Done

Optimal progressivity and public good provision

To Be Done

Roadmap on normative analysis

- Assume shocks are log-normal
- Assume log-utility over private and public consumption $(\gamma=\rho=1)$

Roadmap on normative analysis

- Assume shocks are log-normal
- Assume log-utility over private and public consumption $(\gamma = \rho = 1)$
 - 1. Case I: no utility from public goods $(\chi = 0)$
 - 2. Case II: utility from public goods, but no heterogeneity $(\chi>0,v_{\alpha}=v_{\varepsilon}=0)$
 - 3. Case III: utility from public goods and heterogeneity $(\chi > 0, v_{\alpha} > 0, v_{\varepsilon} > 0)$

Social welfare function $(\chi = 0)$

• Plugging (c^*, h^*, λ^*) into expected utility yields:

$$\ln \mathcal{W}(\tau) = \underbrace{-\varphi + \frac{\ln (1 - \tau) - (1 - \tau)}{1 + \sigma}}_{\text{Indirect utility of RA}} + \underbrace{\frac{1}{\hat{\sigma}} v_{\varepsilon}}_{\log(Y/H)} \\ -\underbrace{(1 - \tau)^2 \frac{v_{\alpha}}{2}}_{var(\log c)} - \sigma \underbrace{\left(\frac{1}{\hat{\sigma}^2}\right) \frac{v_{\varepsilon}}{2}}_{var(\log h)}$$
Social welfare function $(\chi = 0)$

• Plugging (c^*, h^*, λ^*) into expected utility yields:

$$\ln \mathcal{W}(\tau) = \underbrace{-\varphi + \frac{\ln (1 - \tau) - (1 - \tau)}{1 + \sigma}}_{\text{Indirect utility of RA}} + \underbrace{\frac{1}{\hat{\sigma}} v_{\varepsilon}}_{\log(Y/H)} \\ -\underbrace{(1 - \tau)^2 \frac{v_{\alpha}}{2}}_{var(\log c)} - \sigma \underbrace{\left(\frac{1}{\hat{\sigma}^2}\right) \frac{v_{\varepsilon}}{2}}_{var(\log h)}$$

- $\mathcal{W}(\tau)$ is globally concave in τ if $\sigma > 2$
- $\frac{\partial \mathcal{W}(\tau)}{\partial \tau}|_{\tau=0} > 0$ iff $v_{\alpha} > 0 \Rightarrow$ interior solution for τ^*

• $\frac{\partial \tau^*}{\partial \sigma} > 0$: less elastic is labor supply \Rightarrow less severe distortions

- $\frac{\partial \tau^*}{\partial \sigma} > 0$: less elastic is labor supply \Rightarrow less severe distortions
- $\frac{\partial \tau^*}{\partial v_{\alpha}} > 0$: more uninsurable risk \Rightarrow more need for public insurance

- $\frac{\partial \tau^*}{\partial \sigma} > 0$: less elastic is labor supply \Rightarrow less severe distortions
- $\frac{\partial \tau^*}{\partial v_{\alpha}} > 0$: more uninsurable risk \Rightarrow more need for public insurance
- $\frac{\partial \tau^*}{\partial v_{\varepsilon}} < 0$: more insurable risk \Rightarrow more misallocation of labor effort

- $\frac{\partial \tau^*}{\partial \sigma} > 0$: less elastic is labor supply \Rightarrow less severe distortions
- $\frac{\partial \tau^*}{\partial v_{\alpha}} > 0$: more uninsurable risk \Rightarrow more need for public insurance
- $\frac{\partial \tau^*}{\partial v_{\varepsilon}} < 0$: more insurable risk \Rightarrow more misallocation of labor effort
- $\frac{\partial \tau^*}{\partial \varphi} = 0$: independent of the disutility of work

Optimal progressivity in US ($\sigma = 2, v_{\alpha} = v_{\varepsilon} = 0.14$)

Optimal progressivity in US ($\sigma = 2, v_{\alpha} = v_{\varepsilon} = 0.14$)

- The optimal rate is $\tau^* = 0.21$ vs. actual rate of 0.26
- Welfare gain (CEV) from actual to optimal: +0.01%
- Welfare loss (CEV) from actual to no redistribution: -1.4%

Sensitivity analysis

Valued government consumption: $\chi > 0$

- Define $\phi \equiv G/Y$
- Representative agent version of the model $(v_{\alpha} = v_{\varepsilon} = 0)$
- Welfare-maximizing fiscal policy is given by the pair:

$$\phi^* = \frac{\chi}{1+\chi}$$

$$\tau^* = -\chi$$

- Optimal fiscal policy is regressive $(\tau^* < 0)$
- Stronger taste for public goods ⇒ more regressive tax schedule

First best with regressive taxation

• Allocations (c^*, h^*, G^*) implied by the pair (ϕ^*, τ^*) are first best, i.e. they solve:

$$(c^*, h^*, G^*) = \arg \max u(c, h, G)$$

s.t.
 $c + G = h$

First best with regressive taxation

Allocations (c*, h*, G*) implied by the pair (φ*, τ*) are first best,
i.e. they solve:

$$(c^*, h^*, G^*) = \arg \max u(c, h, G)$$

s.t.
 $c + G = h$

- Optimal degree of regressivity $(\tau^* = -\chi)$ achieves both:
 - desired average tax rate (to finance G)
 - zero marginal tax rate (h undistorted)
- Taxes are locally lump-sum

Valued govt. consumption and uninsurable risk

• Optimal public good provision ϕ^* is unchanged

$$\phi^* = \frac{\chi}{1+\chi}$$

Valued govt. consumption and uninsurable risk

• Optimal public good provision ϕ^* is unchanged

$$\phi^* = \frac{\chi}{1+\chi}$$

- Trade-off in determining optimal rate of progressivity:
 - More uninsurable risk (higher v_{α}) \Rightarrow more progressive taxation
 - More rigid labor supply (higher σ) \Rightarrow more progressive taxation

Valued govt. consumption and uninsurable risk

• Optimal public good provision ϕ^* is unchanged

$$\phi^* = \frac{\chi}{1+\chi}$$

- Trade-off in determining optimal rate of progressivity:
 - More uninsurable risk (higher v_{α}) \Rightarrow more progressive taxation
 - More rigid labor supply (higher σ) \Rightarrow more progressive taxation
 - Stronger taste for G (higher χ) \Rightarrow more regressive taxation

Progressive or regressive taxation?

• Parameter space can be divided into regions where $\tau^* \leq 0$:

$$\chi > v_{\alpha}(1+\sigma) \qquad \Rightarrow \qquad \tau^* < 0$$

$$\chi = v_{\alpha}(1+\sigma) \qquad \Rightarrow \qquad \tau^* = 0$$

$$\chi < v_{\alpha}(1+\sigma) \qquad \Rightarrow \qquad \tau^* > 0$$

- Insurable risk v_{ε} unconsequential because at $\tau^* = 0$ labor supply response to insurable shocks is undistorted
- With $v_{\alpha} = v_{\varepsilon} = 0.14$, and $\chi = 0.25 \left(\frac{G}{Y} = 0.2\right)$

$$\sigma = 0.8 \qquad \Rightarrow \qquad \tau^* = 0.00 \quad \text{(flat)}$$

$$\sigma = 2.0 \qquad \Rightarrow \qquad \tau^* = 0.07 \quad \text{(optimal)}$$

$$\sigma = 6.3 \qquad \Rightarrow \qquad \tau^* = 0.26 \quad \text{(actual US)}$$

Average tax rate: actual US vs optimal

