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Abstract

A risky business such as drug development and venture capital in-
vestment fails most of times but it generates an extremely high profit
occasionally. For the purpose of understanding the emergence of these
skewed businesses, we study a simple bandit problem in which a sin-
gle decision maker learns the average return of a new business by ex-
perimentation. Differently from previous literature, we order a new
business not only by its cash flow variance but also by skewness. We
find that (1) a higher skewness reinforces a signal quality of favorable
outcome and weakens that of unfavorable outcome and (2) a higher
outside option may make a positively skewed business more attractive
relative to a negatively skewed business.
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1 Introduction

Some business models such as new drug development and venture capital
investment are inherently risky and undertaking of such models is justi-
fied only because they may return extremely high profit. Pisano (2006)
writes that there is only about a 1-in-5,000 chance that a newly developed
molecule will be turned into a commercially viable drug. However, if turned
into a blockbuster drug, it may generate multi-billions in sales. By exam-
ining a sample of venture capital backed firms that experienced exit events,
Cochrane (2005) finds that investment returns are highly skewed and unprof-
itable investments are the majority. Kaplan and Strömberg (2004) study 67
investment memoranda prepared by venture capitalists and find that 68.7%
of the sample mention large market size and growth potentials as reasons to
invest in that companies.

The emergence of these risky business models is a puzzle for the fol-
lowing reasons. First, the standard expected utility hypothesis states that
high risk needs to be compensated by high returns. Nevertheless, evidence
shows that the drug development and venture capital investments are not
necessarily more profitable than other safer business models. (See Pisano
(2006) for profitability of pharmaceutical firms and Kedrosky (2009) and
Phalippou and Gottschalg (2008) for profitability of venture capital invest-
ments.) Second, when the profitability of a new business is not known and
learnt by experimentation, a risky business is at a disadvantage, because
outcome of experimentation is a noisy signal of the business quality and as
a consequence experimentation becomes less profitable. (See Berevy-Meyer
and Roth (2006), Bernardo and Chowdhry (2004), and Ryan and Lippmann
(2003)).

The previous literature characterizes a risky business by a higher vari-
ance of return distribution alone. Nevertheless, both pharmaceutical de-
velopment and VC investments have not only a higher variance of return
distribution, but also a higher skewness. In this paper, we address this
omission of literature and study the impact of skewness on the decision to
adopt a risky business model.

Concretely, we model a single firm that can undertake a new project.
The new project yields periodical cash flows. At the outset the average of
cash flow is unknown. The adopted project is experimental in nature: the
cash flow in each period provides information about the underlying cash flow
process. The gained information is relevant as after each period the firm can
decide to abandon its new project and revert to a traditional project. The
firm has perfect knowledge about the cash flow process of the traditional
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project.
We identify two different effects that make experimentation of a risky

project more valuable than experimentation of a safer project. First, roughly
speaking, a positive outcome is rare in a risky project and therefore the
information value that a positive outcome delivers is larger for a risky project
than a safer project. Second, as a risky project rarely returns a positive
outcome, a probability of “false positive ” is lower for a risky project than
for a safer project. When a traditional project yields a high return, cost
of continuing an experimental project which happens to show a positive
outcome but has a low average return is higher. As a consequence, when
return to a traditional project is high, a risky project becomes more valuable
relative to a safer project. We also find that, unlike the literature that only
studies variance of return, if a project is riskier, the decision maker updates
her belief positively over a wider range of experimental outcome.

Our model falls into the category of two-armed bandit problems. Vari-
ants of the two-armed-bandit problem have been studied in various con-
texts.1 For instance, Bolton and Harris (1999) study the strategic incen-
tives of firms to experiment. They find that there may be a complementar-
ity between experimentation – one experiment induces another experiment.
Copeland (2007) introduces public and private signals in a setting similar
to Bolton and Harris. Manso (2007) studies the incentive mechanism to
motivate an agent to experiment. Berk, Green and Naik (2004) study the
effect of learning on the firm’s idiosyncratic and systematic risks. Myers
and Howe (1997) argue that a systematic component of R& D risk decreases
over time, due to operating leverage. These literatures do not study the
difference between risky and safer projects as this paper does.

Two papers, Bernardo and Chowdhry (2000) and Ryan and Lippman
(2003) study the impact of cash flow variance on an experimental project,
as we do in this paper. Their models are a continuous time and their dis-
tribution is normal distribution instead of binomial. The agent is not sure
about drift of Brownian motion. Both papers find that value of the firm is
negatively related with noise in firm’s performance measures in the presence
of learning and real options.2

1See Bergemann and Välimäki (2006) for a recent survey on bandit problems.
2Slow learning due to noisy cash flow is related to the observation, long known in the

psychology literature, that partial reinforcement of actions slows learning, especially early
learning, i.e., when subjects are inexperienced (see, e.g., Solomon Weinstock, 1958, and,
for a review, see Donald Robbins, 1971). In the psychology literature, an action is said to
be partially reinforced if it is rewarded only some of the time, in contrast to actions that are
rewarded every time they are taken, which are said to be fully (or continuously) reinforced.
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Our model is also related to literatures on real options with passive
learning. Roughly speaking, under these passive learning literatures, current
cash flow is unbiased estimator of future cash flow. Given that the value of
a project is discounted sum of future cash flows, cash flows and the value
of the underlying assets comove linearly. In particular, if cash flow is more
volatile, so is the value of the underlying assets. The key result of this
standard framework is that the riskier the cash flow, the higher the value of
the project is, since the firm can discontinue the project if cash flow turns out
to be low and can selectively participate in upside potential of the project.

In our framework, current cash flow is not unbiased estimator of future
cash flow and, as a result, cash flows and the value of the underlying assets do
not comove linearly. In particular, if cash flow is more volatile, the learning
about the value of the underlying assets is slower and, as a consequence, the
value of the project is less volatile. As the risky project has more volatile
cash flows but less volatile value of the underlying assets, the experimental
value of the risky project is lower than that of the safer project.

The organization of this paper is as follows. Section 2 introduces the
model. Section 3 characterize the model with two experimental outcomes.
Section 4 studies the case in which experimental outcome is continuously
distributed. Section 5 concludes.

2 The Model

We study a problem of a single decision maker who can undertake one project
per period over two periods.3 Her utility is linear in her payoff and the second
period payoff is discounted at factor, δ. Her objective is to maximize the
discounted sum of her expected utility over two periods.

For each of the two periods, she can undertake either one of two projects
– a traditional project and a experimental project. The traditional project
returns average output equal to a constant, R. The distribution of the
traditional project’s output is well known and undertaking the traditional
project will bring no new information. The experimental project’s output
per period, x̃, is random and its density and cumulative distribution are
denoted by f (x̃) and F (x̃), respectively. Per period output x̃ is identically

An early general conclusion from this literature was that learning proceeds somewhat more
rapidly and reaches a higher final training level under continuous reinforcement than under
partial reinforcement (William Jenkins and Julian Stanley, 1950).

3Even though the unconditional expected payoff of the experimental project is negative,
if she can, a decision maker may scale up the size of the experimental project in the first
period, according to a similar logic to Bolton and Harris.
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and independently distributed over two periods. At the outset, the decision
maker does not perfectly know f (x̃) , but knows that it is either f (x̃) with
probability θ0 or f(x̃) with probability 1 − θ0. We denote g (x̃) and G (x̃)
be unconditional density and distribution, respectively. That is,

G (x̃) = θ0F (x̃) + (1− θ0)F (x̃) and
f (x̃) = θ0f (x̃) + (1− θ0) f (x̃)

The average output of the experimental project is a constant Φ if f (x̃) =
f (x̃) and a constant Φ if f (x̃) =f(x̃). We assume that

Φ < R < Φ,

such that if f (x̃) were perfectly known, the decision maker were to undertake
the experimental project if f (x̃) = f (x̃) and to undertake the traditional
project otherwise. For convenience, we sometimes call the experimental
project to be bad if f (x̃) =f(x̃) and to be good if f (x̃) = f (x̃).

It is possible to change the project over the two periods and the decision
maker may switch from the experimental project to the traditional project
if the first period outcome is low and indicates lower quality of the exper-
imental project. To be concrete, if the experimental project is undertaken
in the first period, the decision maker updates her belief about f (x̃) in the
Bayesian manner. If the realized output is x, then the posterior probability
that f (x̃) = f (x̃) is

θ1 (x) =
[
1 +

1− θ0

θ0

f (x)

f (x)

]−1

.

Therefore, it is optimal to undertake the experimental project in the second
period if and only if

θ1 (x) Φ + (1− θ1 (x)) Φ ≥ R.

We assume the monotone likelihood property that θ1 (x) is increasing. As a
result, there exists a threshold x̂ such that

θ1 (x) Φ + (1− θ1 (x)) Φ ≥ R if x ≥ x̂ and
θ1 (x) Φ + (1− θ1 (x)) Φ < R otherwise.

That is, the decision maker should continue undertaking the experimental
project if x ≥ x̂ and should discontinue and switch to the traditional project,
otherwise. We also define the threshold posterior in the same way as follows:

θ̂1 =
R− Φ
Φ− Φ

.
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Under the optimal continuing-discontinuing decision rule described above,
the decision maker’s payoff if she undertakes the experimental project in the
first period is

V = θ0Φ + (1− θ0) Φ + δ (R+ π) , (1)

where

π =
∫ ∞
−∞

max
{
θ1 (x̃) Φ + (1− θ1 (x̃) Φ)−R, 0

}
dG (x̃)

=
∫ ∞
x̂

(
θ1 (x̃) Φ + (1− θ1 (x̃) Φ)−R

)
dG (x̃) .

The first two terms (θ0Φ+(1− θ0) Φ) of equation (1) represent the expected
payoff in the first period. The bracket multiplied by δ in equation (1) is the
expected payoff in the second period and consists of two parts; R represents
the baseline expected payoff and π represents the option value of experi-
menting in the first period. If the first period output is high and indicates
that the experimental project has a higher value than the traditional project,
the decision maker can continue undertaking the experimental project and
take its value premium.

In what follows, we assume that θ0, Φ, Φ and R are all fixed when
comparing different experimental projects. This assumption has two mer-
its. First, due to this assumption, the first period profit of experimental
projects, θ0Φ + (1− θ0) Φ, is fixed and therefore we can focus on studying
the characteristics of the option value. Second, the standard real option
model defines “risk” as a difference between Φ and Φ and has already re-
vealed how “risk” influences the option value. Therefore, assuming that Φ
and Φ are constant allows us to isolate our contribution from the standard
real option framework.

3 Two-Output Case

To understand the basic mechanisms through which the riskiness of the
experimental project affects the option value, we begin with the simplest
case in which output of the experimental project takes only two values. In
particular, we assume that

f (x) =


p if x = H

1− p if x = L
0 otherwise
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and H > xL. If the experimental project is good, then p = p and otherwise,
p =p. Therefore,

Φ = pH +
(
1− p

)
L and Φ = pH + (1− p)L. (2)

The unconditional density is

g (x) =


θ0p+ (1− θ0) p if x = H

θ0 (1− p) + (1− θ0)
(
1− p

)
if x = L

0 otherwise
.

Further, the posterior is computed as

θ1 (x) =


[
1 + 1−θ0

θ0

p

p

]−1
if x = H[

1 + 1−θ0
θ0

1−p
1−p

]−1
if x = L

.

With the two-output assumption just described, we examine two cases.
In the first case, one project has both higher second and third moments
than the other project. In the second case, the variance is constant but one
project has a higher third moment than the other.

3.0.1 Risky and Skewed

We are now going to fix L but vary p, p and H. As Φ and Φ are assumed
to be fixed, we can express p and H as functions of p as follows.

p (p) = αp, (3)

where α = (Φ− L) /
(
Φ− L

)
,4 and

H (p) =
Φ− L
p

+ L.

Obviously, H is decreasing in p. That is, one project is characterized by
a higher potential upside but with a lower probability of the upside than
another project.

What is the impact of changing p described the above on the character-
istics of the experimental project? First, conditional variances of per period

4Because pjHj +
(
1− pj

)
Lj = pkHk + (1− pk) Lk and pjHj +

(
1− p

j

)
Lj = pkHk +(

1− p
k

)
Lk, pj (Hj − Lj) = pk (Hk − Lk) and pj (Hj − Lj) = p

k
(Hk − Lk) . Taking the

ratio of both right hand sides and left hand sides give the result.
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output decreases in p. The variance of per period output if the project is
good is E

[(
x− Φ

)2] = p (1− p) (H (p)− L)2 and the variance of per pe-

riod output if the project is bad is E
[
(x− Φ)2

]
= αp

(
1− αp

)
(H (p)− L)2 .

Again, because Φ and Φ are assumed to be the same for both projects and
greater than L by assumption, we have

dE
[(
x− Φ

)2]
dp

,
dE
[
(x− Φ)2

]
dp

< 0.5

Second, changing p also impacts conditional third moments. In particular,

dE
[(
x− Φ

)3]
dp

,
dE
[(
x− Φ

)3]
dp

< 0.

Therefore, increasing p reduces both second and third moment of f (x) and
f(x) . Third, with no surprise, increasing p enhances unconditional proba-
bility of obtaining H, because

g (x) =


θ0p+ (1− θ0)αp if x = H

θ0 (1− p) + (1− θ0) (1− αp) if x = L
0 otherwise

.

We are now going to examine the impact of p on the learning process
and the option value. Due to equation (3),

θ1 (H) =
[
1 +

1− θ0

θ0
α

]−1

,

which is constant over p and

θ1 (L) =
[
1 +

1− θ0

θ0

1− αp
1− p

]−1

,

which is decreasing in p. What is the intuition behind this belief updating
process? A part of the intuition is found in the standard argument that
learning is more difficult in a noisier circumstance. If p is lower, then the
second moment of both f (x̃) and f(x̃) is lower and, as a result, the first
period output is a weaker signal of the project quality. As a consequence,

5Rearranging pH + (1− p) L = Φ, we have H − L = (Φ − L)/p. Substituting this
equation for H − L into the definition of the variance gives the result.
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lower p makes realization of high output less blessing and realization of low
output less cursing. Nevertheless, this standard argument is just a part
of the intuition, because it does not explain why lower p does not make
realization of high output less blessing. The rest of the intuition is provided
in the subsection which follows, when we isolate the impact of skewness on
the learning process.

To illustrate this belief updating process, we compare two experimental
projects. One has p = pr and the other has p = pe > pr. For convenience, we
call the former project to be risky and the latter to be safer. Let θ1r (x) and
θ1e (x) be the posterior function of the risky project and the safer project,
respectively. Then, we can illustrate the belief updating process as a tree in
Figure 1.

θ0

θ1e(He) = θ1r(Hr)

θ1r(L)

θ1e(L)

w. prob. ge(He)

or gr(Hr)

w. prob. 1 −
r (H

r )
w. prob. 1 −

e (H
e )

Figure 1: Learning

Given the distributional assumption described above, we are now going
to study the impact of p on the option value. To prepare for presenting and
proving the following proposition, we introduce some notation. We denote
πr and πe be the option value of risky and safer project respectively. We
also define R (i) , i = 1, 2, 3, implicitly by the following equations:

θ1e (L) Φ + (1− θ1e (L)) Φ = R(1)
θ1r (L) Φ + (1− θ1r (L)) Φ = R(2) and

θ1r (Hr) Φ + (1− θ1r (Hr)) Φ = θ1e (He) Φ + (1− θ1e (He)) Φ = R(3).

Note that because θ1e (L) < θ1r (L) and θ1e (He) = θ1r (Hr) , R (1) < R(2) <
R(3). A brief explanation aboutR (i) is useful. WhenR ≤ R(1), the decision
maker should continue the experimental project in the second period, even
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if the project is safer and returns L in the first period. When R ≤ R (2) ,
the decision maker should continue the experimental project in the second
period after observing L, only if the project is risky. When R > R (3) ,
the decision maker should no longer continue the experimental project in
the second period no matter what level of output the experimental project
returns in the first period.

Proposition 1 If R < R (1) or R ≥ R (3) , then πr = πe. Otherwise,
πr ≤ πe.

Proof. We separately prove this proposition for four different cases de-
pending on R. First, suppose R < R (1) . Then, the option value is, for
j = e, r

πj = gj (Hj)
(
θ1j (Hj) Φ + (1− θ1j (Hj)) Φ−R

)
+gj (L)

(
θ1j (L) Φ + (1− θ1j (L)) Φ−R

)
= θ0Φ + (1− θ0) Φ−R,

which does not depend on p. As a result, πr = πe.
Second, suppose R ≥ R (3) . Then, the option value is zero regardless of

p. As a result, πr = πe.
Third, suppose R (1) ≤ R < R (2). Then, the risky project should

be continued in the second period regardless of the realization in the first
period. Therefore,

πr = θ0Φ + (1− θ0) Φ−R.

The safer project should be continued only if x = He in the first period.
Therefore,

πe = ge (He)
(
θ1e (He) Φ + (1− θ1e (He)) Φ−R

)
= θ0Φ + (1− θ0) Φ−R−

(
ge (L)

(
θ1e (L) Φ + (1− θ1e (L)) Φ−R

))
> θ0Φ + (1− θ0) Φ−R = πr.

The last inequality follows because ge (L) > 0 and

ge (L)
(
θ1e (L) Φ + (1− θ1e (L)) Φ−R

)
< 0

due to R (1) ≤ R.
Fourth, suppose R (2) ≤ R < R (3). Then, both risky and safer project

should be continued if and only if the first period out put is H. Therefore,
for j = e, r

πj = gj (Hj)
(
θ1j (Hj) Φ + (1− θ1j (Hj)) Φ−R

)
.
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As θ1r (Hr) = θ1e (He) ,

θ1e (He) Φ + (1− θ1e (He)) Φ−R
= θ1r (Hr) Φ + (1− θ1r (Hr)) Φ−R
≥ 0.

The last inequality follows because R (2) ≤ R. Since gr (Hr) < ge (He) ,
πr < πe.

Intuition behind this proposition is as follows. If R < R (1) , it is optimal
to continue the experimental project irrespective of output in the first period.
Therefore, the option value is equal to the unconditional expected payoff of
the experimental project minus R – the same for both projects. If R > R (3) ,
then it is optimal to discontinue the experimental project irrespective of
output in the first period.

If R (1) < R < R (2) , then the option value of the risky experimental
project is just equal to the unconditional expected payoff the experimental
project, whereas the option value of the safer experimental project consists
of the unconditional expected payoff of the experimental project and the
insurance value of discontinuing the experimental project when the first
period output is equal to L. As a consequence, the option value of the
safer project is higher than that of the risky project. Note that, for the
risky project, the first period output has no information value, whereas for
the safer project, it does have the information value because it affects the
continuation decision in the second period. This difference stems from the
standard argument that experiment bring about more information if the
project output is less noisy – true for the safer project in our context.

If R (2) < R < R (3) , the first period output is informative and influen-
tial on the continuation decision for both risky and safer projects. Neverthe-
less, the probability of upside is higher for the safer project. And therefore,
the value of the safer project is higher than that of the risky project. This
effect has not been identified in the previous literature and we tentatively
call it Yankees effect.

4 Positively Skewed versus Negatively Skewed

In the preceding example, if one experimental project has a higher third
moment than another, then it also has a higher second moment than another.
As a consequence, it is difficult to disentangle the impact of the second
moment on the option value from that of the third moment. We now fix the
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second moment and vary only the third moment. In particular, we consider
two experimental projects. One, which we call to be risky, has p= p

r
, p =

pr = p
r

+4p, H = Hr and L = Lr = Hr −4x, where 4p and 4x are both
constant. The other project, which we call to be safe, has p= p

e
= 1− p

r
, p

= pe = p
e

+4p, H = He and L = Le = He −4x. We continue to assume
that θ0, Φ and Φ are all common for both risky and safer projects. We also
assume that p

r
< p

e
.

Under this formulation, the variance of per period output for risky
project and that for safer project conditioned that p = p are the same
because p

e
= 1− p

r
and

E
[
(x− Φ)2

]
= p (1− p) (4x)2 .

The variance conditioned that p = p is higher for the risky project than for
the safer project. The third moment of f (x) is

E
[
(x− Φ)3

]
= p (H − Φ)3 + (1− p) (L− Φ)3

= p (H − (p4x+ L))3 + (1− p) (L− (p4x+ L))3

= p (4x− p4x)3 − (1− p) (p4x)3

= p (1− p) (1− 2p)4x3,

which decreases in p. That is, the risky project is more positively skewed
than the safer project.

With no surprise, the safer project has a higher unconditional probability
of obtaining H, because

g (x) =


θ0p+ (1− θ0) (p−4p) if x = H

θ0 (1− p) + (1− θ0) (1− p+4p) if x = L
0 otherwise

.

We are now going to examine the impact of p on the learning process
and the option value. Due to equation (3),

θ1 (H) =
[
1 +

1− θ0

θ0

p−4p
p

]−1

,

and

θ1 (L) =
[
1 +

1− θ0

θ0

1− p+4p
1− p

]−1

.

Note that θ1 (H) and θ1 (L) are both decreasing in p. This result occurs
because unlike the previous example the difference of p and p is now the same
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for both risky and safer projects. Since p is smaller for the risky project, then
the ratio p/p now becomes bigger for the risky project. As a consequence,
good news (H) is more blessing for the risky project than the safer project.
Similarly to the previous example, bad news (L) is more cursing for the safer
project than the risky project, since the ratio

(
1− p

)
/ (1− p) is bigger for

the safer project. Figure 2 summarizes this learning process.

θ0

θ1r(Hr)

θ1e(He)

θ1r(L)

θ1e(L)

w. prob. gr(Hr)

w. prob. ge(He)
w. prob. 1 − gr (H

r )
w. prob. 1 −

g
e (H

e )

Figure 2: Learning when Projects are Ordered by Skewness Only

The former effect explains why in the previous example θ1 (H) does not
increase when the second moment of f decreases and the first period output
becomes more informative. In the previous example, increasing the second
moment also increases the third moment. The current example shows that
a higher third moment tends to increase θ1 (H). The negative effect of the
second moment was offset by the positive effect of the third moment in the
previous example.

Given the distributional assumption described above, we are now going
to study the impact of p on the option value. To prepare for presenting and
proving the following proposition, we redefine R (i) , i = 1, 2, 3, 4, implicitly
by the following equations:

θ1e (Le) Φ + (1− θ1e (Le)) Φ = R(1)
θ1r (Lr) Φ + (1− θ1r (Lr)) Φ = R(2)
θ1e (He) Φ + (1− θ1e (He)) Φ = R(3) and
θ1r (Hr) Φ + (1− θ1r (Hr)) Φ = R(4).

Note that because θ1e (L) < θ1r (L) and θ1e (He) < θ1r (Hr) , R (1) < R(2) <
R(3) < R(4).
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Proposition 2 There exists R (2) < R̂ < R(3) such that πr ≥ πe if R ≥ R̂
and πr ≤ πe if R < R̂, then πr = πe. Otherwise, πr ≤ πe.

Proof. We separately prove this proposition for four different cases de-
pending on R. First, suppose R < R (1) . Then, the option value is, for
j = e, r

πj = θ0Φ + (1− θ0) Φ−R,

which does not depend on p. As a result, πr = πe.
Second, suppose R (1) ≤ R ≤ R (2). Then, the risky project should

be continued in the second period regardless of the realization in the first
period. Therefore,

πr = θ0Φ + (1− θ0) Φ−R.

The safer project should be continued only if x = He in the first period.
Therefore,

πe = ge (He)
(
θ1e (He) Φ + (1− θ1e (He)) Φ−R

)
= θ0Φ + (1− θ0) Φ−R−

(
ge (L)

(
θ1e (L) Φ + (1− θ1e (L)) Φ−R

))
> θ0Φ + (1− θ0) Φ−R = πr.

The last inequality follows because ge (L) > 0 and ge (L)
(
θ1e (L) Φ + (1− θ1j (L)) Φ−R

)
<

0 due to R (1) ≤ R.
Third, suppose R (3) ≤ R < R (4). Then, πe = 0 and

πr = gr (Hr)
(
θ1r (Hr) Φ + (1− θ1r (Hr)) Φ−R

)
> 0.

Therefore, πe < πr.
Fourth, suppose R (2) ≤ R < R (3). Then, for j = r, e

πj = gj (Hj)
(
θ1j (Hj) Φ + (1− θ1j (Hj)) Φ−R

)
= θ0pjΦ + (1− θ0)

(
pj −4p

)
Φ−

(
θ0pj + (1− θ0)

(
pj −4p

))
R

= θ0pj
(
Φ−R

)
+ (1− θ0)

(
pj −4p

)
(Φ−R) . (4)

Taking the cross derivative gives

d2πj
dpjdR

= −1.

Therefore, as R increases over R (2) ≤ R < R (3) , πr − πe should increase.
Because πr − πe is negative at R = R (2) and positive at R = R (3) , by
continuity such R that πr = πe should exist between R (2) and R (3) .
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Lastly, suppose R ≥ R (4) . Then, the option value is zero regardless of
p. As a result, πr = πe.

An interesting aspect of this proposition is that when R increases be-
tween R (2) ≤ R < R (3), πr decreases slowly than πe. Intuition behind this
observation is found by rewriting equation (4) as follows.

πj = θ0pj
(
Φ−R

)
+ (1− θ0) p

j
(Φ−R) .

Roughly speaking, a benefit of the optimal strategy for R (2) ≤ R < R (3)
is to participate in the upside, Φ−R, and a cost of the optimal strategy is a
possibility of false positive, that is to lose money, (Φ−R). As R increases,
the benefit becomes smaller and the cost becomes relatively more important.
The risky project has a lower probability of continuing and therefore it lowers
the possibility of false positive. As a consequence, when R increases, the
risky project becomes more attractive relative to the safer project.

5 Continuous Probability Distribution

In the previous section, we assumed that return takes only two points, H or
L. In this section, we examine a case in which x is continuously distributed
and study an impact of increasing the second and the third moments of f (x)
simultaneously on the option value.

We assume that f (x) is log-normal and, to be concrete,

f (x) =
1

xσ
√

2π
exp

(
−
(
lnx−

(
φ− σ2/2

))2
2σ2

)
for x > 0 and zero otherwise.

The first, second and third central moments of this distribution eφ,
(
eσ

2 − 1
)
e2φ

and
(
eσ

2
+ 2
)(

eσ
2 − 1

)2
e3φ. Therefore, both the second and third central

moments are increasing in σ2. We call a project riskier if σ2 is higher than
the other. Similar to the setups we examined so far, the decision maker
knows the value of σ2 but only knows that the mean eφ is equal to Φ with
probability θ0 and Φ with probability 1 − θ0. We define φ = ln

(
Φ
)

and
φ= ln (Φ). In all the figures presented in this section, we assume that φ = 2,
φ= 1.5, and θ0 = 0.2.

If an experimental project returns x in the first period, then the posterior
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is

θ1 (x) =

1 +
(1− θ0)
θ0

exp


(
φ− φ

)(φ+φ−σ2

2 − lnx
)

σ2



−1

.

A few observations are worthwhile to note. First, θ1 (x) is increasing in x
(the monotone likelihood condition is satisfied) and greater than the prior
θ0 if and only if x > exp

((
φ+ φ− σ2

)
/2
)
. Second, differentiating the

posterior with respect to σ2, we have

dθ1 (x)
dσ2

=
(1− θ0)
θ0

(
φ− φ

)
θ1 (x)2

exp


(
φ− φ

)(φ+φ−2σ2

2 − lnx
)

σ2

 σ2 +
(
φ+φ−2σ2

2 − lnx
)

σ4
.

Thus,

dθ1 (x)
dσ2

=


≥ 0, x ≤ exp

(
φ+φ−σ2

2 + σ2

)
< 0, x > exp

(
φ+φ−σ2

2 + σ2

) ,

that is, originally very good news – x > exp
((
φ+ φ− σ2

)
/2 + σ2

)
>

exp
((
φ+ φ− σ2

)
/2
)

– has a bigger positive impact on the posterior, and
originally moderately good news and bad news – x < exp

((
φ+ φ− σ2

)
/2 + σ2

)
– has a bigger negative impact on the posterior if the project is safer. This
effect arises because a smaller noise makes the first period return more in-
formative. Third, the threshold x such that θ0 = θ1 (x) is decreasing in σ2,
that is, the risky project takes lower returns as a good signal than the safer
project does. Note that this effect is absent if we assume f (x) is symmetric.
These characteristics are summarized in Figure 3.

The expected return from continuing the experimental project condi-
tioned on x is

θ1 (x) eφ + (1− θ1 (x)) eφ.

Hence, the threshold posterior and threshold return such that the decision
maker is indifferent between continuing and discontinuing the experimental
project are

θ̂1 =
R− eφ

eφ − eφ
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and

x̂ = exp

(
φ+ φ− σ2

2
− σ2(

φ− φ
) ln

(
eφ −R
R− eφ

θ0

1− θ0

))
.

The threshold x̂ is obviously increasing in R. Differentiating x̂ with respect
to σ2, we have

dx̂

dσ2
= − 1(

φ− φ
)
ln

(
eφ −R
R− eφ

θ0

1− θ0

)
+ σ2

1
2e
φ − 1

2e
φ(

eφ −R
)(

R− eφ
)R
 x̂,

which is negative if ln
(
eµ−R
R−eµ

θ0
1−θ0

)
> 0. Figure 4 is written with the as-

sumption that ln
(
eµ−R
R−eµ

θ0
1−θ0

)
is sufficiently high such that x̂ is decreasing

in σ.
The probability with that the experimental project is continued is 1 −

G (x̂) and Figure 5 describes an example of the impact of R and σ2 on the
continuation probability. For all lines, the continuation probability is higher
for the risky project than for the safer project. Given that Figure 5 is drawn
under the same numerical assumptions as Figure 4, this is surprising. The
threshold x̂ increases in σ2, but a higher σ2 creates a fatter right side tail in
f . As a consequence, the continuation probability is increasing in σ2 under
our numerical assumption.

The option value is

π = θ0

∫ ∞
x̂

exp
(
−
(
lnx− φ+ σ2

)2
/2σ2

)
xσ
√

2π

(
θ1 (x) eφ + (1− θ1 (x)) eφ −R

)
dx

+ (1− θ0)
∫ ∞
x̂

exp
(
−
(
lnx− φ+ σ2

)2
/2σ2

)
xσ
√

2π

(
θ1 (x) eφ + (1− θ1 (x)) eφ −R

)
dx.

Figure 7 presents the impact of σ2 and R on this option value. Note that
the option value is already positive by the definition in equation (4). It
is decreasing in R because continuing the experimental project becomes
more attractive when the outside option is low. Finally, the option value is
decreasing in σ2 being consistent with the standard argument.

6 Conclusion

We study the impact of skewness on the value of experimentation when the
decision maker can discontinue the experimentation after a bad outcome
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is observed. As skewness and variance often comove, an important conse-
quence of higher skewness is poorer signal quality of experimental outcomes
and thereby a lower option value. The impact of skewness in isolation is char-
acterized as follows. First, a higher skewness makes the decision maker to
positively update her belief under a larger set of outcome. Second, a higher
skewness reinforces a signal quality of favorable outcome and weakens that
of unfavorable outcome. Third, a higher outside option makes a positively
skewed project more valuable relative to a negatively skewed project, be-
cause false positive becomes more harmful and a positively skewed project
has a lower probability of false positive.

These results are derived under the assumption that there are two peri-
ods and one decision maker in the economy. It is interesting to extend our
model to more than two periods and to the framework of group learning.
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Appendix

Impact of Riskiness in General Two Output Case

Definition 1 An experimental project X1 = (H1, L1) is riskier than X2 =
(H2, L2) if H1 ≥ H2 and L1 ≤ L2.

In other words, our riskiness measure is defined as spread in returns.
The following theorem is a direct application of this definition.

Theorem 1 Let
(
pj , pj

)
be project j’s p and p, respectively. If X1 is riskier

than X2, then
p1

p1
<
p2

p2

and
1− p1

1− p1 <
1− p2

1− p2 .

Proof. Let pH + (1− p)L be constant. Consider a change of p, H and
L such that a project becomes riskier. Therefore, ∆H ≥ 0 and ∆L ≤ 0.
Taking total difference gives

∆pH + p∆H + ∆p∆H −∆pL+ (1− p) ∆L−∆p∆L = 0.

Arranging terms gives

∆p = −(∆H −∆L) p+ ∆L
H + ∆H − L−∆L

. (5)

Since ∆H−∆L ≥ 0 and the denominator of the right hand side of equation
(5) are positive, ∆p decreases in p. As a result, if p > p then,

p+ ∆p
p+ ∆p

<
p

p

and
1−

(
p+ ∆p

)
1− (p+ ∆p)

>
1− p
1− p

.

Roughly speaking, this theorem implies that one experiment brings more
information if the experimental project is safer. If the return is high, p is
more likely to be p instead of p. If the return is low, p is more likely to be
p instead of p. However, high return in a riskier project is relatively more
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likely in a bad project and low return in a riskier project is relatively more
likely in a good project. As a consequence, if the experimental project is
riskier, a result of experimentation is less helpful in determining the true
value of p.

6.1 Binary Output with Many Periods.

6.1.1 Learning

We now describe how a decision maker updates her assessment of p by
observing outcomes of the experimental project. The problem is in a class
of the two-armed bandit problem with a single known parameter. One can
undertake the same experimental project up to T+1 times. We assume that
outcomes of each trial are identically distributed. Let θ (F, S) be posterior
probability that p = p when the project has yielded zero for F times and Y
for S times. Then, applying the Bayes’ rule gives

θ (S, F ) =
(1− p)F θ0

(1− p)F θ0 + αS (1− αp)F (1− θ0)
.

Then, by calculation,

θ (S, F + 1)− θ (S, F )

= − αS (1− αp)F (1− θ0)

(1− p)F+1 θ0 + αS (1− αp)F+1 (1− θ0)
(p− αp) θ (S, F ) < 0.

and

θ (S + 1, F )− θ (S, F )

=
αS (1− αp)F (1− θ0)(

(1− p)F θ0 + αS+1 (1− αp)F (1− θ0)
) (1− α) θ (S, F ) > 0.

That is, the posterior declines when additional failure is observed and in-
creases when additional success is observed.

The following two lemmas describe the basic difference of learning be-
tween a risky project and a safer project.

Lemma 1 If F ≥ 1, then

dθ (S, F )
dp

= −(1− α)αSF (1− p)F−1 (1− αp)F−1 θ0 (1− θ0)[
(1− p)F θ0 + αS (1− αp)F (1− θ0)

]2
= − (1− α)F

(1− p) (1− αp)
θ (S, F ) (1− θ (S, F )) < 0.
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Otherwise, that is, F = 0, then

θ (S, 0) =
θ0

θ0 + αS (1− θ0)

and therefore the posterior does not depend on the riskiness of the project.

Proof. By algebra.

This lemma implies that given the same history, the riskier the project,
the higher the posterior. Intuition behind this lemma is as follows. If the
project is riskier and fails more likely, when a failure is observed, a decision
maker does not severely revise her expectation downwards. As a conse-
quence, for the same history including at least one failure, the posterior is
always higher for a risky project than for a safer project. The magnitude of
dθ (S, F ) /dp is largest when the experimental project is either bad or good
equally likely. When only successes have been observed, the relative likeli-
hood of p = p against p =p is the same for both risky and safer projects,
due to the assumption that p = αp. And therefore the posterior does not
depend on the riskiness of project.

This lemma also implies that the range of the posterior is smaller for
a risky project than a safer project. The upper bound of the posterior
generated by observing only successful outcomes is the same for both types
of projects. Nevertheless, the lower bound is bigger for a risky project.

Lemma 2 If 1− p > p⇔ p < (1 + α)−1, then

θ (S + 1, F + 1)− θ (S, F ) > 0.

Otherwise,
θ (S + 1, F + 1)− θ (S, F ) ≤ 0.

Proof. By algebra.

That is, if a failure of a high quality project is more likely than a success
of a low quality project, a decrease in the posterior due to one failure is
smaller than an increase in the posterior due to one success. Note that this
assumption is more likely to be satisfied if the project is riskier. Therefore,
this lemma implies that a success in a risky project has a bigger impact on
the posterior than a failure, in absolute terms.

We now study the problem of a single decision maker, which can under-
take a project for T+1 times. Once the decision maker stops experimenting,
no new information will be generated and therefore without loss of gener-
ality, we assume that once she stops, she does not resume experimenting.
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Let a (S, F ) ∈ {1, 0} for S, F = {0, 1, 2, ..., T} be the decision rule such that
a = 1 implies stopping and a = 0 implies continuing.

If we define Ωt as the discounted sum of expected revenues if she stops
after period t ∈ {0, 1, 2, ..., T − 1}, her expected future payoff is

Ωt =
T∑

τ=t+1

δτ−tR.

Let V (S, F ) be the discounted sum of future revenues after S successes and
F failures if the optimal action is taken in the future. Then, we can define
this value function as follows:

V (S, F )
= max [δπ (S, F ) [Y + (V (S + 1, F ))] + δ (1− π (S, F ))V (S, F + 1) ,ΩS+F ] ,

where

π (S, F ) = θ (S, F ) p+ (1− θ (S, F ))αp
= [α+ θ (S, F ) (1− α)] p.

We can solve this problem backwards. If θ (S′, T − S′) ≥ θ̂ for S′ =
{0, ..., T}, then the optimal solution is to undertake the experimental project
in all periods. If θ (S′, T − S′) ≤ θ̂ for S′ = {0, ..., T}, then the optimal
solution is to undertake the traditional project in all periods. Suppose there
exists S′ ∈ {1, ..., T} such that

θ
(
S′, T − S′

)
> θ̂ > θ

(
S′ − 1, T − S′ + 1

)
.

Note that in the last period T+1, it is optimal to undertake the experimental
action if and only if θ (S, T − S) > θ̂. Then, S′ is the minimum number of
success after T periods to make the experimental project optimal for the
last period. Therefore,

V (S, T − S) =
{
δπ (S, T − S)Y if S ≥ S′

δR otherwise
.

Once we find S′, then we determine the optimal action in period T . The
optimal action in earlier periods can be determined backwards.
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Figure 3: Posterior – θ1(x)
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Figure 4: Threshold – (̂x)

25



Figure 5: Probability of Continuation – (1−G(x̂))
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Figure 6: Conditional Option Value – (1−G(x̂))
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Figure 7: Option Value – π
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