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Abstract
We develop a model of trading in securities markets with two specialized sides:

traders posting quotes (�market makers�) and traders hitting quotes (�market
takers�). Liquidity cycles emerge naturally, as the market moves from phases
with high liquidity to phases with low liquidity. Traders monitor the market to
seize pro�t opportunities. Complementarities in monitoring decisions generate
multiplicity of equilibria: one with high liquidity and another with no liquidity.
The trading rate depends on the allocation of the trading fee between each side
and the maximal trading rate is typically achieved with asymmetric fees. The
di¤erence in the fee charged on market-makers and the fee charged on market-
takers (�the make-take spread�) increases in (i) the tick-size, (ii) the ratio of the
size of the market-making side to the size of the market-taking side, and (iii)
the ratio of monitoring costs for market-takers to monitoring costs for market-
makers. The model yields several empirical implications regarding the trading
rate, the duration between quotes and trades, the bid-ask spread, and the e¤ect
of algorithmic trading on these variables.
Keywords: Liquidity, Monitoring, Make/Take Fees, Duration Clustering,

Algorithmic trading, Two-Sided Markets.
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1 Introduction

Securities trading, especially in equities markets, increasingly takes place in electronic

limit order markets. The trading process in these markets feature high frequency

cycles made of two phases: (i) a �make liquidity�phase during which traders post

prices (limit orders) at which they are willing to trade, and (ii) a �take liquidity�phase

during which limit orders are hit by market orders, generating a transaction. The

submission of market orders depletes the limit order book of liquidity and ignites a

new make/take cycle as it creates transient opportunities for traders submitting limit

orders.1 The speed at which these cycles are completed determines the trading rate,

a dimension of market liquidity.

A trader reacts to a transient increase or decline in the liquidity of the limit

order book only when she becomes aware of this trading opportunity. Accordingly,

the dynamics of trades and quotes in limit order markets is in part determined by

traders�monitoring decisions, as emphasized by some empirical studies (e.g., Biais

et al. (1995), Sandås (2001) or Holli�eld et al. (2004)). For instance, Biais, Hillion,

and Spatt (1995) observe that (p.1688): �Our results are consistent with the presence

of limit order traders monitoring the order book, competing to provide liquidity when

it is rewarded, and quickly seizing favorable trading opportunities.�Hence, traders�

attention to the trading process is an important determinant of the trading rate.

In practice, monitoring is costly because intermediaries (brokers, market-makers,

as well as potentially patient traders who need to execute a large order) have lim-

ited monitoring capacity or choose to allocate limited attention to certain markets.2

Hence, traders react with delay to trading opportunities and the trading rate depends

on a trade-o¤ between the bene�t and cost of monitoring. Our goal in this paper is

to study this trade-o¤ and its impact on the trading rate. In the process, we address

two sets of related issues.

Firstly, algorithmic trading (the automation of monitoring and orders submission)

considerably decreases the cost of monitoring and revolutionizes the way liquidity is

provided and consumed. We use our model to study the e¤ects of this evolution on

the trading rate, the bid-ask spread, and welfare. Secondly, the model sheds light

1These cycles are studied empirically in Biais, et al. (1995), Coopejans et al.(2003), Degryse et
al.(2005), and Large (2007).

2For instance, Corwin and Coughenour (2008) show that limited attention by market-makers
(�specialists�) on the �oor of the NYSE a¤ects their liquidity provision.
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Tape A - NYSE Stocks Tape B - Other Stocks Tape C - NASDAQ Stocks
Make Fee Take Fee Make Fee Take Fee Make Fee Take Fee

AMEX -30 30 -30 30 -30 30
BATS -24 25 -30 25 -24 25

LavaFlow -24 26 -24 26 -24 26
NASDAQ-OMX -20 30 -20 30 -20 30
NYSEArca -25 30 -20 30 -20 26

Table 1: Fees per share (in cents for 100 shares) for limit orders (Make Fee) and
market orders (Take Fee) on di¤erent trading platforms in the US. A minus sign
indicates a rebate. Source: Traders Magazine, July 2008

on pricing schedules set by trading platforms. Increasingly, these platforms charge

di¤erent fees on limit orders (orders �making liquidity�) and market orders (orders

�taking liquidity�). The di¤erence between these fees is called the make/take spread

and is usually negative. That is, traders posting quotes pay a lower fee than traders

hitting these quotes.

For instance, Table 1 gives the make/take fees charged on liquidity makers and

liquidity takers for several U.S. equity trading platforms, as of July 2008. At this

time, all these platforms subsidize liquidity makers by paying a rebate on executed

limit orders, and charge a fee on liquidity takers (so called �access fees�).

This fee structure results in signi�cant monetary transfers between traders taking

liquidity, traders making liquidity, and the trading platforms.3 For this reason, the

make/take spread is closely followed by market participants, in particular by market-

making �rms using highly automated strategies.4 Access fees are the subject of

heated debates and, in its regulation NMS, the SEC decided to cap them at $0.003

per share (30% of the tick size) in equity markets.5 Yet, to the best of our knowledge,

the rationale for the make/take spread and its impact on liquidity have not been

3For instance, in each transaction, BATS charges a fee of 0.25 cents per share on market orders
and rebates 0.24 cents on executed limit orders (see Table 1). On October 10, 2008, 838,488,549
shares of stocks listed on the NYSE were traded on BATS (about 9% of the trading volume in these
stocks on this day); see BATS website: http://www.batstrading.com/. Thus, collectively on this
day, limit order traders involved in these transactions collected about $2.01 million in rebates from
BATS while traders submitting market orders paid about $2.09 million in fees to BATS.

4Some specialized magazines report the fees charged by the various electronic trading platforms
in U.S. equity markets. See for instance the �Price of Liquidity� section published by �Traders
magazine�; http://www.tradersmagazine.com.

5As an example of the controversies raised by these fees, see the petition for rule-
making regarding access fees in option markets, addressed by Citadel at the SEC at
http://www.sec.gov/rules/petitions/2008/petn4-562.pdf
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analyzed. Our analysis provides an explanation for the make-take spread, makes

predictions about its determinants, and shows that it serves to maximize the trading

rate.

In our model we consider a trading platform on which two types of traders interact:

(i) those who post quotes (the �market-makers�) and (ii) those who hit these quotes

(the �market-takers�). All market participants monitor the market to grab �eeting

trading opportunities. Speci�cally, a market-maker wants to be �rst to post new

quotes after a transient increase in the bid-ask spread and a market-taker wants

to be �rst to hit quotes when the bid-ask spread is tight. An increase in traders�

monitoring intensities shortens their reaction time to changes in the state of the

market and thereby increases the trading rate. In choosing their monitoring intensity,

traders on each side trade-o¤ the bene�t from a higher likelihood of being �rst to

detect a pro�t opportunity with the opportunity cost of monitoring.

Monitoring decisions of traders on both sides reinforce each other. Indeed, sup-

pose that an exogenous shock induces market-takers to monitor the market more

intensively. Then, market-makers expect more frequent pro�t opportunities since

good prices are hit more quickly. Hence, they have an incentive to monitor more and

as a consequence the market features good prices more frequently, which in turn in-

duces market-takers to monitor more. This cross-side complementarity in monitoring

decisions creates a coordination problem, which results in two equilibria (i) an equi-

librium with no monitoring and no trading; and (ii) an equilibrium with monitoring

and trading.6

In the equilibrium with trading, the aggregate monitoring levels of each side

are typically not equal. For instance, suppose that market-takers�monitoring cost

is relatively small and suppose that gains from trade when a transaction occurs

are equally split between market-makers and market-takers. In this case market-

takers monitor the market more than market-makers, in equilibrium, since they have

relatively small monitoring costs. Thus, good prices take relatively more time to be

posted than it takes time for market-takers to hit these prices when they are posted.

In this sense, there is an excess of liquidity demand relative to liquidity supply in

6 It is well-known that liquidity externalities create coordination problems among traders, which
lead to multiple equilibria with di¤ering levels of liquidity (see Admati and P�eiderer (1988), Pagano
(1989), and Dow (2005) for example). In contrast to the extant literature, our model emphasizes
the egg and chicken problem that exists between traders posting quotes on the one hand and traders
hitting quotes on the other hand.
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the market. In this situation, the relatively slow response of market-makers to a

transient increase in the bid-ask spread slows down trading since trades happen when

the bid-ask spread is tight. To achieve a higher trading rate, the trading platform

can reduce its fee on market-makers while increasing its fee on market-takers so that

its total pro�t per trade is unchanged. In this way, market-makers obtain a larger

fraction of the gains from trade when a transaction occurs and have more incentives

to quickly improve upon unaggressive quotes. Thus, good prices, hence trades, are

more frequent.

Generally, the same logic implies that there is a level of the make-take spread that

maximizes the trading rate. We show that the optimal make-take spread increases

in (i) the tick size, (ii) the ratio of the number of market-makers to the number of

market-takers, and (iii) the ratio of market-takers�monitoring cost to market-makers�

monitoring cost. Indeed, in equilibrium, an increase in these parameters enlarges

the speed at which good prices are posted relative to the speed at which they are

hit. Thus, the imbalance between the supply and demand of liquidity narrows and

therefore the need to incentivize market-makers is lower.

The model has a rich set of empirical implications. For instance, complemen-

tarities between market-makers and market-takers provide a new explanation for

clustering in trade duration found in securities markets (see for instance Engle and

Russell (1998)). Indeed, it implies that the aggregate monitoring intensity of both

sides are positively related. Thus, an increase in the speed at which market-makers

post good prices results in an increase in the speed at which market-takers hit these

quotes and vice versa. This inter-dependence leads to periods in which trading ac-

tivity is high because both sides are fast or periods in which trading activity is low

because both sides are slow. The coexistence of an equilibrium with trading and an

equilibrium without trading is an extreme manifestation of this phenomenon in our

model.

Moreover, the model implies that the make-take spread increases in the tick size.

Indeed, the higher the tick size, the higher the fraction of gains from trade for market-

makers. Thus, market-makers have naturally more incentive to monitor markets with

a large tick size. Hence, rebates for market-makers are more likely to appear in

stocks or platforms with a low tick size. In line with this prediction, the practice of

subsidizing market-makers in U.S equity markets and more recently in U.S. options
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markets developed after the tick size was reduced to a penny in these markets.7

Our model also has implications for the introduction and proliferation of algo-

rithmic trading. Algorithmic trading reduces the monitoring costs for both market-

makers and market-takers through the use of computers. Observe, however, that the

same economic forces apply. Indeed, computerized monitoring is still costly since

�xed computing capacities must be allocated among hundreds of stocks and millions

of quotes and trades that require processing. Intense monitoring in one market may

result in lost pro�t opportunities in another market. Our model predicts that the

development of algorithmic trading should have a large positive impact on the trad-

ing rate (as found empirically in Hendershott, Jones, and Menkveld (2009)). The

reduction in monitoring costs has direct positive impact on the level of monitoring by

both sides. But this positive impact encourages market participants to monitor even

more because of the complementarity in monitoring decisions. Eventually, through

this chain reaction, the impact of the reduction in monitoring costs on the trading

rate is ampli�ed.

In contrast we �nd that the e¤ect of algorithmic trading on the average bid-ask

spread is ambiguous. Indeed, a decrease in market-makers�monitoring cost reduces

the average bid-ask spread while a decrease in market-takers�monitoring cost has

the opposite e¤ect. Actually in the second case, the speed at which market-takers

hit the quotes increase at a faster rate than the speed at which market-makers post

good prices. These �ndings are consistent with

The increase in the bid-ask spread however has no material e¤ect on market-

takers�welfare as they only trade when the bid-ask spread is tight in our model.

Instead, we show that market participants�welfare is inversely related to monitoring

costs. Indeed, a decrease in monitoring costs results in a larger trading rate, which, in

our setting, makes traders better o¤ since positive gains from trade are realized each

time there is a transaction. Thus, the model identi�es one channel through which

algorithmic trading could be welfare enhancing.

Our study is related to several strands of research. Foucault, Roëll and Sandås

(2003) and Liu (2008) provide theoretical and empirical analyzes of market-making

with costly monitoring. However, the e¤ects in these models are driven by market-

makers�exposure to adverse selection and they do not study the role of trading fees.

It is also related to the burgeoning literature on two-sided markets (see Rochet and

7See �Options maker-taker markets gain steam,�Traders Magazine, October 2007.
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Tirole (2006) for a survey). Rochet and Tirole (2006) de�ne a two-sided market as a

market in which the volume of transactions depends on the allocation of the fee earned

by the matchmaker (the trading platform in our model) between the end-users (the

market-makers and the market-takers in our model).8 Make-take fees strongly suggest

that securities markets are two-sided. To our knowledge, our paper is �rst to study

the cause and implications of the two-sided nature of securities markets. Our paper

also contributes to the growing literature on the e¤ects of algorithmic trading (see for

instance (e.g., Biais and Weill (2008), Foucault and Menkveld (2008) or Hendershott,

Jones, and Menkveld (2009)). Finally, our paper adds to the developing literature on

limited attention and its rationale (e.g. Abel, Eberly, and Panageas (2009), Huang

and Liu (2007), Iliev and Welch (2008), and Sims (2003)). We show how a fee

structure can a¤ect the optimal attention level of market participants, and derive

welfare and liquidity implications.

Section 2 describes the model. In Section 3, we study the determinants of traders�

equilibrium monitoring intensities for �xed fees of the trading platform. We endoge-

nize these fees and derive the optimal fee structure for the trading platform in Section

4. We discuss the empirical implications of the model in Section 5 and Section 6 con-

cludes. The proofs are in the Appendix.

2 Model

2.1 Market participants

We consider a market for a security with two sides: �market-makers�and �market-

takers.�Market-makers post quotes (limit orders) whereas market-takers hit these

quotes (submit market orders) to complete a transaction.9 The number of market-

makers and market-takers is, respectively,M and N . All participants are risk neutral.

To simplify the analysis we assume that traders on one side cannot switch to the

other side. This is the case in some markets (e.g., EuroMTS, a trading platform for

government bonds in Europe) but, in reality, traders can often choose whether to post

a quote or to hit a quote. However, even in this case, traders tend to specialize as as-

sumed here. The market-making side can be viewed as electronic market-makers, such

8Examples of two-sided markets include videogames platforms, payment card systems etc...
9Some trading platforms refer to the market-making side as the �passive� side and to the

market-taking side as the �active� (or aggressive) side. See for instance Chi-X at http://www.chi-
x.com/Cheaper.html
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as Automated Trading Desk (ATD), Global Electronic Trading company (GETCO),

Tradebots Systems, or Citadel Derivatives, which specialize in high frequency market-

making.10 The market-taking side are institutional investors who break their large

orders and feed them piecemeal when liquidity is plentiful to minimize their trading

costs.11 Electronic market-makers primarily use limit orders whereas the second type

of traders primarily use market orders. Both types increasingly use highly automated

algorithms to detect and exploit trading opportunities.

The expected payo¤ of the security is v0. Market-takers value the security at

v0 + L; where L > 0 while market-makers value the security at v0. Heterogeneity in

traders�valuation creates gains from trade as in other models of trading in securities

markets (e.g., Du¢ e et al. (2005) or Holli�eld et al. (2006)).12 As market-takers have

a higher valuation than market-makers, they buy the security from market-makers.

Thus, our model captures �the upper half�of the market characterized by limit sell

orders and market buy orders. In a more complex model, market-takers could have

either high or low valuations relative to market-makers, so that they can be buyers

or sellers. This possibility adds some mathematical complexity to the model, but

provides no additional economic insight.

Market-makers and market-takers meet on a trading platform with a positive

tick-size denoted by � > 0 and the �rst price on the grid above v0 is half a tick

above v0. Let a � v0 + �
2 be this price. All trades take place at this price because

market-takers�valuation is less than a + � (speci�cally, �2 < L � �) and market-

makers lose money if they trade at a smaller price than a on the grid. Thus, we

focus on a �one tick market�similar, for example, to Parlour (1998) or Large (2008).

Finally, we assume that a large number of shares is o¤ered for sale at price a + �

by a fringe of competitive traders, as in Seppi (1997) or Parlour (1998). The cost of

liquidity provision for these traders is higher than for the electronic market-makers

10According to analysts, electronic market-makers now account for a very high fraction of the total
liquidity provision on electronic markets. For instance, Schack and Gawronski (2008) write on page
74 that: "based on our knowledge of how they do business [...], we believe that they [electronic market-
makers] may be generating two-thirds or more of total daily volume today, dwar�ng the activity of
institutional investors."
11Bertsimas and Lo (1998) solve the dynamic optimization of such traders, assuming that they

exclusively use market orders as we do here.
12Holli�eld et al. (2004) and Holli�eld et al. (2006) show empirically that heterogeneity in traders�

private values can explain the �ow of orders in limit order markets. In reality, as noted in Du¢ e et
al.(2005), di¤erences in traders�private values may stem from di¤erences in hedging needs (endow-
ments), liquidity needs or tax treatments.
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and therefore they cannot intervene pro�tably at price a.

There is an upper bound (normalized to one) on the number of shares that can

be o¤ered at price a. This upper bound rules out the uninteresting case in which a

single market-maker or multiple market-makers o¤er an in�nite quantity at price a.

In a more complex model, the upper bound could derive from an upward marginal

cost of liquidity provision due, for instance, to exposure to informed trading as in

Glosten (1994) or Sandås (2001).13

The trading platform charges trading fees each time a trade occurs. The fee (per

share) paid by a market-maker is denoted cm; whereas the fee paid by a market-taker

is denoted ct. These fees can be either positive or negative (rebates). We normalize

the cost of processing trades for the trading platform to zero so that, per transaction,

the platform earns a pro�t of

c � cm + ct:

Introducing an order processing cost per trade is straightforward and does not change

the results.

Thus, the gains from trade in each transaction (i.e., L) are split between the

parties to the transaction and the trading platform as follows: the market-taker

obtains

�t = L�
�

2
� ct; (1)

the market-maker obtains

�m =
�

2
� cm; (2)

and the platform obtains �c.

Thus, the gains from trade accruing to market-makers and market-takers are L��c.
We focus on the case �c � L since otherwise traders on at least one side lose money
on each trade, and would therefore choose not to trade at all. Moreover, we assume

that cm > ��
2 , so that a��� cm� v0 < 0. Thus, a market-maker cannot pro�tably

post an o¤er at a price strictly less than a, even if she receives a subsidy from the

platform (cm < 0). As shown below this constraint is not binding for the platform

(see Section 4).

Notice that since quotes must be on the price grid set by the platform, market-

makers cannot fully neutralize a small change in the fee structure by adjusting their
13Empirically, several papers document a reduction in quoted depth after a reduction in tick size

(e.g., Goldstein and Kavajecz (2000)). This observation is consistent with an upward marginal cost
of liquidity provision.
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quotes. For instance, suppose that the fee charged on market-makers increases by a

small amount, say 1% of the tick size. Market-makers cannot neutralize this increase

by posting a higher o¤er at a+ 1% ��, as this price is not on the grid.
Our setup is clearly very stylized. Yet, it captures in the simplest possible way the

essence of the liquidity cycles described in the introduction. Speci�cally, when there is

no quote at a; the market lacks liquidity and there is a pro�t opportunity for market-

makers. Indeed, the �rst market-maker who submits an o¤er at a will serve the next

buy market order and earns �m. Conversely, when there is an o¤er at a, liquidity

is plentiful and there is a pro�t opportunity (worth �t) for a market-taker. After a

trade, the market switches back to a state in which liquidity is scarce. Consequently,

the market oscillates between a state in which there is a pro�t opportunity for market-

makers and a state in which there is a pro�t opportunity for market-takers. Thus,

market-makers and market-takers have an incentive to monitor the market. Market-

makers are looking for periods when liquidity is scarce and market-takers are looking

for periods when liquidity is plentiful.

2.2 Cycles, Monitoring, and Timing

We now de�ne the notion of �cycles,� discuss the monitoring activities of market

participants, and explain the timing of the game.

Cycles. This is an in�nite horizon model with a continuous time line. At each point

in time the market can be in one of two states:

1. State E �liquidity is low: no o¤er is posted at a.

2. State F �Liquidity is high: an o¤er for one share is posted at a.

Thus F (for Full) is the state in which the (half) bid-ask spread (i.e., a � v0)
is competitive whereas E (for Empty) is the state in which the bid-ask spread is

not competitive. The market moves from state F to state E when a market-taker

hits the best o¤er. The bid-ask spread then widens until a market-maker sets the

competitive o¤er. At this point the bid-ask spread reverts to the competitive level,

i.e., the market moves from state E to state F . Then, the process starts over. We

call the �ow of events from the moment the market gets into state E until it returns

into this state - a �make/take cycle�or for brevity just a �cycle.�Figure 1 illustrates

the �ow of events in a cycle.
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Figure 1: Time Structure of a Cycle

Monitoring. Market-makers and market-takers have an incentive to monitor the

market to be the �rst to detect a pro�t opportunity for their side. We formalize

monitoring as follows. Each market-maker i = 1; :::;M inspects the market according

to a Poisson process with parameter �i, that characterizes her monitoring intensity.

As a result, the time between one inspection of the market to the next by market-

maker i is distributed exponentially with an average inter-inspection time of 1
�i
:

Similarly, each market-taker j = 1; :::; N inspects the market according to a Poisson

process with parameter �j :
14 The total inspection frequency of all market-makers is

�� � �1 + :::+ �M ;

and the total inspection frequency of market-takers is

�� � �1 + :::+ �N :

When a market-maker inspects the market she learns whether it is in state E or

F . If the bid-ask spread is not competitive (state E) then she posts an o¤er at a.

If it is competitive (state F ), the market-maker stays put until her next inspection.

14This approach rules out deterministic monitoring such as inspecting the market exactly once
every certain number of minutes. In reality, many unforeseen events can capture the attention of a
market-maker or a market-taker, be it human or a machine. For humans, the need to monitor several
securities as well as perform other tasks precludes evenly spaced inspections. Computers face similar
constraints as periods of high transaction volume, and unexpectedly high tra¢ c on communication
lines prevent monitoring at exact points in time.
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Similarly, a market-taker can respond to the state of the market only upon inspection.

He submits a market order when he observes that the bid-ask spread is competitive,

and stays put until the next inspection otherwise.15 Figure 1 illustrates this process.

The expected duration of a cycle depends on aggregate monitoring levels. To see

this, suppose that a trade just took place so that the bid-ask spread just widened.

Then, the average time it takes for the market-making side to post a new o¤er at a

is Dm � 1
�1+:::+�M

= 1
��
. Once a market-maker posts an o¤er at a, so that the market

enters in state F , it takes then on average Dt � 1
�1+:::+�N

= 1
�� units of time for a

market-taker to hit this o¤er. Thus, the average duration of a cycle is

D
�
��; ��

�
� Dm +Dt =

1
��
+
1

��
=
��+ ��
�� � ��

: (3)

Similarly, the trading rate, de�ned as the average number of transactions per unit of

time, is given by

R
�
��; ��

�
� 1

D
�
��; ��

� = �� � ��
��+ ��

: (4)

The aggregate monitoring levels, �� and ��, determine market liquidity. Indeed,

�� determines the speed at which the market-taking side responds to a competitive

o¤er made by the market-making side whereas �� determines the speed at which the

market-making side reinjects liquidity into the market after a transaction. This speed

determines the resiliency of the market.16 Thus, �� and �� are measures of liquidity

supply and demand respectively. Ultimately, the trading rate increases when either
�� or �� increase. As Dm = 1

�
and Dt = 1

� , the inter-trade average durations (Dm and
Dt) can be used as proxies for the aggregate monitoring level. Alternatively, �� or ��
could be estimated directly using the empirical technique described in Large (2007).

We use these observations to develop several empirical implications of the model in

Section 5.

In practice, monitoring can be manual, by looking at a computer screen, or au-

tomated by using automated algorithms. For humans, the need to monitor several

stocks contemporaneously limits the monitoring capacity and constrains the amount

of attention dedicated to a speci�c stock. Computers also have �xed capacity that

15Hall and Hautsch (2007) model the arrival of buy and sell market orders as a Poisson Process
with state-dependent intensities. They �nd empirically that these intensities are higher when the
bid-ask spread is tight. This empirical �nding is consistent with our assumption that market takers
submit their market orders when the bid-ask spread is competitive.
16See, for instance, Foucault et al.(2005) for a theoretical analysis of resiliency and Large (2007)

for an empirical analysis.
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must be allocated over potentially hundreds of stocks and millions of pieces of infor-

mation that require processing. Prioritization of this process is conceptually simi-

lar to the allocation of attention across di¤erent stocks by a human market-marker.

Hence, in all cases, monitoring one market is costly, because it reduces the monitoring

capacity available for other markets.

To account for this cost, we assume that, over a time interval of length T , a

market-maker choosing a monitoring intensity �i bears a monitoring cost:

Cm(�i) �
1

2
��2iT for i = 1; :::;M: (5)

Similarly, the cost of inspecting the market for market-taker j over an interval of

time of length T is:

Ct(�j) �
1

2

�2jT for j = 1; :::; N: (6)

Thus, the cost of monitoring is proportional to the time interval and convex in the

monitoring intensity.

Parameters �; 
 > 0 control the level of monitoring costs for a given monitor-

ing intensity. We say that market-makers�(resp. market-takers�) monitoring costs

become lower when � (resp. 
) decreases. Such a decline in monitoring costs can

be a result, for example, of automation of the monitoring process. Thus, below, we

analyze the e¤ect of algorithmic trading on the trading process by considering the

e¤ect of a reduction in � and 
.

Timing. In reality, traders can change their monitoring intensities as market condi-

tions change, whereas trading fees are usually �xed over a longer period of time. For

this reason, it is natural to assume that traders choose their monitoring intensities

after observing the fees set by the trading platform. Hence the trading game unfolds

in three stages as follows:

Stage 1: The trading platform chooses the fees cm and ct.

Stage 2: Market-makers and market-takers simultaneously choose their individual mon-

itoring intensities �i and �j .

Stage 3: From this point onward, the game is played on a continuous time line indef-

initely, with the monitoring intensities and fees determined in Stages 1 and

2.
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2.3 Objective functions and equilibrium

We now describe market participants�objective functions and de�ne the notion of

equilibrium that we use to solve for players�optimal actions in each stage.

Objective functions. Recall that a make/take cycle is a �ow of events from the

time the market is in state E until it goes back to this state. Each time a make/take

cycle is completed a transaction occurs. The probability that market-maker i is active

in this transaction is the probability pi that she is �rst to post a competitive o¤er at

price a after the market entered in state E. Given our assumptions on the monitoring

process, this probability is �i
�1+:::+�M

= �i
��
: Thus, in each cycle, the expected pro�t

(gross of monitoring costs) for market-maker i is �i�� � �m =
�i
��

�
�
2 � cm

�
:

Let ~nT be the (random) number of completed transactions (cycles) until time T:

The expected payo¤ to market-maker i until time T (net of monitoring costs) is

�i(T ) = E~nT (

~nTX
k=1

�i
��
�m)�

1

2
��2iT;

where the expectation is taken over the number of completed cycles up to time T:

As is common in in�nite horizon Markovian models, we assume that each player

maximizes his/her long-term (steady-state) payo¤ per unit of time. Thus, market-

maker i chooses his monitoring intensity to maximize

�im � lim
T!1

�i(T )

T
= lim
T!1

E~nT (

~nTX
k=1

pi�m)

T
� 1
2
��2i : (7)

Recall that D
�
��; ��

�
is the expected duration of a cycle. A standard theorem from the

theory of stochastic processes (often referred to as the �Renewal Reward Theorem�

see Ross (1996), p. 133) implies that

lim
T!1

E~nT (

~nTX
k=1

pi�m)

T
=

�i
��
� �m

D
�
��; ��

� ;
which is simply the expected pro�t for market maker i per make/take cycle divided

by the expected duration of a cycle. An immediate implication is that the objective

function of market-maker i (equation (7)) can be rewritten in a very intuitive way,

�im =
�i
��
� �m � R

�
��; ��

�
� 1
2
��2i : (8)
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That is, per unit of time, market-maker i maximizes the expected pro�t from a

transaction (�i�� � �m) times the transaction rate, less monitoring costs. In a similar
way, the objective function of market-taker j can be written as

�jt =
�j
��
� �t � R

�
��; ��

�
� 1
2
��2j : (9)

Finally, in each cycle, the trading platform earns a fee �c. Again, similar arguments

show that the objective function of the exchange is given by the total fees per trans-

action times the transaction rate,

�e � �c � R
�
��; ��

�
= (cm + ct) � R

�
��; ��

�
: (10)

Liquidity Externalities and Cross-Side Complementarities. An increase in

the aggregate monitoring level of one side exerts a positive externality on the other

side. To see this point, observe that @�im@�� > 0 and @�jt
@��

> 0. Intuitively, an increase in

the aggregate monitoring intensity of market-makers (resp., market-takers) enlarges

the rate at which market-takers (resp., market-makers) �nd trading opportunities

and therefore renders them better-o¤. Moreover, the marginal bene�t of monitoring

for traders on one side increases in the aggregate monitoring level of traders on

the other side since @2�im
@��@�i

> 0 and @2�jt
@��@�j

> 0. For this reason, market-makers

(resp., market-takers) will inspect the state of the market more frequently when they

expect market-takers (resp. market-makers) to inspect the state of the market more

frequently. Thus, market-makers and market-takers�monitoring decisions reinforce

each other. In other words, liquidity supply begets liquidity demand and vice versa.

As we shall see, this complementarity in traders�decisions on both sides has important

implications.

In contrast, an increase in the monitoring level of a trader hurts the traders who

are on his or her side. That is, @�im@�j
< 0 and @�it

@�j
< 0 (for j 6= i). This e¤ect captures

the fact that traders on the same side are engaged in a �horse race� to be �rst to

detect a trading opportunity when it appears. In reality, this aspect is a key reason

for automating order submission.17

Equilibrium. The strategies for the market-makers and market-takers are their

monitoring intensities �i and �j respectively. A strategy for the trading platform is

17Dee for instance �Tackling latency-the algorithmic arms race,� IBM Global Business Services
report.
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a menu of fees (cm; ct) for a �xed total fee level �c = cm + ct. We solve the model

backwards. First, for a given set of fees (cm; ct), we look for Nash equilibria in

monitoring intensities in Stage 2.18 Using (8) and (9), a Nash equilibrium in this

stage is a vector of monitoring intensities (��1; : : : ; �
�
M ; �

�
1; : : : ; �

�
N ) such that for all

i = 1; : : : ;M; ��i maximizes (8), and for all j = 1; :::; N , �
�
j maximizes (9), taking the

monitoring intensities of all other traders as �xed.

Note that �i and �j a¤ect (8) and (9) both directly and indirectly through their

e¤ect on �� and ��; and therefore through the trading rate. Thus, when optimizing,

individual traders trade-o¤ the marginal e¤ect of increased monitoring on their prob-

ability of winning and on the trading rate, against the marginal cost of monitoring.

Thus, the strategic complementarity between the two sides plays an important role

in the determination of equilibrium.

Given a Nash equilibrium in the monitoring intensities, we solve for the fee struc-

ture (c�m; c
�
t ) that maximizes the trading platform�s expected pro�t (equation (10)).

In most of the paper we assume that �c is �xed to better focus the analysis on the fee

structure. It is straightforward to endogenize �c, as shown in Section 4.1.

3 Monitoring, Liquidity, and Welfare with Fixed Fees

In this section we study the equilibrium monitoring intensities for a given set of fees

(cm; ct). We will show that for all parameters values, the model has two equilibria: (i)

an equilibrium with no trading; and (ii) an equilibrium with trading. This multiplicity

of equilibria is due to the complementarity in monitoring decisions discussed in the

previous section, which leads to a coordination problem between the two sides.

To see this point, consider how the no-trade equilibrium arises. If market-takers

do not monitor the quotes on the trading platform, then maker-makers do not expect

any arrival of market-orders. Given that monitoring is costly, each market-maker

optimally sets ��i = 0: Similarly, if market-makers do not monitor, then market-takers

expect no competitive quotes to be posted. Again, since monitoring is costly, each

market-taker will optimally set ��j = 0. Thus, traders�beliefs that the other side will

not be active are self-ful�lling and result in a no-monitoring, no-trade equilibrium.

Proposition 1 :For any given set of fees, there is an equilibrium in which traders

do not monitor: ��i = �
�
j = 0 for all i 2 f1; : : : ;Mg and j 2 f1; : : : ; Ng. The trading

18Note that cm and ct a¤ect the optimization in (8) and (9) through their e¤ect on �m and �t:
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volume in this equilibrium is zero.

A second equilibrium does involve monitoring and trade. To describe this equilib-

rium, let r � 

� be the relative monitoring costs of market takers vs. market makers.

And, let

z � �m
�t




�
=
�m
�t
r:

When z > 1 (resp. z < 1); the ratio of pro�ts to costs per cycle is larger for market-

makers (resp. market-takers).

Proposition 2 There exists a unique equilibrium with trade. In this equilibrium,

traders�monitoring intensities are given by

��i =
M + (M � 1)
�

(1 + 
�)2
� �m
M�

i = 1; : : : ;M (11)

��j =

� ((1 + 
�)N � 1)

(1 + 
�)2
� �t
N


j = 1; : : : ; N (12)

where 
� is the unique positive solution to the cubic equation


3N + (N � 1)
2 � (M � 1) z
�Mz = 0: (13)

Moreover, in equilibrium,
��
�

��� = 

�.

It is interesting to note that the no-trade equilibrium is highly unstable, whereas

the equilibrium with trade is stable. That is, although no-trade is an equilibrium,

a slight deviation from zero monitoring by one side will attract a large amount of

monitoring on the other side, which in turn will generate a cascade of monitoring

that will end up in the equilibrium with trade. To illustrate this, consider the case

M = N = 1: Figure 2 plots the reaction functions, denoted by �m (�1) and �t (�1) ; for

the market-maker and market-taker respectively, with �m = �t = 0:5; � = 
 = 0:5:19

Note that �m (�) is plotted as a function of �1 (the horizontal axis) whereas �t (�) is
plotted as a function of �1 (the vertical axis). The two reaction functions meet at

two points (0,0) and (0.25,0.25), which are the two equilibria in this example (from

Propositions 1 and 2). It can be veri�ed that the slope of both reaction functions

at zero is in�nite. Thus, even a slight deviation by one side from zero monitoring

(for example due to an exogenous injection of order �ow) will lead to a cascade

19That is, �m (�1) is the best response of the market-maker given that the market-taker�s moni-
toring level is �1; and vice-versa.
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Figure 2: Monitoring Recation Functions

of larger deviations. The �gure illustrates the outcome of such a deviation using

the dashed arrows. A small increase in �1 optimally attracts a relatively large �1;

which in turn optimally attracts an even larger �1; and so on. This process ends

only when the reactions converge to the unique equilibrium with trade. Of course,

the complementarity between the two sides is key to this process in which increased

monitoring by one side reinforces monitoring by the other side.

Given the fragility of the no-trade equilibrium, we dedicate the rest of the paper

to studying the properties of the equilibrium with trade derived in Proposition 2.

Trading rate, aggregate monitoring, and cross-side e¤ects. We �rst use

Proposition 2 to study how a change in the exogenous parameters (the number of

participants on either side, the trading fees, and the monitoring costs) a¤ect the

aggregate monitoring levels of both sides and the trading rate.

Corollary 1 In the unique equilibrium with trade,

1. The aggregate monitoring level of each side increases in the number of partici-

pants on either side (@
��
�

@N > 0 , @
��
�

@M > 0, @��
�

@N > 0 , @��
�

@M > 0) and decreases in
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(i) monitoring costs (@
��
�

@� < 0 ,
@��

�

@
 < 0,
@���

@� < 0 , @��
�

@
 < 0) or (ii) the fee per

trade charged on either side ( @
��
�

@cm
< 0 , @

��
�

@ct
< 0, @��

�

@cm
< 0 , @��

�

@ct
< 0).

2. The trading rate decreases in (i) the monitoring costs (
@R(���;���)

@� < 0
@R(���;���)

@
 <

0) or the trading fees (
@R(���;���)

@cm
< 0 and

@R(���;���)
@ct

< 0) and (ii) increases in

the number of participants on either side (
@R(���;���)

@M > 0 and
@R(���;���)

@N > 0).

The cross-side complementarity in monitoring decisions (discussed at the end of

Section 2.3) is key for this �nding. Indeed, this corollary implies that a change

in a parameter that directly a¤ects the aggregate monitoring level of one side also

a¤ects the aggregate monitoring level of the other side. To see this, consider a

decrease in the monitoring cost for market-makers. This decrease directly raises

their individual monitoring levels, other things equal. Consequently, the marginal

bene�t of monitoring for market-takers is higher as they are more likely to �nd a

good price when they inspect the market. Thus, market-takers monitor the market

more intensively. This indirect e¤ect reinforces market-makers�attention and thereby

triggers a chain reaction that raises the trading rate.

Figure 3 uses a simple example to illustrate the importance of the cross-side

complementarities. We assume M = N = 10; L = � = 1; and cm = ct = 0:05: We

also �x 
 = 1 and study how a reduction in monitoring costs on market-makers (�)

a¤ects the trading rate R: The horizontal axis is 1=�, and the vertical axis is the
trading rate. The solid curve depicts the equilibrium trading rate calculated using

(11) and (12) for any given level of �: A reduction in � a¤ects ��� directly and ���

indirectly (through the cross-side complementarities). Both these e¤ects are re�ected

in the solid line. By contrast, the dotted line depicts the direct e¤ect only. To plot

this curve we use the equilibrium value of ���; but keeps ��� at its original value

(calculated for 1=� = 0:5): Thus, this curve re�ects a hypothetical trading rate that

ignores any cross-side complementarities. By comparing the two curves in the �gure

it is evident that cross-side complementarities have a material impact on monitoring

intensities and on the trading rate.

The same reasoning explains why an increase in the trading fee charged on market-

makers (resp. market-takers) has a negative impact on the aggregate monitoring

levels of both sides other things equal, although the cost of trading for market-

takers (resp. market-makers) does not change. The trading platform must therefore
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Figure 3: Cross-Side Complimentarities and the Trading Rate

account for cross-side complementarities in solving for its optimal fees, as shown in

the next section.

An increase in the number of participants on one side has a positive impact on

the aggregate monitoring on both sides for the same reason. In this case, however,

the individual monitoring levels of the market participants on the side that becomes

more populated may decrease. Indeed, as more traders on one side compete for

trading opportunities, the likelihood of winning a pro�t opportunity declines. This

competition e¤ect decreases the incentive to monitor of each participant on the side

that becomes thicker. Yet, this competition e¤ect remains small as it is o¤set by

the cross-side complementarity e¤ect, which is conducive to more monitoring by each

participant.

Welfare and algorithmic trading. The aggregate expected pro�t (per unit of

time) for all market participants is a measure of welfare. We denote it by W . Using

equations (8), (9), and (10), we obtain:

W (
; �; cm; ct;M;N) �
PM
i=1�im +

PN
j=1�jt +�e

= R
�
��
�
; ���
�
� L�M � Cm(��1)�N � Ct(��1):

Thus, other things being equal, aggregate welfare enlarges with the trading rate. For

this reason, a decrease in market participants�monitoring costs or in trading fees

raise aggregate welfare, as shown in the next corollary.
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Corollary 2 The following hold:

1. The total expected pro�t of each class of participants (the market-makers, the

market-takers, and the platform) decreases with the monitoring cost on either

side (� or 
). Thus, aggregate welfare decreases in monitoring costs.

2. Aggregate welfare decreases in trading fees on either side (cm or ct).

The �rst part of the proposition implies that algorithmic trading can be socially

useful. As monitoring costs decrease, both market-makers and market-takers com-

plete their trades more quickly. Consequently, the trading rate per unit of time

increases. This means that the rate at which gains from trade are realized is higher,

which makes all participants better-o¤.

A higher trading fee on one side results in a smaller trading rate. Thus, it leads

to a loss in aggregate welfare as the rate at which gains from trade are realized is

smaller. Of course, a higher trading fee may be bene�cial for the trading platform.

But overall, the increase in expected pro�t for the platform is more than o¤set by

the decline in expected pro�ts for the traders.

The balance between liquidity supply and demand. As explained in the

previous section, we can view ��� as a measure of liquidity supply and ��� as a measure

of liquidity demand. The next corollary shows that liquidity supply and demand are

not necessarily balanced in equilibrium (that is, in general, ��� 6= ���). This �nding is
important as the optimal pricing policy for the trading platform consists of choosing

fees to reduce imbalances in the �supply�and �demand�of liquidity, as explained in

the next section.

Corollary 3 In equilibrium, for �xed fees, the market-making side monitors the

market more intensively (less) than the market-taking side (��� > ���) if and only

if z(2M�1)
2N�1 > 1. If z(2M�1)

2N�1 = 1, the market-making and the market-taking sides have

identical monitoring intensities.

Thus, in equilibrium, there is excess attention by the market-making side (resp.

market-taking side) when z(2M�1)
(2N�1) > 1 (resp.

z(2M�1)
(2N�1) < 1). For instance, if M = N

and �m
� > �t


 , the market-making side inspects the market more frequently than the

market-taking side because market-makers�cost of missing a trading opportunity is
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relatively higher. In this case, liquidity supply is abundant but in part useless since

market-takers check the market relatively infrequently.

Small and large markets. In general we do not have an explicit solution for

traders�monitoring levels because we cannot solve for 
� in closed-form (
� is the

unique positive root of equation (13)). However, there are two polar cases in which

we can do so. The analysis of these cases will be useful to form intuition about the

optimal pricing policy of the trading platform in the next section.

In the �rst case, the market features one market-maker and one market-taker

(M = 1 and N = 1). We refer to this case as �the small market.�In this case, (13)

gives 
� = z
1
3 . Thus, using equations (11) and (12), we obtain,

Corollary 4 The monitoring intensities when M = N = 1 are given by,

��1 =
1�

1 + z
1
3

�2 � ��m�
�
; (14)

��1 =
1�

1 + z�
1
3

�2 � ��t

�
: (15)

In the second case, that we term �the large market,�the number of participants

on both sides is very large (both M and N tend to in�nity) yet the ratio q � M
N is

�xed. This ratio measures the size of the market-making side relative to the size of

the market-taking side. First, it is easily veri�ed from (13) that


1 � lim
M!1


� = (zq)
1
2 :20 (16)

Furthermore, the individual monitoring intensities converge to �nite levels given in

the next corollary.

Corollary 5 Let q > 0 be �xed, and assume N = M
q : Then,

�1i � lim
M!1

��i =
1

1 + (zq)
1
2

� �m
�

i = 1; 2; 3; ::: (17)

�1j � lim
M!1

��j =
1

1 + (zq)�
1
2

� �t



j = 1; 2; 3; :::

20To see this note that from (13), z =

�3M

q
+(M

q
�1)
�2

(M�1)
�+M : Then, take the limit as M !1:
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It can be formally shown that the convergence to this limiting case is pretty fast.21

That is, using the closed-form solutions in Lemma ?? to study markets with a �nite

number of traders provides good approximations even for relatively low values of M

and N: Notice the similarities in the expressions for the monitoring rates in the two

extreme cases in corollaries (4) and (5).

4 The determinants of the make/take spread

Now, we study the fees set by the trading platform. In most of the analysis, we �x

the total fee charged by the trading platform, �c, as we are mainly interested in the

fee structure, (cm; ct). We refer to cm � ct as the make/take spread. The make/take
spread is zero when the fee structure is �at (i.e., cm = ct) and positive (negative) if

the market-making side pays a higher (lower) fee than the market-taking side. Our

goal is to understand how the exogenous parameters of the model (the tick size, the

monitoring costs, and the relative number of participants on each side) a¤ect the

make-take spread. For instance, we study the conditions under which the optimal

make-take spread is negative (cm < ct), as often observed in reality.

As explained in Section 2.3, for a given total fee �c, the objective function of the

trading platform is to �nd a fee structure (c�m; c
�
t ) that solves,

max
cm;ct

�e = (cm + ct)R(���; ���); (18)

s:t: cm + ct = �c

Trading fees a¤ect traders�monitoring decisions and thereby the trading rate (see

Corollary 1). Since cm + ct = �c is �xed, the �rst order conditions for the trading

platform�s optimization problem impose that

@R(���; ���)
@cm

=
@R(���; ���)

@ct
: (19)

That is, the trading platform chooses its fee structure so as to equalize the marginal

(negative) impact of an increase in each fee on the trading rate.

An increase in the fee charged on market-makers has a negative e¤ect on the

aggregate monitoring levels of the market-makers and the market-takers. We denote

the elasticity of these levels to the fee charged on market-makers by �mm and �mt.

21Formally, we can show that 
1 � 
� is O
�
1
M

�
; which means that the error in using 
1 to

approximate for 
� is on the order of magnitude of 1
M
: The proof is available upon request.
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Similarly, �tt and �tm are the elasticities of the aggregate monitoring levels of the

market-taking side and the market-making side to the fee charged on market-takers.

Thus

�mm �
�
@ log(��

�
)

@cm

�
cm and �mt �

�
@ log(��

�
)

@ct

�
ct; (20)

�tt �
�
@ log(���)

@ct

�
ct and �tm �

�
@ log(���)

@cm

�
cm:

Using equation (19), we obtain the following result.

Proposition 3 For each level �c of the total fee charged by the platform, the optimal

fee structure must satisfy:

c�m =

�
h

h+ 1

�
�c; (21)

c�t = �c� c�m =
�

1

h+ 1

�
�c;

where h � (��
�
)�1�mm+(��

�)�1�tm
(��
�
)�1�mt+(��

�)�1�tt
.

Thus, it is optimal to charge di¤erent fees on market-makers and market-takers,

unless h = 1. Moreover, the optimal fee structure depends on the elasticities of

the aggregate monitoring levels to the fees and cross-side elasticities (�mt and �tm).

This �nding implies that estimating these elasticities is important to determine the

optimal fee structure.

The previous lemma does not provide a closed-form solution for the trading fees

since the elasticities of monitoring levels to trading fees depend on the fees. We can

obtain analytical solutions in two particular cases: the large market case and the

small market case. We �rst study the e¤ects of the exogenous parameters on the

make-take spread in these two cases. We then show using numerical simulations that

the conclusions obtained in these two polar cases generalize to intermediate values of

M and N .

4.1 Fees in the Large Market

Consider the case of the �large market� introduced in the previous section: both

M and N tend to in�nity, and yet M
N = q; where q > 0 re�ects the relative size of

the market-making vs. the market-taking sides. Recall from Corollary 5 that the

individual monitoring frequencies converge to a �nite limit. While the total level
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of monitoring diverges, the fees that maximize the trading rate converge to a �nite

limit. This allows us to obtain a closed form solution for the fee structure in this

case.

Proposition 4 In the large market case, the trading platform optimally allocates its

fee �c between the market-making side and the market-taking side as follows:

c�m =
1

2

 
�� 2(L� �c)

(1 + (qr)
1
3 )

!
and c�t = �c� c�m: (22)

For these fees,

��m =
L� �c

(1 + (qr)
1
3 )

and ��t =
L� �c

(1 + (qr)�
1
3 )
; (23)

and the equilibrium monitoring intensities are:

�1i =
L� �c

�
�
1 + (qr)

1
3

�2 and �1j =
L� �c



�
1 + (qr)�

1
3

�2 for i; j = 1; 2; ::: (24)

Using these results we can explore how the tick size, the monitoring costs and the

ratio of market participants on both sides determine the optimal fee structure Let
��(q; r) � 2(L � �c)

�
1 + (qr)

1
3

��1
+ �c. Using equation (22), we obtain the following

result.

Corollary 6 In the large market, the make-take spread increases with (i) the tick

size, �; (ii) the relative size of the market-making side, q; and (iii) the relative

monitoring cost for the market-taking side, r. Moreover the make-take spread is

negative if and only if � < ��(q; r).

Figure 4 illustrates the set of parameters for which the make-take spread is neg-

ative or positive.

The make-take spread is more likely to be negative when (i) the tick size is small,

(ii) the number of market-makers is relatively small or (iii) the monitoring cost for

market-makers is relatively large. These �ndings follow from the same general prin-

ciple. Namely, when a change in parameters increases the level of monitoring of one

side relative to the level of monitoring of the other side, the trading platform raises

its fee on the side whose monitoring increases. In other words, the trading platform
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Figure 4: Determinants of the Sign of the Make/Take Spread

uses its fee structure to balance the level of attention of the market-making side and

the market-taking side.

For instance, consider an increase in the tick size. This increase reinforces market-

makers�incentive to monitor since, other things equal, they get a larger fraction of

the gains from trade when they participate to a trade. In contrast, market-takers�

incentive to inspect the state of the market is lower. Thus, to better balance the level

of attention of both sides, it is optimal for the platform to charge a larger fee on the

market-makers and a smaller fee on the market-takers.

The e¤ect of an increase in the relative size of the market-making side (q) or the

ratio of market-takers to market-makers�monitoring cost (r = 

� ) on the make-take

spread can be understood in the same way. Intuitively, an increase in the relative

size of the market-making side or a decrease in its relative monitoring cost enlarge

the monitoring intensity of this side relative to the market-taking side, other things

equal. Thus, to balance the level of attention on both sides, it is optimal for the the

trading platform to raise its fee on the market-making side when q or r increase.

Equation (22) implies that market-makers (resp. market-takers) are optimally

subsidized (they pay a negative trading fee) when the tick size is small (resp. large)

enough. Observe however that in all cases c�m > ��
2 since L � �. Thus, even if

she receives a rebate, it is not optimal for a market-maker to post a quote below her

valuation of the security, i.e., at a � � as this would result in an expected loss for
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the dealer (a��� v0 � c�m < 0).
The previous �ndings about the optimal fee structure hold for any level �c. Thus,

they would hold even if the total fee earned by the platform on each trade is arbitrarily

capped at some level. If the trading platform is free to choose its total fee, �c, then

it faces the standard price-quantity trade-o¤ for a monopolist. That is, by raising

�c, the trading platform gets a larger revenue per trade but it decreases the rate at

which trades occur (Corollary 1). The next corollary provides the optimal value of �c

for the trading platform in this case.

Corollary 7 The trading platform maximizes its expected pro�t by setting its total

trading fee at �c = L=2 and by splitting this fee between both sides as described in

Proposition 4.

Thus, in contrast to the fee structure, the optimal fee for the platform is inde-

pendent of the tick size, traders�monitoring costs and the relative size of the market-

making side. Thus, our results regarding the e¤ect of �, q, and r hold even if �c is set

by the trading platform.

4.2 The small market (M = N = 1)

We now consider the case with one market-maker and one market-taker. Using the

expressions for monitoring levels on each side (Equations (14) and (15)), we can solve

for the optimal fee structure of the platform in this case. We obtain the following

result.

Proposition 5 When M = N = 1, the trading platform optimally allocates its fee �c

between the market-making side and the market-taking side as follows:

c�m =
1

2

 
�� 2(L� �c)

(1 + r
1
4 )

!
and c�t = �c� c�m: (25)

For these fees,

��m =
L� �c
(1 + r

1
4 )

and ��t =
L� �c

(1 + r�
1
4 )
; (26)

and the equilibrium monitoring intensities are:

��1 =
L� �c

�
�
1 + r

1
4

�3 and ��1 =
L� �c



�
1 + r�

1
4

�3 : (27)
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Clearly, this result is qualitatively similar to Proposition 4. In particular, it is

readily checked that our �ndings regarding the e¤ects of the tick size, and the relative

monitoring cost of market-takers (Corollary 6) still hold in this case. Moreover, in

this case as well, it is optimal for the trading platform to set �c = L=2.

4.3 General Case

The fact that 
� is only given implicitly for arbitrary M and N prevents us from

obtaining an analytical solution for the optimal trading fees for arbitrary values of

the parameters. However, we have checked through extensive numerical simulations

that the comparative static results obtained in the large market and small market

cases are robust. As an illustration, consider the following baseline values for the

parameters: M = N = 10; 
 = � = 1; � = 1 (1 penny), L = 1 (1 penny). �c = 0:1

(0.1 pennies).

Figure 5a shows how the market-taking fee (dotted line), the market-making fee

(plain line) and the make-take spread (dashed line) change as the tick size increases.

As found in the large market and small market cases, the make-take spread increases

as the tick size gets larger. As before, the intuition is that a larger tick-size bene�ts

market-makers, and hence they monitor more. To maximize the trading-rate, the

exchange penalizes the market-makers by increasing the maker-take spread.

Figure 5b considers the e¤ect of an increase in r = 

� on the trading fees and the

make-take spread. As expected, the make-take spread increases when the monitoring

cost becomes relatively larger for market-takers. Finally Figure 5c considers the

e¤ect of an increase in q = M=N on the trading fees and the make-take spread. As

expected, the make-take spread increases as the number of market-makers increases

relative to the number of market-takers. The intuition as again as in the small and

large markets.

5 Implications

We now discuss the implications of the model in more details. Throughout, we focus

on the large market case. But the implications discussed here hold more generally.

Duration Clustering and Cross-Side Complementarities. As explained in

Section 2.3, market-makers�monitoring decisions and market-takers�monitoring de-

cisions reinforce each other. This complementarity naturally leads to a positive cor-
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Figure 5: Determinants of the Make/Take Spread

relation between (i) the average time it takes for the bid-ask spread to revert to its

competitive level after a trade (denoted by Dm � 1
�
) and (ii) the average time it takes

for a trade to occur when the bid-ask spread is competitive (denoted by Dt � 1
�).

For instance, consider an increase in the number of market-takers. In equilibrium,

this shock triggers a decrease in the reaction times of (i) the market-taking side (as

they monitor more) and (ii) the market-making side (as more monitoring by market-

takers encourages more monitoring by market-makers). Thus, both Dm and Dt fall.
As a consequence, the duration between trades (Dm +Dt) falls as well (these claims
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follow directly from Corollary 1).22

This positive correlation between the average durations of each phase in a cycle

echoes the clustering in the time intervals between consecutive transactions (trade

durations) found in several empirical papers (e.g., Engle and Russell (1998)). In gen-

eral, this clustering has been interpreted in light of models of trading with asymmetric

information (e.g., Admati and P�eiderer (1988)). In these models, clustering arises

as liquidity traders optimally choose to trade at the same point in time. Instead, our

model suggests that clustering in trade durations could stem from the complemen-

tarity in monitoring decisions between liquidity suppliers and liquidity demanders.

In this case, a factor shortening the reaction time of one side shortens the reaction

time of the other side as well. Thus, time-variations in this factor (e.g., the num-

ber of market-takers during the trading day) create a positive correlation between

the various components (Dm and Dt) of the total duration of a cycle and results in
clustering in trade durations.

Our model implies that cross-sectional variations or exogenous shocks to deter-

minants of monitoring can help estimate liquidity externalities. In fact, our model

o¤ers a direct way to structurally estimate this externality, which has proved hard to

identify empirically (see for example Barclay and Hendershott (2004)).

Time Structure of a Cycle. Let I � Dt
Dm = �

� . This is the average duration from

a trade to a competitive quote divided by the average duration from a competitive

quote to a trade (see Figure 1). This ratio can serve as an empirical proxy for the

ratio �
� , which is unobservable empirically. A value of I larger (resp. smaller) than

1 indicates that market-makers monitor the market more than market-takers. Thus,

after a trade, the speed at which the bid-ask spread reverts to its competitive level is

higher than the speed at which competitive quotes are hit by market-takers. In this

sense I is a measure of the imbalance between liquidity supply and liquidity demand.
We obtain the following result.

Corollary 8 In equilibrium, for �xed fees, the imbalance between liquidity supply and
22Thus, complementarity in the actions of market-makers and market-takers could explain why

limit order markets exhibit sudden and short-lived booms and busts in trading rates during the
trading day (see Hasbrouck (1999) or Coopejans, Domowitz and Madhavan (2001) for empirical
evidence).
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demand in the large market is:

I(r; q; cm; ct) = (
�mrq

�t
)1=2: (28)

Thus, the imbalance increases in (i) the relative size of the market-making side, (ii)

the relative monitoring cost of the market-taking side, (iii) the fee charged on market-

makers, and (iv) the fee charged on market-takers.

The �rst two implications (those regarding the e¤ect of q and r on I) also hold
when fees are set at their optimal level. Indeed, using Proposition 4 and equation

(28), we obtain that:

I(r; q; c�m; c�t ) = (
��mrq

��t
)1=2 = (rq)2=3. (29)

The optimal make-take spread is also positively related to r and q (see Corollary

6). Thus, if fees are set optimally, the model implies a positive correlation between

the make-take spread and imbalance. This prediction is interesting as the make-take

spread varies (i) across securities for a given trading platform (see Table 1 in the

introduction) and (ii) across trading platforms, for a given security (in which case

q may di¤er across platforms). These variations provide a way to test whether the

make-take spread co-varies positively with the imbalance.

Tick size and Make-Take Spread. The model also implies a positive association

between the make-take spread and the tick size. Trading platforms�pricing policies

are consistent with this implication. Indeed, the proliferation of negative make-take

spreads in U.S. equity trading platforms (and even rebates paid to limit order traders)

coincides with a reduction in the tick size on these platforms. Moreover, this practice

was introduced by ECNs such as Archipelago and Island in the 90s which, at this time,

were operating on much �ner grids than their competitors (Nasdaq and NYSE).23

Since January 2007, the tick size has been reduced for a list of options in U.S. option

markets (so called �The Penny Pilot Program�). For these options, as implied by the

model, a few trading platforms (e.g., NYSE Arca Options and the Boston Options

Exchange) now charge a negative make-take spread. Lastly, in 2009, BATS decided

to charge a positive make-take spread in stocks with a relative large tick size (i.e.,

low priced stocks).
23Biais, Bisière and Spatt (2002) stress the importance of the �ness of the grid on Island for the

competitive interactions between this platform and Nasdaq, Island�s main competitor at the time of
their study.
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The model suggests two other reasons for the low make-take spreads that are

observed in reality (see Corollary 6). This con�guration could also arise because the

size of the market-making sector is relatively small and/or because monitoring costs

for this sector are relatively high. This situation is not implausible. First, in recent

years, the burden of liquidity provision seems to rest on a relatively small number

of market participants (GETCO, ATD, Citadel Derivatives etc...) who specialize in

high-frequency market-making by actively monitoring the market. Thus, q could

be small in reality. Moreover, brokers who must take a position in a list of stocks

on behalf of their clients need to focus only on trading opportunities in this list of

names. In contrast, electronic market-makers monitor the entire universe of stocks,

unless they decide to specialize. Thus, their opportunity cost of monitoring one stock

is likely to be higher than for market-takers.

Trading Activity and the Tick Size. The model also implies that, for �xed

trading fees, there is a value of the tick size that maximizes the trading rate, as

shown in the next corollary. For this corollary, let c�m(L; q; r) denotes the optimal fee

charged on market-makers in the special case when � = L.

Corollary 9 1. For �xed trading fees, the tick size that maximizes the trading

rate is: �� = 2(cm� c�m(L; q; r))+L. Thus, �� increases in (i) the fee charged
on market-makers (cm), and decreases in (ii) the number of market-makers

relative to the number of market-takers (q) or (iii) market-takers�monitoring

cost relative to market-makers�monitoring cost (r).

2. In contrast, if the fees are set optimally, then a change in the tick size has no

e¤ect on the trading rate.

A larger tick size translates into larger gains from trade for market-makers. Thus,

other things being equal, an increase in the tick size is conducive to more monitor-

ing by market-makers. Hence, market-takers (i) obtain less surplus per transaction

but (ii) expect more frequent trading opportunities when the tick size is larger. In

equilibrium, the �rst e¤ect dominates. Thus, an increase in the tick size enlarges

market-makers�monitoring intensity, but it decreases market-takers�monitoring in-

tensities. For this reason, the e¤ect of a change in the tick size on the trading rate is

not monotonic, and the trading rate is maximal for a strictly positive tick size. There

are very few empirical studies that consider the e¤ect of the tick size on the trading

32



rate. Chakravarty et al. (2004) �nd a signi�cant drop in the trading frequency for

all trade sizes categories after the implementation of decimal pricing on the NYSE.

Interestingly, the trading platform fully neutralizes the e¤ect of a change in the

tick size on the trading rate through the choice of its trading fees (second part of the

corollary). Thus, parts 1 and 2 of the corollary jointly suggest that the short run and

long run e¤ects (after adjustment of fees) of a change in the tick size are di¤erent.

In the short run, a change in tick size should a¤ect the trading rate whereas in the

long run, after the adjustment of trading fees, the e¤ect should disappear (if the fees

are set optimally).

Trading Volume, Algorithmic Trading, and Trading Fees. Trading volume

has considerably increased in the recent years. For instance, from 2005 to 2007, the

number of shares traded on the NYSE rose by 111%, despite the loss in market share

of the NYSE over the same period. The same trend is observed in other markets

(e.g., the trading volume on the LSE increased by 69% in 2007).

In reality, average trading volume is the average trading rate multiplied by the

average order size. Since all orders in our model have the same size, the trading rate

proxies for volume. Thus, the model suggests two possible causes for the evolution

in volume: (i) the development of algorithmic trading, and (ii) the evolution of the

pricing policy used by trading platforms.24 Indeed, as shown by Corollary 1, a de-

crease in the monitoring cost for the market-making side or the market-taking side

triggers an increase in the trading rate. The result also holds when the fee structure

is endogenous. Intuitively, a reduction in monitoring cost accelerates the speed at

which market-takers and market-makers respond to each other and thereby results

in more trades per unit of time. Second, the model implies that there is one split of

trading fees between market-makers and market-takers that maximizes the trading

rate. When the tick size is small, this split is such that market-makers are charged less

than market-takers. Thus, the widespread adoption of a negative make-take spread

should also enhance trading activity.

Bid-Ask Spread and Algorithmic Trading. Quoted bid-ask spreads are often

used as a measure of liquidity. The (half) bid-ask spread (the best o¤er less v0) is

24Of course, there might be other causes such as the development of institutional trading. See
Chordia et al. (2008) for an empirical analysis of the evolution of the trading volume in U.S. equity
markets and its determinants.
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either a (in state F ) or a +� (in state E).25 During a cycle, the market is in state

F for an average duration Dt and in state E for an average duration Dm. Thus, the
average half bid-ask spread (denoted ES) is:

ES = �a+ (1� �)(a+�)� v0 =
�

2
+ (1� �)�: (30)

where

� � Dt
Dm +Dt

=
I

1 + I : (31)

Thus the average bid-ask spread decreases when liquidity supply increases relative

to liquidity demand, that is when thee ratio �
� is large. An increase in �� relative

to �� means that liquidity demand pressure develops in the sense that it accelerates

the speed at which the best o¤er is hit relative to the speed at which market-makers

reinstate the best o¤er at the competitive pressure. In this case the bid-ask spread

enlarges.

In equilibrium, �
� increases in the relative monitoring cost ratio, r =



� . For

instance, in the large market, �� = (�mrq�t
)1=2 for given fees and �

� = (rq)2=3 when

fees are set optimally. Hence, a decrease in � reduces the bid-ask spread whereas

a decrease in 
 enlarges the bid-ask spread. Thus, in considering the impact of

algorithmic trading on the bid-ask spread, it is important to distinguish between

algorithmic traders acting mainly as liquidity suppliers and algorithmic traders acting

mainly as liquidity demanders. In the latter case, algorithmic trading increases price

pressure by liquidity demanders and results in larger bid-ask spread on average.

Hendershott, Jones, and Menkveld (2009) consider a change in the organization

of the NYSE that made algorithmic trading easier for liquidity suppliers. This is

consistent with our model which implies that in this case the resulting increase in

algorithmic trading should yield a smaller bid-ask spread. On the other hand, Hen-

dershott and Moulton (2009) study an event in which monitoring and execution costs

decreased for market-takers on NYSE. As predicted by our model, this resulted in

an increase in in the bid-ask spread. Furthermore, our model o¤ers an alternative

explanation to this phenomenon, which is not related to changes in adverse-selection.

The model also implies that considering the e¤ect of algorithmic trading on the

trading rate is important. For instance when 
 decreases, the bid-ask spread enlarges

on average, a symptom of illiquidity. But this change in market-takers�monitoring
25Recall that a large number of shares is o¤ered for sale at price a+� by a fringe of competitive

traders.
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cost makes all market participants better o¤, other things equal, as it results in a

higher trading rate (Corollary 2). Thus, for �xed trading fees, the change in the

trading rate is a better indicator of the impact of algorithmic trading on traders�

welfare than the bid-ask spread. This is related to Boehmer (2005) who empirically

shows a distinction between transaction costs and the speed at which transactions

are executed.

6 Conclusion

This paper considers a model in which traders must monitor the market to seize

trading opportunities. One group of traders (�market-makers�) specializes in post-

ing quotes while another group of traders (�market-takers�) specializes in hitting

quotes. Market-makers monitor the market to be the �rst to submit a new compet-

itive quote after a transaction. Market-takers monitor the market to be the �rst to

hit a competitive quote. In this way, we model the high frequency make/take liq-

uidity cycles observed in electronic security markets. We show that the monitoring

decisions of market-makers on the one hand and market-takers on the other hand are

self-reinforcing. This feature has several implications. For instance, it implies that

a trading platform can be trapped in a no trade equilibrium in which market-takers

pay no attention to the platform because they expect market-makers to be inactive

and vice versa. It also implies that the speed at which liquidity demanders respond

to new quotes is positively related to the speed at which new quotes are posted on

the platform and vice versa. This complementarity between liquidity demand and

liquidity supply o¤ers a new explanation for the clustering in the duration between

trades.

In this set-up, we study the role of make/take fees. We show that these fees can

be used by a trading platform to control traders�monitoring decisions and therefore

the trading rate. In particular, it is optimal for the trading platform to reduce its

fee on market-makers and increase its fee on market-takers when (i) the tick size

decreases, (ii) the number of market-makers relative to the number of market-takers

decrease or (iii) the monitoring cost of market-takers relative to the monitoring costs

of market-makers increases.

We also use the model to study the e¤ect of algorithmic trading (a drastic reduc-

tion in monitoring costs). The model implies that algorithmic trading should lead to
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a sharp increase in trading rate and has an ambiguous e¤ect on the bid-ask spread.

Interestingly, for �xed trading fees, we also �nd that algorithmic trading results in

a Pareto improvement since it makes all market participants (including the trading

platform) better o¤.

7 Appendix

Proof of Proposition 1: Direct from the argument in the text.

Proof of Proposition 2: From (8) and (4), the �rst order condition for market-

maker i is:
��
�
��+ ��� �i

��
��+ ��

�2 �m
�
= �i: (32)

Summing over all i = 1; : : :M , we obtain

��
��
��+ ��

�
M � ��

��
��+ ��

�2 �m
�
= ��: (33)

Similarly, for market-takers we obtain,

��
��
��+ ��

�
N � ��

��
��+ ��

�2 �t


= ��: (34)

Let 
 � ��
�� : Dividing the left-hand-side of (33) and (34) by ��

2 we obtain,

M + (M � 1)

(1 + 
)2

�m
�

= ��: (35)


 ((1 + 
)N � 1)
(1 + 
)2

�t



= �� (36)

Dividing these two equations gives,

(M + (M � 1)
)

2 ((1 + 
)N � 1)z = 1; (37)

or equivalently,


3N + (N � 1)
2 � (M � 1) z
�Mz = 0:

We argue that this cubic equation has a unique positive solution. Indeed, this equa-

tion is equivalent to


 = g(
;M;N; z): (38)
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with

g(
;M;N; z) =
(M � 1)z

N

+
Mz

N
2
� N � 1

N
: (39)

Function g(�;M;N; z) decreases in 
. It tends to plus in�nity as 
 goes to zero, and
to �N�1

N as 
 goes to in�nity. Thus, (38) has a unique positive solution that we

denote by 
�.

To obtain a full characterization of the aggregate monitoring levels in equilibrium,

insert this root into Equations (35) and (36).

To obtain traders�individual monitoring levels note that the equilibrium trading

strategies are symmetric among the market-makers and market-takers. That is, �1 =

�2 = : : : = �M and �1 = �2 = : : : = �N :
26 Hence, the individual equilibrium

monitoring levels are obtained from �i = ��=M and �j = ��=N for all i; j. This

completes the proof.

Proof of Corollary 1: Recall that 
� is such that:


� = g(
�;M;N; z); (40)

where g(�) is de�ned in equation (39). It is immediate that g(�) increases in M ,
decreases in N , and increases in z. As g(�) decreases in 
, we have

@
�

@M
> 0; (41)

@
�

@N
< 0: (42)

Now, using Equations (41) and (11), we conclude that:

@��i
@N

=
�@
�

@N � ((M + 1) + (M � 1)
�)
(1 + 
�)3

�
�m
M�

�
> 0:

Hence, @
��
�

@M > 0. Similarly, using equations (42) and (12), we deduce that

@��j
@M

> 0: (43)

26 Indeed, suppose for example that �1 > �2: Then, from (32),

��
�
��+ ��� �1

��
��+ ��

�2 �m
�
>
��
�
��+ ��� �2

��
��+ ��

�2 �m
�
;

which simpli�es to �1 < �2 - a contradiction.
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Hence, @��
�

@M > 0. We also have


� =
��
�

���
.

Thus, using equations (41) and (42), we conclude that
��
�

��� increases inM and decreases

in N . Equation (43) implies that ��� increases in M . Thus it must be the case that
��
� increases in M as well. A similar argument shows that ��� increases in N .

Now, consider the e¤ect of a change in � on market-takers�monitoring intensities.

We have (see Proposition 2),

��j = �(

�)

�
�t
N


�
;

where

�(
�) =

�

� ((1 + 
�)N � 1)

(1 + 
�)2

�
:

Thus
@��j
@�

=

�
@�(
�)

@
�
@
�

@z

@z

@�

��
�t
N


�
We have @�(
�)

@
� > 0. Moreover @

�

@z > 0 and
@z
@� < 0. Thus

@��j
@�

< 0,

which implies that @�
�

@� < 0. Now, since
��
�
= 
����, we have:

@��
�

@�
= 
�

@��

@�
+
@
�

@z

@z

@�
��� < 0;

which implies
@��j
@� < 0. The impact of other parameters on the aggregate monitoring

levels of the market-makers and the market-takers is obtained in the same way. The

second part of the corollary directly follows from the �rst part.

Proof of Corollary 2: Consider �rst the aggregate expected pro�t for market-

takers. We have:

�t(�
�
1; ::; �

�
j ; :::; �

�
N ; �

�
; 
; �; cm; ct) =

P
j �jt(�

�
j ;
��
�
; 
; �;M;N)

Thus,

d�t
d


=
P
j

 
@�jt
@��j

@��j
@


+
@�jt

@��
�
@��

�

@

+
@�jt
@


!
d�t
d�

=
P
j

 
@�jt
@��j

@��j
@�

+
@�jt

@��
�
@��

�

@�
+
@�jt
@�

!
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Now, the envelope theorem implies that @�jt
@��j

= 0 for all j. Moreover, the cross-

side complementarity implies @�jt
@��

� > 0 for all j; and Corollary 1 yields @
��
�

@
 < 0 and

@��
�

@� < 0. Last, for all j; @�jt@
 = �1
2

�
��j

�2
< 0 and @�jt

@� = 0. Thus, d�td
 < 0 and
d�t
d� < 0. This establishes the �rst part of the proposition for the market-taking side.

The proof for the market-makers is parallel. Last, we have proved in Corollary 1

that the trading rate decreases when � or 
 increases. It follows that the expected

pro�t of the platform decreases with � or 
. Thus, the �rst part of the proposition

is proved.

For the second part of the proposition, observe that

d�t
dct

=
P
j

 
@�jt
@��j

@��j
@ct

+
@�jt

@��
�
@��

�

@ct
+
@�jt
@ct

!
d�m
dct

=
P
i

�
@�im
@��i

@��i
@ct

+
@�im
@���

@���

@ct

�
d�e
dct

= R(��; ��) + @R(
��
�
; ���)

@cm
c

The envelope theorem implies that @�jt@��j
= 0 and @�im

@��i
= 0 for all i and j. Moreover,

@�jt
@ct

= � ��j
��
�

��
�
+���

and @�jt
@��

� =
��j ��

�

(��
�
+���)2

�t. Last, @�im@��� =
��i
��
�

(��
�
+���)2

: Thus,

d�t
dct

=
���

(��
�
+ ���)2

�t
@��

�

@ct
� �����

�

��
�
+ ���

; (44)

and
d�m
dct

=
��
�2

(��
�
+ ���)2

@���

@ct
: (45)

Moreover,

d�e
dct

=
�����

�

��
�
+ ���

+
���2

(��
�
+ ���)2

 
@��

�

@ct

�
1
��
�

�2
+
@���

@ct

�
1

���

�2!
: (46)

Adding up (44), (45), and (46), we obtain,

dW

dct
=

���

(��
�
+ ���)2

�t
@��

�

@ct
+

��
�2

(��
�
+ ���)2

@���

@ct

+
���2

(��
�
+ ���)2

 
@��

�

@ct

�
1
��
�

�2
+
@���

@ct

�
1

���

�2!
;

which is negative since @���

@ct
< 0 and @��

�

@ct
< 0: A similar argument applies to changes

in cm:
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Proof of Corollary 3: Using equation (13), it is readily checked that 
� = 1 if and

only if z = 2N�1
2M�1 . Thus,

��
�
= ��� if and only if z = 2N�1

2M�1 . Moreover, as shown in the

proof of Corollary ??, 
� increases in z. Hence, ��� > ��� i¤ z > 2N�1
2M�1 .

Proof of Corollary 5: Using Proposition (2),

�1i � lim
M!1

��i = lim
M!1

�
M + (M � 1)
�

M (1 + 
�)2

��
�m
�

�
= lim
M!1

 
1 + M�1

M 
�

(1 + 
�)2

!�
�m
�

�
=

1

1 + 
1

�
�m
�

�
=

1

1 + (zq)
1
2

�m
�

(using (16)).

A similar argument is used to derive �1j :

Proof of Proposition 3: We have

@R(���; ���)
@cm

= R(���; ���)2( @
��
�

@cm

1

��
�2 +

@���

@cm

1

���2
)

=
R(���; ���)2

cm
(
�mm
��
� +

�tm
���
): (47)

and
@R(���; ���)

@ct
=
R(���; ���)2

ct
(
�mt
��
� +

�tt
���
): (48)

The optimal fee structure is such that

@R(���; ���)
@cm

=
@R(���; ���)

@ct
:

Thus, using equations (47) and (48), we deduce that

(��
�
)�1�mm + (��

�)�1�tm
(��
�
)�1�mt + (��

�)�1�tt
=
cm
ct
:

Now, (21) follows directly from this equation and the fact that cm + ct = �c.

Proof of Proposition 4: We �x q > 0; and let N = M
q : Note that there is a one-

to-one mapping between the fees charged by the trading platform and the per trade

trading pro�ts obtained by the market-making side and the market-taking side, �m

and �t. Thus, instead of using cm and ct as the decision variables of the platform,

we can use �m and �t. It turns out that this is easier. Thus, for a �xed �c, we rewrite

the platform�s problem as:

Max�m;�tR(��
�
; ���)

s:t �t + �m = L� �c:
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Moreover, using that �m = L� �c� �t; we can present R(���; ���) as a function of �t
only. We know that

R(���; ���) =
��
�
���

��
�
+ ���

=
��
�

1 + 
�
: (49)

The �rst order condition with respect to �t gives

@��
�

@�t
(1 + 
�)� @


�

@�t
��
�
= 0;

or equivalently,
@��

�

@�t
= R(���; ���)@


�

@�t
:

Since ��� =M��1, we can divided both sides by M and obtain

@��1
@�t

=
R(���; ���)

M

@
�

@�t
: (50)

Since the �rst order condition holds for any M; we can take limits on both sides

to obtain a necessary condition for the large market:

lim
M!1

@��1
@�t

= lim
M!1

R(���; ���)
M

� lim
M!1

@
�

@�t
: (51)

Straightforward calculations show that

lim
M!1

@
�

@�t
=

d
1

d�t
= � q

2
1
L� c
�2t




�
; and

lim
M!1

d��1
d�t

= � 1

� (1 + 
1)
� 1

(1 + 
1)2
� d


1

d�t
� L� �c� �t

�
;

where 
1 is given by (16). Furthermore, it is direct from (49) that

lim
M!1

R(���; ���)
M

=
�11

1 + 
1
;

where �11 is given by (17). Plugging back into (51) and simplifying yields

1� q (L� �c� �t)

1 (1 + 
1)

� L� �c
�2t

� 

�
= 0;

or,

1� zq

(1 + 
1) 
1
L� �c
�t

= 0; (52)

which simpli�es to
�t
L� �c =


1

1 + 
1
: (53)
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Denote

w � �t
L� �c : (54)

Then (53) imposes

w =

1

1 + 
1
=

1

1 + (zq)
1
2

: (55)

Now, observe that

z = r
1� w
w

:

Thus, we can rewrite equation (55) as

w =
1

1 +
�
1�w
w

��0:5
(rq)�0:5

:

It is immediate that this equation has a unique solution:

w� =
(rq)

1
3

1 + (rq)
1
3

:

From (54) we obtain,

�t =
L� �c

1 + (rq)�
1
3

; (56)

and,

�m = L� �c� �t =
L� �c

1 + (rq)
1
3

: (57)

Given this,

z =

L��c
1+(qr)

1
3

L��c
1+(qr)�

1
3

r = q�
1
3 r

2
3 :

And,


1 = (zq)
1
2 = (rq)

1
3 : (58)

The optimal fees in the large market are:

cm =
�

2
� �m =

�

2
� L� �c
1 + (qr)

1
3

ct = L� �
2
� �t = L�

�

2
� L� �c
1 + (qr)�

1
3

:

Finally, the monitoring intensities in the large market are obtained by plugging

these expressions into Corollary 5.

Proof of Corollary 6: The result follows directly from equation (22)
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Proof of Corollary 7: We �x q > 0; and let N = M
q :For any given M , maximizing

R(��; ��)�c is equivalent to maximizing R(��;��)
M �c; which in turn (using (49) and that

��
�
= M��1) is equivalent to maximizing

��1
1+
� �c: Denote H (�c) �

��1
1+
� : Then, to �nd

the optimal total fee �c in the large market case we need to �nd the limit as M tends

to in�nity of

argmax
�c�0

H (�c) �c:

The FOC for a given M is

H (�c) +H0 (�c) �c = 0: (59)

Note that H depends on �c only through its dependence on ��1 and 

�: It follows

that

H0 (�c) = @H
@��1

@��1
@�c

+
@H
@
�

@
�

@�c
=

1

1 + 
�
@��1
@�c

� ��1
(1 + 
�)2

@
�

@�c
: (60)

Since (59) holds for any M; we can take the limit as M !1: We have,

lim
M!1

H (�c) = �11
1 + 
1

=
L� �c

�
�
1 + (qr)

1
3

�3 (using (24) and (58)).

It can also be veri�ed using (24) and (58) that

lim
M!1

@��1
@�c

=
@�11
@�c

= � 1

�
�
1 + (qr)

1
3

�2 ; and
lim
M!1

@
�

@�c
= lim

M!1

@
1

@�c
= 0.

Thus, from (60),

lim
M!1

H0 (�c) = � 1

�
�
1 + (qr)

1
3

�3 :
And, in the limit (59) becomes

L� �c

�
�
1 + (qr)

1
3

�3 � 1

�
�
1 + (qr)

1
3

�3 �c = 0;
which gives �c = L

2 :

Proof of Proposition 5: As in the proof of Proposition 4, we can use �mm and

�mt. Thus, for a �xed �c, when M = N = 1, the platform problem is:

Max�m;�t
��1�

�
1

��1 + �
�
1

�c

s:t �t + �m = L� �c:
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From equations (35) and (36),

��1
��1
= z

1
3 = (

�m
�t




�
)
1
3

and

��1 =
�m
�

1�
1 + z

1
3

�2
Thus, we can rewrite the previous optimization problem as:

Max�m;z
��1

1 + z
1
3

�c (61)

s:t �m

�
1 +




�z

�
= L� �c: (62)

and ��1 =
L� �c

�
�
1 + z

1
3

�2 �
1 + 


�z

� (63)

This problem is equivalent to �nding z that minimizes�
1 + z

1
3

�3 �
� +




z

�
:

The �rst order condition to this problem imposes

� 1
z2

�

 � z

4
3�
��
z
1
3 + 1

�2
= 0:

Hence, the solution is

z =

�



�

� 3
4

= r
3
4 : (64)

Using the constraint (62), we have,

��m =
L� �c
1 + r

1
4

: (65)

It follows that,

��t = L� �c� �m =
L� �c
1 + r�

1
4

: (66)

Then, plugging (64), (65), and (66) into equations (14) and (15), we obtain the

required expressions for ��1 and �
�
1:

Proof of Corollary 9: De�ne ĉm = L
2 �

�
2 + cm and ĉt =

�
2 �

L
2 + ct. Observe that

we can write market-makers�and market-takers�payo¤s as:

�im =
�i��

�
�
2 � cm

�
��+ ��

� 1
2
��2i =

�i��
�
L
2 � ĉm

�
��+ ��

� 1
2
��2i

�jt =
�j
��
�
L� �

2 � ct
�

��+ ��
� 1
2
��2j =

�j
��
�
L
2 � ĉt

�
��+ ��

� 1
2
��2j
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These payo¤s are those obtained when � = L and fees are set at ĉm and ĉt. Thus,

the values of ĉm and ĉt that maximize the trading rate are:

ĉ� = c�m(L; q; r)

ĉt = c�t (L; q; r):

Observe that ĉ�m and ĉ�t do not depend on the tick size. Thus, when the platform

optimally chooses its trading fees, it does so that eventually traders�payo¤s do not

depend on the tick size. Thus, in this case, the maximal trading rate does not depend

on the tick size, which proves the second part of the corollary.

For arbitrary fees cm and ct, ĉ�m and ĉ�t are obtained by choosing a tick size �
�

such that c�m(L; q; r) =
L
2 �

��

2 + cm. This proves the �rst part of the corollary.

Proof of Corollary 8: By de�nition we have I = �
� = 


�. In equilibrium, in the

large market case, 
� = 
1 = (zq)1=2 (see the proof of Lemma ??). The proposition

follows.
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