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Abstract

We develop a dynamic model of debt runs on a �rm, which invests in an illiq-

uid asset by rolling over staggered short-term debt contracts. We derive a unique

threshold equilibrium, in which creditors coordinate their asynchronous rollover

decisions based on the �rm�s publicly observable and time-varying fundamental.

Fear of the �rm�s future rollover risk motivates each maturing creditor to run

ahead of others even when the �rm is still solvent. Our model provides impli-

cations on the roles played by volatility, illiquidity and debt maturity in driving

debt runs, as well as on �rms�capital adequacy standards and credit risk.
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1 Introduction

There is a long history of panic runs on banks. The panic of 1907 led to the creation of

the Federal Reserve and the wave of bank failures during the Great Depression led to the

establishment of deposit insurance. With the creation of these safeguards, runs on banks

have become uncommon in the modern time. However, the structure of the �nancial system

has changed in the 21st century, with rapid growth of the share of assets held by non-bank

�nancial institutions such as investment banks, special investment vehicles, conduits, and

hedge funds. According to U.S. Treasury Secretary Timothy Geithner (2008), the size of the

non-bank �nancial system had already surpassed that of the traditional banking system by

early 2007. Non-bank institutions do not accept deposits like banks; instead, they rely on

short-term debt contracts such as commercial paper and repo transactions to �nance their

long-term risky and relatively illiquid assets. Without the protection of deposit insurance,

the non-bank �nancial institutions are intrinsically vulnerable to panic runs. In fact, many

regulators and researchers, e.g., Bernanke (2008), Cox (2008), Geithner (2008), Brunnermeier

(2009), Gorton (2008), Krishnamurthy (2009), and Shin (2009), describe runs on the non-

bank �nancial institutions as one of the main causes of the credit crisis of 2007-2008.1

This crisis raises many important policy and academic questions, which require a the-

oretical framework to analyze panic runs on �nancial institutions. Diamond and Dybvig

(1983) provide a classic bank-run model to show that failure of depositors to coordinate

their withdrawal decisions could lead to a self-ful�lling bank-run equilibrium. In this equi-

librium, all depositors choose to withdraw from a solvent but illiquid bank, thus causing it

to fail prematurely.

Two particular features of �nancial institutions motivate new perspectives on the coor-

dination problem between their creditors. First, the assets held by �nancial institutions are

mostly �nancial securities whose fundamentals change over time. The fact that runs on the

�nancial institutions started in 2007 after their losses from mortgage related holdings became

publicly known, e.g., Gorton (2008), suggests that �uctuating fundamentals played a poten-

tially important role in triggering the runs in the credit crisis. Second, non-bank �nancial

institutions have a di¤erent �nancing structure from banks. They are mostly �nanced by

short-term debt contracts. While demand deposits allow bank depositors to run at any time,

debt contracts lock in creditors until contract expirations. Furthermore, in practice, �rms

1The freeze of the U.S. asset backed commercial paper (ABCP) markets in 2007 provides a vivid il-
lustration of runs by creditors on the �nancial institutions. Prompted by concerns about the mounting
delinquencies of subprime mortgages, the ABCP outstandings fell by a staggering $400 billion (one third of
the existing amount) during the second half of 2007, e.g., Covitz, Liang, and Suarez (2009).
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typically spread out their debt expirations over time to reduce liquidity risk. In other words,

a �rm�s debt contracts mature at di¤erent times.2 This staggered debt structure together

with time-varying fundamentals leads to a dynamic coordination problem between creditors,

in contrast to the static one formulated by Diamond and Dybvig (1983).

In this paper, we develop a parsimonious model in continuous time to analyze this prob-

lem. A �rm �nances its long-term asset holding by rolling over short-term debt with a

continuum of small creditors. While one can interpret this �rm as any �rm, either �nancial

or non-�nancial, �nancial �rms are especially appealing because of their tendency to use

higher leverage and more short-term debt. We assume that the �rm�s debt expirations are

uniformly spread out across time. This staggered debt structure implies that the fraction of

debt maturing in a short period is small, insulating our model from the coordination problem

between creditors maturing at the same time. Instead, we focus on the coordination prob-

lem between creditors maturing at di¤erent times. On the asset side, we assume that the

�rm asset has publicly observable and time-varying fundamentals. The asset is also illiquid.

When some maturing creditors choose to run and the �rm fails to raise new funds to repay

them, it has to prematurely liquidate the asset at a �re-sale price equal to a fraction of its

fundamental value.

We derive in closed form a unique threshold equilibrium, in which each maturing creditor

chooses to run on the �rm if the �rm fundamental falls below a certain endogenously deter-

mined threshold. To protect himself against the �rm�s future rollover risk caused by other

creditors, each maturing creditor will choose to roll over his debt if and only if the current

fundamental provides a su¢ cient safety margin. Each creditor�s optimal threshold choice

depends on that of others� if a creditor anticipates that the creditors maturing during his

next contract period are more likely to run (i.e., using a higher rollover threshold), he has

a greater incentive to run ahead of them (i.e., using an even higher threshold) when he gets

the chance now. In this way, creditors engage in a preemptive �rat race,�which leads all

creditors to choose a rollover threshold substantially higher than he would in the absence of

the coordination problem.

Our model naturally integrates two distinct and long-standing views about runs. The

�rst view, advocated by Friedman and Schwartz (1963) and Kindleberger (1978), attributes

many historical banking crises to unwarranted panics by arguing that the banks that were

2For example, on February 10, 2009, the data from Bloomberg show that Morgan Stanley, one of the
major U.S. investment banks, had short-term debt (with maturities less than 1.5 years) expiring on almost
every day throughout February and March 2009. If we sum up the total value of Morgan Stanley�s expiring
short-term debt in each week, the values for the following �ve weeks are 62 million, 324 million, 339 million,
239 million, and 457 million, respectively. The Federal Reserve Release also shows that the commercial paper
issued by �nancial �rms in aggregate has maturities well spread out over time.
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forced to liquidate in such episodes were illiquid rather than insolvent. The alternative

view, proposed by Mitchell (1941) and others, suggests that runs occur when depositors

have fundamental concerns about the health of banks. There are a large number of models

building on these views, which we brie�y review in Section 6.1. In our model, the possibility

of the �rm�s future fundamental deterioration generates creditors�fear of the �rm�s future

rollover risk. The coordination problem between creditors further ampli�es this fear and leads

each creditor to choose a substantially higher rollover threshold. This intricate interaction

between the �rm�s rollover risk and fundamental risk explains why it is often di¢ cult to

identify a �nancial crisis as a fundamental crisis or liquidity crisis.

By incorporating both fundamental and liquidity factors, our model provides several

testable implications. First, �rms with deteriorating fundamentals are more likely to expe-

rience runs. Second, �rms with higher fundamental volatilities are more exposed to runs.

This is because a higher volatility makes a �rm�s fundamental more likely to hit below the

other creditors�rollover threshold during a creditor�s contract period, thus motivating him

to use a higher rollover threshold. Third, the more illiquid a �rm�s asset is, the more likely

the runs on the �rm. This is because a deeper discount of the �rm�s asset in the secondary

market exposes each creditor to a greater loss in the event of a forced liquidation in the

future. Fourth, under a wide range of parameter values, �rms with shorter debt maturities

are more exposed to runs, because they face greater rollover risks. Our numerical illustra-

tion in Section 5 also shows that the aforementioned rat race mechanism can dramatically

amplify the e¤ects of higher volatility, lower liquidity and shorter maturity on each creditor�s

incentive to run.

As a further highlight of the strong impact of the dynamic coordination problem, our

model implies higher capital adequacy standards necessary for preventing ine¢ cient panic

runs than those suggested by static bank-run models. It is intuitive that in any static

setting, if a �rm is su¢ ciently capitalized so that it can still pay back its liability after a

forced liquidation, there is no need for any creditor to worry about runs by others. However,

this criterion breaks down in our dynamic model with debt contracts maturing throughout all

periods. The capacity of its liquidation value to pay back its liability now is not a guarantee

for future periods when the fundamental may deteriorate. As a result, each creditor is still

concerned about the �rm�s future rollover risk. When the �rm�s fundamental volatility is

su¢ ciently large, this concern becomes so strong that each maturing creditor chooses to run

ahead of future maturing creditors despite the �rm�s ample capital cushion now.

Our model also provides useful implications for evaluating credit risk� i.e., the risk that

a �rm defaults on its debt� in an illiquid market environment. While the standard credit
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modeling approach focuses on insolvency risk, the risk that a �rm�s fundamental value drops

below its liability, our model shows that insolvency risk and rollover risk, a form of liquidity

risk, are intertwined and operate jointly to determine the �rm�s credit risk. In particular,

our model calls for more attention on debt maturity structure in credit modeling, because

a �rm�s credit risk is determined not only by its fundamental risk and leverage, but also by

its debt maturity.

The emergence of the unique threshold equilibrium derived in our model is reminiscent

of the global games models developed by Carlsson and van Damme (1993) and Morris and

Shin (1998) in static coordination games. The mechanism in our model is di¤erent and

works as follows. When the �rm fundamental is su¢ ciently high (or low), each creditor�s

dominant strategy is rollover (or run), regardless of other creditors�future decisions. In other

words, the equilibrium is uniquely determined in these regions, which are often referred to as

the upper and lower dominance regions. When the �rm fundamental is in the intermediate

region between the two dominance regions, the Diamond-Dybvig type self-ful�lling multiple

equilibria would arise if the fundamental is constant. However, when the fundamental is time-

varying (either deterministically or stochastically) and could reach the dominance regions

in the future, the creditors�anticipation of future maturing creditors�uniquely determined

rollover strategy inside the dominance regions allows them to induce their optimal strategy

in the intermediate region. Thus, a unique subgame perfect equilibrium emerges.

Unlike the global games models in which agents use noisy private information to coordi-

nate their synchronous actions, creditors in our model coordinate their asynchronous rollover

decisions based on the publicly observable and time-varying fundamental. This insight builds

on Frankel and Pauzner (2000) and Burdzy, Frankel, and Pauzner (2001), who show that in

dynamic coordination games with strategic complementarities, random fundamental shocks

can act as a coordination device.3 The realistic debt payo¤s in our model prevent the use of

the standard iterated deletion of dominated strategies approach to derive the equilibrium.

Instead, we use a guess-and-verify approach.4

Our model also shares some spirit of the static bank-run models of Rochet and Vives

(2004) and Goldstein and Pauzner (2005). By allowing the bank fundamental to be unob-

servable and depositors to have noisy private signals about the fundamental, these models

adopt the global games approach to extend the Diamond-Dybvig bank-run setting. In these

3The same insight is also used by Guimaraes (2006) and Plantin and Shin (2008) to study coordinated
currency attacks and speculative dynamics in carry trades.

4By making the �rm fundamental publicly observable, our model does not have strategic uncertainty
generated by agents�higher order beliefs, and thus di¤ers in emphasis from several other dynamic coordina-
tion models, e.g., Abreu and Brunnermeier (2003), Chamley (2003), Angeletos, Hellwig, and Pavan (2007),
Dasgupta (2007), and Toxvaerd (2008).
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models, the coordination problem between depositors ampli�es the e¤ect of uncertainty

about bank fundamentals and leads to ine¢ cient runs on banks. In contrast to these mod-

els, our model incorporates time-varying fundamentals and staggered debt structures, which

allow us to analyze the e¤ects of volatility and debt maturity in driving runs.

Our model is related to the quickly growing literature analyzing various theoretical issues

motivated by the credit crisis. Acharya, Gale, and Yorulmzer (2009) also study �nancial

institutions� rollover risk and show that certain information structures can lead to credit

freezes as rollover frequency increases. Brunnermeier and Oehmke (2009) study the con�ict

between long-term and short-term creditors during debt crises. He and Xiong (2009) analyze

the role played by market illiquidity and short-term debt in exacerbating the con�ict between

debt and equity holders during debt crises. Morris and Shin (2009) build a global games

model to analyze the liquidity component of �nancial institutions�credit risk. Diamond and

Rajan (2009) show that anticipation of future �re sales can motivate banks to hoard liquidity

and thus lead to a credit freeze. Shleifer and Vishny (2009) develop a model to explain the

instability of banks as they use high leverage to take advantage of market sentiment.

The paper is organized as follows. Section 2 describes the model setup. We derive a

unique monotone debt-run equilibrium in Section 3, and provide a single-creditor benchmark

in Section 4. Section 5 analyzes the determinants of the creditors� equilibrium rollover

threshold, and Section 6 discusses the implications for various issues related to dynamic

debt runs. Finally, we conclude in Section 7. All technical proofs are given in the Appendix.

2 Model

We consider a continuous-time model with an in�nite time horizon. A �rm invests in a long-

term asset by rolling over short-term debt. One can interpret this �rm as any �rm, either

�nancial or non-�nancial. Our model is particularly appealing for �nancial �rms because

they tend to use higher leverage and more short-term debt. To make debt runs a relevant

concern for the �rm, we assume that the capital markets are imperfect along the following

dimensions. First, the �rm cannot �nd a single creditor with �deep pockets� to �nance

all of its debt and has to rely on a continuum of small creditors. Second, if some of the

creditors choose not to roll over their debt, the �rm needs to draw on its credit lines, which

are not perfectly reliable and could be withdrawn by its issuer with a probability. Third,

the secondary market for the �rm asset is illiquid and the �rm incurs a price discount if

forced to liquidate the asset prematurely. We also impose two realistic assumptions about

the �rm: the fundamental value of the �rm asset changes randomly over time and is publicly
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observable; and the �rm has a staggered debt structure.

2.1 Asset

We normalize the �rm�s asset holding to be 1 unit. The �rm borrows $1 at time 0 to acquire

its asset. Once the asset is in place, it generates a constant stream of cash �ow, i.e., rdt

over the time interval [t; t+ dt]. At a random time ��, which arrives according to a Poisson

process with intensity � > 0; the asset matures with a �nal payo¤. An important advantage

of assuming a random asset maturity with a Poisson process is that at any point before the

maturity, the expected remaining maturity is always 1=�:

The asset�s �nal payo¤ is equal to the time-�� value of a stochastic process yt, which

follows a geometric Brownian motion with constant drift � and volatility � > 0:

dyt
yt
= �dt+ �dZt;

where fZtg is a standard Brownian motion. We assume that the value of the fundamental
process is publicly observable at any time.

Taken together, the �rm asset generates a constant cash �ow of rdt before �� and a

�nal value of y�� at ��. Then, by assuming that agents in this economy (including the �rm

creditors) are risk-neutral and have a discount rate of � > 0; we can compute the fundamental

value of the �rm asset as its expected discounted future cash �ows:

F (yt) = Et

�Z ��

t

e��(s�t)rds+ e��(���t)y��

�
=

r

�+ �
+

�

�+ �� �yt; (1)

where the two components, r
�+�

and �
�+���yt, correspond to the present values of the asset�s

constant cash �ow and �nal payo¤, respectively. Since the asset�s fundamental value increases

linearly with yt; we will conveniently refer to yt as the �rm fundamental.

The assumption that the �rm fundamental is time-varying is natural. It is somewhat

strong to assume that the fundamental is publicly observable. This assumption mainly serves

to insulate our model from further complications caused by agents�private information about

the �rm fundamental. In fact, our model would stay intact if we assume that the fundamental

is unobservable and instead all agents only observe the same noisy public signals about the

unobservable fundamental.

2.2 Debt Financing

The �rm �nances its asset holding by issuing short-term debt. Short-term debt is a natural

response of outside creditors to a variety of agency problems inside the �rm. By choosing
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short-term �nancing, creditors keep the option to pull out if they discover the �rm managers

are pursuing value-destroying projects.5 While this exit option puts a short leash on the

�rm, it also creates a coordination problem between creditors. In this paper, we take a

realistic debt structure as given and focus on analyzing the coordination problem between

creditors. By demonstrating the potentially strong impact of this coordination problem, our

model highlights the importance of incorporating it in future studies of �rms�optimal debt

structures.6

We emphasize an important feature of real-life �rms�debt structure: �rms tend to spread

out their debt expirations over time to reduce liquidity risk. For example, the data from

Bloomberg show that on February 10, 2009, Morgan Stanley, one of the major U.S. invest-

ment banks, had short-term debt (with maturities less than 1.5 years) expiring on almost

every day throughout February and March 2009. If we sum up the total value of Morgan

Stanley�s expiring short-term debt in each week, the values for the following �ve weeks are

62 million, 324 million, 339 million, 239 million, and 457 million, respectively.7 Furthermore,

the Federal Reserve Release also shows that the commercial paper issued by �nancial �rms

in aggregate have maturities well spread out over time.8

Speci�cally, we assume that the �rm �nances its asset holding by issuing one unit of

debt divided uniformly among a continuum of small creditors with measure 1. The promised

interest rate is r so that the cash �ow from the asset exactly pays o¤ the interest payment

until the asset matures or until the �rm is forced to liquidate the asset prematurely. Once

a creditor lends money to the �rm, the debt contract lasts for a random period, which ends

upon the arrival of an independent Poisson shock with intensity � > 0. In other words,

the duration of each debt contract has an exponential distribution and the distribution

is independent across di¤erent creditors. Once the contract expires, the creditor chooses

whether to roll over the debt or to withdraw money (i.e., to run).

While the random duration assumption appears di¤erent from the standard debt contract

with a predetermined maturity, it captures the aforementioned staggered debt structure of

a typical �rm� in aggregate, the �rm has a �xed fraction �dt of its debt maturing over

5See Kashyap, Rajan, and Stein (2008) for a recent review of this agency literature and capital regulation
issues related to the recent �nancial crisis.

6Cheng and Milbradt (2009) extend our model to allow the �rm manager to freely switch between two
projects, a good one with high drift and low volatility and an inferior one with low drift and high volatility.
They show that the use of short-term debt can discipline the manager from choosing the inferior project
when the �rm fundamental is high.

7Our conversations with several bankers con�rm that �nancial institutions prefer to spread out their debt
expirations so that they do not have to roll over a large fraction of their debt on a single day.

8Almeida et al. (2009) summarize the debt maturity structure of all U.S. non-�nancial �rms and show
that most �rms�debt expirations are spread out across di¤erent years.
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time, where the parameter � represents the �rm�s rollover frequency. This random duration

assumption simpli�es the complication of the debt�s maturity e¤ect, because at any time

before the debt maturity the expected remaining maturity is always 1=�: By matching 1=�

with the �xed maturity of a real-life debt contract, this assumption captures the �rst order

e¤ect of debt maturity when a creditor makes his rollover decision.9

While we treat the rollover frequency as given for most of our analysis, we will analyze

the creditors�preference over debt maturity in Section 6.3. To focus on the coordination

problem between creditors, we also take the interest payment of the �rm debt as given and

leave a more elaborate analysis of the e¤ects of endogenous interest payments for future

research.10

2.3 Runs and Liquidation

When the maturing creditors choose to run, they expose the �rm to bankruptcy risk if it

cannot raise new funds to repay the running creditors. Of course, the �rm can acquire credit

lines from other institutions to protect itself against such an adverse event.11 However, credit

lines are never fully reliable. As experienced by many �nancial institutions during the credit

crisis of 2007-2008, credit lines were frequently withdrawn by the issuers, either because they

also faced funding problems or because they anticipated future funding problems and thus

chose to hoard liquidity.12

Our model incorporates the imperfect reliability of the �rm�s credit lines by an exogenous

parameter. More speci�cally, over a short time interval [t; t+ dt] ; �dt fraction of the �rm�s

debt contracts expire. If these creditors choose to run, the �rm will draw on its credit lines

to raise new funds to pay o¤ the running creditors. We assume that with probability ��dt;

the issuer of the �rm�s credit lines fails to provide liquidity and the �rm is thus forced into

9This assumption also generates an arti�cial second-order e¤ect: If the debt contracts have a �xed
maturity, a creditor, after rolling over his contract, will go to the end of the maturity queue. The random
maturity assumption makes it possible for the creditor to be released early and therefore to run before other
creditors when the asset fundamental deteriorates. This possibility makes the creditor less worried about
the �rm�s rollover risk than he would if the debt contract has a �xed maturity. This in turn makes him
more likely to roll over his debt. Thus, by assuming the random debt maturity, our model underestimates
the �rm�s rollover risk.
10One might argue that when facing rollover di¢ culties, the �rm can attract the maturing creditors by

promising higher interest rates. However, doing so dilutes the stakes of other creditors in the �rm and would
motivate earlier maturing creditors to demand higher interest rates preemptively, similar to the preemptive
runs highlighted in our model. In other words, promising higher interest rates could become a self-enforcing
tightening mechanism on the �rm, instead of a way to bail out.
11In fact, Ivashina and Scharfstein (2008) document that during the peak of the credit crisis in September-

November 2008, many �rms had drawn on their credit lines from banks.
12In the experience of the runs in the asset-backed commercial paper (ABCP) market in 2007, Covitz,

Liang, and Suarez (2009) �nd that across di¤erent ABCP programs, the reliability of their credit lines is an
important determinant of the likelihood of runs.

9



liquidation. The parameter � > 0 measures the unreliability of the �rm�s credit lines.13 The

higher the value of �; the less reliable the �rm�s credit lines, and therefore the more likely the

�rm will be forced into liquidation given the same creditor out�ow rate. With probability

1� ��dt; the �rm is able to raise new funds through the credit lines to pay o¤ the running

creditors. For simplicity, we assume that the new funds raised from the credit lines have the

same debt contract as the existing ones. Taken together, if every maturing creditor chooses

to run, the �rm can survive on average for a period of 1
��
:14

Once the �rm fails to raise new funds to pay o¤ the running creditors, it falls into

bankruptcy and has to liquidate its asset in an illiquid secondary market.15 We assume that

the �rm can only recover a fraction � 2 (0; 1) of its fundamental value. That is, the �rm
obtains a discounted price of eL (yt) = �F (yt) = L+ lyt; (2)

where

L =
�r

�+ �
and l =

��

�+ �� �: (3)

For simplicity, we rule out partial liquidations in this paper.

The liquidation value will then be used to pay o¤ all creditors on an equal basis. In other

words, both the running creditors and the other creditors who are locked in by their current

contracts, get the same payo¤min
�eL (y) ; 1�.16

Due to the staggered debt structure in our continuous-time setting, the fraction of ma-

turing creditors over a small time interval (i.e., �dt) is small. This implies that an individual

creditor�s running decision is not a¤ected by the concurrent decisions of other maturing cred-

itors. This feature insulates our model from the Diamond-Dybvig type of static coordination
13We also consider the special case when the �rm does not have any credit line (� =1), i.e., the �rm fails

immediately when any maturing creditor chooses to run, in footnote 21.
14One could also interpret � as inversely related to the �rm�s cash reserve. If the �rm has more cash

reserve, it can survive the creditors�runs for a longer period. Since outside creditors usually cannot perfectly
observe the balance of a �rm�s cash reserve, from their perspective the failure of the �rm under creditors�
runs will occur at a random time.
15Our model implicitly assumes that once in distress, the �rm cannot raise more capital by issuing new

equity. This assumption is consistent with the existence of the con�ict of interest between debt and equity
holders, a la endogenous default in Leland (1994). When a �rm faces liquidity problems in the debt market,
equity holders could �nd it optimal not to inject more equity. By injecting equity they bear all the �nancial
burden of keeping the �rm from bankruptcy, but the bene�t is shared by both debt and equity holders. See
He and Xiong (2009) for an analysis of the e¤ects of this distortion on short-term debt crises.
16From the view of any running creditor, his expected payo¤ from choosing run is still 1 because the

probability of the �rm failure ��dt is in a higher dt order. This observation implies that in our model the
sharing rule in the event of bankruptcy is inconsequential. We can also assume that during bankruptcy
those maturing creditors who have chosen to run get a full payo¤ 1, while the remaining creditors who are

locked in by their current contracts get min
�eL (y) ; 1�. This alternative assumption gives a greater incentive

for maturing creditors to run. However, since the probability of the �rm failure is ��dt, the di¤erence in
incentive is negligible.
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problems, in which agents make simultaneous decisions, and instead allows us to focus on

the coordination problem between creditors whose contracts mature at di¤erent times.

2.4 Parameter Restrictions

To make our analysis meaningful, we impose several parameter restrictions. First, we bound

the interest payment by

� < r < �+ �: (4)

The �rst part r > � makes the interest payment attractive to the creditors, who have a

discount rate of �. The second part r < � + � rules out the scenario where the interest

payment is so attractive that rollover becomes the dominant strategy even when the �rm

fundamental yt is close to zero. Essentially, this condition ensures the existence of the lower

dominance region in which each creditor�s dominant strategy is to run if the �rm fundamental

yt is su¢ ciently low.

Second, we limit the growth rate of the �rm fundamental by

� < �+ �: (5)

Otherwise, the �rm�s fundamental value in equation (1) would explode.

Third, we also limit the premature liquidation recovery rate of the �rm asset:

� <
1

r
�+�

+ �
�+���

; (6)

so that L+ l < 1 (see equation (3)). Under this condition, the asset liquidation value is not

enough to pay o¤ all the creditors when yt = 1: This condition is su¢ cient for ensuring that

each creditor is concerned about the �rm�s future rollover risk when the �rm fundamental

yt is in an intermediate region.

Finally, we assume that the parameter � is su¢ ciently high:

� >
�

� (1� L� l) ; (7)

so that the �rm faces a serious bankruptcy probability when some creditors choose to run.

3 The Debt-Run Equilibrium

Given the �rm�s asset and �nancing structures described in the previous section, we now

analyze the debt-run equilibrium. We limit our attention to monotone equilibria, equilibria

in which each creditor�s rollover strategy is monotonic with respect to the �rm fundamental
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Figure 1: Three possible outcomes to a creditor.

yt (i.e., to roll over if and only if the �rm fundamental is above a threshold). In making his

rollover decision, a creditor rationally anticipates that once he rolls over the debt, he faces

the �rm�s rollover risk during his contract period. This is because volatility could cause

the �rm fundamental to fall below the other creditors�rollover threshold. As a result, the

creditor�s optimal rollover threshold depends on the other creditors�threshold choice.

In this section, we �rst set up an individual creditor�s optimization problem in choosing

his optimal threshold. We then construct a unique monotone equilibrium in closed form.

Finally, we characterize the key ingredients that lead to the unique equilibrium.

3.1 An Individual Creditor�s Problem

We �rst analyze the optimal rollover decision of an individual creditor who holds a small

fraction of the �rm�s outstanding debt. In analyzing the individual creditor�s problem, we

take as given that all other creditors use a monotone strategy with a rollover threshold y�

(i.e., other creditors will roll over their debt if and only if the �rm fundamental is above y�

when their debt contracts mature). During the creditor�s contract period, his value function

depends directly on the �rm fundamental yt; and indirectly on the other creditors�rollover

threshold y�: Since the creditor�s future payo¤ is proportional to the unit of debt he holds,

we denote V (yt; y�) as the creditor�s value function normalized by the debt unit.

12



For each unit of debt, the creditor receives a stream of interest payments r until

� = min (��; � �; � �) ;

which is the earliest of the following three events, illustrated in Figure 1 at the end of three

di¤erent fundamental paths. On the top path, the �rm stays alive until its asset matures at

��. At this time, the creditor gets a �nal payo¤ of min
�
1; y��

�
, i.e., the face value 1 if the

asset�s maturity payo¤ y�� is su¢ cient to pay all the debt, and y�� otherwise. The possibility

that the asset�s maturity value may be insu¢ cient to pay o¤ the debt represents the �rm�s

insolvency risk. On the bottom path, the �rm fundamental drops below the other creditors�

rollover threshold and the �rm is eventually forced to liquidate its asset prematurely at

� �. At this time, the creditor gets min (1; L+ ly��). This outcome represents the �rm�s

rollover risk faced by each creditor. On the middle path, the �rm stays alive (although its

fundamental dips below the other creditors�rollover threshold) until � � when the creditor�s

contract expires. At this time, the creditor has an option, i.e., he can choose whether to roll

over depending on whether the continuation value V (y�� ; y�) is higher than getting the one

dollar back.

Due to risk neutrality, the individual creditor�s value function is given by

V (yt; y�) = Et

�Z �

t

e��(s�t)rds+ e��(��t)
h
min (1; y� )1f�=��g (8)

+min (1; L+ ly� )1f�=��g + max
rollover or run

fV (y� ; y�) ; 1g1f�=��g
io

where 1f�g is an indicator function that takes a value of 1 if the statement in the bracket

is true or zero otherwise. The individual creditor�s future payo¤ during his contract period

depends on other creditors� rollover choices because other creditors� runs might force the

�rm to liquidate its asset prematurely, as illustrated by the bottom path of Figure 1. This

dependence gives rise to strategic complementarity in the creditors�rollover decisions, and

therefore a coordination problem between the creditors whose contracts mature at di¤erent

times.17

17It is important to note that our model is substantially di¤erent from the standard game theoretical
frameworks for analyzing dynamic binary action coordination problems. For example, consider the framework
developed in Frankel and Pauzner (2000) and Burdzy, Frankel, and Pauzner (2001). Their framework consists
of a sequence of repeated stage games. In each period, each agent receives a �ow payo¤, which satis�es an
exogenous form of strategic complementarity, i.e., the agent receives a higher �ow payo¤ if his current-period
strategy overlaps with that of a greater fraction of the population. In contrast, in our model each creditor�s
�ow payo¤, which is given by the debt contract (interest payment r and possible asset maturity payo¤
min (y; 1)), does not exhibit strategic complementarity. Instead, the strategic complementarity between the
creditors emerges from the implicit dependence of a creditor�s continuation value function on other creditors�
rollover decisions, as shown in Figure 1 and equation (8). This important di¤erence in model framework

13



By considering the change of the creditor�s value function over a small time interval

[t; t+ dt]; we can derive his Hamilton-Jacobi-Bellman (HJB) equation:

�V (yt; y�) = �ytVy +
�2

2
y2t Vyy + r + � [min (1; yt)� V (yt; y�)] (9)

+��1fyt<y�g [min (L+ lyt; 1)� V (yt; y�)] + � max
rollover or run

f0; 1� V (yt; y�)g :

The left-hand side term �V (yt; y�) represents the creditor�s required return. This term should

be equal to the expected increment in his value function, as summarized by the terms on

the right-hand side.

� The �rst two terms �ytVy + �2

2
y2t Vyy capture the expected change in the value function

caused by the �uctuation in the �rm fundamental yt:

� The third term r is the interest payment per unit of time.

The next three terms capture the three events illustrated in Figure 1:

� The fourth term � [min (1; yt)� V (yt; y�)] captures the possibility that the asset ma-
tures during the time interval, which occurs at a probability of �dt and generates an

impact of min (1; yt)� V (yt; y�) on the creditor�s value function.

� The �fth term ��1fyt<y�g [min (L+ lyt; 1)� V (yt; y�)] represents the expected e¤ect
of premature liquidation from other creditors�runs, which occurs at a probability of

��1fyt<y�gdt (other maturing creditors will run only if yt < y�) and generates an impact

of min (L+ lyt; 1)� V (yt; y�) on the creditor�s value function.

� The last term � max
rollover or run

f0; 1� V (yt; y�)g captures the expected e¤ect from the cred-
itor�s own contract expiration, which arrives at a probability of �dt: Upon its arrival,

the creditor chooses whether to rollover or to run: max
rollover or run

f0; 1� V (yt; y�)g :18

It is obvious that a maturing creditor will choose to roll over his contract if and only if

V (yt; y�) > 1; and to run otherwise. This implies that if the value function V only crosses

1 at a single point y0, i.e., V (y0; y�) = 1; then y0 is the creditor�s optimal threshold.

prevents us from readily applying the method of iterated deletion of dominated strategies used by Burdzy,
Frankel, and Pauzner (2001) to our model. Instead, we derive the equilibrium by invoking a guess-and-verify
approach detailed in the proof of Theorem 1.
18From each creditor�s view, the probability of the event that his contract expires and the �rm is forced

into a premature liquidation is in the second order of (dt)2. As a result, whether the creditor gets 1 or the
asset�s premature liquidation value in such an event is inconsequential. See another related discussion in
footnote 16.

14



Externality on Future Maturing Creditors The rollover decision of current-period

maturing creditors a¤ects not only their own payo¤s, but also future maturing creditors�. In

particular, their decision to run adds to the �rm�s bankruptcy probability and thus imposes

an implicit cost on future maturing creditors. Since they do not internalize the cost of their

actions on others, this externality is the ultimate source of debt runs in our model. To see

this point precisely, we summarize the payo¤ (or continuation value) of the current-period

maturing creditors and future maturing creditors depending on the choice of the current-

period maturing creditors in Table 1. For simplicity, we treat all the current-period maturing

creditors as one identity in this illustration.

Table 1. Externality on future maturing creditors.

Choice of current-period maturing creditors Run Rollover

Possible �rm outcomes failed survived survived

Probabilities ��dt 1� ��dt 1

Payo¤ of current-period maturing creditors eL (y) 1 V (y)

Payo¤ of future maturing creditors eL (y) V (y) V (y)

The maturing creditors will choose run if 1�(1� ��dt)+eL���dt > V , which is V < 1 after
ignoring the higher order dt term. Their runs reduce the remaining creditors�continuation

value function by

V �
h
V � (1� ��dt) + eL � ��dti = �V � eL� ��dt:

While this e¤ect is of the dt order, a remaining creditor needs to bear the accumulative

externality e¤ect of all maturing creditors before him, which, in expectation, could be sig-

ni�cant.19

Dominance Regions When the �rm fundamental yt is su¢ ciently low (i.e., close to zero),

an individual creditor�s dominant strategy is run. This is because even if all other creditors

choose to roll over in the future, the expected asset payo¤ at the maturity plus the interest

payments before the asset maturity are not as attractive as getting one dollar back now.

On the other hand, when the �rm fundamental yt is su¢ ciently high (i.e., close to in�nity),

the creditor�s dominant strategy is rollover. Even if all other creditors choose to run in the

future, the asset�s liquidation value is su¢ cient to pay o¤ the debt in the event of a forced

19Note that the current-period maturing creditors�runs also impose externality e¤ects on each other. But
these e¤ects are one time and of the dt order, thus can be ignored.
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liquidation. These two regions are called the lower and upper dominance regions. Their

existence is important for ensuring a unique equilibrium.

3.2 The Unique Monotone Equilibrium

We �rst focus our attention on symmetric monotone equilibria, and then show that there

cannot be any asymmetric monotone equilibrium. In a symmetric monotone equilibrium,

each creditor�s optimal threshold choice y0 must be equal to the other creditors�threshold

y�: Thus, we obtain the condition for determining the equilibrium threshold:

V (y�; y�) = 1:

We employ a guess-and-verify approach to derive a unique monotone equilibrium in

four steps. First, we derive an individual creditor�s value function V (yt; y�) from the HJB

equation in (9) by assuming that every creditor (including the creditor under consideration)

uses the same monotone strategy with a rollover threshold y�. Due to terms min (1; yt) and

min (L+ lyt; 1) in (9), the value function depends on the value of y� in the three cases:

1. If y� < 1;

V (yt; y�) =

8>>><>>>:
r+��L+�

�+�+(1+�)�
+ �+��l

�+�+(1+�)���yt + A1y
�1
t when 0 < yt � y�

r
�+�

+ �
�+���yt + A2y

�
2
t + A3y

�2
t when y� < yt � 1

r+�
�+�

+ A4y
�
2
t when yt > 1

;

2. If 1 � y� < 1�L
l
;

V (yt; y�) =

8>>><>>>:
r+��L+�

�+�+(1+�)�
+ �+��l

�+�+(1+�)���yt +B1y
�1
t when 0 < yt � 1

r+�+��L+�
�+�+(1+�)�

+ ��l
�+�+(1+�)���yt +B2y

�
1
t +B3y

�1
t when 1 < yt � y�

r+�
�+�

+B4y
�
2
t when yt > y�

;

3. If y� � 1�L
l
,

V (yt; y�) =

8>>>>>>><>>>>>>>:

r+��L+�
�+�+(1+�)�

+ �+��l
�+�+(1+�)���yt + C1y

�1 when 0 < yt � 1
r+�+��L+�
�+�+(1+�)�

+ ��l
�+�+(1+�)���yt + C2y

�
1
t + C3y

�1
t when 1 < yt � 1�L

l

r+�+��+�
�+�+(1+�)�

+ C4y
�
1
t + C5y

�1
t when 1�L

l
< yt � y�

r+�
�+�

+ C6y
�
2
t when yt > y�

:
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The coe¢ cients �1; �2; 
1; 
2; A1; A2; A3; A4; B1; B2; B3, B4, C1; C2; C3; C4; C5; and

C6 are given in Appendix A.1 and are expressions of the model parameters and y�:

Second, based on the derived value function, we show that there exists a unique �xed

point y� such that V (y�; y�) = 1: Third, we prove the optimality of the threshold y� for any

individual creditor, i.e., V (y; y�) > 1 for y > y� and V (y; y�) < 1 for y < y�: Finally, we show

that there cannot be any asymmetric monotone equilibrium.

We summarize the main results in the following theorem.

Theorem 1 There exists a unique monotone equilibrium, in which each maturing creditor

chooses to roll over his debt if yt is above the threshold y� and to run otherwise. The

equilibrium threshold y� is uniquely determined by the condition that V (y�; y�) = 1.

The equilibrium threshold y� could fall into any one of the three cases listed above,

depending on the values of the model parameters. The third case is particularly interesting

as eL (y�) = L+ ly� � 1; i.e., creditors start to run on the �rm even though the �rm�s current
liquidation value is su¢ cient to pay o¤ its liability. The emergence of this type of frantic

run re�ects creditors�strong fear of the �rm�s future rollover risk, which we will discuss in

more detail in Section 6.2.

3.3 Understanding the Uniqueness of the Equilibrium

Like the classic bank run model of Diamond and Dybvig (1983), our model also features the

externality of one creditor�s run on other creditors. However, there is a unique threshold

equilibrium, instead of multiple self-ful�lling equilibria. What leads to the unique equilib-

rium? In this section, we discuss the roles of two important ingredients, staggered debt

structure and time-varying fundamental, by studying several variations of our model.

3.3.1 Synchronous Debt Expirations

To highlight the role of the staggered debt structure, we consider the following model vari-

ation. Suppose that the �rm�s debt contracts all expire at time 0, and the current �rm

fundamental is y0. At this time, each creditor decides whether to run or to roll over into a

perpetual debt contract lasting until the �rm asset matures at ��: We also assume that if

all creditors choose to run, the �rm might fail with a probability of �s 2 (0; 1) : This set-
ting closely resembles that in Diamond-Dybvig model, because all creditors simultaneously

choose their rollover decisions at time 0 and the �rm does not face any future rollover risk.

We formally characterize this coordination problem below.
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Proposition 2 Given the aforementioned setting, there exist yh > yl > 0 such that if y0 > yh
(the upper dominance region), an individual creditor�s dominant strategy is to roll over; if

y0 < yl (the lower dominance region), the creditor�s dominant strategy is to run. However, if

y0 2 [yl; yh] (the intermediate region), the creditor�s optimal choice depends on the others�,
i.e., it is optimal to run if the others choose to run and it is optimal to roll over if the others

choose to roll over.

Proposition 2 shows that when the �rm fundamental is in an intermediate region, mul-

tiple self-ful�lling equilibria emerge, like those in Diamond and Dybvig (1983). By using a

staggered debt structure, the �rm can mitigate the Diamond-Dybvig type of coordination

problems. This is because the fraction of contracts maturing over a small interval of time

(say a day) is small and the collective choice of these creditors is too insigni�cant to a¤ect the

�rm. However, there exists another coordination problem between creditors whose contracts

mature at di¤erent times. This problem is the core of our model.

3.3.2 Constant Fundamental and Staggered Debt Structure

To highlight the role of the time-varying fundamental, we let the �rm fundamental be con-

stant and the �rm have a staggered debt structure. The following proposition shows that in

this setting, the coordination problem between creditors whose contracts mature at di¤erent

times can still lead to multiple self-ful�lling equilibria.

Proposition 3 Suppose that yt = y is constant (i.e., � = 0 and � = 0) and the �rm has a

staggered debt structure. There exist ych > y
c
l > 0 such that when y > y

c
h (the upper dominance

region), an individual creditor�s dominant strategy is to roll over; when y < ycl (the lower

dominance region), the creditor�s dominance strategy is to run; and when y 2 [ycl ; ych] (the
intermediate region), the creditor�s optimal choice depends on the others�, i.e., it is optimal

to run if the others will choose to run in the future and it is optimal to roll over if the others

will choose to roll over in the future.

Proposition 3 shows that when the �rm fundamental is constant and between the upper

and lower dominance regions, multiple self-ful�lling equilibria again emerge despite the �rm�s

staggered debt structure. In this intermediate region, once each creditor believes that other

maturing creditors in the future will all choose to roll over, this �no-future-rollover-risk�

belief is self-ful�lling because the �rm fundamental always stays above the lower dominance

region and thus will never contradict the no-future-rollover-risk belief. Similarly, once each

creditor believes that other maturing creditors in the future will all choose to run, this belief
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is also self-ful�lling because the �rm fundamental is always below the upper dominance

region.

The staggered debt structure in our model provides a natural debt maturity line for

creditors to sequentially withdraw funds from the �rm. This line plays a role similar to the

sequential service constraint in the standard bank-run models. In this sense, one can interpret

the setting in Proposition 3 as an in�nite-period version of the Diamond-Dybvig model, in

which each depositor keeps rolling over term deposits in a bank and the bank fundamental

stays constant over time. The emergence of the self-ful�lling bank-run equilibrium in this

setting contrasts the �nding of Green and Lin (2003). They consider a �nite-agent version of

the Diamond-Dybvig model, and show that the self-ful�lling bank-run equilibrium does not

exist under the assumption that the bank�s service line is �nite and each depositor knows

his relative position in the line when he contacts the bank. This is because the depositor at

the end of the line will rationally choose not to run on the bank, then earlier depositors by

backward induction will choose not to run either. This backward induction scheme does not

work in our setting. Since the debt maturity line is recurring� i.e., after a creditor rolls over

his debt, he goes back to the line� there is not any end of the line to start the backward

induction.

3.3.3 Time-Varying Fundamental and Staggered Debt Structure

The self-ful�lling multiple equilibria in Proposition 3 break down if the �rm fundamental

changes over time and could reach the upper and lower dominance regions in the future.

Instead, a unique (subgame perfect) equilibrium emerges, because anticipation of future

creditors� uniquely determined rollover strategy inside the dominance regions allows the

creditors to induce their optimal strategy in the intermediate region between the dominance

regions.

It is easy to see this mechanism in the case where the �rm fundamental changes deter-

ministically (i.e., � = 0 and � 6= 0). Suppose that � < 0, i.e., the fundamental continues

to deteriorate until the asset matures. Knowing that once the fundamental is in the lower

dominance region other creditors will always choose run, each maturing creditor right before

the fundamental enters the region will choose run. This in turn motivates earlier maturing

creditors to choose run too. This backward induction ampli�es the creditors�incentive to

run, and thus generating excessive rollover risk to the �rm. Rollover is optimal only when

the current �rm fundamental is su¢ ciently high, i.e., above a threshold y�� > 1; so that it

provides enough cushion against the �rm�s future rollover risk. Otherwise, when y � y�� run
is optimal for each creditor. A similar reasoning works in determining a unique equilibrium

19



for the case � > 0: The following proposition formally derives this unique equilibrium.

Proposition 4 Suppose that the �rm fundamental is deterministic with a nonzero drift �

and the �rm has a staggered debt structure.

1. If � > 0, there is a unique monotone equilibrium, in which each creditor chooses

rollover if the �rm fundamental is above a threshold y�+ < 1; and run otherwise.

2. If � < 0, there is a similar unique monotone equilibrium with a threshold y�� > 1.

As a special case of Theorem 1, the same backward induction mechanism also applies

to the case where the �rm fundamental is only subject to random shocks (i.e., � > 0 and

� = 0). That is, random shocks can serve the same role as deterministic drifts, i.e., al-

lowing the creditors to backwardly induce the equilibrium in the intermediate region. This

key insight follows Frankel and Pauzner (2000) and Burdzy, Frankel, and Pauzner (2001),

who show that in dynamic coordination games with strategic complementarities, random

fundamental shocks allow agents to coordinate their asynchronous actions and to induce a

unique equilibrium. As the realistic debt payo¤s in our model prevent the use of the standard

iterated deletion of dominated strategies approach to solve for the equilibrium, our model

demonstrates that this insight is robust even in a rather complex and realistic setting.

The emergence of the unique equilibrium in Theorem 1 is analogous to that in the global

games models developed by Carlsson and van Damme (1993) and Morris and Shin (1998). In

the global games models, agents possess noisy signals about a fundamental variable and each

agent uses his private signal to form expectations of other agents�signals and simultaneous

actions. In our model, creditors have the same information but make their rollover decisions

at di¤erent times. Since the �rm fundamental is time-varying and persistent, the current

fundamental allows each maturing creditor to form expectations of future maturing creditors�

rollover decisions.

The following proposition shows that the unique monotone equilibrium derived in The-

orem 1 holds even as � !1; i.e., the maturity of each debt contract converges to zero, just
like demand deposits in Diamond and Dybvig (1983).

Proposition 5 When � !1, the unique equilibrium rollover threshold y� converges to 1�L
l
.

This proposition further shows that it is the asynchronous timing of the creditors�rollover

decisions, rather than the non-zero debt maturity, that drives the unique equilibrium in our
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model.20 As � ! 1; the debt maturity goes down to zero, but the asynchronous timing of
the creditors�rollover decisions still remains.21

4 The Single-Creditor Benchmark

To facilitate our discussion of the coordination problem between creditors, it is useful to

establish a benchmark case, in which a single creditor holds all the debt of the �rm. Like

the main model described in Section 2, we assume that the single creditor faces a contract

period which expires upon the arrival of a Poisson shock with intensity �. When the contract

expires, the single creditor decides whether to roll over the debt for another random contract

period or not. If he decides not to roll over, the �rm is forced into a premature liquidation.

In this event, the creditor�s payo¤ is min (L+ lyt; 1). Because the single creditor does not

need to worry about the �rm�s future rollover risk with other creditors, his rollover decision

is free of the coordination problem with other creditors. As a result, he would internalize the

cost of a premature �rm liquidation. The following proposition shows that he will always

roll over his debt if the liquidation cost is su¢ ciently high.

Proposition 6 Suppose that a single creditor �nances all the debt of the �rm. If the cost of

a premature liquidation is su¢ ciently high, i.e., � is su¢ ciently low, then the single creditor

will always roll over his debt.

Given that the single creditor will not choose to run in the benchmark case, the runs

derived in our main model are ultimately caused by interactions between creditors.

20The �rm�s liquidation value at the limiting running threshold, i.e., L+ ly�, is exactly the �rm�s liability
1. When � ! 1, each creditor�s contract will mature instantaneously. This means that a creditor will be
locked in by his contract only for a short period. However, as other creditors are also kept loose, the �rm
could fail at any time if they choose to run. As a result, each creditor will choose to roll over his debt if and
only if the �rm�s current liquidation value is su¢ cient to pay o¤ its liability.
21Another special case to consider is when � = 1 (i.e., the �rm does not have any credit line.) In this

case, the �rm fails immediately if any maturing creditor chooses to run. Because of the frailty of the �rm,
the sharing rule between the running creditor and the other creditors during the �rm bankruptcy becomes
important. Suppose that the running creditor gets paid in full, while the other creditors divide the liquidation
value of the �rm asset. Then, we can show that there is still a unique threshold equilibrium, in which each
maturing creditor chooses to run if the fundamental drops below 1�L

l : Deriving this equilibrium follows a
similar procedure as outlined in Sections 3.1 and 3.2, except for some minor di¤erences in the formulas.
In particular, due to the absence of credit lines, the rollover risk term min (1; L+ ly� )1f�=��g in equation
(8) is replaced by a boundary condition that when y = y�; V (y; y�) = L + ly�: It is direct to see that the
equilibrium condition V (y�; y�) = 1 implies that y� = 1�L

l is the unique equilibrium threshold.
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5 Determinants of Equilibrium Rollover Threshold

Despite the absence of self-ful�lling multiple equilibria in our model, preemptive debt runs

could still occur through a rat race between the creditors in choosing higher and higher

rollover thresholds. In this section, we analyze the e¤ects of this rat race and the dependence

of the creditors� equilibrium rollover threshold on various model parameters, such as the

�rm�s liquidation recovery rate �, fundamental volatility �, and rollover frequency �.

For illustration, we will use a set of baseline values for the model parameters:

� = 5%; r = 10%; � = 10; � = 0:2; � = 2; � = 5%; � = 10%; � = 60%: (10)

The creditors have a discount rate � = 5%. The �rm asset generates a constant stream of cash

�ow at a rate of 10% per annum, which is paid out to the creditors as interest payments. The

interest payments are attractive since the interest rate r is much higher than the creditors�

discount rate �. We choose the �rm�s rollover frequency � to be 10, which implies an average

debt maturity of about 37 days (365=�). This implied maturity matches the average maturity

of outstanding asset-backed commercial paper in February 2009 (Federal Reserve Release).

� = 0:2 implies that the �rm asset on average lasts for 5 years (1=�), which is much longer

than the debt maturity and resembles the typical duration of a mortgage bond. � = 2 means

that conditional on every maturing creditor choosing to run, the �rm can survive on average

for 18 days (1=��).22 The �rm fundamental yt has a growth rate of � = 5% per annum and

a volatility of � = 10% per annum. Finally, when the �rm liquidates its asset prematurely,

it only recovers � = 60% of the asset�s fundamental value. This implies that L = 0:24 and

l = 0:6 in equation (3). Under these baseline parameters, the equilibrium rollover threshold

is y� = 1:19.

5.1 Liquidation Recovery Rate

We �rst illustrate the key threshold rat race mechanism using a simple thought experiment.

Suppose that initially the liquidation recovery rate of the �rm asset is �h; and, correspond-

ingly, every creditor uses an equilibrium threshold level y�;0: Unexpectedly, at a certain time,

all creditors �nd out that the recovery rate drops to a lower level �l < �h. What would

the new equilibrium threshold be? Let�s start with an individual creditor�s threshold choice,

which depends on others�choice. Suppose that all the other creditors still use the original

threshold y�;0. Then, by solving the HJB equation in (9), we can derive the creditor�s op-

timal threshold y�;1; which is higher than y�;0 because the lower liquidation value generates

22This � value is rather modest relative to the recent experience of Bear Stearns, which lasted for 3 days
under the runs of its creditors and clients before a forced sale to JP Morgan in March 2008, e.g., Cox (2008).
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Figure 2: An illustration of the rat race between creditors in choosing rollover thresholds.

a greater expected loss to the creditor in the event that the �rm is forced into a premature

liquidation during his contract period. Of course, each creditor will go through this same

calculation and choose a new threshold. If all creditors choose the threshold y�;1, then an

individual creditor�s optimal threshold would be y�;2, another level even higher than y�;1: If

all creditors choose y�;2; then each creditor would go through another round of updating, and

so on and so forth. Figure 2 illustrates this updating process until it eventually converges

to a �xed point y�;1, the new equilibrium threshold.

The di¤erence between the threshold levels y�;1 and y�;0 represents the necessary safety

margin a creditor would demand in response to the reduced asset liquidation value if other

creditors�rollover strategies stay the same. This increase in threshold is eventually ampli�ed

to a much larger increase y�;1�y�;0 through the rat race between creditors. This ampli�cation
mechanism, which is absent from the single-creditor benchmark, plays a key role in driving

the debt runs in our model.

To illustrate the magnitude of this ampli�cation e¤ect, we examine the change in the

equilibrium rollover threshold as we vary � from its baseline value of 0:6: We measure the

threshold by the fundamental value of the �rm asset at y�, F (y�) = r
�+�

+ �
�+���y�; which is

directly comparable to the �rm�s outstanding liability, 1.

In Figure 3, the �at thin solid line represents the equilibrium threshold F (y�;0) = 1:59

when � takes the baseline value 0:6. The thick solid line shows that as � deviates from

its baseline value of 0:6 and decreases from 0:7 to 0:3, F (y�;1) rises monotonically from
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Figure 3: The equilibrium rollover threshold vs the liquidation recovery rate �: This �gure uses
the following baseline parameters: � = 5%; r = 0:10; � = 10; � = 0:2; � = 2; � = 5%; � = 10%;
� = 60%: The threshold is measured in the �rm�s fundamental value F (y�) : The thin solid line
is the baseline threshold level, F (y�;0) ; under the baseline parameters. The thick solid line plots
the equilibrium threshold F (y�;1) : The dashed line plots a creditor�s best response F (y�;1) to the
change in � from its baseline value while �xing the other creditors�threshold at F (y�;0) :

1:36 to 3:18: Note that F (y�;1) is always above 1. As each maturing creditor only holds a

partial stake in the �rm, it makes sense for him to run and get his money back before the

�rm�s fundamental value drops below the outstanding liability. This is because he does not

internalize the cost imposed by his run on the whole �rm.

Moreover, the equilibrium threshold decreases with � because a lower liquidation value

increases the expected loss to each creditor in the event of a forced liquidation. We formally

prove this result in the following proposition:

Proposition 7 The equilibrium rollover threshold y� decreases with the �rm�s premature

liquidation recovery rate �.

We further decompose F (y�;1)� F (y�;0) ; the e¤ect of an � change on F (y�), into two
components. The dashed line in Figure 3 plots the best response of a creditor in the absence

of the rat race between creditors. Suppose � drops unexpectedly from its baseline level 0:6

to 0:4. After the drop in �; by solving the HJB equation in (9) numerically, we �nd that an

individual creditor will choose an optimal threshold F (y�;1) = 1:63 (on the dashed line) if

the other creditors�rollover threshold is �xed at the baseline level F (y�;0) = 1:59 (the thin

solid line). The di¤erence F (y�;1) � F (y�;0) = 0:04 represents the safety margin necessary
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to compensate the creditor for the increased expected bankruptcy loss in the absence of the

rat race. Of course, once we take into account the rat race, each creditor ends up choosing

a higher equilibrium threshold of F (y�;1) = 2:38 (on the thick solid line). The di¤erence

F (y�;1)� F (y�;1) represents the ampli�cation e¤ect of the rat race, which is about 20 times
the e¤ect without the rat race. Overall, this decomposition shows that in the absence of the

rat race between creditors, a change in � only has a rather modest e¤ect on each creditor�s

threshold choice. However, the rat race dramatically ampli�es this e¤ect on the equilibrium

rollover threshold.

5.2 Fundamental Volatility

Fundamental volatility � a¤ects an individual creditor�s optimal rollover threshold through

several channels. We can intuitively discuss these channels through various terms in the

creditor�s value function in equation (8). First, when the �rm�s fundamental volatility in-

creases, its insolvency risk, which is re�ected by the term min (1; y� )1f�=��g, rises because
it becomes more likely that the �rm�s asset value at the asset maturity could be insu¢ cient

to pay o¤ its liability. The increased insolvency risk prompts each creditor to use a higher

rollover threshold. Second, a higher volatility also increases the �rm�s rollover risk through

the term min (1; L+ ly� )1f�=��g (i.e., other creditors might choose to run and cause the

�rm to fail before the creditor�s debt matures.) More precisely, through a rat race similar

to the one described in the previous subsection, imperfect coordination between creditors

causes each creditor to choose an even higher threshold to protect himself against other

creditors�runs in the future. Third, once the creditor�s debt matures, he has the option to

roll over his debt and take advantage of the debt�s high interest payments if the �rm funda-

mental is su¢ ciently strong. Through this embedded option, which is re�ected by the term

maxrollover or run fV (y� ; y�) ; 1g1f�=��g; a higher fundamental volatility motivates the creditor
to choose a lower rollover threshold. The e¤ect of the embedded option works in an opposite

direction to those of the insolvency risk and rollover risk.

Figure 4 illustrates the net e¤ect of these three channels. As � deviates from its baseline

value of 10% and increases from 5% to 20%; the creditors�equilibrium rollover threshold

F (y�) (the thick line) increases from 1:51 to 1:63: We can formally prove that the equilib-

rium threshold increases with � if the �rm�s credit lines are su¢ ciently unreliable, i.e., �

is su¢ ciently high. Under this condition, the �rm would easily fail under a run, and con-

sequently the embedded-option channel becomes dominated by the other two channels. In

fact, our numerical exercises show that this result also holds when � takes a modest value.
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Figure 4: The equilibrium rollover threshold vs the fundamental volatility �: This �gure uses the
following baseline parameters: � = 5%; r = 0:10; � = 10; � = 0:2; � = 2; � = 5%; � = 10%;
� = 60%: The threshold is measured in the �rm�s fundamental value F (y�). The thin solid line
is the baseline threshold level F (y�;0) under the baseline parameters. The thick solid line plots
the equilibrium threshold F (y�;1). The dashed line plots a creditor�s best response F (y�;1) to the
change in � from its baseline value while �xing the other creditors�threshold at F (y�;0).

Proposition 8 Suppose that � is su¢ ciently high. Then, the equilibrium rollover threshold

y� increases with the �rm�s fundamental volatility �.

To highlight the e¤ect of the rat race, we also plot an individual creditor�s best response

F (y�;1) to the change in � (the dashed line) while �xing the other creditors�threshold at

the baseline level F (y�;0) = 1:59 when � takes its baseline level 10%. When � rises above its

baseline level, the increase F (y�;1)� F (y�;0) represents the safety margin that the creditor
would demand to protect himself against the increased rollover risk in the absence of the

rat race between creditors. Note that F (y�;0) already accounts for the increase in the �rm�s

insolvency risk and the increase in the creditor�s embedded-option value.

As � varies from 5% to 20%, F (y�;1) increases from 1:51 to 1:63: Relative to the dashed

line, the thick solid line shows that the range of the equilibrium threshold F (y�;1) is wider.

For instance, when we increase � from 10% to 15%, an individual creditor will only raise his

threshold by 0:01; from F (y�;0) = 1:59 to F (y�;1) = 1:60; if the other creditors�threshold is

�xed at 1:59. However, after taking into account the rat race between creditors, each would

use a new equilibrium threshold of 1:62, which implies that the rat race ampli�es the e¤ect

of the volatility increase by 200%.
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Figure 5: The equilibrium rollover threshold vs the rollover frequency �: This �gure uses the
following baseline parameters: � = 5%; r = 0:10; � = 10; � = 0:2; � = 2; � = 5%; � = 10%;
� = 60%: The threshold is measured in the �rm�s fundamental value F (y�) : The thin solid line
is the baseline threshold level F (y�;0) under the baseline parameters. The thick solid line plots
the equilibrium threshold F (y�;1). The dashed line plots a creditor�s best response F (y�;1) to the
change in � from its baseline value while �xing the other creditors�threshold at F (y�;0).

5.3 Rollover Frequency

The �rm�s rollover frequency � is another key determinant of its rollover risk. As � increases,

each creditor�s contract period, which has an expected duration of 1=�; gets shorter. This

generates two opposing e¤ects on the equilibrium. First, each individual creditor is locked in

for a shorter period. As a result, his embedded option on the �rm is more valuable as he has

more �exibility to pull out if the �rm fundamental deteriorates. The increased embedded-

option value makes the creditor more willing to roll over his debt, i.e., to choose a lower

rollover threshold. On the other hand, a higher � also means that the other creditors are

locked in for a shorter period. As a result, during the creditor�s contract period, the �rm is

more susceptible to the rollover risk created by the other creditors. The increased rollover

risk therefore motivates him to choose a higher rollover threshold. The equilibrium threshold

y� trades o¤ the embedded-option e¤ect and the rollover-risk e¤ect.

Figure 5 plots the equilibrium rollover threshold (the thick solid line) as we vary � from

its baseline value of 10 to a range between 0:2 to 50, along with an individual creditor�s

best response (the dashed line) to the � change while �xing the other creditors� rollover

threshold at the baseline level of 1:59. As � increases from 0:2 to 50; the equilibrium rollover
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threshold F (y�) increases from 1:15 to 1:64. This monotonically increasing pattern in F (y�)

suggests that the rollover risk e¤ect dominates the embedded-option e¤ect in this illustration.

In unreported numerical analysis, we also �nd that this holds true over a wide range of

parameter values. The embedded-option e¤ect becomes dominant only when � is low, i.e.,

the �rm�s credit lines are su¢ ciently reliable and the �rm�s rollover risk is modest.

We again observe a dramatic ampli�cation e¤ect caused by the rat race among the

creditors in choosing higher and higher thresholds. For instance, consider raising � from

the baseline level 10 to 50, which implies an average debt maturity of about 1 week. An

individual creditor would slightly increase his rollover threshold by 0:005 in the absence of

the rat race, while the new equilibrium threshold is higher by 0:05, implying that the rat

race ampli�es the e¤ect of the � increase by about 10 times.

6 Implications of Dynamic Runs

This section discusses implications of our model for various issues related to dynamic runs.

6.1 Panic-driven vs. Fundamental-driven Runs

There are two di¤erent and long-standing views about runs on banks. The �rst view is

advocated by Friedman and Schwartz (1963) and Kindleberger (1978). They attribute many

historical banking crises to unwarranted panics and assert that the banks that were forced to

liquidate in such episodes were illiquid rather than insolvent. The alternative view, proposed

by Mitchell (1941) and others, suggests that runs happen when depositors have fundamental

concerns about the health of banks. Each of these views has motivated a body of the-

oretical models of bank runs. Diamond and Dybvig (1983), Postlewaite and Vives (1987),

Peck and Shell (2003), and Caballero and Krishnamurthy (2008) o¤er models of panic-driven

runs, while Bryant (1980), Gorton (1988), Chari and Jagannathan (1988), Jacklin and Bhat-

tacharya (1988), and Allen and Gale (1998) focus on the fundamental risk of bank loans and

the depositors�signal extraction problem in driving runs. Gorton and Winton (2003) and

Allen and Gale (2007) o¤er two recent reviews of the history of �nancial crises and di¤erent

theories of runs.

Both of these views are relevant for understanding the recent runs on the non-bank

�nancial institutions. Brunnermeier (2009), Krishnamurthy (2009), and Shin (2009) show

that these institutions su¤ered large losses from real-estate-related exposures in the period

preceding the credit crisis in 2008, although the losses at the time were insu¢ cient to justify

the �nancial distress faced by these institutions. Federal Reserve Chairman Ben Bernanke
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(2008), former SEC Chairman Christopher Cox (2008), and US Treasury Secretary Timothy

Geithner (2008) all emphasized in their respective public speeches that Bear Stearns and

other �nancial �rms experienced panic runs by their creditors, counterparties and clients.

Covitz, Liang, and Suarez (2009) provide a recent study of the runs in the asset-backed

commercial paper (ABCP) market in 2007, and �nd that both deteriorating fundamentals

and market panics contributed to the observed runs. During the �rst few weeks of the

turmoil, all types of ABCP programs experienced di¢ culty in issuing new commercial paper,

indicating widespread market panics. However, runs eventually centered on fundamentally

impaired programs.

Our model integrates deteriorating fundamentals and the coordination problem between

creditors as joint drivers of debt runs in a dynamic framework. It is the possibility of

the �rm�s future fundamental deterioration that generates each creditor�s fear of the �rm�s

future rollover risk� if the fundamental declines later, the �rm might fail and he might end

up bearing the cost of liquidating the �rm asset at a �re-sale price. The coordination problem

between creditors further ampli�es this fear through the rat race mechanism described in

Section 5.1 and causes each maturing creditor to run at a threshold substantially higher than

he would in the absence of the coordination problem. This intricate interaction between the

�rm�s rollover risk and fundamental risk explains why it is often di¢ cult to identify a �nancial

crisis as a fundamental crisis or liquidity crisis. Our analysis in the previous section shows

that under a wide range of model parameters, �rms with declining fundamentals, higher

fundamental volatility, greater asset illiquidity, or shorter debt maturities are more exposed

to runs.

Our model shares some spirit of the bank run models of Rochet and Vives (2004) and

Goldstein and Pauzner (2005), which build on the global games approach discussed in Section

3.3.3. These models are static and extend the Diamond-Dybvig bank-run setting by allowing

the bank fundamental to be unobservable and depositors to possess noisy private signals

about the fundamental. Depositors use their private signals to coordinate their withdrawal

decisions and a unique equilibrium emerges. In this equilibrium, uncertainty about the

bank fundamental interacts with the coordination problem between depositors and leads to

ine¢ cient runs on the bank. In contrast to these models, our dynamic model incorporates

time-varying fundamentals and staggered debt structures, which allow us to analyze the

e¤ects of fundamental volatility and debt maturity in driving runs.

The wave of bank failures during the Great Depression motivated the government to

provide deposit insurance to protect bank depositors, and thus mitigate their incentive to

run on banks. The credit crisis of 2007-2008 shows that non-bank �nancial institutions are
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exposed to similar runs by their creditors, but they are not protected by any government

program. As discussed by Cecchetti (2009), during the credit crisis the Fed failed to restore

the �nancial system back to normalcy by using its standard monetary tools, such as cutting

the cost of discount borrowing, increasing the term of the loans, and cutting the target

federal funds rate. Instead, the Fed had to invent several unconventional tools.23 Given the

potential systemic risk created by runs on �illiquid but solvent��nancial institutions, which

we discuss in Section 6.4, many issues remain for regulators and researchers regarding how

to establish new safeguards for the non-bank �nancial system. Our model provides useful

insights for these issues.

6.2 Capital Adequacy Standards

How much capital does a �nancial �rm need to prevent ine¢ cient panic runs? It is well

known that a well capitalized �rm� i.e., one that has more assets than liabilities� can have

funding problems because of the illiquidity of its assets. As a result, the �rm needs to

maintain an adequate capital cushion to o¤set its asset illiquidity. A common-sense criterion

is that adequate capital to counterbalance the illiquidity discount of a �rm�s assets in the

current market is su¢ cient to prevent runs. This criterion is e¤ective in the standard bank-

run models, such as Diamond and Dybvig (1983), Rochet and Vives (2004), and Goldstein

and Pauzner (2005). The intuition is simple. If the �rm�s capital is su¢ cient to pay back

its liability after a forced liquidation, there is no need for any creditor to worry about runs

by other creditors.

However, our model shows that this criterion is insu¢ cient. Figure 6 plots the creditors�

equilibrium rollover threshold with respect to the �rm�s fundamental volatility � over a wider

range than Figure 4. Once � rises above 30%; the creditors�equilibrium rollover threshold

F (y�;1) (the thick solid line) surpasses 1=� (the thin solid line), the level at which the �rm�s

asset value is su¢ cient to cover its liability even after the liquidation discount. That is, even

though the �rm is so well capitalized that it can pay back its liability even after a forced

liquidation, creditors are still not assured and may choose to run. This type of frantic run,

derived as the third case in Theorem 1, is consistent with the run on Bear Stearns, e.g., Cox

(2008).

23For example, the Primary Dealer Credit Facility, created in March 2008 after the collapse of Bear
Stearns, allows major investment banks to access the discount window and borrow from the Fed. Following
a prominent money-market fund�s �breaking the buck�(i.e., a decline of its net assets below par) in September
2008, the Fed also created the Asset-Backed Commercial Paper (ABCP) Liquidity Facility to assist money-
market funds that hold such paper in meeting demands for redemptions by investors. Through these facilities,
the Fed acts as the lender of last resort and provides credit lines and backstop liquidity to investment banks
and money-market funds.
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Figure 6: The equilibrium rollover threshold vs the fundamental volatility �: This �gure uses the
following baseline parameters: � = 5%; r = 0:10; � = 10; � = 0:2; � = 2; � = 5%; � = 10%;
� = 60%: The threshold is measured in the �rm�s fundamental value F (y�). The thick solid line
plots the equilibrium threshold F (y�), while the thin solid line gives the level 1� ; at which the �rm�s
capital is su¢ cient to cover its liability even after the liquidation discount. The dashed line plots
the rollover threshold F (ys) in the absence of any coordination problem.

What drives this type of frantic run? The driving force is exactly the �rm�s rollover risk,

the central theme of our model. The capacity for the �rm�s liquidation value to pay back its

liability now is not a guarantee for future periods when the �rm fundamental may deteriorate

(as the liquidation value falls with the fundamental.) In particular, a maturing creditor is

worried that during his next contract period, the fundamental might fall and other creditors

would choose to run and cause the �rm to fail. The �rm�s liquidation value at that time may

not be su¢ cient to pay o¤ its liability. When this concern becomes su¢ ciently strong, he

chooses to run ahead of future maturing creditors despite the �rm�s ample capital cushion

now. Figure 6 shows that this occurs when the �rm�s fundamental is su¢ ciently volatile.

As we discussed in Section 5.2, an increase in fundamental volatility a¤ects the equi-

librium rollover threshold through three channels: the insolvency-risk, rollover-risk and

embedded-option channels. To further highlight rollover risk as the driving force of frantic

runs, we also consider a �rm �nanced by a single large creditor, based on the setting de-

scribed in Section 4. Suppose that a small creditor also holds a negligible fraction of the

�rm�s debt. Since the large creditor will always roll over his debt (Proposition 6), the small

creditor�s rollover threshold choice is only a¤ected by the �rm�s insolvency risk and his em-
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bedded option in the �rm.24 As shown by the dashed line in Figure 6, his rollover threshold

decreases with the �rm�s fundamental volatility, suggesting that the embedded-option e¤ect

dominates the insolvency-risk e¤ect. The contrast between this line and the thick solid line

con�rms that frantic runs are driven by the creditors�fear of the �rm�s rollover risk.

We can formally prove the following proposition:

Proposition 9 When the �rm�s fundamental volatility is su¢ ciently large, creditors start

to run on the �rm even when its current liquidation value is su¢ cient to pay o¤ its liability,

i.e., F (y�) > 1=�.

This proposition highlights the severity of the creditors�preemptive motive to run ahead

of each other in a dynamic environment. It also demonstrates that once we account for

the dynamic coordination problem between creditors, higher capital adequacy standards are

required to prevent ine¢ cient panic runs.

6.3 Shortening of Debt Maturity

Krishnamurthy (2009) documents a dramatic shortening in the maturity structure of com-

mercial paper issuance around mid-September 2008. The issuance of commercial paper with

maturities less than 9 days increased by more than 50%, replacing maturities over 9 days.

Anecdotally, much of the shortening is in fact to overnight paper.

What explains the dramatic maturity shortening? Our discussion in Section 5.3 suggests

that each creditor would prefer a shorter debt maturity so that he has more �exibility to

pull out of a �rm before others if the �rm runs into trouble later. We formally derive this in

the following proposition:

Proposition 10 Fixing the other creditors�rollover frequency, each creditor�s value function

increases with his own rollover frequency.

This proposition suggests that in the absence of any commitment device like debt covenants

or regulatory requirement, the �rm could use shortening debt maturity as a survival tool

when the creditors refuse to roll over their maturing debt. According to our earlier analysis,

this would happen when the �rm fundamental falls, when the fundamental volatility rises, or

when the secondary market of the �rm asset becomes more illiquid. However, our analysis in

Section 5.3 also shows that as other creditors�debt maturity becomes shorter, each creditor

has a greater incentive to run because he anticipates the �rm�s increasing rollover risk in the

24The value of his debt is given by equation (8) with the rollover risk termmin (1; L+ ly� )1f�=��g removed.
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future. Thus, the maturity shortening acts as a self-enforcing tightening mechanism to push

the �rm closer and closer to bankruptcy. This also suggests that maturity shortening of a

�rm�s debt issuance tends to precede creditors�runs. Formally analyzing this issue requires

making debt maturity a choice variable, which is beyond our current framework.25

6.4 Spillover and Systemic Risk

Federal Reserve Chairman Ben Bernanke (2008) describes the potential systemic risk fol-

lowing the collapse of Bear Stearns as the key reason that led the Fed to open the discount

window to every major investment bank. We can readily extend our model with multiple

�rms holding similar assets to analyze this type of systemic risk triggered by creditors�panic

runs on one �rm. As these �rms face the same downward sloping demand curve for their

assets in an illiquid secondary market, the liquidation recovery rate � of each �rm depends

on other �rms�liquidation, e.g., Shleifer and Vishny (1992). Suppose that one �rm, say Bear

Stearns, su¤ers idiosyncratic negative shocks to its fundamentals. As a result, when this �rm

experiences runs by its creditors and needs to liquidate its asset, the liquidation would po-

tentially push down the liquidation values of other �rms. This in turn increases the losses of

other �rms�creditors in the event that their �rms are forced into liquidation. Thus, through

this liquidation-value channel, panic runs spill over to these �rms as their creditors now have

greater incentives to run, even though there is no fundamental deterioration in these �rms.26

The possibility of other �rms experiencing runs also feeds back to the creditors of the initial

�rm in distress, creating even greater incentives to run. In this way, a rat race to exit risky

debt is underway not just between creditors of one �rm, but also between creditors of all

�rms holding similar assets.27 Thus, market liquidity evaporates and systemic risk becomes

imminent.

6.5 Credit Risk

The standard credit modeling approach, following the classic structural model of Merton

(1974), focuses on insolvency risk (i.e., the risk that a �rm�s asset value could fall below its

liability) as the only source of credit risk (i.e., the risk that a �rm defaults on its debt). The

25Brunnermeier and Oehmke (2009) provide such an analysis in a di¤erent and simpli�ed setting. They
show that the con�ict of interest between short-term and long-term creditors leads to a maturity rat race
between creditors, through which the �rm ends up with excessive short-term debt in equilibrium.
26This spillover mechanism is complementary to the existing ones proposed by Allen and Gale (2000)

through the interbank lending channel and by Kyle and Xiong (2001) through the wealth e¤ect of �nancial
intermediaries.
27This mechanism is closely related to market runs analyzed by Bernardo and Welch (2004) and Morris

and Shin (2004), who treat each �rm�s credit constraint as exogenously imposed.
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Figure 7: Credit spread vs debt rollover frequency. This �gure uses the following baseline para-
meters: � = 5%; r = 0:10; � = 10; � = 0:2; � = 2; � = 5%; � = 10%; � = 60%; y0 = 1:25; and
T = 0:25: The solid line plots the credit spread of a �rm �nanced by a continuum of small creditors.
The dashed line plots the credit spread of a �rm �nanced by a single creditor.

credit crisis of 2007-2008 vividly highlights that liquidity risk, the risk that a �rm might not

be able to raise capital when it needs to, plays a key role in driving credit risk of �rms, such

as Bear Stearns and Lehman Brothers.

In our model, rollover risk is an important source of credit risk. To illustrate this e¤ect, we

examine the credit spread of a hypothetical in�nitesimal zero-coupon bond issued by the �rm

analyzed in our model, which has a face value of 1 and a �xed maturity T . This bond provides

the following payo¤depending on three scenarios: 1) if the �rm�s asset matures before T and

before any forced liquidation, the bond pays min
�
y�� ; 1

�
; 2) if a forced liquidation occurs

before T and before the asset matures, the bond pays min (L+ ly�� ; 1), the liquidation value

of the �rm asset; 3) otherwise, the bond pays 1. This payo¤ e¤ectively captures the �rm�s

credit risk before time T . The credit spread is the di¤erence between the bond yield and

the yield of a risk-free bond with the same maturity.28 For comparison, we also introduce

another �rm identical in all other dimensions except that it is �nanced by a single creditor

with deep pockets. As the single creditor will always roll over his debt (Proposition 6), this

�rm has no rollover risk.
28Our risky bond receives a payo¤ at a random time before the bond maturity T . For a fair comparison,

we also impose the same random maturity on the risk-free bond, which has a value of �
�+� +

�
�+�e

�(�+�)T .

Then we calculate the yield earned by the risk-free bond as �riskfree = � 1
T ln

�
�
�+� +

�
�+�e

�(�+�)T
�
. The

credit spread is measured relative to this yield.

34



We numerically calculate the value of this hypothetical bond with y0 = 1:25; T = 0:25

(3 months) for both �rms, and plot the credit spreads with respect to their debt rollover

frequency � in Figure 7. The di¤erence between these two credit spreads measures the

contribution of rollover risk to the credit risk of the �rm with multiple creditors. The credit

spread of the �rm with a single creditor is independent of �. However, the credit spread of

the �rm with multiple creditors increases sharply from less than 2 basis points to over 380

basis points as � increases from 1 to 50 (i.e., from once every one year to once every week).

This illustration shows that rollover risk could be a substantial part of a �rm�s credit risk.

In summary, the �rm�s credit risk depends on the interaction between its fundamental

insolvency risk and the coordination problem between its creditors. Fear of the �rm�s future

rollover risk when its fundamental deteriorates causes each maturing creditor to preemp-

tively run on the �rm and thus causes the �rm to fail even when its fundamental value is

substantially higher than its liability. As a result, the �rm�s corporate bond spreads depend

not only on the common measures of credit risk, such as fundamental risk and leverage, but

also on its debt maturity structure, which has a signi�cant e¤ect on the �rm�s rollover risk

as we show in Section 5.3.29

7 Conclusion

In this paper, we develop a dynamic model of panic runs by creditors on a �rm, which invests

in an illiquid asset by rolling over staggered short-term debt contracts. In particular, fear

of runs by future maturing creditors motivates each creditor to preemptively run ahead of

others. Our model highlights that the �rm�s rollover risk is intertwined with its fundamental

risk, thus making it di¢ cult to separate the �rm�s liquidity problems from fundamental

problems. Our model provides a set of implications on the roles played by volatility, illiquidity

and debt maturity in driving debt runs, as well as on issues related to �rms�capital adequacy

standards and credit risk.

Runs are a natural self-protection mechanism for individual agents in many other realistic

settings where intrinsic con�icts of interest between agents are present. For example, fear

of an asset market becoming illiquid could motivate individual investors to exit the market,

which in turn makes the market even more illiquid, e.g., Bernardo and Welch (2004) and

Morris and Shin (2004). An individual worker�s fear of other workers not exerting e¤ort,

which reduces his marginal productivity, also motivates him to reduce his e¤ort, e.g., Cooper

29Morris and Shin (2004, 2009) also model the e¤ect of the creditors�coordination problem on �rms�credit
risk. They adopt the global games approach in two-period settings. In contrast, our continuous-time setting
has a potential advantage in calibrating the e¤ect.
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and John (1988). Since interactions between fundamental �uctuations and the running

incentives of individual agents (exit a market or not exert e¤ort) are also present in these

settings, our model framework can be extended to study potentially interesting dynamics in

these contexts.

A Appendix

A.1 Proof of Theorem 1
Using the HJB equation in (9), we �rst construct an individual creditor�s value function by utilizing the fact

that in any symmetric equilibrium all creditors (including this individual creditor) use the same monotone

strategy with threshold y�: The equilibrium threshold must then be the solution to the equation V (y�; y�) =

1. Of course, individual optimality requires that V (y; y�) > 1 for y > y� and V (y; y�) < 1 for y < y�, a

condition that we will verify in Lemma 13. Later in Lemma 14 we also show that there does not exist any

asymmetric threshold equilibrium.

When all creditors use the same threshold y�, the HJB equation (9) becomes

� If y < y�;

0 =
�2

2
y2Vyy + �yVy � [�+ �+ (� + 1) �]V (y; y�) + �min (1; y) + ��min (L+ ly; 1) + r + �; (11)

� If y � y�;

0 =
�2

2
y2Vyy + �yVy � (�+ �)V (y; y�) + �min (1; y) + r: (12)

The value function has to satisfy these two di¤erential equations and be continuous and di¤erentiable

at the boundary point y�: In solving these di¤erential equations, we need to introduce the two roots to the

�rst fundamental equation for (11):

1

2
�2x(x� 1) + �x� [�+ �+ (1 + �) �] = 0; (13)

which are

�
1 = �
�� 1

2�
2 +

q�
1
2�

2 � �
�2
+ 2�2 [�+ �+ (1 + �) �]

�2
< 0; (14)

and

�1 = �
�� 1

2�
2 �

q�
1
2�

2 � �
�2
+ 2�2 [�+ �+ (1 + �) �]

�2
> 1; (15)

and the two roots to the second fundamental equation for (12):

1

2
�2x(x� 1) + �x� (�+ �) = 0; (16)

which are

�
2 = �
�� 1

2�
2 +

q�
1
2�

2 � �
�2
+ 2�2 (�+ �)

�2
< 0; (17)

and

�2 = �
�� 1

2�
2 �

q�
1
2�

2 � �
�2
+ 2�2 (�+ �)

�2
> 1: (18)

We summarize the constructed value function below.
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Lemma 11 Given the equilibrium rollover threshold y�, the value function of an individual creditor is given

by the following three cases:

1. If y� < 1;

V (y; y�) =

8><>:
r+��L+�

�+�+(1+�)� +
�+��l

�+�+(1+�)���y +A1y
�1 when 0 < y � y�

r
�+� +

�
�+���y +A2y

�
2 +A3y
�2 when y� < y � 1

r+�
�+� +A4y

�
2 when 1 < y

: (19)

The four coe¢ cients A1; A2; A3; and A4 are given by

A1 =
[H3
2 +H1]� y

��2� (
2H4 +H2y�)

(�1 + 
2) y
�1��2�

;

A2 =
y

2�

�2 + 
2

�
�2H4 �H2y� +A1 (�2 � �1) y

�1�
�
;

A3 =
y
��2�

�2 + 
2

�

2H4 +H2y� +A1 (�1 + 
2) y

�1�
�
;

=
1

�2 + 
2
[H3
2 +H1] ;

A4 = A2 �
1

�2 + 
2
[H3�2 �H1] ;

where

H1 = � �

�+ �� �;

H2 =
��l (�+ �� �)� � (1 + �) �

(�+ �+ (1 + �) � � �) (�+ �� �) ;

H3 = � ��

(�+ �) (�+ �� �) ;

H4 =
r + ��L+ �

�+ �+ (1 + �) �
� r

�+ �
+H2y�:

2. If 1 < y� � 1�L
l ;

V (y; y�) =

8><>:
r+��L+�

�+�+(1+�)� +
�+��l

�+�+(1+�)���y +B1y
�1 when y � 1;

r+�+��L+�
�+�+(1+�)� +

��l
�+�+(1+�)���y +B2y

�
1 +B3y
�1 when 1 < y � y�;

r+�
�+� +B4y

�
2 when y� < y:

(20)

The four coe¢ cients B1; B2; B3; and B4 are given by

B1 = B3 �
M2
1 +M1

�1 + 
1
;

B2 =
M2�1 �M1

�1 + 
1
< 0;

B3 =
(
1 � 
2)B2 (y�)

�
1 + 
2M3 � ��l
�+�+(1+�)���y�

(�1 + 
2) y
�1�

;

B4 =
�1 + 
1
�1 + 
2

B2y

2�
1� +

�1 � 1
�1 + 
2

��l

�+ �+ (1 + �) � � �y

2+1� ;

� �1
�1 + 
2

�
r + �

�+ �
� r + �+ ��L+ �

�+ �+ (1 + �) �

�
y

2� ;

=
(�1 + 
1)B2y

�
1� � �1M3 � ��l
�+�+(1+�)���y�

(�1 + 
2) y
�
2�

;
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where

M1 =
�

�+ �+ (1 + �) � � �;

M2 =
��

(�+ �+ (1 + �) �) (�+ �+ (1 + �) � � �) ;

M3 =
r + �

�+ �
� r + �+ ��L+ �

�+ �+ (1 + �) �
� ��l

�+ �+ (1 + �) � � �y�:

3. If y� > 1�L
l ,

V (y; y�) =

8>>><>>>:
r+��L+�

�+�+(1+�)� +
�+��l

�+�+(1+�)���y + C1y
�1 when y � 1;

r+�+��L+�
�+�+(1+�)� +

��l
�+�+(1+�)���y + C2y

�
1 + C3y
�1 when 1 < y � 1�L

l ;
r+�+��+�
�+�+(1+�)� + C4y

�
1 + C5y
�1 when 1�L

l < y � y�;
r+�
�+� + C6y

�
2 when y > y�:

: (21)

The six coe¢ cients C1, C2, C3, C4, C5 and C6 are given by

C1 = C3 �
K4
1 +K5

�1 + 
1
;

C2 =
K4�1 �K5

�1 + 
1
;

C3 = C5 +
K2
1 �K3

1�L
l

(�1 + 
1)
�
1�L
l

��1 ;
C4 = C2 �

K2�1 +K3
1�L
l

(�1 + 
1)
�
1�L
l

��
1 ;
C5 =

(
1 � 
2)C4y
�
1� � 
2K1

(�1 + 
2) y
�1�

;

C6 =
(�1 + 
1)C4y

�
1� + �1K1

(�1 + 
2) y
�
2�

;

where

K1 =
r + �+ �� + �

�+ �+ (1 + �) �
� r + �

�+ �
;

K2 =
�� (1� L)

�+ �+ (1 + �) �
� �� (1� L)
�+ �+ (1 + �) � � �;

K3 =
��l

�+ �+ (1 + �) � � �;

K4 =
�

�+ �+ (1 + �) � � � �
�

�+ �+ (1 + �) �
;

K5 =
�

�+ �+ (1 + �) � � �:

Proof. We can derive the three cases listed above using the same method. For illustration we just solve the

�rst case with y� < 1: Depending on the value of y, we have the following three scenarios.

� If 0 < y � y� :

�2

2
y2Vyy + �yVy � [�+ �+ (1 + �) �]V (y) + (�+ ��l) y + r + ��L+ � = 0:
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The general solution of this di¤erential equation is given in the �rst line of equation (19) with the

coe¢ cient A1 to be determined by the boundary conditions. Note that to ensure the value of V is

�nite as y approaches zero, we have ruled out another power solution y�
1 of the equation :

� If y� < y � 1 :
�2

2
y2Vyy + �yVy � (�+ �)V (y) + �y + r = 0:

The general solution of this di¤erential equation is given in the second line of equation (19) with the

coe¢ cients A2 and A3 to be determined by the boundary conditions.

� If y > 1 :
�2

2
y2Vyy + �yVy � (�+ �)V (y) + r + � = 0:

The general solution of this di¤erential equation is given in the third line of equation (19) with the

coe¢ cient A4 to be determined by the boundary conditions. Note that to ensure the value of V is

�nite as y approaches in�nity, we have ruled out another power solution y�2 of the equation:

To determine the four coe¢ cients A1; A2; A3; and A4; we have four boundary conditions at y = y� and

1; i.e., the value function V (y) must be continuous (value-matching) and di¤erentiable (smooth-pasting) at

these two points. Solving these boundary conditions leads to the coe¢ cients given in Lemma 11.

Based on the value function derived in Lemma 11, we now show that there exists a unique threshold y�
for the equilibrium condition to hold.

Lemma 12 There exists a unique y� such that

V (y�; y�) = 1:

Proof. De�ne

W (y) � V (y; y) :

We need to show that there is a unique y� such that W (y�) = 1:

We �rst show that W (y) is monotonically increasing when y < 1: In this case, we can directly extract

the value of W (y) from equation (19), which, by neglecting terms independent of y, is

W (y) =

�
�+ ��l

�+ �+ (1 + �) � � � �
1 + 
2
�1 + 
2

H2

�
y +

[H3
2 +H1]

�1 + 
2
y�2

=

�
�H1 +

�1 � 1
�1 + 
2

H2

�
y +

[H3
2 +H1]

�1 + 
2
y�2 :

Note that

dW (y)

dy
= �H1 +

�1 � 1
�1 + 
2

H2 +
[H3
2 +H1]

�1 + 
2
�2y

�2�1

> �H1 +
�1 � 1
�1 + 
2

H2 +
[H3
2 +H1]

�1 + 
2
�2

= �H1 +
�1 � 1
�1 + 
2

H2 +
�2

�1 + 
2
H1 +


2�2
�1 + 
2

H3

=
�1 � 1
�1 + 
2

(H2 �H1) +
�2 � 
2 � 1
�1 + 
2

H1 +

2�2
�1 + 
2

H3;

where the second inequality is due to the fact that H3 < 0 and H1 < 0 (de�ned in Lemma 11).
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In the �rst term above,

H2 �H1 =
��l + �

�+ �+ (1 + �) � � �
is positive according to the parameter restriction in (5). For the second term, note that �2� 
2� 1 = �2 ��2 .
Then after some algebraic substitutions (note that 
2�2 =

2(�+�)
�2 ), the sum of the second and third terms is

�2 �
�2

1

�1 + 
2
H1 +


2�2
�1 + 
2

H3 = 0:

Thus, dW (y)
dy > 0:

We now show that W (y) is monotonically increasing when 1 < y � 1�L
l : Equation (20) implies that

W (y) =
r + �

�+ �
+B4y

�
2

=
M2�1 �M1

�1 + 
2
y�
1 +

�1 � 1
�1 + 
2

��l

�+ �+ (1 + �) � � �y

+

2

�1 + 
2

r + �

�+ �
+

�1
�1 + 
2

r + �+ ��L+ �

�+ �+ (1 + �) �
:

We now show �1 <
M1

M2
= �+�+(1+�)�

� . Plugging x = �+�+(1+�)�
� into the �rst fundamental equation (13), we

�nd that the value is positive, which implies that �1 <
M1

M2
. Therefore M2�1 �M1 < 0, and the �rst term is

increasing in y. Because �1 > 1, the second term is increasing in y. As a result, W (y) is increasing in y.

Similarly we can show that W (y) is increasing in y for y > 1�L
l . Equation (21) implies that

W (y) =
r + �

�+ �
+ C6y

�
2 =

2

�1 + 
2

r + �

�+ �
+

�1
�1 + 
2

r + �+ ��L+ �

�+ �+ (1 + �) �
+
(�1 + 
1)C4y

�
1

�1 + 
2
:

Since K5

K4
=

K3
1�L
l

�K2
= �+�+(1+�)�

� =M1=M2, we have

(�1 + 
1)C4y
�
1

�1 + 
2
=

K4�1 �K5 +
�K2�1�K3

1�L
l

( 1�Ll )
�
1

�1 + 
2
y�
1

=
�1 �M1=M2

�1 + 
2

 
K4y

�
1 + (�K2)

�
ly

1� L

��
1!
:

Therefore, because �1 �M1=M2 < 0 as shown in the case of 1 < y � 1�L
l , and we can check that K4 > 0

and �K2 > 0, W (y) is strictly increasing.

Next, we need to ensure that W (0) < 1: Equation (19) implies that

W (0) =
�1

�1 + 
2

r + ��L+ �

�+ �+ (1 + �) �
+


2
�1 + 
2

r

�+ �
:

The parameter restriction in (4) ensures that

r + ��L+ �

�+ �+ (1 + �) �
< 1 and

r

�+ �
< 1,

thus, W (0) < 1:

Finally note that under our parameter restrictions in (4) and (6) we have

W (1) = 
2
�1 + 
2

r + �

�+ �
+

�1
�1 + 
2

r + �+ ��L+ �

�+ �+ (1 + �) �
> 1:
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Because W (y) is continuous and monotonically increasing, and because W (0) < 1 and W (1) > 1; there
exists a unique y� such that W (y�) = 1:

Lemma 12 implies that there can be at most one symmetric monotone equilibrium. Next, we verify that

a monotone strategy with the threshold level determined in Lemma 12 is indeed optimal for an individual

creditor if every other creditor uses this threshold.

Lemma 13 If every other creditor uses a monotone strategy with a threshold y� identi�ed in Lemma 12,

then the same strategy is also optimal for an individual creditor.

Proof. To show that the value function constructed in Lemma 11 is indeed optimal for an individual

creditor, i.e., the value function solves the HJB equation (9), we need to verify that V (y; y�) > 1 for

y > y� and V (y; y�) < 1 for y < y�. By construction in Lemma 11, V (0; y�) = r+��L+�
�+�+(1+�)� < 1 and

V (1; y�) = r+�
�+� > 1:We just need to show that V (y; y�), as a function of y, only crosses 1 once at y�: Later

in this proof we simply write V (y; y�) as V (y).

We �rst consider the case where y� < 1:

We prove by contradiction. Suppose that V (y) also crosses 1 at another point below y�: Then, there

exists y1 < y� < 1 such that

V (y1) > V (y�) = 1, V 0 (y1) = 0, and V 00 (y1) < 0:

Using the di¤erential equation (11), we have

V (y1) =
1
2�

2y21Vyy (y1) + �min (1; y1) + ��(L+ ly1) + r + �

�+ �+ (� + 1)�

<
(�+ ��l) y1 + ��L+ r + �

�+ �+ (� + 1)�
<
�+ ��l + ��L+ r + �

�+ �+ (� + 1)�
< 1:

The last inequality is implied by the parameter restrictions in (4) and (7). This is a contradiction with

V (y1) > 1: Thus, V (y) cannot cross 1 at any y below y�:

Next, we show that V (y) is monotonic in the region y � y�. Suppose that V (y) is non-monotone, then
there exist two points y� � y1 < y2 such that

V (y1) > V (y2) , V 0 (y1) = V 0 (y2) = 0, and V 00 (y1) < 0 < V 00 (y2) :

(If, say, y1 happens to be on the break point 1 where the second derivative is not necessary continuous, then

take the point as 1+ as V 00 (1+) has to be negative. The same caveat applies to the case where y1 = y�.)

According to the di¤erential equation (12), we have

V (y1) =
1
2�

2y21Vyy (y1) + r + �min (1; y1)

�+ �

>
1
2�

2y22Vyy (y2) + r + �min (1; y2)

�+ �
= V (y2) ;

which is a contradiction.

We next consider the case where y� � 1. We do not separate the two cases of 1 < y� � 1�L
l and

y� >
1�L
l ; as the following proof applies to both.

The expression in equation (20) or (21) implies that V (y) has to approach r+�
�+� from below (because

r+�
�+� is the debt holder�s highest possible payo¤), thus B4 or C6 is strictly negative. This implies that V (y)

is increasing on [y�;1), and
V 0 (y�) > 0.
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Now consider the region [0; y�), it is easy to check that V 0 (0) > 0. Therefore, if V (y) is not monotonic

on [0; y�), there must exist two points y1 < y2 such that

V (y1) > V (y2) , V 0 (y1) = V 0 (y2) = 0, and V 00 (y1) < 0 < V 00 (y2) :

According to the HJB equation, we have

V (y1) =
1
2�

2y21Vyy (y1) + r + �min (1; y1) + � [1 + �min (L+ ly1; 1)]

�+ �+ (1 + �) �

<
1
2�

2y22Vyy (y2) + r + �min (1; y2) + � [1 + �min (L+ ly2; 1)]

�+ �+ (1 + �) �
= V (y2) ;

which is a contradiction. Thus, V (y) is also monotonically increasing on [0; y�) :

To summarize, we have shown that V (y) only crosses 1 once at y�. Thus, it is optimal for an individual

creditor to roll over his debt if y > y� and to run if y < y�:

Finally, we prove that there does not exist any asymmetric monotone equilibrium.

Lemma 14 There does not exist any asymmetric monotone equilibrium in which creditors choose di¤erent

rollover thresholds.

Proof. We prove by contradiction. Suppose that there exists an asymmetric monotone equilibrium. Then,

there exist at least two groups of creditors who use two di¤erent monotone strategies with thresholds y�;1 <

y�;2. For creditors who use the threshold yi;�, we denote their value function as V i (y). At the corresponding

thresholds, we must have

V 1 (y1;�) = V
2 (y2;�) = 1.

Moreover, we must have

V 1 (y2;�) = V
2 (y1;�) = 1;

because each creditor is free to switch between these two strategies. Then for all y 2 [y1;�; y2;�], we must
have V 1 (y) = V 2 (y) = 1. Otherwise the threshold strategies cannot be optimal. This implies that each

creditor is indi¤erent between choosing any threshold in [y1;�; y2;�] : Denote by � (y) the measure of creditors

who use a threshold lower than y 2 [y1;�; y2;�]. Then, V i has to satisfy the HJB equation in this region:

�V i (y) = �yVy +
�2

2
y2Vyy + r + �

�
min (1; y)� V i (y)

�
+��� (y)

�
min (L+ ly; 1)� V i (y)

�
+ �max

�
1� V i (y) ; 0

	
:

Since V i (y) = 1 for any y 2 [y1;�; y2;�] ; we have

� = r + � [min (1; y)� 1] + ��� (y) [min (L+ ly; 1)� 1] :

Note that � (y) is non-decreasing in y because it is a distribution function. Since both min (1; y) and

min (L+ ly; 1) are also non-decreasing in y, the only possibility that the above equation holds is that L+ly >

1 and y > 1 for y 2 [y1;�; y2;�]. Then, � = r has to hold. This contradicts the parameter restriction that

� < r in (4).
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A.2 Proof of Proposition 2
As mentioned in the main text, in this modi�ed synchronous setting the �rm�s debt contracts all expire at

time 0. At this time, each creditor decides whether to run or to roll over into a perpetual debt contract

lasting until the �rm asset matures at ��: If all creditors choose to run, we assume that there is a probability

�s 2 (0; 1) that the �rm cannot �nd new creditors to replace the outgoing ones and is forced into a premature
liquidation.30 The current �rm fundamental is y0.

We �rst derive an individual creditor�s value function U (y) if the bank survives the creditors�rollover

decisions at time 0 and thus will be able to stay until the asset maturity at ��: U (y) satis�es the following

di¤erential equation:

�U = �yUy +
1

2
�2y2Uyy + � [min (1; y)� U ] + r:

It is direct to solve this di¤erential equation:

U(y) =

(
r

�+� +
�

�+���y +D1y
�2 if 0 < y < 1

r+�
�+� +D2y

�
2 if y > 1
; (22)

where

D1 = �
�

�+��� + 
2
��

(�+���)(�+�)

�2 + 
2

D2 =
� �
�+��� + �2

��
(�+���)(�+�)

�2 + 
2
:

D1 andD2 are constant and independent of the liquidation recovery parameter �. Because U(y) is dominated

by the fundamental value of the bank asset, U(y) < r
�+� +

�
�+���y. This implies that D1 < 0. In addition,

since U(1) = r+�
�+� , D2 < 0 and U(y) approaches r+�

�+� from below. Therefore U (y) is a monotonically

increasing function with

U (0) =
r

r + �
< 1 and U (1) = r + �

�+ �
> 1:

Then the intermediate value theorem implies that there exists yl > 0 such that U (yl) = 1:

De�ne yh � 1�L
l : According to the parameter restriction (6), yh > 1. We impose the following condition

so that a premature liquidation is su¢ ciently costly, i.e., � is su¢ ciently small:

� <
�+ �� �

�

��
D2

r��
r+�

� 1

2
+ r(�+���)

�(�+�)

� : (23)

This condition is analogous to the parameter restriction (6) in our main model. Given this condition and

that 1�Ll = �+���
�� � r(�+���)

�(�+�) , we have

U

�
1� L
l

�
=
r + �

�+ �
+D2

�
1� L
l

��
2
> 1;

which further implies that yl < yh = 1�L
l .

Next, we show that if y0 > yh; then it is optimal for an individual creditor to roll over, even if all the

other creditors choose to run (so that the liquidation probability is �s). Note that the liquidation value of the

30In this synchronous rollover setting, the liquidation probability parameter �s has to be inside (0; 1) ;
while the liquidation intensity parameter � in the main model can be higher than 1 (conditional on creditors�
runs the liquidation probability over (t; t+ dt) is ��dt:)
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bank asset is su¢ cient to pay o¤ all the creditors because L+ ly0 > 1: Thus, the creditor�s expected payo¤

from choosing run is �s + (1� �s) = 1: His expected payo¤ from choosing rollover is �s + (1� �s)U (y0) ;
which is higher than the expected payo¤ from choosing run.

Next, we show that if y0 < yl; then it is optimal for an individual creditor to run even if all the other

creditors choose rollover. In this case, the bank will always survive no matter what the individual creditor�s

decision is. If he chooses to run, he gets a payo¤ of 1, while if he chooses to roll over, his continuation value

function is U (y0) < 1: Thus, it is optimal for the creditor to run.

Finally, we consider the case when y0 2 [yl; yh] : If all the other creditors choose to roll over, then an
individual creditor�s payo¤ from run is 1; while his continuation value function is U (y0) > 1: Thus it is

optimal for him to roll over too. If all the other creditors choose to run, then his expected payo¤ from run

is �s (L+ ly0) + (1� �s) : His expected payo¤ from choosing rollover is (1� �s)U (y0) ; because once the
bank is forced into a premature liquidation, the liquidation value of the bank asset is not su¢ cient to pay

o¤ the other outgoing creditors and the creditor who chooses rollover gets zero. Therefore we need to ensure

that �s (L+ ly0) > (1� �s) (U (y0)� 1). Analogous to the parameter restriction (7) of our main model, we
impose a parameter restriction on �s so that it is su¢ ciently large:

�s
1� �s

>
1

L

r � �
�+ �

:

Then, because U (y0)�1 < r+�
�+��1 =

r��
�+� , we have (1� �s) (U (y0)� 1) < (1� �s)

r��
�+� < �sL < �s (L+ ly0).

As a result, it is optimal for the creditor to run with other creditors.

A.3 Proof of Proposition 3
To be consistent with our main model, we restrict ourselves to monotone strategies based on the bank

fundamental. Since the bank fundamental is constant, an individual creditor�s strategy is to choose always

rollover or run. Considering more �exible strategies would only make multiple equilibria more likely to

emerge.

Suppose that all the other creditors always choose run in the future. When an individual creditor needs

to make his rollover decision, his payo¤ from run is 1; and his value from always choosing rollover, based on

the random debt maturity, is r+�min(y;1)+��min(L+ly;1)
�+�+�� . De�ne

ych � min fy : r + �min (y; 1) + ��min (L+ ly; 1) � �+ �+ ��g :

Thus, if the other creditors always choose run in the future, rollover is optimal for the creditor if y > ych,

and run is optimal if y � ych.
Now suppose that all the other creditors always choose to roll over in the future. When an individual

creditor needs to make his rollover decision, his payo¤ from run is 1; and his value function from always

choosing rollover, based on the random debt maturity, is r+�min(y;1)
�+� : De�ne

ycl � max fy : r + �min (y; 1) � �+ �g :

Thus, if the other creditors always choose to roll over in the future, run is optimal for an individual creditor

if y < ycl , and rollover is optimal if y � ycl .
Next, we show that ych > y

c
l . According to the de�nition of y

c
l , it su¢ ces to show that

r + �min (ych; 1) > �+ �:
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Note that ych <
1�L
l , because (recall that

1�L
l > 1 implied by (6))

r + �min

�
1� L
l
; 1

�
+ ��min

�
L+ l

1� L
l
; 1

�
= r + �+ �� > �+ �+ ��:

Therefore according to the de�nition of ych,

r + �min (ych; 1) + �� (L+ ly
c
h) = �+ �+ ��

) r + �min (ych; 1) = �+ �+ �� (1� L� lych) > �+ �;

which implies that ych > ycl . Therefore when y 2 [ycl ; ych], a creditor �nds both rollover and run optimal
depending on other creditors�strategies.

A.4 Proof of Proposition 4
1. � > 0 Case.

When � > 0; the bank fundamental will eventually travel to the upper dominance region, in which all

creditors will always choose to roll over independent of other creditors�strategies. Let us �rst consider the

value function of a creditor who is locked in by his current contract under the assumption that the other

creditors in the future will always roll over:

V R (y) � E
�R ��
0
e��trdt+ e���� min

�
y�� ; 1

��� y0 = y� : (24)

It is easy to see that V R (y) is increasing with y and V R (1) = r+�
�+� > 1. De�ne y�+ as the unique solution to

the equation V R (y) = 1; and it is clear that y�+ < 1: When y > y�+; V R (y) > 1: Thus, in this region, it is

optimal for a maturing creditor to choose rollover knowing that every creditor after him will choose rollover.

That is, the equilibrium is uniquely de�ned in the region y > y�+; and the value function of an individual

creditor who is currently in a debt contract is

V �+ (y) = V R (y) if y > y�+:

However, when y < y�+; it is optimal for a maturing creditor to run even if the other maturing creditors

in the future will always choose rollover. Thus, it is reasonable to conjecture that in the equilibrium each

maturing creditor indeed chooses run when y � y�+ < 1: We verify this conjecture in two steps: �rst, we

construct the value function of a creditor under the assumption that every creditor (including himself) uses

a monotone strategy with threshold y�+; second, we show that V �+ (y) < 1 for y < y�+:

Note that when y < y�+, V �+ satis�es

(�+ �+ (1 + �) �)V �+ = �yV �+y + r + �y + �� (L+ ly) + �; (25)

with the boundary condition that V �+ (y�+) = 1: Solving this equation gives that V R (0) = r+��L+�
�+�+(1+�)� :

Parameter restrictions (4) and (7) imply that

r + �+ �� (L+ l) + �

�+ �+ (1 + �) �
< 1;

which in turn provides that V �+ (0) < 1. Therefore, if V �+ (y) > 1 for some y < y�+; then we must have

some point by such that V �+ (by) > 1 and V �+y (by) = 0. But then equation (25) implies that
V �+ (by) < r + �+ �� (L+ l) + �

�+ �+ (1 + �) �
< 1;
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which contradicts V �+ (by) > 1. Thus, V �+ (by) < 1 if y < y�+: That is, it is optimal for a maturing creditor
to choose run when y � y�+:

This monotone equilibrium is unique, because there is only one y�+ that satis�es the equilibrium condi-

tion of the threshold: V R (y�+) = 1.

2. � < 0 Case.

When � < 0; the bank fundamental will eventually travel to the lower dominance region, in which each

maturing creditor will choose to run independent of other creditors�strategies. We �rst consider the value

function VW (y) of a creditor who is locked in by his current contract, under the assumption that the other

creditors will all choose run in the future. VW satis�es

(�+ �+ (1 + �) �)VW = �yVWy + r + �min (1; y) + �� (L+ ly) + �; (26)

with the boundary condition VW (0) = r+��L+�
�+�+(1+�)� < 1. It is easy to show that VW is increasing with y,

therefore there exists a unique y�� such that VW (y��) = 1. For y < y��, the general solution to equation

(26) is

VW (y) =
r + ��L+ �

�+ �+ (1 + �) �
+

�+ ��l

�+ �+ (1 + �) � � �y +Ay
�+�+(1+�)�

� ;

where A is constant. Because � < 0, A has to be zero because, otherwise, VW (0) diverges. Therefore,

VW (1) < r+�+��(L+l)+�
�+�+(1+�)� < 1, which in turn implies that y�� > 1. Thus, when y < y��; the equilibrium is

uniquely determined and each maturing creditor chooses run knowing that other maturing creditors afterward

will choose run. The value function of an individual creditor who is currently in a debt contract is

V �� (y) = VW (y) if y < y��:

However, when y > y��; it is optimal for a maturing creditor to roll over even if other maturing creditors

in the future will always choose run. Thus, it is reasonable to conjecture that in the equilibrium each maturing

creditor indeed chooses rollover when y > y�� > 1: We again verify this in two steps: �rst, we construct the

value function of a creditor under the assumption that every creditor (including himself) uses a monotone

strategy with threshold y��; second, we show that V �� (y) > 1 for y > y��:

Note that if y > y��; V �� (y) satis�es

(�+ �)V �� = �yV ��y + r + �;

with the boundary condition V �� (y��) = 1. The solution is
r+�
�+� +By

�+�
� where the constant B < 0. This

function is monotonically increasing. Thus, V �� (y) > 1 if y > y��: In other words, rollover is optimal for a

maturing creditor in equilibrium if y > y��.

This monotone equilibrium is unique, because there is only one y�� that satis�es the equilibrium condi-

tion of the threshold: VW (y��) = 1.

A.5 Proof of Proposition 5
For any increasing sequence f�ng such that �n !1, denote the corresponding equilibrium threshold sequence
as fy� (�n)g which satis�es W (y� (�n) ; �n) = 1 with W (y; �) de�ned in Lemma 12. If fy� (�n)g does
not converge to 1�L

l , then for any " > 0 and any large � there exists a �N > � such that y� (�N ) =2�
1�L
l � "; 1�Ll + "

�
and W (y� (�N ) ; �N ) = 1. We have three cases to consider. In the following derivation,

keep in mind that 
1 and �1 are in the order of
p
�N , while 
2 and �2 are constant.
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� Suppose that y� (�N ) > 1�L
l + " > 1. Then

W (y� (�N ) ; �N ) =

2

(�1 + 
2)

r + �

�+ �
+

�1
�1 + 
2

r + �+ ��NL+ �N
�+ �+ (1 + �) �N

+ [y� (�N )]
�
1 �1 �M1=M2

�1 + 
2

 
K4 + (�K2)

�
l

1� L

��
1!
:

The �rst term goes to zero, and the second term goes to �L+1
1+� < 1. The third term goes to zero, because

1) [y� (�N )]
�
1 goes to zero, and 2) �1�M1=M2

�1+
2
is in the order of

p
�N (recall M1=M2 =

�+�+(1+�)�N
�

while K4 is in the order of (�N )
�2 and �K2 is in the order of (�N )

�1). Thus the sum of these terms

contradicts W (y� (�N ) ; �N ) = 1.

� Suppose that 1 � y� (�N ) < 1�L
l � ". Then

W (y� (�N ) ; �N ) =
M2�1 �M1

�1 + 
2
[y� (�N )]

�
1 +
�1 � 1
�1 + 
2

��N l

�+ �+ (1 + �) �N � �
y� (�N )

+

2

�1 + 
2

r + �

�+ �
+

�1
�1 + 
2

r + �+ ��NL+ �N
�+ �+ (1 + �) �N

:

The �rst and third terms go to zero. The sum of second and fourth term converges to

�l

1 + �
y� (�N ) +

�L+ 1

1 + �
< 1� �l

1 + �
";

which is again a contradiction to W (y� (�N ) ; �N ) = 1.

� Suppose that y� (�N ) < 1. Then

W (y�) =
[H3
2 +H1]

�1 + 
2
y� (�N )

�2 +
�1

�1 + 
2

r + ��NL+ �N
�+ �+ (1 + �) �N

+

2

�1 + 
2

r

�+ �

+

�
�1 � 1
�1 + 
2

��N l + �

�+ �+ (1 + �) �N � �
+
1 + 
2
�1 + 
2

�

(�+ �� �)

�
y� (�N )

! �L+ 1

1 + �
+

�l

1 + �
y� (�N ) <

1 + � (L+ l)

1 + �
< 1:

which is a contradiction. This concludes the proof.

This proof can be slightly modi�ed to show that as � ! 1; the equilibrium rollover threshold y� also

converges to 1�L
l : In this case, simply note that 
1 and �1 are in the order of

p
� when � is su¢ ciently large.

A.6 Proof of Proposition 6
We use a guess-and-verify approach. We �rst construct the single creditor�s value function if he always chooses

to roll over the debt, and then verify that this value function is higher than the payo¤ min (L+ ly; 1) from

run if � is su¢ ciently low.

Denote the single creditor�s value function as V s (yt). We can simply modify the HJB equation in (9)

to get the following one:

�V s = �yV sy +
�2

2
y2V syy + r + � [min (1; y)� V s] + � max

rollover or run
f0;min (L+ ly; 1)� V sg :

If the single creditor always chooses to roll over, this equation becomes

(�+ �)V s (y) =
�2

2
y2V syy + �yV

s
y + �min (1; y) + r.
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This equation is identical to the equation for U in Appendix A.2, and therefore admits the same solution

expressed in equation (22). The fact that D1 and D2 are negative implies that V s(y) is globally concave.

With the same condition (23) so that the liquidation cost is su¢ ciently large, we have

V s
�
1� L
l

�
> 1:

Since V s(y) is increasing in y; V s(y) > min (L+ ly; 1) for y > 1�L
l : For 0 < y <

1�L
l , note that V

s(y) > L+ly

hold for both end points, i.e., V s(0) > L and V s( 1�Ll ) > 1. Because V
s(y) is concave and L+ ly is linear,

V s(y) is always above L+ ly in the region y 2
�
0; 1�Ll

�
. Thus, V s(y) > min (L+ ly; 1) always holds. That

is, the single creditor will always choose to roll over.

A.7 Proof of Proposition 7
Note that y� is determined by the condition that W (y�) = V (y�; y�) = 1: Theorem 1 implies that if

y� >
1�L
l ; it is determined by the following implicit function:

1 = W (y�) =
�1 �M1=M2

�1 + 
2

 
K4y

�
1� + (�K2)

�
ly�
1� L

��
1!

+

2

(�1 + 
2)

r + �

�+ �
+

�1
�1 + 
2

r + �+ ��L+ �

�+ �+ (1 + �) �
; (27)

where L = �r
�+� and l = ��

�+��� increase with �, and M1=M2, and K4 are independent of �. By the

implicit function theorem, dy�
d� = � @W=@�

@W=@y�
. Since we have shown that @W=@y� > 0 in Lemma 12, to

prove the claim we need to show that @W=@� > 0. There are two terms in W that involve �: 1) because

�K2 =
���(1�L)

(�+�+(1+�)�)(�+�+(1+�)�) , the second term in the �rst bracket is proportional to � (1�L)1+
1
l
1 , which

is increasing in �; and 2) the second term �1
�1+
2

r+�+��L+�
�+�+(1+�)� in the second line is increasing in �. Therefore

@W=@� > 0, and dy�
d� < 0.

When 1 < y� � 1�L
l ; it is determined by the following implicit function:

1 = W (y�) =
M2�1 �M1

�1 + 
2
y
�
1� +

�1 � 1
�1 + 
2

��l

�+ �+ (1 + �) � � �y�

+

2

�1 + 
2

r + �

�+ �
+

�1
�1 + 
2

r + �+ ��L+ �

�+ �+ (1 + �) �
: (28)

Therefore

@W=@� = �1
�� r

�+�

�+ �+ (1 + �) �
+
�1 � 1
�1 + 
2

�� �
�+���

�+ �+ (1 + �) � � �y� > 0; (29)

which implies dy�
d� > 0.

When y� < 1; it is determined by the following implicit function:

W (y�) =
�1

�1 + 
2

r + ��L+ �

�+ �+ (1 + �) �
+


2
�1 + 
2

r

�+ �
+
[H3
2 +H1]

(�1 + 
2)
y
�2�

+

�
�1 � 1
�1 + 
2

��l + �

�+ �+ (1 + �) � � � +
1 + 
2
(�1 + 
2)

�

(�+ �� �)

�
y� = 1;

where H3 and H1 are independent of �. Then

@W=@� =
�1

�1 + 
2

�� r
�+�

�+ �+ (1 + �) �
+
�1 � 1
�1 + 
2

�� �
�+���

�+ �+ (1 + �) � � � > 0: (30)

Taken together, the equilibrium rollover threshold y� decreases with �:
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A.8 Proof of Proposition 8
As we noted at the end of Appendix 5, when � ! 1; y� ! 1�L

l > 1: Thus, by the continuity of y� with

respect to �; if � is su¢ ciently high, y� > 1: Our numerical exercises also show that this holds true over a

wide range of parameter values. Thus, we will focus on showing that y� increases with �2 in the range where

y� > 1:

Since y� is determined by the implicit function W (y�) = V (y�; y�) = 1, to show that y� increases with

�2; we only need to verify that @W (y)
@�2 < 0.

We �rst note several inequalities. Directly from condition (5), we have @�i
@�2 < 0 and

@
i
@�2 < 0 for i = 1; 2.

Moreover, by using the de�nitions of �1 in (15) and 
2 in (17), we can also show that

@
�


2
�1+
2

�
@�2

< 0: (31)

We now consider the case where 1 < y� � 1�L
l : Based on W (y) given in equation (28), we have

@W (y)

@�2
=

@
�
�1�M1=M2

�1+
2

�
@�2

M2y
�
1 +

@
�

�1
�1+
2

�
@�2

��l

�+ �+ (1 + �) � � �y

+
�1 �M1=M2

�1 + 
2
M2y

�
1 ln y
@ (�
1)
@�2

+
@
�


2
�1+
2

�
@�2

�
r + �

�+ �
� r + �+ �� (L+ ly) + �

�+ �+ (1 + �) �

�
:

As r+��+��
r+�+��L+�
�+�+(1+�)� > 0, inequality in (31) implies that the last term is negative. Also,

@
�

�1
�1+
2

�
@�2 < 0 implies

that the second term is negative. Moreover, because M2�1�M1 < 0 (shown in the proof of Lemma 12), and
@(�
1)
@�2 > 0, the third term is negative. Finally, note that when � is su¢ ciently large, �1 and 
2 are in the

order of �0:5: Since M1=M2 =
�+�+(1+�)�

� ; the �rst part of the second term
@
�
�1�M1=M2

�1+
2

�
@�2 is approximately

equal to �
@
�

1
�1+
2

�
@�2 M1=M2; which is negative. Taken together,

@W (y)
@�2 < 0:

We now consider the case where y� > 1�L
l . Based on W (y) in equation (27), we have

@W (y)

@�2
=

@
�


2
�1+
2

�
@�2

�
r + �

�+ �
� r + �+ ��L+ �

�+ �+ (1 + �) �

�
+
@
�
�1�M1=M2

�1+
2

�
@�2

 
K4y

�
1 + (�K2)

�
ly

1� L

��
1!

+
�1 �M1=M2

�1 + 
2

@

�
K4y

�
1 + (�K2)
�

ly
1�L

��
1�
@�2

:

Using arguments similar to those presented in the previous case, it is easy to show that every term in this

expression is negative. Thus, @W (y)
@�2 < 0: This concludes the proof.

A.9 Proof of Proposition 9
We only need to verify that when �2 is su¢ ciently large, W (y) = V (y; y) is below 1 at y = 1�L

l : This

implies y� > 1�L
l because W 0 (y) > 0 and y� is determined by W (y�) = 1: Note that showing

W

�
1� L
l

�
=

M2�1 �M1

�1 + 
2

�
1� L
l

��
1
+

�1
�1 + 
2

�� (1� L)
�+ �+ (1 + �) � � �

+

2

�1 + 
2

r + �

�+ �
+

�1
�1 + 
2

r + �+ (1 + �) �

�+ �+ (1 + �) �
< 1
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is equivalent to showing

M1 �M2�1
�1 + 
2

�
1� L
l

��
1
+

1

�1 + 
2

�� (1� L)
�+ �+ (1 + �) � � �

>

2

�1 + 
2

r � �
�+ �

+
�1

�1 + 
2

r � �
�+ �+ (1 + �) �

:

When �2 !1, �1 ! 1, 
1 ! 0, and 
2 ! 0. Together with M1�M2 =
�

�+�+(1+�)� , showing the inequality

above is equivalent to showing �
�+�+(1+�)� +

��(1�L)
�+�+(1+�)��� >

r��
�+�+(1+�)� , which holds because � + � > r,

condition (4). Thus, when �2 is su¢ ciently large, y� > 1�L
l :

A.10 Proof of Proposition 10
We distinguish between an individual creditor i�s rollover frequency �i and other creditors�rollover frequency

��i. We can rewrite the individual creditor�s HJB equation for his value function V i:

�V i (yt; y�) = �ytV
i
y +

�2

2
y2t V

i
yy + r + � [min (1; yt)� V (yt; y�)] (32)

+���i1fy<y�g [min (L+ lyt; 1)� V (yt; y�)] + �i max
rollover or run

f1� V (yt; y�) ; 0g :

Suppose that we increase �i from � to �0 > �. We need to show that the creditor i�s value function

with parameter �0 is strictly higher than that with parameter �. To facilitate the comparison, we consider

a new problem, in which the creditor�s contract expires with rate �0; but he is only allowed to withdraw at

his contract expiration if an independent random variable X = 1. This variable X can take values of 1 or

0 with probabilities of � = �=�0 < 1 and 1 � �; respectively. This random variable e¤ectively reduces the

creditor�s release rate to �: Thus, in this constrained problem with parameter �0, the creditor has the same

value function as in the unconstrained problem with parameter �:

Next, consider the creditor�s value function in the unconstrained problem (or, � = 1 always) with

parameter �0; which should be strictly higher than that in the constrained problem. This is because if the

creditor is allowed to withdraw when X = 0 and yt < y�; his value function is strictly increased even if he

keeps the same threshold. Then, it is obvious that the creditor�s value function in the unconstrained problem

with parameter �0 is strictly higher than that in the same problem with parameter �:
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