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Abstract

Private information about language competence drives a wedge between the indica-
tive meanings of messages, the sets of states indicated by those messages, and their
imperative meanings, the actions induced by those messages. When sender and re-
ceiver have common interests, optimal use of an imperfectly shared language subverts
both the indicative and imperative meanings of utterances: Messages convey both
directly payoff relevant information and instrumental information about the sender’s
language competence. Furthermore the actions induced by messages depend on the
receiver’s uncertain ability to decode them. With conflict of interest, an imperfectly
shared language can substitute for mediated communication.
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1 Introduction

Language competence varies. There are instances where individuals from different countries

do not understand each other; academics trying to communicate across disciplines have to

cope with different terminologies; and, we frequently struggle to find the right words or to

make sense of others’ utterances. The following quote from a white paper on electric power

transmission in the US illustrates the problem:

One of the many difficulties with discussing who should pay for transmission

expansion is the surprising lack of a common language for conveying the critical

underlying concepts. Important words such as “benefits” and “beneficiaries,” and

phrases such as “economic upgrades” and “participant funding” are too often used

in radically different ways by different parties. At best, the meanings intended by

some speakers are not transparent, and different meanings are inferred by different

listeners. At worst, the same words have opposite meanings to different people.

(Baldick et al. [1], page 12.)

We propose a model of an imperfectly-shared language in which listeners and speakers are

uncertain about each other’s language competence. This reduces the precision of message

meanings, even when there is common interest and, importantly, drives a wedge between

the sender’s and the receiver’s perceived meaning of a message. In the leading examples of

Lewis’ book “Convention” [11], where he introduces simple communication games, a message

can equally well be viewed as meaning that a particular state holds, a “signal-that,” or as

meaning to take a particular action, a “signal-to.” Similarly, in the canonical sender-receiver

model of Crawford and Sobel [4] each equilibrium message refers to a precise set of states

and induces precisely one action. Messages in the CS model may be vague, when they

indicate sets of states rather than individual states, but there is never an issue of words

being “used in radically different ways by different parties” or “different meanings [being]

inferred by different listeners,” as in the above quote. Each messages has a definite “indicative

meaning,” the set of types who send that message, and a definite “imperative meaning,” the

action that is induced by the message.1

Our primary objective is to show that an imperfectly-shared language, when used op-

timally, subverts both the indicative and imperative meanings of utterances. Messages no

longer have definite indicative meanings, because the payoff-relevant information that is con-

veyed with an utterance varies with the language competence of the speaker: The receiver

would generally want to deviate from his equilibrium response to a message if the sender’s

1The way Lewis puts it, in these instances the meaning of a message can be given both ways. In other
instances, a message is properly viewed as indicative signal, when it allows receiver discretion, or as an
imperative signal, when it allows sender discretion.
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language competence were revealed to him. Similarly, messages no longer have definite

imperative meanings because the action that the receiver takes in response to a message

depends in part of his language competence: The sender would generally want to deviate

from his equilibrium strategy if the receiver’s language competence were revealed to her.2

A secondary goal of this paper is to show that when there is conflict of interest, an

imperfectly-shared language can substitute for mediated communication. Specifically, with

quadratic loss functions and a uniform distribution over payoff relevant information, there

exist distributions over the language-competence types of either senders or receiver and an

equilibrium that achieve the efficiency bound from mediated communication.

We give a game-theoretic account of private information about language competence

within the standard model of strategic information transmission. In our model limited

language competence is captured by limited availability of messages (on the sender side) and

limited ability to discriminate among messages (on the receiver side). Coarse languages, in

which senders have access to a limited set of messages, and their optimality properties, have

recently been studied by Crémer et al [2] and Jäger et al [9]. Our principal formal innovation

is to make these coarse languages private information.

We believe that this adds to our understanding of how the precise tool of game-theoretic

equilibrium analysis can be fruitfully employed to think about imprecision of meaning of

utterances. Our primary focus will be on common interest games. In these games mixing

is not optimal, and therefore no rationale for imprecision. Pooling across states may occur

in optimal equilibria, e.g. necessitated by limited access to messages, and is imprecise in the

sense that it conceals the exact state. At the same time it is precise in the sense there is

an exact boundary that separates the set of states that is indicated by a message from the

remaining set of states. This kind of precision is unavoidable in an equilibrium approach to

meaning: By definition, sender and receiver know each other’s strategies. Nevertheless, we

will show that with private information about language competence in equilibrium precise

knowledge of the set of states that is conveyed through a message can coexist with impre-

cise knowledge about the directly payoff-relevant aspects of the states (as opposed to those

aspects of the state that are only of instrumental interest to players). Similarly, precise

knowledge of the receiver’s strategy is compatible with uncertainty about the action induced

by any given message.

In this setup the communication channel itself is free of noise and yet there are commu-

nicative pure-strategy equilibria in which the associations between payoff-relevant informa-

2The question we are asking is analogous to whether equilibria are ex post equilibria. Of course in a
sender-receiver game generally equilibria will not be ex post unless they are fully revealing. In essence we
are applying a notion of partial ex-post equilibrium. We show that when language competence is an issue
equilibria typically do not pass the weaker test of being ex post with respect to information that is not
directly payoff relevant.
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tion and messages and those between messages and actions are stochastic. These equilibria

can be interpreted as describing situations in which agents ascribe different meanings to

words (sentences etc) in a language, misunderstandings may occur, and yet there is not

complete communication failure. The language is imperfect but serviceable.

2 Language Competence of the Sender

In this section we focus on the the language competence of the sender, assuming for now

that the language competence of the sender is not an issue.

2.1 The Model

A privately informed sender, S, communicates with a receiver, R by sending one of a finite

number (greater than two) of messages m ∈ M . The payoffs, US(a, t) and UR(a, t) of the

sender and the receiver depend on the receiver’s action, a ∈ A = R`, and the sender’s payoff-

relevant information t ∈ T, her payoff type; we assume that T is a convex and compact

subset of R` that has a nonempty interior. It is common knowledge that the sender’s payoff

type is drawn from a distribution F with density f on T. The function US is differentiable

and strictly concave in a for every t ∈ T. Assume that the receiver has a unique best reply

ρ̂(µ) to any belief µ about t, where µ is a distribution over T , and for any measurable set

Θ ⊂ T , sightly abusing notation, denote by ρ̂(Θ) his optimal response to his prior belief

concentrated on Θ. Assume that for all t′ 6= t, ρ̂(t′) 6= ρ̂(t). Note that for any set Θ ⊂ T that

has positive probability and any set Θ0 that has zero probability,

ρ̂(Θ) = ρ̂(Θ \Θ0).

For any Θ ⊂ T and any two actions a1 ∈ A and a2 ∈ A define

Θa1%a2
:= {t ∈ Θ|US(t, a1) ≥ US(t, a2)},

the set of types in Θ who prefer action a1 to action a2, and similarly define Θa1�a2 for strict

preference, and Θa1∼a2 for indifference. Note that for any measurable set Θ ⊂ T and for any

pair a1, a2 ∈ A with a1 6= a2, the continuity of the sender’s payoff function implies that the

sets Θa1�a2 ,Θa1�a2 and Θa1∼a2 are measurable. Assume that for any two a1, a2 ∈ A with

a1 6= a2, Prob(Ta1∼a2) = 0. This implies that Prob(Θ) = Prob(Θa1�a2 ∪ Θa2�a1). For any

finite set of K actions {a1, . . . , aK} with 2 ≤ K ≤ M define Θa1%a2,...,aK
:= ∩Kn=2Θa1%an

, the

set of sender types who prefer action a1 over actions a2, . . . , aK , and use Ω to denote the

collection of all such sets.
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Assumption 1 (A) For any Θ ∈ Ω and any pair of actions a1, a2 ⊂ A such that Θa1�a2

and Θa2�a1 both have positive probability, ρ̂(Θa1�a2) 6= ρ̂(Θ). (B) For any belief µ, there exists

a type t(µ) such that ρ̂(µ) = ρ̂(t(µ)).

Part (A) of Assumption 1 formalizes the idea that the optimal receiver response is sufficiently

sensitive to beliefs. This is the key assumption that ensures that the receiver responds

differently to a message, depending on knowing whether or not the sender has alternative

attractive messages available. Part (B) requires that any best response to some belief is also

the receiver’s ideal point for some state of the world. Essentially it says that there are no

gaps in the type space.

We will assume that not every message m ∈ M may be available to the sender. Instead

the sender privately learns a set λ ⊂ M of available messages, her availability type.3 One

message, m0 ∈ M is assumed to be always available and could, for example be, interpreted

as silence. Thus the sender’s availability type λ is drawn, independently from her payoff type

t, from a commonly known distribution π on Λ = {λ ∈ 2M |m0 ∈ λ}, the set of all subsets of

M that contain the message m0.

A sender strategy is a mapping σ : T × Λ→ ∆(M) that satisfies the condition σ(t, λ) ∈
∆(λ). A receiver strategy is a mapping ρ : M → A.4 We study perfect Bayesian Nash

equilibria (σ, ρ, β) where β is a belief system that is derived from the sender’s strategy σ

by Bayes’ rule whenever possible, the sender’s strategy σ is a best reply to the receiver’s

strategy ρ, and ρ is a best reply after every message, given the belief system β.

2.2 Examples

The following two examples illustrate how both indicative and imperative meanings of mes-

sages may be compromised when there is a private information about language competence.

In both examples, the focus is on the language competence of the sender.

In the first example, the receiver is uncertain about the indicative meaning of equilibrium

messages because he is uncertain about the sender’s language competence. There will be a

message for which he is unable to determine whether the sender sent this message because

no other message was available or because she preferred to send it in lieu of another available

3Our distinction between payoff types and availability types is a convenient terminological device. Of
course, one could follow Harsanyi [7] and express the inability of the sender to send a particular message by
assigning an arbitrarily large negative payoff to doing so. From this viewpoint, all types would be payoff
types. This would not affect our results but would, in our view, obscure the fact that ultimately both
parties are interested in communicating information about t. Any information transmission about language
availability is merely instrumental. Finally, note that we will leave the analysis of a still more general model
in which different messages are available at different privately known costs for later work.

4The restriction to pure strategies for the receiver is without loss of generality because of our assumption
that the receiver has a unique best reply given any belief.
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message. Her equilibrium response to that message will be a compromise that averages over

the possibility that the sender pooled over all payoff types and the alternative that the sender

used the message to indicate a strict subset of the set of payoff types.

In the second example, not only is the receiver (potentially) uncertain about the sender’s

language competence but the sender is herself is uncertain about the receiver’s belief. The

receiver is with some probability informed about the sender’s language competence. As the

result the sender can longer be certain about which action will be induced by his message. If

the receiver is uninformed his action will be determined as the optimal response to a belief

that averages over different sender competencies; if instead he is informed, there is no need

to average and he will take a different action from when he is uninformed.

Example 1 Assume that the sender’s payoff type is drawn from a uniform distribution on

the interval [0,1]. Sender and receiver have common interests and receive identical payoffs

−(t − a)2 when the sender’s payoff type is t and the receiver takes action a. The message

space is M = {m0,m1} and the availability distribution π assigns positive probability to two

availability types, λ0 = {m0} and λ1 = {m0,m1}, where π(λ1) = p and π(λ0) = 1 − p.

Consider an equilibrium in which the sender adopts a strategy of the following form:

• if the sender’s availability type is λ0: send message m0 for all t ∈ [0, 1]

• if the sender’s availability type is λ1: send message m0 for t ∈ [0, θ1) and message m1

for t ∈ [θ1, 1]

The receiver’s best response to this strategy is to choose action a0 if he received message m0

and a1 if m1, where a0 and a1 are given by

a0 =
(1− p)1

2
+ pθ1

θ1
2

(1− p) + pθ1

, and

a1 =
θ1 + 1

2
.

(Note that these actions are equal to the receiver’s expectation of t conditional on the message

received.) We have an equilibrium if the sender of type θ1 is indifferent between a0 and a1,

i.e.

θ1 =
a0 + a1

2

⇒ θ1 =
4p+

√
9− 8p− 3

4p

Figure 1 plots the equilibrium actions a0 and a1 chosen by the receiver (dashed red), and

the cutoff type θ1 for the sender (solid blue) as functions of p, the probability that the second
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Figure 1: a0, θ1, and a1

message available. Notice that for low values of p, there is considerable distortion in the

choice of a0 compared with what it would be if the receiver knew that both messages were

available (θ1/2); similarly, for high values of p, there is significant distortion compared with

what the receiver would choose if he knew that only one message were available (1/2). There

is no such distortion in the choice of a1, because if m1 is observed, the receiver knows that

both message were available.

Example 2 Consider the a game with the same preferences and the same distribution over

payoff types as in Example 1. Assume that the set of messages is M = {m0,m1,m2}.
Two availability types of the sender have positive probability according to the availability-

type distribution π. These are λ0 = {m0,m1} and λ1 = {m0,m1,m2}, where π(λ1) = p and

π(λ0) = 1 − p. The main departure from the previous example is that the receiver learns

the availability type of the sender with probability q, in which case we say that he has an

information type τ`. If instead he does not learn the sender’s availability type, his information

type will be τn. Denote the sender’s set of availability types by Λ = {λ0, λ1} and the receiver’s

set of information types by T = {τ`, τn}. A (behavior) strategy for the sender is a function

σ : T × Λ→ ∆(M) that satisfies supp(σ(t, λj)) ⊂ λj for j = 0, 1. A strategy for the receiver

is a function ρ : M × T × Λ → R that satisfies ρ(m, τn, λ0) = ρ(m, τn, λ1), which reflects

the fact that when the receiver is uninformed about the sender’s availability type, he cannot

make his action contingent on the this information.
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Define:

a01 = ρ(m0, τ`, λ1)

a11 = ρ(m1, τ`, λ1)

a02 = ρ(m0, τ`, λ2)

a12 = ρ(m1, τ`, λ2)

a22 = ρ(m2, τ`, λ2)

a0n = ρ(m0, τn, λi)

a1n = ρ(m1, τn, λi)

a2n = ρ(m2, τn, λi)

and note that we must have a2n = a22 since receiving message m2 reveals the sender’s avail-

ability type to the receiver, regardless of the receiver’s information type.

Consider an equilibrium in which

1. λ1 senders send m0 for t ∈ [0, 1
2
] and m1 otherwise;

2. λ2 senders send m0 for t ∈ [0, θ], m1 for t ∈ [1− θ, 1], and m2 otherwise.

There is such an equilibrium if θ satisfies the condition:

−
(

1

2
− θ
)2

= −

(
q

(
θ − θ

2

)2

+ (1− q)
(
θ −

(
θp

θp+ 1
2
(1− p)

θ

2
+

1
2
(1− p)

θp+ 1
2
(1− p)

1

4

))2
)
.

Figure 2 shows the solution to this equation as a function of the receiver’s probability of being

informed of the sender’s availability type, q, assuming that the probability of availability type

λ1 is p = 0.5. Note that the more likely it is that the receiver knows the sender’s availability

type the closer the critical type will be to 1
3
, which corresponds to the optimal division of

the payoff type space into three equal-length intervals in the even that three messages are

available to the sender. Away from this limit, even if the sender has three available message,

the sender has to make allowance for the possibility that this is not the case therefore will

tend to take a somewhat higher action after m0, which shifts up the critical type, who needs

to be indifferent between sending m0 and sending m2.

A sender with payoff type θ and availability type λ1 is indifferent between sending the

message m2, which reveals her availability type and induces the receiver action a22 = a2n =
1
2
, and sending the message m0, which induces a lottery over the actions a02 = θ

2
, which

an informed receiver will take, and the action a0n =
(

θp

θp+ 1
2

(1−p)
θ
2

+
1
2

(1−p)
θp+ 1

2
(1−p)

1
4

)
, which an
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Figure 2: The critical type θ as a function of q for p = 0.5

uninformed receiver will take whose posterior probability of the sender having availability

type λ1 equals θp

θp+ 1
2

(1−p) . Note that the same condition that makes type θ indifferent between

sending messages m0 and m2, makes type 1 − θ indifferent between sending messages m1

and m2. There is distortion of indicative meaning because the uninformed receiver who takes

action a0n, which is an average of θ
2

and 1
4
, would want to change his action if he could learn

the senders availability type either to θ
2
, if the sender’s availability type is λ1, or to 1

4
, if the

sender’s availability type is λ0. There is distortion of imperative meaning because the sender

is uncertain about which action message m0 induces. If her availability is λ1 types close to

the critical type θ would benefit from discovering the receiver’s information type.

2.3 Results

Inspired by Lewis [11], we refer to the indicative meaning of a message as the (payoff-relevant)

information about the sender that is conveyed by the message. Distortions of indicative

meaning arise when the receiver’s strategy fails to be optimal given the sender’s language

competence.

Definition 1 There is distortion of indicative meaning in equilibrium (σ, ρ, β) if there exists

an availability type λ and m ∈ λ that is used with positive probability by λ such that ρ(m) is

not optimal for the receiver conditional on the availability type λ being revealed.

Distortions of indicative meaning need not arise if only a few actions are induced in

equilibrium and the sender is never constrained by his language ability so that for every action

that can be induced she always has a message that induces that actions. This is, trivially,

the case in pooling equilibria. Intuitively, however, the more information is transmitted

and the more actions are induced in equilibrium the more likely it is that there will be
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distortions of indicative meaning. Those availability types of the sender who have access

to fewer message will sometimes find themselves language constrained and forced to send

messages that they would prefer not to send if they had access to a larger set of messages.

Thus different availability types will pool on the same message for different sets of payoff

types. When receiving such messages the receiver best responds by averaging over these sets

of payoff types and will generally take an action that differs from the action he would take if

he knew the sender’s availability type and therefore did not have to average. The following

proposition formalizes this observation.

Proposition 1 There will be distortion of indicative meaning in any equilibrium (σ, ρ, β)

for which there is a message m∗ ∈ M and a pair of availability types λ∗ 6= λ̃ such that

λ∗ = λ̃ ∪ {m∗}, π(λ̃) 6= 0, π(λ∗) 6= 0, λ∗ uses all of her available messages with positive

probability and all those messages induce distinct actions.

Proof: Since m0 is always available, the set λ̃ is not empty. The fact that λ∗ uses all of

her messages with positive probability and all of those messages induce distinct actions, and

using the fact that for any two a1, a2 ∈ A with a1 6= a2 we have Prob(Ta1∼a2) = 0, implies that

availability type λ̃ also uses all her messages with positive probability. Hence, there must

be a set of payoff types, that has positive probability, who use m∗ when their availability

type is λ∗ and use a message m̃ 6= m∗ when their availability type is λ̃. Use a∗ to denote

the action that is induced by m∗ and ã the action that is induced by m̃. Let Θ̃ denote the

set of payoff types who use message m̃ when their availability type is λ̃. Since λ̃ uses all of

its messages with positive probability, the set Θ̃ has positive probability. Similarly, since λ∗

uses all of its message with positive probability the set Θ̃a∗�ã of types who switch to message

m∗ and the set Θ̃ã�a∗ of types who continue to send m̃ both have positive probability. The

set Θ̃ã�a∗ differs at most by a set that has probability zero from the set of payoff types who

send message m̃ when their availability type is λ∗. Hence, if there is no distortion in the

equilibrium (σ, ρ, µ), then ρ(m̃) = ρ̂(Θ̃ã�a∗). Also, in the equilibrium (σ, ρ, µ) by assumption

Θ̃ is the set of payoff types who send message m̃ when their availability type is λ̃. Therefore,

if there is no distortion, then ρ(m̃) = ρ̂(Θ̃). By Assumption 1 however,

ρ̂(Θ̃ã�a∗) 6= ρ̂(Θ̃),

which is inconsistent with having no distortion. �

We observe next that Propostion 1 holds in the setup of Crawford and Sobel [4] (CS).

Recall that in the CS model the sender’s payoff type t is drawn from a differentiable distri-

bution F on [0, 1] with a density f that is everywhere positive on [0, 1]. The receiver takes
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an action a ∈ R. It is assumed that the functions US and UR are twice continuously dif-

ferentiable and, using subscripts to denote partial derivatives, the remaining assumptions

are that for each realization of t there exist an action a∗t such that US
1 (a∗t , t) = 0; for each t

there exists an action a′t such that UR
1 (a′t, t) = 0; US

11(a, t) < 0 < US
12(a, t) for all a, t; and,

UR
11(a, t) < 0 < UR

12(a, t) for all a and t.

Corollary 1 Proposition 1 holds for the CS model.

Proof: CS preferences satisfy all the conditions we have imposed on sender and receiver

utilities. Specifically, Assumption 1 is satisfied because sender and receiver preferences satisfy

the single-crossing condition, US
12, U

R
12 > 0: Single-crossing for the sender implies that for any

positive-probability set Θ ⊂ T the set Θa1�a2 is of the form Θ ∩ Ta1�a2 where Ta1�a2 is an

interval that is either of the form (−∞, t) or of the form (t,∞). Hence, the distribution

that is the prior probability concentrated on Θ∩Ta1�a2 either stochastically dominates or is

stochastically dominated by the distribution that is the prior probability concentrated on Θ.

Therefore the single-crossing condition for the receiver implies that ρ̂(Θa1�a2) 6= ρ̂(Θ). �

Another environment in which Proposition 1 holds is one where payoffs can be expressed

in terms of convex loss functions and the sender’s payoff type space T is permitted to be

multi-dimensional. Suppose the sender’s and receiver’s payoffs are given by US(a, t) =

νS(||t + b − a||) and UR(a, t) = νR(||t − a||) respectively, where || || is the Euclidean norm

and −νS and −νR are strictly increasing convex functions.5

Corollary 2 Proposition 1 holds when sender and receiver have convex loss functions.

Proof: With convex loss functions every set Θ in Ω will be convex. For any pair of distinct

actions a1 and a2, the set Ta1%a2
is a halfspace and thus if Θa1%a2

= Θ∩Ta1%a2
and Θa2%a1

=

5Jäger et al [9] have examined the optimal equilibria of this environment for the common-interest case,
where b = 0. There are well-defined indicative meanings (“categories” in their terminology). In any optimal
equilibrium categories are shown to be convex giving rise to a Voronoi tessalation of the type space, and all
messages are used with positive probability and induce distinct actions. In the present paper the indicative
meanings of messages become more fluid: While it is still the case that in equilibrium each availability
type partitions the set of payoff types into convex sets, at the same time for a given message these sets
will generally differ for different availability types and it is no longer the case that the set of payoff types
is partitioned into categories with fixed boundaries. The receiver’s posterior distributions after different
messages will generally have overlapping supports. For an extreme example, if instead of always permitting
silence, we required the availability distribution to have full support on the power set of M, then trivially
in any equilibrium the receiver’s posterior would have full support on T after every message. We will show
below that in our setting with common interests it remains true that all messages (that are available to
some availability type) will be used and that therefore by Proposition 1 there will be distortion of indicative
meaning in optimal equilibria.
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Θ ∩ Ta2%a1
have positive probability, they are convex and have a nonempty interior. If we

denote the interior of a set X by int(X) then ρ̂(Θa1%a2
) ∈ int(Θa1%a2

) and ρ̂(Θa2%a1
) ∈

int(Θa2%a1
). To see this, let

V (a,K) =

∫
K

νR(||t− a||)f(t)dt

for a convex set K and consider a point a on the boundary of K. By the supporting

hyperplane theorem, there exists a vector c 6= 0 with c · t ≥ c · a ∀t ∈ K. Furthermore,

c · t > c · a ∀t ∈ int(K). The derivative of V (·, K) at a in the direction c satisfies

∇V (a,K) · c

||c||
=

∫
K

ν ′R(||t− a||)1

2
||t− a||−

1
2 (a− t) · c

||c||
f(t)dt > 0

because νR is increasing and (a − t) · c
||c|| > 0 for almost all t ∈ K. Use a12 to denote

ρ̂(Θa1%a2
) and a21 to denote ρ̂(Θa2%a1

). Since a12 6∈ Θa2%a1
, there exists a vector d 6= 0 with

d · t ≥ d · a12 ∀t ∈ Θa2%a1
(and > for all t ∈ int(Θa2%a1

)). Consider the derivative of V (·,Θ)

at a12 in the direction d:

∇V (a12,Θ) · d

||d||
= ∇V (a12,Θa1�a2) ·

d

||d||
+∇V (a12,Θa2�a1) ·

d

||d||

= ∇V (a12,Θa2�a1) ·
d

||d||

=

∫
Θa2�a1

ν ′R(||t− a12||)
1

2
||t− a12||−

1
2 (a12 − t) ·

d

||d||
f(t)dt > 0,

which shows that ρ̂(Θa1%a2
) 6= ρ̂(Θ). �

2.3.1 Common Interest

In this section we consider the case where sender and receiver have identical preferences,

US ≡ UR ≡ U . We show that an optimal equilibrium exists. Furthermore, in any optimal

equilibrium all availability types use all their messages with positive probability and all

available messages induce distinct actions. It is interesting that this holds despite the fact

that, as we showed above, different availability types using all their messages may lead to

distortion of indicative meaning.

First-order intuition for why every availability type uses all of her messages is simple:

unused messages can be introduced to refine the information that the sender transmits. A

complication arises because other availability types may already use that message and may

see their payoffs reduced as the action induced by that message changes. We will show,

however, that the magnitude of such losses is of second order in comparison to the gains of
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the availability type who begins using that message.

We proceed by first establishing existence of an optimal strategy profile. Here we argue in

terms of the receiver’s strategy ρ which, as we will see, can be viewed as a point in the compact

set TM .6 We construct a function that assigns to each strategy of the receiver the payoff that

results from the sender using a best response to that strategy. Under our assumptions this

function is continuous. Hence, we face the problem of maximizing a continuous function over

a compact set, which has a solution. Therefore an optimal strategy profile exists and since

we have a common interest game, this profile must be part of an equilibrium profile.

For each availability type and any optimal receiver strategy we can partition the set of

payoff types into subsets for whom the same message is optimal. If there is an availability

type who does not use all of her messages, we can take a pair of messages that induce

the same action a, one of which is used by the availability type under consideration and

one of which is not. Split the subset of payoff types who induce action a into two positive-

probability subsets and have one of these subsets continue to use the message they used before

and while the other subset switches to the formerly unused message m. Other availability

types may already have been using message m, but note that since we are considering an

optimal strategy profile the receiver’s response to message m was itself optimal. Therefore

an infinitesimal change in the response to m results in a first-order common loss that is

zero when the expectation is taken over the types who used message m to begin with. At

the same time there is a positive first-order gain for the availability type who starts using

message m because she transmits useful information to the receiver. The following results

formalize this intuition.

Lemma 1 With common interests, there exists an optimal strategy profile.

Proof: Without loss of generality we can confine attention to receiver strategies for which

each action is a best response to some belief. Then, by Assumption 1 each receiver strategy

prescribes only actions that are optimal for some type. Thus receiver strategies can be

thought of as associating with each message m the type for whom the action ρ(m) is optimal,

i.e. it suffices to think of receiver strategies as elements of TM . Suppose that for any given

strategy ρ of the receiver, the sender uses a best reply; that best reply exists because given

the receiver’s strategy each sender type maximizes his payoff over a finite set of alternatives.

Then the resulting payoff for type (t, λ) equals

max
m∈λ
{U(ρ(m), t)}.

6This result generalizes the corresponding one of Jäger et al [9] to environments with private information
about language competence.
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Given this behavior of the sender, we can assign the following expected payoff to the receiver’s

strategy ρ:

Q(ρ) =
∑
λ∈Λ

π(λ)

∫
T

max
m∈λ
{U(ρ(m), t)}f(t)dt.

Since U and the max operator are continuous functions, the integrand is continuous and

therefore by the Lebesgue dominated convergence theorem, Q is continuous. Therefore, by

Weierstrass’s theorem, Q achieves a maximum on the compact set TM . �

Note that in an optimal profile the receiver’s response after unsent messages is entirely

arbitrary and therefore it is without loss of generality to assume that it is the same as after

one of the sent messages; if it were not arbitrary, then for some specification the sender

would have a profitable deviation which would contradict optimality.

Lemma 2 In an optimal profile, each availability type induces every action a′ for which she

has a message m′ with ρ(m′) = a′ on a set of payoff types that contains an open set and

therefore has positive probability.

Proof: By Assumption 1 and common interest, ρ(m) is some type’s ideal point for all

m ∈ M . Hence, a′ is the ideal action of some type t′. Strict concavity implies that type t′

strictly prefers a′ to any of the finitely many other actions she can induce. By continuity this

remains true for an open set of types O(t′) containing t′ and since f is everywhere positive

the set O(t′) has positive probability. �

For CS preferences, the single-crossing condition implies that the set of actions that are

optimal for some type is of the form [a, a] and that with common interest for any belief µ

of the sender we have ρ̂(µ) ∈ [a, a]. Therefore ρ(m) ∈ [a, a] for all m ∈ M , as required by

Assumption 1. The assumption also holds for convex loss functions.

Lemma 3 In an optimal profile all messages of an availability type λ with π(λ) > 0 induce

distinct actions.

Proof: In order to derive a contradiction, suppose not, i.e. there is an availability type λ∗

with π(λ∗) > 0 with two or more messages that induce the same action. It is without loss of

generality to consider an optimal strategy profile in which the sender of any given availability

type uses only one out of any set of available messages that induce identical actions. Thus,

suppose that m0,m1 ∈ λ∗, ρ(m1) = ρ(m0), and λ∗ uses m0, but not m1. The common ex

ante payoff from the optimal strategy profile (σ, ρ) equals

∑
m∈M

∑
λ∈Λ

π(λ)

∫
T

U(ρ(m), t)σ(m|t, λ)f(t)dt.
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Since all messages that type λ∗ uses induce distinct actions, Lemma 2 implies that each of

those messages is sent by an open set of types that has positive probability. Let Θ0 be the

set of payoff types for which availability type λ∗ sends message m0. Recall that different

types have different best replies. Therefore we can find a type t1 that is an element of an

open subset of Θ0 and that satisfies ρ̂(t1) 6= ρ(m1). By continuity, for a sufficiently small

open ball Θ1 containing t1 and satisfying Θ1 ⊂ Θ0, we have ρ̂(Θ1) 6= ρ(m1). Now alter (only)

type λ∗’s behavior by having her split the set Θ0 on which she sends m0 into two subsets so

that she sends m1 on Θ1 and continues to send m0 on Θ0 \Θ1. Denote the resulting sender

strategy by σ̃ to distinguish it from the original strategy σ. Note that as long as we do not

also modify the receiver strategy, this change in the sender strategy has no effect on the

common ex ante payoff. If we use a1 to denote the action that is induced by message m1,

we can define the contribution to the expected payoff from message m1 as

W (m1, a1) :=
∑
λ∈Λ

π(λ)

∫
T

U(a1, t)σ̃(m1|t, λ)f(t)dt

= π(λ∗)

∫
T

U(a1, t)σ̃(m1|t, λ∗)f(t)dt

+
∑

λ∈Λ\λ∗
π(λ)

∫
T

U(a1, t)σ(m1|t, λ)f(t)dt

= π(λ∗)

∫
T

U(a1, t)σ̃(m1|t, λ∗)f(t)dt

+
∑
λ∈Λ

π(λ)

∫
T

U(a1, t)σ(m1|t, λ)f(t)dt

.

Observe that when we change a1 we affect the contribution to the ex ante payoff from message

m1 only. Also, since a1 was optimal for m1 given the original sender strategy, we have

∇aW (m1, a1) = π(λ∗)

∫
T

∇aU(a1, t)σ̃(m1|t, λ∗)f(t)dt.

It follows from our choice of Θ1 that ∇aW (m1, a1) 6= 0. This implies that the original profile

(σ, ρ) was not optimal. �

The following result summarizes our findings and connects them to distortion of indicative

meaning.

Proposition 2 In any common interest game, there exists an optimal equilibrium; in any

such equilibrium all messages of an availability type that has positive probability induce dis-

tinct actions; all such availability types use each of their messages with positive probability;

and, if the availability type distribution π has full support on Λ, there will be distortion of
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indicative meaning.

Proof: The first three parts of the proposition summarize Lemmas 1-3. This sets the stage

for invoking Proposition 1, which proves the fourth part of the proposition: If the availability

distribution π has full support on Λ, there will be pairs of availability types both of which

have positive probability and which differ only by one available message and by Lemmas 1-3

all of these messages are used by both availability types and induce distinct actions. �

Proposition 2 is our key result. It demonstrates the ubiquity of distortion of indicative

meaning that results from a combination of private information about language competence

and close incentive alignment. With congruence of incentives, optimality requires that a

large variety of messages will be used; private information about language competence then

implies that the receiver cannot always be sure whether a message was sent out of necessity,

because more preferable message were not available, or out of a desire to communicate

payoff-relevant information.

It should be clear that while the common-interest case is emblematic for what can go

wrong with private information about language competence, the insight that there will be

distortion of indicative meaning generally also holds when there is conflict of interest, as long

as there is not so much conflict as to rule out all communication in equilibrium. There are,

however, other more subtle interactions between conflicts of interest and private information

about language competence. These we turn to next.

2.3.2 Conflict of Interest

It is well-known that when there is conflict of interest, access to a noisy channel or, more

generally, a nonstrategic mediator can improve communication outcomes in sender-receiver

games. In this section we show that private information about message availability can

substitute for communication through a nonstrategic mediator. Specifically, in the leading

example of the CS model, with a uniform payoff-type distribution and quadratic payoff

functions, the efficiency gains from mediated communication can be fully replicated through

direct communication when there is private information about message availability.

Myerson [14] gives an example in which there is no communicative equilibrium when the

communication technology is perfect, but there is one when agents have to rely on sending

a carrier pigeon that gets lost with positive probability. Blume, Board and Kawamura [3]

(henceforth BBK) consider communication through a noisy channel that lets the sender’s

message pass through with probability ε and otherwise transmits a random draw from a
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distribution G on the interval [0, 1]. They show that with quadratic preferences, i.e.

US(a, t, b) = −(t+ b− a)2,

UR(a, t) = −(t− a)2,

and a uniform type distribution on the interval [0, 1] (the “uniform quadratic model”) for

almost all values of the sender’s bias b ∈ (0, 1
2
) there exists a value of the error probability

ε and an equilibrium with higher ex ante payoffs than from the most efficient equilibrium

in the model without noise. Goltsman, Hörner, Pavlov and Squintani (GHPS) [6], also in

the uniform quadratic model, investigate the limits from mediated communication; that is,

they permit agents to send messages to a correlation device and to receive instructions from

the device. This amounts to finding the payoffs from optimal communication equilibria, as

defined by Forges [5] and Myerson [13]. Using the revelation principle (Myerson [12]) one

can characterize the set of communication equilibria in the CS model as corresponding to a

family of conditional distributions on R, {p(·|t)}t∈T , that satisfies:

t = arg max
t′∈T

[
−
∫

R
(t+ b− a)2dp(a|t′)

]
, ∀t ∈ T

a = Et[t|a] ∀a ∈ A.

Goltsman, Hörner, Pavlov and Squintani (GHPS) [6] use this characterization to show that

the receiver’s ex ante payoff in any communication equilibrium of the CS model is bounded

above by −1
3
b(1 − b). Since the ex ante payoffs of the receiver, VR and the sender, VS, are

related through VR = VS + b2, this is also the efficiency bound for communication equilibria

in the CS model.

BBK provide a mechanism that attains this efficiency bound.7 For any b there exists

a noise level ε(b) and an equilibrium of the corresponding ε(b)-noise game, Γ(ε(b)), that

achieves the GHPS bound. We will show that this bound can also be attained with private

information about message availability. In that case, all communication between the players

is direct and misunderstandings arise exclusively because of receiver uncertainty about the

sender’s repertoire of messages: When receiving a message, the receiver does not know to

what degree the sender was forced to use that message rather than some other message

that she would have preferred had it been in his repertoire. Our proof strategy is to show

that for any so-called “front-loading equilibrium” of BBK that achieves the efficiency bound

there exists an outcome-equivalent equilibrium in the model with private information about

message availability.

As background it is useful briefly to recall the key elements of the construction of the

7Ivanov [8] has recently demonstrated how to attain this bound through a strategic mediator.
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front-loading equilibria in BBK. In such an equilibrium the type set, [0, 1], is partitioned into

a finite number K of intervals Θk (with left endpoint θk−1 and right endpoint θk) that are

indexed from left to right; for any partition element Θk with k > 1 there is a single message

mk that is sent by types in that partition element; and, types in the leftmost partition

element, Θ1, uniformly randomize over all the remaining messages. As a result, when the

receiver observes one of the messages mk he believes with probability one that there was no

transmission error, that the sender’s type belongs to the interval Θk and takes action

ak =
θk−1 + θk

2
.

When the receiver observes any of other messages, his posterior probability of an error having

occurred is
ε

ε+ θ1(1− ε)
and he takes action

a1 =
θ1(1− ε) θ1

2
+ ε1

2

ε+ θ1(1− ε)
,

which is the average of the actions he would have taken with and without error weighted by

the posterior probabilities of error and no error respectively.

Proposition 3 below is proven by translating this BBK front-loading construction into the

present environment through substituting private information for transmission errors. For

example, in the BBK equilibrium, when the receiver observes a message that is voluntarily

sent by the lowest interval of payoff types, he must average over the two possibilities that

the message was sent in error and that it was sent intentionally. In the present environment,

analogously, we have the receiver be uncertain between the possibility that a type from the

lowest interval deliberately sent the message that is always available and the possibility that

another payoff type sent the message because no other message was available to her.

Proposition 3 With a uniform type distribution, quadratic preferences and sender bias b >

0, there exists a message space M , an availability distribution π on Λ = {λ ∈ 2M |m0 ∈ λ} and

an equilibrium in the corresponding game that attains the efficiency bound for communication

equilibria.

Proof: Suppose that the optimal BBK-front-loading equilibrium E(b) has K steps, Θ1, . . . ,

ΘK . Pick any message space that satisfies #(M) ≥ K. Let there be an availability type

λ̃ ⊂M with #(λ̃) ≥ K and choose an availability distribution π that satisfies the conditions

π(λ̃) = 1 − ε(b) and π(λ) > 0 ⇒ λ ∩ λ̃ = {m0} ∀λ 6= λ̃. Then we can induce the outcome

of the the optimal BBK-front-loading equilibrium E(b) in our environment by prescribing
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the following sender strategy. Whenever the realized availability type is λ̃, payoff types in

the interval Θ1 pool on the message m0 (which is always available) and for each interval Θk,

k = 2, . . . , K, there is a message in λ̃ that is sent by payoff types in that interval, and only

by those payoff types. All payoff types send the message m0 whenever their availability type

λ is not equal to λ̃. The receiver chooses his best response given this sender strategy for any

of the messages that are sent with positive probability. Following any of the messages that

are sent with probability zero by the sender the receiver’s posterior is assumed to be the

same as following m0, and he takes the corresponding optimal action. �

2.4 A Universal Availability Structure

To establish our last result we chose Λ and π as a function of the sender’s bias b. Tying Λ

and π to the sender’s bias is not necessary, if we allow infinite message spaces. Specifically,

it is possible to find Λ and π that are universal in the sense that for any b > 0 there is an

equilibrium that achieves the efficiency bound for communication equilibria.

For our next result, we will assume M to be infinite. We consider an availability structure,

which is a 4-tuple (M ; (Λ,F , π)) that consists of a set of potential messages, M , a set of

availability types Λ ⊂ 2M , a sigma-algebra F of subsets of Λ, and a probability measure π

on (Λ,F). For our next result we are interested in a class of availability structures where

availability types λ can be ordered in such a way that all messages available to a given type

are also available to all lower types and the probability distribution µ can be described in

terms of this ordering; in this availability structure there is a natural sense of the degree to

which the sender knows the language.

Definition 2 An availability structure (M ; (Λ,F , µ)) is nested if for each α ∈ [0, 1] there

exists an infinite set Mα ⊂M such that Mα∩Mα′ = ∅, ∪α∈[0,1]Mα = M , Λ = {λα ⊂M |λα =

∪α′≤αMα′}, F = {F ⊂ 2Λ|F = ∪α∈BλαandB ∈ B} (where B denotes the set of Borel subsets

of the interval [0, 1]) and there exists an atomless distribution G on [0, 1] with density g such

that g(α) > 0 for all α ∈ [0, 1] and

µ({λα′|α′ ≤ α}) = G(α) ∀α ∈ [0, 1].

Example 3 Let M be the unit square, Mα = {(x, y) ∈ M |x = α} and G the uniform

distribution. Then, given a draw α from G, the set of available messages is the rectangle

[0, α] × [0, 1]. The probability that the messages in Mα∗ are available equals the probability

that that α ≥ α∗, i.e. 1− α∗.

Proposition 4 With quadratic preferences, uniform type distribution and a nested availabil-

ity structure there exists an equilibrium that achieves the efficiency bound for communication
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equilibria.

Proof: For any ε ∈ [0, 1], define α(ε) as the (unique) solution of the equation G(α(ε)) = ε.

Thus, the probability that the messages in Mα(ε) are not available is ε. Define ε(b) as the

noise level for the BBK front-loading equilibrium that attains the GHPS efficiency bound

when the sender’s bias is b. Suppose that the optimal BBK-front-loading equilibrium has K

steps, Θ1, . . . ,ΘK . Then we can replicate this outcome in our environment with a nested

availability structure by prescribing the following sender strategy. Whenever the messages in

Mα(ε(b)) are available, types in interval Θ1 pool on one of the messages m0 ∈ M0 (which are

always available) and for each interval Θk, k = 2, . . . , K, there is a message in Mα(ε(b)) that

is sent by types in that interval. All types send a message m0 when the messages in Mα(ε(b))

are not available. The receiver chooses his best response given this sender strategy for any of

the messages that are sent with positive probability. Following any of the messages that are

sent with probability zero by the sender the receiver’s posterior is assumed to be the same

as following m0, and he takes the corresponding optimal action. �

3 Language Competence of the Receiver

The recipient of a message is as likely limited by his language competence as the sender is by

hers. In this section we propose a simple model in which the receiver’s language competence

is private information. We show that in general this gives rise to distortion of the imperative

meanings of messages. When the receiver’s language competence is his private information,

then even if he uses a pure strategy and there is no randomness in the transmission channel,

the sender can no longer be sure how her message will be interpreted; messages typically

induce non-degenerate distributions over receiver actions; and, the sender’s strategy is gen-

erally not optimal given the receiver’s language competence.

For simplicity, in this section we focus exclusively on the receiver’s language competence

and assume that the sender’s language competence is not an issue. We model the receiver’s

language competence as a partition P of the message set M, with the interpretation that

the receiver cannot distinguish messages that belong to the same partition element P ∈
P . Formally, we require the receiver’s strategy to be measurable with respect to P . The

receiver’s partition type P is private information and is drawn from a common-knowledge

distribution πR on the set P of partitions of M. We restrict attention to CS preferences.

In this environment a sender strategy is a mapping σ : T → ∆(M) and it is convenient to

represent a receiver strategy as a mapping ρ : 2M → A. With CS preferences this is without

loss of generality because the receiver has a unique best reply to any belief and therefore
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his best response to observing a partition element P, which we denote by ρ(P ), is the same

regardless of the partition (type) to which the element P belongs.

For example, suppose sender and receiver have identical payoffs −(t− a)2 from action a

when the sender’s payoff type is t, the sender’s payoff types are uniformly distributed on the

interval [0, 1], there are three messages m1, m2, and m3 and the receiver has two possible par-

tition types, the type {{m1}, {m2,m3}} with probability p and the type {{m1}, {m2}, {m3}}
with probability 1 − p. Then there is a three-step equilibrium in which the lowest interval

[0, θ1] uses message m1 and the critical type θ1 increases monotonically from 1
3

to 1
2

as p

increases from 0 to 1.
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Figure 3: The critical type θ1 = 1
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)
In this equilibrium there is distortion of imperative meaning: The sender would want to

change her strategy conditional upon learning the receiver’s availability type. For example,

as p, the probability of the receiver having a limited ability to discriminate among messages

m2 and m3 converges to one, the action a2 that the receiver takes if he receives and identifies

m2, converges to 5
8
, whereas a1, the action he takes in response to m1, converges to 1

4
. Thus,

in the limit the type who would be indifferent between sending messages m1 and m2 if he

knew the receiver’s partition type to be {{m1}, {m2}, {m3}} is 7
16
, while in equilibrium the

critical type is 1
2
. Types in the interval

(
7
16
, 1

2

)
would want to switch from their equilibrium

message m1 to sending m2 if they learned that the receiver can distinguish all messages.

There is also another equilibrium in which m1 is used on the middle interval (1
3
, 2

3
). In

this equilibrium there is no distortion of imperative meaning. Note, however, that in this

equilibrium useful information is transmitted only if the receiver can distinguish all three

messages.

For our next result we first formally define distortion of imperative meaning. Then we

introduce the notion of a varied receiver response that lets us distinguish between the two
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equilibria in the above example that will allow us to give a sufficient condition for distortion

of imperative meaning.

Definition 3 There is distortion of imperative meaning in equilibrium (σ, ρ, β) if there

exists a set of payoff types Θ ⊂ T that has positive probability, a message m ∈ M with

σ(m|t) > 0 for all t ∈ Θ and a partition type P of the receiver that has positive probability

such that message m fails to be optimal for payoff types in Θ conditional on the receiver’s

partition type P .

For the case where the sender’s language-competence is privately known we showed that

it is sufficient for distortion of indicative meaning to occur that there is variety in the use

of messages and in the support of the availability type distribution, i.e. when there are

availability types that differ in just one message, who use all their messages and all of their

messages induce distinct actions. In Definition 4 we introduce an analogous condition that

requires the existence of multiple receiver types each of which responds differently to each

of its partition elements and that suffices for distortion of imperative meaning when the

receiver’s language competence is the issue.

Definition 4 There is a varied receiver response in equilibrium E = (σ, ρ, β) if there is a

pair of partition types P∗ 6= P̃ of the receiver with a common element P0 such that πR(P̃) 6= 0,

πR(P∗) 6= 0 and for every P ∈ P∗ ∪ P̃ the set {t ∈ T |US(ρ(P ), t) > US(ρ(P ′), t),∀P ′ 6=
P, P ′ ∈ P∗ ∪ P̃} has positive probability.

With a varied receiver response it becomes important for the sender to know exactly

what the partition type of the sender is. The reason is that it guarantees that there will be

at least one pair of receiver types for which a positive probability set of sender types would

want to induce the action associated with a common partition element for one receiver type

and another action for the other receiver type.

Proposition 5 There will be distortion of imperative meaning in any equilibrium E =

(σ, ρ, β) with a varied receiver response.

Proof: Call two elements Pi and Pj of the set P∗ ∪ P̃ adjacent for equilibrium E if ρ(Pi) <

ρ(Pj) and there does not exist Pk ∈ P∗ ∪ P̃ with ρ(Pk) ∈ (ρ(Pi), ρ(Pj)). Since P∗ and P̃
have a common element and because P∗ 6= P̃ , there is (at least) one common element,

PC , that is adjacent to a non-common element, PNC . With CS preferences, the sender’s

single-crossing condition implies that there is a unique type who is indifferent between the

actions ρ(PC) and ρ(PNC). Without loss of generality, let ρ(PC) < ρ(PNC) and ρ(PNC) ∈ P̃ .
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Define P+ := arg min{ρ(P )|P ∈ P∗ and ρ(P ) ≥ ρ(PC)}. Suppose that P+ = PC . Since PC

is common to both partitions, we have PC ∩ PNC = ∅. From the sender’s single-crossing

condition, it follows that those type who would want to induce ρ(PNC) when learning P̃ ,

would want to induce ρ(PC) when learning P∗. Since PC∩PNC = ∅, they would want to send

different message in both cases. Thus in one of the cases the message they would want to send

differs from their equilibrium message, which establishes our claim. Now consider the case

where P+ 6= PC . Since PC and PNC are adjacent, it must be the case that ρ(P+) > ρ(PNC).

Since ρ(PC) < ρ(PNC) < ρ(P+), the sender’s single crossing condition implies that there is a

positive probability set of types (near the type who is indifferent between ρ(PC) and ρ(P+),)

who would want to induce ρ(PNC) when learning P̃ and would want to induce ρ(PC) when

learning P∗. Thus, as before in one of these two cases the message these types would want

to send differs from their equilibrium message, which establishes our claim. �

At this point one might be tempted to proceed as in the case where the language compe-

tence of the sender is the issue and to try to show that with common interests all messages

will be used and that this in turn leads to having the varied-receiver-response condition

satisfied in optimal equilibria. The following example, however, demonstrates that there is

an interesting asymmetry in the effects of making the sender’s language competence private

information versus doing the same for the receiver. It shows that in the latter case optimality

sometimes requires that there are messages that will never be used.

Example 4 Suppose the sender’s type is drawn from a uniform distribution on [0, 1] and

both players receive identical payoffs −(t − a)2 when the receiver takes action a in state t.

Let M = {m1,m2,m3,m4}. For any ε ∈ [0, 1), define a game Γε by the property that each

of the receiver types {{m1,m4}, {m2}, {m3}}, {{m1}, {m2,m4}, {m3}} and {{m1}, {m2},
{m3,m4}} has probability 1−ε

3
and the remaining receiver types are equally likely. Note that

if ε ∈ (0, 1), the partition-type distribution πR has full support.

If ε = 0, then in any optimal equilibrium, the type space is partitioned into three equal-

length intervals and the actions that are induced in equilibrium are 1
6
, 1

2
and 5

6
. To see this,

observe first that this holds if for the moment we make the receiver type common knowledge.

This provides an upper bound. Then note that the same outcome that is optimal when the re-

ceiver type is common knowledge can be realized when the receiver type is private information.

Denote the corresponding ex ante payoff by v0
max.

With positive small ε, the messages m1, m2 and m3 must approximately induce the same

set of actions in an optimal equilibrium as they do in an optimal equilibrium for ε = 0.

Otherwise, the ex ante payoff from optimal equilibria, vεmax, would remain bounded away

from v0
max, and we know that that cannot be the case because the strategy profile that results

in v0
max when ε = 0 yields approximately v0

max when ε > 0 and since we have a common-

interest game the optimal equilibrium strategy must do even better.
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For any ε, let E(ε) be an optimal equilibrium for the game Γε. We will argue that for

sufficiently small ε > 0 no type t ∈ [0, 1] of the sender sends message m4 in the equilibrium

E(ε). For any δ > 0, there exists ε(δ) > 0 such that for all ε ∈ (0, ε(δ)) type t’s payoff from

sending message m4 is bounded from above by

vε(t) =

(
1− ε

3

)(
−
(
t− 1

6

)2

−
(
t− 1

2

)2

−
(
t− 5

6

)2
)

+ ε · 0 + δ

while at the same time the payoff to t from sending the optimal message from the set

{m1,m2,m3} is bounded from below by

vε(t) = (1− ε)

(
−
(

min

{(
t− 1

6

)
,

(
t− 1

2

)
,

(
t− 5

6

)})2
)
− ε · 1− δ.

For sufficiently small ε and δ, we have vε(t) > vε(t) for all t ∈ [0, 1], which shows that there

is no type of the sender who would be willing to send message m4 in any optimal equilibrium

of the game Γε for sufficiently small ε ∈ (0, 1).

The example shows that unlike in the case where only sender competence is the issue,

when there is uncertainty about receiver competence, there may be instances when the sender

may not want to use all messages in an optimal equilibrium. This will be the case when there

are messages for which the probability is high that the receiver does not understand them.

Therefore only a few of the receiver’s partition types may be relevant. This undermines

the varied-response condition from the previous proposition. On the other hand, in an

optimal equilibrium of a common interest game, the sender will want to communicate some

information. Thus, an optimal equilibrium will not be a pooling equilibrium and for the

communicated information to have an impact, there will be receiver messages that induce

distinct actions.

For the following result we adopt a slightly different perspective. Denote by Pf the finest

partition of M, i.e. the type of the receiver who understands all messages. We will show that

in any optimal equilibrium of a game that is near an optimal equilibrium of the game in

which Pf has probability one but where πR has full support there is distortion of imperative

meaning.

Proposition 6 With common interests, an optimal optimal equilibrium exists. For any

class of games that differ only in the distributions πR, if there are finitely many optimal

equilibria in the game with πR(Pf ) = 1 (e.g. if CS’s condition M holds), then there exists

an ε0 > 0 such that for all ε ∈ (0, ε0) and for every πR that has full support and satisfies

πR(Pf ) = 1− ε, there will be distortion of imperative meaning in any optimal equilibrium.
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Proof: We begin by proving existence. Without loss of generality we can confine attention

to receiver strategies for which each action is a best response to some belief. Then, by

Assumption 1 each receiver strategy prescribes only actions that are optimal for some type

of the sender. Thus receiver strategies can be thought of as associating with each receiver

message P the type for whom the action ρ(P ) is optimal, i.e. it suffices to think of receiver

strategies as elements of T 2M
, the set of functions from the powerset of M into the sender’s

type space. Suppose that for any given strategy ρ of the receiver, the sender uses a best reply;

that best reply exists because given the receiver’s strategy each sender type maximizes his

payoff over a finite set of alternatives, the set of distributions over actions that are induced

by each message. Then the resulting payoff for sender type t equals

max
m∈M

∑
P∈P

∑
P∈P

U (ρ(P ), t) 1{m∈P}.

Given this behavior of the sender, we can assign the following expected payoff to the receiver’s

strategy ρ:

Q(ρ) =

∫
T

max
m∈M

{∑
P∈P

∑
P∈P

U (ρ(P ), t) 1{m∈P}

}
f(t)dt.

Since U and the max operator are continuous functions, the integrand is continuous and

therefore by the Lebesgue dominated convergence theorem, Q is continuous. Therefore, by

Weierstrass’s theorem, Q achieves a maximum on the compact set T 2M
.

It remains to show that there is distortion of imperative meaning for sufficiently small

positive ε. If the receiver’s language competence is not an issue, which corresponds to ε = 0,

then any optimal equilibrium partitions T into M nonempty intervals Im, m ∈M , with types

belonging to the same interval sending the same message and the receiver’s optimal actions

following any two messages m 6= m′ satisfy am 6= am′ . For sufficiently small positive ε any

optimal equilibrium E ε of a game in which πR has full support must approximately induce

the same set of actions in the event that messages are understood as in one of the optimal

equilibria E0of the game where message are always understood. Without loss of generality,

we can name the messages in ascending order of the actions they induce in E0. Now consider

two receiver types, Pf and Pp who only differ in that the latter type cannot distinguish

messages m1 and m2. With ε sufficiently small, the sets of type who send messages m1 and

m2 respectively are approximately the same in E0 and E ε and the receiver responds in E ε to

{m1}, {m1,m2} and {m2} with actions a1 < a12 < a2. Hence, the varied-response condition

is satisfied. The result then follows from Proposition 5. �

We will conclude by showing that as in the case where the language competence of the

sender is private information, private information about the language competence of the
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receiver can substitute for mediated communication. A particularly simple way of utilizing

private information about the receiver’s language competence replicates an equilibrium out-

come from Krishna and Morgan’s (KM) [10] study of multi-stage communication in the CS

environment. This is the subject of the following observation.

Observation. With a uniform type distribution, quadratic preferences and sender bias b ∈(
0, 1

8

)
, there exists a finite message space M , an availability distribution πR of the receiver on

the set P of partitions of M that assigns positive probability to exactly two elements of P and

an equilibrium in the corresponding game that attains the efficiency bound for communication

equilibria.

Proof: To verify the observation, first recall that KM showed that for b ∈
(
0, 1

8

)
there

is a class of equilibria that achieve an ex ante payoff of −1
3
b(1 − b) for the receiver and

that GHPS’s showed that this is the efficiency bound for communication equilibria in this

environment. It remains to show how to replicate KM’s construction with private information

about the receiver’s language competence. For this we briefly summarize the key aspects

of their construction: Communication proceeds in two stages. In the first stage the sender

reveals whether her type t is less than some quantity x, or not. In the second stage, if t < x

then a partition equilibrium is played on the interval [0, x]; otherwise with probability p (that

is generated by a jointly controlled lottery) the sender sends a message to indicate whether

t ∈ (x, z) or t ∈ [z, 1], and with probability 1− p no further message is sent.

The outcome of any such equilibrium can be induced with private information about the

receiver’s language as follows: If the partition equilibrium on the interval [0, x] has K − 2

steps, let M contain K messages. The receiver’s partition type is either the finest partition of

M, denoted Pf , or it is the finest partition that contains the element {mK−1,mK}, denoted

Pc. The receiver’s type distribution πR is given by πR(Pf ) = p and πR(Pc) = 1− p. Sender

types in the kth interval of the partition equilibrium on [0, x] send message mk, sender types

in (x, z) send message mK−1, and sender types in the interval [z, 1] send message mK . The

key observation is that the distinction between the messages mK−1 and mK is activated only

if the receiver’s type is Pf , which happens with probability p. Otherwise, the receiver uses an

action in response to these message that is optimal against prior beliefs concentrated on the

interval [z, 1]. it is now easy to see that sender and receiver face the exact same incentives

as in the KM construction. �

It is also possible, as in the case of private information about language competence of

the sender, to translate the BBK construction into an outcome equivalent equilibrium when

there is private information about language competence of the receiver. The construction
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works for all biases b > 0 and is universal in the sense that the message space and availability

type distribution are independent of the bias, but comes at the cost of requiring an infinite

message space. Before proving this result, we will show by way of examples how one can use

the BBK construction in simple settings.

We begin by constructing the analog to a two-step front-loading equilibrium of BBK.

Suppose that M = {m0,m1,m2} and that the receiver’s partition types are either P1 =

{{m1}, {M \ {m1}}} or P2 = {{m2}, {M \ {m2}}}, with equal probability. Types in the

low step always send m0. Types in the high step randomize uniformly over m1 and m2.

Thus when a Pi type observes {M \ {mi}} he does not know whether this is the result

of a low-step sender having sent m0 or a high-step sender’s randomization having failed to

result in mi. This scheme is analogous to having an error probability of 1
2

in BBK. Higher

error probabilities can be simulated as follows: Let M = {m0,m1,m2,m3}. There are three

equally likely receiver types Pi = {{mi}, {M\{mi}}} i = 1, 2, 3. Types in the low step always

send m0. Types in the high step randomize uniformly over m1,m2 and m3. This scheme is

analogous to having an error probability of 2
3

in BBK. Finally, lower error probabilities can

be simulated as follows: Let M = {m0,m1,m2,m3}. There are three equally likely receiver

types Pi = {{mi,mi+1}, {M \ {mi,mi+1}}} i = 1, 2, 3, where addition is mod3. If the high-

step sender randomizes uniformly over over m1,m2 and m3, this scheme is analogous to

having an error probability of 1
3

BBK. It should be clear now how all two step equilibria

with rational error probabilities in BBK can be simulated with private information about

the receiver’s language ability.

The following result extends these ideas to all error probabilities and all BBK front-

loading equilibria.

Proposition 7 With a uniform type distribution and quadratic preferences, there exists a

message space M and an availability distribution πR on the set of partition types of the

receiver such that for every b > 0 there is an equilibrium in the corresponding game that

attains the efficiency bound for communication equilibria.

Proof: We will first show that there exists a message space M such that for every b there

is a πR and and corresponding equilibrium with the desired property.

Suppose that the optimal BBK front-loading equilibrium has K steps, Θ1, . . . ,ΘK and

that the associated error rate is ε(b). Denote the finest partition of a set S by F(S). Let M̃

be the unit square, and for any α ∈ [0, 1] define

M̃α :=

{
(x, y) ∈ M̃

∣∣∣∣x ∈ ((α− ε(b)

2

)
(mod1),

(
α +

ε(b)

2

)
(mod1)

)}
,
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M = M̃ ∪ {m0}, Mα = M̃α ∪ {m0}, Pα = F(M \Mα) ∪ {Mα}, and let α be drawn from a

uniform distribution on [0, 1]. The realization of α determines the receiver’s partition type

Pα.

To replicate the outcome from the optimal BBK front-loading equilibrium, consider the

following sender strategy: Select K − 1 distinct values y2, . . . , yk ∈ [0, 1] and fix x ∈ [0, 1].

Sender types in the lowest step, Θ1, send message m0 and types in step Θk with k > 1

send message (x, yk). Since all α are equally likely, the sender cannot foresee or control

which pairs of messages (x, y) the receiver can distinguish from m0, because they belong to

M̃ \M̃α, and which ones he cannot distinguish from m0, because they belong to M̃α. Observe

that given this strategy of the sender regardless of the value α, a receiver with partition type

Pα will receive a message {Mα} with probability ε(b) when a message other than m0 is

sent. Messages sent by any step Θk with k > 1 are understood by the receiver as sent

with probability 1− ε(b) and otherwise the receiver cannot distinguish these messages from

m0. Thus, exactly as in the optimal BBK front-loading equilibrium, messages sent by types

in the lowest step induce the intended action with probability one, and for any k > 1 the

message sent by types in step k is correctly identified as coming from that set of types with

probability 1− ε(b) and otherwise pooled with the message sent by the step Θ1. Therefore,

for all messages sent and received in the candidate equilibrium, both sender and receiver face

the exact same incentives as in the optimal BBK front-loading equilibrium. Finally, assume

that the receiver believes that any other (off-equilibrium) message was sent by type t = 0.

Then no type will want to send this message because in any equilibrium that implements the

efficiency bound for communication equilibrium (including the BBK equilibrium) type t = 0

induces his ideal action. Therefore, we have an equilibrium that induces the same outcome

as the optimal front-loading BBK equilibrium.

Finally, we can make both the messages space M and the receiver’s availability distri-

bution πR independent of b by replicating the above construction for every b, thus adding

a dimension to the message space, making it the union of the unit cube and the always

available message m0. �

4 Conclusion

What is the meaning of the expression “dark red”? A sensible answer might be that it

corresponds to a particular RGB value (in the case of “dark red” (139,0,0)) or to a well

defined set of such values when used in a natural language that has only finitely many color

words. In this paper we point out that in general one may want to think of meaning in more

general terms to allow for example “dark red” to mean “I am saying ‘dark red,’ but keep in
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mind that this may only be due to the fact that I am lacking the word for maroon.”8 This

drives a wedge between the indicative and imperative meanings of messages. The same is true

for the related phenomenon that the recipient of a message may be unable to discriminate

this message from other messages, e.g. “dark red” from “maroon.” If language is imperfectly

shared in this sense, there may be different perceptions of which obligations are entailed by

agreements or contracts.

8The RGB for maroon is (128,0,0).
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