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Abstract
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tional optimal tax formulas. In addition, search frictions modify the mapping from
the underlying talent distribution to the observed income distribution. Quantitative
analysis that takes this into account implies that frictions create a motive for mod-
erately lower marginal income tax rates, but a higher tax wedge between work and
non-work.

JEL classification: D31, H21, H24, J60, J62, J65.
Keywords: Taxation, frictional labor markets, redistribution.

*We thank seminar participants at Aarhus, Bocconi, Bristol, CMU, Carlos III de Madrid,
CERGE-EI, CREI, CREST, Essex, EUI, Harvard, Koç, LMU, Queen Mary University London, Rice,
Sabanci, St Andrews, Tinbergen Institute, Universitat Autonoma de Barcelona, and audiences
at various conferences and workshops. We especially thank Laurence Ales, Javier Fernandez-
Blanco, Melvyn Coles, Davide Debortoli, Piero Gottardi, Nathan Hendren, Marek Kapic̆ka, Per
Krusell, Iacopo Morchio, Chris Moser, Nicola Pavoni, Edouard Schaal, Ctirad Slavík and Stefanie
Stantcheva for helpful comments and suggestions.

†csleet@ur.rochester.edu. Department of Economics, University of Rochester, Rochester, NY
14610, USA.

‡hakki.yazici@bristol.ac.uk. 12 Priory Rd, Bristol BS8 1TU, United Kingdom.

1

csleet@ur.rochester.edu
hakki.yazici@bristol.ac.uk


1 Introduction

A worker’s pay depends upon the surplus that she generates in production and

the share of that surplus that she captures as income. She may be poor because

she has low marketable talent or because she is matched with a firm that ex-

tracts most of the surplus that she produces (or both). The opportunity to search

and (re)match with a firm that pays more and extracts less creates job ladders

for equally talented workers. We explore the optimal design of tax and benefit

policies in the face of both the ex post risk of climbing, falling off or getting stuck

on the job ladder and the ex ante risk of being born with more or less talent.

Our framework blends salient elements of the canonical frictionless optimal tax

model (effort choice and talent variation) with those of frictional search models

(on and off the job search, vacancy creation). In this setting, we evaluate tax

incidence, derive optimal tax equations and quantitatively evaluate tax designs.

The canonical optimal tax model supposes a frictionless labor market in which

all worker income variation is attributable to talent heterogeneity and intensive

margin effort choice. Workers immediately find work and are paid their marginal

product. In this setting, tax design trades off redistributive benefit against dis-

tortion on the effort margin. If firm technologies exhibit decreasing returns to

scale, general equilibrium effects are present: Higher income tax rates discour-

age labor supply, raise wages and reduce both profits and profit tax revenues.

However, assuming the policymaker can tax profits, terms describing such gen-

eral equilibrium “profit squeeze” effects cancel from optimal tax equations.

Search frictions modify the transmission from income tax rates to worker and

firm equilibrium income distributions. Higher labor income tax rates deter work

and compel firms to pay more and extract less as they compete for workers. In-

come is shifted from the profit to the labor earnings base, where it is (optimally)

taxed at a lower rate, thus suppressing tax revenues. However, such equilibrium

effects impact the extensive rather than the intensive return to working. They

no longer cancel from optimal tax equations. In addition, tax-induced equilib-

rium profit squeezes suppress vacancy and job creation. Absent direct tax or

subsidization of vacancies, the desirability of such suppression depends on the

efficiency of job creation at the underlying equilibrium. Complicating all of these

effects, labor earnings are not uniformly enhanced by the profit squeeze: within

talent markets, those at the bottom benefit more; across talent markets, the

higher talented are the prime beneficiaries.
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To elucidate these impacts of tax variation and derive optimal tax designs for

frictional settings in the most transparent way, we focus in the main text on

affine income tax (and benefit) designs and proceed in steps. Elaborations of for-

mulas for nonlinear tax designs are supplied in the online appendix. We begin

our analysis with a model that embeds a simple Burdett and Mortensen (1998)

job ladder structure into an otherwise standard public finance framework. The

model features heterogeneous workers distributed across talent markets, an in-

tensive labor supply margin, taxes and search both on and off the job. Workers

experience “market luck” unrelated to their talent: job destruction shocks con-

sign them temporarily to unemployment, while randomly arriving opportunities

to climb job ladders permit them to find less extractive employers.1 We initially

treat the job finding rate as a parameter. The policymaker is assumed to ob-

serve (and tag) the current employment status (working or not working) and the

income of the worker, but nothing else. It is, thus, constrained to select a tax

function applied to the incomes of those who are in work and a benefit paid to

those who are not. Firm profit is optimally taxed at 100%. Within this framework

firms are naturally modeled as extracting a component of the surplus generated

by a worker. We call this a “job price”. In each talent market, tax and bene-

fit policy determines a minimal utility that firms must deliver to workers and a

corresponding maximal “job price” that they can extract. In choosing a job price

below this maximum, firms must trade off profit extracted from each worker

against the number of workers attracted and retained. Some firms make high

job price offers, but attract and retain a small number of (lower earning) workers.

Others make low job price offers, but attract and retain many (higher earning)

workers. Thus, within-talent market job ladders and frictional wage dispersion

emerge.

Increments to the income tax rate directly lower the return to work relative

to inactivity. This, in turn, suppresses the maximal and all other job prices that

firms can extract within each talent market. Such suppression shifts income

from the profit to the labor earnings tax base. Since the latter is optimally taxed

at a lower rate than the former this tax base shifting dampens the additional

revenue generated by an income tax increment. However, in contrast to the fric-

tionless model, because tax-induced general equilibrium effects modify job prices

1This combination of assumptions enriches the standard treatment of the labor market in
public finance models and aligns with both recent microeconometric work that incorporates on-
the-job search and macroeconomic work that stresses the role of on-the-job search in reconciling
observed wage dispersion with the short duration of job search and unemployment.
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and the return to a job, rather than the return to effective labor, they do not can-

cel from optimal tax equations.2 To the extent that the revenues generated by

income tax rate increments are dampened by general equilibrium effects in the

frictional model, a force for lower optimal income tax rates is introduced. How-

ever, the tax-induced suppression of job prices is not uniform across workers.

Within talent markets, it dissipates over the length of the job ladder implying

intra-talent market redistribution from high to low earners. On the other hand,

it strengthens with talent, implying inter-talent market redistribution from low

to high earning talents. The overall impact of the profit squeeze depends on the

balance of these effects. If the first redistributive effect is large, then a policy-

maker seeking to redistribute from high to low earners may favor greater income

taxation.

In the environments described so far matching is exogenous and the supply

of vacancies fixed. In frictional models with endogenous matching, a fraction of

job price revenue is used by firms to pay vacancy costs and finance job creation.

Firms internalize the costs of vacancy creation, but their assessment of the ben-

efits (an expected job price, exclusive of the negative externalities they create for

other firms) deviates from that of the planner (additional expected tax revenues

and utility to previously unemployed job finders, inclusive of externalities). Fail-

ure to internalize the tax and worker benefits of additional jobs causes firms to

under-post vacancies, failure to internalize the externalities linked to congestion

on the new jobs margin and poaching from other firms on the pre-existing jobs

margin causes firms to over-post. A tax-induced profit squeeze suppresses va-

cancy and, hence, job creation. Such suppression is desirable if vacancy creation

is excessive and undesirable otherwise. To incorporate this aspect we utilize a

Burdett-Mortensen model augmented with endogenous matching. In this set-

ting, optimal tax formulas are modified to include the net marginal benefit or

cost associated with vacancy suppression.

To assess the quantitative implications of labor frictions for optimal policy,

we calibrate our model with endogenous matching to US income distribution

data. This requires inverting the map from the underlying talent to the observed

income distribution and, hence, disentangling that part of income variation at-

tributable to talent and that part attributable to frictions. In frictionless models,

such inversion is straightforward. In frictional models it is significantly compli-

2In particular, they do not elicit a stimulus to effective labor via higher pre-tax wages and an
off-setting boost to revenues as occurs in the frictionless model.
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cated by the intra-talent market dispersion of earnings along job ladders. We

develop a procedure for inverting the distributional map in our frictional setting.

The procedure draws on techniques for solving integral equations and embeds

an integral inversion step inside a larger fixed point problem. We then com-

pute an optimal affine income tax and benefit system for the calibrated frictional

model. To explore the implications of abstracting from labor market frictions, we

recalibrate and recompute optimal policy under the assumption that the data

was generated by a frictionless model. We find that a utilitarian policymaker in

the calibrated frictional economy sets the marginal income tax rate to 31.7% and

the employment-non employment tax wedge to $6912 per annum in 2017 dol-

lars.3 In the frictionless model, the optimal marginal income tax rate increases

moderately to 35.7%, while the employment-non employment tax wedge falls

to $3360. We decompose the various countervailing forces underpinning these

results. Specifically, we evaluate how, under alternative assumptions about fric-

tions, varied forces contribute to the overall social marginal benefit of adjusting

tax function parameters as they sweep over intervals containing the optimum.

With respect to the marginal income tax rate, we find that the main distinction

between environments is the lower redistributive benefit of tax rate increments

in the frictional economy. Although the marginal costs (loss of tax revenues

and worker rents) and benefits (correction of externalities amongst firms) from

suppressing vacancies via the income tax rate in the frictional setting are sep-

arately significant the two largely offset and together are not large. In contrast,

the marginal benefit of raising the employment-non employment tax wedge is

greater under the assumption of frictions and this is underpinned by the benefit

of suppressing vacancies in this case.

The remainder of the paper proceeds as follows. After a brief literature review,

Section 2 considers affine tax design in a benchmark frictionless model. The sec-

tion highlights the cancellation of general equilibrium effect terms from optimal

tax equations and the irrelevance of the “frictionless” profit squeeze for the struc-

ture of these equations. Section 3 introduces a basic Burdett-Mortensen model

with an intensive effort margin, elaborates tax incidence on firm and worker in-

comes, and derives optimal tax equations for this case. In Section 4 tax design

in a frictional model with endogenous matching and job creation is considered.

Section 5 calculates an optimal affine tax and benefit scheme for a calibrated

3The employment-non employment tax wedge τ0 = T0 + b is the sum of the affine income tax
function’s intercept at zero income, T0, and the unemployment benefit, b.
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frictional model with endogenous matching and job creation. It contrasts results

with those obtained under the assumption that the data is generated by a fric-

tionless model. Section 6 concludes. Proofs, calibration details and elaboration

of results for the nonlinear income tax case are provided in appendices.

Literature The literature on optimal (nonlinear) income taxation originates with

Mirrlees (1971). It was recast by Saez (2001) in terms of tax elasticities of income

and attributes of the income distribution. These papers and most other contri-

butions to the optimal income tax literature adopt a frictionless specification of

the labor market in which there is a single market (and price) for effective labor.

Scheuer and Werning (2016) extend this analysis to settings with a non-linear

equilibrium pricing function for (superstar) labor and show that standard opti-

mal tax formulas apply. These results hold independently of the presence of firm

profits, provided profit taxation is unconstrained. Standard formulas for taxes

are modified when profit taxation is constrained (Munk (1978)) or when there are

multiple (frictionless) labor markets and the policymaker is constrained to use a

single tax function that cannot condition on the labor market in which income

is earned (Stiglitz (1982), Rothschild and Scheuer (2013), Ales and Sleet (2015),

Sachs, Tsyvinski, and Werquin (2020)).

A smaller literature considers tax design in situations with search frictions.

Boone and Bovenberg (2002) explore how taxes can be used to correct ineffi-

ciencies in settings with random (off-the-job) search, Nash bargaining between

firms and workers and either free entry or a limited supply of firms. There is

no on-the-job intensive effort margin, but unemployed workers exert costly ef-

fort in job search. Redistributive considerations are omitted. Hungerbühler et al

(2006) augments the framework of Boone and Bovenberg (2002) with variation in

worker talent (but omits search effort) and reinstates redistributional concerns.

In this setting, workers are distributed over endowments of effective labor, which

they costlessly supply to their employer if matched. In both Boone and Boven-

berg (2002) and Hungerbühler et al (2006), income taxes are transmitted to job

prices and firm quasi-rents via a Nash bargain. In the latter optimal (nonlinear)

income taxation redistributes from more to less talented workers, but also de-

ters workers from “bargaining aggressively”. Thus, high marginal taxes distort

the economy by encouraging too much job creation and output. Further varia-

tions on and extensions of these models are contained in Boone and Bovenberg

(2006) and Lehmann et al (2011). Golosov et al (2013) consider policy design
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in a model with directed search and no ex ante talent heterogeneity. Our paper

complements this literature by analyzing optimal income taxation in an environ-

ment featuring both on and off the job search, ex ante talent heterogeneity and

an intensive effort margin. Our focus on on-the-job search is partly motivated by

the widespread adoption of the on-the-job search assumption in the structural

job search literature.4 It is also partly motivated by the observation of Hornstein

et al (2011) that large unemployment to work transitions and the relatively short

duration of unemployment is inconsistent with much frictional wage dispersion

in models that only feature off-the-job search, whether random or directed, and

have plausible implications for the value of non-market time and for worker dis-

count factors.

2 Affine tax design in a frictionless economy

As a precursor to analysis of the income-tax induced profit squeeze in frictional

settings, we first review its operation and implications for tax design in a bench-

mark frictionless setting. In this setting, we assume a decreasing returns to scale

production technology. Wages are then determined endogenously with pre-tax

profits accruing to firm owners. Increments to labor income taxes reduce labor

supply, raise wages, and lower firm profit. This squeeze spills over to the profit

tax base. However, terms describing it cancel from optimal tax equations leaving

standard (exogenous wage) tax formulas intact. This result does not survive the

introduction of frictions.

Environment Workers are partitioned across talents θ ∈ Θ = (θ, θ) ⊂ R+ ac-

cording to a distribution K with density k. A worker of talent θ who consumes

c and supplies effective labor z obtains payoff U (c, z, θ), with U : R2
+ ×R → R

increasing in c, decreasing in z, and strictly concave and twice continuously dif-

ferentiable in (c, z). In addition, U has a marginal rate of substitution − ∂U
∂c

/
∂U
∂z

that is decreasing in θ and, hence, satisfies the usual single crossing property.

Let x = wz denote a worker’s pre-tax income, with w the pre-tax wage, and let

T[x] = T0 + τx denote an affine income tax. It is convenient to formulate the pol-

4Rich structural job search models featuring on-the-job search are analyzed by Bontemps et
al (2000), Postel-Vinay and Robin (2002), Lise et al (2016) amongst many others. Although these
papers contain elements not present in ours, they all share the Burdett-Mortensen model as the
kernel of their more elaborate frameworks.
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icy problem in terms of after-tax quantities and then back out implications for

taxes. To that end let ξ = −T0 denote a worker’s after-tax lump sum or virtual

income and ω = (1 − τ)w the after-tax wage. Let ψ = (ξ, ω) denote the cor-

responding after-tax income-wage pair. The labor supply problem of a θ-talent

worker is then:

z(θ; ψ) := arg max
z

U (ξ + ωz, z, θ) . (1)

Competitive firms operate a technology F : R+ → R+ that converts effective labor

to output, with F increasing, concave and differentiable in effective labor. Given a

wage w, a representative competitive firm hires effective labor to maximize profits

F(z)− wz. The policymaker faces an exogenous revenue requirement: G ∈ R+.

We adopt the conventional assumption of 100% taxation of profit, as in Dia-

mond and Mirrlees (1971).5 It is easy to verify that ψ = (ξ, ω) is consistent with a

competitive equilibrium in which workers maximize utility, firms maximize prof-

its, profits are taxed at 100% and the policymaker’s budget is in surplus if and

and only if the following resource constraint holds at the utility maximizing labor

supply function z(·; ψ):

−ξ + F
(∫

Θ
z(θ; ψ)k(θ)dθ

)
−ω

∫
Θ

z(θ; ψ)k(θ)dθ ≥ G. (2)

Given such a ψ, the corresponding income tax parameters (T0, τ) and equilibrium

wage w are recovered from definitions and the firm optimality condition:

T0 = −ξ and
∂F
∂z

(∫
Θ

z(θ; ψ)k(θ)dθ

)
= w =

ω

1− τ
. (3)

Policy problem and optimal tax equations A policymaker maximizes a Γ-

Pareto weighted integral of worker utilities. We impose no restrictions on Γ at

this point, but later restrict attention to non-increasing weighting functions. The

policymaker’s choice problem, cast in terms of ψ = (ξ, ω), is:

max
ψ=(ξ,ω)

∫
Θ

Γ(θ)U (ξ + ωz(θ; ψ), z(θ; ψ), θ) k(θ)dθ (4)

5This assumption simplifies, but is not essential for our analysis. Our results proceed if
profits are distributed amongst households and profit taxes are optimally set to levels below
100%. The essential requirement is that the policymaker has no incentive to use income taxation
to extract resources from firm owners by manipulating pre-tax wages.
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subject to the resource constraint (2). Suppose for now that all workers make an

interior effective labor effort choice (i.e. all work) and that each z(·; ψ) is locally

smooth at the optimum. Omitting explicit dependence of variables on policy ψ

and formatting the policymaker’s first order condition with respect to ω in terms

of incomes x implies:

−
∫

R+

{
M(x)

Λ
− τ

1− τ
η(x)− 1

}
xh(x)dx =

τ

1− τ

∫
R+

xE c
x,ω(x)h(x)dx, (5)

where Λ is the optimal multiplier on the resource constraint and, for income x,

M(x) is the marginal social welfare weight, − η(x)
1−τ is the impact of an extra unit of

lump sum income on pre-tax earnings, h(x) is the earnings density, and E c
x,ω(x)

is the compensated earnings elasticity. This formulation replicates the classic

organization of Diamond (1975), with the left hand side giving the redistribu-

tive benefit and right hand side the marginal deadweight loss associated with

a reduction in the after-tax price of labor. The form of the optimal tax equa-

tion (5) is not affected by the presence of profit or endogenous prices, though

these elements will generally affect the values of h, η and E c
x,w via their impact on

allocations.6

Abstracting from income effects and using ω = (1− τ)w, expression (5) can be

recast as a first order condition for τ:(
− 1 +

1− τ

w
∂w
∂τ

){ ∫
R+

{M(x)
Λ
− 1
}

xh(x)dx +
τ

1− τ

∫
R+

xE c
x,ω(x)h(x)dx

}
= 0. (6)

The term
(
− 1 + 1−τ

w
∂w
∂τ

)
in (6) combines the direct negative effect of a tax rate

increment on after-tax wages (−1) with the indirect general equilibrium effect

(1−τ
w

∂w
∂τ ). Thus, general equilibrium effects modify the transmission from tax rates

to after-tax wages, but not the requirement that the latter are set to balance re-

distributive and incentive costs and benefits. Under standard conditions, these

general equilibrium effects involve a profit squeeze: a higher tax rate depresses

labor supply, raises pre-tax wages, and reduces profit. Income is correspond-

ingly shifted from the high tax profit to the low tax labor earnings base. This

reduces tax revenues and affects the distribution of after-tax incomes: funding

for lump sum transfers falls, while pre-tax wages rise, the latter benefiting higher

earners. The term 1−τ
w

∂w
∂τ

∫ {M(x)
Λ − 1

}
xh(x)dx in (6), describes the welfare impli-

6This logic extends to much more complex environments with non-linear tax systems and
competitive, but non-linear pre-tax pricing of effective labor, see Scheuer and Werning (2017).
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cations of this redistribution. The general equilibrium increase in pre-tax wages

also elicits a labor supply response that mitigates the direct behavioral impact

of taxes on revenues. This is described by 1−τ
w

∂w
∂τ

τ
1−τ

∫
xE c

x,ω(x)h(x)dx in (6). Col-

lectively, these terms are a scaled version of the welfare impact of an after-tax

wage perturbation and so cancel from (6) to yield (5). In later frictional settings,

general equilibrium effects will also imply firm-level profit squeezes. However,

they will not operate via pre-tax wages and, in particular, they will not induce a

mitigating labor supply response. Such effects will not cancel from optimal tax

equations in these settings.

Exogenous and endogenous inactivity; Adding benefits for non-work To fa-

cilitate comparison with the frictional economy that follows, it is useful to adjust

the benchmark model in several ways. First, assume that a fraction of agents

1− µ at each talent are exogenously assigned to inactivity. In our basic frictional

model to follow this assignment is attributed to the presence of frictions. The

second adjustment is an extension of the tax system to include a benefit for non-

work b. The tax-benefit system is then described by a triple (b, T0, τ). It is useful

to reformat this as a basic income b paid to all agents, a tax τ0 = T0 + b paid by

agents conditional on working, but independent of hours worked and a marginal

income tax τ as before. The tax τ0 operates on the extensive margin deterring

participation, while τ operates on the intensive margin. The third adjustment

is to explicitly incorporate an extensive margin decision not to work. Under our

assumptions a talent inactivity threshold θ̃ ∈ [θ, θ) emerges below which workers

do not work and above which they do. An interior threshold satisfies:

U
(
b− τ0 + ωz(θ̃; ψ), z(θ̃; ψ), θ̃

)
= U(b, 0, θ̃). (7)

The right hand side of (5) is then augmented to include the tax revenues obtained

by activating the marginal talent through a higher after-tax wage: τ0+τx̃
ω

θ̃k(θ̃)
1−K(θ̃)

Eθ̃,ω,

with Eθ̃,ω the (negative) elasticity of the threshold θ̃ with respect to ω and x̃ =

wz(θ̃, ψ). Specifically,

−
∫

R+

{
M(x)

Λ
− τ

1− τ
η(x)− 1

}
xh(x)dx

=
∫

R+

τ

1− τ
xE c

x,ω(x)h(x)dx +
τ0 + τx̃
1− τ

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,ω, (8)
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with h the earnings density conditional on employment. A related optimal tax

equation holds for the participation tax τ0:

−
∫

R+

{
M(x)

Λ
− τ

1− τ
η(x)− 1

}
h(x)dx =

τ0 + τx̃
1− τ

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,τ0
, (9)

where Eθ̃,τ0
is the (negative) elasticity of threshold θ̃ with respect to τ0.

3 Affine income tax design in frictional economies

with exogenous matching

Frictions prevent workers from immediately finding work and, by impeding com-

petition, from extracting all of the surplus created when they do. Some surplus

accrues to firms as profit or as payment towards an upfront job creation cost.

Surplus division is determined in general equilibrium and is shaped by tax pol-

icy since this impacts a worker’s return to work relative to its outside options.

Moreover surplus division may be heterogeneous reflecting a worker’s position

on the job ladder or relative bargaining power. Heterogeneity in surplus division

confounds policymaker attempts to control both a worker’s lump sum income

and after-tax wage with an (affine) income tax.

To focus analysis on the profit squeeze channel, we first introduce results via

a basic Burdett-Mortensen (bBM) model. The model features on and off the job

search, elastic labor supply, tax policy, and exogenous job matching. It is the

kernel of many contributions to the structural search literature and, hence, is

a natural framework to focus upon. In macroeconomics, it has been used to

reconcile the short duration of unemployment with the extent of frictional in-

come dispersion. In later sections we augment the bBM model with endogenous

matching and vacancy posting.

3.1 Environment

Time is continuous and attention restricted to steady state equilibria and time

invariant policy choices. Policy consists of a benefit b paid to unemployed work-

ers and an affine tax function T[x] = T0 + τx applied to employed workers. It will

(again) be convenient to summarize a policy as a tuple P = (b, τ0, τ), where b is

a basic income received by all, τ0 = T0 + b is a tax contingent on working and τ
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is the marginal income tax. Workers and firms trade effective labor for income

in frictional labor markets segmented by talent θ. On-the-job search in combi-

nation with frictional matching creates a steady state equilibrium distribution of

workers over job prices.

Workers Employed and unemployed workers are partitioned across talent spe-

cific markets θ. Firms own simple linear technologies that map effective labor

z one-for-one into output. They make take-it-or-leave-it “job price” offers q to

workers. A worker of talent θ that locates and accepts a job price offer q and

supplies effective labor z earns pre-tax income x = z − q. Given the tax policy

described above, the worker selects effective labor z to solve:7

V(q, θ;P) := max
z

U (b− τ0 + (1− τ)(z− q), z, θ) . (10)

Remark 1. In the standard bBM model on-the-job effective labor is abstracted

from and the firm is modeled as posting an income rather than a job price offer.

This is equivalent to the firm posting a job price and the worker receiving the

residual surplus as income. In our extended model with effective labor, job price

posting by firms and effective labor selection by workers aligns more closely with

the frictionless framework from the preceding section. The function V(·, θ;P) in

(10) defines the after-tax Pareto frontier of job prices and worker utilities avail-

able to matched firm/worker pairs of talent θ given policy P . Thus, firm job price

posting and worker effective labor selection is equivalent to the posting of an

income/effective labor contract by the firm that secures a point on this Pareto

frontier. Formulated in this way, the Burdett-Mortensen framework supplies a

particular model of job price and, hence, surplus division that attains the after-

tax Pareto frontier. Other, e.g. bargaining, models supply alternative division

arrangements.

Firms are distinguished by the job prices that they charge and, hence, the ex-

tractiveness of their behavior. Equilibrium variation in extractiveness generates

an offer distribution of job prices F[q|θ,P ] within each talent market given P . A

worker in talent market θ makes contact with a (new) firm with probability λ in-

7Our maintained assumption is that workers and firms match, agree on a surplus division
and then workers supply effective labor and produce. Surplus is divided in line with the worker-
firm agreement. This contrasts with models in which workers exert effort in skill formation or
search prior to matching. In addition, we abstract from informational problems between workers
and firms.
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dependent of employment status or talent. Conditional on contact, this firm and

its job price q are drawn from F[·|θ,P ]. Acceptance of q followed by selection of

effective labor implies a worker payoff V(q, θ;P). An employed worker will accept

a job at a newly encountered firm (and climb the job ladder) if that firm offers a

lower job price and, hence, higher V(q, θ;P) than that provided by its current em-

ployer. An unemployed worker will accept if the implied payoff exceeds that from

unemployment: V(q, θ;P) > U(b, 0, θ).8 Central to subsequent analysis is the

maximum possible job price in each talent market given a policy: q(θ;P). This

job price makes a worker indifferent between employment and unemployment.

It satisfies:

V(q̄(θ;P), θ;P) := max
z

U (b− τ0 + (1− τ)(z− q̄(θ;P)), z, θ) = U(b, 0, θ). (11)

Expression (11) connects the maximal job price in each talent market to policy.

As elaborated below, this connection is central to the transmission of tax policy

to firm profit in this environment.

Jobs are destroyed and matched workers returned to unemployment at an

exogenous rate δ. The ratio λ/δ parameterizes frictions in the bBM model. In

the limit as λ/δ → ∞, the model approaches the frictionless one.

Firms Firms post and commit to a job price q in a talent market θ. Let N(q, θ;P)
denote the steady state population of workers at a firm posting job price q in

talent market θ given policy P . Total firm profits at such a firm are:

π(q, θ;P) = N(q, θ;P)q. (12)

Firms select a θ (the talent market in which they post) and a q (the job price that

they post in that talent market) to maximize π(·, ·;P).

3.2 Equilibria and tax incidence

No firm enters a market in which the maximal job price that a worker will accept

is negative. Non-negativity of a job price defines an activity threshold as in (7).

We refer to talent markets θ ∈ (θ̃, θ] as active and talent markets θ ∈ [θ, θ̃] as

inactive. All workers are unemployed and, effectively, out of the labor force in in-

8Note that since contact rates are independent of employment status, the decision to accept
or reject a job offer is static and depends only on current utility (or job price).
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active talent markets. The employment rate in these markets is µ = 0. Equating

steady state flows of workers into and out of employment in active talent markets

yields the employment rate:

µ =
λ/δ

1 + λ/δ
. (13)

In addition, equating steady state worker flows into and out of firms charging a

job price of less than q in talent market θ implies a distribution of workers over

job prices of:

G[q|θ;P ] = 1 + λ/δ

1 + (λ/δ )F[q|θ;P ]F[q|θ;P ]. (14)

Finally, equating flows at firms charging a job price q in market θ implies a steady

state employment at such firms of:

N(q, θ;P) = λ/δ

(1 + (λ/δ )F[q|θ;P ])2
k(θ)
m(θ)

, (15)

where m(θ) is the density of firms in active market θ. It is convenient to express

equilibrium job prices q as a function of worker talent θ and quantile i ∈ [0, 1]
in G[q|θ;P ]. That is to formulate job prices as q(i, θ;P), where this function is

defined implicitly by i = G[q(i, θ;P), θ;P ]. Combining (12), (14) and (15) yields the

explicit equilibrium job price function of this form:

q(i, θ;P) =
(

1
1 + (λ/δ )(1− i)

)2

q(θ;P). (16)

We interpret the quantile argument i as indexing the extractiveness of the firm

with which the worker is matched. Thus, the job price function (16) relates job

prices to the extent of frictions λ/δ , the extractiveness index i, and the maximal

job price q(θ;P). Taxes and benefits perturb the entire θ talent market job price

function via the maximal job price q(θ;P). In particular, from (11), perturbations

to tax rates are transmitted to the maximal job price in talent market θ according

to:
∂q(θ;P)

∂τ
= −x(θ;P)

1− τ
and

∂q(θ;P)
∂τ0

= − 1
1− τ

, (17)

where x(θ;P) is the income earned by a θ talent accepting job price q̄(θ;P) given

P and, hence, is the lowest income earned by a θ talent. The direct impact

of an increase in the income tax rate τ is to reduce a worker’s utility. How-

ever, the outside option of unemployment sets a floor on utility from work. To

continue to attract workers a firm charging q(θ;P) must reduce its job price to
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fully compensate the worker for the additional tax x(θ;P) that it pays. Conse-

quently, ∂q(θ;P)
∂τ = − x(θ;P)

1−τ . A similar logic underpins the expression ∂q(θ;P)
∂τ0

. Tax

induced perturbations to maximal job prices propagate through the job price

ladder within a talent market. For the case of τ :

∂q(i, θ;P)
∂τ

=

(
1

1 + (λ/δ )(1− i)

)2 ∂q(θ;P)
∂τ

. (18)

Intuitively, firms cutting their job price from q(θ;P) in response to a tax rate

increment reduce recruitment and retention at other firms previously charging

job prices slightly below q(θ;P). These other firms respond by lowering their job

prices, which elicits a round of job price cuts at firms charging job prices slightly

below theirs. In this way the impact of a tax rise is transmitted through the

entire job price distribution according to (18).

3.3 Implications for optimal tax design

In the frictionless setting, the policymaker could directly control the after-tax

earnings schedule of all workers and it was possible to formulate the policy-

maker’s problem in terms of after-tax lump sum income (possibly conditioned

on employment status) and an after-tax effective labor price. In the current fric-

tional model, a worker’s after-tax lump sum income conditioned on employment,

but before exertion of effective labor is: b− τ0 − (1− τ)q. While the policymaker

can influence the distribution of job prices through taxation, it now lacks the

tax instruments to fully control them and, hence, after-tax lump sum income

conditioned on employment. It is convenient now to write the policymaker’s

problem directly as a function of those variables that it can fully control, taxes

and benefits P = (b, τ0, τ).9 We continue to assume 100% taxation of profit. The

policymaker’s problem is:

max
P

∫ θ

θ
Γ(θ)U(b, 0, θ)k(θ)dθ (19)

+ µ
∫ θ

θ̃(P)

∫ 1

0
Γ(θ) {V(q(i, θ;P), θ;P)−U(b, 0, θ)} di k(θ)dθ,

9Worker effective labor is correspondingly redefined with z(i, θ;P) standing for z(θ; b− τ0− (1−
τ)q(i, θ; T), 1− τ).
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subject to the resource constraint:

−b + µ
∫ θ

θ̃(P)

{
τ
∫ 1

0
{z(i, θ;P)− q(i, θ;P)}di + τ0

}
k(θ)dθ ≥ G.

Throughout the remainder of the paper we assume that Γ is non-increasing and

that the policymaker weakly favors low θ types. Deriving the first order condition

for τ, reformatting in terms of incomes x and suppressing the policy argument P
in notation gives:10

−
∫

R+

E
[ {M

Λ
+

τ

1− τ
η − 1

}{
x + (1− τ)

∂q
∂τ︸ ︷︷ ︸

Profit squeeze
redistributive term

}∣∣∣x]h(x)dx

=
τ

1− τ

∫
R+

xE[E c
x,1−τ|x]h(x)dx +

τ0 + τx̃
1− τ

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,1−τ. (20)

The key difference between the frictionless optimal tax equation (8) and (20) is the

appearance of the “profit squeeze redistributive term” involving (1− τ) ∂q
∂τ on the

left hand side of the latter. As discussed previously, income tax rate increments

induce general equilibrium adjustments in job prices. The new term in (20)

describes the societal benefit of such adjustment. Since ∂q
∂τ < 0, an increment

in τ depresses tax revenues by squeezing value added from the profit tax base

(where it is taxed at rate 1) to the labor earnings base (where it is taxed at rate

τ < 1). This squeeze is distributed amongst workers according to ∂q
∂τ . In the

frictionless model, the profit squeeze operated via a rise in the pre-tax wage.

It implied redistribution proportional to income and, by raising the return to

effective labor, a mitigating stimulus to income tax revenues. In contrast in the

current frictional model, the profit squeeze does not affect the return to effective

labor. Its redistributive consequences are not proportional to income and there

is no mitigating stimulus to effective labor and income tax revenues. For these

reasons, general equilibrium profit squeeze effects do not factor out of (20).

Consider first the case of a Rawlsian planner who seeks to maximize income

tax revenues (on behalf of a θ type that does not work). For this policymaker (20)

10See Appendix A for detailed derivation.
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reduces to:∫
R+

E
[{

1− τ

1− τ
η

}∣∣∣∣ x
]

xh(x)dx− τ

1− τ

∫
R+

xE[E c
x,1−τ|x]h(x)dx +

τ0 + τx̃
1− τ

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,1−τ

+
∫

R+

E
[{

1− τ

1− τ
η

}
(1− τ)

∂q
∂τ

∣∣∣∣ x
]

h(x)dx = 0. (21)

That is, the policymaker selects a tax rate that places it at the top of the Laffer

curve. Equation (21) augments the optimal tax equation of a Rawlsian policy-

maker in a frictionless world with the term
∫

R+
E
[{

1− τ
1−τ η

}
(1− τ) ∂q

∂τ

∣∣∣ x
]

h(x)dx
which gives the loss of revenue from the profit squeeze. Since this term is nega-

tive it introduces a force for a lower optimal income tax rate other things equal.11

In non-Rawlsian settings, the distributional implications of the profit squeeze

for employed workers must be incorporated into optimal tax evaluations. These

are not uniform across the income distribution and may work to enhance or

offset the policymaker’s distributional goals. In (20) they are described by:

∫
E
[{

M
Λ

+
τ

1− τ
η − 1

}
(1− τ)

∂q
∂τ

∣∣∣∣ x
]

h(x)dx

= E
[

M
Λ

+
τ

1− τ
η − 1

]
E
[
(1− τ)

∂q
∂τ

]
+Cov

(
M
Λ

+
τ

1− τ
η, (1− τ)

∂q
∂τ

)
,

(22)

where the right hand side decomposes the redistributive implications of the

profit squeeze into two components: the social value of transferring the sum

E
[
(1− τ) ∂q

∂τ

]
from the government’s budget to each employed worker and the so-

cial value of the profit squeeze implied dispersal of these dollars amongst the

employed.

The no income effects case To simplify analysis and purge income effects

consider worker preferences of the form: U(c, z, θ) = W(c − f (z, θ)), with W in-

creasing, concave and differentiable and f convex in z, twice differentiable and

with − ∂2 f (z,θ)
∂z∂θ > 0 and f (0, θ) = 0. Consequently, individual choice and, hence, the

distribution of job prices is not impacted by income effects. The distributional

11Across environments with and without frictions values of the terms in the first line of (21)
are modified. Thus, (21) does not imply that taxes are necessarily lower in frictional economies.
Rather it highlights the need to deduct losses in revenue stemming from the profit squeeze in
evaluations of the marginal benefits of income taxation in frictional settings.
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consequences of the profit squeeze (22) reduce to:

− (1− P)
{

E
[

M
Λ

∣∣∣∣ u
]
− E

[
M
Λ

∣∣∣∣ e
]}

E
[
(1− τ)

∂q
∂τ

]
+Cov

(
M
Λ

, (1− τ)
∂q
∂τ

)
, (23)

where P = K(θ̃) + µ(1− K(θ̃)) denotes employment and E[·|u] and E[·|e] denote ex-

pectations conditioned on unemployment and employment respectively. The first

component of (23) describes the marginal benefit of profit-squeeze induced redis-

tribution from the unemployed to the employed and the second the marginal ben-

efit of such redistribution amongst the employed. Under our assumptions on the

social criterion, the first redistribution term is negative: The squeezing of profits

transfers resources from the policymaker’s budget, where it is partly spent on

basic income to the unemployed, towards the better off employed. This is a force

for lower taxes. Redistribution amongst the employed, the second term in (23),

is more complex. It combines two competing forces that render the sign of this

term ambiguous. These opposing forces are revealed by the job price sensitivity

expressions (17) and (18). On the one hand, tax rate increments deliver larger

job price reductions to lower earners at the bottom of job ladders. These workers

pay the largest job prices, face the most extractive firms, and are fully compen-

sated through job price reduction for any tax increment. On the other hand, the

size of the job price reduction is increasing in x(θ;P) and, hence, is greater for

more talented workers. Thus, within talent markets, redistribution amongst the

employed via tax-induced job price adjustment favors lower earners, while across
talent markets it favors higher earners. Our assumptions on the social criterion

ensure that the first effect contributes positively to Cov
(

M
Λ , (1− τ) ∂q

∂τ

)
and the

social value of the profit squeeze, while the second contributes negatively.

In summary, the frictional profit squeeze redistributes from the unemployed

to the employed, from lower earning talents to higher and from workers in higher

positions on job ladders to those in lower.

Comparing the frictional to the frictionless economies The bBM model in-

troduces an additional profit squeeze term into a frictionless and otherwise stan-

dard optimal tax equation. As described above this term modifies the redistribu-

tive value of a tax increment to a policymaker at a given income distribution.

For a given talent distribution frictions also alter the endogenous income and

marginal social welfare weight distributions. In particular, while introducing ad-

ditional income dispersion within talent markets, by preventing workers from
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securing their full marginal product, they tend to depress income dispersion

across talent markets. The first of these effects lies behind the conventional view

that frictions provide a rationale for greater redistribution. However, this first

effect maybe offset by the second and a counter redistributive profit squeeze.

Evaluation of the overall impact of frictions for tax design requires assessment

both of the newly introduced profit squeeze term and the shift in endogenous

distributions implied by frictions at a given talent distribution.

3.4 Frictional models and profit squeeze

The bBM model supplies a particular structural model of the profit squeeze and

its redistributive impact. However, tax-induced profit squeezes that do not oper-

ate via changes to the effective price of labor and do not cancel from optimal tax

equations as in the frictionless case are a broader feature of frictional models. In

Online Appendix E, we elaborate a model in which surplus division is via Nash

Bargaining and firms are heterogeneous with respect to bargaining power. In

this model, the distribution over firm/worker bargaining power is treated as a

parameter and may be picked to match the pattern of surplus division and profit

squeeze that emerges in bBM.

4 Affine tax design in frictional economies with en-

dogenous matching

The preceding section treated worker/firm matching as exogenous and all job

prices as rent accruing to a fixed population of firms. Since the latter was taxed

at 100%, job prices were valued by the planner using the marginal social value

of public funds and the cost of the marginal fiscal spillover from the profit to

the labor income base valued accordingly. In frictional models with endogenous

matching, the impact of income tax policy on job prices affects incentives to cre-

ate vacancies and, hence, employment. At least some part of a firm’s job price

is used to finance up front vacancy costs and this part is not a rent that can be

expropriated to finance public spending. The social value of job prices is now

linked to the social value of a job. Consequently, an income tax-induced profit

squeeze generates a tradeoff between the societal benefits of job creation and the

extraction of job prices from differently earning workers. The former benefits are
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related to externalities in the hiring and matching process. We develop these

ideas in the context of a Burdett-Mortensen model with endogenous matching.

In addition to externalities familiar from the off-the-job search literature, this

model introduces an additional poaching externality amongst firms. In the ab-

sence of Pigouvian taxes that directly target them, these externalities influence

the value of marginal job creation and, hence, the trade offs facing the income

tax designing policymaker. With an eye on matching the data, we further gener-

alize the Burdett-Mortensen model to allow for “Godfather shocks” that compel

movement down the job ladder.

4.1 Worker and firm decision making

The worker problem is modified to incorporate endogenous contact rates. Let

λ(θ;P) denote the equilibrium job finding rate for workers in talent market θ

given policy P = (b, τ0, τ). As before, conditional on meeting a firm, a worker

draws a job price from F[·|θ;P ]. In addition, the worker draws a Godfather shock

with probability s. If the Godfather shock is not drawn, then, as before, a worker

with current job price q who draws a new job price q′, accepts the new job price

if q′ < q. If the Godfather shock is drawn, then the worker selects between

unemployment and the new job price. It will select the latter if it is below q(θ;P),
the highest job price that makes the worker indifferent between unemployment

and work. The Godfather shock is a simple way of reconciling the model with

high to low income job to job transitions.

The economy is populated by a unit mass of firms whose problems are ex-

tended to accommodate vacancy creation. Let κ(v, θ) = κ̄(θ)v, κ̄(θ) > 0, denote

the cost of creating v vacancies in a talent market.12 Let N(q, θ;P) be the steady

state number of workers per vacancy at a firm charging job price q in talent mar-

ket θ given policy P . Firms select a talent market, vacancy level, and job price to

maximize:

N(q, θ;P)qv− κ(v, θ). (24)

The term N(q, θ;P)q gives the firm’s ex post income per vacancy.

12This specializes κ(v, θ) = κ̄(θ) v1+ρ

1+ρ to the case ρ = 0. Our earlier model corresponds to the
limiting case in which ρ = ∞ and κ(θ, v) = 0 if v ∈ [0, 1] and κ(θ, v) = ∞ if v ∈ (1, ∞). In this earlier
case, firms can costlessly post up to a single vacancy and cannot further scale the arrival rate of
workers to the firm. The case ρ ∈ (0, ∞) is intermediate. In that case job prices are a mixture of
rents and vacancy cost payments.
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4.2 Equilibria and tax incidence

No firm posts vacancies in an inactive talent market defined as before. Talent

markets (θ(p), θ), where θ(P) = max(θ, θ̃(P)), are active and in these firms create

vacancies and post job prices in (0, q(θ;P)]. Equating inflows into unemploy-

ment from job destruction and outflows from matching implies a steady state

employment rate in active talent market θ of:

µ(θ;P) =
λ(θ;P)

/
δ

1 + λ(θ;P)
/

δ
, (25)

where the notation emphasizes the dependence of the employment µ rate on

talent market and policy. To obtain the equilibrium λ and µ functions, we first

derive the steady state number of workers per vacancy at a firm posting job price

q in talent market θ by equating steady state flows:

N(q, θ;P) = ϕ(θ;P)
(1 + ( λ̂(θ;P)

/
δ̂(θ;P) )F[q|θ;P ])2

, (26)

where ϕ is the arrival rate of workers at a vacancy and the job destruction

and finding rates are modified to accommodate Godfather shocks: δ̂(θ;P) =

δ + sλ(θ;P) and λ̂(θ;P) = λ(θ;P)(1− s). Inserting this expression for N into (24),

solving the inner optimization over q and proceeding as in the earlier section

delivers the job price function:

q(i, θ;P) =
(

1
1 + ( λ̂(θ;P)

/
δ̂(θ;P) )(1− i)

)2

q(θ;P), (27)

with i ∈ [0, 1] a measure of firm extractiveness. This function is modified from

earlier sections by the dependence of λ̂(θ;P)
/

δ̂(θ;P) on θ and policy. The first

order condition for vacancies v(θ;P) of a firm in talent market θ is:

κ̄(θ) =
ϕ(θ;P)/δ̂(θ;P)(

1 + λ̂(θ;P)/δ̂(θ;P)
)2 q(θ;P). (28)

To close the model a standard matching technology is assumed: m(v, k(θ)) =
avαk(θ)1−α, with α ∈ [0, 1). Solving for the implied equilibrium contact rates for

workers and firms in terms of vacancies and substituting into (28) generates the
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following implicit expression for v:

(δ + D(θ)v(θ;P)α)2v(θ;P)1−α = E(θ)q(θ;P), (29)

for constants D(θ) and E(θ). Thus, policy impacts vacancies in a given talent

market via its impact on the maximal job price. Tax rate increments squeeze

this price, and, hence, all job prices in the market and via this squeeze reduce

the returns to vacancy posting. This, in turn, reduces vacancies, worker contact

rates, and impacts employment via (25). In particular, (25) implies that for each

θ market the elasticity of µ with respect to 1− τ, Eµ,1−τ, is :

Eµ,1−τ = α(1− µ) · Ev,q · Eq,1−τ,

with Ev,q, the elasticity of v with respect to q supplied by (29) and Eq,1−τ, the

elasticity of q with respect to 1− τ, supplied by (11). In addition, the sensitivity

of the job price function to tax perturbations is modified from (18) to:

∂q(θ)
∂(1− τ)

=

{
1− 2

(
( λ̂(θ)

/
δ̂(θ) )(1− i)

1 + ( λ̂(θ)
/

δ̂(θ) )(1− i)

)
E λ̂
/

δ̂ ,q(θ)

}
q(θ)
q(θ)

∂q(θ)
∂(1− τ)

, (30)

with E λ̂
/

δ̂ ,q(θ) the elasticity of λ̂
/

δ̂ with respect to q in market θ. This sensitiv-

ity incorporates two channels via which tax-induced changes in q(θ) transmit to

the entire intra-talent market job price function. First there is the price cutting

channel encountered in the previous section without endogenous matching and

captured by the term 1 · q(θ)
q(θ)

∂q(θ)
∂(1−τ)

in (30). As before, an increase in taxes com-

pels firms previously charging q(θ) to lower their job prices to continue to attract

workers. This reduces recruitment and retention at other firms previously charg-

ing job prices just below q(θ). These firms respond by lowering their job prices,

which elicits a round of price cutting at firms charging job prices lower than

theirs. In this way the impact of the tax rise travels through the entire intra-

talent job price distribution. A second competition dampening channel captured

by the term −2
(

( λ̂(θ)
/

δ̂(θ) )(1−i)
1+( λ̂(θ)

/
δ̂(θ) )(1−i)

)
E λ̂
/

δ̂ ,q(θ)
q(θ)
q(θ)

∂q(θ)
∂(1−τ)

is now also operative. Down-

ward pressure on job prices deters vacancy creation. This in turn improves

worker retention and mitigates the incentive for firms to compete through lower

job prices. Evaluation of E λ̂
/

δ̂ ,q(θ) and of the competition dampening channel

term reveals that it is dominated by the price cutting channel term.
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4.2.1 The policymaker’s problem

The policymaker’s problem in this setting is:

max
P

∫ θ

θ
Γ(θ)U(b, 0, θ)k(θ)dθ (31)

+
∫ θ

θ̃(P)
µ(θ;P)

∫ 1

0
Γ(θ) {V(q(i, θ;P), θ;P)−U(b, 0, θ)} di k(θ)dθ,

subject to the resource constraint:

−b +
∫ θ

θ̃(P)
µ(θ;P)

{
τ
∫ 1

0
{z(i, θ;P)− q(i, θ;P)}di + τ0

}
k(θ)dθ ≥ G,

where now µ and q depend on θ and P according to (25) and (27) respectively.

Deriving the first order condition for τ and formatting in terms of incomes x
gives:13

−
∫

R+

E
[{

M
Λ

+
τ

1− τ
η − 1

}{
x + (1− τ)

∂q
∂τ

}∣∣∣∣ x
]

h(x)dx

=
τ

1− τ

∫
R+

E[E c
x,1−τ|x]h(x)dx

+
1

1− τ

∫
R+

E
[({

∆U
Λ

+ τx + τ0

}
Eµ,v +

{
Eµ,v −

vN(q)
µ

}
q
)
Ev,1−τ

∣∣∣∣ x
]

h(x)dx,

(32)

where ∆U(i,θ)
Λ := Γ(θ)

Λ {V(q(i, θ;P), θ;P) −U(b, 0, θ)} and the terms Eµ,v = α(1− µ),

Ev,1−τ = Ev,qEq,1−τ, with the latter supplied by expressions in the previous section.

Equation (32) is modified relative to the earlier expression (20) by the addition

of the term in the last line. This gives the marginal cost of tax-induced vacancy

suppression.14 If firms post the socially efficient level of vacancies given the tax

system, then this term is zero. In general, however, this is not the case. While

externalities associated with vacancy posting are familiar from other search envi-

ronments, here they are modified by the presence of taxes and on-the-job search.

13We omit the first order condition for τ0, which features a similar organization of terms. For
derivation of (32) see Appendix A.

14Equation (32) omits the term τ0+τx̃
1−τ

θ̃k(θ̃)
1−K(θ̃)

Eθ̃,1−τ found in (20). This term describes the tax

revenues lost from deactivation of the marginal talent market in the bBM model. Although
higher tax rates lead to a similar deactivation in the current model, vacancy creation converges
to zero as θ ↓ θ̃. Thus, no vacancies are created in the marginal talent market and no revenues
lost when it is closed.
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The last line in (32) organizes the marginal cost of vacancy suppression into two

parts:

1. The first,
∫

R+
E
[({

∆U
Λ + τx + τ0

}
Eµ,v

)
Ev,1−τ

∣∣∣ x
]

h(x)dx, stems from the fail-

ure of firms to internalize the worker utility and tax benefits and, hence,

full social value of a job. This failure suggests equilibrium under-posting

of vacancies and implies a positive marginal cost from further vacancy sup-

pression.

2. The second part,
∫

R+
E
[({
Eµ,v − vN(q)

µ

}
q
)
Ev,1−τ

∣∣∣ x
]

h(x)dx, stems from the

failure of firms to fully internalize the effect of their vacancy posting on

employment at other firms. This, in turn, is part a standard congestion ex-

ternality on the new jobs margin and part a firm poaching externality: many

hires are firm-to-firm and do not create additional jobs. Both externalities

imply equilibrium over-posting of vacancies and a corresponding marginal

benefit (negative marginal cost) from vacancy suppression. Formally, for

any θ and q,{
Eµ,v −

vN(q)
µ

}
q ≤ k

µ

δλ(v)
(δ + λ(v))2

{
vλv(v)
λ(v)

− 1
}

q < 0,

where the first inequality follows from the definitions of Eµ,v and N(q) and

the fact that all firms in a given talent market earn the same expected rev-

enues per job and the second from the concavity of the matching function

with respect to vacancies. The second component term in the last line of

(32) is, consequently, negative.

Whether vacancies are above or below their socially optimal level given the tax

system and whether the combination of terms in the last line of (32) is positive

or negative reduces to the balance of the forces just described.

5 Quantitative analysis of optimal affine taxes

This section explores quantitative implications of our theory for optimal affine in-

come tax determination. We first discuss how to connect the Burdett Mortensen

model with endogenous matching to the data.
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5.1 Calibration of the frictional model

Structural parameters The primitives of the model are parameters describing

the utility function U, the exogenous job separation rate δ, the Godfather shock

probability s, the matching function parameter α, the vacancy cost function κ,

the talent distribution K, and exogenous revenue requirement G. We restrict the

parametric form of U to be:

U(c, z, θ) =
1

1− σ

(
c− 1

1 + γ

( z
θ

)1+γ
)1−σ

(33)

and take parametric values for σ, γ and also α, δ and s from the literature. The

vacancy cost function κ(θ, v) = κ(θ)v is linear in vacancies, with talent-contingent

parameter κ(θ). The talent distribution K is assumed to have a density k. We

derive estimates for κ(θ) and k(θ) by exploiting an analogy between the integral

equations defining steady state equilibrium in our setting and similar integral

equations found in discrete choice random coefficients settings.

Preferences In our baseline analysis, utility parameters are set to σ = 2 and

γ = 1. We report sensitivity analysis around these values in Online Appendix H.

Job destruction rate and probability of Godfather shocks The model’s time

period is set to one month (but later convert tax functions to an annualized

form). We select δ to be in line with the empirical job destruction rates reported

in the literature. Specifically, Shimer (2012) computes monthly job destruction

rates in the neighborhood of 0.03 for the US in the post 1985 period. We set

δ = 0.03. We take the Godfather shock probability to be s = 0.33, which is within

the range of estimates provided by Jolivet et al (2006) in their analysis of wage

and employment transition data.

Revenue requirement The exogenous revenue requirement G is set to equal

25% of equilibrium output.

Talent density k and vacancy cost parameter κ It remains to determine the

talent density k and the vacancy cost parameter κ. In frictionless settings, absent

bunching, the latent talent density is readily recovered from the observed income
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density via worker first order conditions. In the current frictional setting this re-

covery is complicated by job ladders, which imply a non-unique relation between

talents and incomes. We proceed by first relating the observed current earnings

density of the employed and last earnings density of the unemployed to the la-

tent talent density and a function giving equilibrium job finding/destruction rate

ratios by talent. We then describe how to “invert” these relations and, hence,

obtain the unknown talent density and job finding/destruction rate ratios by

talent.

To streamline exposition, we suppress notational dependence of variables on

policy P in this section. Let θ(x) denote the least talented worker earning income

x. This worker will be at the top of her talent market job ladder and will pay

the smallest job price q(θ(x)). Similarly, let θ(x) denote the most talented worker

earning x. This worker will be at the bottom of her talent market job ladder

and will pay the highest job price q(θ(x)). Let h denote the density of employed

workers across incomes and l the density of unemployed workers across their

last earned income. Proposition 1 relates the income and talent densities.

Proposition 1. Let β : (θ̃, ∞)→ R+, β(θ) := λ(θ)
/

δ , give the job contact-destruction
rate ratio. The income densities h and l satisfy:

h(x) =
∫ θ

θ̃
Φ(x|θ; β)µ(θ)

k(θ)
N dθ, (34)

l(x) =
∫ θ

θ̃
Φ(x|θ; β)(1− µ(θ))

k(θ)
U dθ, (35)

whereN =
∫ θ

θ̃ µ(θ)k(θ)dθ and U =
∫ θ

θ̃ (1−µ(θ))k(θ)dθ are, respectively, the fractions
of employed and unemployed agents with talents in excess of θ̃, µ(θ) = β(θ)

1+β(θ)
is the

talent-specific employment rate, and the kernel Φ(x|θ; β) linking talents to incomes
satisfies:

Φ(x|θ; β) =


1

2Ψ(β(θ))

√√√√− τ0
1−τ+

γ
1+γ θ

1+γ
γ (1−τ)

1
γ

{(1−τ)
1
γ θ

1+γ
γ −x}3

θ ∈ [θ(x; β), θ(x)]

0 otherwise,

(36)
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with Ψ(β(θ)) := (1− s)β(θ)
/
(1 + sβ(θ)) = λ̂(θ)

/
δ̂(θ) , θ(x; β) the solution to:

θ(x) =

 x− τ0
1−τ

(
1

1+Ψ(β(θ(x)))

)2

(1− τ)
1
γ

(
1− γ

1+γ

(
1

1+Ψ(β(θ(x)))

)2
)


γ
1+γ

, and θ(x) =

 x− τ0
1−τ

(1− τ)
1
γ 1

1+γ


γ

1+γ

.

(37)

Proof. See Appendix B.

The mapping (34) computes the density of currently employed workers earn-

ing a given income level x by aggregating the densities of employed workers earn-

ing x in each talent market. Division by N normalizes to ensure that h is a prob-

ability density. The mapping (35) computes the density of currently unemployed

workers who earned a given income x in their last employment. Equation (36)

relates the kernel Φ linking talents to incomes to the structural parameters δ

and γ, observed policy P and the endogenous job finding rate λ(θ).

Expressions (34) and (35) imply:

h(x) =
∫ θ(x)

θ̃
Φ(x|θ; β)ι(θ)dθ and l(x) =

∫ θ(x)

θ̃
Φ(x|θ; β)ν(θ)dθ, (38)

where ι(θ) := β(θ)
1+β(θ)

k(θ)
N gives the density of employed workers across talents and

ν(θ) := 1
1+β(θ)

k(θ)
U the density of active unemployed workers across talents. Given

β and P and, hence, Φ and θ, and empirical estimates of h and l, the expressions

in (38) are Fredholm equations of the first kind in the unknown functions ι and ν.

Well known procedures for inverting such equations exist. This observation and

the definitions of ι and ν motivate an algorithm for recovering k and β sketched

in Algorithm 1. The algorithm embeds a Fredholm equation inversion step into

an iterative search for a β function that solves a fixed point problem. Once β is

obtained (and, hence, given δ and s, λ, λ̂ and δ̂ are found), an estimate of κ is

calculated via:15

κ̄(θ) =
a

1
α δ̂(θ;P)λ(θ;P) α−1

α(
λ̂(θ;P) + δ̂(θ;P)

)2 q(θ;P). (39)

Further details of the numerical procedure used in the estimation are described

in Appendix C.

15Equation (39) is obtained by substituting equilibrium expression ϕ(θ;P) = a
1
α λ(θ;P) α−1

α into
(28).
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Algorithm 1 Recovering β and k.

1: Initialize. Set values for program hyper-parameters: Maxiter, Criterion,
Tol and update parameter o. Set iteration counter n = 1. Select β1.

2: while n < Maxiter, Criterion<Tol do

3: Given βn and empirical proxies for h, l and P , solve the Fredholm equations
to obtain ιn and νn.

4: Using empirical proxies for N and U , set β′n = N
U

ιn
νn

.

5: Update βn+1 = oβ′n + (1− o)βn.

6: Evaluate convergence criterion Criterion. Set n = n + 1.

7: end while

8: Calculate: k = ιn
1+βn

βn
N .

Data Our procedure for estimating k and κ uses two empirical earnings distri-

butions as inputs: one for the currently employed and one (a distribution of last

earnings) for the currently unemployed. We construct these two earnings distri-

butions using data from the Current Population Survey (CPS) administered by

the US Census Bureau and the US Bureau of Labor Statistics. We focus on the

March release of the 2017 survey which provides information for the calendar

year 2016 and use March supplement sample weights to produce our estimates.

Detailed description of the data and of our sample selection is given in Online

Appendix F.

Approximating status quo U.S. policy Expressions (36) and (37) and Algo-

rithm 1 require empirical proxies for policy. We form an affine approximation

to status quo US income tax policy, T[x] = T0 + τx, by regressing total income

taxes paid (state plus federal income tax liabilities net of tax credits) on labor

income. Our estimated (annualized) tax function (with standard deviations in

parentheses) is:

T̂[x] = −4230
(27.576)

+ 0.338
(0.000321)

x.

The smallest active talent θ̃ is then determined by: (1− τ̂)− xγ

θ̃1+γ = 0, where τ̂ is

the estimated marginal income tax value, 0.338, x is the smallest income in our

sample and γ equals its calibrated value. In addition, once θ̃ is determined, an
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empirical proxy for the worker’s non-work payoff b̂ is pinned down by:

− T̂0 + (1− τ̂)x− 1
1 + γ

(
x
θ̃

)1+γ

= b̂, (40)

where T̂0 denotes the estimated value −4230. In preceding sections b was identi-

fied with the transfer made to non-employed workers and, hence, was both the

value of inactivity to a worker and its direct cost to the policy maker. To better

align the model with data, it is useful to distinguish these concepts. We (continue

to) use b to label the per period value of inactivity to the worker, while denoting

the transfer from the policymaker to the worker by bU.16 Given the values for

T, θ̃ and x, an empirical counterpart for b can be recovered from the data using

(40). A value for bU is not needed to calibrate the talent distribution. Given em-

pirical values for the tax policy parameters and for b, empirical counterparts for

the functions q, q̃, θ and θ may be constructed using the relevant formulas from

preceding sections.

Estimation results Figure 1 displays results from the estimation exercise. Fig-

ure 1(a) shows the estimated talent density, k(θ); Figure 1(b) the estimated equi-

librium job rate λ(θ) by talent market at status quo U.S. tax policy. The last

earnings density of unemployed workers is left-shifted relative to the current

earnings density of employed workers. The model attributes this to lower job

finding rates amongst low talents. This is reflected in Figure 1(b).

Frictionless benchmark Below we compare optimal policy in the calibrated

frictional economy to that obtained from treating the data as generated by the

frictionless model with extensive margin introduced in Section 2. The latter re-

covers optimal taxes from (8), retains utility parameters used in the frictional

calibration, but recalibrates the talent distribution following the approach of

Saez (2001). See Appendix D for details. We emphasize that the comparison

of frictional to frictionless that we undertake is not a pure comparative static

exercise in which frictions are purged. Rather we compare policy prescriptions

under the assumption that the data was generated by, respectively, a frictional

and a frictionless model.
16The difference b− bU could be positive because the worker derives additional utility benefit

from inactivity, has additional time to engage in home production, or receives transfers from
other agents. Alternatively, it could be negative because there is a stigma attached to not work-
ing.
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Figure 1: Calibrated talent density and job contact rates.

5.2 Quantitative results

This section reports the computed optimal tax system for the calibrated frictional

economy. It interprets this system through the lens of the optimal tax equation

(32) and compares it to that implied by the calibrated frictionless model and (8).

We assume a utilitarian objective.

5.2.1 Overall tax systems: frictional vs. frictionless

Table 1 reports optimal tax results for the calibrated frictional and friction-

less economies. Comparison of the first and second columns reveals that the

marginal income tax rate τ is moderately reduced (31.7% vs. 35.7%) and the

annualized employment tax τ0 raised ($6912 vs. $3360) at the frictional relative

to the frictionless calibration. Overall the optimal frictional tax design im-

Table 1: Optimal Affine Tax Policy

Frictional Frictionless

τ 31.7% 35.7%

τ0 6912 3360

b 9060 8580

τ0, b: annual 2017 US $ amounts.

plies a flattening of the income tax system with less redistribution amongst the

employed and slightly more redistribution to the unemployed (b is increased to
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$9060 from $8580) relative to the frictionless design. Although the difference in

the marginal income tax across the optimal frictional and frictionless tax designs

appears moderate, redistribution towards the lowest earners is significantly re-

duced in the first case. Figure 2 shows that average tax rates for low earners are
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Figure 2: Average income tax rates ( τx+τ0−b
x ) implied by frictional and frictionless

optimal tax systems.

substantially higher in the frictional case: a person earning $20,000 a year pays

tax equal to 21% of their annual income under the optimal frictional scheme,

but just 10% in the optimal frictionless case. The difference in relative optimal

average income tax rates becomes even larger at lower incomes.

5.2.2 Marginal benefits and costs of adjusting τ

Differences in optimal tax systems across the calibrated frictional and friction-

less economies are the product of various competing forces. To better under-

stand the role of these forces in shaping optimal income tax rates, Figure 3

displays marginal benefit and cost terms from the frictional (32) and frictionless

(8) optimal tax equations. These are scaled by ∂τ = 0.01 and plotted as func-

tions of τ holding τ0, b and Λ fixed at their respective optimal values. Thus, the

plots display components of the (normalized) derivative of the policymaker’s La-

grangian as τ varies locally around the optimum under frictional and frictionless

assumptions. The displayed impacts are expressed in terms of annual per capita

2017 US dollars accruing to the government budget. Colors indicate marginal
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component terms; line styles indicate environments: solid for frictional, dashed

for frictionless. The horizontal axis ranges across τ values in a neighborhood of
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Figure 3: Marginal terms in frictional and frictionless optimal τ equations.
Note: Marginal benefits for the frictional economy shown as solid lines; Marginal benefits for the
frictionless economy shown as dashed lines.

the optima from the two models.

The red solid and dashed lines show the overall marginal benefit of an incre-

ment in the income tax rate τ for the frictional and frictionless cases respectively.

The solid line lies everywhere below the dashed (with a difference of between $69

and $101 annual per capita 2017 US dollars). Consistent with the results in

Table 1, these lines cross zero at 31.7% (the optimal frictional marginal tax rate)

and 35.7% (the optimal frictionless marginal tax rate) respectively. The green,

orange and blue curves describe components of these overall marginal benefits.

1. Tax rates distort on the intensive margin. The associated marginal cost

(or negative marginal benefit), given by − τ
1−τ

∫ ∞
0 xE[E c

x,1−τ|x]h(x)dx, is shown

by the green lines (solid and dashed) in the figure. These lines indicate

that distortion on the intensive margin is the largest marginal cost (most

negative benefit) of a tax increment. The lines are very similar across the

two cases.

2. Marginal benefits and costs connected to employment are shown by orange

lines (solid and dashed) in the figure. In the frictional economy, these are
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related to the efficiency of vacancy creation. The orange solid line indicates

a marginal benefit of suppressing vacancies through higher taxes that falls

from $59 to -$21 annual per capita 2017 US dollars as the tax rate rises.

At the optimal frictional tax rate, it is small and slightly positive, indicat-

ing that at this tax rate congestion and poaching externalities dominate,

vacancy creation is excessive and there is a modest social benefit to sup-

pressing it.17 In the frictionless economy, employment effects operate via

the (de)activation of marginal talent markets. They are always associated

with marginal costs (negative marginal benefits). However, these costs are

small as marginal talents are not very productive. Overall the frictional eval-

uation attributes a marginal benefit from raising taxes to the employment

margin that moderately exceeds that from the frictionless one (holding fixed

other dimensions of the tax code).

3. The main source of difference between the evaluations lies in the marginal

redistributive benefit (MRB), which is positive, but significantly lower in the

frictional case. This benefit is −E
[{M

Λ − 1
} {

x + (1− τ) ∂q
∂τ

}]
in the frictional

optimal tax equation and −E
[{M

Λ − 1
}

x
]

in the frictionless one and is shown

by blue lines. It decreases from $193 to $140 annual per capita 2017 US

Dollars over the tax range in the frictional case and from $326 to $247 in

the frictionless case. The frictional MRB term incorporates the redistribu-

tive impact of the tax-induced profit squeeze: E
[{M

Λ − 1
} {

(1− τ) ∂q
∂τ

}]
, this

is not present in the frictionless case. It can itself be decomposed into a

redistributive within talent market effect (higher taxes squeeze the maxi-

mal job price that is extracted by firms from those at the bottom of the job

ladder, with the effect dissipating as the ladder is climbed) and a counter

redistributive cross-talent market effect (job prices are squeezed more in

higher talent markets, redistributing consumption from low to high talent

markets). The latter effect predominates and overall the profit squeeze intro-

duces a marginal redistributive cost that lowers the MRB in frictional mod-

els.18 The value of the term −E
[{M

Λ − 1
}

x
]
, present in both MRB terms,

is also modified by the presence of frictions. The covariance between in-

comes and marginal social welfare weights is suppressed in absolute value

by frictions in part because more talented high earners pay higher job prices

17See Online Appendix H.1 for further decomposition in this direction.
18See Online Appendix H.1 for decomposition of the redistributive impact of the tax-induced

profit squeeze.
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necessitating that they exert higher efforts to achieve their incomes. Under

our (non-separable) utility specification, this raises their marginal utilities

of consumption relative to those of less talented lower earners so reducing

(in absolute value) the covariance between marginal social welfare weights

and incomes.

5.2.3 Marginal benefits and costs of adjusting τ0

Table 1 indicates a frictional employment tax τ0 that is double that in the fric-

tionless case: $6912 vs. $3360 per annum. Figure 4 decomposes the marginal

benefit and cost terms from the frictional optimal tax equation for τ0 and its fric-

tionless analogue. Again these plots hold other components of the tax code, in
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Figure 4: Marginal terms in frictional and frictionless optimal τ0 equations.
Note: Marginal benefits for the frictional economy shown in solid lines; Marginal benefits for the
frictionless economy shown in dashed lines.

this case τ and b, as well as Λ fixed at their optimal values. They give welfare

effects in per capita 2017 US dollars accruing to the government budget of a

dollar increment in the fixed employment tax.

The red curves give the overall marginal benefit of raising τ0 in the two envi-

ronments. The solid curve for the frictional economy lies everywhere above the

dashed curve for the frictionless economy. As before different forces are at work.

Across the two cases, there is a similar, moderate redistributive benefit from
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raising τ0 (blue plots). Compared to the τ case and relative to welfare effects on

the employment margin, redistributive benefits are no longer as salient. This

is because while adjustments in τ0 redistribute from the employed to the unem-

ployed, they no longer mechanically redistribute amongst employed workers as is

the case with adjustments to τ.19 The largest welfare effects both across environ-

ments and τ0 levels are now on the employment margin (orange plots). At lower

τ0 values, congestion and poaching externalities imply excessive vacancy posting

in the frictional environment and there is social value in using larger τ0 values to

suppress this. For the frictionless case, higher τ0 values closes marginal talent

markets, which becomes increasing costly as τ0 rises.

6 Conclusion

A worker’s pay depends upon her marketable talent and the extractiveness of her

employer. Variation in the latter creates job ladders as workers search on the job

for better firms offering higher wages. We analyze the implications of this for tax

design in a model that blends standard public finance features with a frictional

labor market. In doing so we highlight a novel frictional “profit squeeze chan-

nel”. Higher marginal income tax rates squeeze firm profits and, hence, raise the

share of the surplus captured by workers. Through this channel they lower prof-

its, deter vacancy creation and reduce profit tax revenues. On the other hand

they raise worker incomes and income tax revenues. Such profit squeezing is

socially desirable and a motive for higher income tax rates if vacancy creation

is excessive and if it relatively benefits those at the bottom of job ladders from

whom more profit is extracted (or, more generally, those with higher marginal so-

cial welfare weights). But it is undesirable if it primarily benefits highly talented

workers earning higher incomes. Theory highlights the tradeoffs, but it is am-

biguous about the overall implications of this channel for policy. Our quantita-

tive analysis derives optimal tax designs for frictional and frictionless economies.

It obtains a moderately lower marginal income tax rate and a higher employment

tax for the frictional relative to the frictionless case.

We have explored the role of the profit channel in a salient, but particular fric-

19In the frictional case, adjustments in τ0 generate some redistribution amongst the employed
by modifying the distribution of job prices. Recall that when τ is increased, induced job price
adjustment redistributes within and across talent markets. The former redistribution is towards
those at the bottom of job ladders, the latter towards those in higher earning talent markets.
Adjustments of τ0 induce only the former-type of redistribution.
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tional setting. But it is more general and would emerge in other frictional models

in which higher income taxes (in combination with a given or policy determined

outside option for workers) squeeze the share of pre-tax surplus collected by

firms and differentially distributes it across workers. Such differential distribu-

tional might occur because workers are heterogeneous with respect to mobility

or replaceability, firms are heterogeneous with respect to their bargaining ability

or, as here, firms trade off size against extractiveness.
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Appendices

A Elaboration of optimal tax equations from text

A.1 Derivation of optimal tax equation (20)

First differentiate the objective (19) with respect to τ and use the definitions of

M, ω and ξ:

∫
Θ

∫
[0,1]
{M(i, θ)−Λ}

{
z(i, θ)− q(i, θ) + (1− τ)

∂q
∂τ

(i, θ)

}
dik(θ)dθ (A.1)

+Λτ
∫

Θ

∫
[0,1]

∂z(i, θ)

∂ω
dik(θ)dθ

+ Λτ
∫

Θ

∫
[0,1]

∂z(i, θ)

∂ξ

{
−q(i, θ) + (1− τ)

∂q
∂τ

(i, θ)

}
dik(θ)dθ +

τ0 + τx̃
1− τ

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,1−τ = 0.

Then apply Slutsky’s equation:

∫
Θ

∫
[0,1]
{M(i, θ)−Λ}

{
z(i, θ)− q(i, θ) + (1− τ)

∂q
∂τ

(i, θ)

}
dik(θ)dθ (A.2)

+Λτ
∫

Θ

∫
[0,1]

∂zc(i, θ)

∂ω
dik(θ)dθ

+ Λτ
∫

Θ

∫
[0,1]

∂z(i, θ)

∂ξ

{
z(i, θ)− q(i, θ) + (1− τ)

∂q
∂τ

(i, θ)

}
dik(θ)dθ +

τ0 + τx̃
1− τ

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,1−τ = 0.

Finally, change variables to x = z − q, re-express in terms of elasticities and

rearrange:

−
∫

R+

E
[{

M
Λ

+
τ

1− τ
η − 1

}{
x + (1− τ)

∂q
∂τ

}∣∣∣∣ x
]

h(x)dx

=
τ

1− τ

∫
R+

xE[E c|x]h(x)dx +
τ0 + τx̃
1− τ

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,1−τ. (A.3)

�
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A.2 Derivation of the first order condition for −τ0 in the fric-

tional bBM economy

Differentiating (19) this time with respect to −τ0:∫
Θ

∫
[0,1]
{M(i, θ)−Λ}

{
1 + (1− τ)

∂q
∂τ0

(i, θ)

}
dik(θ)dθ (A.4)

+ Λτ
∫

Θ

∫
[0,1]

∂z(i, θ)

∂ξ

{
1 + (1− τ)

∂q
∂τ0

(i, θ)

}
dik(θ)dθ +

τ0 + τx̃
τ0

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,τ0
= 0.

Change variables to x = z − q, use the definition of the income effect η and

rearrange to get:

−
∫ ∞

0
E
[{

M
Λ

+
τ

1− τ
η − 1

}{
1 + (1− τ)

∂q
∂τ0

}∣∣∣∣ x
]

h(x)dx =
τ0 + τx̃

τ0

θ̃k(θ̃)
1− K(θ̃)

Eθ̃,τ0
.

(A.5)

A.3 Derivation of optimal tax equation (32)

The introduction of endogenous matching and vacancy posting modifies the

planner’s problem as (A.6).

max
P

∫ θ

θ
Γ(θ)U(b, 0, θ)k(θ)dθ (A.6)

+
∫ θ

θ̃(P)
µ(θ;P)

∫ 1

0
Γ(θ) {V(q(i, θ;P), θ;P)−U(b, 0, θ)} di k(θ)dθ,

subject to the resource constraint:

−b +
∫ θ

θ̃(P)
µ(θ;P)

{
τ
∫ 1

0
{z(i, θ;P)− q(i, θ;P)}di + τ0

}
k(θ)dθ ≥ G.

Proceeding similarly to the derivation of (A.3) delivers:

−
∫ ∞

0
E
[{

M
Λ

+
τ

1− τ
η − 1

}{
x + (1− τ)

∂q
∂τ

}∣∣∣∣ x
]

h(x)dx

=
τ

1− τ

∫ ∞

0
xE[E c

x,1−τ|x]h(x)dx

+
1

1− τ

∫ ∞

0
E
[{

∆U
Λ

+ τx + τ0

}
Eµ,1−τ − (1− τ)

∂q
∂(1− τ)

∣∣∣∣ x
]

h(x)dx, (A.7)
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where ∆U(i,θ)
Λ := Γ(θ)

Λ {V(q(i, θ;P), θ;P) −U(b, 0, θ)}. The last line in (A.7) is obtained

by augmenting the policymaker’s first order condition with the impact of varia-

tion in τ on µ, changing variables to x in the integration and adding E
[

∂q
∂(1−τ)

]
to

both sides of the equality.20 Then using the fact that under the linear vacancy

cost assumption, all job prices are directed to the payment of vacancy costs:∫
Θ

E [q| θ] µ(θ)k(θ)dθ −
∫

Θ
κ(θ, v(θ))dθ = 0.

Differentiating this last expression with respect to 1− τ and rearranging:

∫
Θ

E
[

∂q
∂(1− τ)

∣∣∣∣ θ

]
µ(θ)k(θ)dθ = −

∫
Θ

E [q| θ] ∂µ

∂(1− τ)
(θ)k(θ)dθ +

∫
Θ

∂κ(θ, v(θ))
∂v

∂v(θ)
∂(1− τ)

dθ.

Substituting for ∂κ(θ,v(θ))
∂v from the firms’ vacancy posting first order conditions,

using ∂µ
∂(1−τ)

= ∂µ
∂v

∂v
∂(1−τ)

and changing variables in the integration:

∫ ∞

0

[
∂q

∂(1− τ)

∣∣∣∣ x
]

h(x)dx =
∫ ∞

0
E
[

1
µ

{
∂µ

∂v
− N(q)

}
q

∂v
∂1− τ

∣∣∣∣ x
]

h(x)dx

=
1

1− τ

∫ ∞

0
E
[{
Eµ,v −

vN(q)
µ

}
qEv,1−τ

∣∣∣∣ x
]

h(x)dx. (A.8)

Substitution of this into (A.7) gives (32).

B Proofs for Section 5

Proof of Proposition 1. Assuming preferences (33) and affine taxes, it follows

from worker optimization (10) that a worker’s pre-tax income choice satisfies

x(i, θ) = θ
1+γ

γ (1− τ)
1
γ − q(i, θ). Let θ(x) denote the least talented worker earning

income x. This worker must be at the top of her job market ladder and be paying

the smallest job price q(θ(x)) in talent market θ(x). Substituting for this job price

into the worker’s optimal income choice, using the definition of β and inverting

yields the expression for θ(x) in (37). Let θ(x) denote the most talented worker

earning income x. This worker must be at the bottom of her job market ladder

and be paying the largest job price q(θ(x)) in talent market θ(x). Substituting for

this job price into the worker’s optimal income choice and inverting yields the

expression for θ(x) in (37).

20Note that while θ̃ depends on P induced variation in θ̃ has no impact on the objective because
in this case no vacancy posting occurs in the marginal talent market.
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For talents between θ(x) and θ(x), there is a threshold i(θ, x) such that workers

with i ∈ (i(θ, x), 1] earn less than x and those with i ∈ [0, i(θ, x)) earn more. For

such θ, i(θ, x) satisfies:

x =−
{
−τ0

1− τ
+

γ

1 + γ
θ

1+γ
γ (1− τ)

1
γ

}( 1

1 + λ̂(θ)

δ̂
(1− i(θ, x))

)2
+ (1− τ)

1
γ θ

1+γ
γ . (B.1)

Inverting (B.1) gives:

i(θ, x) =
δ̂ + λ̂(θ)

λ̂(θ)
− δ̂

λ̂(θ)

√√√√√− τ0
1−τ + γ

1+γ θ
1+γ

γ (1− τ)
1
γ

(1− τ)
1
γ θ

1+γ
γ − x

.

Let h denote the income density of working agents. The talent and income distri-

butions are related by:

∫ x

0
h(x′)dx′ =

∫ θ(x)
θ̃

k̃(θ)dθ∫ θ
θ̃ k̃(θ)dθ

+
∫ θ(x)

θ(x)
[1− i(θ, x)]

k̃(θ)∫ θ
θ̃ k̃(θ′)dθ′

dθ,

where k̃(θ) = µ(θ)k(θ), the first right hand side term consists of all employed

workers with talent below θ(x;P) (all of whom earn less than income x) and the

second consists of employed workers between θ(x) and θ(x; ), some of whom earn

less than x. All employed workers with talent above θ(x) earn more than x. The

term 1− i(θ, x) can be interpreted as the rung on the job ladder of a θ worker

earning x. Differentiating both sides of the previous equation relates the income

density to the talent density by:

h(x) = −
∫ θ(x)

θ(x)

∂i
∂x

(θ, x)
k̃(θ)∫ θ

θ̃ k̃(θ′)dθ′
dθ, (B.2)

and Φ(x|θ) = − ∂i
∂x (θ) =

δ̂
2λ̂(θ)

√√√√ −τ0
1−τ+

γ
1+γ θ

1+γ
γ (1−τ)

1
γ

{(1−τ)
1
γ θ

1+γ
γ −x}3

implying (34). The expression for

l is derived similarly. �
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C Numerical estimation procedure

Inversion of Fredholm equations Our numerical algorithm requires inversion

of the Fredholm equations (38). In general Fredholm equations of the first kind

lead to ill posed problems in which solutions are highly sensitive to parameters.

Our procedure for recovering estimates of ι and ν given empirical proxies for h
and u and the model implied Φ(·|·; β) builds on Fox et al (2016).21 First select two

families of parametric basis functions {Υr}R
r=1 and {Ξr}R

r=1. Candidate densities ι

and ν are approximated as mixtures of these basis functions:

ι̂(θ; a) =
R

∑
r=1

arΥr(θ) and ν̂(θ; b) =
R

∑
r=1

brΞr(θ),

where a = {ar} and b = {br} belong to R-simplices. Let {xi}I
i=1 denote a grid of

incomes and let ĥi denote the fraction of agents with incomes between xi and xi+1

(with xI+1 = ∞). Let ĥu
i denote the fraction of unemployed workers whose last

recorded income was between xi and xi+1. Unemployed workers with no previous

income are treated as having talents below θ̃.

The numerical procedure starts from an initial guess for the weights a0 and

b0, which deliver initial ι0 and ν0 and, hence, β0 = ι0

ν0
N
U . On the j-th iteration, βj

is given and used to construct Φ(x|θ; βj) and θ(x; βj) and, hence, approximated

components for the current income distribution of the employed:

mj
i,r =

∫ xi+1

xi

∫ θ(x)

θ(x;βj)
Φ(x|θ; βj)Υr(θ)dθdx

and last income distribution of the unemployed:

nj
i,r =

∫ xi+1

xi

∫ θ(x)

θ(x;βj)
Φ(x|θ; βj)Ξr(θ)dθdx.

Updated coefficients aj+1 = {aj+1
r } and bj+1 = {bj+1

r } are obtained via the mini-

mizations:

aj+1 = arg min
a∈∆R

I

∑
i=1

(
ĥi −

R

∑
r=1

armj
i,r

)2

and bj+1 = arg min
b∈∆R

I

∑
i=1

(
ĥu

i −
R

∑
r=1

brnj
i,r

)2

.

21Fox et al (2016) are concerned with the estimation of latent densities in discrete choice
random coefficients settings. However, the mathematical structure of the discrete choice random
coefficient model is a Fredholm equation of the first kind.
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Solutions to the (inverted) Fredholm equations are then approximated as ιj+1 =

∑R
r=1 aj+1

r Υr(θ) and νj+1 = ∑R
r=1 bj+1

r Ξr(θ). From these kj+1 = N 1+βj

βj+1 ιj+1 and an

updated βj+1 = ιj+1

νj+1
N
U are obtained. If the Euclidian distance between aj and bj

and aj+1 and bj+1 is smaller than a pre-specified threshold, then convergence is

achieved. The iteration is repeated until convergence. Estimates for k and β over

the interval [θ̃(P), θ) combined with values for δ and α, permit recovery of κ over

this range using the formula in the main text.

Choice of basis functions We first invert the empirical distribution of earnings

among employed using the relationship between earnings and talent implied by

the model without frictions, that is x(θ) = θ1+1/γ(1− τ)1/γ, under the estimated

status-quo tax policy, P̂ . This delivers a talent distribution. We then fit a lognor-

mal distribution to this talent distribution using Matlab’s logn f it command. This

produces a lognormal fit with a mean,ME, and a variance, SE, together with 95%

confidence interval bounds for mean and variance. We construct a lower mean

ME = ME − 20 ∗ (ME −M′
E) and a higher mean ME = ME + 20 ∗ (ME −M′

E),

where M′
E is the lower bound on the 95% confidence interval around ME. Iden-

tically, we construct SE and SE. We set the family of basis functions (Υr)9
r=1 to the

3× 3 = 9 combination of lognormal distributions generated this way truncated at

θ̃(P̂) using Matlab’s truncate command. We construct the basis functions (Ξr)9
r=1

using an identical procedure, this time starting from the empirical distribution

of last earnings among unemployed.

D Benchmark frictionless economy

D.1 Optimal tax problem

The benchmark frictionless economy is identical to the frictionless model with

extensive margin introduced in Section 2. The policymaker chooses policy P =

(b, τ0, τ) to solve:

max
P

{∫ θ̃(P)

θ
Γ(θ)k(θ)dθ +

∫ θ

θ̃(P)
(1− µ(θ))Γ(θ)k(θ)dθ

}
U(b, 0, θ)

+
∫ θ

θ̃(P)
µ(θ)Γ(θ)U(b− τ0 + (1− τ)z(θ;P), z(θ;P), θ)k(θ)dθ, (D.1)
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subject to the government budget constraint:

−b+τ0

∫ θ

θ̃(P)
µ(θ)k(θ)dθ + τ

∫ θ

θ̃(P)
µ(θ)z(θ;P) k(θ)dθ ≥ G,

where µ(θ) gives the exogenous fraction of inactive workers in each talent market.

D.2 Calibration

The primitives of the model are parameters describing the utility function U, the

talent distribution k, and the exogenous government spending G. We restrict the

parametric form of U to be the same as in the case with frictions given by (33).

We set σ = 2 and γ = 1 also to be in line with the frictional case. G is set to equal

25% of GDP in the optimal tax problem, again to be in line with the frictional

model.

Following Saez (2001), we calibrate the talent distribution, k, by inverting the

empirical distribution of earnings using the one-to-one mapping between talents

and earnings given by the model under status-quo policy, P̂ . As in the frictional

calibration, we construct this earnings distribution using data from the Current

Population Survey, March release of the 2017 survey which provides information

for the calendar year 2016 and use March supplement sample weights to pro-

duce our estimates. With frictions, we match the distribution of the employed

over current earnings and the unemployed over last earnings separately. In

the frictionless case, we pool these distributions together to construct the em-

pirical earnings distribution. The smallest active talent θ̃(P̂) is determined by:

(1− τ̂)− xγ

θ̃(P̂)1+γ = 0, where τ̂ = 0.338, x is the smallest income in our sample and

γ = 1. Since x is identical in the frictional and frictionless earnings distributions,

θ̃(P̂) is also identical across the two environments.

APPENDIX REFERENCES

Fox, J., K. Kim, C. Yang (2016). A simple nonparametric approach to estimat-

ing the distribution of random coefficients in structural models. Journal of
Econometrics 195(2), 236–254.
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Online Appendices

E Incidence of labor taxation under Nash Bargain-

ing

In this section, we demonstrate that frictional profit squeeze effects are not spe-

cific to the particular frictional model we assume in the main body of the paper.

To do so, we investigate the impact of taxation on surplus sharing between work-

ers and firms under Nash bargaining.

Recall the problem of a θ talent employed worker who needs to pay job price q
to a firm. Assuming the worker faces policy P = (b, τ0, τ), the worker solves:

V(q, θ;P) = max
z

U(b− τ0 + (1− τ)(z− q), z, θ), (E.1)

with an associated first-order optimality condition

(1− τ)Uc(b− τ0 + (1− τ)(z− q), z, θ) + Uz(b− τ0 + (1− τ)(z− q), z, θ) = 0. (E.2)

In what follows, we assume utility is separable between consumption and effort,

i.e., Ucz = 0.
Suppose the job price q is determined according to a Nash bargaining protocol

between the worker and the firm:

max
q

(
V(q, θ;P)−U(b, 0, θ)

)η
q1−η, (E.3)

with η being the exogenously given bargaining power of the worker. For η ∈ (0, 1),
the first-order condition with respect to q is given by

(1− τ)qUc(b− τ0 + (1− τ)(z− q), z, θ)

V(q, θ;P)−U(b, 0, θ)
− 1− η

η
= 0. (E.4)

Equation (E.4) implicitly defines q as a function of τ. We next establish that,

under a plausible assumption on preferences, ∂q
∂τ < 0. Consequently, a higher tax

rate on labor income squeezes firm profits, as it does in our workhorse Burdett-

Mortensen model. We then show that we can exactly replicate the distribution

of job prices in the Burdett-Mortensen model in the bargaining model through

careful selection of bargaining weights.
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Toward this goal, denote the left-hand side of (E.4) by F(τ, q). Then, by the

implicit function theorem, we have ∂q
∂τ = − Fτ

Fq
. Notice that

Fq =
(1− τ)Uc + q(1− τ)2Ucc

(
∂z
∂q − 1

)
V(q, θ;P)−U(b, 0, θ)

+
(1− τ)2qU2

c
(V(q, θ;P)−U(b, 0, θ))2 > 0. (E.5)

The inequality follows from the fact that ∂z
∂q < 1, which, in turn, follows from

totally differentiating (E.2) with respect to q. This implies that if Fτ > 0, then
∂q
∂τ < 0. As shown below, a sufficient condition for Fτ > 0 is the assumption

that ∂z
∂τ < 0, meaning that the substitution effect of a proportional tax change

dominates the income effect. To see this, observe that

Fτ =
−qUc + q(1− τ)Ucc

(
−(z− q) + ∂z

∂τ (1− τ)
)

V(q, θ;P)−U(b, 0, θ)
+

(1− τ)qU2
c (z− q)

(V(q, θ;P)−U(b, 0, θ))2 . (E.6)

Totally differentiating (E.2) with respect to τ and using that expression in (E.6)

implies:

Fτ =
(1− τ)qU2

c (z− q)
(V(q, θ;P)−U(b, 0, θ))2 −Uzz

∂z
∂τ

q
V(q, θ;P)−U(b, 0, θ)

. (E.7)

Hence, a sufficient condition for Fτ > 0 is ∂z
∂τ < 0. Since:

∂z
∂τ

=
(1− τ)Ucc(z− q) + Uc

Ucc(1− τ)2 + Uzz
, (E.8)

it follows that if |Ucc| is sufficiently small, then ∂z
∂τ < 0. This happens, for instance,

when there are no income effects, i.e., Ucc = 0. Alternatively, if u(c) = c1−σ/(1− σ)

and σ ≤ 1, then ∂z
∂τ < 0 if b− τ0 < 0.

In the basic Burdett-Mortensen model, the job price function characterizes

frictional inequality conditional on talent as q(i, θ;P) = (1− φ(i))q(θ;P), where

φ(i) = 1−
(

1
1+λ/δ(1−i)

)2
, q(θ;P) is the maximal job price that sets V(q(θ;P), θ;P) =

U(b, 0, θ) and i is the percentile of the worker in the job price distribution with

i = 1 and i = 0 denoting the bottom and the top of the job ladder, respectively. We

can generate the same distribution of job prices in the Nash bargaining model by

carefully choosing the distribution of bargaining weights in each talent market

as follows. Set the bargaining weight of those at the bottom of the ladder in any

talent market to η(1) = 0, which delivers job price q(θ;P). The bargaining weight
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of those at percentile i is defined implicitly by the solution to the equation:

(1− τ)q(i, θ;P)Uc(−τ0 + (1− τ)(z− q(i, θ;P)), z, θ)

V(q(i, θ;P), θ; T)−U(b, 0, θ)
− 1− η(i)

η(i)
= 0. (E.9)

If agent utility is quasilinear, then one can explicitly calculate the distribution of

bargaining weights that would deliver identical job price distributions across the

two models at all tax systems. To see this, notice that, if utility function is of the

U(c, z, θ) = c− v(z/θ), then (E.4) delivers q in closed form:

q = (1− η)q(θ;P), (E.10)

where q(θ;P) = −τ0
1−τ +

γ
1+γ (1− τ)1/γθ1+1/γ is the maximal job price paid by workers

who have no bargaining power. Then, setting η(i) = φ(i) ensures that the distri-

bution of job prices is identical across the two economies. This implies that the

profit squeeze effect is also identical: ∂q(i,θ;P)
dτ = (1− φ(i)) ∂q(θ;P)

dτ in both economies.

F Data

Our main data source is the Current Population Survey (CPS) administered by

the US Census Bureau and the US Bureau of Labor Statistics. We focus on the

March release of the 2017 survey which provides information for the calendar

year 2016 and use March supplement sample weights to produce our estimates.

The total number of observations in the raw sample is 185,914. We focus on

population of working age individuals and so we drop people who are younger

than 18 or older than 65 years of age. This reduces the sample size to 112,667.

We also drop those giving inconsistent answers to questions about labor income

and hours worked last year (i.e. those who claim they received labor income, but

did not work or vice versa). We calculate the hourly wage rate for the remaining

working agents in our sample by dividing total labor income earned by total

hours worked, and drop individuals whose hourly wage rate is below half of the

federal minimum wage. These adjustments reduce the sample size further to

106,882 observations.

Of the people in this group, there are agents who have not worked at all

during the last calendar year. These agents are asked their reasons for not

working. In our model agents who do not work have very low talent. To align

non-workers in the data with those in the model, we retain those giving disability,
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sickness or inability to find work despite searching as reasons for not working,

while dropping those giving taking care of home or family, going to school, or

retirement as reasons. We are left with 80,423 working agents and 8,520 people

who did not work during 2016. We identify the latter group of people with those

below the active talent threshold θ̃ implied by status quo US policy (and our

assumed preference and labor market transition parameters).

Recall that our procedure for estimating k and κ(·) uses two earnings dis-

tributions as inputs: one for currently employed and one (distribution of last

earnings) for currently unemployed. We construct these two earnings distribu-

tions using the remaining 80,423 people who were active the previous calendar

year. Following Heathcote, Perri and Violante (2010), we drop those who work

very little, less than two full weeks (80 hours) last year. We are left with 79,841

observations. Of this group, 73,329 are employed at the time of the survey and

2,286 were unemployed (the remaining were not in the labor force). The empiri-

cal counterparts of employed and unemployed earnings distributions come from

these two groups of workers. We measure labor earnings as the sum of wage

and salary income earned during the last calendar year. We compute total hours

worked from data on average hours worked per week and total number of weeks

worked.

Status-quo income tax estimation The affine approximation to status-quo US

income tax policy, T[x] = T0 + τx, is estimated by regressing total income taxes

paid on labor income. We construct total income taxes paid by summing up

CPS variables stataxac and fedtaxac for last calendar year. The former variable

reports state level income tax liability after tax credits are deducted while the

latter variable reports the federal income tax liability, again after deducting tax

credits.

G Numerical algorithm for affine tax analysis

G.1 Equilibrium characterization

Assuming preferences (33) and a given policy P , it follows from worker optimiza-

tion (10) that a worker of type θ ≥ θ̃ who is at quantile i of the job ladder in their

talent market supplies effective labor z(θ;P) = θ
1+γ

γ (1 − τ)
1
γ and earns pre-tax

income x(i, θ;P) = θ
1+γ

γ (1− τ)
1
γ − q(i, θ;P), where q(i, θ;P) is defined in (16) in the

4



main text.

A talent market θ is active if a worker receiving a profit offer q = 0 can obtain

a utility of at least b. In active talent markets, the maximal profit offer q(θ;P) is

given by:

−T0 + (1− τ){z(θ;P)− q(θ;P)} − 1
1 + γ

(
z(θ;P)

θ

)1+γ

= b.

The activity threshold θ̃ is such that q(θ̃;P) = 0. Extend the function q from [θ̃, θ]

onto [θ, θ] using:

q̄(θ;P) =− b + T0

1− τ
+ z̄(θ;P) (G.1)

with z̄(θ;P) = z(θ;P)− ( z(θ;P)
θ )1+γ

(1+γ)(1−τ)
.

A firm in talent market θ chooses v and a job price q ∈ [0, q(θ;P)] to maximize

profits, i.e.,

max
q,v

N(q, θ;P)qv− κ̄(θ)v. (G.2)

For a firm creating vacancies v and setting a job price q ∈ [0, q(θ;P)] in market θ,

steady-state employment is given by the expression:

N(q, θ;P) = δ̂ϕ(θ;P)
(δ̂ + λ̂(θ;P)F[q|θ;P ])2

. (G.3)

Thus, the firm’s problem (G.2) can be decomposed into an inner maximization

over revenues per vacancy:

R(θ;P) := max
q∈[0,q(θ;P)]

δ̂ϕ(θ;P)q
(δ̂ + λ̂(θ;P)F[q|θ;P ])2

(G.4)

and an outer maximization over vacancies:

max
v∈R+

R(θ;P)v− κ̄(θ)v. (G.5)

The vacancy problem (G.5) implies that in equilibrium R(θ;P) = κ̄(θ). This,

together with an evaluation of the firm’s revenue per vacancy at q(θ;P), yields

5



the following expression:

κ̄(θ) =
δ̂q(θ;P)(

δ̂ + λ̂(θ;P)
)2 ϕ(θ;P). (G.6)

It is easy to show that under the assumption of linearity of vacancy posting costs,

we have

λ(θ;P) = a
(

v(θ;P)
k(θ)

)α

and ϕ(θ;P) = a
(

k(θ)
v(θ;P)

)1−α

. (G.7)

Substituting these into (G.6) yields:

κ̄(θ) =
a

1
α δ̂q(θ;P)(

δ̂ + λ̂(θ;P)
)2 λ(θ;P) α−1

α . (G.8)

G.2 Government budget constraint

An important simplification of the analysis is that we can rewrite the govern-

ment’s budget constraint in a way that does not depend on profit distributions.

This allows us to express T0 as a function of the parameters of the model,

τ, b, δ̃, γ, k(θ), and endogenous variables θ̃(p) and µ(θ;P).
To do so, we can manipulate the government budget constraint to compute τ0

for given b and τ as follows. Government’s budget constraint is:

G + b
[
K(θ̃(P)) +

∫ θ̄

θ̃(P)
(1− µ(θ;P))k(θ)dθ

]
− T0

∫ θ̄

θ̃(P)
µ(θ;P)k(θ)dθ

=
∫ θ̄

θ̃(P)
µ(θ;P)

∫ 1

0
τx(q(i, θ;P), θ)dik(θ)dθ. (BC)

Using x(q(i, θ;P), θ) = z(θ;P)− q(i, θ;P), we can rewrite, the government budget

constraint as:

G + b
[
K(θ̃(P)) +

∫ θ̄

θ̃
(1− µ(θ;P))k(θ)dθ

]
− T0

∫ θ̄

θ̃(P)
µ(θ;P)k(θ)dθ

= τ
∫ θ̄

θ̃(P)
µ(θ;P)z(θ;P)k(θ)dθ − τ

∫ θ̄

θ̃(P)
µ(θ;P)

∫ 1

0
q(i, θ;P)dik(θ)dθ. (G.9)

Notice that the term that follows the first integral sign in the second term on the

second line of (G.9) equals total job price payment in the economy which further
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equals total cost of vacancy posting since firms make zero profit in equilibrium.

Therefore, we have

∫ θ̄

θ̃(P)
µ(θ;P)

∫ 1

0
q(i, θ;P)dik(θ)dθ =

∫ θ̄

θ̃(p)
κ̄(θ)v(θ;P)dθ, (G.10)

where v(θ;P) is the aggregate level of vacancy posting in talent market θ and

κ̄(θ)v(θ;P) is the total vacancy posting cost in that talent market under the as-

sumption of linear vacancy posting. Notice that (G.7) implies that λ(θ;P)k(θ) =
ϕ(θ;P)v(θ;P). Using this latter and (G.6), and recalling that µ(θ;P) = λ(θ;P)

λ(θ;P)+δ
, we

have that aggregate vacancy posting cost equals:

∫ θ̄

θ̃(P)
κ̄(θ)v(θ)dθ =

∫ θ̄

θ̃(P)
µ(θ;P) δ̂

δ̂ + λ̂(θ;P)
q(θ;P)k(θ)dθ. (G.11)

Thus, we can rewrite (G.9) as:

G + b
[
K(θ̃(P)) +

∫ θ̄

θ̃(P)
(1− µ(θ;P))k(θ)dθ

]
− T0

∫ θ̄

θ̃(P)
µ(θ;P)k(θ)dθ

= τ
∫ θ̄

θ̃(P)
µ(θ;P)z(θ;P)k(θ)dθ − τ

∫ θ̄

θ̃(P)
µ(θ;P) δ̂

δ̂ + λ̂(θ;P)
q(θ;P)k(θ)dθ. (G.12)

Plugging q(θ;P) = − b+τ0
1−τ + z̄(θ), where recall that z̄(θ) = z(θ) − ( z(θ)

θ )1+γ

(1+γ)(1−τ)
, into

(G.12) and leaving τ0 alone, we get:

T0 = − 1
A

[
− G− Bb + τ

∫ θ̄

θ̃(P)
µ(θ;P)z(θ;P)k(θ)dθ − τ

∫ θ̄

θ̃(p)
µ(θ;P) δ̂

δ̂ + λ̂(θ;P)
z̄(θ;P)k(θ)dθ

]
(G.13)

where

A :=
∫ θ̄

θ̃(P)
µ(θ;P)

[
1 +

τ

1− τ

δ̂

δ̂ + λ̂(θ;P)

]
k(θ)dθ,

B := K(θ̃(P)) +
∫ θ̄

θ̃(P)

(
(1− µ(θ;P))− τ

1− τ
µ(θ;P) δ̂

δ̂ + λ̂(θ;P)

)
k(θ)dθ.

7



G.3 Algorithm

The algorithm has two main steps. In the first, we compute equilibrium for a

given choice of (b, τ). In the second step, we construct a grid for b and τ and do a

grid search to find the b and τ that maximizes social welfare. Below, we provide

the sub-steps of the first equilibrium computation step.

Substep 1. For a given b and τ, guess T1
0 . Set the substep counter k = 1 and

proceed to the next substep.

Substep 2. Use (G.1) to compute the activity threshold θ̃. Use

κ̄(θ) =
a

1
α δ̂q(θ;P)(

δ̂ + λ̂(θ;P)
)2 λ(θ;P) α−1

α (G.14)

to compute λ(θ;P) and that to compute µ(θ;P) = λ(θ;P)
δ+λ(θ;P) . Using (G.13), compute

T̂k
0 . Calculate test := |Tk

0 − T̂k
0 |. If test< ε, then equilibrium T0 is found, proceed to

Step 3. Otherwise, set k = k + 1, Tk+1
0 = ηTk

0 + (1− η)T̂k
0 and repeat Substep 2

until convergence.

Substep 3. Use (G.1) to compute activity threshold θ̃(p), the maximal job price

q(θ;P), and (16) to compute the distribution of job prices in each talent market

q(i, θ;P), for all θ ≥ θ̃. Compute social welfare under given policy.

H Additional quantitative results

This appendix reports some additional quantitative results.

H.1 Decomposition of optimal marginal benefits terms

Subsection 5.2 quantitatively evaluates marginal benefit and cost terms for the

frictonal economy optimal income tax equation. Figure H.1 provides further

decomposition of these terms. Recall that −E
[{M

Λ − 1
} {

x + (1− τ) ∂q
∂τ

}]
is the

marginal redistributive benefit of an income tax rate increment, with the term

−E
[{M

Λ − 1
} {

(1− τ) ∂q
∂τ

}]
being the contribution of the profit squeeze to this ben-

efit. Figure H.1(a) further decomposes the profit squeeze contribution. The over-

all value of this contribution at different marginal tax rates τ (holding other
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(b) Decomposition of job destruction term

Figure H.1

elements of the tax system fixed at their optimal values) is depicted by the red

line in the figure (with units: 2017 per capita dollars). The profit squeeze re-

distributes amongst employed workers within and across talent markets and

between the employed and the unemployed. The blue line illustrates the value

of profit squeeze induced redistribution amongst employed workers within tal-

ent markets. Consistent with theory, this is positive: maximal job prices within

talent markets decline in response to higher tax rates. This decline dissipates

as workers climb the job ladder, implying that low earners within talent mar-

kets are the main beneficiaries and social criteria that favor such redistribution

are elevated. However, in our quantitative exercise, this benefit is offset by the

marginal cost of profit squeeze induced redistribution across talent markets.

This is indicated by the green line in the figure. Theory for the model without

matching, implies that this term is negative: job price falls are greatest in higher

talent markets implying redistribution from poorer to richer workers across tal-

ent markets and, under out utilitarian criterion, a redistributive cost. The profit

squeeze also transfers resources from the policymaker’s budget to the employed.

Since these resources are partly spent on providing basic income to the unem-

ployed an implicit redistribution from the unemployed to the employed occurs.

This is a further negative redistributive cost of the profit squeeze shown by the

orange line in the figure.

Figure H.1(b) displays components of the marginal benefit terms associated

with the employment margin and given in the last line of Equation (32). These

components are consolidated into the orange line in Figure 3 in the main text
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(which coincides with the red total line plot in Figure H.1(b)). Recall that when

creating vacancies, firms fail to internalize the positive utility benefits to unem-

ployed workers who find jobs and the extra tax revenues created. On the other

hand, they also do not internalize the negative congestion and poaching impacts

on other firms. A higher income tax rate deters vacancy creation. The social

marginal cost stemming from lost utility to job finders and reduced tax revenues

is shown in blue. This declines from about -$103 to -$184 2017 per capita US

dollars over the tax range displayed. The social marginal benefit from correcting

congestion and poaching is stable at around $162 over this tax range.

H.2 Sensitivity

This subsection reports how optimal tax and benefit policy varies with utility

parameters σ and γ. The conclusion that frictions are a force for moderately

lower optimal tax rate carries over to the case with a higher concavity of the

utility function and a lower elasticity of labor supply.

Table H.1: Optimal Affine Tax Policy

σ = 4 γ = 2
Frictional Frictionless Frictional Frictionless

τ 34.7% 39.3% 45.2% 47.9%

τ0 6612 3168 6324 2436

b 9960 10104 12720 11520

τ0, b: annual 2017 US $ amounts.

I Optimal non-linear taxation

This appendix extends optimal affine tax equations for frictional economies to

the optimal nonlinear taxation case. It does so for the general Burdett-Mortensen

model with endogenous matching. We slightly generalize the model in the main

text by allowing vacancy costs to have the form: κ(v, θ) = κ(θ) v1+χ

1+χ . This implies

that firms earn rents on infra-marginal vacancies (that are taxed at 100%). For-

mulas for other cases, e.g. the bBM model and the frictionless model can be

derived as special or limiting cases. In the nonlinear tax setting, the policymaker
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has access to policies P = (b, T), with T : R+ → R a twice differentiable non-

linear tax function. The equilibrium model is identical to that for the affine case

up to the modification of the worker’s optimized value function and effort choice

problem which becomes:

V(q, θ;P) = max
z

U(z− q− T[z− q], z, θ). (I.1)

Maximal job prices q continue to satisfy: V(q, θ;P) = U(b, 0, θ), with V modified

as in (I.1). Formulas (25) to (29) continue to hold. The policymaker’s problem is

now:

max
P

∫ θ

θ
Γ(θ)U(b, 0, θ)k(θ)dθ (I.2)

+
∫ θ

θ̃(p)
µ(θ;P)

∫ 1

0
Γ(θ) {V(q(i, θ;P), θ;P)−U(b, 0, θ)} di k(θ)dθ,

subject to the resource constraint:

−b + χ
∫ θ

θ̃(p)
µ(θ;P)

∫
[0,1]

q(i, θ;P)di k(θ)dθ

+
∫ θ

θ̃(p)
µ(θ;P)

{∫ 1

0
T[z(i, θ;P)− q(i, θ;P)]di

}
k(θ)dθ ≥ G.

Let Ω : R+ → R denote a smooth function and consider a perturbation to the

optimal tax code in the direction Ω. The resulting first order condition formatted

in terms of incomes x is:

−
∫

R+

E
[{

M
Λ

+
T′[x]

1− T′[x]
η̃ − 1

}{
Ω[x] + (1− T′[x])∂Ωq

}∣∣∣∣ x
]

h(x)dx

=
∫

R+

{Ω′[x]− T′′[x]∂Ωq} xT′[x]
1− T′[x]

E[Ẽ c|x]h(x)dx

+
∫

R+

1
1− T′[x]

E
[{

∆U
Λ

+ T[x] + b + χq
}
EΩ,µ + (1− χ)(1− T′[x])∂Ωq

∣∣∣∣ x
]

h(x)dx,

(I.3)

where ∂qΩ is understood as the differential ∂q(T+εΩ)
∂ε

∣∣∣
ε=0

and where: Ẽ c = E c

1+ T′′ [x]x
1−T′ [x]E

c

and η̃ = η

1+ T′′ [x]x
1−T′ [x]E

c
are the non-linear tax adjusted compensated effective labor

supply elasticity and income effect. Finally, EΩ,µ gives elasticities of µ with re-

spect to the tax perturbation. Expression (I.3) preserves the structure of the
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optimal affine tax formulas and its terms admit the same interpretation. It is,

however, parameterized by the particular perturbation Ω. We next seek a fac-

torization of the formula that renders it multiplicative in Ω. First, we deploy the

standard integration by parts technique to reformulate the Ω′ term in (I.3) in

terms of Ω:∫ ∞

0

T′[x]x
1− T′[x]

E[Ẽ c|x]Ω′(x)h(x)dx =
T′[x]x

1− T′[x]
E[Ẽ c|x]Ω(x)h(x)

]∞

0
(I.4)

−
∫ ∞

0

d
dx

{
T′[x]x

1− T′[x]
E[Ẽ c|x]h(x)

}
Ω(x)dx.

Assuming that the first right hand side term in (I.4) is zero, this permits the

gathering of terms in (I.3) into a standard Mirrleesian budget perturbation:

∫
R+

∂BM(x) ·Ω[x]h(x)dx :=
∫ ∞

0

[
1− T′[x]

1− T′[x]
E[η̃|x]

+

 x
T′[x]

1−T′[x]E[Ẽ c|x]

∂
(

T′[x]
1−T′[x]E[Ẽ

c|x]
)

∂x
+ 1 +

xh′(x)
h(x)

 T′[x]
1− T′[x]

E[Ẽ c|x]
]

Ω(x)h(x)dx.

Substituting this into the policymaker first order condition gives:

−
∫

R+

E
[

M
Λ
{

Ω[x] + (1− T′[x])∂Ωq
}
+

{
T′[x]

1− T′[x]
η̃ − 1

}
(1− T′[x])∂Ωq

∣∣∣∣ x
]

h(x)dx

=−
∫

R+

{T′′[x]∂Ωq} T′[x]x
1− T′[x]

E[Ẽ c|x]h(x)dx−
∫

R+

∂BM(x) ·Ω[x]h(x)dx

+
∫

R+

1
1− T′[x]

E
[{

∆U
Λ

+ T[x] + b + χq
}
Eµ + (1− χ)(1− T′[x])∂Ωq

∣∣∣∣ x
]

h(x)dx.

(I.5)

In (I.5), E[∂Ωq|x] gives the expected perturbation to job prices of those earning

x. To factorize the expression, we now calculate the expected perturbation to

job prices induced by the tax function perturbation at x. Note that such a tax

perturbation impacts job prices of those talents for whom x is the lowest income

earned. As a first step evaluating ∂Ωq at talent-extractiveness index pair (i, θ)
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gives:

∂qΩ(i, θ) = −
{

1− 2

(
λ̂(θ)/δ̂(θ)}(1− i)

1 + {λ̂(θ)/δ̂(θ)}(1− i)

)
Eλ,q(θ)

}
q(i, θ)

q(θ)
Ω[x(θ)]

1− T′[x(θ)]

= −M(i, θ)
Ω[x(θ)]

1− T′[x(θ)]
, (I.6)

where x(θ) is the minimal income in market θ and where, in the second line of

(I.6), M(i, θ) =
{

1− 2
(
{λ̂(θ)/δ̂(θ)}(1−i)

1+{λ̂(θ)/δ̂(θ)}(1−i)

)
Eλ,q(θ)

}
q(i,θ)
q(θ) . To compute the total job

price response induced by an income tax perturbation at a given x, define the

maximal talent earning income x, θ(x), according to: x = x(θ(x)). Changing

variables from θ to x, we have that if taxes are perturbed by Ω and, in particular,

taxes are increased at income x by Ω(x), agents (i, θ(x)) experience a job price

reduction of:

∂Ωq(i, θ(x)) = −M(i, θ(x))
Ω(x)

1− T′[x]
.

Next evaluating the sensitivity of µ(θ) = λ(θ)
δ+λ(θ)

gives:

∂Ωµ(θ)

µ
=

1
1 + λ(θ)/δ

∂λ(θ)

λ
= Eλ,q(θ)

1
1 + λ(θ)/δ

∂q(θ)
q

= −Eλ,q(θ)
1

1 + λ(θ)/δ

1
q(θ)

Ω(x(θ))
1− T′[x(θ)]

,

where again x(θ) is the minimal income in talent market θ. Changing variables

as before to obtain the impact of a tax perturbation at x gives:

∂Ωµ(θ(x))
µ

= −Eq,λ(θ(x))
1

1 + λ(θ(x))/δ

1
q(θ(x))

Ω(x)
1− T′[x]

,

Collecting terms the overall impact of a tax perturbation at x via adjustment in

job prices and in the employment rate is:

D(x) · Ω(x)
1− T′[x]

= −
∫ 1

0
(χ− T′[x(θ(x), i)]φ(θ(x), i))M(θ(x), i)di · k(θ(x))

h(x)
· Ω(x)

1− T′[x]

−
∫ 1

0

{
T[x(θ(x), i)] + b + χq(θ(x), i)

}
di

· λ(θ(x))
δ + λ(θ(x))

δ

δ + λ(θ(x))

Eλ,q(θ(x))

q(θ(x))
k(θ(x))

h(x)
· Ω(x)

1− T′[x]
,

where φ := 1+η

1+ T′′ [x]x
1−T′ [x]E

c
. This term gives the impact on the policymaker’s budget of

tax-induced adjustment in job prices and the employment rate. It nets out the
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the marginal social cost of adjustments in vacancy posting implied by externali-

ties in the posting process (and that translate into and are absorbed by reduced

profit tax revenues). Substituting, the overall impact on the policymaker’s bud-

get from the reform is:

∂B(Ω) =
∫ ∞

0

[
D(x)

1− T′[x]
+ ∂BM(x)

]
Ω(x)h(x)dx.

The direct effect on social welfare of the perturbation is:

∫
R+

{
−E

[
M
Λ

∣∣∣∣ x
]
+
F (x)

1− T′[x]

}
Ω[x]h(x)dx,

where:

F (x) · Ω(x)
1− T′[x]

=
∫ 1

0

M(θ(x), i)
Λ

(1− T′[x(θ(x), i)])M(θ(x), i)di · k(θ(x))
h(x)

· Ω(x)
1− T′[x]

+
∫ 1

0

∆U
Λ

(x(θ(x), i)di · λ(θ(x))
δ + λ(θ(x))

δ

δ + λ(θ(x))

Eλ,q(θ(x))

q(θ(x))
k(θ(x))

h(x)
· Ω(x)

1− T′[x]
,

Assembling the pieces gives:

0 =
∫

R+

{
−E

[
M
Λ

∣∣∣∣ x
]
+
F (x)

1− T′[x]
+
D(x)

1− T′[x]
+ ∂BM(x)

}
Ω[x]h(x)dx. (I.7)

Since the preceding must hold for an arbitrary perturbation at the optimum, for

almost all x:

0 = −E
[

M
Λ

∣∣∣∣ x
]
+
F (x)

1− T′[x]
+ ∂BM(x) +

D(x)
1− T′[x]

,

where the first two terms give the direct welfare impact of the tax perturbation

inclusive of job price adjustment on the job ladder θ(x) and impact on the num-

bers of involuntarily unemployed agents in this labor market and the final two

terms give budgetary implications inclusive of job price and employment effects

in market θ(x). Of course, (I.7) reduces to the affine optimal tax formula for affine

translations Ω of an optimal affine tax code T and, more generally, the terms in

(I.7) can be related back to their optimal affine counterparts.
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