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Abstract

We conduct an experiment in which we elicit subjects’ beliefs over opponents’
behavior multiple times for a given game without feedback. A large majority
of subjects have stochasticity in their belief reports, which we argue cannot be
explained by learning or measurement error, suggesting significant noise in subjects’
unobserved “true” beliefs. Using a structural model applied to actions and beliefs
data jointly, we find that such “noisy beliefs” are equally important for explaining
our data as “noisy actions”—the sort of stochastic choice given fixed beliefs that
is commonly assumed in empirical research. We then test the axioms underlying
equilibrium models with noisy actions (quantal response equilibrium) and noisy
beliefs (noisy belief equilibrium). We find support for both sets of axioms, except
for those that assume beliefs are perfectly unbiased. To fully explain our data, we
argue that beliefs and belief-noise are driven by the payoff salience of actions.
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A large literature has documented a pattern of stochastic choice in individual decision
making. In games, in which payoffs depend on beliefs over opponents’ behavior, a
potentially important source of stochasticity is in the beliefs themselves. This suggests
a decomposition of stochastic choice into (1) “noisy beliefs” and (2) “noisy actions”
conditional on beliefs. A priori, it is unclear which type of noise is the primary driver
of stochastic choice, and yet, little is known of the empirical relevance of noisy beliefs.

Modeling noise appropriately is crucial for making good predictions, particularly
out-of sample, as well as for estimating structural parameters. This may be especially
true in games, where the interaction of noisy players can lead to equilibrium effects. In
particular, noisy actions and noisy beliefs are fundamentally different in their equilib-
rium implications (Friedman [2022]), so it is important to understand the nature and
prevalence of the two sources of noise.

In this paper, we report on the results of a laboratory experiment designed to answer
three related questions. First, are beliefs noisy? Second, what is the relative importance
of noisy actions and noisy beliefs for explaining data? Third, how valid are the assump-
tions underlying existing models of stochastic choice in games? These questions concern
the quantitative importance and qualitative nature of the two types of noise.

To guide the experimental design, we formulate as a benchmark model a generaliza-
tion of Nash equilibrium (NE) that allows for both stochastic choice given beliefs and
randomness in the beliefs themselves.1 It is defined by an action-map, which determines
the mixed actions taken by players given their beliefs, and a belief-map, which deter-
mines the distribution of beliefs as a function of the opponents’ mixed actions. Without
parametric assumptions, the action- and belief-maps are only restricted to satisfy the
axioms of (regular) quantal response equilibrium (QRE) (Goeree et al. [2005]) and noisy
belief equilibrium (NBE) (Friedman [2022]), respectively. The model is thus a hybrid
model, borrowing from existing models of stochastic choice.

Guided by the hybrid model, the idea behind our experiment is to make observable
the empirical action- and belief-maps. These mappings are of interest because they sum-
marize the empirical relationships between actions and beliefs, allowing us to test basic
postulates about the nature and importance of the two sources of noise. Additionally,
as model primitives, they have a close connection to existing theories.

1The model will therefore not be trivially rejected with a single failure of best response or instance
of incorrect beliefs.
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Noting that both mappings depend on both actions and beliefs, identification requires
that we identify beliefs in addition to observing actions. In our experiment, we achieve
this by eliciting beliefs directly.

Identification also requires variation in both actions and beliefs. We achieve this
through the family of 2 × 2 games whose payoffs are in Table 1. Indexed by player 1’s
payoff parameter X > 0, these X-games have unique, mixed strategy NE. By varying
X, the hybrid model predicts systematic variation in action- and belief-distributions for
both players. Hence, by having subjects state beliefs and take actions for different values
of X, the model predicts that we will observe multiple points on the empirical action-
and belief-maps. In other words, by varying X, we “trace out” these mappings.

Player 2
L R

Player 1
U 0 20

X 0

D 20 0
0 20

Table 1: Game X. Player 1’s payoff parameter X > 0 controls the asymmetry of payoffs and
is our instrument for varying actions and beliefs.

Prior to previewing our results, we make two essential remarks. First, by “noisy
beliefs,” we mean within-subject variation in beliefs that is not due to predictable sources
of variation. For this reason, unlike existing experiments, we have subjects state beliefs
multiple times for each game without feedback so that there is no scope for learning.2

Second, we view stated beliefs simply as measures of the unobservable true beliefs that
subjects hold in their minds and guide their actions. The issue we face is that while we
are primarily interested in true beliefs, we only observe stated beliefs that may be subject
to random measurement error. We proceed by first taking stated beliefs as equal to true
beliefs for our main analysis. Then, we show that our qualitative results—including
the existence of noisy beliefs—hold for true beliefs under the weaker (non-parametric)
assumption that a stated belief is an unbiased signal of the underlying true belief.

In answering the questions that motivated our study, we make three contributions.
First, we establish that beliefs are, in fact, noisy. Second, we show, using a structural

2The selection of games too is such that we would not expect the phenomenon of no-feedback learn-
ing. Weber [2003] documents, using dominance solvable beauty contest games, that subjects’ behavior
drifts toward the NE, even without feedback. The X-games, on the other hand, are fully mixed and
comparatively simple in structure. In our data, we also find no trends in beliefs (Section 4).
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model, that belief-noise is equally important as action-noise for explaining our data.
Third, we study the validity of assumptions underlying models of stochastic choice by
way of statistically testing the axioms of the hybrid model. We find support for most,
but not all, of its axioms; and we offer possible explanations for those that are rejected.

The conclusion that beliefs are noisy is based on within-subject variation in stated
beliefs for a given game. On average, each subject’s beliefs have a range of 23 percentage
points over five repetitions of a given game. This cannot be driven by learning since
there is no feedback, most subjects have no trends in their beliefs, and the ranges of
beliefs are little affected by linearly detrending each subject’s beliefs. We also argue that
this noise in stated beliefs cannot be due entirely to random measurement error since
within-subject variations in stated beliefs are strongly predictive of subjects’ actions.
This implies that a high stated belief signals a high true belief, and thus noise in stated
beliefs reflects noise in true beliefs.

To conclude that belief-noise is as important as action-noise for explaining the data,
we formulate a simple structural model and conduct a counterfactual exercise. Specif-
ically, we construct, for each subject, two counterfactual action frequencies that result
from “turning off” just one source of noise; and we say that a source of noise is important
for that subject if turning it off leads to large prediction errors relative to her observed
action frequency. We find that the two counterfactuals perform equally well on average.
This suggests that belief-noise, while rarely considered, is just as important as the sort
of action-noise commonly assumed in the analysis of experimental data (e.g. in QRE).

In testing the axioms of the hybrid model, we find broad support for all axioms,
except for those that assume beliefs are perfectly unbiased. In particular, we find that:
(1) for any given belief, actions with higher expected utility are played more often (con-
sistent with monotonicity); (2) if the expected utility to some action increases (while
keeping other expected utilities fixed), that action will be played with a higher proba-
bility (responsiveness); and (3) the distribution of beliefs shifts in the same direction as
changes in the opponent’s behavior (belief-responsiveness). However, we also find that
(4) the central tendency of the belief-distribution is biased relative to the opponents’
behavior (a failure of unbiasedness). Hence, while subjects correctly anticipate how
behavior changes across games, beliefs are not well-calibrated.

In addition to the failure of unbiasedness, we also document that belief-noise is
systematically higher for player 1-subjects and decreasing in X for both players. To
explain these findings, we propose that the differential salience of actions across players
causally induces greater strategic sophistication in player 1-subjects, i.e. those who have
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a salient action. This is both capable of explaining the observed patterns and consistent
with auxiliary data. In particular, we find that player 1-subjects exhibit much higher
levels of strategic sophistication based on a measure that is collected identically for all
subjects toward the end of the experiment. Moreover, since subjects were randomized
into player roles (that they maintain throughout the experiment), we establish causality:
experience in different roles of the X-games has a causal effect on measures of strategic
sophistication.

Our results have important implications for modeling stochastic choice in games.
Broadly, while beliefs tend to be biased and therefore cannot be fully explained by
reduced-form equilibrium models, our results confirm the basic premise of models with
noisy actions (e.g., quantal response equilibrium) and noisy beliefs (e.g., noisy belief
equilibrium). In particular, we establish through a structural model that belief-noise is
indispensable. This suggests that ignoring belief-noise, as is done in a majority of model-
fitting applications, can lead to biased parameter estimates and poor out-of-sample
predictions (Section 5 provides further discussion). However, we show that allowing
for both belief- and action-noise can lead to models that are very permissive in their
predictions over standard actions data. Beyond suggesting the value of belief elicitation,
this calls for additional research into the factors that drive the two types of noise. In our
data, one prominent factor emerges. The payoff salience of actions, intermediated by a
causal effect of salience on strategic sophistication, is a primary driver of noisy beliefs.

The remainder of this section reviews related literature. Section 1 presents the the-
ory; Section 2 gives the experimental design; Section 3 provides an overview of the
data; Section 4 presents evidence that beliefs are noisy; Section 5 quantifies the relative
importance of action- and belief-noise for explaining the data; Section 6 presents the
results from testing the axioms; Section 8 establishes the role of payoff silence in driving
belief-noise; Section 7 shows that our results, including the existence of noisy beliefs, are
robust to measurement error; and Section 9 provides a discussion.

Related literature. This paper contributes to the theory and empirical study
of equilibrium models with stochastic elements. We directly test the assumptions, or
axioms, underlying (regular) quantal response equilibrium (QRE) (Goeree et al. [2005]
and McKelvey and Palfrey [1995]) and noisy belief equilibrium (NBE) (Friedman [2022]),
which are closely related to other models found in the literature.3 We believe we are

3Models with noisy beliefs include those of Friedman and Mezzetti [2005], Rubinstein and Osborne
[2003], and Goncalves [2020], among others. NBE borrows the idea of the belief-map from the concept
of random belief equilibrium (Friedman and Mezzetti [2005]), but imposes behavioral axioms to derive
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novel in studying a hybrid model that allows for noise in both actions and beliefs, but
there is a clear relationship to the literature on the empirical content of QRE (e.g.
Haile et al. [2008], Goeree et al. [2005], Melo et al. [2018], Goeree and Louis [2021],
and Friedman and Mauersberger [2023]). While the focus of our paper is testing axioms
using actions and beliefs data jointly, we do show that the hybrid model, despite being
fairly permissive, is falsifiable in standard actions data.4

By studying noisy beliefs as a driver of stochastic choice, we contribute to the ex-
perimental literature on the nature and determinants of stochastic choice (e.g. Agranov
and Ortoleva [2017], Agranov et al. [2020], and Tversky [1969]). As we discuss in Section
9.1, our focus on documenting noise in beliefs leads us to a novel experimental design.
We do not attempt to distinguish between different theories of noisy beliefs, but we note
that the noise may arise from sequential evidence accumulation (e.g. Fudenberg et al.
[2018]), sampling from memory (e.g. Goncalves [2020]), cognitive uncertainty (Enke and
Graeber [2020]), or as a reaction to strategic uncertainty (e.g. Wolff and Bauer [2018]).
Hence, we provide evidence consistent with these theories.

We also contribute to the general understanding of elicited beliefs, their interpre-
tation, and their relationship to subjects’ behavior.5 Our key innovation is to collect
multiple elicitations per subject without feedback, which is necessary to study noisy
beliefs. This distinguishes us from experiments that elicit beliefs once for each game
(e.g. Costa-Gomes and Weizsacker [2008], Rey-Biel [2009], and Ivanov [2011]) as well
as studies that elicit beliefs for the same game repeatedly with feedback (e.g. Nyarko
and Schotter [2002] and Rutstrom and Wilcox [2009]). Whereas the belief elicitation
literature has focused on documenting rates of best response, the axioms we consider
lead us to study how rates of best response vary across every neighborhood of stated
beliefs. In particular, we show that, within-subject, the probability of taking an action
varies with changes in stated beliefs—even when restricting attention to neighborhoods
of beliefs that imply the same best response. Finally, our non-parametric treatment of
measurement error may be broadly applicable to other settings where the assumption
that “stated beliefs equal true beliefs” is problematic.
testable restrictions.

4Haile et al. [2008] showed that structural QRE can rationalize the data from any one game without
strong restrictions on the error distributions, raising concerns that QRE models may be non-falsifiable.
However, regular QRE (Goeree et al. [2005]), as well as the hybrid model that generalizes it, is falsifiable.

5Schotter and Trevino [2014] and Schlag et al. [2015] provide excellent review articles of belief
elicitation methods and related applications.
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1 Theory to guide the experimental design

Our primary goal is not to test any particular model, but to study noisy actions, noisy
beliefs, and the contribution of each to stochastic choice. Nevertheless, we introduce a
benchmark model to ground our work and guide the experimental design.

The benchmark model is a stochastic generalization of Nash equilibrium (NE). It is a
hybrid model, defined by an action-map satisfying the axioms of regular quantal response
equilibrium (QRE) (Goeree et al. [2005]) and a belief-map satisfying the axioms of noisy
belief equilibrium (NBE) (Friedman [2022]). Our main takeaway: as long as there is
noise in actions, beliefs, or both, the hybrid model predicts that the X-games that we
use in the experiment will give rise to the variation in actions and beliefs required to
“trace out” the empirical mappings.

Anticipating the experiment, we present the case of 2× 2 games in which there are
two players with two actions each, but the model generalizes to all finite, normal form
games. A game is defined by Γ2×2 = {N,A, u} where N = {1, 2} is the set of players,
A = A1×A2 = {U,D}×{L,R} is the action space, and u = (u1, u2) is a vector of utility
functions with ui : A→ R. In other words, this is any game in which player 1 can move
up (U) or down (D) and player 2 can move left (L) or right (R).

We use i to refer to a player and j for her opponent. We reserve k and l for action
indices. Since each player has only two actions, we write player i’s mixed action as
σi ∈ [0, 1]. In an abuse of notation, we use σ1 = σU and σ2 = σL to indicate the
probabilities with which player 1 takes U and player 2 takes L, respectively.

1.1 Action-map

Let σ′
j ∈ [0, 1] be an arbitrary belief that player i holds over player j’s action. Given this

belief, player i’s vector of subjective expected utility is ūi(σ
′
j) = (ūi1(σ

′
j), ūi2(σ

′
j)) ∈ R2,

where ūik(σ
′
j) is the expected utility to action k. We use vi = (vi1, vi2) ∈ R2 as shorthand

for an arbitrary such vector: vi is understood to satisfy vi = ūi(σ
′
j) for some belief σ′

j.
As in QRE, the action-map (also known as a “quantal response function”) is a function

Qi : R2 → [0, 1] that maps any vector of subjective expected utility to a mixed action.
We assume that it satisfies the following regularity axioms (Goeree et al. [2005]):

(A1) Interiority: Qik(vi) ∈ (0, 1) for all k ∈ 1, 2 and for all vi ∈ R2.

(A2) Continuity: Qik(vi) is a continuous and differentiable function for all vi ∈ R2.

(A3) Responsiveness: ∂Qik(vi)
∂vik

> 0 for all k ∈ 1, 2 and vi ∈ RJ(i).
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(A4) Monotonicity: vik > vil =⇒ Qik(vi) > Qil(vi) and vik = vil =⇒ Qik(vi) =
1
2
.

(A1) and (A2) are non-falsifiable technical axioms. Taken together, (A3) and (A4)
are a stochastic generalization of “best response,” requiring than an all-else-equal increase
in the payoff to an action increases the probability it is played and that, given any belief,
the best response is taken more often than not.

1.2 Belief-map

As in NBE, player i’s belief about j’s mixed action is drawn from a distribution that
depends on j’s mixed action. In other words, player i’s beliefs are a random variable
σ∗
j (σj) whose distribution depends on σj and is supported on [0, 1]. This family of

random variables, or belief-map, is described by a family of CDFs: for any potential
belief σ̄j ∈ [0, 1], Fi(σ̄j|σj) is the probability of realizing a belief less than or equal to σ̄j
given that player j is playing σj. Following Friedman [2022], we assume the belief-map
satisfies the following axioms:

(B1) Interior full support: For any σj ∈ (0, 1), Fi(σ̄j|σj) is strictly increasing and
continuous in σ̄j ∈ [0, 1].

(B2) Continuity: For any σ̄j ∈ (0, 1), Fi(σ̄j|σj) is continuous in σj ∈ [0, 1].

(B3) Belief-responsiveness: If σj < σ
′
j ∈ [0, 1], Fi(σ̄j|σ

′
j) < Fi(σ̄j|σj) for σ̄j ∈ (0, 1).

(B4) Unbiasedness: Fi(σj|σj) = 1
2

for σj ∈ (0, 1). σ∗
j (0) = 0 and σ∗

j (1) = 1 w.p. 1.

(B1) and (B2) are non-falsifiable technical axioms. (B1) requires that belief-
distributions have full support and no atoms when the opponent’s action is interior, and
(B2) requires that the belief-distributions vary continuously in the opponent’s behavior
except possibly as the opponent plays a pure action with a probability that approaches
one. Taken together, (B3) and (B4) are a stochastic generalization of “correct beliefs.”
(B3) requires that, when the opponent’s action increases, belief-distributions shift up
in a strict sense of stochastic dominance. (B4) imposes that belief-distributions are
unbiased on median.6

6Both median- and mean-unbiasedness can be microfounded via a model of sampling (Friedman
[2022]), and the technical axioms allow for either or both. We use median-unbiasedness to derive
theoretical results because it turns out to be simpler in our setting, but we test for both types of
unbiasedness in our data.
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1.3 The hybrid model

The hybrid model generalizes QRE and NBE, defined by an action-map Q = (Q1, Q2)

satisfying (A1)-(A4) and a belief-map σ∗ = (σ∗
2, σ

∗
1) satisfying (B1)-(B4).

Given player j’s mixed action σj ∈ [0, 1], player i’s beliefs are drawn according to
Fi(·|σj). For each belief realization σ

′
j ∈ [0, 1], player i’s mixed action is given by the

action-map Qi(ūi(σ
′
j)) ∈ [0, 1]. Player i’s expected action-map is found by integrating

over belief realizations: Ψi(σj;Qi, σ
∗
j ) :=

∫
[0,1]

Qi(ūi(σ
′
j))dFi(σ

′
j|σj). Since Qi : R2 →

[0, 1] is single-valued, Ψi : R2 → [0, 1] is also single-valued. A hybrid equilibrium is
defined as a fixed point of Ψ = (Ψ1,Ψ2) : [0, 1]2 → [0, 1]2, along with the supporting
belief-distributions.

Definition 1. Fix (Γ2×2, Q, σ∗). A hybrid equilibrium is any pair (σ, σ∗(σ)) where
σ = Ψ(σ;Q, σ∗), Q satisfies (A1)-(A4), and σ∗ satisfies (B1)-(B4).

We specialize theory for the family of X-games whose payoffs are in Table 1. These
games have unique, mixed strategy NE. As is well known, NE predicts each player must
mix to make the other player indifferent, and so σNE,X

L = 20
20+X

and σNE,X
U = 1

2
. Since we

are only working within the X-game family and σNE,X
L is a strictly decreasing function

of X, we think of σNE,X
L as a parameter of the game and freely go between X and σNE,X

L

as convenient.
Within any one X-game, the hybrid equilibrium is unique, but flexibility in the prim-

itives gives rise to set-valued predictions, which we completely characterize in Appendix
10.1. For our purposes, however, the following comparative static is more important.
By varying X, the hybrid model predicts the variation in actions and beliefs required to
“trace out” the empirical action- and belief-maps for both players, justifying the use of
X-games in our experiment.

Proposition 1. Let {σX
U , σ

X
L , σ

∗X
U , σ∗X

L }X be a dataset of mixed actions and belief-
distributions for any finite number of X-games. To be consistent with the hybrid model
for some action- and belief-map (Q, σ∗) (held fixed across games), it must be that:

(i) σX
U is strictly decreasing in σNE,X

L ;
(ii) σX

L is strictly increasing in σNE,X
L ;

(iii) σ∗X
U is strictly decreasing in the sense of stochastic dominance in σNE,X

L ; and
(iv) σ∗X

L is strictly increasing in the sense of stochastic dominance in σNE,X
L .

Proof. See Appendix 10.3.
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Remark 1. One might be concerned that the fully-mixed X-games are problematic for
studying noise as NE predicts that players should be indifferent and therefore cannot
make mistakes or display “noisy actions.” However, our analysis conditions on elicited
beliefs, and we find that stated beliefs rarely imply indifference. Moreover, unlike NE,
the hybrid model predicts that indifference occurs with probability zero,7 and so our
empirical exercise is internally consistent with our benchmark model.

1.4 QRE and NBE

While Proposition 1 is enough to establish the comparative static prediction that is at
the core of our design, it is useful to also consider the special cases of QRE and NBE.
QRE is defined by an action-map satisfying (A1)-(A4) and a belief-map that is the
identity map imposing “correct beliefs.” NBE is defined by a belief-map satisfying (B1)-
(B4) and the perfect action-map of “best response.” We define these concepts formally
in Appendix 10.2.

Friedman [2022] shows that, for any generalized matching pennies game, the set of
attainable QRE is equal to the set of mixed action profiles attainable in NBE. It is easy
to show that this equivalence extends to any family of X-games.

Proposition 2. Let {σX
U , σ

X
L }X be a dataset of mixed actions for any finite number of

X-games. The data can be supported as QRE or NBE outcomes for some primitives
(held fixed across games) if and only if

(i) σX
U ∈ (1

2
, 1) for σNE,X

L < 1
2
, σX

U ∈ (0, 1
2
) for σNE,X

L > 1
2
;

(ii) σX
L ∈ (σNE,X

L , 1
2
) for σNE,X

L < 1
2
, σX

L ∈ (1
2
, σNE,X

L ) for σNE,X
L > 1

2
;

(iii) σX
U is strictly decreasing in σNE,X

L ; and
(iv) σX

L is strictly increasing in σNE,X
L .

Proof. See Appendix 10.3.

Figure 1 illustrates the proposition, showing the sets of attainable QRE and NBE as
functions of σNE

L . The vertical dotted lines correspond to specific values of X (marked
at the top). We also plot a hypothetical dataset {σX

U , σ
X
L }X as green dots: the left panel

plots σX
U and the right panel plots σX

L . A dataset can be supported as QRE or NBE
outcomes if and only if it looks qualitatively like the green dots in the figure: in the gray
regions, decreasing in the left panel, and increasing in the right.

7This is obviously true by (B1) as any given belief occurs with probability zero. It is also the case
that, since hybrid equilibrium action profiles are not NE, even a player who randomly realizes “correct
beliefs” also strictly prefers one of her actions.
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Figure 1: QRE and NBE in the X-games as a function of σNE
L . The left panel gives σU and

the right panel gives σL. The vertical dotted lines correspond to the values of X considered
in the experiment (marked at the top). A hypothetical dataset {σX

U , σX
L }X is given as green

dots. A dataset can be rationalized by QRE or NBE if and only if the datapoints are in the
gray regions, decreasing in the left panel, and increasing in the right.

Remark 2. Proposition 2 suggests a convenient way of organizing the data as it gives
predicted mixed action profiles as a function of a single parameter; hence, we make use of
plots similar to Figure 1 throughout the paper. An analogous plot would not be possible
for the hybrid model as the set of predictions for a given value of X is not convex (see
Appendix 10.1).

Remark 3. In terms of mixed action profiles, the set of hybrid equilibria is much larger
than that of either QRE or NBE.8 Importantly, however, the hybrid model is rejected
if and only if any of the axioms—which are in terms of both actions and beliefs—are
rejected. Hence, the model is much easier to falsify by augmenting actions data with
beliefs data, as we do in our experiment.

2 Experimental design

Recall that our aim is to make observable the empirical action- and belief-maps, which
we pursue by collecting actions and beliefs data for a family of X-games.

Overall structure. Our sessions were run in the Columbia Experimental Labora-
tory in the Social Sciences (CELSS). Subjects were undergraduate students at Columbia
and Barnard Colleges.

8For example, when X = 80, the Lebesgue measure of QRE and NBE outcomes is 15%, whereas the
measure of hybrid equilibria is 51.25%, a more than 3-fold increase. See Appendix 10.1 for details.
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The experiment consisted of two treatments, which we label “[A,BA]” and “[A,A]”.
The main treatment is [A,BA], which we describe here. The treatment [A,A] is similar,
but does not involve belief elicitation. The experiment involved 2×2 matrix games, and
at the beginning of the experiment, subjects were divided into two equal-sized subpop-
ulations of row and column players, which we refer to as players 1 and 2, respectively.
Subjects maintain their roles throughout the experiment.

The [A,BA] treatment consisted of two stages. Each round of the first stage involved
taking actions, and each round of the second stage involved stating a belief and taking
an action. The treatment name [A,BA] reflects the two stages: “A” for “action” and
“BA” for “belief-action”.

Treatment Player 1-subjects Player 2-subjects Total
[A,BA] 54 56 110
[A,A] 27 27 54
Total 81 83 164

Table 2: Subjects in each treatment

In each of the 20 rounds of the first stage, each subject was anonymously and ran-
domly paired with another subject in the opposite role (“random rematching”), and
actions were taken simultaneously. Each of the 40 rounds of the second stage were
similar to the first-stage rounds, except for two differences. First, rather than being
paired against a subject acting simultaneously, subjects played against a randomly se-
lected first-stage subject whose action had already been taken (but was not observed by
others). Second, prior to taking an action, each subject was asked for her belief—the
probability that a particular action was chosen by a randomly selected first-stage sub-
ject in the opposing role.9 Since second-stage subjects were not paired against other
subjects acting simultaneously, they were not required to wait for all subjects to finish
a round before moving on to the next. In both stages, however, subjects were required
to wait for 10 seconds before submitting their answers. Screenshots of the experimental
interface are given in Online Appendix 11.8.

Before the start of each stage, instructions for that stage were read aloud and there
were a small number of unpaid practice rounds. Importantly, only after stage 1 were
subjects introduced to the notion of a belief and the elicitation mechanism described.
Table 2 summarizes the number of subjects who participated in the experiment by

9After entering a belief for the first time in a round, the subject could freely modify both action and
belief in any order before submitting. In any case, we see very few revisions of stated beliefs.
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treatment and player role.10

Special procedures. We are interested in observing the stochasticity inherent in
beliefs. Hence, we wished to eliminate predictable sources of variation in stated beliefs
due to new information or learning. For the same reason, we also wished to minimize
variation in stated beliefs due to measurement error, which we think of as any random
misreporting, no matter the cause, of a given underlying belief.

To avoid learning, at no point during the experiment (including the unpaid practice
rounds) were subjects provided any feedback. Only at the end of the experiment did
subjects learn about the outcomes of the games and belief elicitations that were selected
for payment. Furthermore, since we elicited beliefs about the first-stage actions which
had already been recorded, multiple elicitations for a given game all refer to the same
event. Hence, variation in an individual subject’s beliefs for a given game also cannot
be due to a higher-ordered belief that other subjects were learning.

To minimize measurement error, belief statements had to be entered as whole num-
bers into a box, which we expect is less error prone than using a slider. Of course, we
acknowledge that measurement error can never be fully eliminated. Indeed, measure-
ment error in reporting beliefs can come from within the mind of subjects who noisily
introspect about their true beliefs. It is for this reason that we weaken the assumption
that “stated beliefs equal true beliefs” in Section 7.

Because we wish to analyze stochasticity and patterns in individual subjects’ belief
data, each game was played multiple times. However, we took several measures to
approximate a situation in which each game was seen as if for the first time. First,
there was no feedback, as described. Second, there was a large “cross section,” i.e. more
distinct games than the number of times each game was played. Third, the games
appeared in a randomized order, with the restriction that the same game did not appear
twice within 3 consecutive rounds.

Incentives. In addition to a $10 show-up fee, subjects were paid according to
one randomly selected round from the first stage (based on actions) and four randomly
selected rounds from the second stage—two rounds based on actions and two rounds
based on beliefs. Since there were twice as many rounds in the second stage as in the
first stage, this equated the incentives for taking actions across the stages.

To incentivize actions, if a round was selected for a subject’s action payment, the
10There are two fewer player 1-subjects than player 2-subjects in [A,BA]. This is because two subjects

(in separate sessions) had to leave early. They left after the first stage, and since the whole experiment
was anonymous and without feedback and the second stage was played asynchronously, this had no
effect on the rest of the subjects. These two subjects’ data was dropped prior to analysis.
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subject was paid according to the outcome of the game. Each unit of payoff in the
matrix corresponded to a “probability point” of earning $10. For example, a payoff of 20
is a lottery that pays $10 with probability 20% and $0 otherwise. This was to mitigate
the effects of risk aversion as expected utility is linear in probability points.

To incentivize subjects to accurately report their beliefs, we used the random binary
choice mechanism (Karni [2009]). The important feature is that reporting truthfully is
incentive compatible, independent of risk attitude. Our variant gives subjects a chance
at $5 for each elicitation selected for payment.

To allay any hedging concerns, all five payments were based on different (randomly
selected) matrices, and this was emphasized to subjects. On average, the experiment
took about 1 hour and 15 minutes, and the average subject payment was $19.5.

The games. As discussed in Section 1, the X-games take center-stage since they
are predicted to give rise to systematic variation in actions and beliefs. Henceforth, we
sometimes refer to the game with X = 80 as “X80” and similarly for the other games.

Another important aspect of the X-games is that they are very simple and fully-
mixed. Hence, we would not expect there to be much no-feedback learning (Weber
[2003]). This is important since we are studying stochasticity in beliefs, and so want to
minimize variation in beliefs due to learning.

For the experiment, we chose the six values of X given in Table 3. These correspond
to the vertical dotted lines in Figure 1. They were chosen so that the corresponding
values of σNE

L are relatively evenly spaced on the unit interval and come close to the
boundary at one end. The values of X also go well above and well below 20 so that,
across the set of games, one player does not always expect to receive higher payoffs.

X 80 40 10 5 2 1
σNE
L 0.2 0.333 0.667 0.8 0.909 0.952

Table 3: Selection of X-games. In all games, σNE
U = 0.5.

Each of the X-games was played 2 times in the first stage and 5 times in the second
stage. Since there are six X-games, they appeared a total of 12 times in the first stage
and 30 times in the second stage.

We also included some additional 2 × 2 games that we do not analyze. These were
included primarily to break up the appearance of the X-games, similar to what has
been done in non-strategic experiments testing models of stochastic choice (e.g. Tversky
[1969]). With these additional games, the first stage has 20 rounds in total and the
second stage has 40 rounds in total. This implies that the second stage has twice the
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number of rounds as the first as desired (see “Incentives” above) and that the X-games
take up a similar fraction of total games in each stage.

The games appeared in a random order, subject to some restrictions, such as ensuring
that the same game does not appear more than once within 3 consecutive rounds. Online
Appendix 11.9 shows all of the games and explains the precise randomization.

Alternative designs and generalizability. Many alternative designs are possible
and would yield complementary insights. We discuss several, as well as related questions
concerning the generalizability of our findings in Section 9.1.

3 Overview of the data

3.1 Actions

Throughout the paper, we refer to actions data from various parts of the experiment
and in some cases pool across treatments. For clarity, we use special notation to indicate
the data source. In particular, “[A, ◦ ]” refers to first-stage actions pooled across [A,BA]
and [A,A], and “[A,BA]” refers to second-stage actions from [A,BA].

0 1

0

1

0 1

0

1

Figure 2: Actions data. This figure plots the first-stage empirical action frequencies from
[A, ◦ ] with 90% confidence bands (clustered by subject), superimposed with the empirical
frequencies from other studies.

We are interested in first-stage action data because, in testing axioms on the belief-
map, we must compare beliefs to the actions they refer to, and beliefs refer to the first
stage. Since there is no feedback provided to subjects and the first stages are identical
in [A,BA] and [A,A], we pool across treatments to arrive at [A, ◦ ]. Figure 2 plots the
action frequencies from [A, ◦ ], which are also given in Appendix Table 11.
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We see that the data largely falls within the QRE-NBE region, and F -tests strongly
reject that the data generating process is NE. The only surprise concerns X40 for which
the data falls significantly outside of the QRE-NBE region. In all cases, however, the
empirical frequencies from individual games can be supported as outcomes of the hybrid
model, as we show in Appendix Figure 21.

Our procedures for collecting actions data are somewhat unusual in that we play
a large number of games, without feedback, and without the same game appearing
consecutively. We find, however, that our actions data is very similar to that collected
under more standard experimental conditions for similar games. Figure 2 plots our
action frequencies from [A, ◦ ], superimposed with those from three studies (Ochs [1995],
McKelvey et al. [2000], and Rutstrom and Wilcox [2009]).11 We find that our data is
statistically indistinguishable from theirs.

We also make use of the second-stage actions data from [A,BA] because, in testing
axioms on the action-map, we must associate to each belief statement the corresponding
action. As shown in Appendix Table 11, there are some differences between the first-
and second-stage action frequencies, which we discuss further in Section 3.4.

3.2 Beliefs

Figure 3 plots individual belief statements along with the median and quartiles of beliefs
for each game (Appendix Table 11 reports median and mean beliefs). The left panel
gives player 2’s beliefs over σU , and the right panel gives player 1’s beliefs over σL.

Figure 3 leads to three important observations. First, the central tendency of beliefs
is consistent with QRE and NBE. Player 2 tends to believe player 1 will favor U when
X > 20 and D when X < 20. Player 1 tends to believe that player 2 will mostly
respond to this, favoring R when X > 20 and L when X < 20. Second, beliefs clearly
respond to changes in X, with medians and quartiles of beliefs varying monotonically
in the direction predicted by the hybrid model. Third, player 2’s beliefs have much less
dispersion than player 1’s beliefs, which have average interquartile ranges of 15 and 29
percentage points, respectively.

11For inclusion, we sought studies that played games with “sparse” payoffs (in the sense of having zero
payoff outcomes) and σNE

U = 1
2 (for some relabelling of players and actions). This latter feature allows

us to plot their data in our figure as a function of σNE
L . In these studies, a single game was played 36-50

times consecutively with feedback against either randomly re-matched opponents or a fixed opponent.
We find that our data is remarkably close to theirs despite the differences in procedures. We cannot
find precedents in the literature for games closely matching our more symmetric games—those with
σNE
L relatively close to 1

2 .
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Figure 3: Beliefs data. This figure plots individual belief statements along with the median
and quartiles of beliefs. The left panel gives player 2’s beliefs over σU , and the right panel gives
player 1’s beliefs over σL.

To better visualize the distributions of beliefs, Figure 4 plots the empirical CDFs of
beliefs for each player and game, with player 1’s beliefs in the left panel and player 2’s in
the right. The figure makes clear that the entire belief-distributions shift monotonically
in X in the sense of stochastic dominance. It is also clear there is much more dispersion
in player 1’s beliefs. In Appendix Figure 22, we display the same information using
histograms, which some may find more intuitive.
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Figure 4: CDFs of beliefs. We plot the empirical CDFs of beliefs for each player and game.
The left panel is for player 1, and the right panel is for player 2.

Heterogeneity. The focus of this paper is on noise, and therefore on within-subject
variation in beliefs. However, it is interesting to also consider heterogeneity across sub-
jects, which a priori may be just as empirically relevant. The fact that we have multiple
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belief statements for each subject allows us to perform analysis of variance (ANOVA)
tests. In Appendix Table 14, we report the results of such tests for each player and
game. This reveals that there is actually more between- than within-subject variation
in beliefs, and that player 1-subjects’ beliefs have more of both types of variation.

3.3 Rates of best response

The rate of best response, i.e. the percentage of actions that are a best response to
stated beliefs, has been suggested as a metric for validating elicited beliefs (Schotter and
Trevino [2014]).

Figure 5: Subjects’ rates of best response. This figure gives histograms of subjects’ rates of
best response across all X-games. The average bet response rates are given as vertical lines.

Figure 5 plots histograms of individual subjects’ rates of best response, calculated
from all six X-games.12 We find considerable heterogeneity in rates of best response,
with averages of of 64% for player 1 and 85% for player 2. That our rates are higher for
player 2 is unsurprising since player 2 faces symmetric payoffs and thus has an easier
choice to make for any given belief. Appendix Table 11.7, which gives the average rates
for each game, shows that our relatively low rates for player 1 are driven by the very
asymmetric games with low values of X. The rates we find are similar to those reported
in other studies.13

In subsequent sections, the axioms we consider lead us to study not just rates of best
response, but how these rates vary across every neighborhood of stated beliefs.

12For this exercise, we assume linear utility, which we relax in subsequent sections. Note that, since
player 2 faces symmetric payoffs, best response is invariant to non-linearities in the utility function, so
this is without loss for player 2.

13Nyarko and Schotter [2002] find an average rate of 75% for an asymmetric matching pennies game
played many times with feedback. For intermediate values of X, games that resemble the one in Nyarko
and Schotter [2002] more closely, we find very similar rates for player 1.
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3.4 The effects of belief elicitation

It has been suggested that the very act of eliciting beliefs may change subjects’ behavior
(Schotter and Trevino [2014]). In general, such effects may have important implications
for interpreting results, so while there is little direct evidence for such effects in previous
work, we test for it in our data.

In Online Appendix 11.1, we compare the empirical action frequencies from [A,BA]
and [A,BA]. That is, we compare first-stage actions, without belief elicitation, to second-
stage actions, each of which was preceded by belief elicitation. For player 2-subjects, we
find only minor differences that are not statistically significant. For player 1-subjects,
however, we find a sizeable and systematic difference that is statistically significant.

Our hypothesis is that these differences are caused by belief elicitation. However, the
two stages of [A,BA] differ in which came first, the fact that the games in the second
stage are played against previously recorded actions, the number of rounds, and very
slightly in their composition of games. To pin down the cause, we ran the additional
[A,A] treatment—identical to [A,BA], except that beliefs are not elicited. In Online
Appendix 11.1, we show that the actions data is statistically indistinguishable between
the two stages of the [A,A] treatment for both players. Since there is no difference
across the two stages in the absence of belief elicitation, we conclude that it was the
belief elicitation itself in the [A,BA] sessions that affected player 1-subjects’ actions.

Our best guess is that, by focusing their attention on beliefs, the elicitation increased
player 1-subjects’ degree of strategic sophistication. For player 1, choosing U when
X > 20 and D when X < 20 corresponds to level 1 behavior (Nagel [1995]) if level 0
is assumed to uniformly randomize. After belief elicitation, player 1-subjects are less
likely to take these actions, consistent with a shift toward level 3 behavior. We observe
no analogous effect for player 2-subjects, perhaps because the commonly held belief
that player 1 will tend toward U when X is large and toward D when X is small is
very salient. This finding—that only the player facing asymmetric payoffs is affected by
belief elicitation—is also consistent with the results of Rutstrom and Wilcox [2009].14

Implications for interpreting our results. The fact that player 1’s actions are
affected by belief elicitation suggests that, for some player 1-subjects, their stated beliefs
in the second stage may not be a good indication of the beliefs they formed during the
first stage. Hence, for player 1-subjects, the observed relationship between second-stage

14Rutstrom and Wilcox [2009] play, with feedback, a game similar to X1. Using a structural model,
they argue that belief elicitation only affects the path of play for the player facing asymmetric payoffs.
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stated beliefs and the first-stage actions that they refer to may give a somewhat biased
estimate of the belief-map. On the other hand, the action-map, which summarizes the
actions taken conditional on beliefs, should not be affected. Finally, while we do not
think there is any reason to suppose that belief elicitation systematically affects the
variance of belief-distributions, it is a possibility that should be kept in mind while
interpreting our results quantifying noise in beliefs.

4 Are beliefs noisy?

An important feature of our data is that we have multiple belief elicitations for each
subject and game without feedback. This allows us to answer the basic question: are
beliefs noisy?

Raw

De-trended

Figure 6: Subjects’ spreads of stated beliefs. The top panel plots histograms of subjects’
spreads of stated beliefs by player role. The spread for a given subject and game is calculated
as the highest stated belief minus the lowest, and here we plot each subjects’ average spreads,
i.e. averaged across all X-games. The bottom panel plots the same after linearly detrending
beliefs separately for each subject and game. In both panels, averages are given as vertical
lines.

We first derive a simple measure of within-subject variation in stated beliefs. For
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each subject and X-game, we calculate the spread of her stated beliefs—the highest
belief minus the lowest belief—across the five belief statements. We average this across
the six X-games to get an average spread measure for each subject. The top panel
of Figure 6 plots histograms of subjects’ spreads by player role. We see that there is
considerable heterogeneity across subjects, as well as a right tail of subjects with very
high spreads. The average spreads are also high: 25 and 21 belief-points for player 1- and
player 2-subjects, respectively. Is this evidence for noise in beliefs? Or does it simply
reflect learning or measurement error?

Our procedures, in particular the lack of feedback, were designed to minimize con-
ventional learning due to new information. However, there may still be trends in beliefs
across the five appearances of each game, which would indicate some form of no-feedback
learning (Weber [2003]). Figure 7, however, shows that average beliefs are very stable
throughout the experiment: there is no overall trend in beliefs. To account for subject-
specific trends, we linearly detrend beliefs for each subject and game and recalculate
for each subject an average detrended spread. The bottom panel of Figure 6 replicates
the top panel using these detrended spreads. We find similar results, with only slightly
smaller average spreads (21 and 18 for players 1 and 2, respectively). We conclude that
learning does not drive variation in beliefs.

σ̂∗
U σ̂∗

L

Figure 7: Stability of average beliefs throughout the experiment. For each game and player
role, this figure plots average stated beliefs for each of five appearances of the game throughout
the experiment.

In Section 7, we argue formally that variation in stated beliefs cannot be due entirely
to random measurement error. The basic idea is that, within-subject, variations in
stated beliefs are strongly predictive of the actions subjects take. Hence, a high stated
belief signals a high true belief, and thus variation in stated beliefs reflects variation in
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true beliefs.

Result 1. Beliefs are noisy. The majority of subjects have stochastic belief reports,
with an average spread of 21-25 percentage points. This is not the result of learning or
measurement error.

In Figure 8, we plot the average belief-spreads separately for each game and player
role, which shows that belief-noise tends to be higher for player 1-subjects and decreasing
in X for both players. In Section 8, we offer an explanation for what we believe is driving
these and other patterns in the data.

Result 2. Variation in belief-noise across game and player role. The average spread in
beliefs is higher for player 1-subjects and decreasing in X for both players.

Figure 8: Average spread of beliefs by game and player role. We plot the average spread in
subjects’ beliefs for each game and player role.

5 Action-noise or belief-noise?

Given a standard dataset consisting only of actions data, it is common practice to
fit parametric models with action-noise and deterministic beliefs. For example, it is
particularly common to fit logit QRE or level k-type models after being augmented
with an error structure. However, action-noise and belief-noise can be quite different in
their behavioral implications (Friedman [2022]). Hence, as we discuss at the end of this
section, if there is considerable unobserved belief-noise, a fitted model that ignores this
may have poor performance, especially out-of-sample, or result in biased estimates of
structural parameters (e.g. risk aversion).

Following this motivation, we make use of both actions and beliefs data jointly to
directly determine if belief-noise is quantitatively important. We ask: which of action-
or belief-noise is more important for explaining the data?
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We answer the above question via a counterfactual exercise. Specifically, we construct
two counterfactual action frequencies that result from “turning off” just one source of
noise, and we say a source of noise is important if turning it off leads to large prediction
errors relative to the data. For this, we use the second stage-data from [A,BA], for which
we can associate actions with beliefs. Importantly, since we do not want to conflate noise
with heterogeneity, we construct counterfactuals subject-by-subject.

To turn off belief-noise, we replace every belief statement with the median belief
statement for the corresponding subject-game. For each subject and game, we then
predict behavior based on this median belief and a subject-specific best-fit random utility
model. For player 1-subjects, based on evidence from Section 6.5, we also allow for
curvature in the utility function.15 We leave the details of the random utility estimation
to Online Appendix 11.5, but emphasize that the estimation is done for each subject
separately based on her data from all six X-games. We denote the counterfactual action
frequency by piXs (biXs,med; ρ̂

i
s, µ̂

i
s). This is the predicted probability for subject s in role i

of taking U if i = 1 or L if i = 2 in game X, where ρ̂is is the estimated curvature, µ̂i
s

is the estimated noise parameter, and biXs,med is the median belief statement. For player
i = 2, ρ̂is is set to 0, corresponding to linear utility.

To turn off action-noise, we assume subjects best respond to every belief re-
alization. Thus, the counterfactual action frequency is given by qiXs ({biXsl }l; ρ̂is) =
1
5

∑
lBR

iX(biXsl ; ρ̂
i
s), where {biXsl }l are the five belief statements (indexed by l = 1, .., 5)

for subject s in role i of game X and BRiX is player i’s best response correspondence.
For i = 1, BRiX equals 1 if U is a best response to the given belief and 0 otherwise. For
i = 2, BRiX equals 1 if L is the best response to the given belief and 0 otherwise. Note
that BRiX depends on estimated curvature ρ̂is if i = 1.

For each subject, game, and counterfactual, we calculate the absolute difference
between the empirical action frequency σ̂iX

s and the counterfactual frequency. Averaging
across all six games gives the subject’s average counterfactual prediction error:

εis,belief-noise =
1

6

∑
X

|σ̂iX
s − piXs (biXs,med; ρ̂

i
s, µ̂

i
s)|,

εis,action-noise =
1

6

∑
X

|σ̂iX
s − qiXs ({biXsl }l; ρ̂is)|.

Hence, each subject s is associated with a pair εis = {εis,belief-noise, ε
i
s,action-noise} that gives

15For player 2-subjects, due to symmetry of payoffs, best response is invariant to curvature in the
utility function and any curvature parameter cannot be separately identified from the noise parameter.
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the prediction errors that result from turning off action- and belief-noise, respectively.
In other words, εis,belief-noise is the error of the counterfactual with only belief-noise, and
εis,action-noise is the error of the counterfactual with only action-noise. We say that one
source of noise is important if its counterfactual leads to small errors.
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Figure 9: Counterfactual prediction errors (individual subjects).

Figure 9 plots all subjects’ counterfactual prediction errors. Within each player
role i, subjects are sorted so that εis,belief-noise is increasing. In addition to plotting
εis,belief-noise and εis,action-noise, we also give, as a benchmark, the errors that would result
from predicting uniformly random behavior. Table 4 summarizes the average errors by
player role (“pooled”), as well as for each player and game.

X80 X40 X10 X5 X2 X1 pooled

action-noise Player 1 0.12 0.11 0.16 0.10 0.10 0.09 0.11
Player 2 0.14 0.16 0.18 0.11 0.10 0.10 0.13

belief-noise Player 1 0.10 0.11 0.17 0.11 0.10 0.07 0.11
Player 2 0.17 0.16 0.16 0.16 0.14 0.15 0.16

uniform random Player 1 0.41 0.37 0.33 0.35 0.34 0.37 0.36
Player 2 0.40 0.41 0.39 0.39 0.42 0.42 0.41

Table 4: Mean counterfactual prediction errors.

Noting that prediction errors can range from 0 to 1, Table 4 suggests that both
counterfactuals perform rather well in absolute terms and much better than the random
benchmark. The two types of noise do equally well on average for player 1, and action-
noise does slightly better on average for player 2.16 We also find that errors for both

16As shown in the right panel of Figure 9, four player 2-subjects have belief-noise errors greater
than 0.9. These subjects are near perfect “worst responders” who systematically fail to best respond.
The belief-noise counterfactual does so poorly for these subjects because the best response assumption
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counterfactuals tend to be higher for games with intermediate values of X—games for
which stated beliefs tend to be closer to the indifferent belief.

Result 3. Action-noise and belief-noise are equally important. Counterfactual action
frequencies that result from “turning off” either action-noise or belief-noise lead to similar
average prediction errors.

The pitfalls of ignoring belief-noise. Having established that belief-noise is
quantitatively important, we discuss how ignoring belief-noise can result in misleading
conclusions. Since it is clear that not all behaviors can be explained by noise, we focus on
two types of situations for which action-noise is capable of explaining the data in-sample,
but ignoring belief-noise leads to poor out-of-sample predictions.

A
L (40%) R (60%)

U (60%) 0 20
80 0

D (40%) 20 0
0 20

B
L (5%) R (95%)

U (95%) 8 12
32 32

D (5%) 8 12
12 12

Table 5: Hypothetical dataset featuring actions with varying sensitivity to belief-noise.

The first type of situation involves actions with varying degrees of sensitivity to belief-
noise. To take a stylized example, consider the hypothetical dataset given in Table 5.
Game A is an asymmetric matching pennies game, and the data falls in the interior of
the QRE-NBE region with each player taking her action that yields a higher expected
payoff slightly more often than not, with probability 60%. Game B is a version of game
A for which beliefs play no role. The payoff to each action is given, independently of the
opponent’s action, by the corresponding empirical expected payoff observed in game A.
By construction, each player has a strictly dominant action in B, so we suppose the data
from B involves each player taking her dominant action an overwhelming 95% of the
time. Now, suppose that a QRE model fitted to the data from game A matches the game
A-data perfectly. In this case, the out-of-sample prediction for game B would exactly
equal the in-sample prediction for game A, but this would be a very poor prediction. One
interpretation is that, in game A, action- and belief-noise are substitutes in the sense

trivially maximizes prediction error. For these subjects, the action-noise counterfactual fairs much
better because it predicts uniformly random behavior. Since best responding for player 2-subjects
should be easy given their symmetric payoffs, these subjects may simply be confused. After dropping
these subjects, the belief-noise counterfactual slightly outperforms the action-noise counterfactual, with
pooled prediction errors of 0.09 and 0.10, respectively.
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that behavior can be explained equally well by either; therefore, by ignoring belief-noise,
the fitted QRE model overstates the degree of action-noise in A. The out-of-sample
prediction for game B is poor because the fitted model continues to overstate the degree
of action-noise, and, since beliefs play no role in B, the model overstates the overall
degree of noise as well. Instead, a model fitted to game A that allowed for belief-noise
would not overstate the degree of action-noise and therefore result in a better out-of-
sample prediction for game B.

The second type of situation involves making inference across environments defined
by large differences in payoff magnitude. As is well-known, logit QRE, for a given value of
parameter λ, makes predictions that are sensitive to scaling payoffs by positive constants,
and yet, such predictions are often rejected (see, for example, McKelvey et al. [2000]).
Friedman [2022] also establishes a sense in which this “scaling issue” is considerably
more general, applying to many QRE models beyond logit.17 In contrast, models with
belief-noise, such as NBE, random belief equilibrium (Friedman and Mezzetti [2005]),
and sampling equilibrium (Rubinstein and Osborne [2003]), make predictions that are
invariant to affine transformations of payoffs. Hence, ignoring belief-noise in fitting
models can lead to overstating sensitivity to changes in payoff magnitude, leading to
poor out-of-sample predictions.

6 Testing the axioms

With a view toward informing models of stochastic choice, we now attempt to reject
the four behavioral axioms of the hybrid model: responsiveness, monotonicity, belief-
responsiveness, and unbiasedness.

In this section, we focus on the data of player 2 -subjects. The reason is three-fold.
First, in light of the finding that player 1’s behavior is affected by the belief elicitation
itself (Section 3.4), some of the results for player 1 would be harder to interpret. Second,
since player 2’s payoffs are held fixed as X varies, we are able to pool data across games,
which allows for more powerful tests. Third, some of our tests require the identification
of preferences, and since player 2 faces symmetric payoffs, our tests are robust to non-
linearities in the utility function.18

17Lemma 3 and Corollary 1 of Friedman [2022] establish that all QRE models satisfying (R1)-(R4)
are sensitive to scaling and/or translating payoffs.

18In particular, in all games and independent of any curvature, player 2 is made indifferent when she
believes player 1 is uniformly mixing.
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In Online Appendix 11.4, we conduct analogous tests for player 1-subjects. Broadly,
we reach similar conclusions, which we summarize in Section 6.5.

Remark 4. Whereas our previous analysis in Sections 4 and 5 was based on individual
subject-level data, our focus is now on aggregate data, which is necessary for statistical
power. However, we emphasize that a population of heterogeneous noisy agents, each of
whom satisfies the axioms, admits a representative agent who also satisfies the axioms.
Hence, the focus on aggregates does not preclude, and is logically consistent with, het-
erogeneity across individuals. To the extent that we cannot reject an axiom, we think
of it as a plausible description of the aggregate data.

6.1 Responsiveness

Responsiveness states that an all-else-equal increase in the subjective expected utility
to some action increases the probability that action is played. To test this, we must
associate actions and beliefs, and so we use the data from the second stage of [A,BA].

Since subjective expected payoffs are one-to-one with beliefs within a game, respon-
siveness is easily translated in terms of beliefs. Focusing on player 2, responsiveness
holds if and only if QL, the probability she takes action L, is everywhere strictly decreas-
ing in belief σ′

U . Since player 2 faces the same payoff matrix across all X-games, we
pool data across all games.

Figure 10: Action frequencies predicted by beliefs (player 2 ). Using all player 2-subjects and
pooling across all X-games, we plot Q̂L, the predicted probability of choosing L (with 90%
error bands) as a function of stated beliefs based on a restricted cubic spline regression (5 knots
at 20, 40, 50, 60, and 80%, standard errors clustered by subject). We also show a histogram of
beliefs and the average action within each of ten evenly spaced bins of beliefs (black dots).

We first visualize the aggregate data in Figure 10, which plots the estimated Q̂L.
This is simply the predicted probability of choosing L from regressing actions on beliefs

27



using a flexible specification (see figure caption for details; see Appendix Figure 23 for
similar plots for individual X-games). The vertical dashed line gives the indifferent
belief σ′

U = σNE
U = 50%, and the horizontal dashed line is set to one-half. The plot also

includes a histogram of stated beliefs, which shows that the belief data is fairly dense
throughout the entire space of possible beliefs.

Responsiveness is equivalent to an everywhere strictly decreasing slope for player 2.
Inspecting Figure 10, it appears there may be violations. However, since different sub-
jects form different beliefs, Q̂L is patched together from different subjects representing
different parts of the domain. Hence, any perceived violations could result from individ-
ual subjects who violate responsiveness to variations in their own beliefs or it could be
a mechanical issue related to incomplete data—subjects that tend to hold higher beliefs
and favor taking L. This latter possibility could lead to “violations” of responsiveness
even if all individual subjects are responsive to variations over the range of their own
stated beliefs.

To circumvent this issue, we run fixed-effect regressions. Let (aXsl , b
X
sl ) be the lth

action-belief pair of subject s in game X. Letting āXs ≡ 1
5

∑
l a

X
sl and b̄Xs ≡ 1

5

∑
l b

X
sl be

the subject-level averages in game X, we run regressions of the following form:

aXsl − āXs = β(bXsl − b̄Xs ) + εXsl .

Since there is no difference across subjects in the averages of their demeaned variables by
construction, the coefficient estimate β̂ primarily reflects within-subject variation and
is similar to an average of individual slopes. Since responsiveness concerns the slope
at every point, we run separate regressions for different neighborhoods of stated beliefs.
Specifically, we first demean the variables. Then, pooling data across all six X-games,
we run the regression separately for each quintile of (non-demeaned) belief statements,
which we label as “very low,” “low,” “medium,” “high,” and “very high” beliefs. The results
are displayed in the first column of Table 6. In the second column, as a robustness check,
we run the same regressions, except the five belief groups are evenly spaced bins of twenty
percentage points.

Consistent with responsiveness, we find that every slope is negative and highly sta-
tistically significant. Furthermore, the magnitudes are large: all slopes have an absolute
value ranging between 0.004 and 0.010, indicating that a 1 percentage point change in
belief is associated with a 0.4-1 percentage point change in the probability of taking
an action. Since the slopes all have the sign predicted by responsiveness, this suggests
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(1) (2)
quintile equally spaced

very low beliefs -0.006∗∗∗ -0.006∗∗∗
(0.007) (0.004)

low beliefs -0.005∗∗∗ -0.004∗∗∗
(0.009) (0.010)

medium beliefs -0.006∗∗∗ -0.010∗∗∗
(0.000) (0.002)

high beliefs -0.009∗∗∗ -0.010∗∗∗
(0.001) (0.000)

very high beliefs -0.005∗∗∗ -0.005∗∗∗
(0.002) (0.003)

Observations 1680 1680
p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 6: Fixed-effect regressions of actions on beliefs (player 2). We demean player-2 subjects’
belief and action data by subtracting subject-game specific averages. Pooling data across all
six X-games, we then regress demeaned actions on demeaned beliefs for each quintile of (non-
demeaned) belief statements—very low, low, medium, high, and very high beliefs. These results
are in column 1. In column 2, we run the same regressions, except the five belief groups are
evenly spaced bins of twenty percentage points. Standard errors are clustered by subject.

broad support for responsiveness.
To help visualize some of the heterogeneity that is hidden in the regressions, Figure

11 plots the data, pooled across all sixX-games, for four representative player 2-subjects.
Subject 65 appears to have step function-like responsiveness and always best responds;
subject 63 looks similar, but has a single “mistake”; subject 87 also appears responsive,
but with action-probabilities that are more continuous in beliefs; subject 89 is very noisy,
but still plausibly responsive.

An important question is whether within-subject variations in beliefs have predictive
power only insofar as beliefs go on one side or the other of the indifferent belief. In-
specting the second column of Table 6, the answer is definitive. Restricting attention to
beliefs that are in the lowest or highest bins—at least 30 points away from the indifferent
belief—a 1 percentage point change in belief is associated with a 0.5-0.6 percentage point
change in the probability of taking an action. Hence, even for player 2, whose indifferent
belief is salient, constant across games, and invariant to curvature in the utility function,
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Figure 11: Individual subjects’ actions and beliefs (player 2). All plots involve individual
player 2-subjects whose data is pooled across all games. Action L is coded as 1, and action
R is coded as 0. Solid black curves are estimates from local linear regressions. All datapoints
involve a value of 1 or 0 on the vertical axis, but are (vertically) jittered for clarity.

all variation in beliefs is highly predictive.

Result 4. Responsiveness cannot be rejected. An increase in a subject’s stated beliefs
is associated with an increase in the probability of taking the action whose payoff is
increasing in beliefs. This is true even when restricting attention to subsets of beliefs
that imply the same best response.

6.2 Monotonicity

Monotonicity is a weakening of best response which states that, given belief s, the action
with a higher expected utility is played more often than not and, if players are indifferent,
they uniformly randomize. Since we must associate actions and beliefs, we again use the
data from the second stage of [A,BA].

For the X-games, since players are indifferent when their beliefs equal the oppo-
nent’s NE strategy, monotonicity takes a particularly simple form. Focusing on player
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2, monotonicity requires that QL, the probability of taking L, is greater than 1
2

if and
only if belief σ′

U is less than σNE
U = 1

2
: QL ⋛ 1

2
⇐⇒ σ

′
U ⋚ 1

2
. Since player 2 faces the

same payoff matrix in all X-games, this condition is the same in all games and so we
pool the data from all games.

In order to visualize potential monotonicity violations, we appeal once again to Figure
10, which plots the estimated Q̂L using the aggregate data. The vertical dashed line
gives the indifferent belief σ

′
U = σNE

U = 50% and the horizontal dashed line is set to
one-half. As opposed to responsiveness that concerns the slope, monotonicity concerns
the levels of the graph. Specifically, for player 2, Q̂L should be greater than 1

2
to the left

of the vertical line and less than 1
2

to the right of the vertical line.
Our test for monotonicity is the natural one suggested by eyeballing Figure 10. After

running flexible regressions of actions on beliefs, we calculate the standard error of the
prediction (clustering by subject), which we use to calculate pointwise error bands for
the estimated Q̂L. From the figure, one can observe any rejections of the null at the
given level of significance. For instance, it is never the case in the figure that Q̂L is
significantly below 1

2
for beliefs less than 50% or significantly above 1

2
for beliefs above

50%. Since it is the 90% error band that is plotted, monotonicity cannot be rejected with
10% significance, i.e. the p-value is at least 0.1. Hence, we cannot reject monotonicity.

Result 5. Monotonicity cannot be rejected. For every neighborhood of stated beliefs,
subjects tend to take the action which yields the higher payoff more often than not.

6.3 Belief-responsiveness

Belief-responsiveness states that, if the frequency of player j’s action increases, so too
does the distribution of player i’s beliefs in the sense of first-order stochastic dominance.
Recalling that the beliefs are elicited about behavior in the first stage and that the first
stages are identical across the treatments, we use the beliefs data from [A,BA] and the
actions data from [A, ◦ ].

Focusing on player 2, the right panel of Figure 4 plots the empirical CDFs of player
2’s beliefs for all six X-games. Visually, it appears that the belief-distributions are or-
dered by stochastic dominance, which is confirmed by statistical tests (described below).
Furthermore, the belief-distributions shift monotonically in X in the direction predicted
by the hybrid model: as X increases, player 2 believes that player 1 will play U more
often.

A violation of belief-responsiveness occurs whenever, across two games x and y,
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σx
U > σy

U and F2(·|σx
U) ̸≻FOSD F2(·|σy

U), meaning beliefs do not go in the same direction
as the corresponding action frequencies. Hence, we perform one-sided tests of the null
hypotheses H0 : σx

U > σy
U and H0 : F2(·|σy

U) ≻FOSD F2(·|σx
U) for all games x ̸= y.

We say that belief-responsiveness is rejected whenever we reject both σx
U > σy

U and
F2(·|σy

U) ≻FOSD F2(·|σx
U).

Player 1’s actions (p-values) Player 2’s beliefs (p-values)
X80 X40 X10 X5 X2 X1 X80 X40 X10 X5 X2 X1

X80 – 0.89 0.42 0.95 0.93 1.00 X80 – 0.87 1.00 1.00 1.00 1.00

X40 0.11 – 0.07∗ 0.65 0.61 0.96 X40 0.00∗∗∗ – 1.00 1.00 1.00 1.00

X10 0.58 0.93 – 0.97 0.95 1.00 X10 0.00∗∗∗ 0.00∗∗∗ – 0.84 0.98 0.73

X5 0.05∗ 0.35 0.03∗∗ – 0.46 0.90 X5 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ – 0.95 0.77

X2 0.07∗ 0.39 0.05∗∗ 0.54 – 0.91 X2 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ – 0.78

X1 0.00∗∗∗ 0.04∗∗ 0.00∗∗∗ 0.10∗ 0.09∗ – X1 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ –

Table 7: Testing belief-responsiveness (player 2). The left panel reports p-values from tests
of H0 : σx

U > σy
U across game x (row) and game y (column). This is from standard t-tests,

clustering by subject. The right panel reports p-values from tests of H0 : F2(·|σx
U ) ≻FOSD

F2(·|σy
U ) across game x (row) and game y (column). This is from non-parametric Kolmogorov-

Smirnov-type tests in which the test statistic is bootstrapped following Abadie [2002]. We
say that a rejection of belief-responsiveness occurs whenever we reject both σx

U > σy
U and

F2(·|σy
U ) ≻FOSD F2(·|σx

U ). The entries in bold correspond to the only rejection, i.e. rejections
of both σX40

U > σX10
U and F2(·|σX10

U ) ≻FOSD F2(·|σX40
U ).

Table 7 reports the p-values of these tests for pairs of games x and y in matrix form,
with entries in row x and column y (see table caption for details). We find only one
significant violation across the many comparisons. This can be seen from the p-values in
bold, indicating rejections of both σX40

U > σX10
U and F2(·|σX10

U ) ≻FOSD F2(·|σX40
U ). We

conclude that belief-responsiveness cannot be rejected in our data.

Result 6. Belief-Responsiveness cannot be rejected. Beliefs-distributions are ordered
across games by stochastic dominance as predicted by the hybrid model. Empirical
action frequencies are typically ordered in the same way.

6.4 Unbiasedness

Unbiasedness states that beliefs are unbiased on median. For player 2 forming beliefs
over player 1’s behavior, this is: med(σ∗,X

U ) = σX
U for all X. Once again, we use the

beliefs data from [A,BA] and the first-stage actions data from [A, ◦ ].
Unbiasedness requires that beliefs are unbiased on median, so we plot the aggregate

action frequencies and median beliefs, as well as the individual belief statements, in
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Figure 12. Appendix Table 13 reports the bias in both median- and mean-beliefs with
p-values of the hypothesis that beliefs are unbiased (see caption for details).

0 1

0

1

Figure 12: Bias in beliefs (player 2). We plot σ̂U from [A, ◦ ] and the median of player
2-subjects’ beliefs over σU . Blue circles are individual belief statements.

We find that player 2’s beliefs about σU are very “extreme”: whereas player 1’s actions
are relatively close to uniform for all values of X, player 2 overwhelmingly believes player
1 takes U when X is large and D when X is small. As such, we strongly reject unbiased-
ness for all games (and similarly for mean-unbiasedness). This finding is in contrast with
the “conservative” bias documented by Huck and Weizsacker [2002] and Costa-Gomes
and Weizsacker [2008] in other settings. In Section 8, we offer an explanation for what
we believe is driving this pattern of bias.

Result 7. Unbiasedness is rejected. Player 2-subjects have “extreme” beliefs, exagger-
ating the direction of deviations from uniform play.

6.5 Player 1

In testing the axioms, we focused on the data from player 2-subjects, as discussed at
the start of Section 6. In Online Appendix 11.4, we report analogous tests for player
1-subjects, which we summarize below.

Responsiveness. As with player 2, we cannot reject responsiveness : fixed-effect
regressions similar to those reported in Section 6.1 show that an increase in a subject’s
stated beliefs is associated with taking the action whose expected payoff is increasing in
beliefs more often.

Monotonicity. We find that there are, in fact, intervals of stated beliefs for which
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subjects fail to take the action that yields the higher expected payoff more often than not.
However, we argue that monotonicity cannot be rejected. This is because the observed
pattern is consistent with plausible concavity in the utility function.19 To illustrate, we
take the example of X80, which is representative of all X-games. If utility is linear,
monotonicity requires that QU , the probability of taking U , is greater than 1

2
if and only

if belief σ′
L is greater than the indifferent belief σNE

L = 1
5
: QU ⋛ 1

2
⇐⇒ σ

′
L ⋛ 1

5
. In other

words, QU must cross the one-half line from below at belief 20%. Figure 13, analogous
to Figure 6 but drawn for player 1-subjects in game X80, shows that the estimated Q̂U

crosses the one-half line at 35%, a seeming violation. However, we show that concavity
can explain this as it implies an increase in the indifferent belief. Moreover, with a single
curvature parameter fitted to the aggregate data from all six X-games, the “violations”
in all games disappear.

Figure 13: Action frequencies predicted by beliefs (player 1 ). For all player 1-subjects in game
X80, we plot Q̂U , the predicted probability of choosing U (with 90% error bands) as a function
of stated beliefs. The dashed vertical line gives the indifferent belief under linear utility, and
the solid vertical line gives the indifferent belief under the estimated concave utility function.

Belief-responsiveness. As with player 2, we cannot reject belief-responsiveness :
in an exercise similar to that of Section 6.3, we find that player 1-subjects’ stated belief-
distributions are ordered (by stochastic dominance) in the same way across games as
player 2-subjects’ empirical action frequencies.

Unbiasedness. Unlike for player 2, we cannot reject unbiasedness for player 1.
Comparing player 1-subjects’ stated beliefs to player 2-subjects’ actions, we find that
the central tendency of beliefs provides a remarkably close match to player 2’s behavior.

19Recall that payoffs are in probability points, so curvature should not be interpreted as risk aversion.
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7 Measurement error

Throughout the paper, we have treated stated beliefs as equal to the latent or “true”
beliefs that subjects hold in their minds and guide their actions. More generally, a
stated belief is simply a measure of the underlying true belief, and therefore subject to
random measurement error—which we define as any random misreporting, no matter
the cause, of a given true belief.20 In this case, does our data allow us to conclude that
the unobserved true beliefs are noisy? Can we still reject unbiasedness with respect to
true beliefs? In this section, we argue that the answer to both questions is “yes” under
weak assumptions on the relationship between stated and true beliefs.

We begin by introducing a simple framework that we maintain throughout this sec-
tion. To this end, suppose that, for a given game, b∗0 and b∗s are true and stated beliefs,
respectively. These are (possibly degenerate) random variables whose supports are con-
tained in [0, 100] and {0, ..., 100}, respectively. Note that we restrict stated beliefs to be
integer-valued so as to respect the experimental elicitation procedure.

We make two key assumptions. First, we assume that, exactly once within each
round, a true belief is drawn, and then, conditional on the true belief realization, a
stated belief is drawn. We use b0 to denote an arbitrary realization of true beliefs, and
we define b∗s(b0) to be random stated beliefs conditional on b0. Second, we assume that
actions depend only on true belief realizations through the function Qi(ūi(b0)). Hence,
both stated and true beliefs may be random, the distribution of stated beliefs depends
on the realization of true beliefs, and behavior depends only on true beliefs.

7.1 Are true beliefs noisy?

Consider some fixed game and a particular subject in that game. If the subject’s true
belief was fixed and her stated beliefs were simply measures of the underlying belief,
then variation in her stated beliefs would not be predictive of her actions. If this were
the case, we would see coefficients of 0 in Table 6, but this is strongly rejected. Hence,
we conclude that true beliefs are noisy.

7.2 Are true beliefs biased?

We rejected unbiasedness for player 2 with respect to stated beliefs. To determine if the
axiom can also be rejected with respect to true beliefs, we require additional structure.

20A stated belief is an action. Hence, given a true belief, noise in stated beliefs—what we call
measurement error—is a form of noise in actions.
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To this end, we make the following assumption:

Assumption 1. Stated beliefs are an unbiased signal of the underlying true belief: for
all b0 ∈ [0, 100], P(b∗s(b0) > b0) = P(b∗s(b0) < b0) and b∗s(b0) = b0 w.p. 1 if b0 ∈ {0, 100}.

In words, we assume that the stated belief-distribution is centered, in the sense of median,
around the true belief realization. We feel that this formulation is natural in that it
closely mirrors the unbiasedness axiom, and it makes our analysis very tractable.21

We found that player 2-subjects form very biased stated beliefs over σU . For in-
stance, consider X80, which is representative of all games. Statistical tests support that
med(b∗s) > σU (see Appendix Table 13). Does this imply that player 2’s true beliefs are
also biased? To answer this, we first suppose that there is no bias in true beliefs, i.e.
med(b∗0) = σU . This does not imply unbiased stated beliefs, i.e. med(b∗s) = σU , but
this and Assumption 1 jointly imply that P(b∗s > σU) ≤ 3

4
.22 However, we observe that

P̂(b∗s > σ̂U) is much greater than three-fourths in the data (Figure 12), and so it is very
unlikely that unbiasedness holds with respect to true beliefs.

Result 8. The results are robust to measurement error. Assuming that actions depend
on unobservable true belief realizations of which stated beliefs are unbiased signals, we
conclude that true beliefs are noisy and that unbiasedness is rejected (for player 2) with
respect to true beliefs.

8 Toward a theory of noise and bias: the role of
salience

We have found that the hybrid model provides a fairly good description of the joint
distribution of actions and belief statements. The only exception concerns the rejection
of the unbiasedness axiom. That player 2’s beliefs are biased implies a violation of
the hybrid model, as well as any reduced-form equilibrium model that assumes correct
beliefs. We take this as the first puzzle to be explained. A second puzzle, embodied in
Result 2, is that belief-noise is higher for player 1-subjects and decreasing in X for both

21An alternative assumption would be that the distribution of stated beliefs, as a function of the true
belief, is governed by a parametric quantal response function (e.g. logit) with payoffs induced by the
random binary-choice mechanism.

22That med(b∗0) = σU ∈ (0, 1) implies that P(b∗0 > σU ) = P(b∗0 < σU ) =
1
2 . Assumption 1 then implies

that P(b∗s > σ̂U ) is maximized when P(b∗s(b0) > σU |b0 > σU ) = 1 and P(b∗s(b0) > σU |b0 < σU ) = 1
2 ,

which implies that P(b∗s > σU ) =
3
4 .
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players.23

To explain these puzzles, we propose that the differential salience of actions across
players causally induces greater strategic sophistication in player 1-subjects. In forming
beliefs, we conjecture that both player 1 and player 2 are instinctively drawn to first
consider player 1’s payoffs as only she has a salient action—U when X > 20 and D

when X < 20. Naturally, player 2 tends to form instinctive beliefs that put significant
weight on that action. However, since player 2 does not have a salient action, player 1
must then consider how player 2 reacts to her own salient action. In other words, unlike
player 2, player 1 is induced to consider the effect of her own payoffs on her opponent’s
behavior. As a result, player 1 forms more contemplative beliefs that better anticipate
her opponent’s behavior.24

Such a theory can easily explain the observed puzzles: (1) player 2’s beliefs are biased
toward player 1’s salient action because player 1 is “one step ahead”; (2) player 1’s beliefs
are noisier because they are based on more sophisticated, higher-ordered reasoning; and
(3) beliefs become less noisy as X increases because one of player 1’s actions becomes
even more salient, pushing both players toward more instinctive belief formation.

Figure 14: Average response times by game and player role. Response times are defined as
the time between the start of the round and when the belief statement is finalized.

The salience-induced sophistication hypothesis is consistent with the observed joint
distribution of actions and beliefs. We also show that it is consistent with two additional
pieces of auxiliary data. First, as shown in Figure 14, player 1-subjects have significantly

23Because the hybrid model allows each player to have a different belief-map, this is consistent with
the hybrid model. However, since the belief-map is exogenous, the hybrid model does not predict this
in particular, nor does it give insight into why this may occur.

24Rubinstein [2016] introduces the idea of a typology between instinctive and contemplative players.
Unlike Rubinstein [2016], however, we propose that whether a player is instinctive or contemplative is
endogenously determined based on her role within the game.
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longer response times across all X-games, consistent with more “steps” of reasoning, as in
level k (Nagel [1995]). Second, we derive a measure of strategic sophistication (based on
level k) from the small number of dominance-solvable games that were included toward
the end of the experiment to break up the appearance of X-games (see Online Appendix
11.9). All subjects played in both roles of these games, and so the measure we derive is
collected identically for all subjects. By this measure, we find that player 1-subjects are
much more sophisticated. Moreover, since all subjects were randomly assigned to their
roles at the beginning of the experiment, we are able to establish causality: experience
in different roles of the X-games throughout the experiment has a causal effect on
independent measures of strategic sophistication. In Online Appendix 11.3, we present
this analysis in detail and provide additional discussion.

In our data, that different player roles seem to induce different degrees of strategic
sophistication is not easily explained by existing models. In particular, it is hard to
reconcile this with the endogenous depth of reasoning theory (Alaoui and Penta [2015]).
This is because, for values of X < 20, player 1 faces lower expected payoffs against a
random opponent, so it is unlikely that she subjectively has more to gain from higher-
ordered reasoning; and yet, we find that player 1-subjects have longer response times for
all values of X. Rather, we think that our results are better explained by a direct effect
of “bottom-up” salience on strategic sophistication, which in turn drives differences in
noise and bias across players.25

9 Discussion

9.1 Alternative designs and generalizability

We discuss several alternative designs as well as related questions concerning the gener-
alizability of our findings.

Other games. In principle, we could have chosen any set of games. Even restricting
attention to 2 × 2, there are many possible games that differ in terms of dominance-
solvability, multiplicity and fragility of NE, etc. So why not run an experiment with
many types of games to determine the relationship between noise and game classes?
Certainly, this would be very interesting. However, as discussed in Section 2, we would
be concerned about no-feedback learning effects in other game classes that would lead
us to conflate noise and learning. We would also be concerned about spillover effects

25Li and Camerer [2022] show that bottom-up visual salience predicts behavior in hide-and-seek games
in which choices are locations on an image.

38



across game classes, so we feel the cleanest design is based on a single class.
To what extent do insights from the X-games generalize to other game classes? By

varying a single parameter, our experiment gives a very clean test of how one important
dimension of games, i.e. the salience of actions, drives noise. This allows us to speculate
about other game classes. For instance, we have found that when X is very large and
a particular action of player 1 is very salient, there is significantly less belief-noise for
both players. And for any given value of X, player 1 has noisier beliefs than player 2.
This allows us to speculate that, in a game where only player 1 has a dominant action,
belief-noise would be low for both players, and especially for player 2.

Feedback and learning. A crucial element of our design is to not provide subjects
any feedback so as not to conflate learning and noise. An interesting question, however,
is whether noise diminishes with learning. To answer this question, one could design an
experiment in which feedback is provided for T1 rounds, followed by T2 rounds without
feedback. By varying T1 across treatments, and applying our analysis to the last T2 no-
feedback rounds, one could document how noise varies with experience. We speculate
that noise would indeed decrease with learning, but would still be significant after any
reasonable number of rounds.26

In addition to belief-noise, we would also expect belief-bias to decrease with learning.
Hence, our rejection of the unbiasedness axiom might not hold with sufficient opportu-
nity to learn. However, we would expect subjects to be slow to correct their belief-bias in
practice. One indication is that the empirical action frequency of our no-feedback games
is statistically indistinguishable from that collected for similar games with feedback in
other studies (Section 3.1). Hence, we expect our results to have implications for games
played with feedback as well.

Alternative procedures. A common paradigm in the decision-theoretic stochastic
choice literature is to give subjects the same choice repeatedly in consecutive rounds
(Agranov and Ortoleva [2017]). It is documented that, even here, choices are stochastic,
a finding usually interpreted as indicating a preference for randomization. We could have
done something similar by playing the same game multiple times in a row. We chose
not to do this, however, because we are not interested in preference for randomization,
but stochasticity that results from freshly thinking about a game.

Another approach for studying action-noise, used in Agranov et al. [2020], would
26One indication comes from Selten and Chmura [2008], who document that, even after 200 rounds

of feedback, observed behavior in fully-mixed 2×2 games is still very far from NE and better explained
by QRE.

39



have been to “turn off” belief-noise by first eliciting beliefs and then giving subjects a
choice between the objective lotteries implied by their stated beliefs. However, we are
interested in stochastic choice given subjective beliefs, and there is no a priori reason to
suppose that stochastic choice is the same under subjective and objective beliefs.

9.2 Conclusions

Game theoretic models with stochastic elements have had considerable success in ex-
plaining experimental data. While some such models have incorporated noisy beliefs,
models with noisy actions have been much more prominent, and the empirical relevance
of noisy beliefs has been little explored.

Our experiment shows that beliefs are, in fact, noisy, a phenomenon that cannot
be explained by learning or measurement error. Moreover, belief-noise matters: it is
equally important as action-noise for explaining our data. As discussed in Section 5,
this suggests that ignoring belief-noise, as is done in the large majority of model-fitting
applications, could lead to biased parameter estimates and poor performance, especially
in making out-of-sample predictions.

In addition to documenting belief-noise, we have found a number of regularities in the
relationships between beliefs and actions. Broadly, while beliefs tend to be biased and
therefore cannot be fully explained by reduced-form equilibrium models, our results con-
firm the basic premise of models with noisy actions (e.g., quantal response equilibrium)
and noisy beliefs (e.g., noisy belief equilibrium).

Our results, however, highlight some difficulties in formulating parsimonious models
of stochastic choice in games. Both action-noise and belief-noise are important for
explaining our data, but models incorporating both types of noise as independent factors
may be overly flexible. This makes us speculate that the two types of noise should not
be modeled as independent, but rather, as determined jointly as part of an optimized
response to the environment. In any case, our results call for more research into the
factors that drive the relative importance of the two types of noise.

Our data does suggest a number of important factors. In particular, we have argued
in Section 8 that the salience of payoffs plays a critical role in driving noise, both
across games and across players within a game. More generally, it is natural to consider
complexity as a potentially important driver of noise, with payoff salience being one of its
many aspects. While it is not well understood what makes a game complex, future work
should continue to study the relationship between noise, game features, and independent
measures of complexity, e.g. response times.
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10 Appendix

10.1 Hybrid equilibrium in the X-games

For any given action- and belief-map (Q, σ∗), the hybrid equilibrium is unique in any X-
game. However, since the primitives are only restricted to satisfy axioms, we characterize
the set of equilibria that can be attained for some primitives. Below, we characterize
this set for a given value of X.

Proposition 3. Fix X > 0. An action profile σ = (σU , σL) can be supported as a
hybrid equilibrium for some (Q, σ∗) satisfying (A1)-(A4) and (B1)-(B4) if and only if
σU ∈ ΦX

U (σL) and σL ∈ ΦX
L (σU) where

ΦX
U (σL) =


(0, 3/4) σL < σNE,X

L

(1/4, 3/4) σL = σNE,X
L

(1/4, 1) σL > σNE,X
L ,

and ΦX
L (σU) =


(1/4, 1) σU <

1
2

(1/4, 3/4) σU = 1
2

(0, 3/4) σU >
1
2
.
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Proof. See Online Appendix 11.2.

Figure 15 illustrates the proposition for X = 80, in which case σNE,X
L = 1/5. The

first panel plots ΦX
U (σL) with a representative expected action-map for player 1, and

the second panel plots ΦX
L (σU) with a representative expected action-map for player 2.

Where these two regions intersect (third panel) is the set of hybrid equilibrium mixed
action profiles. We also give a representative hybrid equilibrium (green dot) and the sets
of QRE and NBE, which coincide (cross-hatched region).

Figure 15: Hybrid equilibrium in game X = 80.

10.2 Formal definition of QRE and NBE

Definition 2. Fix (Γ2×2, Q). A quantal response equilibrium any σ ∈ [0, 1]2 such that
σ = Q(ū(σ)), where Q satisfies (A1)-(A4).

Definition 3. Fix (Γ2×2, σ∗). A noisy belief equilibrium is any pair (σ, σ∗(σ)) with
σ ∈ ψ(σ;σ∗) where ψi(σj;σ

∗
j ) ≡

∫
[0,1]

BRi(ūi(σ
′
j))dFi(σ

′
j|σj) is the expected best response

correspondence and σ∗ satisfies (B1)-(B4).

10.3 Proofs

Proof of Proposition 1. Fix (Q, σ∗) satisfying (A1)-(A4) and (B1)-(B4). Let ūX(σ′
L) =

(ūXU (σ
′
L), ū

X
D(σ

′
L)) be the expected utilities for player 1 given belief σ′

L in game X. For
any given σ

′
L, ūXU (σ

′
L) is increasing and ūXD(σ

′
L) is decreasing in X, and therefore, by

(A3), QU(ū
X(σ

′
L)) is also increasing in X. Hence, ΨU(σL) “shifts up” as X increases.

It is easy to show that ΨU(σL) is strictly increasing and ΨL(σU) is strictly decreasing.
Thus, it must be that σU strictly increases and σL strictly decreases as X increases.
Noting that X increases if and only if σNE,X

L = 20
20+X

decreases, we have shown (i) and
(ii). Parts (iii) and (iv) follow directly from (B3).
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Proof of Proposition 2. The only if direction follows for QRE from the results of Goeree
et al. [2005] and for NBE from the results of Friedman [2022]. The if direction is
novel. For QRE, let {σX

U , σ
X
L }X satisfy (i)-(iv). We first construct Q1 = (QU , QD) for

player 1. Letting ūX(·) = (ūXU (·), ūXD(·)) be the expected utilities for player 1 in game
X, it is easy to show that δ(X) := ūXU (σ

X
L ) − ūXD(σ

X
L ) is strictly increasing in X and

δ(X) ̸= 0 for all X. Let Q̃ : R → (0, 1) be any function that is continuous, strictly
increasing, and satisfies Q̃(0) = 1

2
and Q̃(δ(X)) = σX

U for all X, which exists because
δ(X) is strictly increasing and δ(X) ̸= 0 for all X. Now let the quantal response
function Q1 = (QU , QD) : R2 → ∆ be defined by QU(vU , vD) = Q̃(vU − vD) and
QD(vU , vD) = 1 − QU(vU , vD). It is easy to check that this satisfies (A1)-(A4). A
similar construction gives Q2 = (QL, QR) for player 2, and by construction Q = (Q1, Q2)

rationalizes the data. For NBE, let {σX
U , σ

X
L }X satisfy (i)-(iv). For player 1, with an

arbitrary belief-map {F1(·|σL)}σL∈[0,1] satisfying (B1)-(B2), the expected best response
function is ψX

U (σL) = 1 − F1(σ
NE,X
L |σL). Hence, we must construct a family of CDFs

{F1(σ̄L|σL)}σ̄L∈[0,1],σL∈[0,1] such that 1− F1(σ
NE,X
L |σX

L ) = σX
U for all X and that satisfies

(B1)-(B4). Given that {σX
U , σ

X
L }X satisfies (i)-(iv), we have that (1) σX

L < σX
′

L whenever
X > X

′ , (2) 1
2
> σX

L > σNE,X
L if X > 20 and 1

2
< σX

L < σNE,X
L if X < 20, and (3) σX

U > 1
2

if X > 20 and σX
U < 1

2
if X < 20. This implies the existence of a finite family of CDFs

{F1(·|σX
L )}X such that, for all X, 1 − F1(σ

NE,X
L |σX

L ) = σX
U , meaning it can rationalize

the data, F1(σ̄L|σX
L ) is strictly increasing and continuous in σ̄L ∈ [0, 1], F1(0|σX

L ) = 0,
F1(1|σX

L ) = 1, and F1(σ
X
L |σX

L ) = 1
2
; and such that F1(σ̄L|σX

′

L ) < F1(σ̄L|σX
L ) for all

σ̄L ∈ (0, 1) if σX
L < σX

′

L . Hence, the constructed {F1(·|σX
L )}X is consistent with (B1)-

(B4), and it remains to extend this to {F1(·|σL)}σL∈(0,1). For the extension, order the
values of X in the dataset: X1 > X2 > ... > Xn and σX1

L < σX2

L < ... < σXn

L . For
σL ∈ (σXi

L , σXi+1

L ) set F1(σ̄L|σL) = α(σL)F1(σ̄L|σXi

L ) + (1 − α(σL))F1(σ̄L|σXi+1

L ) for all
σ̄L ∈ (0, 1), where α(σL) is such that F1(σL|σL) = 1

2
, which is uniquely defined. To finish

the extension for σL < σX1

L and σL > σXn

L , one can use the construction given in “step 2”
of the proof of Theorem 3 of Friedman [2022]. It is easy to check that the constructed
belief-map for player 1 satisfies (B1)-(B4). A similar construction gives the belief-map
for player 2, and by construction the pair of belief-maps rationalizes the data.
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11 Online Appendix

For Online Publication

11.1 The effects of belief elicitation

0 1

0

1

0 1
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1

Figure 16: The effects of belief elicitation. The top panels plot first- and second-stage action
frequencies from [A,BA], and shows a systematic difference between the two stages for player
1 (top-left panel). The bottom panels plot first-stage and second-stage actions from [A,A], i.e.
without belief elicitation, and shows no difference between the stages for both players. This
suggests that the act of belief itself has a causal effect on behavior for a significant number of
player 1-subjects.

In the top panels of Figure 16, we plot the action frequencies from [A,BA] and [A,BA].
That is, we are comparing first-stage actions, without belief elicitation, to second-stage
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actions, each of which was preceded by belief elicitation.27 For player 1 (left), we observe
a fairly large difference, both quantitative and qualitative, between first- and second-
stage actions. For player 2 (right), there are only some minor quantitative differences.
This is confirmed by the F -tests reported in Columns 1-2 of Table 8: we strongly reject
that the action frequencies are the same across stages for player 1 (p < 0.000), but not
for player 2 (p = 0.064).

[A,BA] [A,A]

(1) (2) (3) (4)
σ̂U σ̂L σ̂U σ̂L

2nd stage × X80 -0.119∗∗ -0.057 0.048 -0.022
(0.030) (0.156) (0.500) (0.754)

2nd stage × X40 -0.019 -0.059 0.007 0.048
(0.748) (0.111) (0.884) (0.362)

2nd stage × X10 0.130∗∗ 0.105∗∗ -0.056 -0.081
(0.013) (0.031) (0.438) (0.266)

2nd stage × X5 0.194∗∗∗ 0.007 0.019 0.130∗
(0.000) (0.850) (0.746) (0.070)

2nd stage × X2 0.070 0.091∗∗ 0.011 0.000
(0.202) (0.040) (0.867) (1.000)

2nd stage × X1 0.124∗∗ 0.102∗∗ 0.015 0.000
(0.037) (0.016) (0.803) (1.000)

F -test 4.70∗∗∗ 2.11∗ 0.22 1.03
(0.000) (0.066) (0.967) (0.423)

[d1,d2] [6,323] [6,335] [6,161] [6,161]

Observations 2592 2676 1134 1134
p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 8: The effects of belief elicitation: comparing first- and second-stage actions. We regress
actions on indicators for all six X-games (omitted) and indicators for each of the six games in-
teracted with an indicator for the second stage (standard errors clustered by subject). Columns
1-2 are for [A,BA], and columns 3-4 are for [A,A]. We also report the results of F -tests of the
hypothesis that all six coefficients are zero. Rejection of this hypothesis means that there is a
difference between first- and second-stage actions.

Our hypothesis is that these differences are caused by belief elicitation. However,
the two stages differ in which came first, the fact that the games in the second stage
are played against previously recorded actions, the number of rounds, and very slightly

27The results are similar if, instead, we compare the data from [A, ◦ ] and [A,BA], but this would be
somewhat confounded by composition effects.
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in their composition of games. To pin down the cause, we ran the additional [A,A]
treatment. This is identical to the [A,BA] treatment except beliefs are not elicited.

The bottom panels of Figure 16 plot the action frequencies from [A,A] and [A,A],
and Columns 3-4 of Table 8 replicate Columns 1-2 for the [A,A] treatment. We find that
the actions data is statistically indistinguishable between the two stages of the [A,A]
treatment for both players. Since there is no difference across the two stages in the
absence of belief elicitation, we conclude that it was the belief elicitation itself in the
[A,BA] sessions that affected player 1-subjects’ actions.

11.2 Proof of Proposition 3

Proof of Proposition 3. Fix X > 0. Only if : Let (σU , σL) be a hybrid equilibrium.
Suppose σL < σNE

L . By (B4), player 1’s belief-map must satisfy F1(σL|σL) = 1
2
, and

hence P(σ∗
L(σL) < σNE

L ) ∈ (1
2
, 1) and P(σ∗

L(σL) > σNE
L ) = 1−P(σ∗

L(σL) < σNE
L ) ∈ (0, 1

2
).

By (A4), player 1’s action-map must satisfy QU ◦ ū(σ′
L) ∈ (0, 1

2
) for belief realization

σ
′
L < σNE

L and QU ◦ ū(σ′
L) ∈ (1

2
, 1) for belief realization σ

′
L > σNE

L . Together, this
implies that ΨU(σL) ∈ (0, 3

4
) for σL < σNE

L . Using similar arguments, it must be that
σU ∈ ΦX

U (σL) for all σL and σL ∈ ΦX
L (σU) for all σU . If : Let σL < σNE

L and σU ∈ (0, 3
4
).

The expected action-map for player 1, ΨU , can be made to satisfy ΨU(σL) = σU by

setting the belief-distribution evaluated at σL to be σ∗
L(σL) =

ϵ w.p. 1
2

1− ϵ w.p. 1
2

for very

small ϵ > 0 and the action-map Q1 = (QU , QD) : R2 → ∆ to be any that satisfies
(A1)-(A4) and 1

2
QU ◦ (ū1(ϵ)) + 1

2
QU ◦ (ū1(1 − ϵ)) = σU . The only restrictions imposed

by this construction on the action-map are QU ◦ (ū1(ϵ)) ∈ (0, 1
2
) and QU ◦ (ū1(1− ϵ)) ∈

(1
2
, 1), which is consistent with (A4) and therefore feasible. The constructed belief-

distribution, because it is discrete, is not consistent with (B1) and (B2), but σ∗
L(σL)

can be modified to be consistent with these axioms and ΨU(σL) = σU by smoothing
out the distribution of σ∗

L(σL) arbitrarily little (along with a corresponding modification
of Q1). Hence, there exists a belief CDF F1(·|σL) that rationalizes ΨU(σL) = σU with
F1(σ̄L|σL) strictly increasing and continuous in σ̄L ∈ [0, 1], F1(0|σL) = 0, F1(1|σL) = 1,
and F1(σL|σL) = 1

2
. All that remains is to extend F1(·|σL) to a belief-map, i.e. to a

family of CDFs {F1(·|σ
′
L)}σ′

L∈[0,1]
satisfying (B1)-(B4). This can be done exactly as in the

proof of Proposition 2. Using similar arguments, for any (σU , σL) satisfying σU ∈ ΦX
U (σL)

and σL ∈ ΦX
L (σU), we can construct (Q, σ∗) satisfying (A1)-(A4) and (B1)-(B4) such

that the induced expected action-map satisfies ΨU(σL) = σU and ΨL(σU) = σL.
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11.3 A causal effect of payoff salience on strategic sophistication

In Section 8, we discussed two puzzles in the data: the rejection of the unbiasedness
axiom for player 2 and the fact that belief-noise is higher for player 1-subjects and
decreasing in X for both players. To explain these puzzles, we proposed that the differ-
ential salience of actions across players causally induces greater strategic sophistication
in player 1-subjects. Consistent with this hypothesis, we showed in Figure 14 that
player 1-subjects have longer response times. In this section, we present another piece
of supporting evidence—that player 1-subjects exhibit higher measures of strategic so-
phistication, which can be interpreted in a causal fashion due to the randomization of
subjects into player roles.

The measure of strategic sophistication is based on stated beliefs in the small number
of dominance solvable games that were included to break up appearance of the X-games
(see Online Appendix 11.9). The dominance solvable games are reproduced in Figure
17. D1 and D2 are identical up to which player faces which set of payoffs. In the
former, player 1 has a strictly dominant action and in the latter, player 2 has a strictly
dominant action. Furthermore, in game Di, one of player j’s actions is the best response
to a uniform distribution and the other is the best response to i’s dominant action. In the
second stage of the experiment, Di appeared in rounds 7, 21, and 35, and Dj appeared
in rounds 14 and 28.

D1 Lk≥2 Rk=1 D2 L Rk≥1

U 0 20 Uk=1
0 20

6 0 20 4

Dk≥1
20 4 Dk≥2

6 8
8 20 0 20

Figure 17: Dominance solvable games. In game Di, player i has a strictly dominant action
(taken by levels k ≥ 1). Player j can either best respond to a uniform distribution (k = 1) or
to player i’s dominant action (k ≥ 2).

Importantly, by symmetry, player 1-subjects’ stated beliefs in D1 (D2) are fully
comparable to player 2-subjects’ stated beliefs in D2 (D1). Also, since all subjects
observed exactly the same games throughout the experiment and were randomly assigned
to their roles, any differences across player 1- and player 2-subjects in Di or Dj must be
caused by their experiences in different roles of the X-games throughout the experiment.
In other words, we are looking at “spillover” effects from the X-games to the dominance
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solvable games and how these effects vary by player role in the X-games.28

β̂(k ≥ 1)

β̂(k ≥ 2)

Figure 18: Sophistication by player. The top panel gives histograms of β̂(k ≥ 1), i’s belief
that j best responds to i’s dominant action in Dj, across subjects. The bottom panel gives
histograms of β̂(k ≥ 2), i’s belief that j best responds to i’s dominant action in Di (as opposed
to the a uniform distribution), across subjects. The solid lines mark i’s average beliefs, and the
dashed lines mark j’s corresponding action frequencies from [A, ◦ ].

In the level k framework of strategic sophistication (Nagel [1995]), level 0 is assumed
to uniformly randomize, level 1 best responds to level 0, and so on, with level k best
responding to level k − 1. In game Di, the following characterizes level-types k ≥ 1.
Player i: levels k ≥ 1 take the dominant action. Player j: level 1 best responds to a
uniform distribution and levels k ≥ 2 best respond to i’s dominant action.

This suggests two benchmark beliefs: (1) i’s belief that j takes her dominant action
in Dj and (2) i’s belief that j best responds to i’s dominant action in Di. Assuming
i believes j is drawn from a distribution of level types, for any fixed probability that i
believes j is level 0, (1) is an increasing function of i’s belief that j is any level k ≥ 1

and (2) is an increasing function of i’s belief that j is any level k ≥ 2, respectively.
28One concern is that, since experience in the X-games affects behavior in D1 and D2, these latter

games may also have an effect on behavior in the former. However, we find this implausible since the
X-games take up a large majority of the experiment.
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We call these benchmark beliefs β(k ≥ 1) and β(k ≥ 2), and they are readily seen as
coarse measures of sophistication as they measure the belief that the opponent is of a
sufficiently high level.

Each player states beliefs three times in Di and two times in Dj, so we average beliefs
for each subject within-game to yield β̂(k ≥ 1) and β̂(k ≥ 2). We plot histograms of these
measures in Figure 18. From the top panel, we see that both players have very similar
distributions of β̂(k ≥ 1) that are highly concentrated toward the right of the space
with modes close to 100 and very similar means of approximately 85 (solid lines). From
the bottom panel, however, we see that player 1’s distribution of β̂(k ≥ 2) is relatively
uniform whereas that of player 2 is concentrated below 50, with respective means of
56 and 33—a 23 percentage point difference. Hence, while both players overwhelmingly
believe their opponent will take a dominant action, player 1 is much more likely to believe
her opponent goes one level deeper. In other words, player 1 is more sophisticated than
player 2.

To summarize, since D1 and D2 are exactly the same up to which player faces which
payoffs, the sophistication measure β̂(k ≥ 2) is derived in exactly the same way for both
players. Furthermore, all subjects observed exactly the same games throughout the
experiment and were randomly assigned to their roles. Thus, the difference in measured
sophistication must be caused by their experience in different roles of the X-games, and
we find that player 1-subjects are much more sophisticated by this measure.

11.4 Testing the axioms (player 1)

We replicate the tests of Section 6 for player 1-subjects by attempting to reject the
four behavioral axioms (responsiveness, monotonicity, belief-responsiveness, and unbi-
asedness). Since player 1’s payoffs vary with X, we cannot pool data across games.
For this reason, some of the tests are modified and less powerful, but we reach similar
conclusions as we did for player 2-subjects.

11.4.1 Responsiveness

For player 1 and game X, responsiveness states that QU , the probability of taking action
U , is everywhere strictly increasing in belief σ′

L.
We first visualize the aggregate data in the left panels of Figure 23, which plots

the estimated Q̂U for each game. As was the case for player 2, we see that the slopes
are not everywhere strictly monotonic. However, since different subjects form different
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beliefs, Q̂U is patched together from different subjects representing different parts of
the domain. Hence, any perceived violations could result from individual subjects who
violate responsiveness to variations in their own beliefs or it could a mechanical issue
related to incomplete data—subjects that tend to hold lower beliefs and favor taking U .
This latter possibility could lead to “violations” of responsiveness even if all individual
subjects are responsive to variations over the range of their own stated beliefs.

As before, we get around this issue by running fixed-effect regressions. Let (aXsl , b
X
sl )

be the lth action-belief pair of subject s in game X. Letting āXs ≡ 1
5

∑
l a

X
sl and b̄Xs ≡

1
5

∑
l b

X
sl be the subject-level averages, we run regressions of the following form for each

game X:
aXsl − āXs = β(bXsl − b̄Xs ) + εXsl .

Since there is no difference across subjects in the averages of their demeaned variables
by construction, the coefficient estimate β̂ reflects within-subject variation.

Since responsiveness concerns the slope at every point, we run separate regressions for
different neighborhoods of stated beliefs. Specifically, we first demean the variables, and
then run the regression separately for each tercile of (non-demeaned) belief statements,
which we label as “low”, “medium”, and “high” beliefs. Since we cannot pool data across
games, we use terciles instead of quintiles for more power.

(1) (2) (3) (4) (5) (6)
X80 X40 X10 X5 X2 X1

low beliefs 0.000 0.006∗ 0.008∗∗ 0.010∗∗∗ 0.005∗∗ 0.004∗∗
(0.958) (0.077) (0.017) (0.002) (0.035) (0.043)

medium beliefs 0.007∗∗ 0.010∗∗ 0.015∗∗∗ 0.005 0.006 0.006∗
(0.033) (0.020) (0.000) (0.153) (0.141) (0.051)

high beliefs 0.005∗ 0.010∗∗∗ 0.004 0.005 0.004 0.007∗∗∗
(0.052) (0.002) (0.448) (0.164) (0.283) (0.004)

Observations 270 270 270 270 270 270
p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 9: Fixed effect regressions of actions on beliefs (player 1). For each game and player, we
divide individual belief statements into terciles—low, medium, and high beliefs. For each belief
tercile, we run a separate linear regression of actions on beliefs that are both first demeaned
by subtracting subject-specific averages. Standard errors are clustered by subject.

The results are displayed in Table 9. Consistent with responsiveness, we find that
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every slope is positive, with many of these being highly statistically significant. Further-
more, the magnitudes are large: the average slope is 0.065, indicating that a 1 percentage
point change in belief is associated with a 0.65 percentage point change in the probabil-
ity of taking an action. Since the slopes all have the sign predicted by responsiveness,
this suggests broad support for responsiveness.

11.4.2 Monotonicity

For player 1 and game X, monotonicity requires that QU , the probability of taking U ,
is greater than 1

2
if and only if belief σ′

L is greater than the indifferent belief. If utility
is linear, the indifferent belief coincides with the (linear utility) Nash equilibrium, and
so monotonicity is the following: QU ⋛ 1

2
⇐⇒ σ

′
L ⋛ σNE

L = 20
20+X

. With non-linear
utility, the indifferent belief may diverge from σNE

L .
In order to visualize potential monotonicity violations, we plot the estimated Q̂U in

Figure 19 for each game. The vertical dashed line gives σNE
L . For each game, if utility

is linear, Q̂U should be less than 1
2

to the left of the vertical dashed line and greater
than 1

2
to the right of the vertical dashed line. From Figure 19, we see what appears to

be monotonicity violations whereby the estimated Q̂U is significantly below 1
2

for some
beliefs greater than σNE

L and significantly above 1
2

for some beliefs less than σNE
L . For

X > 20, this occurs over an interval of beliefs just “right of” σNE
L , and for X < 20, the

violations are over an interval of beliefs just “left of” σNE
L .

The proposition below states that, with concavity in the utility function, the indif-
ferent belief moves right for X > 20 and left for X < 20. Hence, what we observe may
not be violations at all if utility is concave.

Proposition 4. Let w and v be any strictly increasing (Bernoulli) utility functions
over matrix payoffs. For player 1 in game X, w and v induce expected payoff vectors
w̄X = (w̄X

U , w̄
X
D ) : [0, 1] → R2 and v̄X = (v̄XU , v̄

X
D ) : [0, 1] → R2, respectively. Let

σ̃w,X
L and σ̃v,X

L be the unique indifferent beliefs such that w̄X
U (σ̃

w,X
L ) = w̄X

D (σ̃
w,X
L ) and

v̄XU (σ̃v,X
L ) = v̄XD (σ̃v,X

L ), respectively. (i) If w is strictly more concave than v (w = f(v)

for strictly concave f), then σ̃w,X
L > σ̃v,X

L for X > 20 and σ̃w,X
L < σ̃v,X

L for X < 20. (ii)
if w is strictly concave, then σ̃w,X

L ∈ (σNE,X
L , 1

2
) for X > 20 and σ̃w,X

L ∈ (1
2
, σNE,X

L ) for
X < 20.

Proof. (i): Let w and v be any strictly increasing (Bernoulli) utility functions with
w = f(v) for some strictly concave f . Let X > 20. Without loss, normalize so that
w(0) = v(0) = 0 and w(X) = v(X) = 1. For arbitrary utility function u, it is easy to
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Q̂U Q̂U

Figure 19: Concave utility explains monotonicity “violations” (player 1). For player 1 and
each of the X-games, we plot Q̂U , the predicted probability of choosing U (with 90% error
bands) as a function of stated beliefs based on restricted cubic spline regressions (4 knots at
belief quintiles, standard errors clustered by subject). Belief histograms appear in gray, the
vertical dashed line is the indifferent belief under linear utility σ

′
L = σNE

L , and the horizontal
line is set to one-half. The solid vertical line is the indifferent belief with concave utility that
is estimated from fitting a single curvature parameter to all player 1-subjects’ data.
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show that the indifferent belief is σ̃u,X
L = u(20)

u(20)+1
. Since w is strictly more concave than

v, w(20) > v(20) and thus σ̃w,X
L > σ̃v,X

L . Similarly, if X < 20, re-normalize without loss
so that w(0) = v(0) = 0 and w(20) = v(20) = 1. This implies that σ̃u,X

L = 1
1+u(X)

. Since
w is strictly more concave than v, w(X) > v(X) and thus σ̃w,X

L < σ̃v,X
L . Part (ii) is the

same, except with v(z) = z, which implies σ̃v,X
L = 20

20+X
= σNE,X

L .

To test for concavity, we fit the random utility model with curvature from Online
Appendix 11.5 to each player 1-subject’s data, pooled across all X-games. The param-
eters ρ and µ give curvature and noise, respectively. We find that for 37 of 54 player
1-subjects (69%), a likelihood ratio test rejects the restriction of linear utility, that ρ = 0,
at the 5% level. For 31 of those 37 subjects (84%), the estimated ρ̂ is positive, indicating
concavity.

We also fit ρ and µ to the aggregate player 1 data—pooled across all subjects and
games. We find the estimate ρ̂ = 0.87, indicating concavity. In Figure 19, we plot the
indifferent beliefs implied by this best-fit utility function as solid vertical lines. Each
such line intersects Q̂U near to where it crosses the horizontal one-half line. Hence, if
the subjects admitted a representative agent with this concave utility, nearly all of the
monotonicity “violations” would disappear. This also captures the fact that the regions
of violation are larger for the more asymmetric games (compare, for example, X10 and
X1 in Figure 19). In light of this evidence, we conclude that monotonicity cannot be
rejected.

11.4.3 Belief-responsiveness

Belief-responsiveness states that, if the frequency of player j’s action increases, so too
does the distribution of player i’s beliefs in the sense of first-order stochastic dominance.

We plot the empirical CDFs of player 1’s beliefs for all six X-games in the left panel
of Figure 4. Visually, it appears that the belief-distributions are ordered by stochastic
dominance, which is confirmed by statistical tests (described below). Furthermore, the
belief-distributions shift monotonically in X in the direction predicted by the hybrid
model: as X increases, player 1 believes that player 2 will play L less often.

A violation of belief-responsiveness occurs whenever, across two games x and y,
σx
L > σy

L and F1(·|σx
L) ̸≻FOSD F1(·|σy

L), meaning beliefs do not go in the same direction
as the corresponding action frequencies. Hence, we perform one-sided tests of the null
hypotheses H0 : σx

L > σy
L and H0 : F1(·|σy

L) ≻FOSD F1(·|σx
L) for all games x ̸= y.

We say that belief-responsiveness is rejected whenever we reject both σx
L > σy

L and
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Player 2’s actions (p-values) Player 1’s beliefs (p-values)
X80 X40 X10 X5 X2 X1 X80 X40 X10 X5 X2 X1

X80 – 0.58 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ – 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

X40 0.42 – 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.80 – 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

X10 1.00 1.00 – 0.08∗ 0.08∗ 0.07∗ 0.96 0.93 – 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

X5 1.00 1.00 0.92 – 0.50 0.50 0.97 0.92 0.76 – 0.00∗∗∗ 0.00∗∗∗

X2 1.00 1.00 0.92 0.50 – 0.50 1.00 0.72 0.79 0.68 – 0.01∗∗

X1 1.00 1.00 0.93 0.50 0.50 – 1.00 0.83 0.66 0.72 0.73 –

Table 10: Testing belief-responsiveness (player 1). The left panel reports p-values from tests
of H0 : σx

L > σy
L across game x (row) and game y (column). This is from standard t-tests,

clustering by subject. The right panel reports p-values from tests of H0 : F1(·|σx
L) ≻FOSD

F1(·|σy
L) across game x (row) and game y (column). This is from non-parametric Kolmogorov-

Smirnov-type tests in which the test statistic is bootstrapped following Abadie [2002]. We
say that a rejection of belief-responsiveness occurs whenever we reject both σx

L > σy
L and

F1(·|σy
L) ≻FOSD F1(·|σx

L).

F1(·|σy
L) ≻FOSD F1(·|σx

L).
Table 10 reports the p-values of these tests for pairs of games x and y in matrix form,

with entries in row x and column y (see table caption for details). We find no significant
violation across the many comparisons, and so we cannot reject belief-responsiveness.

11.4.4 Unbiasedness

Unbiasedness states that beliefs are unbiased on median. For player 1 forming beliefs
over player 1’s behavior, this is: med(σ∗,X

L ) = σX
L for all X. Figure 20 plots the aggregate

action frequencies and median beliefs, as well as the individual belief statements. Table
13 reports the bias in both median- and mean-beliefs with p-values of the hypothesis
that beliefs are unbiased (see caption for details).

Visually, it appears player 1’s beliefs are unbiased, and indeed we cannot reject
unbiasedness for player 1: for no games can we reject unbiasedness at conventional
levels of significance. In terms of the mean, we find that there is a slight conservative
bias: relative to player 2’s behavior, average beliefs are closer to the uniform distribution.

11.5 Random utility estimation

The data of subject s is a set of 30 action-belief pairs (aXsl , b
X
sl )l where l ∈ {1, ..., 5}

indexes each elicitation and X indexes the game. We assume that the utility function
over matrix payoffs is the constant relative risk aversion (CRRA) utility function with
curvature parameter ρ, which has been modified to allow for 0 payoffs by adding a
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0 1

0

1

Figure 20: Bias in beliefs (player 1). We plot σ̂L from [A, ◦ ] and the median of player
1-subjects’ beliefs over σL. Blue circles are individual belief statements.

constant ϵ > 0 (arbitrarily pre-set to 0.001) to each payoff. We also normalized utility
so that it is between 0 and 1:29

w(z; ρ) =
(z + ϵ)1−ρ − ϵ1−ρ

(80 + ϵ)1−ρ − ϵ1−ρ
.

This utility function induces, for each game X and stated belief bXsl , a vector of subjective
expected utilities w̄X

i (b
X
sl ; ρ) = (w̄x

i1(b
X
sl ; ρ), w̄

X
i2(b

X
sl ; ρ)). Coding actions U and L as 1 and

D and R as 0, we assume that the probability of taking the action 1 depends only on this
vector, based on the Luce quantal response function with sensitivity parameter µ > 0:30

pXi (b
X
sl ; ρ, µ) =

w̄X
i1(b

X
sl ; ρ)

1
µ

w̄X
i1(b

X
sl ; ρ)

1
µ + w̄X

i2(b
X
sl ; ρ)

1
µ

. (1)

For subject s in role i, we choose ρ and µ to maximize the log-likelihood of observed
actions given stated beliefs:

Lis({aXsl}Xl|{bXsl}Xl; ρ, µ) =
∑
X

5∑
l=1

[
aXsl · ln(pXi (bXsl ; ρ, µ)) + (1− aXsl ) · ln(1− pXi (b

X
sl ; ρ, µ))

]
.

29By construction, w(0; ρ) = 0 and w(80; ρ) = 1.
30The Luce rule (1) fits the data much better than the logit quantal response function, but is undefined

when one of the expected utilities is 0. This happens if and only if the stated belief is 0 or 100, which
occurs very few times in the data. When this occurs, we instead use 1 or 99, respectively, to calculate
the expectations.

57



For player 2-subjects, who face symmetric payoffs, ρ and µ are not separately identified,
and so we set ρ = 0 (corresponding to linearity) prior to estimation.

11.6 Additional Figures

Figure 21: Hybrid equilibrium and the data. For each X-game, we plot the set of hybrid
equilibria (gray), the set of QRE and NBE (black outline), the empirical action frequencies
from [A, ◦ ] (green circle), median belief (red square), and Nash equilibrium (black diamond).
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σ̂∗
U σ̂∗

L

Figure 22: belief-distributions. The left panels are for player 2’s beliefs over σU , and the right
panels are for player 1’s beliefs over σL. The solid lines mark the median of i’s beliefs and the
dashed line marks the empirical frequency of j’s actions.
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Q̂U Q̂L

Figure 23: Action frequencies predicted by beliefs. For each player and X-game, we plot
the predicted action probability as a function of stated beliefs based on restricted cubic spline
regressions (4 knots at belief-quintiles, standard errors clustered by subject).
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11.7 Additional tables

X80 X40 X10 X5 X2 X1

actions

σ̂
[A,◦]
U 0.50 0.42 0.51 0.40 0.40 0.31
σ̂
[A,◦]
L 0.27 0.25 0.66 0.74 0.74 0.74

σ̂
[A,BA]
U 0.38 0.39 0.65 0.61 0.51 0.49
σ̂
[A,BA]
L 0.21 0.22 0.74 0.79 0.83 0.82

beliefs

med(σ̂∗
U) 0.80 0.69 0.33 0.20 0.10 0.10

med(σ̂∗
L) 0.20 0.33 0.65 0.70 0.70 0.74

mean(σ̂∗
U) 0.76 0.68 0.34 0.23 0.18 0.15

mean(σ̂∗
L) 0.29 0.36 0.58 0.61 0.64 0.64

Table 11: Empirical action frequencies, median and mean belief statements.
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Player 1
(1) (2) (3) (4) (5) (6) (7)
X80 X40 X10 X5 X2 X1 all

best response rate 0.741∗∗∗ 0.737∗∗∗ 0.667∗∗∗ 0.600∗∗ 0.544 0.544 0.639∗∗∗
(0.000) (0.000) (0.000) (0.026) (0.356) (0.414) (0.000)

Observations 270 270 270 270 270 270 1620
p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Player 2
(1) (2) (3) (4) (5) (6) (7)
X80 X40 X10 X5 X2 X1 all

best response rate 0.836∗∗∗ 0.857∗∗∗ 0.854∗∗∗ 0.836∗∗∗ 0.854∗∗∗ 0.857∗∗∗ 0.849∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Observations 280 280 280 280 280 280 1680
p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 12: Rates of best response. This table reports the average rates of best response by
player and game. Significance is based on a two-sided t-test of the null hypothesis that the rate
of best response is one-half. Standard errors are clustered by subject.
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(1) (2) (3) (4) (5) (6)
X80 X40 X10 X5 X2 X1

med(σ̂∗
U) - σ̂U 30.000∗∗∗ 27.025∗∗∗ -18.235∗∗∗ -19.506∗∗∗ -30.124∗∗∗ -21.482∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)

Observations 442 442 442 442 442 442
med(σ̂∗

L) - σ̂L -6.506∗ 7.199∗ -0.663 -4.086 -4.096 -0.096
(0.079) (0.050) (0.418) (0.345) (0.172) (0.433)

Observations 436 436 436 436 436 436
p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

(1) (2) (3) (4) (5) (6)
X80 X40 X10 X5 X2 X1

mean(σ̂∗
U) - σ̂U 25.511∗∗∗ 26.021∗∗∗ -16.938∗∗∗ -16.531∗∗∗ -22.027∗∗∗ -16.253∗∗∗

(0.000) (0.000) (0.001) (0.001) (0.000) (0.001)

Observations 442 442 442 442 442 442
mean(σ̂∗

L) - σ̂L 2.146 10.321∗∗ -7.303 -12.615∗∗∗ -10.441∗∗ -9.670∗∗
(0.675) (0.027) (0.148) (0.010) (0.035) (0.049)

Observations 436 436 436 436 436 436
p-values in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 13: Bias in beliefs. This table reports, for each player and game, the empirical bias
in beliefs as measured by the difference between the median or mean belief statement and the
empirical action frequency (expressed as percentages). In both cases, we report the p-values
from two-sided tests of the null hypothesis that beliefs are unbiased. When using the median,
p-values are bootstrapped in a way so as to preserve the within-subject correlation observed in
the data. When using the mean, we use standard t-tests, clustering by subject.
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Player 1
X80 X40 X10 X5 X2 X1

Between MS 2,047.8 1,553.1 1,681.1 1,816.0 2,300.6 2,403.2
Within MS 180.1 155.7 171.2 239.7 236.3 273.7

F 11.4∗∗∗ 10.0∗∗∗ 9.8∗∗∗ 7.6∗∗∗ 9.7∗∗∗ 8.8∗∗∗
χ2 227.7∗∗∗ 145.9∗∗∗ 161.4∗∗∗ 202.5∗∗∗ 222.2∗∗∗ 207.1∗∗∗

Player 2
X80 X40 X10 X5 X2 X1

Between MS 982.8 948.9 974.7 1,057.0 1,105.5 1,009.5
Within MS 121.6 82.7 159.1 181.7 188.3 321.6

F 8.0∗∗∗ 11.5∗∗∗ 6.1∗∗∗ 5.8∗∗∗ 5.9∗∗∗ 3.1∗∗∗
χ2 189.9∗∗∗ 123.8∗∗∗ 183.6∗∗∗ 238.8∗∗∗ 327.5∗∗∗ 405.6∗∗∗

Table 14: Analysis of Variance of stated beliefs. For each player role and X-game, we report
the results of ANOVA tests: estimated variance of subjects’ average beliefs (Between MS),
estimated average variance an an individual subject’s beliefs (Within MS). This shows that,
for every game, there is more between- than within-subject variation and that both types of
variation are higher for player 1 than player 2. For each player and game, we also report the
results of F -tests of the null hypothesis that the means of all subjects’ belief-distributions are
equal (F ) and of Bartlett’s χ2-tests of equal variances (χ2). All tests strongly reject the null:
means and variances are not the same for all subjects.
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11.8 Experimental interface

Figure 24 shows an example round from the perspective of a player 1-subject (blue) in
the first stage. At the start of the round, the subject sees the payoff matrix (left screen),
and a 10 second timer counting down to 0 (not shown here) is seen at the bottom right
corner of the screen. After 10 seconds pass, the text “Please click to select between U and
D:” darkens (middle screen) indicating that the subject may take an action. To select
an action, the subject clicks on a row of the matrix. The row becomes highlighted and
a ‘Submit’ button appears (right screen). At this point, the subject may freely modify
her answer before submitting. The subject may undo her action choice by clicking again
on the highlighted row.

Figure 24: Screenshots from first stage.

Figure 25 shows an example round from the perspective of a player 1-subject (blue)
in the second stage of [A,BA]. At the start of the round, the subject sees the payoff
matrix (top-left screen) and is told “The computer has randomly selected a round of
Section 1 in which the below matrix was played.” After 10 seconds pass, the text “What
do you believe is the probability that a randomly selected red player chose L in that
round?” darkens (top-right screen) indicating that the subject may state a belief. The
subject enters a belief as a whole number between 0 and 100. Once the belief is entered,
the corresponding probabilities appear below the matrix and the text “The computer has
randomly selected a red player and recorded their action from that round. Please click
to select between U and D:” darkens (bottom-left screen) indicating that the subject
may take an action. Only after stating a belief may the subject select an action, but
after the belief is stated, the subject may freely modify both her belief and action before
submitting. After a belief is entered and an action is selected, the ‘Submit’ button
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Figure 25: Screenshots from second stage of [A,BA].

appears (bottom-right screen). Figure 26 shows screenshots for the second stage of
[A,A] which is the same as that of [A,BA], except beliefs are not elicited.
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Figure 26: Screenshots from second stage of [A,A].
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11.9 Games and randomization

In addition to the X-games, we also included the games whose payoffs are in Table 15.
D1 and D2 are dominance solvable games, which are identical up to which player faces
which set of payoffs: in Di, it is player i who has a dominant action. X80s (“s” for
“scale”) is the same as X80, except with all payoffs divided by 10. R1 and R2 are similar
to X5, except the symmetry of player 2’s payoffs have been broken.

D1 L R D2 L R X80s L R

U 0 20 U 0 20 U 0 2
6 0 20 4 8 0

D 20 4 D 6 8 D 2 0
8 20 0 20 0 2

R1 L R R2 L R

U 0 20 U 0 20
5 0 5 0

D 10 0 D 40 0
0 20 0 20

Table 15: Additional games.

Table 16 summarizes the games played in both stages of the experiment and the
number of rounds for each. Note that, for each of the X-games, there are two rounds
in the first stage and five rounds in the second stage. The dominance solvable games
appeared at fixed, evenly spaced rounds. For a subject in role i in the first stage, Di
and Dj appeared in rounds 7 and 14 or 14 and 7 with equal probability. In the second
stage, Di appeared in rounds 7, 21, and 35, and Dj appeared in rounds 14 and 28.

The other games appeared in random order subject to the same game not appearing
more than once within 3 consecutive rounds. Subjects were told nothing about what
games to expect, the number of times each was to appear, or their order.
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Stage Games Rounds of each Total Rounds

A
X80, X40, X10, X5, X2, X1 2

20D1, D2 1
X80s 2
R1, R2 2

BA
X80, X40, X10, X5, X2, X1 5

40Di 3
Dj 2
X80s 5

Table 16: Games by section.
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