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Abstract. We develop methods for inference following sequential experiments by study-

ing the asymptotic properties of tests. We find that the large-sample power of any test

can be matched by a test in a suitable limit-experiment involving Gaussian diffusions.

This establishes that a fixed set of statistics are asymptotically sufficient for testing;

these are the number of times each treatment has been sampled, and the final value of

the score/efficient influence function process for each treatment. We also derive asymp-

totically optimal tests under various conditions and apply these findings to three types of

sequential experiments: costly sampling, group sequential trials and bandit-experiments.
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1. Introduction

Recent years have seen tremendous advances in the theory and application of sequen-

tial/adaptive experiments. Such experiments are now used being in a wide variety of

fields, ranging from online advertising (Russo et al., 2017), to dynamic pricing (Ferreira

et al., 2018), drug discovery (Wassmer and Brannath, 2016), public health (Athey et al.,

2021), and economic interventions (Kasy and Sautmann, 2019). Compared to traditional

randomized trials, these experiments allow one to target and achieve a more efficient bal-

ance of welfare, ethical, and economic considerations. In fact, starting from the Critical

Path Initiative in 2006, the FDA has actively promoted the use of sequential designs in

clinical trials for reducing trial costs and risks for participants (US Food and Drug Ad-

min., 2019). For instance, group-sequential designs, wherein researchers conduct interim

analyses at predetermined stages of the experiment, are now routinely used in clinical

trials: if the analysis suggests a significant positive or negative effect from the treatment,

the trial may be stopped early. Other examples of sequential experiments include ban-

dit experiments (Lattimore and Szepesvári, 2020), best-arm identification (Russo and

Van Roy, 2016) and costly sampling (Adusumilli, 2022), among many others.

Although hypothesis testing is not always the primary goal of sequential experiments,

one may still desire to conduct a hypothesis test after the experiment is completed. For

example, a pharmaceutical company may conduct an adaptive trial for drug testing with

the explicit goal of maximizing welfare or minimizing costs, but may nevertheless be

required to test the null hypothesis of a zero average treatment effect for the drug after

the trial. Despite the practical importance of such inferential methods, there are currently

few results characterizing optimal tests, or even identifying which sample statistics to use

when conducting tests after sequential experiments. This paper aims to fill this gap.

To this end, we follow the standard approach in econometrics and statistics (see, e.g.,

Van der Vaart, 2000, Chapter 14) of studying the properties of various candidate tests by

characterizing their power against local alternatives, also known as Pitman alternatives.

These are alternatives that converge to the null at the parametric, i.e., 1/
√
n rate, leading

to non-trivial asymptotic power. Here, n is typically the sample size, although it can have

other interpretations in experiments which are open-ended, see Section 2 for a discussion.

The main finding of this paper is that the asymptotic power function of any test can be

matched by that of a test in a limit experiment where one observes a Gaussian process
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for each treatment, and the aim is to conduct inference on the drifts of the Gaussian

processes.

As a by-product of this equivalence, we show that the power function of any candidate

test (which in general depends on the entire data collected) can be matched asymptotically

by one that only depends on a finite set of sufficient statistics. In the most general

scenario, the sufficient statistics are the number of times each treatment has been sampled

by the end of the experiment, along with final value of the score (for parametric models)

or efficient influence function (for non-parametric models) process for each treatment.

However, even these statistics can be further reduced under additional assumptions on

the sampling and stopping rules. Our results thus show that a substantial dimension

reduction is possible, and only a few statistics are relevant for conducting tests.

Furthermore, we characterize the optimal tests in the limit experiment. We then

show that finite sample analogues of these are asymptotically optimal under the original

sequential experiment. Our results can also be used to compute the power envelope, i.e.,

an upper bound on the asymptotic power function of any test. Although a uniformly

most powerful test in the limit experiment may not always exist, some positive results

are obtained for testing linear combinations under unbiasedness, α-spending restrictions

or conditional size constraints. Alternatively, one may impose less stringent criteria for

optimality, like weighted average power, and we show how to compute optimal tests under

such criteria as well.

We provide two new asymptotic representation theorems (ARTs) for formalizing the

equivalence of tests between the original and limit experiments. The first applies to

‘stopping-time experiments’, where the sampling rule is fixed beforehand but the stop-

ping rule (which describes when the experiment is to be terminated) is fully adaptive

(i.e., it can be updated after every new observation). Our second ART allows for the

sampling rule to be adaptive as well, but we require the sampling and stopping decision

to be updated only a finite number of times, after observing the data in batches. While

constraining attention to batched experiments is undoubtedly a limitation, practical con-

siderations often necessitate conducting sequential experiments in batches anyway. Also,

as shown in Adusumilli (2021), a fully adaptive experiment can often be approximated

by a batched experiment with a sufficiently large number of batches. Our second ART

builds on, and extends, the recent work of Hirano and Porter (2023) on asymptotic rep-

resentations. We refer to Sections 1.1 and 4.1 for a detailed comparison. Importantly,
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and in contrast to Hirano and Porter (2023), our analysis covers both parametric and

non-parametric settings.

We apply our results to three important examples of sequential experiments: costly

sampling, group sequential trials and bandit experiments. We suggest new inferential

procedures for these experiments that are asymptotically optimal under various scenarios

such as unbiasedness, α-spending etc.

1.1. Related literature. Despite the vast amount of work on the development of sequen-

tial learning algorithms, the literature on inference following the use of such algorithms

is relatively sparse. One approach gaining some popularity in computer-science is called

‘any-time inference’. Here, one seeks to construct tests and confidence intervals that are

correctly sized no matter how, or when, the experiment is stopped. We refer to Ramdas

et al. (2022) for a survey and to Grünwald et al. (2020), Howard et al. (2021), Johari

et al. (2022) for some recent contributions. The uniform-in-time size constraint is a strin-

gent requirement, and this comes at the expense of lower power than could be achieved

otherwise. By contrast, our focus in this paper is on classical notions of testing, where

size control is only achieved when the experimental protocol, i.e., the specific sampling

rule and stopping time, is followed exactly. In essence, this requires the decision maker

to pre-register the experiment and fully commit to the protocol. We believe this is valid

assumption in most applications; adaptive experiments are usually constructed with the

explicit goal of welfare maximization, so there is little incentive to deviate from the pro-

tocol as long as the preferences of the experimenter and the end-user of the experiment

are aligned (e.g., in the case of online marketplaces they would be the same entity). In

other situations, pre-registration of the experimental design is usually mandatory, see,

e.g., the FDA guidance on sequential designs (US Food and Drug Admin., 2019, Section

III.C).

There are other recent papers which propose inferential methods under the ‘classi-

cal’ hypothesis-testing framework. Zhang et al. (2020) and Hadad et al. (2021) suggest

asymptotically normal tests for some specific classes of sequential experiments. These

tests are based on re-weighing the observations. There are also a number of methods for

group sequential and linear boundary designs commonly used in clinical trials, see Hall

(2013) for a review. However, neither of them are optimal even within their specific use

cases.
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Finally, in prior and closely related work, Hirano and Porter (2023) obtain an Asymp-

totic Representation Theorem (ART) for batched sequential experiments and apply this

to testing. The ART of Hirano and Porter (2023) is a lot more general than ours, e.g., it

can be used to determine optimal conditional tests given outcomes from previous stages.

However, this generality comes at a price as the state variables increase linearly with

the number of batches. Here, we build on and extend these results to show that only

a fixed number of sufficient statistics are needed to match the unconditional asymptotic

power of any test, irrespective of the number of batches (our results also apply to as-

ymptotic power conditional on stopping times). We also derive a number of additional

results that are new to this literature: First, our ART for stopping-time experiments ap-

plies to fully adaptive experiments (this result is not based on Hirano and Porter, 2023;

rather, it makes use of a representation theorem for stopping times due to Le Cam, 1979).

Second, our analysis covers non-parametric models, which is important for applications.

Third, we characterize the properties of optimal tests in a number of different scenarios,

e.g., for testing linear combinations of parameters, or under unbiasedness and α-spending

requirements. This is useful as UMP tests do not generally exist otherwise.

As noted earlier, this paper employs the local asymptotic power criterion to rank tests.

This criterion naturally leads to ‘diffusion asymptotics’, where the limit experiment con-

sists of Gaussian diffusions. Diffusion asymptotics were first introduced by Wager and

Xu (2021) and Fan and Glynn (2021) to study the properties of a class of sequential algo-

rithms. In previous work (Adusumilli, 2021), this author demonstrated some asymptotic

equivalence results for comparing the Bayes and minimax risk of bandit experiments.

Here, we apply the techniques devised in these papers to study inference.

1.2. Examples. Before describing our procedures, it can be instructive to consider some

examples of sequential experiments.

1.2.1. Costly sampling. Consider a sequential experiment in which sampling is costly, and

the aim is to select the best of two possible treatments. Previous work by this author

(Adusumilli, 2022) showed that the minimax optimal strategy in this setting involves a

fixed sampling rule (the Neyman allocation) and stopping when the average difference in

treatment outcomes multiplied by the number of observations exceeds a specific threshold.

In fact, the stopping rule here has the same form as the Sequential Probability Ratio Test

(SPRT) procedure of Wald (1947), even though the latter is motivated by very different

considerations. SPRT is itself a special case of ‘fully sequential linear boundary designs’,
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as discussed, e.g., in Whitehead (1997). Typically these procedures recommend sampling

the two treatments in equal proportions instead of the Neyman allocation. In Section 5,

we show that for ‘horizontal fully sequential boundary designs’ with any fixed sampling

rule (including, but not restricted to, the Neyman allocation), the most powerful unbiased

test for treatment effects depends only on the stopping time and rejects when it is below

a specific threshold.

1.2.2. Group sequential trials. In many applications, it is not feasible to employ continuous-

time monitoring designs that update the decision rule after each observation. Instead,

one may wish to stop the experiment only at a limited number of pre-specified times.

Such designs are known as group-sequential trials, see Wassmer and Brannath (2016)

for a textbook treatment. Recently, these experiments have become very popular for

conducting clinical trials; they have been used, e.g., to test the efficacy of Coronavirus

vaccines (Baden et al., 2021). While a number of methods have been proposed for infer-

ence following these experiments, as reviewed, e.g., in Hall (2013), it is not clear which,

if any, are optimal. In Section 5, we derive optimal non-parametric tests and confidence

intervals for such designs under α-spending and conditional size criteria (see, Section 2.7).

1.2.3. Multi-armed bandit experiments. In the previous two examples, the decision maker

could choose when to end the experiment, but the sampling strategy was fixed before-

hand. In many experiments however, the sampling rule can also be modified based on the

information revealed from past data. Multi-armed bandit experiments are a canonical ex-

ample of these. Previously, Hirano and Porter (2023) derived asymptotic power envelopes

for any test following batched parametric bandit experiments. In this paper, we refine

the results of Hirano and Porter (2023) further by showing that only a finite number of

sufficient statistics are needed for testing, irrespective of the number of batches. Our

results apply to non-parametric models as well.

2. Optimal tests in experiments involving stopping times

In this section we study the asymptotic properties of tests for parametric stopping-time

experiments, i.e., sequential experiments that involve a pre-determined stopping time.

2.1. An empirical illustration. We begin by demonstrating our methodology through

an empirical application involving one-armed bandits, which we also use as a recurring

example throughout our discussion of the general framework. This setup is inspired by a
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Google Analytics example that describes the algorithms employed for website optimiza-

tion.1 The scenario is as follows: you currently own a website with a known conversion

rate, θ0, generating a Bernoulli(θ0) distribution of outcomes.2 You wish to test a new ver-

sion of the website with an unknown conversion rate θ. To identify the superior variant,

you conduct an adaptive experiment utilizing Thompson Sampling (TS).3

The TS algorithm starts with a prior belief over the unknown θ. Since the outcome

distribution is Bernoulli, it is standard practice to set a beta-prior over θ. As samples

are collected from the unknown website variant, the prior is revised through Bayesian

updating. The TS algorithm then distributes traffic between the websites based on the

posterior probability that each one is the best. The trial ends after n rounds of exper-

imentation, where n is pre-determined. Following the end of the experiment you are

interested in testing whether is a significant difference between the two websites, i.e., you

want to test H0 : θ = θ0 against H1 : θ 6= θ0.

For this illustration, we follow the Google Analytics example and set θ0 = 0.05. As to

the choice of prior for TS, it would be reasonable to pick one that is centered around θ0, so

we choose Beta(1, 1/θ0). With these values for θ0 and the prior, we can simulate multiple

runs of the Thompson sampling algorithm for this setting. Based on these simulations,

Figure 2.1 plots the finite sample size of a naive t-test for sample sizes n ranging between

2500 and 10000 (for comparison, the Google Analytics example used n = 6600). As the t-

test ignores the adaptive nature of the algorithm, it is incorrectly sized; in this particular

setting, it is under-sized with a nominal asymptotic size of 4%.4

The same figure also shows the size of one of our proposed tests, defined as

ϕ∗(τ̂ , x̄n) := I
(∫ 1.5

−1.5
exp

{
hτ̂

σ0

√
n(x̄n − θ0)− h2τ̂

2σ0

}
dh > γ

)
,

where σ0 :=
√
θ0(1− θ0), τ̂ represents the fraction of times the new website variant

was sampled, and x̄n is the sample average of outcomes under the new website variant.

This test is designed to maximize the weighted average power (WAP) using a uniform

weight over alternatives in the interval
[
θ0 − 1.5n−1/2, θ0 + 1.5n−1/2

]
. For the sample

sizes considered, this approximately corresponds to a range of [−3%, 7%] for θ. Deng

et al. (2013) survey the practice of website optimization and suggest that, in practice,

1The webpage describing the simulation study can be accessed here.
2The conversion rate is defined as the percentage of users who have completed a desired action, e.g.,
clicking an ad.
3While we use TS as an illustration, our analysis applies to any bandit algorithm.
4In other sequential experiments, the naive t-test can be over-sized, see Section 5.1 for an example.
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A: Size B: Power function

Note: Panel A plots the size of our proposed weighted average power (WAP) test along with that of the naive
t-test at the nominal 5% level (solid red line). The solid blue is the asymptotic size of the naive t-test. Panel B
plots the finite sample power envelopes of the WAP test for different n, along with the associated asymptotic
power envelope for the given weighting. The dashed blue line is the nominal size (5%).

Figure 2.1. Finite sample performance of the proposed WAP test

the difference θ − θ0 between various variants of a website is typically less than 1%.

Therefore, our chosen weighting aligns well with realistic values for θ.5

We determine the critical value γ by simulating the distribution of τ̂ , x̄n under the null.

Specifically, we simulate the TS algorithm multiple times, drawing outcomes for both the

old and new website variants from a Bernoulli(θ0) distribution. This process ensures that

our test maintains exact size control by construction.

Panel B of Figure 2.1 further depicts the power function of ϕ∗(·) across different sample

sizes, showing that it closely approaches the power envelope for weighted average tests

under the specified weighting. Notably, the power functions are not symmetric around θ0.

This asymmetry arises from the nature of the TS algorithm, which tends to over-sample

the new website variant when θ > θ0, resulting in higher power under those alternatives,

but under-samples it when θ < θ0.

2.2. Setup and assumptions. We now describe our general setup. Let Y denote the

outcome variable(s) of interest. Before starting the experiment, a Decision-Maker (DM)

commits to an experimental protocol with an associated stopping time, τ̂ , that describes

the eventual sample size in multiples of n observations (see below for the interpretation

of n). The choice of τ̂ may involve balancing a number of considerations such as costs,

ethics, welfare etc. We abstract away from these issues and take τ̂ as given. In the course

of the experiment, the DM observes a sequence of outcomes Y1, Y2, . . . The stopping time

τ̂ is assumed to be adapted to the filtration generated by the outcome observations. In

5Alternative weighting functions can also be employed, though we do not present those results here.
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this section we employ a parametric model Pθ for the outcomes. Our interest is in testing

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1 where Θ0 ∩Θ1 = ∅.

There are two notions of asymptotics one could employ in this setting, and conse-

quently, two different interpretations of n. In many examples, e.g., our empirical illus-

tration, there is a limit on the maximum number of observations that can be collected;

this limit is pre-specified and we take it to be n. Consequently, in these experiments,

τ̂ ∈ [0, 1]. Alternatively, we may have open-ended experiments where the stopping time

is determined by balancing the benefit of experimentation with the cost for sampling each

additional unit of observation. In this case, we employ small-cost asymptotics and n then

indexes the rate at which the sampling costs go to 0 (alternatively, we can relate n to the

population size in the implementation phase following the experiment, see Adusumilli,

2022). The results in this section apply to both asymptotic regimes.

In the context of the empirical illustration from Section 2.1, Y ∼ Bernoulli(θ) is binary,

and describes conversions under the new variant of the website. The observations from the

original website are distributed as Bernoulli(θ0), but as θ0 is known, these observations are

ancillary to the estimation of θ and can therefore be excluded from subsequent analysis.

In this experiment, the stopping time is therefore τ̂ = Q̂/n, where Q̂ denotes the total

number of times the new website has been sampled over the course of the experiment.

Although we refer to Yi as outcome variables for simplicity, our framework is more

general and can accommodate covariates by incorporating them into Yi. For example, in

a one-armed contextual bandit, the “outcomes” zi may be linked to covariates xi through

a parametric model, such as zi = xᵀi θ + εi, where εi ∼ N (0, σ2). Incorporating this into

our setup is straightforward: we simply define Yi := (zi, xᵀi )ᵀ.

Returning to the general setup, let ϕn ∈ [0, 1] denote a candidate test. It is required

to be measurable with respect to σ{Y1, . . . , Ybnτ̂c}, i.e., it can only depend on informa-

tion from the past outcomes. Now, it is fairly straightforward to construct tests that

have power 1 against any fixed alternative as n → ∞. Consequently, to obtain a more

fine-grained characterization of tests, we consider their performance against local per-

turbations of the form {θ0 + h/
√
n;h ∈ Rd}, where θ0 ∈ Θ0 denotes some reference

parameter, chosen such that τ̂ has a non-trivial limit distribution. The choice of θ0 is

described in detail in Section 2.4, but in most of the applications it can be taken to be

some parameter in the null set (as is the case with our empirical illustration).
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The local perturbation analysis makes the testing problem harder even as the effective

sample size n → ∞. For instance, in the empirical illustration we tested H0 : θ = θ0,

against H1 : θ 6= θ0. Deng et al. (2013) survey the practice of website optimization and

document that the practical difference, θ − θ0, between various variants of a website is

quite small, less than 1% or so. Consequently, to distinguish between the two websites,

it is important to develop tests that possess high power against close alternatives. This

motivates our local perturbation analysis, where we aim to characterize power against

local alternatives of the form θ0 + h/
√
n.

Let ν denote a dominating measure for the family {Pθ : θ ∈ Rd}, and set pθ := dPθ/dν.

We impose the following regularity conditions on the family Pθ:

Assumption 1. The class {Pθ : θ ∈ Rd} is differentiable in quadratic mean around θ0,

i.e., there exists a score function ψ(·) such that for each h ∈ Rd,∫ [√
pθ0+h −

√
pθ0 −

1
2h
ᵀψ
√
pθ0

]2
dν = o(|h|2). (2.1)

In the empirical illustration, Assumption 1 holds with ψ(x) = x − θ0. More broadly,

this assumption is satisfied for a wide range of commonly used distributions, including

the Normal, Cauchy, Exponential, and Poisson distributions.

Take Pnt,h to be the joint probability measure over the iid sequence of outcomes

Y1, . . . , Ynt when each Yi ∼ Pθ0+h/
√
n. Let Ent,h[·] represent the corresponding expec-

tation under this measure. We define the (standardized) score process xn(t) as

xn(t) = I−1/2
√
n

bntc∑
i=1

ψ(Yi),

where I := EnT,0[ψ(Yi)ψ(Yi)ᵀ] is the information matrix. It is well known, see e.g., Van der

Vaart (2000, Chapter 7), that quadratic mean differentiability (Assumption 1) implies

EnT,0[ψ(Yi)] = 0 and ensures that I exists. Then, by a functional central limit theorem,

xn(·) d−−−→
PnT,0

x(·); x(·) ∼ W (·). (2.2)

Here, and in what follows, W (·) denotes the standard d-dimensional Brownian motion.

Assumption 1 also implies the important property of Sequential Local Asymptotic Nor-

mality (SLAN; Adusumilli, 2021): for any given h ∈ Rd,

bntc∑
i=1

ln
dpθ0+h/

√
n

dpθ0
= hᵀI1/2xn(t)− t

2h
ᵀIh+ oPnT,0(1), uniformly over bounded t. (2.3)
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The above states that the log-likelihood ratio admits a quadratic approximation uniformly

over all bounded t.

Our next assumption concerns the properties of the stopping times τ̂ :

Assumption 2. There exists T < ∞ independent of n such that τ̂ ≤ T . Furthermore,

(τ̂ , xn(τ̂)) has a weak limit under PnT,0.

Both requirements are fairly innocuous. We previously noted that τ ≤ 1 in many

examples. By Prohorov’s theorem, the first part of Assumption 2 along with (2.2) implies

that (τ̂ , xn(τ̂)) is tight and therefore converges weakly along sub-sequences. The second

part of Assumption 2 further disciplines the sequence by requiring it to converge weakly

to the same limit under every subsequence. Since τ̂ indexes our experimental protocol,

this essentially requires that the sequence of experimental protocols has a well defined

asymptotic limit. This is a rather mild condition. In fact, it would be unusual for

experimental protocols to have different weak limits across subsequences; if that were the

case, they should be considered distinct protocols altogether.

2.3. Asymptotic representation theorem. We now characterize the limiting power of

tests as n→∞ by associating each stopping-time experiment with a simpler experiment

involving Gaussian diffusions.

Specifically, consider a limit experiment where one observes a Gaussian diffusion x(t) :=

I1/2ht+W (t), with an unknown h, along with a Uniform[0, 1] random variable U that is

independent of the process x(·). Define Ft := σ{x(s), U ; s ≤ t} to be the filtration, i.e.,

the information set consisting of U and the knowledge of the stochastic process x(·) until

time t. Let Ph denote the induced joint probability over the exogenous random variable U

and the sample paths of x(·) given h, and take Eh[·] to be its corresponding expectation.

Suppose that we are interested in conducting inference on h using a test statistic ϕ that

depends only on: (i) an Ft-adapted stopping time τ that is the limiting version of τ̂ (in

a sense made precise below); and (ii) the stopped process x(τ). The following theorem

relates the original testing problem to the one in such a limit experiment:

Theorem 1. Suppose Assumptions 1 and 2 hold. Let ϕn be some test function defined

on the sample space Y1, . . . , Ynτ̂ , and βn(h), its power against PnT,h. Then:

(i) (Le Cam, 1979) There exists an Ft-adapted stopping time τ for which

(τ̂ , xn(τ̂)) d−−−→
PnT,0

(τ, x(τ)).

(ii) Suppose that βn(h) converges point-wise for each h ∈ Rd. Then, there exists a test
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ϕ in the limit experiment depending only on τ, x(τ) such that βn(h) → β(h) for every

h ∈ Rd, where β(h) := Eh[ϕ(τ, x(τ))] is the power of ϕ in the limit experiment.

The requirement that βn(h) converges point-wise for each h ∈ Rd is rather mild. Clas-

sical representation theorems for tests, e.g., Van der Vaart (2000, Theorem 15.1), also

require this. In any event, this assumption is not needed for deriving asymptotic upper

bounds on tests. Suppose β∗(h) denotes an upper bound on the power of tests in the limit

experiment. Then, even if βn(·) were not a convergent sequence, we can still employ The-

orem 1 on subsequences (since βn(h) ∈ [0, 1] is tight) to show that lim supn βn(h) ≤ β∗(h).

In Section 2.8 we describe tests that attain the upper bound, showing that the bound is

indeed tight.

2.3.1. Discussion. Theorem 1 states that irrespective of the algorithm used to conduct

the adaptive experiment, the only statistics that matter are the stopping time and stopped

(i.e., final) value of the score process. Different algorithms induce different joint distri-

butions over these statistics under the null, and this joint distribution determines the

critical value of the test.

The first part of Theorem 1 is essentially due to Le Cam (1979). It states that any

experimental protocol (as associated with τ̂) can be matched with a suitable protocol in

the limit experiment, in the sense of replicating the joint distributions of τ̂ , xn(τ̂). Note,

however, that this does not by itself imply (τ̂ , xn(·)) d−−−→
PnT,0

(τ, x(·)) as a process over t.

Also, the result makes no claims about the distributions of statistics other than τ̂ , xn(τ̂).

The second part of Theorem 1 is new. The proof builds on the quadratic approximation

to the log-likelihood, (2.3), previously derived in Adusumilli (2021). Combining with the

first part of Theorem 1, this approximation implies

ln dPnτ̂ .,h
dPnτ̂ ,0

(ynτ̂ ) d−−−→
PnT,0

hᵀI1/2x(τ)− τ

2h
ᵀIh. (2.4)

By the Girsanov theorem, the right hand side of (2.4) corresponds to the log-likelihood

ratio lnϕ(τ ;h) := ln dPh
dP0

(τ) in the limit experiment with the protocol τ . In classical, i.e.,

non-sequential settings, it is well established that weak convergence of likelihood ratios

implies the equivalence of experiments and that one can achieve asymptotic dimension

reduction by identifying sufficient statistics in the limit experiment. However, the se-

quential setting warrants a bit of caution. Although the likelihood ratio ϕ(τ ;h) depends

solely on τ, x(τ), these quantities do not constitute sufficient statistics in the traditional

sense. Specifically, the conditional distribution of the data {x(t), U : 0 ≤ t ≤ τ} given
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(τ, x(τ)) generally remains dependent on h.6 Consequently, we cannot hope to represent

the distributions of all possible statistics from the sequential experiment in terms of just

τ, x(τ).

Nevertheless, for hypothesis testing, we demonstrate that it is indeed feasible to con-

dition solely on τ, x(τ). To build intuition for this result, note that the power of the test

depends on h solely through the stopped value of the log-likelihood process ln dPnt.,h
dPnt,0

(ynt),

i.e.,

βn(h) = EnT,h [ϕn] = EnT,0
[
ϕn exp

{
ln dPnτ̂ .,h
dPnτ̂ ,0

(ynτ̂ )
}]

.

Specifically, as the log-likelihood ratio process is a martingale and also Markovian, its

value at τ̂ summarizes all relevant information about the distribution of ϕn under h. This

observation, combined with (2.4), suggests that τ, x(τ) should be sufficient for testing.

The formal proof relies on a novel change-of-measure argument that extends Le Cam’s

third lemma to the sequential setting. This derivation represents the main theoretical

contribution of this paper.

2.3.2. Power enhancement by conditioning on τ, x(τ). The proof of Theorem 1 reveals

that the power of any test in the limit experiment can be enhanced by conditioning on

τ, x(τ) under P0. Specifically, if ϕ̃(·) is a valid test in the limit experiment, then the test

defined by ϕ(τ, x(τ)) := E0 [ϕ̃ | τ, x(τ)] is also valid. Moreover, the power of ϕ(·) under

any local alternative indexed by h is at least as great as that of ϕ̃(·). This approach is

analogous to Rao-Blackwellization in classical statistics, although it is important to recall

that τ, x(τ) do not constitute sufficient statistics.

2.4. Drifting nulls and the choice of the reference parameter. The reference

parameter θ0 needs to be chosen such that the limiting stopping time does not degenerate

to a point mass at 0. To illustrate the pitfalls from a non-judicious choice of the reference

parameter, consider the empirical illustration with the one-armed bandit and suppose

we are interested in testing H0 : θ = θ̄ where θ̄ < θ0. Any ‘regret-consistent’ bandit

algorithm - this includes Thompson Sampling - would only sample the new website variant

a vanishingly small fraction of the time if the ‘reward gap’ θ̄ − θ0 is strictly negative.

Hence, if θ̄ were chosen as the reference parameter, the stopping τ̂ would converge in

6Incidentally, this implies that Fisher’s factorization theorem fails in sequential settings. If τ were fixed
to a value T (say), as in classical experiments, the well-known properties of the Brownian bridge would
imply that, given x(T ), the distribution of the sample paths {x(t) : 0 ≤ t ≤ T} is independent of h and
x(T ) would therefore be a sufficient statistic. However, this property no longer holds if τ is endogenously
determined on the basis of the past values of the score process.
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probability-Pθ̄ (i.e., under the null) to 0. Intuitively, because the bandit algorithm is

designed to detect small shifts with respect to the baseline of θ0, it is not particularly

well suited for testing θ = θ̄ when θ̄ is substantially smaller than θ0.

Consequently, to provide inference in such settings, we employ a drifting null. Specifi-

cally, we set the reference parameter θ0 to be the one that leads to a non-trivial limit for

τ̂ , but take the null to be H0 : h = h0/
√
n, where h0 is fixed over n and calibrated as

√
n(θ̄ − θ0). The null, H0, thus changes with n, but for the observed sample size we are

still testing θ = θ̄. It is then straightforward to show that Theorems 1 and 2 continue to

apply in this setting: asymptotically, the inference problem is equivalent to testing that

the drift of x(·) is I1/2h0 in the limit experiment. The asymptotic approximation will be

more accurate the closer θ̄ is to θ0.

Using drifting nulls, we can also obtain valid confidence intervals for θ by constructing

tests for each local null value h0 ∈ Rd and then employing test inversion. These confidence

intervals shrink at n−1/2 rates, as would be expected in parametric settings.

Previously, Romano (2005) employed the idea of a drifting null hypothesis parameter

space for testing equivalence hypotheses. While the setup is different, the motivation

behind the use of the drifting null is similar: it ensures the problem is asymptotically

non-degenerate.

2.5. Simulating the distribution of (τ, x(τ)). In the next section, we characterize

the form of optimal tests in the limit experiment. However, to determine their critical

values, one would need to know, or be able to simulate from the joint distribution of

τ, x(τ) under θ0 (i.e., when h = 0). Unfortunately, the first part of Theorem 1 does not

explicitly characterize τ ; it merely establishes that such a stopping time must exist. The

second part of Theorem 1 then takes this τ as given, analogous to how τ̂ is treated as

given in the original experiment.

Fortunately, many stopping times used in practice can be expressed as a function

τ̂ = g(xn(·), U), where g(·) depends on the sample paths of the score process xn(·)

over the interval [0, T ], along with some exogenous randomization U ∼ Uniform[0, 1].

Indeed, previous research (e.g., Adusumilli, 2022) has demonstrated that any asymptoti-

cally Bayes-optimal stopping time depends solely on these two components. The analysis

is then straightforward if g(·) is known in closed form. For example, this is true for the

optimal stopping time under costly sampling, where τ̂ = inf{t : |xn(t)| ≥ γ}, which

implies g(z(·)) = inf{t : |z(t)| ≥ γ}. In this case, it follows from the extended continuous
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mapping theorem that τ = g(x(·)). Given that x(·) follows a standard Brownian mo-

tion when h = 0, determining the joint distribution of (τ, x(τ)) becomes straightforward

through simulating Brownian motion.

However, in many cases, the relationship between xn(·) and τ̂ is more complicated.

For example, in the context of Thompson sampling, the joint distribution of (τ, x(τ)) is

obtained by solving a set of coupled stochastic differential equations, as demonstrated

by Fan and Glynn (2021) and Wager and Xu (2021). Fortunately, there is a simpler

approach: since θ0 is generally known in advance, we can simulate experimental data by

randomly drawing new outcome values from Pθ0 and following the given experimental

protocol. This enables us to determine the exact distribution of (τ̂ , xn(τ̂)) under Pθ0 .

The first part of Theorem 1 implies the distribution of (τ̂ , xn(τ̂)) converges weakly to

that of (τ, x(τ)) under Pθ0 , so under mild conditions, the critical values derived from

(τ̂ , xn(τ̂)) will converge to those obtained from (τ, x(τ)). In fact, even when it is feasible

to simulate (τ, x(τ)) directly, it is much preferable to use the critical values based on

(τ̂ , xn(τ̂)) since this approach ensures that the resulting test maintains exact size control

in finite samples.

2.6. Characterization of optimal tests in the limit experiment. We now construct

optimal tests in the limit experiment under various scenarios. The utility of this analysis

is two-fold: First, it enables us to provide an asymptotic upper bound on tests. Second,

we can construct asymptotically optimal tests as the sample counterparts of optimal tests

in the limit experiment.

2.6.1. Testing a parameter vector. The simplest hypothesis testing problem in the limit

experiment concerns testing H0 : h = 0 vs H1 : h = h1. This is asymptotically equivalent

to testing H0 : θ = θ0 vs H1 : θ = θ0 + h/
√
n in the original experiment. By the

Neyman-Pearson lemma, the uniformly most powerful (UMP) test is

ϕ∗h1 = I
{
hᵀ1I

1/2x(τ)− τ

2h
ᵀ
1Ih1 > γh1

}
,

where the critical value γh1 ∈ R is chosen by the size requirement, and can be computed

using the procedures described in Section 2.5.

Let β∗(h1) denote the power function of ϕ∗h1 . Then, by Theorem 1, β∗(·) is an upper

bound on the asymptotic power function of any test of H0 : θ = θ0.
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2.6.2. Testing linear combinations. When θ is a vector, we are often interested in inference

on a scalar sub-component, or perhaps more generally, a linear transformation, aᵀθ, of

it. This translates to testing linear combinations of h, i.e., H0 : aᵀh = 0, in the limit

experiment. In a standard (i.e., non-sequential) setting, it is known that testing linear

combinations is associated with a further dimension reduction of the data since we can

condition on an equivalent linear transformation of the score function. We show that a

similar dimension reduction is possible in the sequential setting as well, but it requires

the stopping time to also depend only on a reduced set of statistics.

Define σ2 := aᵀI−1a, x̃(t) := σ−1aᵀI−1/2x(t), let U1 denote a Uniform[0, 1] random

variable independent of x̃(·), and take F̃t to be the filtration generated by σ{U1, x̃(s) :

s ≤ t}. Note that x̃(·) ∼ W (·) under the null and is therefore a pivotal statistic.

Proposition 1. Suppose that the stopping time τ in Theorem 1 is F̃t-adapted. Then, the

UMP test of H0 : aᵀh = 0 vs H1 : aᵀh = c in the limit experiment is

ϕ∗c(τ, x̃(τ)) = I
{
cx̃(τ)− c2

2στ > γc

}
.

In addition, suppose Assumptions 1 and 2 hold, let β∗(c) denote the power of ϕ∗c for a given

c, and βn(h) the power of some test, ϕn, of H0 : aᵀθ = 0 in the original experiment against

local alternatives θ ≡ θ0 + h/
√
n . Then, for each h ∈ Rd , lim supn→∞ βn(h) ≤ β∗(aᵀh).

The above result suggests that x̃(τ) and τ are sufficient statistics for the optimal test.

An important caveat, however, is that the class of stopping times are further constrained

to only depend on x̃(t) in the limit. In practice, this would happen if the stopping time

τ̂ in the original experiment is a function only of ˆ̃xn(·) := σ−1aᵀI−1/2xn(·). Fortunately,

this is the case in a number of examples.

It is straightforward to show that the same power envelope, β∗(·), also applies to tests

of the composite hypothesis H0 : aᵀθ ≤ 0.

2.6.3. Unbiased tests. A test is said to be unbiased if its power is greater than size under

all alternatives. This is a desirable property and one may wish to enforce this. The

following result describes a useful property of unbiased tests in the limit experiment:

Proposition 2. Any unbiased test of H0 : h = 0 vs H1 : h 6= 0 in the limit experiment

must satisfy E0[x(τ)ϕ(τ, x(τ))] = 0.

16



We can obtain the best unbiased test ϕ∗b (if it exists) by solving the optimization

problem

arg max
ϕ(·)

Eh [ϕ] s.t. E0 [ϕ] ≤ α and E0[x(τ)ϕ(τ, x(τ))] = 0. (2.5)

Note that the trivial test ϕ = α satisfies the constraints in (2.5) since E0[x(τ)] = 0 by

the martingale property. Consequently, it follows by Proposition 2 that if (2.5) admits

a solution ϕ∗b which is independent of h, then it is best unbiased. See Section 5.1 for an

application of this result.

2.6.4. Weighted average power. Except in some specific contexts, it is not usually possible

characterize a uniquely most powerful test even if we impose unbiasedness. In such cases,

it is common to use a weighted average power criterion. We specify a weight function,

w(·), over the local alternatives h 6= 0, and aim to maximize weighted average power∫
Eh [ϕ] dw(h). For instance, one could take w(·) to be normal or even uniform (within

a compact set), as in the empirical application. The test of H0 : h = 0 in the limit

experiment that maximizes weighted average power is given by

ϕ∗w(τ, x(τ)) = I
{∫

eh
ᵀI1/2x(τ)− τ2h

ᵀIhdw(h) > γ
}
. (2.6)

The critical value γ will need to be computed following the procedures described in

Section 2.5.

2.7. Alpha-spending and conditional size criteria. In this section, we study infer-

ence under a stronger version of the size constraint, inspired by the α-spending approach

in group sequential trials (Gordon Lan and DeMets, 1983). Suppose that the stopping

time is discrete, taking only the values t = 1, 2, . . . , T . Then, instead of an overall size con-

straint of the form EnT,0[ϕn] ≤ α, we may specify a ‘spending-vector’ α := (α1, . . . , αT )

satisfying ∑T
t=1 αt = α, and require

EnT,0[I{τ̂ = t}ϕn] ≤ αt ∀ t. (2.7)

In what follows, we call a test, ϕn, satisfying (2.7) a level-α test (with a boldface α).

Intuitively, if each t corresponds to a different stage of the experiment, the α-spending

constraint prescribes the maximum amount of Type-I error that may be expended at

stage t. As a practical matter, it enables us to characterize a UMP or UMP unbiased test

in settings where such tests do not otherwise exist. We also envision the criterion as a

useful conceptual device: even if we are ultimately interested in a standard level-α test,
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we can obtain this by optimizing a chosen power criterion (average power, etc.) over the

spending vectors α := (α1, . . . , αK) satisfying ∑k αk ≤ α.

A particularly interesting example of anα-spending vector is (αPnT,0(τ̂ = 1), . . . , αPnT,0(τ̂ =

k)); this corresponds to the requirement that EnT,0 [ϕn| τ̂ = t] ≤ α for all t, i.e., the test

be conditionally level-α given any realization of the stopping time. Note, however, that

τ̂ is not ancillary and tests based on this stronger notion of size constraint would have

lower power since the criterion disregards information provided by the stopping time for

discriminating between the hypotheses.

Under the α-spending constraint, a test that maximizes expected power also maximizes

expected power conditional on each realization of stopping time. This is a simple conse-

quence of the law of iterated expectations. Consequently, we focus on conditional power

in this section. Our main result here is a generalization of Theorem 1 to α-spending

restrictions. The limit experiment is the same as in Section 2.3.

Theorem 2. Suppose Assumptions 1, 2 hold, and the stopping times are discrete, taking

only the values 1, 2, . . . , T . Let ϕn be some level-α test defined on the sample space

Y1, . . . , Ynτ̂ , and βn(h|t), its conditional power against PnT,h given τ̂ = t. Suppose that

βn(h|t) converges point-wise for each h, t. Then, there exists a level-α test, ϕ(·), in

the limit experiment depending only on τ, x(τ) such that, for every h ∈ Rd and t ∈

{1, 2, . . . , T} for which P0(τ = t) 6= 0, βn(h|t) converges to β(h|t), where β(h|t) :=

Eh[ϕ(τ, x(τ))|τ = t] is the conditional power of ϕ(·) in the limit experiment.

2.7.1. Power envelope. By the Neyman-Pearson lemma, the uniformly most powerful

level-α (UMP-α) test of H0 : h = 0 vs H1 : h = h1 in the limit experiment is given by

ϕ∗h1(t, x(t)) =


1 if P0(τ = t) ≤ αt

I
{
hᵀ1I

1/2x(t) > γ(t)
}

if P0(τ = t) > αt

.

Here, γ(t) ∈ R is chosen by the α-spending requirement that E0[ϕ∗h1(τ, x(τ))|τ = t] ≤

αt/P0(τ = t) for each t. If we take β∗(h1|t) to be the power function of ϕ∗h1(·), Theorem

2 implies β∗(·|t) is an upper bound on the limiting conditional power function of any

level-α test of H0 : θ = θ0.

2.7.2. Testing linear combinations. A stronger result is possible for tests of linear com-

binations of θ. Recall the definitions of x̃(t) and F̃t from Section 2.6.2. If the limiting

stopping time is F̃t -adapted, we have, as in Proposition 1 that the sufficient statistics
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are only x̃(τ), τ . Furthermore, the UMP-α test of H0 : aᵀh = 0 vs H1 : aᵀh = c (> 0) in

the limit experiment is

ϕ̆∗(t, x̃(t)) =


1 if P0(τ = t) ≤ αt

I {cx̃(t) > γc(t)} ≡ I {x̃(t) > γ̃(t)} if P0(τ = t) > αt

.

Here, γ̃(t) is chosen such that E0[ϕ̆∗(τ, x̃(τ))|τ = t] = αt/P0(τ = t). Clearly, γ̃(t) it is

independent of c for c > 0. Since ϕ̆∗(·) is thereby also independent of c for c > 0, we

conclude that it is UMP-α for testing the composite one-sided alternative H0 : aᵀh = 0

vs H1 : aᵀh > 0. Thus, there exists a uniquely most powerful one sided test in the α-

spending setting. The test has the same form as a classical one-sided test, but the critical

value γ̃(t) is non-standard and needs to be determined by simulating the distribution of

x̃(t) given t.

We also note that by Theorem 2, the conditional power function, β̆∗(c|t), of ϕ̆∗(·) is an

asymptotic upper bound on the conditional power of any level-α test, ϕn, of H0 : aᵀθ = 0

vs H1 : aᵀθ > 0 in the original experiment against local alternatives θ ≡ θ0 + h/
√
n

satisfying aᵀθ = c/
√
n.

2.7.3. Conditionally unbiased tests. We call a test conditionally unbiased if it is unbiased

conditional on any possible realization of the stopping time. In analogy with Proposition

2, a necessary condition for ϕ(·) being conditionally unbiased in the limit experiment is

that

E0 [x(τ) (ϕ(τ, x(τ))− α) |τ = t] = 0 ∀ t. (2.8)

Then, by a similar argument as in Lehmann and Romano (2005, Section 4.2), the UMP

conditionally unbiased (level-α) test of H0 : aᵀh = 0 vs H1 : aᵀh 6= 0 in the limit

experiment can be shown to be

ϕ̄∗(t, x̃(t)) =


1 if P0(τ = t) ≤ αt

I {x̃(t) /∈ [γL(t), γU(t)]} if P0(τ = t) > αt

,

where γL(t), γU(t) are chosen to satisfy both (2.7) and (2.8). In practice, this requires

simulating the distribution of x̃(τ) given τ = t. Also, γL(·) = −γU(·) if the distribution

of x̃(τ) given τ = t is symmetric around 0 under the null. As before, the test has the

same form as a classical two-sided test, but it employs non-standard critical values.
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2.8. Attaining the power bounds. So far we have described upper bounds on the

asymptotic power functions of tests. Under Assumption 2, given a UMP test in the limit

experiment, we can construct a finite sample version of this by replacing τ, x(τ) with

τ̂ , xn(τ̂). The resulting test statistic would then be applicable in finite samples and also

asymptotically optimal, in in the sense of attaining the power envelope.

To outline the procedure, let ϕ∗(τ, x(τ); γ∗) represent a UMP test in the limit ex-

periment, indexed by its critical value γ∗. As detailed in Section 2.5, γ∗ can be esti-

mated either by simulating the exact distribution of (τ, x(τ)) or by using a finite-sample

version based on the distribution of (τ̂ , xn(τ̂)). Let γ̂ denote the resulting estimate,

which we assume to be consistent under the reference probability distribution; that

is, γ̂ = γ∗ + oPnT,0(1). A sufficient condition for this consistency is that the function

α(γ) := EPθ0 [ϕ∗(τ, x(τ); γ)] is strictly monotone over γ.

The finite-sample version of ϕ∗ is then given by ϕ∗n := ϕ∗(τ̂ , xn(τ̂); γ̂). Since xn(τ̂)

depends on the information matrix I, it is necessary to either calibrate it to I(θ0) or

replace it with a consistent estimator. We discuss variance estimators in Appendix B.1.

The test ϕ∗n is asymptotically optimal, in the sense of attaining the power envelope,

under mild assumptions. In particular, we only require that ϕ∗(·, ·; ·) satisfy the conditions

for an extended continuous mapping theorem. Together with (2.3) and the first part of

Theorem 1, this implies ϕ∗(τ̂ , xn(τ̂); γ̂)∑bnτ̂c
i=1 ln dpθ0+h/

√
n

dpθ0
(Yi)

 d−−−→
PnT,0

 ϕ∗(τ, x(τ); γ∗)

hᵀI1/2x(τ)− τ
2h
ᵀIh

 ,
for any h ∈ Rd. Then, a similar argument as in the proof of Theorem 1 shows that the

local power of ϕ∗n converges to that of ϕ∗ in the limit experiment.

3. Testing in non-parametric settings

The previous section concentrated on parametric models, where the distribution of

outcomes is predefined. However, in many real-world applications, the exact distribution

is often unknown, leading to a non-parametric setting. In such cases, our objective might

be to perform inference on a regular functional, denoted by µ := µ(P ), of the unknown

data distribution P . Common examples of regular functionals include the mean, median,

and quantiles. For simplicity, we assume that µ is a scalar.
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The gist of our non-parametric results is that, under certain conditions on the stopping

time, the sample analogs of the tests described in Section (2.6) - which were optimal in

the limiting experiment - remain optimal in the non-parametric setting.

3.1. Formal results. Our formal analysis of the non-parametric regime follows Van der

Vaart (2000). Let P denote the class of probability distributions with bounded variance

and dominated by some measure ν. We then fix a reference P0 ∈ P , and surround it with

various smooth one-dimensional parametric sub-models, {Ps,h : s ≤ η} for some η > 0,

whose score function is h(·) and that pass through P0 at s = 0 (i.e., P0,h = P0). Formally,

these sub-models satisfy

∫ dP 1/2
s,h − dP

1/2
0

s
− 1

2hdP
1/2
0

2

dν → 0 as s→ 0. (3.1)

As in Section 2.4, the reference P0 should be chosen such that the stopping time τ̂ has a

non-trivial limit distribution under it.

By Van der Vaart (2000), (3.1) implies
∫
hdP0 = 0 and

∫
h2dP0 < ∞. The set of all

such candidate h is termed the tangent space T (P0). This is a subset of the Hilbert space

L2(P0), endowed with the inner product 〈f, g〉 = EP0 [fg] and norm ‖f‖ = EP0 [f 2]1/2. For

any h ∈ T (P0), let PnT,h denote the joint probability measure over Y1, . . . , YnT , when each

Yi is an iid draw from P1/
√
n,h. Also, take EnT,h[·] to be its corresponding expectation.

An important implication of (3.1) is the SLAN property that for all h ∈ T (P0),

bntc∑
i=1

ln
dP1/

√
n,h

dP0
(Yi) = 1√

n

bntc∑
i=1

h(Yi)−
t

2 ‖h‖
2 + oPnT,0(1), uniformly over t. (3.2)

See Adusumilli (2021, Lemma 2) for the proof.

Let ψ ∈ T (P0) denote the efficient influence function corresponding to µ, in the sense

that for any h ∈ T (P0),
µ(Ps,h)− µ(P0)

s
− 〈ψ, h〉 = o(s). (3.3)

Denote σ2 = EP0 [ψ2]. The analogue of the score process in the non-parametric setting is

the efficient influence function process

xn(t) := σ−1
√
n

bntc∑
i=1

ψ(Yi).

At a high level, the theory for inference in non-parametric settings is closely related to

that for testing linear combinations in parametric models (see, Section 2.6). It is not
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entirely surprising, then, that the assumptions described below are similar to those used

in Proposition 1:

Assumption 3. (i) The sub-models {Ps,h;h ∈ T (P0)} satisfy (3.1). Furthermore, they

admit an efficient influence function, ψ(·), for µ(P ) such that (3.3) holds.

(ii) The stopping time τ̂ is a continuous function of xn(·) in the sense that τ̂ = τ(xn(·)),

where τ(·) satisfies the conditions for an extended continuous mapping theorem (Van

Der Vaart and Wellner, 1996, Theorem 1.11.1).

Assumption 3(i) is a mild regularity condition that is common in non-parametric anal-

ysis. Assumption 3(ii), which is substantive, states that the stopping time depends only

on the efficient influence function process. This is indeed the case for the examples con-

sidered in Section 5. More generally, however, it may be that τ̂ depends on other statistics

beyond xn(·). In such situations, the set of asymptotically sufficient statistics should be

expanded to include these additional ones. An extension of our results to these situations

is straightforward, albeit case specific, see Section 4.4 for an illustration.

The definition of asymptotic size in the non-parametric regime requires a bit of care.

We follow Choi et al. (1996) and call a test, ϕn, of H0 : µ = 0 asymptotically level-α if

sup
{h∈T (P0):〈ψ,h〉=0}

lim sup
n

∫
ϕndPnT,h ≤ α.

Intuitively, this requires the test statistic to be correctly sized under all possible para-

metric sub-models.

3.1.1. Power envelope. Our first result in this section is a power envelope for asymptot-

ically level-α tests. Consider a limit experiment where one observes a stopping time τ ,

which is the weak limit of τ̂ , and a Gaussian process x(·) ∼ σ−1µ · +W (·), where W (·)

denotes 1-dimensional Brownian motion. By Assumption 3(ii) and the functional central

limit theorem applied on xn(·), we have τ = τ(x(·)) and τ is therefore adapted to the

filtration generated by the sample paths of x(·). For any µ ∈ R, let Eµ[·] denote the

induced distribution over the sample paths of x(·) between [0, T ]. Also, define

ϕ∗µ(τ, x(τ)) := I
{
µ

σ
x(τ)− µ2

2σ2 τ > γ

}
, (3.4)

with the critical value γ being determined by the requirement E0[ϕ∗µ] = α, and set

β∗(µ) := Eµ[ϕ∗µ].
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Proposition 3. Suppose Assumption 3 holds. Let βn(h) denote the power of some asymp-

totically level-α test, ϕn, of H0 : µ = 0 against local alternatives Pδ/√n,h. Then, for every

h ∈ T (P0) and µ := δ 〈ψ, h〉, lim supn→∞ βn(h) ≤ β∗ (µ).

Proposition 3 states that β∗(·) is an asymptotic upper bound on the power of any test

ϕn. The power envelope depends solely on the functional µ(P ) of the local alternative

distribution P .

3.1.2. Unbiased tests. A similar result holds for unbiased tests. Following Choi et al.

(1996), we say that a test ϕn of H0 : µ = 0 vs H1 : µ 6= 0 is asymptotically unbiased if

sup
{h∈T (P0):〈ψ,h〉=0}

lim sup
n

∫
ϕndPnT,h ≤ α, and

inf
{h∈T (P0):〈ψ,h〉6=0}

lim inf
n

∫
ϕndPnT,h ≥ α.

The following result indicates that the local power of such a test is bounded by that

of the optimal unbiased test in the limiting experiment, assuming one exists. Given

the nature of the limit experiment described above, the optimal unbiased tests have the

same characterization (2.5) as in the parametric setting (with µ now replacing h in that

characterization).

Proposition 4. Suppose Assumption 3 holds and there exists a best unbiased test, ϕ̃∗,

in the limit experiment with power function β̄∗(µ). Let βn(h) denote the power of some

asymptotically unbiased test, ϕn, of H0 : µ = 0 vs H1 : µ 6= 0 over local alternatives

Pδ/√n,h. Then, for every h ∈ T (P0) and µ := δ 〈ψ, h〉, lim supn→∞ βn(h) ≤ β̃∗ (µ).

The proof is analogous to that of Proposition 3, and is therefore omitted. Also, both

Propositions 3 and 4 can be extended to α-spending constraints but we omit formal

statements for brevity.

3.1.3. Weighted average power. In the non-parametric setting, a weight function corre-

sponds to a distribution over the tangent space T (P0). Any element h ∈ T (P0) can be

expressed as h = 〈ψ/σ, h〉ψ/σ + h̃, where h̃ is orthogonal to ψ (i.e.,
〈
ψ, h̃

〉
= 0). We

focus on a specific class of weight functions, m(·) that are multiplicatively separable with

respect to the weights they assign to 〈ψ, h〉 and h̃. Specifically, each m(·) takes the form

w × ρ where w is a distribution over µ := 〈ψ, h〉 and ρ is a distribution over h̃ ∈ T (P0).7

7Since T (P0) is a Hilbert space, we can alternatively think of ρ as a distribution over the space of square
integrable sequences.
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Multiplicative separability can be motivated by the invariance requirement that inference

over µ should be unaffected by the value of the ‘nuisance parameter’ h̃.

In analogy with (2.6), the test that maximizes weighted average power in the limit

experiment from Section 3.1.1 is given by

ϕ∗w(τ, x(τ)) = I
{∫

exp
(
µ

σ
x(τ)− µ2

2σ2 τ

)
dw(µ) > γ

}
.

The following proposition demonstrates that, for any weight function of the form m(·) as

described above, the finite sample weighted average power of any test is bounded above

by that of ϕ∗w(·) in the limit experiment:

Proposition 5. Suppose Assumption 3 holds. Let β(h) denote the power of some asymp-

totically level-α test, ϕn, of H0 : µ = 0. Then, for any weight function m(·) that is of the

multiplicatively separable form w×ρ described above, we have lim supn→∞
∫
βn(h)dm(h) ≤∫

β∗ (µ) dw(µ), where β∗(µ) is the power function of ϕ∗w(·) in the limit experiment.

3.2. Computation of critical values. In contrast to the parametric framework, the

reference distribution P0 in our non-parametric setup primarily serves as a theoretical

construct. It is more precise to consider P0 as a member of an equivalence class P0 of

distributions, all of which yield the same asymptotic joint distribution for (τ̂ , xn(τ̂)). As

a result, we cannot apply the strategy used in Section 2.5 of determining critical values

by simulating experimental data under P0.

Instead, we leverage the fact that for any P0 ∈ P0, the functional central limit theorem

ensures xn(·) d−→
P0

x(·), where x(·) represents a standard d-dimensional Brownian motion.

Following Assumption 3(ii) and the continuous mapping theorem, it then follows that the

limit distribution of (τ̂ , xn(τ̂)) under any P0 ∈ P0 is given by (τ, x(τ)), where τ := τ(x(·)).

Notably, the distribution of (τ, x(τ)) remains invariant with respect to the choice of P0.

This allows us to select P0 from any convenient distributional family, provided it satisfies

EP0 [ψ(Yi)] = 0 and EP0 [ψ(Yi)2] = σ2. For example, when µ(·) represents the mean,

ψ(Yi) = Yi, and P0 can be chosen as the normal distribution N (0, σ̂2), where σ̂2 is any

consistent estimator of σ2. The joint distribution of (τ, x(τ)) can then be approximated

by simulating (τ̂ , xn(τ̂)) under this chosen P0. Although the critical values estimated in

this manner, unlike those in Section 2.5, do not yield exactly sized tests, they do converge

in probability to the asymptotic critical values.
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Alternatively, as discussed in Section 2.5, the distribution of (τ, x(τ)) can also be

determined analytically in several applications, offering a complementary approach to

simulation-based methods.

3.3. Attaining the power bounds. It follows by similar reasoning as in Section 2.8

(but now using parametric sub-models) that we can attain the power bounds β∗(·), β̃∗(·)

by employing plug-in versions of the corresponding UMP tests in the limit experiment.

This process simply involves replacing τ, x(τ) with τ̂ , xn(τ̂), and, if necessary, substituting

the asymptotic critical values with the estimates described in Section 3.2. As xn(τ̂) is

dependent on the variance σ, we must replace σ with a consistent estimate, as detailed

in Appendix B.1.

3.4. Two-sample tests. In many sequential experiments it is common to test two treat-

ments simultaneously. For instance, both the costly sampling and group sequential trial

examples from Section 1.2 involve two treatments that are sampled in fixed proportions

(but the stopping time is history dependent). We may then be interested in conducting

inference on the difference between some regular functionals of the two treatments. A

salient example of this is inference on the expected treatment effect.

To make matters precise, let a ∈ {0, 1} index the two treatments, and P (1), P (0) denote

the corresponding outcome distributions. Suppose that at each period, the DM samples

treatment 1 at some fixed proportion π. It is without loss of generality to suppose that

the outcomes from the two treatments are independent as we can only ever observe the

effect of a single treatment. We are interested in conducting inference on the difference,

µ(P (1)) − µ(P (0)), where µ(·) is some regular scalar functional of the data distribution,

e.g., its mean.

Let P (1)
0 , P

(0)
0 denote some reference probability distributions on the boundary of the

null hypothesis so that µ(P (1)
0 ) − µ(P (0)

0 ) = 0. Following Van der Vaart (2000, Sec-

tion 25.6), we analyze the power of tests against smooth one-dimensional sub-models of

the form
{(
P

(1)
s,h1 , P

(0)
s,h0

)
: s ≤ η

}
for some η > 0, where ha(·) is a measurable function

satisfying ∫ 
√
dP

(a)
s,ha
−
√
dP

(a)
0

s
− 1

2ha
√
dP

(a)
0


2

dν → 0 as s→ 0. (3.5)

As before, the set of all possible ha satisfying
∫
hadP

(a)
0 = 0 and

∫
h2
adP

(a)
0 <∞ forms

a tangent space T (P (a)
0 ). This is a subset of the Hilbert space L2(P (a)

0 ), endowed with
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the inner product 〈f, g〉a = E
P

(a)
0

[fg] and norm ‖f‖a = E
P

(a)
0

[f 2]1/2. Let ψa ∈ T (P (a)
0 )

denote the efficient influence function satisfying

µ(P (a)
s,ha

)− µ(P (a)
0 )

s
− 〈ψa, ha〉a = o(s) (3.6)

for any ha ∈ T (P (a)
0 ). Denote σ2

a = E
P

(a)
0

[ψ2
a]. The sufficient statistic here is the differenced

efficient influence function process

xn(t) := 1
σ

 1
π
√
n

bnπtc∑
i=1

ψ1(Y (1)
i )− 1

(1− π)
√
n

bn(1−π)tc∑
i=1

ψ0(Y (0)
i )

 , (3.7)

where σ2 :=
(
σ2

1
π

+ σ2
0

1−π

)
. Note that the number of observations from each treatment at

time t is bnπtc , bn(1− π)tc. The assumptions below are analogous to Assumption 3:

Assumption 4. (i) The sub-models {P (a)
s,ha

;ha ∈ T (P (a)
0 )} satisfy (3.5). Furthermore,

they admit an efficient influence function, ψa(·), such that (3.6) holds.

(ii) The stopping time τ̂ is a continuous function of xn(·) in the sense that τ̂ = τ(xn(·)),

where τ(·) satisfies the conditions for an extended continuous mapping theorem (Van

Der Vaart and Wellner, 1996, Theorem 1.11.1).

As discussed in Section 5, Assumption 4(ii) is satisfied in the context of both costly

sampling and group sequential trials.

Set µa := µ(P (a)). In analogy with Section 3.1, we call a test, ϕn, of H0 : µ1 − µ0 = 0

asymptotically level-α if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=0}

lim sup
n

∫
ϕndPnT,h ≤ α. (3.8)

Similarly, a test, ϕn, of H0 : µ1−µ0 = 0 vs H1 : µ1−µ0 6= 0 is asymptotically unbiased if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=0}

lim sup
n

∫
ϕndPnT,h ≤ α, and

inf
{h:〈ψ1,h1〉1−〈ψ0,h0〉0 6=0}

lim inf
n

∫
ϕndPnT,h ≥ α. (3.9)

Consider the limit experiment where one observes x(·) ∼ σ−1(µ1 − µ0) · +W (·) and a

Ft ≡ σ{x(s); s ≤ t} adapted stopping time τ that is the weak limit of τ̂ . Then, setting

µ := µ1 − µ0, define the power functions β∗(·) as in the previous section. The following

result provides upper bounds on asymptotically level-α tests.
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Proposition 6. Suppose Assumption 4 holds. Let βn(h) the power of some asymptotically

level-α test, ϕn, of H0 : µ1−µ0 = 0 against local alternatives P (1)
δ1/
√
n,h1
×P (0)

δ0/
√
n,h0

. Then,

for every h ∈ T (P (1)
0 )× T (P (0)

0 ) and µ := δ1 〈ψ1, h1〉1 − δ0 〈ψ0, h0〉0, lim supn→∞ βn(h) ≤

β∗ (µ).

We prove Proposition 6 in Appendix A. As in Section 3.3, we can attain the power

bound β∗(·) by employing plug-in versions of the corresponding UMP tests in the limit

experiment. The sole difference is that xn(τ̂) is now defined as (3.7).

The extension to unbiased and weighted average power tests is similar. We omit the

formal statements for brevity.

4. Optimal tests in batched experiments

We now analyze sequential experiments with multiple treatments and where the sam-

pling rule, i.e., the number of units allocated to each treatment, also changes over the

course of the experiment. Since our results here draw on Hirano and Porter (2023), we

restrict attention to batched experiments, where the sampling strategy is only allowed to

be changed at some fixed, discrete set of times. However, as discussed in Section 4.1.1, we

conjecture that our findings could extend to fully adaptive settings without modification.

Suppose there are K treatments under consideration. We take K = 2 to simplify the

notation, but all our results extend to any fixed K. The outcomes, Y (a), under treatment

a ∈ {0, 1} are distributed according to some parametric model {P (a)
θ(a)}. Here θ(a) ∈ Rd is

some unknown parameter vector; we assume for simplicity that the dimension of θ(1), θ(0)

is the same, but none of our results actually require this. It is without loss of generality to

suppose that the outcomes from each treatment are independent conditional on θ(1), θ(0),

as we only ever observe one of the two potential outcomes for any given observation. In

the batch setting, the DM divides the observations into batches of size n, and registers a

sampling rule {π̂(a)
j }j that prescribes the fraction of observations allocated to treatment

a in batch j based on information from the previous batches 1, . . . , j−1. The experiment

ends after J batches. It is possible to set π(a)
j = 0 for some or all treatments (e.g., the

experiment may be stopped early); we only require ∑a π̂
(a)
j ≤ 1 for each j. We develop

asymptotic representation theorems for tests of H0 : θ = Θ0 vs H1 : θ ∈ Θ1, where

θ := (θ(1), θ(0)). Let (θ(1)
0 , θ

(0)
0 ) ∈ Θ0 denote some reference parameter in the null set.

Take q̂(a)
j to be the proportion of observations allocated to treatment a up-to batch

j, as a fraction of n. Also, let Y (a)
j denote the j-th observation of treatment a in the
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experiment. Clearly, any candidate test, δ(·), is required to be

σ
{(
Y

(0)
1 , . . . , Y

(0)
nq

(0)
J

)
,
(
Y

(1)
1 , . . . , Y

(1)
nq

(1)
J

)}
measurable. As in the previous sections, we measure the performance of tests against

local perturbations of the form {θ(a)
0 + ha/

√
n;ha ∈ Rd}. Let ν denote a dominating

measure for {P (a)
θ : θ ∈ Rd, a ∈ {0, 1}}, and set p(a)

θ := dP
(a)
θ /dν. We require {P (a)

θ } to

be quadratically mean differentiable (qmd):

Assumption 5. The class {P (a)
θ : θ ∈ Rd} is qmd around θ(a)

0 for each a ∈ {0, 1}, i.e.,

there exists a score function ψa(·) such that for each ha ∈ Rd,∫ [√
p

(a)
θ
(a)
0 +ha

−
√
p

(a)
θ
(a)
0
− 1

2h
ᵀ
aψa

√
p
θ
(a)
0

]2
dν = o(|ha|2).

Furthermore, the information matrix Ia := E0[ψaψᵀa] is invertible for a ∈ {0, 1}.

Define z(a)
j,n(π̂j) as the standardized score process from each batch, where

z
(a)
j,n(t) := I−1/2

a√
n

bntc∑
i=1

ψa(Y (a)
i,j )

for each t ∈ [0, 1]. Let Y (a)
i,j denote the i-th outcome observation from arm a in batch j.

At each batch j, one can imagine that there is a potential set of outcomes, {y(1)
j ,y(0)

j }

with y(a)
j := {Y (a)

i,j }ni=1, that could be sampled from both arms, but only a sub-collection,

{Y (a)
i,j ; i = 1, . . . , nπ̂(a)

j }, of these are actually sampled. Let h := (h1, h0), take Pn,h to be

the joint probability measure over

{y(1)
1 ,y(0)

1 , . . . ,y(1)
J ,y(0)

J }

when each Y (a)
i,j ∼ P

θ
(a)
0 +ha/

√
n
, and take En,h[·] to be its corresponding expectation. Then,

by a standard functional central limit theorem,

z
(a)
j,n(t) d−−→

Pn,0
z(t); z(·) ∼ W

(a)
j (·), (4.1)

where {W (a)
j }j,a are independent d-dimensional Brownian motions.

Our next assumption is a weak convergence requirement that is also employed by

Hirano and Porter (2023).

Assumption 6. The sequence

ξn :=
((
π̂

(1)
1 , π̂

(0)
1 , z

(1)
1,n(π̂(1)

1 ), z(0)
1,n(π̂(0)

1 )
)
, . . . ,

(
π̂

(1)
J , π̂

(0)
J , z

(1)
J,n(π̂(1)

J ), z(0)
J,n(π̂(0)

J )
))
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converges weakly under Pn,0.

By Prohorov’s theorem, ξn already converges on sub-sequences. Assumption 6 tight-

ens this further and ensures that the sequence of experimental protocols indexed by{
(π̂(1)

1 , π̂
(0)
1 ), . . . , (π̂(1)

J , π̂
(0)
J )

}
has a well defined asymptotic limit. As with Assumption 2,

this is a rather mild assumption: if the sub-sequences converged to different quantities,

they should really then be identified as indexing different protocols.

4.1. Asymptotic representation theorem. Consider a limit experiment where h :=

(h1, h0) is unknown, and for each batch j, one observes the stopped process z(a)
j (π(a)

j ),

where

z
(a)
j (t) := I1/2

a hat+W
(a)
j (t), (4.2)

and {W (a)
j ; j = 1, . . . , J ; a = 0, 1} are independent Brownian motions. Each π

(a)
j is

required to satisfy ∑a π
(a)
j ≤ 1 and also to be

σ
{

(z(1)
1 , z

(0)
1 , U1), . . . , (z(1)

j−1, z
(0)
j−1, Uj−1)

}
measurable, where Uj ∼ Uniform[0, 1] is exogenous to all the past values

{
z

(a)
j′ , Uj′ : j′ < j

}
.

Let ϕ denote a test statistic for H0 : h = 0 that depends only on: (i) qa = ∑
j π

(a)
j , i.e.,

the fraction of times each arm was pulled; and (ii) xa = ∑
j z

(a)
j (π(a)

j ), i.e., the cumula-

tive score process for each arm. Also, let Ph denote the joint probability measure over

{z(a)
j (·); a ∈ {0, 1}, j ∈ {1, . . . , J}} when each z(a)

j (·) is distributed as in (4.2), and take

Eh[·] to be its corresponding expectation.

The following theorem shows that the power function of any test ϕn in the original

testing problem can be matched by one such test, ϕ, in the limit experiment.

Theorem 3. Suppose Assumptions 5 and 6 hold. Let ϕn be some test function in the

original batched experiment, and βn(h), its power against Pn,h. Then:

(i) (Hirano and Porter, 2023) There exists a batched policy function π = {π(a)
j }j and

processes {z(a)
j (·)}j,a defined on the limit experiment for which

((
π̂

(1)
1 , π̂

(0)
1 , z

(1)
1,n(π̂(1)

1 ), z(0)
1,n(π̂(0)

1 )
)
, . . . ,

(
π̂

(1)
J , π̂

(0)
J , z

(1)
J,n(π̂(1)

J ), z(0)
J,n(π̂(0)

J )
))

d−−→
Pn,0

((
π

(1)
1 , π

(0)
1 , z

(1)
1 (π(1)

1 ), z(0)
1 (π(0)

1 )
)
, . . . ,

(
π

(1)
J , π

(0)
J , z

(1)
J (π(1)

J ), z(0)
J (π(0)

J )
))
.

(ii) Suppose that βn(h) converges point-wise for each h. Then, there exists a test ϕ in

the limit experiment depending only on q1, q0, x1, x0 such that βn(h) → β(h) for every

h ∈ Rd × Rd, where β(h) := Eh[ϕ] is the power of ϕ in the limit experiment.
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The first part of Theorem 3 is due to Hirano and Porter (2023); we only modify the

terminology slightly. We require this result to be able to define the quantities q1, q0, x1, x0

in the limit experiment. The results of Le Cam (1979), used previously in Theorem 1, are

not directly applicable here: while they provide a representation theorem for xa, qa from

each arm a, this is not enough to capture the joint distribution of (x1, q1) and (x0, q0).

Hirano and Porter (2023) already show that any sequence of tests ϕn can be asymp-

totically matched by a test ϕ in the limit experiment that is measurable with respect to{
(z(1)

1 , z
(0)
1 , U1), . . . , (z(1)

J , z
(0)
J , UJ)

}
. The novel contribution here lies in the second part of

Theorem 3, which demonstrates that further dimension reduction is possible. A straight-

forward application of Hirano and Porter (2023) would require sufficient statistics that

increase linearly with the number of batches, resulting in a vector of dimension 2dJ+1 (the

uniform random variables U1, . . . , UJ can be subsumed into a single U ∼ Uniform[0, 1]).

In contrast, we show that for testing it is sufficient to condition only on q1, q0, x1, x0, which

have a fixed dimension 2d+ 2 (or 2d+ 1 if we impose q(1) + q(0) = J). This represents a

significant reduction in dimensionality. Notably, this result does not directly follow from

the first part of the theorem, as, similar to the discussion in Section 2.3.1, (q1, q0, x1, x0),

are not sufficient statistics in the conventional sense. Consequently, to prove the second

part of Theorem 3, we leverage the representation theorem of Hirano and Porter (2023),

combine it with the SLAN property (2.3), and apply a change-of-measure argument that

extends Le Cam’s third lemma.

4.1.1. An alternative representation of the limit experiment. From the distribution of

z
(a)
j (·) given in (4.2), it is easy to verify that

z
(a)
j (π(a)

j ) ∼ I1/2
a haπ

(a)
j +W

(a)
j (π(a)

j ).

Combined with the definition qa = ∑
j π

(a)
j and the fact {W (a)

j ; j = 1, . . . , J ; a = 0, 1} are

independent Brownian motions, we obtain

xa =
∑
j

z
(a)
j (π(a)

j ) ∼ I1/2
a haqa +Wa(qa), (4.3)

where W1(·).W0(·) are standard d-dimensional Brownian motions that are again inde-

pendent of each other. In view of the above, we can alternatively think of the limit

experiment as observing {qa}a along with {xa}a, with the latter distributed as in (4.3).

The benefit of this formulation is that it does not depend on the number of batches.
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This reformulation suggests that the second part of Theorem 3 may still hold in a

continuous experimentation setting. However, the first part of Theorem 3 cannot be di-

rectly extended to fully adaptive experimentation. Specifically, it is possible to construct

a sequence of fully adaptive sampling rules that do not converge to any well-defined (i.e.,

Lebesgue measurable) policy rule in continuous time.8 In contrast, xa, qa can always be

defined independently of a limiting policy rule, as they represent the limiting versions of

the stopped likelihood ratio process for treatment a and the fraction of time that treat-

ment was sampled. We therefore conjecture that an asymptotic representation theorem

can be established for {(xa, qa)}a independently of the first part of Theorem 3, and that

the second part of Theorem 3 can be extended to the fully adaptive setting without

modification. The details of this extension are, however, left for future work.

4.2. Characterization of optimal tests in the limit experiment. It is generally

unrealistic in batched sequential experiments for the sampling rule to depend on fewer

statistics than q1, q0, x1, x0. Consequently, we do not have sharp results for testing linear

combinations as in Proposition 1. We do, however, have analogues to the other results

in Section 2.6.

4.2.1. Power envelope. Consider testing H0 : h = 0 vs H1 : h = h1 in the limit experi-

ment. By the Neyman-Pearson lemma, and the Girsanov theorem applied on (4.3), the

optimal test is given by

ϕ∗h1 = I

 ∑
a∈{0,1}

(
hᵀaI

1/2
a xa −

qa
2 h

ᵀ
aIaha

)
> γh1

 , (4.4)

where γh1 is chosen such that E0[ϕ∗h1 ] = α. Take β∗(h1) to be the power function of ϕ∗h1

against H1 : h = h1. Theorem 3 shows that β∗(·) is an asymptotic power envelope for

any test of H0 : θ = θ0 in the original experiment.

4.2.2. Unbiased tests. Suppose ϕ(q1, q0, x1, x0) is an unbiased test of H0 : h = 0 vs

H1 : h 6= 0 in the limit experiment. Then, in analogy with Proposition 2, it needs to

satisfy the following property:

Proposition 7. Any unbiased test of H0 : h = 0 vs H1 : h 6= 0 in the limit experiment

must satisfy E0[xaϕ(q1, q0, x1, x0)] = 0 for all a, where xa ∼ Wa(qa) under P0.

8This is related to the well known failure of the measurable selection theorem in stochastic optimal
control, see, e.g., Bertsekas (2012, Appendix A) for a discussion of this in the discrete time setting.
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4.2.3. Weighted average power. Let w(·) denote a weight function over alternatives h 6= 0.

Then, the uniquely optimal test of H0 : h = 0 that maximizes weighted average power

over w(·) is given by

ϕ∗w = I


∫

exp

 ∑
a∈{0,1}

(
hᵀaI

1/2
a xa −

qa
2 h

ᵀ
aIaha

) dw(h) > γ

 .
The value of γ is chosen to satisfy E0[ϕ∗w] = α. In practice, it can be computed by

simulation.

4.3. Asymptotically optimal tests. For each a ∈ {0, 1}, let q̂a = ∑
j π̂

(a)
j and x̂a =∑

j z
(a)
j,n(π̂(a)

j ) denote the finite sample counterparts of qa, xa. As before, we can construct

finite sample versions of the various optimal tests described in Section 4.2 by replacing

q1, q0, x1, x0 with q̂1, q̂0, x̂1, x̂0. The critical values can be obtained by simulating the

joint distribution of q̂1, q̂0, x̂1, x̂0 under the null (i.e., by sampling the outcomes for each

treatment a from the corresponding null distribution P (a)
θ
(a)
0
).

4.4. Non-parametric tests. For the non-parametric setting, we make use of the same

notation as in Section 3.4. We are interested in conducting inference on some regular

vector of functionals,
(
µ(P (1)), µ(P (0))

)
, of the outcome distributions P (1), P (0) for the

two treatments. To simplify matters, we take µa := µ(P (a)) to be scalar. The definition

of asymptotically level-α and unbiased tests is unchanged from (3.8) and (3.9).

Let ψa, σa be defined as in Section 3.4. Set

z
(a)
j,n := 1

σa
√
n

bntc∑
i=1

ψa(Y (a)
i,j ),

and for k = 1, . . . , K, take sn(k) = {q̂1(k), q̂0(k), x̂1(k), x̂0(k)} to be a vector of state

variables containing

q̂a(k) :=
k∑
j=1

π̂
(a)
j , and x̂a(k) :=

k∑
j=1

z
(a)
n,j(π̂

(a)
j ).

Assumption 7. (i) The sub-models {P (a)
s,ha

;ha ∈ T (P (a)
0 )} satisfy (3.5). Furthermore,

they admit an efficient influence function, ψa, such that (3.6) holds.

(ii) The sampling rule π̂j+1 in batch j is a continuous function of sn(j) in the sense

that π̂j+1 = πj+1(sn(j)), where πj+1(·) satisfies the conditions for an extended continuous

mapping theorem (Van Der Vaart and Wellner, 1996, Theorem 1.11.1) for each j =

0, . . . , K − 1.
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Assumption 7(i) is standard. Assumption 7(ii) implies that the sampling rule depends

on a vector of four state variables. This is in contrast to the single sufficient statistic used

in Section 3.4. We impose Assumption 7(ii) as it is more realistic; many commonly used

algorithms, e.g., Thompson sampling, depend on all four statistics. The assumption still

imposes a dimension reduction as it requires the sampling rule to be independent of the

data conditional on knowing sn(·). In practice, any Bayes or minimax optimal algorithm

would only depend on sn(·) anyway, as noted in Adusumilli (2021). In fact, we are not

aware of any commonly used algorithm that requires more statistics beyond these four.

The reliance of the sampling rule on the vector sn(·) implies that the optimal test

should also depend on the full vector, and cannot be reduced further. The relevant limit

experiment is the one described in Section 4.1.1, with µa replacing ha. Also, let

ϕµ̄1,µ̄0 = I

 ∑
a∈{0,1}

(
µ̄a
σa
xa −

qa
2σ2

a

µ̄2
a

)
≥ γµ̄1,µ̄0


denote the Neyman-Pearson test of H0 : (µ1, µ0) = (0, 0) vs H1 : (µ1, µ0) = (µ̄1, µ̄0) in

the limit experiment, with γµ̄1,µ̄0 determined by the size requirement. Take β∗(µ̄1, µ̄0) to

be its corresponding power.

Proposition 8. Suppose Assumption 7 holds. Let βn(h) the power of some asymptot-

ically level-α test, ϕn, of H0 : (µ1, µ0) = (0, 0) against local alternatives P (1)
δ1/
√
n,h1
×

P
(0)
δ0/
√
n,h0

. Then, for every h ∈ T (P (1)
0 ) × T (P (0)

0 ) and µa := δa 〈ψa, ha〉a for a ∈ {0, 1},

lim supn→∞ βn(h) ≤ β∗ (µ1, µ0).

Proposition 8 describes the power envelope for testing that the parameter vector

(µ1, µ0) takes on a given value. Suppose, however, that one is only interested in pro-

viding inference for single component of that vector, say µ1. Then µ0 is a nuisance

parameter under the null, and one would need to employ the usual strategies for getting

rid of the dependence on µ0, e.g., through conditional inference or minimax tests. We

leave the discussion of these possibilities for future research.

5. Applications

In this section, we apply the methods developed in this paper to the various examples

of sequential experiments described in Section 1.2.

5.1. Horizontal boundary designs. As a first illustration of our methods, consider

the class of horizontal boundary designs with a fixed sampling rule, π, and the stopping
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time τ̂ = inf {t : |xn(t)| ≥ γ}, where xn(t) is defined as in (3.7). As a concrete example,

suppose µ1, µ0 denote the mean values of outcomes from each treatment, with σ1, σ0

their corresponding standard deviations. If the goal of the experiment is to determine

the treatment with the largest mean while minimizing the number of samples, which are

costly, then, as shown in Adusumilli (2022), the minimax optimal sampling strategy is the

Neyman allocation π∗1 = σ1/(σ1+σ0), and optimal stopping rule is τ̂ = inf {t : |xn(t)| ≥ γ}

with the efficient influence functions ψ1(Y ) = ψ0(Y ) = Y .

We aim to test the null hypothesis of no treatment effect, H0 : µ1 − µ0 = 0 against

the alternative hypothesis H1 : µ1 − µ0 6= 0. Let Fµ(·) denote the distribution of τ in

the limit experiment where x(t) ∼ σ−1µt + W (t) and τ = inf{t : |x(t)| ≥ γ}. Utilizing

our characterization of unbiased tests (see, 2.5), we demonstrate in Appendix B.2 that

the optimal unbiased test in the limit experiment depends solely on τ , and is given

by ϕ∗ = I{τ ≤ F−1
0 (α)}. Consequently, the test ϕ̂ := I{τ̂ ≤ F−1

0 (α)} constitutes

the uniformly most powerful (UMP) asymptotically unbiased test in this setting. We

summarize this result below:

Lemma 1. Consider the sequential experiment described above with a fixed sampling rule

π and stopping time τ̂ = inf {t : |xn(t)| ≥ γ}. The test, ϕ̂ = I{τ̂ ≤ F−1
0 (α)}, is the UMP

asymptotically unbiased test (in the sense that it attains the upper bound in Proposition

3) of H0 : µ1 = µ0 vs H1 : µ1 6= µ0 in this experiment.

5.1.1. Numerical Illustration. To assess the finite sample performance of ϕ̂, we conducted

Monte Carlo simulations with the following setup: Y (1)
i = δ + ε

(1)
i and Y (0)

i = ε
(0)
i , where

where ε(1)
i , ε

(0)
i ∼

√
3×Uniform[−1, 1]. We set the threshold γ to 0.536, corresponding to a

sampling cost of c = 1 per observation in the costly sampling framework, and treatments

were assigned in equal proportions (π = 1/2). It is important to note that the choice of

error distribution is specific to the simulation and does not imply that the test assumes

knowledge of this distribution. The test operates under a non-parametric framework.

Figure 5.1, Panel A illustrates the test size for various sample sizes n at the nominal

5% significance level. We used the simulation-based method outlined in Section 3.2 to

estimate critical values. The results show that even for relatively small sample sizes, the

test size approximates the nominal level. For comparison, we also include the size of the

naive two-sample test, which, due to its adaptive stopping rule, is invalid and shows an

actual size close to 9%.
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A: Size B: Power function

Note: Panel A plots the size of ϕ̂ along with that of the standard two-sample test at the nominal 5% level (solid
blue line) when the errors are drawn from a

√
3×Uniform[−1, 1] distribution for each treatment. Panel B plots

the finite sample power envelopes of ϕ̂ under different n, along with asymptotic power envelope for unbiased
tests. The scaled treatment effect is defined as µ =

√
n|δ|.

Figure 5.1. Finite sample performance of ϕ̂ under horizontal boundary
designs

Panel B of the same figure plots the finite sample power functions for ϕ̂ under different

n. The power is computed against local alternatives; the reward gap in the figure is the

scaled one, µ =
√
n|δ|. But for any given n, the actual difference in mean outcomes is

µ/
√
n. The same plot also displays the asymptotic power envelope for unbiased tests,

obtained as the power function of the best unbiased test, ϕ∗ = I{τ ≤ F−1
0 (α)}, in the limit

experiment. Even for small samples, the power function of ϕ̂ is close to the asymptotic

upper bound.

5.2. Group sequential experiments. In this application, we suggest methods for in-

ference on treatment effects following group sequential experiments. To simplify matters,

suppose that the researchers assign the two treatments with equal probability in each

stage. Let µ1, µ0 denote the expectation of outcomes from the two treatments. Also,

take xn(·) to be the scaled difference in sample means, i.e., it is the quantity defined in

(3.7) with ψ1(Y ) = ψ0(Y ) = Y . While there are a number of different group sequential

designs, see, e.g., Wassmer and Brannath (2016) for a textbook overview, the general

construction is that the experiment is terminated at the end of stage t if xn(t) is outside

some interval It. The stopping time τ̂ thus satisfies {τ̂ > t− 1} ≡ ∩t−1
l=1 {xn(l) ∈ Il}. The

intervals {It}Tt=1 are pre-determined and chosen by balancing various ethical, cost and

power criteria. We take them as given.
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We are interested in testing the drifting hypotheses H0 : µ1 − µ0 = µ̄/
√
n vs H1 :

µ1 − µ0 > µ̄/
√
n at some spending level α that is chosen by the experimenter.9 We can

then invert these tests to obtain one-sided confidence intervals for the treatment effect

µ1 − µ0. The limit experiment in this setting consists of observing x(t) ∼ σ−1µt+W (t),

where µ := µ1 − µ0, along with a discrete stopping time τ ∈ {1, . . . , T} such that

{τ > t − 1} if and only if x(l) ∈ Il for all l = 1, . . . , t − 1. Let Pµ(·) denote the

induced probability measure over the sample paths of x(·) between 0 and T , and Eµ[·] its

corresponding expectation. In view of the results in Section 2.7, the optimal level-α test

ϕ∗(·) of H0 : µ = µ̄ vs H1 : µ > µ̄ in the limit experiment is given by

ϕ∗(τ, x(τ)) =


1 if Pµ̄(τ = t) ≤ αt

I {x(t) ≥ γ(t)} if Pµ̄(τ = t) > αt,
(5.1)

where γ(t) is chosen such that Eµ̄[ϕ∗(τ, x(τ))|τ = t] = αt/Pµ̄(τ = t).

A finite sample version, ϕ̂, of this test can be constructed by replacing τ, x(τ) in

ϕ∗ with τ̂ , xn(τ̂). The resulting test would be asymptotically optimal under a suitable

non-parametric version of the α-spending requirement; we refer to Appendix B.3 for the

details and also for the proof that ϕ̂ is asymptotically optimal, in the sense that it attains

the power of ϕ∗ in the limit experiment. A two-sided test for H0 : µ1 − µ0 = µ̄/
√
n vs

H1 : µ1−µ0 6= µ̄/
√
n can be similarly constructed by imposing a conditional unbiasedness

restriction as in Section 2.7.3.

5.2.1. Numerical Illustration. To illustrate the methodology, consider a group sequential

trial based on the widely-used design of O’Brien and Fleming (1979), with T = 2 stages.

This corresponds to setting I1 = [−2.797, 2.797]. We would like to test H0 : µ1 − µ0 =

µ̄/
√
n vs H1 : µ1 − µ0 > µ̄/

√
n at the spending level (α/Pµ̄(τ = 1), α/Pµ̄(τ = 2)),

equivalent to a conditional size constraint, Pµ̄(ϕ = 1|τ = t) = α ∀ t. Figure 5.2 Panel

A plots the asymptotic critical values, (γ(1), γ(2)), for this test under α = 0.05 and

σ1 = σ0 = 1. Unsurprisingly, the thresholds are increasing in µ̄ , but it is interesting to

observe that they cross at some µ̄.

To describe the finite sample performance of this test, we ran Monte-Carlo simulations

with Y
(1)
i = µ̄/

√
n + ε

(1)
i and Y

(0)
i = ε

(0)
i where ε(1)

i , ε
(0)
i ∼

√
3 × Uniform[−1, 1]. The

9In most examples of group sequential designs, the intervals It are themselves chosen to maximize power
under some ᾱ-spending criterion, given the null of µ1 = µ0. In general, our α here may be different
from ᾱ. Furthermore, we are interested in conducting inference on general null hypotheses of the form
H0 : µ1− µ0 = µ̄/

√
n; these are different from the null hypothesis of no average treatment effect used to

motivate the group sequential design.
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A: Critical values B: Finite sample size

Note: Panel A plots the threshold values in each stage for the optimal, one-sided, level-α test, (5.1), at the
(0.05/Pµ̄(τ = 1), 0.05/Pµ̄(τ = 2)) spending level. Panel B plots the overall type-I error in finite samples for
different values of n and null values, µ̄, when the errors are drawn from a

√
3×Uniform[−1, 1] distribution for

each treatment.

Figure 5.2. Testing in group sequential experiments

treatments were sampled in equal proportions (π = 1/2). Since σ1, σ0 are unknown in

practice, we estimate them using data from the first stage. Figure 5.2, Panel B plots

the overall size of the test (which is the sum of the α-spending values at each stage)

for different values of n and µ̄ under the nominal α-spending level of (0.05/Pµ̄(τ =

1), 0.05/Pµ̄(τ = 2)). We see that the asymptotic approximation worsens for larger values

of µ̄, but overall, the size is close to nominal even for relatively small values of n.

5.3. Bandit experiments. In Section 2.1, we described an example with a one-armed

bandit. Here, we describe inferential procedures for the batched multi-armed bandit prob-

lem, focusing again on the Thompson-Sampling algorithm. For illustration, we employ

K = 2 treatments and J = 10 batches. Let (µ̄1, µ̄0) and (σ2
1, σ

2
0) denote the population

means and variances for each treatment. For simplicity, we take σ2
1 = σ2

0 = 1. The limit

experiment can be described as follows: Suppose the decision maker (DM) employs the

sampling rule π(a)
j in batch j. The DM then observes Z(a)

j ∼ N (µ̄aπa, πaσ2
a) for a ∈ {0, 1}

and updates the state variables xa, qa (which are initially set to 0) as

xa ← xa + Z
(a)
j , qa ← qa + πa.

Under an under-smoothed prior, recommended by Wager and Xu (2021), the Thompson

sampling rule in batch j + 1 is

π
(1)
j+1 = Φ

q−1
1 x1 − q−1

0 x0√
j/q1q0

 .
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Note: The figure plots the asymptotic power envelope for any test of H0 : (µ, µ) = (0, 0) against different values
(µ1, µ0) under the alternative.

Figure 5.3. Power envelope for Thompson-sampling with 10 batches

We set π(a)
1 = 1/2 for first batch. In what follows, we let µa := Jµ̄a. We are interested in

testing H0 : (µ1, µ0) = (0, 0).

Figure 5.3, Panel A plots the asymptotic power envelope for testing H0 : (µ1, µ2) =

(0, 0). Clearly, the envelope is not symmetric; distinguishing (a, 0) from (0, 0) is easier

than distinguishing (−a, 0) from (0, 0) for any a > 0. This is because of the asymmetry

in treatment allocation under Thompson sampling; under (−a, 0), treatment 1 is sam-

pled more often than treatment 0 but the data from treatment 1 is uninformative for

distinguishing (−a, 0) from (0, 0).

5.3.1. Numerical illustration. To determine the accuracy of our asymptotic approxima-

tions, we ran Monte-Carlo simulations with Y
(a)
i = µa + ε

(a)
i where ε(1)

i , ε
(0)
i ∼

√
3 ×

Uniform[−1, 1]. Figure 5.4, Panel A plots the finite sample performance of the Neyman-

Pearson tests in the limit experiment for testing H0 : (µ1, µ0) = (0, 0) vs H1 : (µ1, µ0) =

(µ, µ) under various values of µ (due to symmetry, we only report the results for positive

µ). Panel B repeats the same calculation, but against alternatives of the form H1 : (µ, 0).

As noted earlier, power is higher for µ > 0 as opposed to µ < 0. Both plots show that

the asymptotic approximation is quite accurate even for n as small as 20 (note that the

number of batches is 10, so this corresponds to 200 observations overall). The approxi-

mation is somewhat worse for testing µ < 0; this is because Thompson-sampling allocates
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A: Power against H1 : (µ, µ) B: Power against H1 : (µ, 0)

Note: Panel A plots the finite sample power of Neyman-Pearson tests at the nominal 5% level (solid blue line)
for testing H0 : (µ1, µ0) = (0, 0) against H1 : (µ1, µ0) = (µ, µ) when the errors are drawn from a√

3×Uniform[−1, 1] distribution for each treatment. Panel B repeats the same calculation for alternatives of
the form H1 : (µ1, µ0) = (µ, 0). Both panels also display the asymptotic power envelope.

Figure 5.4. Finite sample performance of Neyman-Pearson tests in ban-
dit experiments

much fewer units to treatment 0 in this instance, even though it is only data from this

treatment that is informative for distinguishing the two hypotheses.

6. Conclusion

Conducting inference after sequential experiments is a challenging task. However, sig-

nificant progress can be made by analyzing the optimal inference problem under an ap-

propriate limit experiment. We showed that the data from any sequential experiment can

be condensed into a finite number of sufficient statistics, while still maintaining the power

of tests. Furthermore, we were able to establish uniquely optimal tests under reasonable

constraints such as unbiasedness, α-spending and conditional power, in both paramet-

ric and non-parametric regimes. Taken together, these findings offer a comprehensive

framework for conducting optimal inference following sequential experiments.

Despite these results, there are still several avenues for future research. While we believe

that our results for experiments with adaptive sampling rules apply without batching,

this needs be formally verified. Our characterization of uniquely optimal tests is also

limited in this context, as α-spending restrictions are not feasible. Therefore, exploring

other types of testing considerations such as invariance or conditional inference may be

worthwhile. We believe that the techniques developed in this paper will prove useful for

analyzing these other classes of tests.
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Appendix A. Proofs

A.1. Proof of Theorem 1. As noted earlier, the first part of the theorem follows from

Le Cam (1979, Theorem 1). We therefore focus on proving the second claim. To this

end, denote ynt = (Y1, . . . , Ynt). Defining

ln dPnt,h
dPnt,0

(ynt) =
bntc∑
i=1

ln
dpθ0+h/

√
n

dpθ0
(Yi),

we have by the SLAN property, (2.3), and Assumption 2 that

ln dPnτ̂ ,h
dPnτ̂ ,0

(ynτ̂ ) = hᵀI1/2xn(τ̂)− τ̂

2h
ᵀIh+ oPnT,0(1).

Combining the above with the first part of the theorem gives

ln dPnτ̂ ,h
dPnτ̂ ,0

(ynτ̂ ) d−−−→
PnT,0

hᵀI1/2x(τ)− τ

2h
ᵀIh, (A.1)

where x(·) has the same distribution as d-dimensional Brownian motion.

Now, ϕn is tight since ϕn ∈ [0, 1]. Together with (A.1), this implies the joint(
ϕn, ln

dPnτ̂ ,h
dPnτ̂ ,0

(ynτ̂ )
)

is also tight. Hence, by Prohorov’s theorem, given any sequence {nj}, there exists a

further sub-sequence {njm} - represented as {n} for simplicity - such that ϕn
dPnτ̂.,h
dPnτ̂,0

(ynτ̂ )

 d−−−→
PnT,0

 ϕ̄

V

 ; V ∼ exp
{
hᵀI1/2x(τ)− τ

2h
ᵀIh

}
, (A.2)

where ϕ̄ ∈ [0, 1]. It is a well known property of Brownian motion that

M(t) := exp
{
hᵀI1/2x(t)− t

2h
ᵀIh

}
is a martingale with respect to the filtration Ft. Since τ is an Ft-adapted stopping time,

the optional stopping theorem then implies E[V ] ≡ E[M(τ)] = E[M(0)] = 1.

We now claim that

ϕn
d−−−→

PnT,h
L; where L(B) := E[I{ϕ̄ ∈ B}V ] ∀ B ∈ B(R). (A.3)

It is clear from V ≥ 0 and E[V ] = 1 that L(·) is a probability measure, and that for

every measurable function f : R → R,
∫
fdL = E[f(ϕ̄)V ]. Furthermore, for any f(·)
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continuous and non-negative,

lim inf EnT,h[f(ϕn)] ≥ lim inf EnT,0
[
f(ϕn)dPnT,h

dPnT,0

]

= lim inf EnT,0
[
f(ϕn)dPnτ̂ ,h

dPnτ̂ ,0

]
≥ E[f(ϕ̄)V ],

where the equality follows from the law of iterated expectations since ϕn is a function only

of ynτ̂ and dPnt,h/dPnt,0 is a martingale under PnT,0; and the last inequality follows from

applying the portmanteau lemma on (A.2). Finally, applying the portmanteau lemma

again, in the converse direction, gives (A.3).

Since ϕn is bounded, (A.3) implies

lim
n→∞

βn(h) := lim
n→∞

EnT,h [ϕn] = E
[
ϕ̄eh

ᵀI1/2x(τ)− τ2h
ᵀIh
]
. (A.4)

Define ϕ(τ, x(τ)) := E[ϕ̄|τ, x(τ)]; this is a test statistic since ϕ ∈ [0, 1]. The right hand

side of (A.4) then becomes

E
[
ϕ(τ, x(τ))ehᵀI1/2x(τ)− τ2h

ᵀIh
]
.

But by the Girsanov theorem, this is just the expectation, Eh[ϕ(τ, x(τ))], of ϕ(τ, x(τ))

when x(t) is distributed as a Gaussian process with drift I1/2h, i.e., when x(t) ∼ I1/2ht+

W (t). We have thus shown that βn(h) converges to Eh[ϕ(τ, x(τ))] := β(h) on sub-

sequences (since (A.2) only holds true on subsequences). However, βn(h) is a convergent

sequence by assumption, so we can remove the sub-sequence qualification.

A.2. Proof of Proposition 1. We start by proving the first claim. Denote H0 ≡ {h :

aᵀh = 0} and H1 ≡ {h : aᵀh = c}. Let Ph denote the induced probability measure

over the sample paths generated by x(t) ∼ I1/2ht + W (t) between t ∈ [0, T ]. As before,

Ft denotes the filtration generated by {U, x(s) : s ≤ t}. Given any h1 ∈ H1, define

h0 = h1 − (aᵀh1/a
ᵀI−1a)I−1a. Note that aᵀh1 = c and h0 ∈ H0. Let ln dPh1

dPh0
(Ft) denote

the likelihood ratio between the probabilities induced by the parameters h1, h0 over the

filtration Ft. By the Girsanov theorem,

ln dPh1

dPh0

(Fτ ) =
(
hᵀ1I

1/2x(τ)− τ

2h
ᵀ
1Ih1

)
−
(
hᵀ0I

1/2x(τ)− τ

2h
ᵀ
0Ih0

)

= 1
σ
cx̃(τ)− c2

2σ2 τ,
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where x̃(t) := σ−1aᵀI−1/2x(t). Hence, an application of the Neyman-Pearson lemma

shows that the UMP test of H ′0 : h = h0 vs H ′1 : h = h1 is given by

ϕ∗c = I
{
cx̃(τ)− c2

2στ ≥ γ

}
,

where γ is chosen by the size requirement. Now, for any h0 ∈ H0,

x̃(t) ≡ σ−1aᵀI−1/2x(t) ∼ W (t).

Hence, the distribution of the sample paths of x̃(·) is independent of h0 under the null.

Combined with the assumption that τ is F̃t-adapted, this implies ϕ∗c does not depend on

h0 and, by extension, h1, except through c. Since h1 ∈ H1 was arbitrary, we are led to

conclude ϕ∗c is UMP more generally for testing H0 : aᵀh = 0 vs H1 : aᵀh = c.

The second claim is an easy consequence of the first claim and Theorem 1.

A.3. Proof of Proposition 2. By the Girsanov theorem,

β(h) := Eh[ϕ] = E0
[
ϕ(τ, x(τ))ehᵀI1/2x(τ)− τ2h

ᵀIh
]
.

It can be verified from the above that β(h) is differentiable around h = 0. But unbiased-

ness requires Eh[ϕ] ≥ α for all h and E0[ϕ] = α. This is only possible if β′(0) = 0, i.e.,

E0[x(τ)ϕ(τ, x(τ))] = 0.

A.4. Proof of Theorem 2. Since τ̂ is bounded, it follows by similar arguments as in

the proof of Theorem 1 that
(
ϕn, τ̂ , ln dPnτ̂,h

dPnτ̂,0
(ynτ̂ )

)
is tight. Consequently, by Prohorov’s

theorem, given any sequence {nj}, there exists a further sub-sequence {njm} - represented

as {n} for simplicity - such that
ϕn

τ̂
dPnτ̂.,h
dPnτ̂,0

(ynτ̂ )

 d−−−→
PnT,0


ϕ̄

τ

V

 ; V ∼ exp
{
hᵀI1/2x(τ)− τ

2h
ᵀIh

}
. (A.5)

It then follows as in the proof of Theorem 1 that ϕn

τ̂

 d−−−→
PnT,h

L; where L(B) := E[I{(ϕ̄, τ) ∈ B}V ] ∀ B ∈ B(R2). (A.6)
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The above in turn implies

lim
n→∞

EnT,h [ϕnI{τ̂ = t}] = E
[
ϕ̄I{τ = t}ehᵀI1/2x(τ)− τ2h

ᵀIh
]
, and (A.7)

lim
n→∞

EnT,h [I{τ̂ = t}] = E
[
I{τ = t}ehᵀI1/2x(τ)− τ2h

ᵀIh
]
. (A.8)

for every t ∈ {1, 2, . . . , T}.

Denote ϕ(τ, x(τ)) = E[ϕ̄|τ, x(τ)]; this is a level-α test, as can be verified by setting

h = 0 in (A.7). The right hand side of (A.7) then becomes

E
[
ϕ(τ, x(τ))I{τ = t}ehᵀI1/2x(τ)− τ2h

ᵀIh
]
.

An application of the Girsanov theorem then shows that the right hand sides of (A.7)

and (A.8) are just the expectations Eh[ϕ(τ, x(τ))I{τ = t}] and Eh[I{τ = t}] when x(t) ∼

I1/2ht + W (t). What is more, the measures P0(·),Ph(·) are absolutely continuous, so

P0(τ = t) = 0 if and only if Ph(τ = t) = 0 for any h ∈ Rd. We are thus led to conclude

that

lim
n→∞

βn(h|t) := lim
n→∞

EnT,h [ϕnI{τ̂ = t}]
EnT,h [I{τ̂ = t}] = Eh [ϕnI{τ̂ = t}]

Eh [I{τ̂ = t}] := β(h|t) (A.9)

for every h ∈ Rd, and t ∈ {1, 2, . . . , T} satisfying P0(τ = t) 6= 0.

While we have only demonstrated (A.9) for sub-sequences, the assumption that βn(h|t)

is a convergent sequence implies this result holds more generally for the entire sequence.

A.5. Proof of Proposition 3. Fix some arbitrary g1 ∈ T (P0). To simplify matters,

we set δ = 1. The case of general δ can be handled by simply replacing g1 with g1/δ.

By standard results for Hilbert spaces, we can write g1 = σ−1 〈ψ, g〉 (ψ/σ) + g̃1, where

g̃1 ⊥ (ψ/σ) . Define g := (ψ/σ, g̃1/ ‖g̃1‖)ᵀ, and consider sub-models of the form P1/
√
n,hᵀg

for h ∈ R2. By (3.2),

bntc∑
i=1

ln
dP1/

√
n,hᵀg

dP0
(Yi) = hᵀ√

n

bntc∑
i=1
g(Yi)−

t

2h
ᵀh+ oPnT,0(1), uniformly over t. (A.10)

Comparing with (2.3), we observe that
{
P1/
√
n,hᵀg : h ∈ R2

}
is equivalent to a para-

metric model with score g(·) and local parameter h (note that EP0 [ggᵀ] = I). Let

Gn(t) := n−1/2∑n
i=1 g(Yi) denote the score process. By the functional central limit the-

orem, Gn(t) d−−−→
PnT,0

G(t) ≡ (x(t), G̃(t)), where x(·), G̃(·) are independent one-dimensional

Brownian motions. Take Gt := σ{G(s) : s ≤ t}, Ft := σ{x(s) : s ≤ t} to be the filtrations

generated by G(·) and x(·) respectively until time t. Since the first component of Gn(·) is
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xn(·) and τ̂ = τ(xn(·)) by Assumption 3(ii), the extended continuous mapping theorem

implies

(τ̂ , Gn(τ̂)) d−−−→
PnT,0

(τ,G(τ)), (A.11)

where τ is a Ft-adapted stopping time, and therefore, Gt-adapted by extension.

Let ϕn denote any asymptotically level-α test. Consider the limit experiment where one

observes a Gt-adapted stopping time τ along with a diffusion process G(t) := ht+W (t),

where W (·) is 2-dimensional Brownian motion. Using (A.10) and (A.11), we can argue

as in the proof of Theorem 1 that the power function, βn (hᵀg) :=
∫
ϕndPnT,hᵀg, of ϕn

in the parametric model
{
P1/
√
n,hᵀg : h ∈ R2

}
can be matched along sub-sequences (since

βn(·) ∈ [0, 1] is tight) by the power function β(h) of some test ϕ(τ,G(τ)) in the limit

experiment (the choice of ϕ(·) is allowed to depend on the sub-sequence). Note that by

our definitions, 〈ψ,hᵀg〉 is simply the first component of h divided by σ. This in turn

implies, as a consequence of the definition of asymptotically level-α tests, that ϕ(·) is

level-α for testing H0 : (1, 0)ᵀh = 0 in the limit experiment.

Now, by a similar argument as in the proof of Proposition 1, along with the fact

(1, 0)ᵀG(t) = x(t), the optimal level-α test of H0 : (1, 0)ᵀh = 0 vs H1 : (1, 0)ᵀh = µ1/σ

in the limit experiment is given by

ϕ∗µ1(τ, x(τ)) := I
{
µ1x(τ)− µ2

1
2στ ≥ γ

}
.

Since G(t) := ht+W (t), for all h ∈ H1 (i.e., all h in the alternative set),

x(t) = (1, 0)ᵀG(t) ∼ σ−1µ1t+ W̃ (t),

where W̃ (·) is 1-dimensional Brownian motion. As τ is Ft-adapted, the joint distribu-

tion of (τ, x(τ)) therefore depends only on µ1 for h ∈ H1. Consequently, the power,

Eh[ϕ∗µ1(τ, x(τ))], of ϕ∗µ1(·) against such alternatives depends only on µ1, and is de-

noted by β∗ (µ1). Since ϕ∗µ1(·) is the optimal test and µ1 = 〈ψ,hᵀg〉, we conclude

β(h) ≤ β∗ (〈ψ,hᵀg〉).

Since the above holds for any β(h) that is the limit of a sub-sequence of βn(hᵀg),

we conclude that lim supn βn(hᵀg) ≤ β∗ (〈ψ,hᵀg〉) for any h ∈ R2. Setting h =

(〈ψ, g1〉 /σ, ‖g̃1‖)ᵀ then gives lim supn βn(g1) ≤ β∗ (〈ψ, g1〉). Since g1 ∈ T (P0) was ar-

bitrary, the claim follows.

A.6. Proof of Proposition 5. Recall that we can represent any g1 ∈ T (P0) as g1 =

σ−1 〈ψ, g〉 (ψ/σ) + g̃1, where g̃1 ⊥ (ψ/σ). Let ϕn denote any asymptotically level-α test.
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By the form of the weight function m(·) and Fubini’s theorem, we can write the weighted

average power of ϕn as∫
βn(g1)dm(g1) =

∫ (∫
βn

(
µ

σ2ψ + g̃1

)
dw(µ)

)
dρ(g̃1)

:=
∫ (∫

βn(µ; g̃1)dw(µ)
)
dρ(g̃1).

Since
∫
βn(µ; g̃1)dw(µ) ≤ 1, an application of Fatou’s lemma gives

lim sup
n→∞

∫
βn(g1)dm(g1) ≤

∫
lim sup
n→∞

(∫
βn(µ; g̃1)dw(µ)

)
dρ(g̃1).

The claim thus follows if we show that

lim sup
n→∞

∫
βn(µ; g̃1)dw(µ) ≤

∫
β∗(µ)dw(µ) for each g̃1. (A.12)

To this end, define g = (ψ/σ, g̃1/ ‖g̃1‖)ᵀ, and consider sub-models of the form P1/
√
n,hᵀ

µg

where hµ := (µ/σ, ‖g̃1‖). By (3.2),

bntc∑
i=1

ln
dP1/

√
n,hᵀ

µg

dP0
(Yi) =

hᵀµ√
n

bntc∑
i=1
g(Yi)−

t

2h
ᵀ
µhµ + oPnT,0(1), uniformly over t. (A.13)

Let βn
(
hᵀµg

)
:=

∫
ϕndPnT,hᵀ

µg denote the power function of ϕn under the parametric

model
{
P1/
√
n,hᵀ

µg : µ ∈ R
}
. Note that by construction βn(µ; g̃1) = βn

(
hᵀµg

)
.

We now employ similar arguments as in the proof of Proposition 3. In that proof we

defined a diffusion process G(t) := hµt + W (t), where W (·) is 2-dimensional Brownian

motion. Also, we set

x(t) := (1, 0)ᵀG(t) ∼ σ−1µt+ W̃ (t),

where W̃ (·) denotes 1-dimensional Brownian motion, and took Ft to be the filtration

generated by x(t) until time t. Now consider a limit experiment where one observes a

Ft-adapted stopping time τ along with the diffusion process G(t). By similar arguments

as in the proof of Proposition 3, βn
(
hᵀµg

)
can be matched along sub-sequences by the

power function β(hµ) of some test ϕ(τ,G(τ)) in the limit experiment. As βn(·) ∈ [0, 1],

the dominated convergence theorem then implies

lim
n→∞

∫
βn
(
hᵀµg

)
dw(µ) =

∫
β(hµ)dw(µ)

on subsequences. Note that the limit β(hµ) is allowed to be potentially different across

sub-sequences.
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Since
〈
ψ,hᵀµg

〉
= µ/σ, the definition of asymptotically level-α tests, together with the

fact βn
(
hᵀµg

)
converges to β(hµ) on sub-sequences, implies ϕ(·) is level-α for testing

H0 : (1, 0)ᵀhµ = 0 in the limit experiment. Now, given a weight function w(·), an

application of Girsanov’s theorem shows that the optimal weighted average power test of

H0 : (1, 0)ᵀhµ = 0 vs H1 : (1, 0)ᵀhµ 6= 0 in the limit experiment is given by

ϕ∗w(τ, x(τ)) = I
{∫

exp
(
µ

σ
x(τ)− µ2

2σ2 τ

)
dw(µ) > γ

}
.

We therefore conclude
∫
β(hµ)dw(µ) ≤

∫
β∗(µ)dw(µ), where β∗(µ) is the power function

of ϕ∗w(·). Since this inequality holds for any β(hµ) that is the limit of a sub-sequence of

βn(hᵀµg), we have

lim sup
n→∞

∫
βn
(
hᵀµg

)
dw(µ) ≤

∫
β∗(µ)dw(µ).

The above proves (A.12) and the claim thus follows.

A.7. Proof of Proposition 6. Fix some arbitrary g = (g1, g0) ∈ T (P (1)
0 ) × T (P (0)

0 ).

To simplify matters, we set δ1 = δ0 = 1. The case of general δ can be handled by

simply replacing ga with ga/δa. In what follows, let π1 = π and π0 = 1− π. The vectors

y(1)
nt = (Y (1)

1 , . . . , Y
(1)
nπ1t) and y(0)

nt = (Y (0)
1 , . . . , Y

(0)
nπ0t) denote the collection of outcomes from

treatments 1 and 0 until time t, and we set ynt = (y(1)
nt ,y

(0)
nt ). Define Pnt,g as the joint

probability measure over ynt when each Y (a)
i is an iid draw from P

(a)
1/
√
n,ga

.

As in the proof of Proposition 3, we can write ga = σ−1
a 〈ψa, ga〉a (ψa/σa) + g̃a, where

g̃a ⊥ (ψa/σa). Define ga := (ψa/σa, g̃a/ ‖g̃a‖a)
ᵀ, and consider sub-models of the form

P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 for h1,h0 ∈ R2. By the SLAN property, (3.2), and the fact that

y(1)
nt ,y

(0)
nt are independent,

ln
dPnt,(hᵀ

1g1,h
ᵀ
0g0)

dPnt,0
(ynt) = hᵀ1√

n

bnπ1tc∑
i=1

g1(Y (1)
i )− π1t

2 h
ᵀ
1h1 + . . .

· · ·+ hᵀ0√
n

bnπ0tc∑
i=1

g0(Y (0)
i )− π0t

2 h
ᵀ
0h0 + oPnT,0(1), uniformly over t. (A.14)

Let Ga,n(t) := n−1/2∑bnπatc
i=1 ga(Y (a)

i ) for a ∈ {0, 1}. By a standard functional central

limit theorem,

Ga,n(t) d−−−→
PnT,0

Ga(t) ≡ (za(t), G̃a(t)),

where za(·)/
√
πa, G̃a(·)/

√
πa are independent 1-dimensional Brownian motions. Further-

more, since y(1)
nt ,y

(0)
nt are independent of each other, G1(·), G0(·) are independent Gaussian
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processes. Define σ2 :=
(
σ2

1
π1

+ σ2
0
π0

)
,

x(t) := 1
σ

(
σ1

π1
z1(t)− σ0

π0
z0(t)

)
and take Gt := σ{(G1(s), G0(s)) : s ≤ t}, Ft := σ{x(s) : s ≤ t} to be the filtrations

generated by G(·) := (G1(·), G0(·)) and x(·) respectively until time t. Using Assumption

4(ii), the extended continuous mapping theorem implies

(τ̂ , G1,n(τ̂), G0,n(τ̂)) d−−−→
PnT,0

(τ,G1(τ), G0(τ)), (A.15)

where τ is a Ft-adapted stopping time, and thereby Gt-adapted, by extension.

Let ϕn denote any asymptotically unbiased test. Consider the limit experiment where

one observes a Gt-adapted stopping time τ along with diffusion processes Ga(t) :=

πahat+√πaWa(t), a ∈ {0, 1}, where W1(·),W0(·) are independent 2-dimensional Brow-

nian motions. By Lemma 2 in Appendix B, the power function

βn(hᵀ1g1,h
ᵀ
0g0) :=

∫
ϕndPnT,(hᵀ

1g1,h
ᵀ
0g0)

of ϕn under the parametric model
{
P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 : h1,h0 ∈ R2
}
can be matched,

along sub-sequences, by the power function, β(h1,h0), of some test ϕ(τ,G(τ)) in the limit

experiment (the choice of ϕ(·) is allowed to depend on the sub-sequence). Note that by

our definitions, the first component of ha is 〈ψa,hᵀaga〉a /σa. This in turn implies, as

a consequence of the definition of asymptotically level-α tests, that ϕ(·) is level-α for

testing H0 : (σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = 0 in the limit experiment.

Now, by Lemma 3 in Appendix B, the optimal level-α test of H0 : (σ1, 0)ᵀh1 −

(σ0, 0)ᵀh0 = 0 vs H1 : (σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = µ in the limit experiment is

ϕ∗µ(τ, x(τ)) := I
{
µx(τ)− µ2

2στ ≥ γ

}
.

For all h ∈ H1 ≡ {h : (σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = µ} in the alternative set,

x(t) ∼ σ−1µt+ 1
σ

√σ2
1
π1

(1, 0)ᵀW1(t)−
√
σ2

0
π0

(1, 0)ᵀW0(t)


∼ σ−1µt+ W̃ (t),

where W̃ (·) is standard 1-dimensional Brownian motion. As τ is Ft-adapted, it follows

that the joint distribution of (τ, x(τ)) depends only on µ for h ∈ H1. Consequently, the

power, Eh[ϕ∗µ(τ, x(τ))], of ϕ∗µ against the values in the alternative hypothesis H1 depends
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only on µ, and is denoted by β∗ (µ). Since ϕ∗µ(·) is the optimal test, β(h1,h0) ≤ β∗(µ)

for all h1,h0 ∈ R2.

Since the above holds for any β(h1,h0) that is the limit of a sub-sequence of βn(hᵀ1g1,h
ᵀ
0g0),

we conclude that lim supn βn(hᵀ1g1,h
ᵀ
0g0) ≤ β∗(µ) for any µ ∈ R and h1,h0 ∈ R2 satisfy-

ing 〈ψ1,h
ᵀ
1g1〉1−〈ψ0,h

ᵀ
0g0〉0 = µ. Setting ha = (σ−1

a 〈ψa, ga〉a , ‖g̃a‖a)
ᵀ for a ∈ {0, 1} then

gives lim supn
∫
ϕndPnT,(g1,g0) ≤ β∗(µ). Since (g1, g0) ∈ T (P (1)

0 ) × T (P (0)
0 ) was arbitrary,

the claim follows.

A.8. Proof of Theorem 3. As noted previously, the first claim is shown in Hirano and

Porter (2023). Consequently, we only focus on proving the second claim. Let y(a)
j,nq denote

the first nq observations from treatment a in batch j. Define

ln dPn,h
dPn,0

(y(a)
j,nq) =

bnqc∑
i=1

ln
dp

θ
(a)
0 +ha/

√
n

dpθ0
(Y (a)

i,j ).

By the SLAN property, which is a consequence of Assumption 5,

ln dPn,h
dPn,0

(y(a)
j,nπ̂

(a)
j

) = hᵀaI
1/2
a z

(a)
j,n(π̂(a)

j )−
π̂

(a)
j

2 hᵀaIaha + oPn,0(1). (A.16)

The above is true for all j, a.

Denote the observed set of outcomes by ȳ =
(
y(1)

1,nπ̂(1)
1
,y(0)

1,nπ̂(0)
1
, . . . ,y(1)

J,nπ̂
(1)
J

,y(0)
J,nπ̂

(0)
J

)
.

The likelihood ratio of the observations satisfies

ln dPn,h
dPn,0

(ȳ) =
∑
j

∑
a∈{0,1}

ln dPn,h
dPn,0

(y(a)
j,nq)

=
∑
j

∑
a∈{0,1}

hᵀaI1/2
a z

(a)
j,n(π̂(a)

j )−
π̂

(a)
j

2 hᵀaIaha

 , (A.17)

where the second equality follows from (A.16). Combining the above with the first part

of the theorem, we find

ln dPn,h
dPn,0

(ȳ) d−−→
Pn,0

∑
j

∑
a∈{0,1}

hᵀaI1/2
a z

(a)
j (π(a)

j )−
π

(a)
j

2 hᵀaIaha

 , (A.18)

where z(a)
j (t) is distributed as d-dimensional Brownian motion.

Note that ϕn is required to be measurable with respect to ȳ. Furthermore, ϕn is tight

since ϕn ∈ [0, 1]. Together with (A.18), this implies the joint
(
ϕn, ln dPn,h

dPn,0
(ȳ)

)
is also

tight. Hence, by Prohorov’s theorem, given any sequence {nj}, there exists a further
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sub-sequence {njm} - represented as {n} without loss of generality - such that ϕn

ln dPn,h
dPn,0

(ȳ)

 d−−→
Pn,0

 ϕ̄

V

 ; V ∼
∏

j=1,...,J

∏
a∈{0,1}

exp

hᵀaI1/2
a z

(a)
j (π(a)

j )−
π

(a)
j

2 hᵀaIaha

 ,
(A.19)

where ϕ̄ ∈ [0, 1]. Define

V
(a)
j := exp

hᵀaI1/2
a z

(a)
j (π(a)

j )−
π

(a)
j

2 hᵀaIaha

 ,
so that V = ∏

j=1,...,J
∏
a∈{0,1} V

(a)
j . By the definition of z(a)

j (·) and π
(a)
j in the limit

experiment, we have that the process z(a)
j (·) is independent of data from the all past

batches, and consequently, is also independent of π(a)
j . Hence, by the martingale property

of M (a)
j (t) := exp

{
hᵀaI

1/2
a z

(a)
j (t)− t

2h
ᵀ
aIaha

}
,

E[V (a)
j |z

(1)
1 , z

(0)
1 , π

(1)
1 , π

(0)
1 . . . , z

(1)
j−1, z

(0)
j−1, π

(1)
j−1, π

(0)
j−1] = 1

for all j and a ∈ {0, 1}. This implies, by an iterative argument, that E[V ] = 1. Conse-

quently, we can employ similar arguments as in the proof of Theorem 1 to show that

lim
n→∞

βn(h) := lim
n→∞

En,h [ϕn]

= E

ϕ̄ ∏
j=1,...,J

∏
a∈{0,1}

eh
ᵀ
aI

1/2
a z

(a)
j (π(a)

j )−
π

(a)
j
2 hᵀaIaha


= E

ϕ̄ ∏
a∈{0,1}

eh
ᵀ
aI

1/2
a xa− qa2 h

ᵀ
aIaha

 , (A.20)

where the last equality follows from the definition of xa, qa. Define

ϕ (q1, q0, x1, x0) := E[ϕ̄|q1, q0, x1, x0].

Then, the right hand side of (A.20) becomes

E

ϕ (q1, q0, x1, x0)
∏

a∈{0,1}
eh

ᵀ
aI

1/2
a xa− qa2 h

ᵀ
aIaha

 .
But by a repeated application of the Girsanov theorem, this is just the expectation, Eh[ϕ],

of ϕ when each z(a)
j (t) is distributed as a Gaussian process with drift I1/2

a ha, i.e., when

z
(a)
j (t) ∼ I1/2

a hat+W
(a)
j (t), and {W (a)

j (·)}j,a are independent Brownian motions.
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While we have only demonstrated (A.20) for sub-sequences (since (A.19) applies only

on sub-sequences), the assumption that βn(h|t) is a convergent sequence implies this

result holds more generally for the entire sequence.

A.9. Proof of Proposition 8. Denote the observed set of outcomes by

ȳ =
(
y(1)

1,nπ̂(1)
1
,y(0)

1,nπ̂(0)
1
, . . . ,y(1)

J,nπ̂
(1)
J

,y(0)
J,nπ̂

(0)
J

)
.

Fix some arbitrary g = (g1, g0) ∈ T (P (1)
0 ) × T (P (0)

0 ). As in the proof of Proposi-

tion 6, we can write ga = σ−1
a 〈ψa, ga〉a (ψa/σa) + g̃a, where g̃a ⊥ (ψa/σa). Define

ga := (ψa/σa, g̃a/ ‖g̃a‖a)
ᵀ, and consider sub-models of the form P1/

√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0

for h1,h0 ∈ R2. Following similar simplifications as in the proofs of Propositions 3 and

6, we set δ1 = δ0 = 1 without loss of generality.

Let Pn,h and Pn,0 be defined as in Section 4.1, and set

Z
(a)
j,n (t) := 1√

n

bntc∑
i=1
ga(Y (a)

i,j ), and z
(a)
j,n(t) := 1

σa
√
n

bntc∑
i=1

ψa(Y (a)
i,j ).

By similar arguments as that leading to (A.17), the likelihood ratio,

ln
dPn,(hᵀ

1g1,h
ᵀ
0g0)

dPn,0
(ȳ),

of all observations, ȳ, under the sub-model P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 satisfies

ln
dPn,(hᵀ

1g1,h
ᵀ
0g0)

dPn,0
(ȳ) =

∑
a

∑
j

 hᵀa√nZ(a)
j,n (π̂(a)

j )−
π̂

(a)
j

2 hᵀaha

+ oPnT,0(1). (A.21)

Now, by iterative use of the functional central limit theorem and the extended continuous

mapping theorem (using Assumption 7), π̂
(a)
j

Z
(a)
j,n (π̂(a)

j )

 d−−−→
PnT,0

 π
(a)
j

Z
(a)
j (π(a)

j )

 , Z
(a)
j (·) ∼ Wa,j(·), (A.22)

where {Wa,j}a,j are independent 2-dimensional Brownian motions, and π(a)
j is measurable

with respect to σ
{
z

(a)
l (·); l ≤ j − 1

}
since π̂(a)

j is measurable with respect to σ
{
z

(a)
l,n (·); l ≤ j − 1

}
.

Let ϕn denote any asymptotically level-α test. Consider the limit experiment where

one observes qa = ∑
j π

(a)
j and xa := ∑

j z
(a)
j (π(a)

j ), where

z
(a)
j (t) := µat+W

(a)
j (t), (A.23)
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and πj is measurable with respect to σ
{
z

(a)
l (·); l ≤ j − 1

}
. Using (A.21), (A.22) and

employing similar arguments as in Theorem 3, we find that the power function

βn(hᵀ1g1,h
ᵀ
0g0) :=

∫
ϕndPnT,(hᵀ

1g1,h
ᵀ
0g0)

of ϕn in the parametric model
{
P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 : h1,h0 ∈ R2
}

can be matched

along sub-sequences by the power function β(h1,h0) of some test ϕ(q1, q0,G1,G0) that

depends only on G1,G0, q1, q0 in the limit experiment (the choice of ϕ(·) is allowed to

depend on the sub-sequence). Note that by our definitions, the first component of ha is

〈ψa,hᵀaga〉a /σa. This in turn implies, as a consequence of the definition of asymptotically

level-α tests, that ϕ(·) is level-α for testing

H0 : ((σ1, 0)ᵀh1, (σ0, 0)ᵀh0) = (0, 0)

in the limit experiment.

Now, by Lemma 4 in Appendix B, the optimal level-α test of the null H0 vs H1 :

((σ1, 0)ᵀh1, (σ0, 0)ᵀh0) = (µ1, µ0) in the limit experiment is

ϕ∗µ1,µ0 = I

 ∑
a∈{0,1}

(
µa
σa
xa −

qa
2σ2

a

µ2
a

)
≥ γµ1,µ0

 .
Using (A.23) and the fact πj depends only on the past values of z(a)

j (·), it follows that the

joint distribution of (q1, q0, x1, x0) depends only on µ1, µ0 for h ∈ H1. Consequently, the

power, Eh
[
ϕ∗µ1,µ0

]
, of ϕ∗µ1,µ0 against the values in the alternative hypothesis H1 depends

only on (µ1, µ0), and is denoted by β∗ (µ1, µ0). Since ϕ∗µ1,µ0 is the optimal test, β(h1,h0) ≤

β∗(µ1, µ0).

Since the above holds for any β(h1,h0) that is the limit of a sub-sequence of βn(hᵀ1g1,h
ᵀ
0g0),

we conclude that lim supn βn(hᵀ1g1,h
ᵀ
0g0) ≤ β∗(µ1, µ0) for any (µ1, µ0) ∈ R and h1,h0 ∈

R2 such that 〈ψa,hᵀaga〉a = µa. Setting ha = (σ−1
a 〈ψa, ga〉a , ‖g̃a‖a)

ᵀ for a ∈ {0, 1} then

gives lim supn
∫
ϕndPnT,(g1,g0) ≤ β∗(µ1, µ0). Since (g1, g0) ∈ T (P (1)

0 ) × T (P (0)
0 ) was arbi-

trary, the claim follows.
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Appendix B. Additional results

B.1. Variance estimators. The score/efficient influence function process xn(·) depends

on the information matrix I (in the case of parametric models) or on the variance σ (in

the case of non-parametric models). For parametric models, the reference parameter,

θ0, is generally known, and we could simply set I = I(θ0). In non-parametric settings,

however, this would be unknown, and we would need to replace I and σ with consistent

estimators. Here, we discuss various proposals for variance estimation (note that I can

be thought of as variance since E0[ψψᵀ] = I).

Batched experiments. If the experiment is conducted in batches, we can simply use the

data from the first batch to construct consistent estimators of the variances. This of

course has the drawback of not using all the data, but it is unbiased and
√
n-consistent

under very weak assumptions (i.e., existence of second moments).

Running-estimator of variance. For an estimator that is more generally valid and uses

all the data, we recommend the running-variance estimate

Σ̂a,t = 1
nt

bntc∑
i=1

ψa(Y (a)
i )ψa(Y (a)

i )ᵀ −
 1
nt

bntc∑
i=1

ψa(Y (a)
i )

 1
nt

bntc∑
i=1

ψa(Y (a)
i )

ᵀ , (B.1)

for each treatment a. The final estimate of the variance would then be Σ̂a,τ̂ for stopping-

times experiments, and Σ̂a,qa for batched experiments. Let Σa := E0,a[ψaψᵀa] and suppose

that ψaψᵀa is λ-sub-Gaussian for some λ > 0. Then using standard concentration inequal-

ities, see e.g., Lattimore and Szepesvári (2020, Corollary 5.5), we can show that

PnT,0

 T⋃
t=1

∣∣∣Σ̂a,t − Σa

∣∣∣ ≥ C

√
ln(1/δ)
nt


 ≤ nTδ ∀ δ ∈ [0, 1],

where C is independent of n, t, δ (but does depend on λ). Setting δ = n−a for some a > 0

then implies that Σ̂a,τ̂ and Σ̂a,qa are
√
n-consistent for Σa (up to log factors) as long as

τ̂ , qa > 0 almost-surely under PnT,0.

Bayes estimators. Yet a third alternative is to place a prior on Σa and continuously

update its value using posterior means. As a default, we suggest employing an inverse-

Wishart prior and computing the posterior by treating the outcomes as Gaussian (this is

of course justified in the limit). Since posterior consistency holds under mild assumptions,

we expect this estimator to perform similarly to (B.1).
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B.2. Supporting information for Section 5.1. In this section, we provide a proof of

Lemma 1. The proof proceeds in two steps: First, we characterize the best unbiased test

in the limit experiment described in Section 5.1. Then, we show that the finite sample

counterpart of this test attains the power envelope for asymptotically unbiased tests.

Step 1: Consider the problem of testing H0 : µ = 0 vs H1 : µ 6= 0 in the limit experiment.

Let Pµ(·) denote the induced probability measure over the sample paths of x(·) in the limit

experiment, and Eµ[·] its corresponding expectation. Due to the nature of the stopping

time, x(τ) can only take on two values γ,−γ. Let δ denote the sign of x(τ). Then, by

sufficiency, any test ϕ, in the limit experiment can be written as a function only of τ, δ.

Furthermore, by Proposition 2, any unbiased test, ϕ(τ, δ), must satisfy E0[δϕ(τ, δ)] = 0.

Fix some alternative µ 6= 0 and consider the functional optimization problem

max
ϕ(·)

Eµ[ϕ(τ, δ)] ≡ E0
[
ϕ(τ, δ)e

1
σ
µδγ− τ

2σ2 µ
2] (B.2)

s.t E0[ϕ(τ, δ)] ≤ α and E0[δϕ(τ, δ)] = 0.

Here, and in what follows, it should implicitly understood that the candidate functions,

ϕ(·), are tests, i.e., their range is [0, 1]. Let ϕ∗ denote the optimal solution to (B.2). Note

that ϕ∗ is unbiased since ϕ = α also satisfies the constraints in (B.2); indeed, E0[δ] = 0

by symmetry. Consequently, if ϕ∗ is shown to be independent of µ, we can conclude that

it is the best unbiased test.

Now, by Fudenberg et al. (2018), δ is independent of τ given µ. Furthermore, by

symmetry, P0(δ = 1) = P0(δ = −1) = 1/2 for µ = 0. Based on these results, we have

E0[δϕ(τ, δ)] = 1
2

∫
{ϕ(τ, 1)− ϕ(τ, 0)} dF0(τ),

E0[ϕ(τ, δ)] = 1
2

∫
{ϕ(τ, 1) + ϕ(τ, 0)} dF0(τ), and

E0
[
ϕ(τ, δ)e

1
σ
µδγ− τ

2σ2 µ
2] = eµγ/σ

2

∫
ϕ(τ, 1)e−

τ
2σ2 µ

2
dF0(τ) + e−µγ/σ

2

∫
ϕ(τ, 0)e−

τ
2σ2 µ

2
dF0(τ).

The first two equations above imply E0[ϕ(τ, 1)] = E0[ϕ(τ, 0)] = E0[ϕ(τ, δ)] when E0[δϕ(τ, δ)] =

0. Hence, we can rewrite the optimization problem (B.2) as

max
ϕ(·)

{
eµγ/σ

2

∫
ϕ(τ, 1)e−

τ
2σ2 µ

2
dF0(τ) + e−µγ/σ

2

∫
ϕ(τ, 0)e−

τ
2σ2 µ

2
dF0(τ)

}
(B.3)

s.t.
∫
ϕ(τ, 1)dF0(τ) ≤ α,

∫
ϕ(τ, 0)dF0(τ) ≤ α and∫

ϕ(τ, 1)dF0(τ) =
∫
ϕ(τ, 0)dF0(τ).
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Let us momentarily disregard the last constraint in (B.3). Then the optimization problem

factorizes, and the optimal ϕ(·) can be determined by separately solving for ϕ(·, 1), ϕ(·, 0)

as the functions that optimize

max
ϕ(·,a)

∫
ϕ(τ, a)e−

τ
2σ2 µ

2
dF0(τ) s.t.

∫
ϕ(τ, a)dF0(τ) ≤ α

for a ∈ {0, 1}. Let ϕ∗(·, a) denote the optimal solution. It is immediate from the optimiza-

tion problem above that ϕ∗(τ, 1) = ϕ∗(τ, 0) := ϕ∗(τ), i.e., the optimal ϕ∗ is independent

of δ. Hence, the last constraint in (B.3) is satisfied. Furthermore, by the Neyman-Pearson

lemma,

ϕ∗(τ) = I
{
e−

τ
2σ2 µ

2
≥ γ

}
≡ I {τ ≤ c} ,

where c = F−1
0 (α) due to the requirement that

∫
ϕ(τ, a)dF0(τ) ≤ α. Consequently, the

solution, ϕ∗(·), to (B.2) is given by I
{
τ ≤ F−1

0 (α)
}
. This is obviously independent of µ.

We conclude that it is the best unbiased test in the limit experiment.

Step 2: The finite sample counterpart of ϕ∗(·) is given by ϕ̂(τ̂) := I
{
τ̂ ≤ F−1

0 (α)
}
, where

it may be recalled that τ̂ = inf{t : |xn(t)| ≥ γ}. Fix some arbitrary g := (g1, g0) ∈

T (P (1)
0 ) × T (P (0)

0 ). Let PnT,g be defined as in the proof of Proposition 6. By similar

arguments as in the proofs of Adusumilli (2022, Theorems 3 and 5),

τ̂
d−−−→

PnT,g
τ := inf{t : |x(t)| ≥ γ}

along sub-sequences, where x(t) ∼ σ−1µt+ W̃ (t) and µ := 〈ψ1, g1〉1 − 〈ψ0, g0〉0. Hence,

lim
n→∞

β̂(g1, g0) := lim
n→∞

PnT,(g1,g0)
(
τ̂ ≤ F−1

0 (α)
)

= Pµ
(
τ ≤ F−1

0 (α)
)
,

where Pµ(·) is the probability measure defined in Step 1. But β̃∗(µ) := Pµ
(
τ ≤ F−1

0 (α)
)

is just the power function of the best unbiased test, ϕ∗, in limit experiment. Hence, ϕ̂(·)

is an asymptotically optimal unbiased test.

B.3. Supporting information for Section 5.2.

B.3.1. Nonparametric level-α and conditionally unbiased tests. First, we define non-

parametric versions of the level-α and conditionally unbiased requirements. We follow

the same notation as in Section 3.4. A test, ϕn, of H0 : µ1 − µ0 = µ/
√
n is said to

asymptotically level-α if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=µ}

lim sup
n

∫
I{τ̂ = k}ϕndPnT,h ≤ αk ∀ k. (B.4)
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Similarly, a test, ϕn, of H0 : µ1 − µ0 = µ/
√
n vs H1 : µ1 − µ0 6= µ/

√
n is asymptotically

conditionally unbiased if

sup
{h:〈ψ1,h1〉1−〈ψ0,h0〉0=µ}

lim sup
n

∫
I{τ = k}ϕndPnT,h

≥ inf
{h:〈ψ1,h1〉1−〈ψ0,h0〉0 6=µ}

lim inf
n

∫
ϕndPnT,h.

B.3.2. Attaining the bound. Recall the definition of xn(·) in (3.7). While xn(·) depends

on the unknown quantities σ1, σ0, we can replace them with consistent estimates σ̂1, σ̂0

using data from the first batch without affecting the asymptotic results, so there is no

loss of generality in taking them to be known. Let ϕ̂ := ϕ∗(τ̂ , xn(τ̂)) denote the finite

sample counterpart of ϕ∗.

By an extension of Proposition 6 to α-spending tests, as in Theorem 2, the conditional

power function, β∗(µ|k), of ϕ∗ in the limit experiment is an upper bound on the asymp-

totic power function of any test in the original experiment. We now show that the local

(conditional) power, β̂(g1, g0|k), of ϕ̂ against sub-models P1/
√
n,g1 × P1/

√
n,g0 converges to

β∗(µ|k). This implies that ϕ̂ is an asymptotically optimal level-α test in this experiment.

Fix some arbitrary g := (g1, g0) ∈ T (P (1)
0 ) × T (P (0)

0 ). Let PnT,g be defined as in

the proof of Proposition 6. By similar arguments as in the proofs of Adusumilli (2022,

Theorems 3 and 5),

xn(·) d−−−→
PnT,g

x(·)

along sub-sequences, where x(t) ∼ σ−1µt + W̃ (t) and µ := 〈ψ1, g1〉1 − 〈ψ0, g0〉0. Since τ̂

is a function of xn(·), the above implies, by an application of the extended continuous

mapping theorem (Van Der Vaart and Wellner, 1996, Theorem 1.11.1), that

lim
n→∞

∫
I{τ̂ = k}ϕ̂PnT,(g1,g0) =

∫
I{τ = k}ϕ∗dPµ, and

lim
n→∞

∫
I{τ̂ = k}PnT,(g1,g0) =

∫
I{τ = k}dPµ.

Hence, as long as P0(τ = k) 6= 0, by the definition of conditional power, we obtain

lim
n→∞

β̂(g1, g0|k) =
∫
I{τ = k}ϕ∗dPµ
I{τ = k}dPµ

:= β∗(µ|k),

for any µ ∈ R. This implies that ϕ̂ is asymptotically level-α (as can be verified by setting

µ = 0 etc), and furthermore, its conditional power attains the upper bound β∗(·|k).

Hence, ϕ̂ is an asymptotically optimal level-α test.
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B.4. Supporting results for the proof of Proposition 6.

Lemma 2. Consider the setup in the proof of Proposition 6. Let P (a)
1/
√
n,hᵀ

aga
denote the

probability sub-model for treatment a, and suppose that it satisfies the SLAN property

ln dPnt,h
ᵀ
aga

dPnt,0
(y(a)

nt ) = hᵀa√
n

bnπatc∑
i=1

ga(Y (a)
i )− πat

2 h
ᵀ
aha + +oPnT,0(1), uniformly over t.

Then, any test in the parametric model
{
P1/
√
n,hᵀ

1g1 × P1/
√
n,hᵀ

0g0 : h1,h0 ∈ R2
}

can be

matched (along sub-sequences) by a test that depends only on G(τ), τ in the limit exper-

iment.

Proof. Recall thatGa,n(t) := n−1/2∑bnπatc
i=1 ga(Y (a)

i ) for a ∈ {0, 1}. Then, by the statement

of the lemma, we have

ln dPnτ̂ ,h
ᵀ
aga

dPnτ̂ ,0
(y(a)

nτ̂ ) = hᵀaGa,n(τ̂)− πaτ̂

2 hᵀaha + oPnT,0(1), (B.5)

for a ∈ {0, 1}. In the proof of Proposition 6, we argued that

(τ̂ , G1,n(τ̂), G0,n(τ̂)) d−−−→
PnT,0

(τ,G1(τ), G0(τ)), (B.6)

where Ga(t) ∼
√
πaWa(t) with W1(·),W (·) being independent 2-dimensional Brownian

motions; and τ is a Gt-adapted stopping time. Equations (B.5) and (B.6) imply

ln
dPnt,(hᵀ

1g1,h
ᵀ
0g0)

dPnt,0
(ynt) d−−−→

PnT,0

∑
a∈{0,1}

{
hᵀaGa(τ)− πaτ

2 hᵀaha

}
. (B.7)

Now, any two-sample test, ϕn, is tight since ϕn ∈ [0, 1]. Then, as in the proof of

Theorem 1, we find that given any sequence {nj}, there exists a further sub-sequence

{njm} - represented as {n} without loss of generality - such that ϕn
dP
nt,(h

ᵀ
1 g1,h

ᵀ
0g0)

dPnt,0
(ynt)

 d−−−→
PnT,0

 ϕ̄

V

 ; V ∼ exp
∑
a

{
hᵀaGa(τ)− πaτ

2 hᵀaha

}
, (B.8)

where ϕ̄ ∈ [0, 1]. Now, given that Ga(t) ∼
√
πaWa(t),

V ∼ exp
∑
a

{√
πah

ᵀ
aWa(τ)− πaτ

2 hᵀaha

}
.

Clearly, V is the stochastic/Doléans-Dade exponential of ∑a

{√
πah

ᵀ
aWa(τ)

}
. Since

W1(·),W0(·) are independent, the latter quantity is in turn distributed as (∑a πah
ᵀ
aha)

1/2 W̃ (t),

where W̃ (·) is standard 1-dimensional Brownian motion. Hence, by standard results on
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stochastic exponentials,

M(t) := exp
∑
a

{
hᵀaGa(t)−

πat

2 h
ᵀ
aha

}
∼ exp

∑
a

{√
πah

ᵀ
aWa(t)−

πat

2 h
ᵀ
aha

}

is a martingale with respect to the filtration Gt. Since τ is an Gt-adapted stopping time,

E[V ] ≡ E[M(τ)] = E[M(0)] = 1 using the optional stopping theorem.

The above then implies, as in the proof of Theorem 1, that

lim
n→∞

βn(hᵀ1g1,h
ᵀ
0g0) := lim

n→∞

∫
ϕndPnT,(hᵀ

1g1,h
ᵀ
0g0) = E

[
ϕ̄e
∑

a{hᵀ
aGa(τ)−πaτ2 hᵀ

aha}
]
. (B.9)

Define ϕ(τ,G(τ)) := E[ϕ̄|τ,G(τ)]; this is a test statistic since ϕ ∈ [0, 1]. The right hand

side of (B.9) then becomes

E
[
ϕ(τ,G(τ))e

∑
a{hᵀ

aGa(τ)−πaτ2 hᵀ
aha}

]
.

But by the Girsanov theorem, this is just the expectation, Eh[ϕ(τ,G(τ))], of ϕ(τ,G(τ))

when Ga(t) ∼ πahat+√πaWa(t) . This proves the desired claim. �

Lemma 3. Consider the limit experiment where one observes a stopping time τ and

independent diffusion processes G1(·), G0(·), where Ga(t) := πahat + √πaWa(t). Let

σ, x(·) and Ft be as defined in the proof of Proposition 6, and suppose that τ is Ft-

adapted. Then, the optimal level-α test of H0 : (σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = 0 vs H1 :

(σ1, 0)ᵀh1 − (σ0, 0)ᵀh0 = µ in the limit experiment is given by

ϕ∗µ(τ, x(τ)) := I
{
µx(τ)− µ2

2στ ≥ γ

}
.

Proof. For each a we employ a change of variables ha →∆a via ∆a = Λaha, where

Λa :=

 σa 0

0 1

 .
Set ∆ := (∆1,∆0). The null and alternative regions are then H0 ≡ {∆ : (1, 0)ᵀ∆1 −

(1, 0)ᵀ∆0 = 0} and H1 ≡ {∆ : (1, 0)ᵀ∆1 − (1, 0)ᵀ∆0 = µ}. Let P∆ ≡ Ph denote the

induced probability measure over the sample paths generated by G1(·), G0(·) between

t ∈ [0, T ], when Ga(t) ∼ πaΛ−1
a ∆at+√πaWa(t). Also, recall that

x(t) := 1
σ

(
σ1

π1
z1(t)− σ0

π0
z0(t)

)
,

where z1(·), z2(·) are the first components of G1(·), G0(·).
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Fix some ∆̄ ≡ (∆̄1, ∆̄0) ∈ H1. Let ∆̄11 and ∆̄01 denote the first components of ∆̄1, ∆̄0,

and define γ, η so that

(∆̄11, ∆̄01) =
(
γ + σ2

1η

π1
, γ − σ2

0η

π0

)
. (B.10)

Clearly, η = µ/σ2 and γ = ∆̄11 − σ2
1η/π1. Now construct ∆̃ = (∆̃1, ∆̃0) as follows: The

second components of ∆̃1, ∆̃0 are the same as that of ∆̄1, ∆̄0. As for the first components,

∆̃11, ∆̃01 of ∆̃1, ∆̃0 , take them to be

(∆̃11, ∆̃01) = (γ, γ) . (B.11)

By construction, (∆̃1, ∆̃0) ∈ H0.

Consider testing H ′0 : ∆ = ∆̃ vs H ′1 : ∆ = ∆̄. Let ln dP∆̄
dP∆̃

(Gt) denote the likelihood

ratio between the probabilities induced by the parameters ∆̃, ∆̄ over the filtration Gt.

Since G1(·), G0(·) are independent, the Girsanov theorem gives

ln dP∆̄

dP∆̃
(Gt) =

(
∆̄ᵀ

1Λ−1
1 G1(τ)− π1τ

2 ∆̄ᵀ
1Λ−2

1 ∆̄1

)
−
(
∆̃ᵀ

1Λ−1
1 G1(τ)− π1τ

2 ∆̃ᵀ
1Λ−2

1 ∆̃1

)

+
(
∆̄ᵀ

0Λ−1
0 G0(τ)− π0τ

2 ∆̄ᵀ
0Λ−2

0 ∆̄0

)
−
(
∆̃ᵀ

0Λ−1
0 G0(τ)− π0τ

2 ∆̃ᵀ
0Λ−2

0 ∆̃0

)

= σηx(τ)− η2σ2

2 τ,

where the last step follows from some algebra after making use of (B.10) and (B.11).

Based on the above, an application of the Neyman-Pearson lemma shows that the UMP

test of H ′0 : ∆ = ∆̃ vs H ′1 : ∆ = ∆̄ is given by

ϕ∗µ = I
{
σηx(τ)− η2σ2

2 τ ≥ γ̃

}
= I

{
µx(τ)− µ2

2στ ≥ γ

}
.

Here, γ is to be determined by the size requirement. Now, for any ∆ ∈ H0,

x(t) ≡ 1
σ

√σ2
1
π1

(1, 0)ᵀW1(t)−
√
σ2

0
π0

(1, 0)ᵀW0(t)
 ∼ W̃ (t),

where W̃ (·) is standard 1-dimensional Brownian motion. Hence, the distribution of the

sample paths of x(·) is independent of the value of ∆ under the null. Combined with

the assumption that τ is Ft-adapted, this implies ϕ∗µ does not depend on ∆̃ and, by

extension, ∆̄, except through µ. Since ∆̄ ∈ H1 was arbitrary, we are led to conclude ϕ∗µ
is UMP more generally for testing H0 ≡ {∆ : (1, 0)ᵀ∆1 − (1, 0)ᵀ∆0 = 0} vs H1 ≡ {∆ :

(1, 0)ᵀ∆1 − (1, 0)ᵀ∆0 = µ}. �
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B.5. Supporting results for the proof of Proposition 8.

Lemma 4. Consider the limit experiment where one observes qa = ∑
j π

(a)
j and xa :=

(1, 0)ᵀ∑j Z
(a)
j (π(a)

j ), where

Z
(a)
j (t) := hat+W

(a)
j (t),

and πj is measurable with respect to

Fj−1 ≡ σ
{

(1, 0)ᵀZ(a)
l (·); l ≤ j − 1, a ∈ {0, 1}

}
.

Then, the optimal level-α test of H0 : ((1, 0)ᵀh1, (1, 0)ᵀh0) = (0, 0) vs H1 : ((1, 0)ᵀh1, (1, 0)ᵀh0) =

(µ1, µ0) in the limit experiment is

ϕ∗µ1,µ0 = I

 ∑
a∈{0,1}

(
µaxa −

qa
2 µ

2
a

)
≥ γµ1,µ0

 .
Proof. Denote

H0 ≡ {h : ((1, 0)ᵀh1, (1, 0)ᵀh0) = (0, 0)} , and

H1 ≡ {h : ((1, 0)ᵀh1, (1, 0)ᵀh0) = (µ1, µ0)} .

Let Ph denote the induced probability measure over the sample paths generated by

{z(a)
j (t) : t ≤ π

(a)
j }j,a.

Given any (h1,h0) ∈ H1, define h̃a = ha − (1, 0)ᵀha(1, 0) for a ∈ {0, 1}. Note that

(h̃1, h̃0) ∈ H0 and (1, 0)ᵀha = µa. Let

ln
dP(h̃1,h̃0)

dP(h1,h0)
(G)

denote the likelihood ratio between the probabilities induced by the parameters (h̃1, h̃0), (h1,h0)

over the filtration

G ≡ σ
{
Z

(a)
j (t) : t ≤ π

(a)
j ; j = 1, . . . , J ; a ∈ {0, 1}

}
.

By the Girsanov theorem, noting that {z(a)
j (t) : t ≤ π

(a)
j }j are independent across a and

defining Ga := ∑
j Z

(a)
j (π(a)

j ), we obtain after some straightforward algebra that

ln
dP(h̃1,h̃0)

dP(h1,h0)
(F) =

∑
a

{(
h̃ᵀaGa −

qa
2 h̃

ᵀ
ah̃a

)
−
(
hᵀaGa −

qa
2 h

ᵀ
aha

)}

=
∑
a

(
µaxa(τ)− µ2

a

2 qa
)
,
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where xa is the first component of Ga. Hence, an application of the Neyman-Pearson

lemma shows that the UMP test of H ′0 : h = (h̃1, h̃0) vs H ′1 : h = (h1,h0) is given by

ϕ∗µ1,µ0 = I
{∑

a

(
µaxa(τ)− µ2

a

2 qa
)
≥ γ

}
,

where γ is determined by the size requirement.

Now, for any h ∈ H0, both xa and qa measurable with respect to F by assumption.

Since (1, 0)ᵀZ(a)
j (·) is independent of ha given µa for all j, a, it follows that the distribution

of xa, qa is independent of the value of h ∈ H0 under the null. This implies that ϕ∗µ1,µ0

does not depend on (h̃1, h̃0) and, by extension, (h1,h0), except through (µ1µ0). Since

(h1,h0) ∈ H1 was arbitrary, we are led to conclude ϕ∗µ1,µ0 is UMP more generally for

testing the composite hypotheses H0 vs H1. �
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