
Uncertain repeated games*

Ilia Krasikov Rohit Lamba

September 2023

Abstract

Multiple long run players play one amongst multiple possible stage games in each period.

They observe and recall past play and are aware of the current stage game being played, but

are uncertain about the future evolution of stage games. This setup is termed an uncertain

repeated game. The solution concept requires that a subgame perfect equilibrium be played no

matter what sequence of stage games realize. The feasible set of payoffs is then so large and

complex that it is not obvious how to frame standard results such as the folk theorem, and fur-

ther how to construct credible rewards and punishments that work irrespective of the future

evolution of games. The main goal of the paper is to build such a language through two differ-

ent perspectives— one in which the modeler has access to the true stochastic process but not

the players and another in which there is simply maximal uncertainty; and then to construct

credible dynamic incentives that work generally for uncertain repeated games. A complete

characterization of equilibria is presented for large discount factors and various extensions to

related models and results are discussed.

1 Introduction

Motivation. The canonical repeated games, and more generally stochastic games, model is in-

strumental in formalizing the extent of cooperation and conflict that can be credibly sustained

in dynamic interactions. In doing so, it makes an arguably restrictive assumption that the exact

same stage game is repeated over time or that one amongst several possible stage games is chosen

through a commonly understood stochastic process. In this paper, we attempt to expand the scope

of this canon along the dimension of robustness to the structure of future play: What is the extent
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of cooperation and conflict that can be credibly and robustly sustained among multiple long-run

players when they may not have a common or well-specified understanding of how games evolve

in the future.

For example, in their classical study of price competition over a business cycle, Rotemberg and

Saloner [1986] showed that forward-looking firms can price above marginal cost when demand

shocks are i.i.d. and firms agree on the exact probabilities of booms and recessions. It is well doc-

umented that firms can efficiently collude or enter price wars under alternative models of demand

shocks (see Haltiwanger and Harrington [1991] and Kandori [1991]) provided that it is commonly

understood by all firms. However, in reality, their model of demand shocks might be misspecified;

some firms might be better informed than others, dynamically inconsistent, or even uncertain

about the future. The natural question then arises: to what extent can collusion and conflict be

sustained without making specific assumptions on how the state of the market evolves?

Model. To that end, we consider the following setting, which resembles the standard model of

stochastic games with perfect monitoring. A finite set of players with a common discount factor

interact repeatedly and play one among finitely many possible stage games in each period. At the

beginning of every period, they are informed of the stage game they are about to play, which is

chosen independently of past actions, but they do not know the future realization of stage games.1

All past actions and realized games are observable.

Unlike the standard model of stochastic games, this setup is bereft of any information on how

future games evolve over time. Instead, the model allows for an arbitrary notion of how stage

games are drawn, in that sense incorporating maximal uncertainty towards the future, we thus

call this set-up an uncertain repeated game. To discipline the model, we use the following ex-post

notion of equilibrium: a strategy profile is said to be an ex-post perfect equilibrium (Carroll [2021])

if it constitutes a subgame perfect equilibrium "pointwise", that is, for any possible realizations for

future stage games.

Ex-post equilibrium is a fairly demanding criterion, and so any cooperation (or conflict) at-

tained under its guise is robust in its predictive power. It is robust to any misspecifications or dis-

agreement that the players or the outside analyst may have about the underlying stochastic process,

and it naturally satisfies a non-regret condition for all players–— no matter the future realization

of stage games, no player will individually regret not having deviated at any point.2

1The fact that the players’ actions do not affect the evolution of stage games is common knowledge. Extension to
endogenous transitions is possible and discussed in the paper, but at first pass, the attempt is to understand the complexity
introduced by exogenous uncertainty.

2The idea of ex-post perfect equilibrium is not necessarily steeped in a (direct) model of individual maximization.
Instead, ex-post perfect equilibria demand that each player’s strategy best responds to the other players’ strategies in
hindsight. In that sense, as we will argue later, it provides robust ‘lower bound’ in predicting behavior in stochastic
games.
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Two perspectives. There are two natural ways to characterize the predictive content of the

proposed model, depending on the analyst or the modeler’s information. First, suppose that the

modeler has access to the true stochastic process that governs the evolution of stage games and

that the process is first-order Markov, as standard in stochastic games. This allows us to compute

expected continuation payoffs associated with any particular strategy at any point in the game tree.

Then, we ask the canonical question that has occupied the repeated games literature for some time:

when is an expected payoff vector achievable on-path in an equilibrium? However, in a departure

from the literature, the demand for equilibrium is stronger; in particular, we demand it to be ex-

post perfect.

One way to think about this problem is to draw a parallel with robust mechanism design, in

the sense of Bergemann and Morris [2005]. The designer wants to maximize expected profits, say,

but wants to sustain the equilibrium in dominant strategies. Why? For any of the many robustness

considerations. It could be that the players do not understand fully how values are distributed, or

they may have heterogeneous priors, or they may not be able to do Bayesian updating correctly,

etc. Similarly, here, the modeler (or designer) can be interested in sustaining a particular expected

payoff on-path but is not sure how well the players understand the draw of stage games, and hence

seeks to achieve this expected payoff under the ex-post equilibrium notion.3

The second, more abstract and ambitious, approach is to get rid of any references to stochastic

processes driving stage games altogether. It could be that the modeler, too, is unsure about the

stochastic process governing the evolution of stage games, or we could simply be interested in un-

derstanding if a particular sequence of actions that are observed in a data set can ever be rationalized

under some realization of stage games. Unfortunately, the standard approach of studying repeated

and stochastic games in the payoff space is no longer tractable because the set of feasible payoffs

is infinite-dimensional, one for each possible realization of stage games. To overcome this chal-

lenge, we revert to the classical approach of studying outcomes (see Abreu [1988]) that describe

sequences of action profiles as a function of realized stage games. For example, in the model of

Bertrand competition studied in Rotemberg and Saloner [1986], charging the monopoly price in

recessions and half of it in booms is an outcome. Here, we seek to characterize the set of outcomes

that can arise on-path in some ex-post perfect equilibrium.

In the remarkable recent work, Carroll [2021] takes the second perspective outlined above, but

for the case of one long-run player (in the sense of Fudenberg, Kreps, and Maskin [1990], wherein

only one player has a positive discount factor). This paper builds on Carroll’s elegant analysis.

While the broad motivations mentioned above are common to both papers, the first perspective

3This question is related to Gershkov, Goeree, Kushnir, Moldovanu, and Shi [2013], which showed the equivalence
of Bayesian and dominant strategy incentive compatibility in the standard auction setting with independent private
values.

3



above is novel to this paper; and more generally, we submit that a fuller picture of the limits to

cooperation and conflict introduced by uncertainty, and associated costs of robustness, can only

be rightfully addressed by studying games with many long-run players. Most applications of the

theory of repeated games, e.g., collusion, price wars, risk-sharing, sustainable policy plans, rela-

tional contracts and more, necessitate multiple long-run players.4

The main results. These two perspectives we just laid out are fairly broad. In this paper,

we focus on the case of little discounting and aim to deliver robust folk theorems. Conceptually,

these folk theorems can be posed as follows: there is no cost of seeking robustness to the exact

understanding of the evolution of future stage games— first in terms of expected payoffs when the

modeler has access to the true stochastic process, and second in terms of outcomes when all parties

are taken to be maximally uncertain— for large values of the discount factor.

Onto the results. Recollect, an expected payoff is feasible if it can be attained under some well-

defined strategy, and it is individually rational if it gives each player at least her minimum threshold

value that can be guaranteed when best responding to other players. The first main result shows

that every feasible and individually rational expected payoff can be attained by patient players

in an ex-post perfect equilibrium, that is, independent of how information is modeled, if each

possible stage game satisfies the usual interiority assumption.5 Strikingly, the result says that the

folk theorem is valid, irrespective of the extent of misspecficiation, disagreement, asymmetry, time

inconsistency, and uncertainty of information on how future stage games are drawn.

To prove the result, we introduce a novel budget mechanism that calibrates the subgame perfect

equilibrium strategy profile to satisfy the ex-post criterion. The ex-post criterion picks the tight-

est incentive constraint, pointwise across all realizations of stage games, even though this tightest

constraint may be relevant with small probability under the true stochastic process. The bud-

get mechanism uses this information: it keeps track of players’ cumulative incentives to deviate

and alters their actions from the benchmark strategy profile if this cumulative count exceeds a

pre-determined budget cap. The cap is not binding for frequent stage game realizations, since the

original strategy profile is subgame perfect, so the count is within the desired bound in expectation.

However, if the tightest incentive constraint occurs for infrequent realizations of stage games, this

cap can be violated for the ex-post criterion, and so actions of the players are modified to accom-

modate this, but expected payoffs are approximately unaltered because of the rarity of these stage

game realizations. The technical challenge is in ensuring this budget mechanism blends with the
4Themultiple long-run player model poses non-trivial technical challenges, some of which are highlighted by Carroll

[2021].
5Interiority means that there must be some slack in the payoff space to punish and reward players for deviating and

participating in others’ punishments, respectively. This condition is common in repeated games (Fudenberg andMaskin
[1986], Fudenberg et al. [1994]) and stochastic games (Fudenberg and Yamamoto [2011], Hörner, Sugaya, Takahashi,
and Vieille [2011]).
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standard reward and punishment techniques from repeated games, on-and-off-path.

The second main result establishes the folk theorem for the uncertain repeated game in the

language of outcomes for the payoff set is infinite-dimensional and no longer tractable.6 As is

standard, every outcome that is played on-path in some XPE must give each player at least their

discountedminmax payoffs irrespective of discounting. Our folk theorem for outcomes establishes

the converse statement by showing that patient players can be mixmaxed in all future stage games

simultaneously—in the language of Abreu [1988], a universal penal code exists asymptotically.7 As

a result, outcomes that deliver payoffs above the discounted minmax are precisely those that can

arise on-path in some XPE when players are patient enough.

The folk theorem for outcomes requires another assumption, in addition to the statewise inte-

riority described above. This extra assumption limits how bad it can be for other players to punish

a deviator across all stage games.8 This is a natural condition for without it a universal penal code,

that achieves the dynamic minmax is unlikely to exist.

To prove the theorem, we first normalize each stage game by a fixed payoff vector. This allows

dynamic incentives to be comparable across various stage game realizations. Second, we restrict

attention to strategy profiles inwhich both on-and-off path continuation payoffs are independent of

the future realization of normalized stage games. This second step reduces the dimensionality of the

problem to a recursion that can be studied using standard repeated games techniques. However, it

must be emphasized that it also imposes a substantial restriction on the class of dynamic incentives

under consideration. The nontriviality here rests in the claim that this restricted class of strategy

profiles is enough to achieve the dynamic minmax payoff by varying the normalizing vector as

δ → 1, giving us the folk theorem for outcomes.

Finally, to make a direct comparison to Carroll [2021], we show how the technique works

for the special class of strongly symmetric ex-post perfect equilibria when focusing on symmetric

games. The search for strongly symmetric equilibrium reduces the game to a decision problem, and

so a universal penal code can be constructed simultaneously across all realizations of stage games.

The restriction on continuation payoffs to be independent of future stage games, thus, does not

bite, and a complete characterization of the equilibrium outcomes for all values of the discount fac-

tor is provided. Carroll [2021] studies uncertain repeated games with one-long run player; ex-post

perfect equilibria there can be formally mapped to strongly symmetric ex-post perfect equilibria

in symmetric games with multiple long-run players.

Extensions. In the last part of the paper, we explore the relaxation of the key modeling as-
6Recollect an outcome is a sequences of action profiles as a function of realized stage games.
7In fact, Carroll [2021] illustrates the difficulty of establishing such a universal penal code for multiple long-run

players through a two-period example.
8It is satisfied in a large class of games: symmetric games, games with money burning, games which have joint

minmax, and more.
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sumption in the main results, while keeping ex-post perfectness as the equilibrium criterion.

For two of these, we offer concrete answers through examples. First, we assumed transitions

between states are exogenous. Through a simple example, we illustrate how the basic insights

go through as long as the dependence of the stochastic process on actions is limited. Second, we

considered games in which players observe the current state, say are we in the high or low demand

regime. Through a simple example again, we propose a tractable way to incorporate asymmetric

observability of the current stage game into the model and show that our budgeting mechanism

continues to work.

Next, the monitoring structure here is assumed to be perfect, that is all players observe all other

players’ actions. The basic construction of the folk theorem here, we conjecture, will go through

to an imperfect monitoring world with appropriate modeling assumptions and proof adjustments.

It is also natural to ask how to go about characterizing the set of equilibria for a fixed value of the

discount factor. This question has been addressed in our companion paper, Krasikov and Lamba

[2023], which pins down a subset of ex-post perfect perfect equilibria that through the construction

of an outer bound is shown to be tight enough for many of classes of dynamic games.

Finally, we explain that ex-post perfect equilibrium is naturally connected to subgame perfect-

ness under dynamic variational preferences as defined in Maccheroni, Marinacci, and Rustichini

[2006a,b] —a strategy profile is ex-post perfect if and only if it is subgame perfect for all (poten-

tially dynamic) ambiguity indices. This explains how ex-post perfect equilibrium provides a lower

bound in predictions for a large class dynamic ambiguity averse preferences.

Related literature. This paper is a contribution to the theory of both dynamic decision prob-

lems and games, and robust approaches to games of incomplete information. In addition to Carroll

[2021], the only other paper we are aware of that rests within the rubric of uncertain repeated

games is Kostadinov [2023]. It looks at regret minimization as opposed to ex-post perfectness as

the equilibrium criterion and finds results much more permissive than ours or Carroll [2021].

The concept of ex-post perfect equilibrium has been studied in other dynamic models before.

Most closely, Fudenberg and Yamamoto [2010] studies repeated games (with a single stage game)

where the monitoring structure is fixed but unknown and the equilibrium notion is a version of ex-

post perfect; it then establishes a folk theorem for this setup. Beyond repeated and stochastic games,

notions of ex-post perfect equilibrium have also been studied in models of dynamic mechanism

design (Mirrokni, Leme, Tang, and Zuo [2020]) and in sequential voting (Kleiner and Moldovanu

[2017]). The criterion is also related to the belief-free equilibrium, which is used to gain tractability

in repeated games with private monitoring (Ely, Hörner, and Olszewski [2005] and Hörner and

Lovo [2009]).

Other related papers seek robustness with respect to information in dynamic decision problems
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and games: Chassang [2013] studies dynamic contracts with limited liability constraints that are

robust to underlying stochastic process that maps effort to output; it shows linear contracts do

approximately well. Penta [2015] extends some of the ideas of robust mechanism design initiated

by Bergemann and Morris [2005] from static to dynamic environments. Libgober and Mu [2023]

examines Coasian dynamics under informational robustness— seller does not know the process

through which buyer learns her valuation and has ambiguous preferences over this uncertainty; it

characterizes the optimal price path in this setting. de Oliveira and Lamba [2023] studies a model

of dynamic choice where an analyst tries to rationalize a sequence of choices without having access

to the dynamic information seen by the decisionmaker, and establishes a duality result to pin down

these actions.

This paper builds on the classical literature on stochastic games (Shapley [1953] and Solan

and Vieille [2015]), and more recent work on folk theorems for stochastic games (Fudenberg and

Yamamoto [2011] and Hörner, Sugaya, Takahashi, and Vieille [2011]). Most of the papers in the

literature focus on imperfect monitoring of past actions assuming perfect observability of stage

games and common knowledge of the stochastic process that drives them. The notable exception

is Yamamoto [2019] which studies stochastic games with imperfectly observable stage games. In

this paper, the stochastic process of stage games is still commonly known, therefore players’ belief

about the current stage game can be regarded as a state variable, and the usual notion of subgame

perfectness continues to apply.

2 Model and notations

2.1 Primitives

Consider players i ∈ N := {1, . . . , n} interacting in discrete time t = 0, 1, . . ..

Every period the players face one stage game chosen from a finite set. Formally, a stage game

is a pair (A, u), where A =
∏n

i=1 Ai is a finite set of action profiles and u : A → Rn is a payoff

function. LetU := Conv(u (A)) be the convex hull of payoffs in the stage game (A, u), and assume,

w.l.o.g.,

r i := min
a∈A

ri (a) = 0, where ri (a) := max
ãi ∈Ai

u ( ãi, a−i) ∀i ∈ N . (1)

This normalizes the minmax payoff in a stage game for each player to zero. Further, denote by

d (a) := r (a) − u (a) the best static deviation gain from a fixed action profile, and extend u to ΔA

by linearity, i.e., u ( β) := ∑
a∈A u (a) β (a).

There will be multiple possible stage games—the set of possible games Θ is finite and com-

monly known. Each element θ ∈ Θ specifies a pair (A(θ), u (·|θ)). Then, an uncertain repeated
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game is a tuple (Θ, (A(θ), u (·|θ))θ∈Θ, δ), where δ < 1 is the common discount factor. We take

(Θ, (A(θ), u (·|θ))θ∈Θ) as the primitive of the model, and fix it throughout. There is also perfect

recall, so whatever is observed by the players is always remembered.

Three additional assumptions are imposed: (i) current stage game is common knowledge, i.e., at

the beginning of each period, all the players are informed of the stage game, θ ∈ Θ, they are about

to play; (ii) perfect monitoring, i.e., observance of opponents’ actions at the end of each period;

and (iii) exogenous transitions, i.e, action-independent switching between stage games. Potential

extensions relaxing these are discussed in Section 6.

Now, we seek a theory of dynamic interactions here whose predictions are robust to how

stage games are drawn from the set Θ. To write down payoffs and state results, we will take two

perspectives.

In the first, we will allow the modeler to take a call on the objective uncertainty, and set a true

transition function for then a well-defined stochastic game. Even though the modeler has access

to an objective transition function, the players’ incentives will still be required to satisfy an ex-

post criterion. As is standard in the literature, the true stochastic process is taken to be first-order

Markov. We denote it by π ∈ RΘ×Θ++ , that is a right-stochastic matrix with the interpretation that

π (θ t , θ) = P(θ t+1 = θ |θ t ). To simplify exposition, we assume that the initial stage game is drawn

from the unique stationary distribution µ(π) ∈ ΔΘ.9

The second approach will be completely bereft of any stochasticity in the modeling of primi-

tives. Specifically, all statements will be made in terms of a dynamic game fixed by a realization of

stage games, e = (θ0, θ1, . . .) ∈ Θ∞, which will be termed an environment. Here, there is no no-

tion of "expected payoffs", so all results must be stated in terms of outcomes describing sequences

of on-path action profiles and associated ex-post payoffs as a function of an environment.

2.2 Strategies and payoffs

At date t the players are symmetrically informed about a public history ℎ t that includes sequences

of past action profiles (a0, ..., a t−1), stage games (θ0, ..., θ t ) and sunspots (ω0, . . . , ωt ), which are

taken to be i.i.d. uniform random variables. This makes our setup analogous to a standard repeated

gamewith perfect monitoring, perfect recall, and access to public correlation device, á la Fudenberg

and Maskin [1986], and Mailath and Samuelson [2006] (see Chapters 2 to 6) except that the players

face potentially different stage games.

A (pure) strategy σi for player i ∈ N prescribes for each history ℎ t , a pure action σi (ℎ t ) ∈
Ai (θ t ).10 Given an environment e , the ex-post payoff under strategy profile σ := (σ1, . . . , σn) is

9Existence and uniqueness of the stationary distribution follows from Perron–Frobenius Theorem.
10The analysis of mixed strategies is almost identical when randomizations chosen by the players is observable
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defined inductively as

U σ (ℎ t |e) = (1 − δ)u (σ (ℎ t ) |θ t ) + δEt [U σ (ℎ t , σ (ℎ t ), θ t+1, ωt+1︸                    ︷︷                    ︸
=ℎ t+1

|e)], (2)

where ℎ t is compatible with e and the expectation Et [·] is taken over the (t + 1)-th sunspot.

Slightly abusing notation, denote the payoff at the outset under σ by U σ (e). If the stage games

evolve according to the transition matrix π, then we can similarly compute the expected payoff

under σ as

U σ (ℎ t |π) = (1 − δ)u (σ (ℎ t ) |θ t ) + δ
∑︁
θ t+1∈Θ

Et [U σ (ℎ t , σ (ℎ t ), θ t+1, ωt+1︸                    ︷︷                    ︸
=ℎ t+1

|π)]π (θ t , θ t+1), (3)

where again the expectation Et [·] is taken over the (t + 1)-th sunspot. As before, letU σ (π) be the
expected payoff at the outset.

2.3 Equilibrium notions

For completely specified models of dynamic and stochastic games, we use the standard equilibrium

notion, namely Subgame Perfect Equilibrium (SPE).

Definition 1. A strategy profile σ is SPE of dynamic game e if for each history ℎ t that is compatible

with e and every alternative strategy profile σ̃,

U σ (ℎ t |e) ≥ U (σ̃i,σ−i ) (ℎ t |e) ∀i ∈ N ; (4)

similarly, it is SPE of stochastic game π if for each history ℎ t and every alternative strategy profile σ̃,

U σ (ℎ t |π) ≥ U (σ̃i,σ−i ) (ℎ t |π) ∀i ∈ N . (5)

The solution concept we shall use for an uncertain repeated game is Ex-post Perfect Equilib-

rium (XPE).

Definition 2. A strategy profile σ is XPE if it is an SPE of every dynamic game e.

Two observations are immediate. First, if a strategy profile is XPE, then it is SPE for every

stochastic game, but the converse is not true. Moreover, since the one-shot deviation principle

holds for SPE of every fixed dynamic game, it also holds for XPE.

Our definition of Ex-post perfect equilibrium follows Carroll [2021], generalizing its function-

ality from uncertain repeated games with one long-run player to multiple long-run players. It is a

natural but demanding concept. It is based on the idea of no regret — for any possible realization
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of stage games, no player regrets having not deviated. It is also robust to heterogeneous beliefs,

misspecifications in modeling information, and potential time inconsistencies in the processing of

information by players.

Wewill studyXPE from two complementary perspectives. First, when themodeler is equipped

with objective probability on the evolution of stage games and asks the question of when can a

certain expected payoff be attained through incentives that are robust to the fine details of the

stochastic evolution. This parallels the question from mechanism design — when can a Bayesian

objective be attained under ex-post incentive compatibility. And, second, we also explore on-path

behavior — what sequences of action profiles can be played on-path irrespective of the specific

realization of future stage games? This exercise is useful for understanding the extent of cooperation

(or conflict) that can be sustained uniformly across various realizations of dynamic games.

2.4 Comparing XPE and SPE

Before stepping into the results, it is useful to pause and understand the workings on XPE and its

contrast from SPE.

To begin, suppose that there are only two periods. The first-period stage game is fixed but

there are two possible second-period stage games, say L and R. Here, a deterministic strategy

profile prescribes an action profile in period 1, s , and an action profile in period 2, sθ (a), for each
second-period stage game θ as a function of the action profile in period 1, a. See Figure 1 below

for an illustration.

Game L

Game R

s

a

sL(s)

sL(a)

sR (a)

sR (s)

Figure 1: Illustration of a strategic situation and a strategy profile.

Suppose for a moment that both players agree on the probabilities of the second-period stage

game. Then, as is standard, a strategy profile (s, sL, sR) is subgame perfect if and only if sθ always

selects a static Nash in game θ and for each player,

static gain from deviation in period 1 ≤
∑︁
θ=L,R

P(θ)
(
loss from punishment in θ

)
. (6)
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As can be seen from the incentive constraint in (6), an SPE strategy profile must be designed to

deter deviations in expectation. In contrast, the stronger ex-post criterion demands deviations to

be deterred simultaneously in all second-period stage games replacing (6) with

static gain from deviation in period 1 ≤ min
θ=L,R

(
loss from punishment in θ

)
. (7)

As a result, no player has a profitable deviation irrespective of her (potentially subjective) proba-

bilistic assessment of L and R.

XPE shares the logic of SPE with a commonly known stochastic process by disallowing prof-

itable unilateral deviations. The core difference between these two criteria, as can be seen from

Eq. (6) and Eq. (7), lies in how dynamic losses from punishment are perceived by the players, i.e.,

minθ versus
∑
θ P(θ). Of course, XPE is a more demanding notion, but it has an appealing feature

of robustness to potential misspecifications of the stochastic process and/or additional information

the players might have about the second-period stage game.

Furthermore, XPE is compatible with a much larger class of dynamic preferences, namely

dynamic variational preferences of Maccheroni et al. [2006a,b]. Such preferences are represented

by a convex cost function C (P(L),P(R)), and a player ranks strategy profiles according to the

criterion:

inf
(P(L),P(R))

(∑︁
θ∈Θ
P(θ)

(
discounted utility if θ realizes

)
+C (P(L),P(R))

)
. (8)

It is not hard to see that an ex-post perfect strategy profile is necessarily subgame perfect when the

players have dynamic variational preferences. Conversely, a strategy profile that is subgame perfect

for all such preferences satisfies the ex-post criterion.11

3 Robustness of expected payoffs in stochastic games

In this section, we will ask the question of robustness of expected payoffs. There is an objective

first-orderMarkov process π attached to the evolution of the stage games; however, the equilibrium

criterion is ex-post perfectness. To state the result, we will make use of the following definitions

of expected equilibrium payoffs.

Definition 3. w ∈ Rn is an expected equilibrium payoff of stochastic game π if there exists an SPE

σ of π satisfying U σ (π) = w; and w ∈ Rn is an expected limit equilibrium payoff if there exists a

sequence (w (δ))δ<1 converging to w such that for each δ, w (δ) is an equilibrium payoff of π when the

players discount the future with δ.
11See Section 6.5 and Supplementary Appendix for details.
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Definition 4. w ∈ Rn is an expected robust equilibrium payoff of stochastic game π if there exists

an XPE σ of π satisfying U σ (π) = w; and w ∈ Rn is an expected robust limit equilibrium payoff

if there exists a sequence (w (δ))δ<1 converging to w such that for each δ, w (δ) is a robust equilibrium
payoff of π when the players discount the future with δ.12

The main result of this section will deliver a complete characterization of robust limit equilib-

rium payoffs; in particular, a folk theorem type of result. It shows that the under a mild interiority

assumption, the set of robust equilibrium payoffs coincides with the set of "feasible and individu-

ally rational" expected payoffs, which are expected payoffs that can be obtained by some strategy

profiles and guarantee each player at least her expected minmax payoff, normalized here to 0. So,

robustness can be guaranteed in the limit as δ → 1 at no costs — all "feasible and individually

rational" can be obtained not only in SPE but also in XPE. To fix ideas, we start with an example.

Example 1. There are two equally likely stage games, L and R, and two players. Table 1 describes both

stage games and depicts their respective feasible payoffs, U (L) and U (R). It also illustrates the set of
feasible payoffs in the stochastic game when (θ t ) are i.i.d. uniform, that is U (L)+U (R)

2 . In each game,

the minmax payoff vector (0, 0) is a static Nash equilibrium.

x2 y2
x1 0?, 0? −1,−1
y1 −1, 7/2? 1/2?, 1/2

Game L

x2 y2
x1 0?, 0? 7/2?,−1
y1 −1,−1 1/2, 1/2?

Game R

U (L)

U (R)

w1

w2

(5/4, 5/4)

Table 1: Uncertain repeated game for Example 1: “?” indicates the static best-response,
U (L)/U (R) is a red/blue triangle and U (L)+U (R)

2 is a gray polygon.

It is easy to pick visually that the maximal symmetric expected payoff in the "average" game, ( 54,
5
4 ),

can be attained by standard grim trigger type of strategies: play (y1, x2) in game L and (x1, y2) in game

R until no one has deviated. After any deviation, the players switch to playing the static Nash (x1, x2)
in each game. Clearly, this strategy profile is SPE if and only if −(1 − δ) + δ 54 ≥ 0 that gives δ ≥ 4

9 . So,

it follows that ( 54,
5
4 ) is a limit equilibrium payoff.

12The set of robust limit equilibrium payoffs is closed. To see it take a sequence (wk ) in this set that converges to
some point w , and, for each k, let (wk (δ))δ<1 be robust equilibrium payoffs converging to wk . Choose (δk ) so that
‖wk − wk (δk )‖ ≤ 1

k for all k. Then, ‖w − wk (δk )‖ ≤ ‖w − wk ‖ + 1
k → 0 as k → ∞, which proves that w is a robust

limit equilibrium payoff.
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Can this expected payoff also be attained under an XPE for large δ? First of all, note that the grim-

trigger strategy profile introduced above will not do it. In the environment e = L∞, the player 1’s

ex-post payoff from not deviating and playing y1 in every period equals −1. It is therefore obvious that
player 1 should deviate, no matter the value of δ. Further, since ( 54,

5
4 ) can only be written as a convex

combination (with equal weights) of two extreme points (−1, 72 ) and ( 72,−1), there is no other XPE

strategy profile that would work. So, ( 54,
5
4 ) cannot be attained as an XPE payoff for any δ < 1.

But still, we will now show that ( 54,
5
4 ) is indeed a robust limit equilibrium payoff. Intuitively, the

grim-trigger strategy profile in which (y1, x2) and (x1, y2) are played in game L and R, resp., violates

conditions for XPE only in a "small" number of environments. This is because frequencies of L and R

stage games are identical for almost every environment under π by the strong law of large numbers,

and in that average sense, an XPE can be constructed to approximate the expected payoff of ( 54,
5
4 ) with

arbitrary precision as δ → 1.

Here goes: fix some large number k and consider a random walk (b (θ0:t )) on {0,±1, . . . ,±k} that
starts at 0, i.e., b (∅) = 0. Game L pushes the walk towards the left and R pushes it towards the right,

and the two endpoints ±k are reflecting boundaries, i.e.,

b (θ0:t−1,L) = max{b (θ0:t−1) − 1,−k} and b (θ0:t−1,R) = min{b (θ0:t−1) + 1, k}.

Now, consider the following strategy profile:

• if θ t = L, then play (y1, x2) when b (θ0:t−1) > −k and (y1, y2) when b (θ0:t−1) = −k;

• if θ t = R, then play (x1, y2) when b (θ0:t−1) < k and (y1, y2) when b (θ0:t−1) = k;

• the players play (x1, x2) ad infimum after the first deviation.

Figure 2 visually depicts this strategy profile and associated stage payoffs at each step. An intuitive way

to think about this construction is that the random walk represents a budget of how many times a player

can obtain a negative payoff if the same stage game keeps arriving.

0 +1−1 +k−k
R : (7/2,−1)L : (−1, 7/2) R : (1/2, 1/2)L : (1/2, 1/2)

Figure 2: Construction of XPE in Example 1.

This strategy profile, we claim, is an XPE for large values of δ. If δ is close to 1, then the worst case,

or the tightest incentive constraint for player 1 is when the random walk is currently at the right corner

at +k, and then game L occurs in all future periods. So, after 2k periods of a stage payoff of −1, the
state process reaches −k, and player 1 is then guaranteed a payoff of 1

2 . The incentive constraint reads as

13



−(1 − δ2k) + δ2k2 > 0 that implies δ >
( 2
3
) (2k)−1 .13

Next, it is routine to verify that the random walk admits a unique stationary distribution, which

turns out to be uniform over {0,±1, . . . ,±k}. Taking δ → 1, simple calculations show that this strategy

profile then gives each player the following expected payoff:

5
4
2k − 1
2k + 1

+ 2
1

2k + 1
− 1
4

1
2k + 1

. (9)

The expression in Eq. (9) converges to 5
4 as k → ∞, so the point ( 54,

5
4 ) is a robust limit equilibrium

payoff because the set of robust limit equilibrium payoffs is closed, and we are done.

The gist of this argument is generalizable to any set of stage games that satisfy a standard

interiority assumption, tomultiple players, and to any irreducible and aperiodic first-orderMarkov

process. A key simplification afforded by the example above is that the minmax payoff is a static

Nash in each stage game. No such restriction is required for the more general result. But, it does

make the construction more delicate for the punishments too must be robustly incentivized —

they too have to be an XPE. This gives us the robust folk theorem which states that given a state-

wise interiority condition, every feasible and individually rational payoff of a stochastic game can

be obtained robustly in an ex-post perfect equilibrium.

The proof leverages the classic approach of Fudenberg and Maskin [1986] in that each deviat-

ing player is minmaxed over a sufficiently long time horizon and the other players are eventually

rewarded for punishing the deviator. There are two conceptual innovations: history-dependent

duration of punishment phases and a state process that limits ex-post losses of players through a

budget mechanism, as in Example 1. The former would be required to prove an SPE version of

the folk theorem for an arbitrary stochastic game π . The latter, however, is specific to XPE, so

that even if the players knew an environment, they would not gain by deviating and triggering

punishments.

Careful calibration is required to make the budget mechanism, characterized by the state pro-

cess, work generally. As we saw in Example 1, XPE in pinned down by the tightest incentive

constraint across all environments, given there by e = L∞. However, for any finite but growing

sequence of stages games, the probability of the binding environment gets vanishingly small and

so does its impact on expected payoff under the true stochastic process. The budget mechanism

uses this extra information to simultaneously achieve ex-post perfectness and the desired expected

equilibrium payoff in the limit.

This is done by altering the players’ strategy if the realized sequence of stage games is converging

13For intermediate values of δ, the worst case might be different. The reader can verify that it is as follows: the
walk starts at k and either e = L2k (RL)∞ or e = L∞ is the worst environment, which gives player 1 the payoff of

min
{
−(1 − δ2k ) + δ2k −1+ 7δ

2
1+δ ,−(1 − δ

2k ) + δ2k2

}
.
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towards the binding environment. And otherwise, the strategy sticks to the benchmark strategy

profile which is subgame perfect. Given the subgame perfectness of the original strategy under the

true stochastic process, the scenarios where players’ strategy needs to be altered are infrequent, and

thus the desired expected payoff is asymptotically attained. The technical challenge for the general

proof is to calibrate the budget mechanism to work both and on-and-off path, blending it with the

standard rewards and punishment construction from repeated games.

Moving onto the formal statement, we first recall two well-known folk theorems for general

stochastic games.14

Theorem 1 (Theorem 3 in Fudenberg and Yamamoto [2011]; Theorem 2 in Hörner, Sugaya,

Takahashi, and Vieille [2011]). If Int(∑θ∈Θ U (θ)µ(θ |π)) ∩ Rn++ is non-empty, then w is a limit

equilibrium payoff of π if and only if it is an element of

(∑θ∈Θ U (θ)µ(θ |π)) ∩ Rn+ . (10)

Here the interiority assumption, Int(∑θ∈Θ U (θ)µ(θ |π)) ∩ Rn++, is a direct generalization of

the standard version in Fudenberg and Maskin [1986], which in the context of a single repeated

game seeks some minimal slack in the payoff set so that each player can be punished and rewarded

for punishing others. The condition invoked above seeks a similar slack in expected payoffs. In

the context of Example 1, it simply means that the grey-shaded area intersected with the positive

orthant should have a non-empty interior.

The result then claims the equivalence between the set of feasible and individually payoffs,

(∑θ∈Θ U (θ)µ(θ |π)) ∩ Rn+, where each player obtains at least her expected minmax payoff; and

the set of limit equilibrium payoffs of the stochastic game. Recollect that one direction here is

obvious, that all (limit) equilibrium payoffs must be not lower than the expected minmax; the

other direction that each feasible and individually rational expected payoff can be asymptotically

attained as an SPE constitutes the folk theorem.

The main result of this section shows that there is no cost of robustness in terms of expected

equilibrium payoffs under the natural condition of state-wise interiority.

Theorem 2. Suppose that Int(U (θ)) ∩Rn++ is non-empty for all θ ∈ Θ. Then, every limit equilibrium

payoff of π , i.e., an element of the set defined in Eq. (10), is a robust limit equilibrium payoff.

Proof. See Appendix. �

The result claims that all feasible and individually rational expected payoffs can be asymptoti-

cally attained as an ex-post equilibrium of the stochastic game. It establishes an equivalence between

14The original results are stated for a more general model with action-dependent transitions and imperfect monitoring
of past actions. Theorem 1 here states the special case restricted to our setting.
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the sets of limit equilibrium payoffs and robust limit equilibrium payoffs. Robustness in the sense

of ex-post perfect equilibrium is a significantly more demanding condition than simply requiring

subgame perfectness, and yet for the patient players, there is no loss. In the context of Example

1 again, this means that the part of the grey-shaded area lying in the positive orthant, including

payoffs on the two axis, can actually be attained robustly as δ → 1.

Now, it is important to strengthen the interiority assumption to its state-wise form for we de-

mand a stronger equilibrium criterion. The following example illustrates this point, also suggesting

it might be difficult to obtain this theorem under weaker conditions.

Example 2. Game L is a standard prisoner’s dilemma, game R only has one action available for both

players which yields them a payoff of 0 each.

1, 1 −2, 2?
2?,−2 0?, 0?

Game L

0?, 0?

Game R

U (L)

U (R)
0 w1

w2

Table 2: Uncertain repeated game for Example 2: “?” indicates the static best-response, U (L) is a
red polygon and U (R) is a blue dot.

For every positive stochastic matrix π , the associated invariant measure assigns positive probability

to game L, i.e., µ(L|π) > 0, and the interiority assumption of Theorem 1 holds. So, every payoff vector

w ≥ 0 in U (L)µ(L|π) is attainable, at least in the limit, as an SPE.

However, when we look at XPE, the interiority assumption from Theorem 2 fails for Game R. In

terms of incentives, it is easy to see that since game R has only one action profile, any two strategy profiles

give the same payoff in the environment R1:∞. So, there is no room to punish for a deviation in game L

if game R realizes forever after. As a result, no matter what π we start with, for any δ < 1, the unique

XPE here is to play the static Nash equilibrium in every period.

Theorem 2 delivers an asymptotic characterization of expected payoffs when incentives are

required to hold sans any reference to a stochastic process on the evolution of stage games. The

modeler though is Bayesian and equipped with a Markov process on how games evolve. This

conceptually allows the designer or modeler to have clear objectives in mind, and to that end, it

also allows for explicit calculations of expected payoffs. Going forward, we drop stochasticity all

together, and seek an environment-wise characterization of actions (and associated ex-post payoffs)
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that can be chosen by patient players on-path in some XPE.

4 Robustness of on-path behavior in dynamic games

We now embrace complete uncertainty on the evolution of stage games within the context of our

model: keeping the set of stages games fixed still, we do not take any call on a stochastic process

fromwhich stage games are drawn. The equilibrium concept remains the same, i.e., ex-post perfect

equilibrium; however, we now do not have access to π from the earlier section that helped us define

expected payoffs. In fact, the set of feasible ex-post payoffs is now given by{
w ∈ Rn ·Θ∞ |∃ σ s.t. w (e) = U σ (e) ∀e ∈ Θ∞

}
. (11)

This set is infinite-dimensional and, unlike the standard repeated game, varies with δ. We will

indirectly characterize this set using the classical language of Abreu [1988] and state results in

terms of outcomes.15

4.1 The outcomes approach and statement of the result

An outcome α is an alternative way to think about strategy profiles. It prescribes for each on-path

history ℎ̃ t , which includes only sequences of stage games and sunspots, θ0:t and ω0:t , resp., an

action profile α( ℎ̃ t ) ∈ A(θ t ).16 So, a strategy profile induces an outcome that describes on-path

behavior, and hence following Eq. (2), we can define the payoff under outcome α as

U α ( ℎ̃ t |e) = (1 − δ)u (α( ℎ̃ t ) |θ t ) + δEt [U α ( ℎ̃ t , θ t+1, ωt+1︸          ︷︷          ︸
=ℎ̃ t+1

|e)], (12)

whereEt [·] represents the expectation over the ( t+1)-th period sunspot. Eq. (12) defines amapping

from outcomes to feasible ex-post payoffs, therefore if we knewwhich outcomes can occur on-path

in some XPE, we would be able to recover the whole set of ex-post payoffs that can be attained in

XPE.

Of course, not every outcome can arise on-path in some XPE.

Definition 5. An outcome α is said to be (robustly) justifiable if there exists an XPE σ such that for

each history ℎ t , if α( ℎ̃ s ) = a s for all s < t , then α( ℎ̃ t ) = σ (ℎ t ).
15Recently, Panov [2022] further developed this idea to study equilibria in continuous time to bypass the problem of

defining strategies in continuous time. Carroll [2021] uses outcomes to describe XPE in uncertain repeated games with
one long-run player. We push these ideas in the direction of a general description of equilibrium in terms of outcomes
for uncertain repeated games.

16Note in our notations, a complete history ℎ t differs from an on-path history ℎ̃ t in that the former also contains a
sequence of past action profiles, a1:t−1.
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That is, an outcome α is justifiable if it agrees on-path with some XPE strategy profile, and

robustness is implicit in the definition for it invokes justifiability corresponding to an XPE and

not just an SPE using π or for a fixed environment e . In what follows, the word robustness will

not be emphasized, but it is clear that we are working with robust justifiability.

It should also be clear that in the space of outcomes, there is an implicit recursion in the no-

tion of justifiability — an outcome is justifiable if and only if upon deviating from its path the

players can switch to another justifiable (punishment) outcome. Since each player i can keep devi-

ating ad infimum, she can guarantee herself at least the discounted sum of her stage game minmax

payoffs, (1 − δ)∑∞
t=0 δ

t r i (θ t ), which equals to 0 for all e ∈ Θ∞ due to our normalization. As

a result, if α is justifible, then the player i’s dynamic loss from the best static deviation, which

gives di (α( ℎ̃ t ) |θ t ), cannot exceed δ
1−δEt [U

α
i ( ℎ̃

t+1 |e)]. This gives us a simple necessary condition

for justifiability, which we term individual rationality keeping with the tradition. The following

definition marginally strengthens this condition requiring an additional slack of ε.

Definition 6. An outcome α is is (ex-post) ε-individually rational if for every environment e ∈ Θ∞

and each on-path history ℎ̃ t that is compatible with e,

(1 − δ)di (α( ℎ̃ t ) |θ t ) 6 δ (Et [U αi ( ℎ̃
t+1 |e)] − ε) ∀i ∈ N . (13)

As discussed, 0-individually rationality is necessary for justifiability irrespective of δ. The main

result of this section establishes approximate sufficiency of individual rationality for justifiability

for large values of δ. This approximation is captured by ε-individually rationality for arbitrarily

small ε > 0, and the result is later strengthened by taking ε to zero. Conceptually, it states each

player can be approximately minmaxed in all environments at the same time provided that δ is

large enough. To illustrate the main ideas, we start with an example.

Example 3. There are two games, L and R, and two players. The sets of feasible payoffs, U (L) and
U (R), are exactly the same as in Example 1 but the minmax payoff vector (0, 0) is no longer a static
Nash in either game.

x2 y2 z2
x1 −1,−1 0, 0? −1,−1
y1 0?, 0 −1,−1 1/4, 1/4?
z1 −1, 7/2? 1/4?, 1/4 1/2?, 1/2

Game L

x2 y2 z2
x1 −2/3,−2/3 0, 0? 7/2?,−1
y1 0?, 0 −1,−1 1/4, 1/4?
z1 −1,−1 1/4?, 1/4 1/2, 1/2?

Game R

Table 3: Uncertain repeated game for Example 3: “?” indicates the static best-response.

Is it possible for each player to be minmaxed in every period in each stage game on-path? That is, can

the payoff vector (0,0) be attained as an XPE no matter the realization of stage games? If it is indeed so,
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then we have the complete characterization of justifiable outcomes; that is, every 0-individually rational

outcome is justifiable, because the outcome that attains the minmax payoff can be used as the punishment.

Of course, the answer must depend on δ. For δ low enough, since either static game does not admit a

pure strategy Nash equilibrium, their repetition, e = L1:∞ or R1:∞, will not have any SPE either, and

hence there will be no XPE for the uncertain repeated game as well.

We claim that the answer is yes, and it can be proven using the automaton approach with just two

states, say S and S. Consider the following strategy profile:

• the play starts at state S in which the players play (x1, x2) and stay in this state with probability

1 − λ (θ t ) if no player deviated;

• the players play (z1, z2) in state S and stay in this state with probability one if no player deviated;

• any deviation restarts the strategy profile moving it back to state S.

Clearly, the ex-post payoff under this strategy profile depends on a history only through the current state.

Specifically, it delivers each player the ex-post payoff of 1
2 when in state S and the ex-post payoff w when

in state S, which satisfies the following recursion:

w (θ, e) =


−(1 − δ) + δ

(
(1 − λ (L))w (e) + λ (L) 12

)
if θ = L,

−(1 − δ) 23 + δ
(
(1 − λ (R))w (e) + λ (R) 12

)
if θ = R.

For this automaton to minmax the players, we must have w (e) = 0 for all environments e ∈ Θ∞. This

uniquely pins down two transition probabilities to be λ (L) =
2(1−δ)
δ and λ (R) =

4(1−δ)
3δ , which are

between 0 and 1 for δ ≥ 2
3 . By construction, the best-one shot deviation in state S gives 0, thus no player

can profitably deviate in this state. As for the other state, we require (1 − δ) 12 + δ
1
2 ≥ (1 − δ) 72 , which

gives δ ≥ 6
7 .

In summary, for δ ≥ 6
7 , there is an XPE in which both players obtain exactly the discounted sum

of their stage game minmax payoffs. Hence, an outcome (not necessarily symmetric) is justifiable if and

only if it is 0-individually rational for large values of δ.

Example 3 illustrates how for large enough values of δ, the players can be robustly minmaxed in

all environments at the same time, which allows us to justify all 0-individually rational outcomes.

This statement, generalized to all uncertain repeated games, gives us the folk theorem. Since the

claim is strong, it needs an extra restrictions on primitives, and in its full generality, requires a

bit of slack as captured by ε-individually rationality. As a piece of notation, we use
∧

for the

coordinate-wise infimum of a bounded Euclidean set.

Theorem 3. Suppose that Int(U (θ)) ∩Rn++ is non-empty and
∧(U (θ) ∩Rn+) = 0 for all θ ∈ Θ. Then,

for each sufficiently small ε > 0 there exists δε < 1 such that for every δ ≥ δε, an outcome α is justifiable

if it is ε-individually rational.
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The first condition is the same state-wise interiority assumption introduced in Theorem 2. The

second condition requires that each player can be asymptotically minmaxed in each individual stage

game. If this is not the case, i.e., there exists a θ such that the lowest payoff in U (θ) ∩Rn+ for some

player is strictly positive for, then asymptotic equivalence between justifiability and individual

rationality breaks down even in the repeated game when θ is repeated ad infimum.

The second hypothesis is satisfied in many models in which a player can be punished without

hurting the other players too much. It always holds if the players can engage in money-burning17,

and, importantly, it is satisfied in every symmetric uncertain repeated game, see Lemma 2 in Ap-

pendix for the proof. The condition also holds in many asymmetric situations, e.g., it is satisfied in

Bertrand games, and also Cournot where a player can be punished by taking an action that pushes

a market price below her own marginal costs.

To prove Theorem 3, we adopt the recursive method of Abreu, Pearce, and Stacchetti [1990],

intersected across all stage games, to identify a class of XPE—it is described in Lemma 1 below. As

an illustration of the main idea, suppose payoffmatrices in Example 3 are perturbed in an arbitrary

way, while still satisfying conditions of Theorem 3. So, a simple symmetric strategy profile based

on a two-state automaton may no longer be sufficient to attain the minxmax payoff as an XPE.

As a first step towards developing a general recursion, the payoffs in each stage game are nor-

malised by a vector, u ∈ Rn ·Θ. Since the payoff matrices might differ substantially after being per-

turbed, u serves the role of making them comparable again, so that incentives can be constructed

that may work across all environments. Then, an important property of strategy profile in Ex-

ample 3 is imposed—players’ continuation ex-post payoffs are independent of the future sequence

of stage games. This additional independence restriction dramatically reduces dimensionality of

ex-post payoffs and allows for building XPE using powerful recursive techniques. As we vary the

initial parametrization, we get a different subset of (normalized) XPE payoffs

So, the defining feature of XPE in the class that we will use to establish the theorem is that at

every history ℎ t , the players’ ex-post payoffs depend on a realized environment only through the

chosen normalizing vector u, i.e.,

Et−1 [U σ (ℎ t |e)] − (1 − δ)
∞∑︁
τ=t
δ t−τu (θ t ) is independent of θ t :∞, (14)

where Et−1 [·] is integrating out the t -th period sunspot.

We use this restricted class of XPE to construct punishments, one for each player, so that the

players’ ex-post payoffs are at most ε in all environments at the same time, provided that δ is large

17A game (A, u) with money-burning up to M ≥ 0 is such that each player is given an additional action that reduces
her payoff by exactly M without affecting the other players’ payoffs. Clearly, the set of feasible payoffs with money-
burning up to M ≥ 0 satisfies U (M ) := U + [−M , 0]n , and ∧(U (M ) ∩ Rn+) = 0 holds provided that M is large
enough.
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enough. Hence, as in Example 3, the minmax payoff vector can be attained, here approximated to

ε, on-path in an XPE. Finally, we use this as punishment to conclude that ε-individual rationality

is sufficient for justifiability.

4.2 Recursive technique

We refer the reader to Appendix for the complete proof of Theorem 3 and focus here only on the

first step.

Lemma 1 (Recursive technique to identify a subset of XPE ). Let u ∈ Rn ·Θ. Suppose that Γ ⊂ Rn is
a bounded subinvariant of the recursion Tu , i.e., Γ ⊆ TuΓ, defined by18

TuG =
⋂
θ∈Θ

Conv
({
γ ∈ Rn |∃a ∈ A(θ), (g i)ni=0 ⊂ G s.t.

(PK) γ = (1 − δ) (u (a |θ) − u (θ)) + δ g0,

(IC) (1 − δ)ui (a |θ) + δ g0i ≥ (1 − δ)ri (a |θ) + δ g ii ∀i ∈ N
})
. (15)

Then, for every γ ∈ Γ, there exists an XPE σ satisfying Eq. (14) and

U σ (e) = γ + (1 − δ)
∞∑︁
t=0
δ t u (θ t ) ∀e ∈ Θ∞. (16)

Proof. See Appendix. �

Lemma 1 describes away to construct XPE inwhich the players obtain environment-independent

gaps over the normalizing vector u. A gap here is simply the payoff a player gets over and above

the normalizing vector. Instead of recursing on payoffs as in say Abreu et al. [1990], we will re-

curse over these normalized payoffs, or gaps; and in addition these gaps will be independent of the

environment.

Why don’t we simply recurse over ex-post payoffs as in the classical approach? Recollect that

an attainable payoff can be a function of the full ex-post realization of the environment, w (e) ∈ Rn

for each e ∈ Θ∞. Hence, the set of feasible payoffs, as laid out in Eq. (11), is infinite-dimensional,

and the set of equilibrium payoffs too is infinite-dimensional.

So, even though the standard APS recursion is still valid, recursing over subsets of an infinite-

dimensional space, it cannot tell us much, in any generality about the structure of equilibria —

the geometry of the equilibrium payoff set is hard to compute, even numerically. In this back-

drop, environment-independent gaps deliver two objectives: first they reduce dimensionality of

18The gs in the recursion depend on θ, the notation is suppressed for clarity.
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the problem and make it tractable, and second they provide a robust way to preserve incentives

across all future environments.

Figure 3 illustrates the construction. Payoffs from two possible stage games have been shaded

in red and blue. Given some set of gaps G, which is a gray circle in the figure, we first apply the

standard APS operator to G + u (θ) in stage game θ. This operation produces two sets of payoffs,

which are depicted as ellipses around u, that can be attained in each stage game θ provided that

that future continuations are in G + u (θ).
Next, we translate the outputs of the APS recursion by u back to the origin and take the

intersection over θ to obtain the set of gaps TuG that can be attained with gaps inG. If it happens

that G is subinvariant, i.e., a subset of TuG as shown in the figure, then any gap in G can be

attained with continuations in G irrespective of what stage games will arrive in the future. This

allows us to construct XPE by recurring over elements of G in which realized environments shift

payoffs exactly by the discounted sum of normalizing vectors as shown in Eq. (16).

u (θ ′)

u (θ ′′)
G w1

w2

Figure 3: Illustration of recursion in Lemma 1.

In the proof of Theorem 3, we combine this lemma with the classical argument of Fudenberg,

Levine, andMaskin [1994] to argue that each player i can be asymptotically minmaxed irrespective

of the future stage games by selecting u in a way that u is positive and u i (θ) is close to 0 for all

θ ∈ Θ. By Fudenberg, Levine, and Maskin [1994], a small closed ball around u (θ) is subinvariant
with respect to the APS recursion of stage game θ for all large values of δ. Since this holds for all

stage games simultaneously, the ball actually satisfies the condition of Lemma 1; hence, there is an

XPE in which the players obtain the ex-post payoff of (1−δ)∑∞
t=0 δ

t u (θ t ), provided that δ is large
enough.

4.3 Exact equivalence

Given that Theorem 3 is an asymptotic result, it is natural to ask if 0-individual rationality is ever

equivalent to justifiability for large but fixed values of δ. The following corollary uses an extension
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of Lemma 1 to give an affirmative answer. Specifically, it lists a set of sufficient conditions under

which this is indeed the case.

Corollary 1. Suppose that for each player i, there exists a tuple (g i, ai, ξ i) ∈ Rn++ ×
∏
θ∈Θ A(θ) ×Rn ·Θ+

such that for all θ ∈ Θ, ri (ai (θ) |θ) = ξ ii (θ) = 0, and

(i) g i belongs to U (θ);

(ii) d (ai (θ) |θ) + ξ i (θ) belongs to the conic hull of {0, g1, . . . , gn};

(iii) λ · (d (ai (θ) |θ) + ξ i (θ)) ≥ max
( j,s) ∈N×Θ

λ · (r (a j (s) |s) + ξ j (s)) for some λ ∈ Rn+ .

Then, there exists δ̄ < 1 such that for every δ ≥ δ̄, an outcome α is justifiable if and only if it is

0-individually rational.

Proof. See Appendix. �

Corollary 1 imposes stronger assumptions than Theorem 3. The first condition assumes that

the set ∩θ∈Θ(U (θ)) contains strictly individually rational payoffs. The second condition ensures

that each vector 1−δ
δ (d (ai (θ) |θ)+ξ i (θ)) belongs to a convex hull of 0 and g ’s for all sufficiently large

δ. Finally, the third condition ensures that each vector d (ai (θ) |θ) + ξ i (θ) lies above hyperplanes
through the stage game deviation payoffs from theminmax action profiles in the uncertain repeated

game.

w2

w10

g1

g2

d (ai (θ) |θ) + ξ i (θ)

d (ai (θ) |θ)

(a) Condition (ii).

w2

w10

r (a1 ( s) |s) + ξ1 ( s)

r (a2 ( s) |s) + ξ2 ( s)

d (ai (θ) |θ) + ξ i (θ)

(b) Condition (iii).

Figure 4: Visualizing Conditions (ii) and (iii) of Corollary 1.

Condition (ii) is satisfied if g ’s can be chosen sufficiently close to the axes, that is the conic

hull of 0 and non-negative points in ∩θ∈ΘU (θ) is all of Rn+. In other words, it is possible to punish

player i without punishing the other players too much, e.g., if money-burning is allowed or there

are punishments that do not hurt other players too much, which is typically possible in Cournot

with positive costs. Even if this is not the case, the slack variables can be used to relax the constraint,

as shown in Figure 4a.
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Condition (iii) is not restrictive at all when there are two players.19 For uncertain repeated

games with more than two players, this condition can be seen as a weaker version of the require-

ment that the players can be minmaxed at the same time. Again, it holds with money-burning and

in Cournot with positive costs where the players can jointly select inefficiently large quantities.

5 Symmetric games

A frequently studied special case of repeated interactions is when players are ex ante identical and

use strategies that are in a certain sense symmetric. In this section, we explore this special case in

the context of our model.

A game (A, u) is said to be symmetric if A1 = . . . = An and for every permutation ι : N → N ,

the players’ payoffs satisfy

ui (a1, . . . , ai, . . . an) = uι(i) (aι(1), . . . , aι(i), . . . aι(n) ) ∀a ∈ A, ∀i ∈ N . (17)

An uncertain repeated game (Θ, (A(θ), u (·|θ))θ∈Θ, δ) is symmetric, if each stage game is symmet-

ric.20

A popular notion of symmetric behavior in repeated and stochastic games is strong symmetry,

e.g., see Abreu, Pearce, and Stacchetti [1986] and Cronshaw and Luenberger [1994]. Formally, a

strategy profile σ is strongly symmetric if the players play an identical action at each history ℎ t ,

i.e., σ1(ℎ t ) = . . . , σn (ℎ t ). We shall refer to strongly symmetric XPE as SSXPE. Of course, the

same definitions apply to stochastic and dynamic games, and we will refer to strongly symmetric

SPE of these games as SSSPE.

It is not hard to see the model of SSXPE is mathematically isomorphic to the model of XPE

with one long-run player who faces an infinite sequence of short-lived players, which was studied in

Carroll [2021]. We refer the reader to the Supplementary Appendix in which we formally establish

this equivalence and focus here on substantive aspects of SSXPE.

Strong symmetry substantially simplifies the analysis because the players’ ex-post payoffs are

identical at every history. It turns out that if the set of SSXPE is non-empty, then the set of ex-post

SSXPE payoffs admits the largest and smallest elements, which can be identified using Lemma

1 in a closed form. Specifically, the operator Tu , when adapted to strongly symmetric strategy

profiles, coincides with the recursion in Carroll [2021], provided that the normalization is chosen

appropriately.21

19For each player i, let the action profile ai (θ) to be the joint minmax in game θ and set ξ i ≡ 0. The reader can verify
that Condition (iii) is then always satisfied.

20This definition is fairly standard in the literature, e.g., see Section 5 of Dasgupta and Maskin [1986].
21Krasikov and Lamba [2023] obtain the same result by deriving certain bounds on XPE payoffs and showing that

their bounds simplify to Eq. (19) in the context of SSXPE.
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We need to introduce some auxiliary notations to simplify the statement of the next result. Let

m (g, θ) andm (g, θ), respectively, be the maximal and minimal payoffs player 1 can obtain in stage

game θ when the players play an identical action and cannot gain more than δ
1−δ g ∈ R from the

best one-shot deviation. Formally:


m (g |θ) := sup

a1∈A1 (θ)
u1(a1, . . . , a1 |θ) s.t. 1−δ

δ d1(a1, . . . , a1 |θ) ≤ g,

m (g |θ) := inf
a1∈A1 (θ)

r1(a1, . . . , a1 |θ) s.t. 1−δ
δ d1(a1, . . . , a1 |θ) ≤ g .

(18)

Clearly, m (g, θ) = −∞ and m (g, θ) = ∞ whenever the constraint set in Eq. (18) is empty; other-

wise, both are finite.

Theorem 4 (Carroll [2021]). Let g ∗ be the largest fixed point of

g ∈ [−∞,∞) ↦→ inf
θ∈Θ

(m (g |θ) −m (g |θ)). (19)

If it is negative, then there is no SSXPE; otherwise,

(1 − δ)
∞∑︁
t=0
δ tm (g ∗ |θ t ) ≥ U σ1 (e) ≥ (1 − δ)

∞∑︁
t=0
δ tm (g ∗ |θ t ) ∀e ∈ Θ∞, ∀ SSXPE σ, (20)

where both bounds can be attained in SSXPE.

Proof. See Appendix. �

Theorem 4 makes two claims. First, the theorem provides the necessary and sufficient condi-

tion for existence of some SSXPE. Second, assuming that at least one SSXPE exists, the theorem

asserts existence of uniformly best/worst SSXPE, and Eq. (20) identifies their respective payoffs.

These conclusions immediately imply analogs of our general statements for strongly symmetric

strategies. To keep our discussion crisp, we shall focus on first perspective, viz. robustness of

expected payoffs. The reader interested in second perspective—robustness of behavior in dynamic

games—is encouraged to look up Corollary 3 in Appendix.

Corollary 2. Suppose m (∞|θ) − m (∞|θ) > 0 for all θ ∈ Θ. Then, there exists δ < 1 such that for

every δ ≥ δ, the set of limit SSXPE payoffs of π coincides with the set of limit SSSPE payoffs of π and

equals [∑︁
θ∈Θ

m (∞|θ)µ(θ |π),
∑︁
θ∈Θ

m (∞|θ)µ(θ |π)
]
. (21)

Proof. See Appendix. �
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Corollary 2 shows that robustness of expected payoffs attainable in strongly symmetric strate-

gies is costless provided that the players can be incentivized in those strategies uniformly across

stage games, i.e., m (∞|θ) −m (∞|θ) > 0 for all θ ∈ Θ.22 This conclusion follows directly from the

fact the players’ have perfectly aligned preferences in strongly symmetric strategy profiles, which

effectively turns the uncertain repeated game into a decision problem. For example, under the

condition of the corollary, the best SSXPE payoff is attainable by playing a pure action profile

(a1(θ), . . . , a1(θ)) that maximizes u1(a1, . . . , a1 |θ) in stage game θ, for each θ ∈ Θ. This is not

necessarily the case in asymmetric XPE, as shown in Example 1.

Furthermore, even in symmetric situations with no uncertainty, strongly symmetric strate-

gies may be restrictive. First, such strategies could disallow punishing the players all the way to

their minmax payoff vectors, which happens when m (∞|θ) > r (θ) = 0 for some stage game

θ ∈ Θ. Second, the best joint payoff vectors could be not attainable in SSXPE, i.e., m (∞|θ) <
max

(w1,...,w1) ∈U (θ)
w1 for some stage game θ ∈ Θ. Example 6 in Appendix illustrates both points.

6 Extensions and discussion

In this paper, we examine robustness of perfect equilibria in stochastic and dynamic games with

respect to the evolution of future stage games when players are patient. We made three key as-

sumptions: monitoring of past actions is perfect, the present stage game is commonly known by

all players, and state transitions are independent of players’ actions. Moreover, we characterized

the main results for limit discounting. These assumptions play an important role, and it should

not be expected that costs of robustness are always negligible when any of them is not satisfied. In

what follows we briefly discuss the implications of relaxing these assumptions, and end the section

with a discussion on non-Bayesian modeling of beliefs that is hitherto absent from the uncertain

repeated games framework.

6.1 Imperfect observability of states

Let’s start with imperfect observability of (θ t ). A simple and hopefully intuitive model is to split

θ into n + 1 components θ = (θ0, θ1, . . . , θn) so that θ0 is publicly known to all players but θi is

privately observed by player i. Then, assume the following: each player i’s set of actions Ai (θ) in
stage game θ depend only on (θ0, θi), which ensures that this player cannot learn the other players’

information about θ when deciding on her own action. In addition, either assume that all players

directly learn the stage game at the end of the period when actions have been taken or that

{(ui (a |θ ′), a) |a ∈ A(θ ′)} ∩ {(ui (a |θ ′′), a) |a ∈ A(θ ′′)} = ∅ ∀(θ ′, θ ′′) ∈ Θ2, ∀i ∈ N ,
22It is easy to see that if this condition fails, then, for all values of δ < 1, any SSXPE is such that the players play a

static Nash equilibrium at every history.
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which implies that observing a utility-action profile pair at the end of the period is sufficient to

perfectly learn the stage game.

Conceptually, a model of this sort can be studied using our techniques but with the additional

requirement that each player i’s strategy σi (ℎ t ) can depend only on (θ t0, θ
t
i ) at every history ℎ t .

The main observation here is that imperfect observability shrinks the set of equilibrium payoffs

that are attainable in a stochastic game with no uncertainty but costs of robustness, in demanding

that incentive satisfy ex-post perfectness, might still be insignificant in the limit. We illustrate these

ideas through an example.

Example 4. Consider Example 1 but assume that player 1 alone observes the stage game, L or R, but

player 2 does not, and must play an identical action in both stage games. Clearly, the set of feasible

expected payoffs is given by

Conv
({

u (a (L) |L) + u (a (R) |R)
2

|a ∈ A(L) × A(R) s.t. a2(L) = a2(R)
})
, (22)

which is not the same as U (L)+U (R)
2 . The maximal expected symmetric payoff vector now is ( 34,

3
4 ). This

payoff can be attained when player 1 selects the second/first row in game L/R and player 2 randomizes

between her actions with equal probabilities.

We now show that it is possible to asymptotically attain ( 34,
3
4 ) in an XPE using the construction

similar to Example 1. Consider a random walk (b (θ0:t )) as described in the example before, and define

a strategy profile as follows:

• if b (ω0:t−1) ≠ ±k, then player 1 selects y1/x1 in game L/R and player 2 randomizes with equal

probabilities;

• if b (ω0:t−1) = ±k, then the players play (y1, y2) that gives ( 12,
1
2 ) irrespective of θ

t .

• the players play (x1, x2) ad infimum after the first deviation.

By exactly the same argument as in Example 1, this strategy profile is an XPE for large values of δ. As

δ → 1, it gives each player

3
4
2k − 1
2k + 1

+ 1
2

2
2k + 1

, (23)

which converges to 3
4 as k → ∞.

6.2 Endogenous transitions

Let’s now discuss a way to incorporate action-dependent state transitions into the model. Start

with a fixed set of deterministic transitions Φ. Each element φ of Φ specifies a next period state as
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a function of this period stage game and actions chosen by the players, i.e., (a, θ) ↦→ φ(a |θ) ∈ Θ. A

specific state transition is privately drawn by nature from Φ according to some κ ∈ ΔΦ supported

on Φ. Integrating over φ, we obtain that states evolve stochastically as follows:

π (a, θ, s) := P(θ t+1 = s |θ t = θ, a t = a) =
∑︁
φ∈Φ

1(φ(a |θ) = s)κ (φ). (24)

Clearly, any stochastic game driven by state transitions π can be unpacked in this way. An appro-

priate notion of XPE immediately follows: a strategy profile is ex-post perfect if at every history

ℎ t , each player would not regret not deviating even if she knew the exact sequence of future tran-

sition functions, i.e., (φt+1, φt+2, . . .). We again use an example to illustrate the workings of this

model.

Example 5. There are two stage games, L and R. Game L is a Prisoner’s dilemma from Example 2, and

game R is the same but every player’s payoff is higher by 2. There are four possible transitions functions

Φ = {φ1, φ2, φ3, φ4} such that φ1 ≡ L, φ2 ≡ R, φ3(a |θ) = L iff θ = R and a1 = a2, φ4(a |θ) = R

iff θ = L and a1 = a2. Suppose that κ (φ1) = κ (φ2) = 1
3 and κ (φ3) = κ (φ4) = 1

6 , then we obtain the

stochastic game similar to the one in an earlier working paper version of Abreu, Brooks, and Sannikov

[2020].

x2 y2
x1 1, 1 [1/3] −2, 2? [1/2]
y1 2?,−2 [1/2] 0?, 0? [1/3]

Game L

x2 y2
x1 3, 3 [1/3] 0, 4? [1/2]
y1 4?, 0 [1/2] 2?, 2? [1/3]

Game R

Table 4: Stochastic game for Example 5: “?” indicates the static best-response, [·] is the probability
of staying in stage game θ, i.e., π (a, θ, θ) for each a ∈ A(θ).

We now show that there is an XPE in which the players play (x1, x2) on-path in every period pro-

vided δ is large enough. To see it consider the grim-trigger strategy in which the players start playing

(y1, y2) after the first deviation.
Let w (φ0:∞ |θ) ∈ R be each player’s ex-post on-path payoff provided that the date 0 stage game is θ

and the future stage games are determined according to the sequence φ0:∞. Clearly, w can be expressed

recursively as follows:

w (φ0:∞ |θ) = (1 − δ)1{θ=L} + 31{θ=R} + δw (φ1:∞ |φ0(x1, x2 |θ)). (25)

Note that, since φ(x1, x2 |θ) = φ(y1, y2 |θ) for all (θ, φ) ∈ Θ × Φ, the players’ ex-post payoff in the

punishment phase is given by w − 1. The net deviation gain from (x1, x2) is 1 in each stage game for
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both players. As a result, no player has a profitable one-shot deviation on-path if and only if

1 + w (φ1:∞ |φ0(x1, x2 |θ)) − w (φ1:∞ |φ0(y1, x2 |θ)) ≥
1 − δ
δ
. (26)

Similarly, no player has a profitable one-shot deviation in the punishment phase if and only if

w (φ1:∞ |φ0(x1, x2 |θ)) − w (φ1:∞ |φ0(y1, x2 |θ)) ≥ −21 − δ
δ
. (27)

To see that Eq. (26) and Eq. (27) are satisfied, for each pair of states (θ, s) ∈ Θ∞, define Δ(θ, s) :=
infφ0:∞∈Φ∞ (w (φ0:∞ |θ) − w (φ0:∞ |s)). By construction, Δ(θ, θ) = 0 for each θ ∈ Θ, and, by Eq. (25),


Δ(L,R) = −2(1 − δ) + δmin{Δ(L,L),Δ(R,R),Δ(R,L)} = −2(1 − δ),

Δ(R,L) = 2(1 − δ) + δmin{Δ(L,L),Δ(R,R),Δ(L,R)} = 2(1 − δ)2,
(28)

which proves that Eq. (26) and Eq. (27) hold for large values of δ.

6.3 Imperfect public monitoring

We assumed that each player observes her opponents’ actions and so rewards and punishments can

be directly designed on the basis of this observability. This is obviously a strong assumption, and

the literature typically relaxes it by assuming that a public signal is observed as a function of the

actions of the players — this is called imperfect public monitoring. For example, in a repeated

Cournot setting, instead of observing the quantities set by the opponents, the players observe a

signal of the market price (see Green and Porter [1984]).

We conjecture that imperfect public monitoring can be incorporated into our analysis, subject

to suitable identifiability conditions, that is, enough statistical information can be inferred from

the public signals about the players’ actions. In particular, the recursive technique of Lemma 1

can be directly generalized by relaxing the perfect observability assumption. So, we conjecture

that under the hypothesis of Theorem 3 and standard rank conditions on monitoring technology

(Fudenberg et al. [1994]), each player can be robustly minmaxed for large values of δ. We also

conjecture that a version of Theorem 2 can be established. This is an immediately worthwhile

direction for future work.

6.4 Results for fixed δ

A natural question to consider next is also the characterization of XPE for fixed values of δ: What

is the set of robust equilibrium payoffs, in the sense of Definition 4, for a fixed discount factor in

general stochastic games? And, what is the set of justifiable outcomes, in the sense of Definition 5,
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for a fixed δ in an uncertain repeated game?

We partially address the second question in a related paper, Krasikov and Lamba [2023]. The

recursion characterized in Lemma 1 is valid for any fixed value of δ. It calculates a fixed point over

environment-independent continuation values after normalizing each stage game with a vector

of payoffs, u (θ) ∈ Rn ∀θ ∈ Θ. This gives us a subset of XPE outcomes and by choosing the

normalizing vectors smartly, we can ensure the subset is large enough. An outer bound on XPE

outcomes is then constructed to get a grip on how well the lower bound performs in getting us

close enough to the entire set of XPE outcomes. In fact for large values of δ and for strongly

symmetric XPE, the two bounds collapse.

6.5 Modeling of preferences and beliefs

On the question of beliefs and dynamic preferences, the uncertain repeated games model takes

an extreme stand, by taking no stand at all. Departing from non-Bayesian dynamics, one could

potentially rely on multiple priors or the ambiguous preference approach, in the sense of Gilboa

and Schmeidler [1989], or its general formulations such as Maccheroni, Marinacci, and Rustichini

[2006b]. Several excellent models have been proposed on how to take this approach to dynamic set-

tings, themain choice being how to update onmultiple priors; see, for example, Epstein and Schnei-

der [2003], Maccheroni, Marinacci, and Rustichini [2006a], and Hanany and Klibanoff [2007],

among many others.

The notion of XPE can be thought of as a lower bound on predictions that can be obtained by

fully specified models of this sort — a strategy profile satisfies the ex-post criterion if and only if it

is subgame perfect simultaneously for all possible dynamic ambiguity indices (see Supplementary

Appendix). Thus, it seems to be an appropriate notion to use when a modeler or an analyst

is uncertain about players’ preferences and beliefs. Of course, there are situations where some

additional information about preferences is common knowledge, and robustness built in XPEmay

be ’excessive’. We think that it would be interesting to further explore uncertainty in repeated

games of the kind studied here, allowing for a smaller family of dynamic variational preferences.

7 Final remark

The main goal of the paper here is theoretical— set out to offer a general model of uncertain re-

peated games, provide a clear enough language to state standard results such as the folk theorem,

and construct equilibrium payoffs and outcomes. However, we believe that a variety of applica-

tions seem imminent. For example, what kind of collusion (Green and Porter [1984]), price wars

(Rotemberg and Saloner [1986]), sustainable policy plans (Chari and Kehoe [1990]), risk shar-

ing (Kocherlakota [1996]) or relational contracts (Levin [2003]) are robustly sustainable, without
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making strong assumptions about how the future unfolds.

8 Appendix

8.1 Appendix: Robustness of expected payoffs in stochastic games

Proof of Theorem 2. Clearly, it suffices to show that everyw in the interior of
∑
θ∈Θ U (θ)µ(θ |π)∩

Rn+ is a robust limit equilibrium payoff. Our proof is constructive, and it is divided into three major

parts. First, we will introduce additional objects and define a parametric family of strategy pro-

files. Then, we will show that strategy profiles in this family form an XPE for all large values of δ.

Finally, we will establish that they can be used to approximate w with arbitrarily good precision

as δ → 1.

Preliminaries. To begin, fix x ∈ ∏
θ∈Θ Int(U (θ)) satisfying w =

∑
θ∈Θ x (θ)µ(θ |π) > 0 and

x ∈ ∏
θ∈Θ(Int(U (θ)) ∩ Rn++). Both points exist due to the hypothesis of the theorem. Select also

minmaxing action profiles (ai)i∈N ⊂ ∏
θ∈Θ A(θ), one for each player, i.e., ri (ai (θ) |θ) = 0 for all

θ ∈ Θ and i ∈ N . We shall use (x, x, (ai)i∈N ) to define a parametric family of strategy profiles

that will be used to establish the theorem. There are three additional components that are used to

build a strategy profile.

Ingredient 1. Definitions of x and x imply that, for every sufficiently small ε > 0, we can find

( β i, β i)ni=0 ⊂
∏
θ∈Θ ΔA(θ)×∏

θ∈Θ ΔA(θ) such that the following holds for every stage game-player

pair (θ, i) ∈ Θ × N :

ui ( β j (θ) |θ) =


x i (θ) + ε j = 0,

x i (θ) + ε +
(
21{ j≠i } − 1

)
ε2 j = 1, . . . , n,

(29)

ui ( β j (θ) |θ) =


x i (θ) + ε j = 0,

x i (θ) + ε +
(
21{ j≠i } − 1

)
ε2 j = 1, . . . , n,

(30)

In words, in each stage game θ, the correlated action profiles β0(θ) and β0(θ) deliver x (θ) and x (θ)
plus some small slack of ε > 0, and other correlated action profiles β j (θ) and β j (θ) in addition

punish player j and reward other players by even smaller amount, ε2.

Ingredient 2. Let ν > 0 be sufficiently small so that λi (θ) :=
(
ε − ε2 − ui (ai (θ) |θ)

)
· ν ∈ (0, 1)

for all θ ∈ Θ and i ∈ N . In our construction, λ capture probabilities of ending punishment

phases, and thus ν is a proxy of duration of such phases. The exact value of ν will be chosen later

as a function of ε.

Ingredient 3. Finally, define inductively a (Markov) random walk with a reflecting barrier
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b : ∪t ≥0Θt → [−ε−1, ε−1]n as follows: for each player i ∈ N , set

bi (θ0:t ) = min
{
max

{
bi (θ0:t−1) + x i (θ t ),−ε−1

}
, ε−1

}
, (31)

where bi (∅) = 0. The walk starts at 0 and then changes by x (θ) each time game θ arrives and the

boundary conditions are not binding. If the boundary condition binds for some coordinate i, then

the walk takes the smallest step for that coordinate needed to reach the barrier.

We now define a strategy profile, which is parametrized by (ε, ν), and it also implicitly depends

on ( β i, β i)ni=0. There are 2n + 1 phases: the on-path phase, n punishment and n reward phases,

one for each player. Any deviation by player i triggers the player i’s punishment phase, whereas

deviations by multiple players are ignored.

On-path phase. The game starts in this phase and stays in it until the first individual deviation.

The strategy profile prescribes to play according to β0(θ t ) if b (θ0:t ) is above the lower barrier for
all players and β0(θ t ), otherwise.

Player i’s punishment phase. In this phase, the players minimax player i by playing ai (θ) in
stage game θ. The game stays in this phase with probability 1− λi (θ) and transitions to the player

−i’s reward phase with the complementary probability.

Player−i’s reward phase. Similar to the on-path phase, the players are required to play according

to β i (θ t ) if b (θ0:t ) is above the lower barrier for all players and β i (θ t ), otherwise.

Verifying conditions for XPE.We claim that the constructed strategy profile is ex-post perfect for

all large values of δ provided that (ε, ν) are small enough. Since the one-shot deviation principle

applies to XPE, because it applies to SPE of every dynamic game, it is sufficient to establish that

there is no profitable one-shot deviation.

We first define the stream of ex-post payoffs in each of 2n + 1 phases. Given some environment

e ∈ Θ∞ and a current position of the walk b ∈ [−ε−1, ε−1]n, let (U 0,t (e, b))∞t=0 be the players’

ex-post payoff in the on-path phase starting at b (∅) = b , when sunspots are averaged out, i.e.,

U 0,t (e, b) = (1− δ)
(
ε + x (θ t )1{min

i∈N
bi (θ0:t )>−ε−1 } + x (θ t )1{min

i∈N
bi (θ0:t )=−ε−1 }

)
+ δU 0,t+1(e, b). (32)

By construction, the player j (≠ i)’s ex-post payoffs in the player −i’s reward phase are given by

(U 0,t
j (e, b))∞t=0 plus

(
21{i≠ j } − 1

)
ε2; as for the player i’s punishment phase starting at b (∅) = b ,

the player j ’s ex-post payoffs (U i,t
j (e, b))∞t=0 satisfy

U i,t
j (e, b) = (1−δ)u j (ai (θ t ) |θ t )+δλi (θ t )

(
U 0,t+1

j (e, b)+
(
21{i≠ j } − 1

)
ε2

)
+δ (1−λi (θ t ))U i,t+1

j (e, b).

(33)
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In what follows, we examine one-shot deviations in each of the phases.

On-path phase. Fix player i ∈ N . Combine Eq. (32) and Eq. (33) to obtain the following

recursive expression:

U 0,t
i (e, b) −U i,t

i (e, b) ≥ (1 − δ)
(
ε + x i (θ t )1{min

j∈N
b j (θ0:t )>−ε−1 } − ui (ai (θ t ) |θ t )

)
+ δλi (θ t )ε2+

+ δ (1 − λi (θ t ))
(
U 0,t+1

i (e, b) −U i,t+1
i (e, b)

)
, (34)

where the inequality is due to x i (θ t ) ≥ 0. Eq. (34) implies

lim inf
δ→1

(
U 0,t

i (e, b) −U i,t
i (e, b)

)
≥ λi (θ t )ε2 + (1 − λi (θ t )) lim inf

δ→1

(
U 0,t+1

i (e, b) −U i,t+1
i (e, b)

)
.

(35)

Iterating forward Eq. (35), we obtain that for all sufficiently large δ < 1,

U 0,t
i (e, b) −U i,t

i (e, b) ≥
min
θ∈Θ
λi (θ)

max
θ∈Θ
λi (θ)

ε2 > 0. (36)

Since the lower bound is independent of (e, z, t ) and the players’ stage game payoffs are bounded,

no profitable one-shot deviation exists in the on-path phase when the players are patient enough.

Player i’s punishment phase. For player j ≠ i, the argument is similar to the on-path phase.

Specifically, the analog of Eq. (35) reads as

lim inf
δ→1

(
U i,t

j (e, b) −U j,t
j (e, b)

)
≥ lim inf

δ→1

(
U 0,t

j (e, b) −U j,t
j (e, b)

)
+ lim inf
δ→1

(
U i,t

j (e, b) −U 0,t
j (e, b)

)
≥ λ j (θ t )ε2 + (1 − λ j (θ t )) lim inf

δ→1

(
U 0,t+1

j (e, b) −U j,t+1
j (e, b)

)
+

+ λi (θ t )ε2 + (1 − λi (θ t )) lim inf
δ→1

(U i,t+1
j (e, b) −U 0,t+1

j (e, b)).

(37)

As a result, for for all large δ < 1,

U i,t
j (e, b) −U j,t

j (e, b) ≥
min
θ∈Θ
λ j (θ)

max
θ∈Θ
λ j (θ)

ε2 +
min
θ∈Θ
λi (θ)

max
θ∈Θ
λi (θ)

ε2 > 0. (38)

We now look at player i’s incentives in her punishment phase. This is the trickiest case, and

we will need this phase to be long enough, i.e., ν is small, so that this player has no profitable

deviation.

To begin, let us identify when player i cannot gain from deviating once and miss transition-

ing to the reward phase at time t . Since this player is minmaxed in her punishment phase, i.e.,
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ri (ai (θ) |θ) = 0 for each stage game θ ∈ Θ, she cannot gain from any one-shot deviation if and only

if

δλi (θ t )
U 0,t+1

i (e, b) −U i,t+1
i (e, b) − ε2

1 − δ ≥ −ui (ai (θ t ) |θ t ). (39)

Subtract ε2 in Eq. (34) and iterate it forward to obtain

U 0,t+1
i (e, b) −U i,t+1

i (e, b) − ε2

1 − δ ≥
∞∑︁
τ=t+1

(
ε − ε2 − ui (ai (θτ) |θτ)

) τ−1∏
l=t

δ (1 − λi (θ l ))+

+
∞∑︁
τ=t

x i (θτ)1{min j∈N b j (θ0:τ )>−ε−1 }

τ−1∏
l=t

δ (1 − λi (θ l )). (40)

We shall bound from below each term on the right-hand side of Eq. (40). Recall that ε − ε2 −
ui (ai (θ) |θ) = λi (θ)ν−1 for each stage game θ ∈ Θ. Then, observe that the first term depends only

on e , and it is at least as large as

Δ′ := inf
ẽ ∈Θ∞

∞∑︁
t=0
λ (θ̃ t ) · ν−1

t−1∏
τ=0
δ (1 − λi (θ̃τ)) =

= min
θ∈Θ
λi (θ) · ν−1 + δ (1 − λi (θ))Δ′ =

= min
θ

(
λi (θ)

1 − δ (1 − λi (θ))

)
· ν−1. (41)

The second term is a bit more subtle. To begin, let B ≥ max(i,θ) ∈N×Θmaxa∈A(θ) |ui (a |θ) | be
the bound on stage game payoffs. By definition, δ (1 − λi (θ t )) lies between δ (1 −max

θ∈Θ
λi (θ)) and

δ (1−min
θ∈Θ
λi (θ)); similarly, x i (θ t )1{min j∈N b j (θ0:τ )>−ε−1 } is an element of [−B, B]. It follows that the

second term in Eq. (40) is not lower than the value of the following auxiliary program:

inf
(z,δ̃,b)

∞∑︁
t=0

z t1{bt>−1/ε}

t−1∏
τ=0
δ̃τ subject to

bt = min
{
max

{
bt−1 + z t ,−ε−1

}
, ε−1

}
, b−1 ∈ [−ε−1, ε−1],

δ̃t ∈ [δ (1 −max
θ∈Θ
λi (θ)), δ (1 −min

θ∈Θ
λi (θ))], z t ∈ [−B, B] ∀t . (42)

In this problem, δ̃t and (bt , z t ) are proxies for δ (1 − λi (θ t )) and (bi (θ t ), x i (θ t )) in the second

term on the right-hand side of (40). However, these auxillary variables (z, δ̃, b) are much less

constrained, hence the infimum in (42) is a lower bound on that term.

We now study the infimum in (42). For large values of δ and small values of (ε, ν), it is optimal

to start at b−1 = ε−1 and maximally frontload negative payments, i.e., z t = min{bt−1 + ε−1,−B}
and δ̃t = δ (1−minθ∈Θ λi (θ)). Since it takes at most 2ε−1

B −1 steps to reach the right endpoint from
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the left one with increments of B , the value of this auxiliary problem is at least as large as

Δ′′ :=
1 −

[
δ (1 −min

θ∈Θ
λi (θ))

] 2ε−1
B −1

1 − δ (1 −min
θ∈Θ
λi (θ))

(−B). (43)

To conclude the argument, combine the two bounds devised in Eq. (41) and Eq. (43) to obtain

the asymptotic lower bound on the player i’s dynamic loss from punishments due to her one-shot

deviation at time t :

lim inf
δ→1

δλi (θ t )
U 0,t+1

i (e, b) −U i,t+1
i (e, b) − ε2

1 − δ ≥ lim inf
δ→1

δλi (θ t ) (Δ′ + Δ′′) =

=

(
ε − ε2 − ui (ai (θ t ) |θ t )

) ©­­­­­­­«
1 +

1 −
[
1 −min

θ∈Θ
(ε − ε2 − ui (ai (θ t ) |θ)) · ν

] 2ε−1
B −1

min
θ∈Θ

(ε − ε2 − ui (ai (θ t ) |θ))
(−B)︸                                                                 ︷︷                                                                 ︸

=o (ν)

ª®®®®®®®¬
. (44)

Since the expression in the second line of Eq. (44) converges to ε−ε2−ui (ai (θ t ) |θ t ) > −ui (ai (θ t ) |θ t )
as ν goes to 0, player i has no incentive to deviate in her punishment phase for all large values of

δ whenever ν is sufficiently small.

Player −i’s reward phase. Let j ≠ i. Recall that the player j ’s payoff is larger than her payoff

in the on-path phase by exactly ε2 irrespective of the environment and value of b . It follows that

player j cannot profitably deviate in the player −i’s reward phase, provided that she cannot do so

in the on-path phase.

Finally, observe that, since the players’ payoffs are bounded, Eq. (44) implies that player i

has no incentives to deviate in the reward phase provided that she cannot profitably deviate in the

punishment phase.

Approximating expected payoffs. We have established a strategy profile parametrized by (ε, ν),
where both parameters are small and ν is chosen so that the term in Eq. (44) is larger than

−u (ai (θ) |θ) for every stage game-player pair. As shown in the previous section, this strategy pro-

file is ex-post perfect for all large values of δ. In what follows we shall show that it can approximate

w in expectation.

For each i ∈ N , letTi be the (stopping) time when bi (θ0:t ) reaches either of the endpoints, i.e.,
±ε−1. Since (θ t ) is a stationary reversible Markov chain, for each t , the distributions of (θ0, . . . , θ t )
and (θ t , . . . , θ0) coincide. By Phatarfod et al. [1971], the probability that bi (θ0:t ) takes a strictly
negative value at time t is the same as the probability that the (Markov) random walk with incre-
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ments (x i (θ))θ∈Θ and absorbing barriers at ±ε−1 is strictly negative at time t , that is

P
(
bi (θ0:t ) < 0

)
= P

(
bi (θ0:t∧Ti ) < 0

)
∀t . (45)

Using Eq. (45), we now are going to bound from above the probability of hitting the lower

boundary in the long-run. Suppose first that x i (θ) ≥ 0 for all θ ∈ Θ. Since
∑
θ∈Θ x i (θ)µ(θ |π) > 0,

lim
t→∞
P

(
bi (θ0:t ) = −ε−1

)
≤ lim

t→∞
P

(
bi (θ0:t∧Ti ) < 0

)
= 0. (46)

Suppose next that x i (θ) < 0 for some θ ∈ Θ. For ρ ∈ R, let ξi (ρ) be the Perron’s root of the
matrix

(
π (θ, s)e x i ( s) ρ

)
(θ,s) ∈Θ×Θ and denote the corresponding eigenvector by vi (ρ). By Theorems

1 and 3 in Miller [1961] and Lemma 1 in Sadowsky [1989],

(i) ξi (ρ) is analytic and strictly convex;

(ii) ∂
∂ρ ξi (0) =

∑
θ∈Θ x i (θ)µ(θ |π) > 0 and lim |ρ |→∞ ξi (ρ) = ∞;

( iii) there are 0 < v i ≤ v i < ∞ such that vi (ρ) ∈ [v i, v i] for all ρ ∈ R.

Let ρi be the point of a minimum of ξi (ρ), which is well-defined and negative due to Properties

(i) and (ii). By Lemma 3 in Sadowsky [1989], Ti is finite with probability one. Then, Property

(iii) and Lemma 5 in Sadowsky [1989] imply

lim
t→∞
P

(
bi (θ0:t ) = −ε−1

)
≤ lim

t→∞
P

(
bi (θ0:t∧Ti < 0

)
≤ v i

v i
e ρiε

−1
. (47)

It follows from Eq. (46) and Eq. (47) that there exist c > 0 and ρ < 0, independent of ε, such that

lim
t→∞
P

(
bi (θ0:t ) = −ε−1

)
≤ c e ρε

−1 ∀i ∈ N . (48)

To sum up, the long-run probability with which the original randomwalk, i.e., one with reflecting

barriers at ±ε−1, hits the lower boundaries can be made arbitrarily small as ε → 0.

We now use the aforementioned bound on the long-run probability of hitting −ε−1 to show

that the player i’s expected payoff can be made arbitrarily close to wi as δ → 1 and ε → 0. First

of all, remark that E[x i (θ t )] =
∑
θ∈Θ x i (θ)µ(θ |π) = wi . Therefore, since the payoffs are bounded

uniformly across players and stage games by some B > 0, the expected value of U 0,0
i (e, 0), which

is defined in Eq. (32), satisfies

���E [
U 0,0

i (e, 0)
]
− wi − ε

��� ≤ E [
(1 − δ)

∞∑︁
t=0
δ t1{min

j∈N
b j (θ0:t )=−ε−1 }

]
(2B). (49)
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Take δ → 1 in Eq. (49) and use the bound in Eq. (48) to obtain

lim sup
δ→1

���E [
U 0,0

i (e, 0)
]
− wi − ε

��� ≤ (
1 −

[
1 − c e ρ/ε

]n)
(2B). (50)

Since the set of robust limit equilibrium payoffs is closed, the result follows from letting ε → 0; of

course, in that process ν has to be suitably adjusted as discussed in the previous section so that the

strategy profile is ex-post perfect for all large values of δ. �

8.2 Appendix: Robustness of on-path behavior in dynamic games

Proof of Lemma 1. First of all, note that the operator Tu is monotone, and it maps bounded sub-

sets of Rn to bounded subsets of Rn. By the standard argument (e.g., see Abreu, Pearce and Stac-

chetti [1990]), Tu admits the largest bounded subinvariant, say Γ(u), which includes Γ. We shall

show that every element of

G (x) :=
{
w ∈ Rn ·Θ∞ |∃γ ∈ Γ(x) s.t. γ = w (e) − (1 − δ)

∞∑︁
t=0
δ t u (θ t ) ∀e ∈ Θ∞

}
(51)

is an (ex-post) XPE payoff, which would then imply Eq. (16).

Indeed, as is well-known, the whole set of (ex-post) XPE equilibrium payoffs is the largest

(uniformly) bounded subinvariant of the following APS recursion:

FV =

{
w ∈ Rn ·Θ∞ |∀θ ∈ Θ, ∃β (θ) ∈ ΔA(θ), (v i (θ))ni=0 ⊂ V A(θ) s.t.

w (θ, e) = (1 − δ)u ( β (θ) |θ) + δ∑a∈A(θ) v0(e |a, θ) β (a |θ) ∀(θ, e) ∈ Θ∞,(
v0
i (e |a, θ) − v i

i (e |a, θ) −
1−δ
δ di (a |θ)

)
β (a |θ) ≥ 0 ∀a ∈ A(θ), ∀(θ, e) ∈ Θ∞, ∀i ∈ N

}
. (52)

Substitute G (x) into Eq. (52) to obtain

FG (x) =
{
w ∈ Rn ·Θ∞ |∀θ ∈ Θ, ∃β (θ) ∈ ΔA(θ), (g i (θ))ni=0 ⊂ Γ(u)A(θ) s.t.

w (θ, e) − (1 − δ) (u (θ) + δ∑∞
t=0 δ

t u (θ t )) = (1 − δ) (u ( β (θ) |θ) − u (θ))+

+ δ∑a∈A(θ) g0(a, θ) β (a |θ) ∀(θ, e) ∈ Θ∞,(
g0i (a, θ) − g ii (a, θ) −

1−δ
δ di (a |θ)

)
β (a |θ) ≥ 0 ∀a ∈ A(θ), ∀θ ∈ Θ, ∀i ∈ N

}
, (53)

which gives

FG (x) ⊇ G (x). (54)
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Proof of Theorem 3. To begin, let Γ(u) be the largest bounded subinvariant of Tu , which exists

by the argument in the proof of Lemma 1. We claim that 0 is an element of Γ(u) for every u ∈∏
θ∈Θ(I nt (U (θ)) ∩ Rn++) when δ is large enough.

Indeed, let G ⊂ Rn be a closed ball centered at 0 that satisfies

G + u (θ) ⊆ I nt (U (θ)) ∩ Rn++ ∀θ ∈ Θ. (55)

It is easy to see that, for each θ ∈ Θ, the set G + u (θ) is decomposable on tangent hyperplanes in

the terminology of Fudenberg et al. [1994]. As a result, Theorem 4.1 and Lemma 4.2 in this paper

imply existence of δ (u) < 1 such that for every δ ≥ δ (u),

G ⊇ TuG . (56)

By definition, Γ(u) is the largest subinvariant, thus G ⊆ Γ(u).

Constructing robust punishments. Let ε > 0, and note that the conditions of Theorem 3 imply

that there are (u i)i∈N ⊂ ∏
θ∈Θ(I nt (U (θ)) ∩ Rn++) such that

u i
i (θ) ≤ ε ∀θ ∈ Θ, ∀i ∈ N . (57)

It follows from the above argument that for δ ≥ δε := max
i∈N
δ (u i), there are XPE (σi)i∈N satisfying

U σ
i

i (e) ≤ ε ∀e ∈ Θ∞, ∀i ∈ N . (58)

Verifying sufficiency of ε-individual rationality. Having established that the players can be ro-

bustly minmaxed for large values of δ, the proof of Theorem 3 is rather immediate. Note that the

one-shot deviation applies to XPE because it applies to SPE of every dynamic game e . Therefore,

an outcome α is justifiable if and only if for every on-path history ℎ̃ t there exist XPE (σi ( ℎ̃ t ))ni=1
such that no player i can gain by the best-one shot deviation given that she will be punished by

σi ( ℎ̃ t ), that is

U αi ( ℎ̃
t |e) ≥ (1 − δ)ri (α( ℎ̃ t ) |θ t ) + δU σ

i ( ℎ̃ t )
i (θ t+1:∞) ∀θ t+1:∞, ∀i ∈ N . (59)

The fact that ε-individually rational outcomes can satisfy Eq. (59) for all large values of δ directly

follows from the claim in Eq. (58). �

Proof of Corollary 1. The proof is based on a simple extension of Lemma 1. Specifically, we shall
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use a recursive argument and construct XPE in which Et−1 [U σ (ℎ t |e)] is independent of θ t+1:∞.
Contrast this to Eq. (14) where the normalized payoff is also required to be independent of this

period stage game θ t .

Define G as follows:

G :=
{
w ∈ Rn ·Θ∞ |w (θ, γ) − γ (θ) = 0 ∀(θ, e) ∈ Θ∞ for some γ ∈

∏
θ∈Θ

G (θ)
}
, where ∀θ ∈ Θ,

G (θ) := Conv
({
g1, . . . , gn, (1 − δ) (r (a1(θ) |θ) + ξ1(θ)), . . . , (1 − δ) (r (an (θ) |θ) + ξn (θ))

})
.

(60)

The following figure illustrates the construction of G (θ). Note that, due to Conditions (ii) and
(iii), every vector 1−δ

δ (di (ai (θ) |θ) + ξ i (θ)) is an element
⋂
s∈Θ

G (s) for all large values of δ.

w2

w10

g2

g1

u (a′ |θ) − r (θ)

u (a′′ |θ) − r (θ)

1−δ
δ

(
d (ai (θ) |θ) + ξ i (θ)

)

(1 − δ)
(
r (a2 ( s) |s) + ξ2 ( s)

)

(1
−
δ
)( r(

a1
(θ
)|
θ
)+
ξ
1
(θ
))

(1 − δ)
(
r (a2 (θ) |θ) + ξ1 (θ)

)

(1
−
δ
)( r(

a1
(s
)|
s)

+
ξ
1
(s
))

Figure 5: Illustrating the construction of G (θ).

We claim that the set G is a subinvariant with respect to the APS recursion F, which is defined

in Eq. (52), provided that δ is large enough. Since G is convex, it suffices to show every extreme

point of this set is an element of FG .

• Consider w (θ, e) = g i . Condition (i) ensures that g i can be attained in every stage game θ

by some β i (θ) ∈ ΔA(θ). So, in terms of Eq. (52), set β (θ) = β i (θ) and v0(e |a, θ) = g i and

v j (e |a, θ) = (1 − δ) (r (a j (θ1) |θ1) + ξ j (θ1)) for j = 1, . . . , n. Since g i is strictly positive and

the players’ payoffs are bounded, no profitable deviation exists for all large values of δ.

• Consider w (θ, e) = (1 − δ) (r (ai (θ) |θ) + ξ i (θ1)). Again, in terms of Eq. (52), set β (θ)
to put all mass on ai (θ), v0(e |a, θ) = 1−δ

δ (d (ai (θ) |θ) + ξ i (θ1)) and v j (e |a, θ) = (1 −
δ) (r (a j (θ1) |θ1) − ξ j (θ1)) for j = 1, . . . , n. By construction, no player can profitably de-

viate as ξ i (θ) ≥ 0. As shown in Figure 5, v0(·|a, θ) is an element
⋂
s∈Θ

G (s), thus a feasible
continuation payoff, for all large values of δ.
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8.3 Appendix: Symmetric games

Proof of Theorem 4. Let g∗ be the largest incentive gap between two SSXPE that can be sustained

irrespective of future stage games, that is

g∗ := sup
σ′,σ′′

inf
e ∈Θ∞

(U σ′1 (e) −U σ
′′

1 (e)) s.t. σ ′, σ ′′ are SSXPE, (61)

where g∗ = −∞ if no SSXPE exists.

We now show that g∗ ≤ g ∗, where g ∗ is defined in Theorem 4. By definition, in any SSXPE

σ at each history we must have 1−δ
δ d (σ (ℎ t ) |θ t ) ≤ g∗; otherwise, there is some continuation

environment e in which a deviation from σ (ℎ t ) cannot be deterred in SSXPE. It follows that the

players’ stage game payoff u1(σ (ℎ t ) |θ t ) at this history ℎ t is not higher than m (g∗ |θ t ), thus

U σ1 (e) ≤ (1 − δ)
∞∑︁
t=0
δ tm (g∗ |θ t ). (62)

Similarly, since each player can deviate from σ (ℎ t ) obtaining r1(σ (ℎ t ) |θ t ), her ex-post payoff

satisfies

U σ1 (e) ≥ (1 − δ)
∞∑︁
t=0
δ tm (g∗ |θ t ). (63)

Combine Eq. (62), (63) and the definition of g∗ to obtain

g∗ ≤ inf
θ∈Θ

(m (g∗ |θ) −m (g∗ |θ)), (64)

which proves that g∗ ≤ g ∗.

Attaining the bound on the incentive gap. Clearly, if g ∗ is negative, then g∗ is negative as well;

thus, no SSXPE exists. So, suppose that g ∗ is non-negative. We now show this bound is tight and

construct two SSXPE satisfying Eq. (20).

To begin, take some symmetric normalizing vector u, and note that Tu applied to G = {g ∈
[g, g ]n |g1 = . . . = gn}, where g ≥ g , with an additional restriction that a1 = . . . = an gives the set

{γ ∈ [γ, γ]n |γ1 = . . . = γn}, where

γ = inf
θ∈Θ

(1 − δ) (m (g − g |θ) − x1(θ)) + δ g, γ = sup
θ∈Θ

(1 − δ) (m (g − g |θ) − x1(θ)), (65)

provided that γ ≥ γ.

40



We shall devise two choices of u1 so thatG = TuG and use this fact in conjunction with Lemma

1 to establish existence of SSXPE in Eq. (20).

• First, let (g, g ) = (g ∗, 0) and select the normalization so that γ is guaranteed to be 0 in

Eq. (65), i.e., for each θ ∈ Θ, set u1(θ) = m (g ∗ |θ). By definition of g ∗, γ = g ∗ in Eq.

(65); therefore, by Lemma 1, there is an SSXPE in which the players obtain the payoff of

(1 − δ)∑∞
t=0 δ

tm (g ∗ |θ t ).

• Second, let (g, g ) = (0,−g ∗) and select the normalization so that γ is guaranteed to be 0 in

Eq. (65), i.e., for each θ ∈ Θ, set u1(θ) = m (g ∗ |θ). The reader can verify that γ = −g ∗ in
Eq. (65); therefore, by Lemma 1, there is an SSXPE in which the players obtain the payoff

of (1 − δ)∑∞
t=0 δ

tm (g ∗ |θ t ).

�

Proof of Corollary 2. Let δ < 1 be such that

1 − δ
δ

max
a1∈A1 (θ),θ∈Θ

d1(a1, . . . , a1 |θ) ≤ min
θ∈Θ

(m (∞|θ) −m (∞|θ)). (66)

Such δ exists because the term on the right-hand side is positive. It is immediate from the definition

of g ∗ that for all δ ≥ δ, the gap g ∗ equals to the term on the right-hand side in Eq. (66); moreover,

m (∞|θ) = m (g ∗ |θ) and m (∞|θ) = m (g ∗ |θ). The corollary follows from Theorem 4, specifically

Eq. (20). �

An outcome α is strongly symmetric if at each public history, the players take an identical

action, i.e., σ1( ℎ̃ t ) = . . . = σn ( ℎ̃ t ). We say that a strongly symmetric outcome α is robustly

justifiable in SSXPE if there is an SSXPE in which the players’ on-path actions are specified by α.

Corollary 3. Suppose m (∞|θ)−m (∞|θ) > 0 for all θ ∈ Θ. Then, there exists δ < 1 such that for every

δ ≥ δ, a strongly symmetric outcome α is robustly justifiable in SSXPE if and only it is 0-individually

rational in the uncertain repeated game (Θ, (A(θ), u (·|θ) −m (∞|θ))θ∈Θ, δ).

Proof. By the argument in the proof of Corollary 2, there exists δ < 1 such that for all large values

of δ ≥ δ, the worst SSXPE exists and it gives exactly (1 − δ)∑∞
t=0 δ

tm (∞|θ t ) to the players. So, a

strongly symmetric outcome α is robustly justifiable in SSXPE if and only if

U α1 ( ℎ̃
t |e) ≥ (1 − δ)ri (α( ℎ̃ t ) |θ t ) + δ (1 − δ)

∞∑︁
τ=t+1

δτ−(t+1)m (∞|θτ), (67)

which is exactly 0-individually rationality in (Θ, (A(θ), u (·|θ) −m (∞|θ))θ∈Θ, δ).
�
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9 Supplementary appendix

Relationship between XPE and SPE under dynamic variational preferences.

In this section, we elaborate on the connection between the criterion of ex-post perfectness and

SPE when players have variation preferences of Maccheroni, Marinacci, and Rustichini [2006a,b].

The similar point in the context of justifiability of outcome has been made in Carroll [2021].

According to this model, the player i’s conditional preferences over strategy profiles after ob-

serving θ0:t are described by the so-called ambiguity index π ∈ ΔΘ∞ ↦→ Ci (π |θ0:t ) ∈ R+ ∪ {∞}.
The ambiguity index captures the player i’s costs of the choice of probability over future stage

games, and it is required to be closed, lower-semy continuous and grounded, i.e., finite for some

probabilities. 23 Then, player i evaluates strategy profiles according to the following criterion:

inf
π∈ΔΘ∞

(
Eπ [U σi (ℎ t |e)] +Ci (π |θ0:t )

)
. (68)

Now, let σ be ex-post perfect. We claim that player i plays best response at each history

irrespective of her dynamic ambiguity index. To see it, assume, by contradiction, that there exists

some ambiguity index Ci , history ℎ t and another strategy σ̃i so that it is profitable for player i to

deviate from σi

inf
π∈ΔΘ∞

(
Eπ [U σi (ℎ t |e)] +Ci (π |θ0:t )

)
< inf
π∈ΔΘ∞

(
Eπ [U (σ̃i,σ−i )

i (ℎ t |e)] +Ci (π |θ0:t )
)
. (69)

It follows that there exists some probability π̃ so that

Eπ̃ [U σi (ℎ t |e)] +Ci (π̃ |θ0:t ) < inf
π∈ΔΘ∞

(
Eπ [U (σ̃i,σ−i )

i (ℎ t |e)] +Ci (π |θ0:t )
)
≤

≤ Eπ̃ [U (σ̃i,σ−i )
i (ℎ t |e)] +Ci (π̃ |θ0:t ), (70)

which contradicts ex-post perfectness of σ.

Conversely, we claim that σ is ex-post perfect if each player plays a best-response at every

history for all possible dynamic variational preferences she might have. To see, by way of con-

tradiction, assume that there exists some player i that has a profitable one-shot deviation in some

environment e at some history ℎ t . Define this player ambiguity index Ci as follows: for each

s = 0, 1, . . ., set Ci (π |θ̃0,s ) is zero if θ̃0,s = θ0:s and if π assigns probability of one to events of the

form {θ0} × . . . × {θτ} ×Θ∞, and ΔΘ∞ for all τ ≥ s ; otherwise, Ci (π |θ̃0,s ) is B , where B is large.24

23Here, Θ∞ is endowned with the natural algebra generated by sets of the form {θ0}× . . .×{θ t }×Θ∞, and ΔΘ∞ stays
for the space of finitely-additive probability measures equipped with the weak-* topology as a subset of the topological
dual of the space of simple functions endowned with the sup norm.

24This ambiguity index is lower-semi continuous, because ΔΘ is Hausdorff, hence singletons are closed. Maccheroni
et al. [2006a] in addition requires the effective domain ofCi (·|θ̃0:s ) to contain some non-degenerate elements that assign
positive probabilities to each possible realization of θ s+1:τ for all τ ≥ s + 1. Our proposed ambiguity index trivially
satisfies this condition.
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Since the players’ stage game payoffs are bounded, at ℎ t , for any strategy player i’s strategy σ̃−i ,

the infimum in

inf
π∈ΔΘ∞

(
Eπ [U (σ̃i,σ−i )

i (ℎ t |ẽ)] +Ci (π |θ̃0:t )
)
. (71)

is attained by π that picks e with probability one. So, the infimum inEq. (71) equals toU (σ̃i,σ−i )
i (ℎ t |e).

As a result, since σi is not an ex-post best response at ℎ t , the player i can profitably deviate at this

history when her preferences are given by Eq. (71).

Symmetric games satisfy condition for Theorem 3.

Lemma 2. Consider a symmetric game (A, u). If Int(U ) ∩ Rn++ is nonempty, then
∧(U ∩ Rn+) = 0.

Proof. The result is immediate if U ∩ {w ∈ Rn |w1 = 0} contains a nonnegative point, so suppose

that it does not. Let w be an arbitrary point in this set, and denote β ∈ ΔA that gives w , i.e.,

w =
∑

a∈A u (a) β (a). Denote the set of pertumations of players by I, then, by symmetry,

∑
a∈A

∑
ι∈I:ι(1)=1 ui (aι(i) ,aι(−i) )∑

ι∈I:ι(1)=1
β (a) =


0 i = 1,

1
n−1

∑n
j=2w j i ≠ 1.

(72)

It follows from Eq. (72) that (0, x, . . . , x) is an element of U with x := 1
n−1

∑n
j=2w j . Note that

x < 0 due to our assumption that no nonnegative point in U ∩ {w ∈ Rn |w1 = 0} exists.
The interiority hypothesis implies existence of a point w̃ ∈ U ∩ Rn++. Repeating the same

construction as in Eq. (72) but now averaging over all permutations, we obtain that ( x̃, x̃, . . . , x̃)
with x̃ := 1

n
∑n

i=1 w̃i is an element of U . By construction, x̃ > 0, which implies that 0 is in U as a

convex combination of ( x̃, x̃, . . . , x̃), (0, x, . . . , x), (x, 0, . . . , x), ..., (x, x, . . . , 0). �

Equivalence of XPE with one long-run player and SSXPE with several long-run players.

Consider an uncertain repeated game (Θ, (A(θ), u (·|θ))θ∈Θ, δ) in which player 1 is long-lived

and the other players are short-lived. Let σ be an XPE. Clearly, the short-lived players must be

playing a static best-response at each history ℎ t , that is σ (ℎ t ) ∈ A∗(θ t ), which is defined by

A∗(θ) := {a ∈ A(θ) |di (a |θ) = 0 ∀i ≠ 1} ∀θ ∈ Θ. (73)

Define a symmetric uncertain repeated game (Θ, (Ã(θ), ũ (·|θ))θ∈Θ, δ) with two long-lived players

as follows:

Ãi (θ) := A∗(θ), ui ( ã |θ) := ũ1( ãi |θ)1{ ã1=ã2 } + r1( ã−i |θ)1{ ã1≠ã2 } for i = 1, 2. (74)
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Since the long-lived player cannot profitably deviate in the original game and two players in the

new game are effectively replicas of him, (σ,σ) is a SSXPE of this symmetric uncertain repeated

game.

Conversely, let σ be a SSXPE of (Θ, (A(θ), u (·|θ))θ∈Θ, δ) in which every player is long-lived.

Define an uncertain repeated game (Θ, (Ã(θ), ũ (·|θ))θ∈Θ, δ) with long-lived player 1 and short-lived

player 2 as follows: Ã(θ) = A(θ), and

ũ1(a |θ) := u1(a |θ), ũ2(a |θ) := −1{a1≠a2 } . (75)

It is always in player 2’s interest to match player 1’s action. Since σ is a SSXPE of the original game,

player 1 cannot profitably deviate provided that player 2 will match her action; thus, (σ1, σ2) is an
XPE of the new game.

Example 6. Consider a repeated game with three players, each has two actions. As usual, player is

choosing a row, player 2 is selecting a column and player 3 is choosing a table.

a ′3
a ′2 a ′′2

a ′1 1/2, 1/2, 1/2 0?, 2?, 0?
a ′′1 2?, 0?, 0? −1,−1, 5/2?

a ′′3
a ′2 a ′′2

a ′1 0?, 0?, 2? 5/2?,−1,−1
a ′′1 −1, 5/2?,−1 1/2, 1/2, 1/2

Table 5: Repeated game for Example 6: “?” indicates the static best-response.

The reader can verify that the interiority assumption holds, i.e.,U ∩Rn++ is a convex hull of {w |∃i ∈
N : wi ∈ {1/2, 2},w j = 0 ∀j ≠ i}. Note that m (∞) = 1

2 <
2
3 ; and, since m (∞) = 2 > 1

2 , no SPE in

strongly symmetric strategies exists irrespective of δ. On the other hand, the best feasible symmetric payoff

vector equals to ( 23,
2
3,

2
3 ), and this can be attained as a SPE by randomizing in a history-independent

way between three static Nash equilibria with equal probabilities. Each player i’s minmax payoff can

also be attained as a SPE by playing the respective static Nash equilibrium.
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