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Abstract

We consider an agent who posits a set of probabilistic models for the payoff-

relevant outcomes. The agent has a prior over this set but fears the actual model is

omitted and hedges against this possibility. The concern for misspecification is en-

dogenous: If a model explains the previous observations well, the concern attenuates.

We show that different static preferences under uncertainty (subjective expected util-

ity, maxmin, robust control) arise in the long run, depending on how quickly the

agent becomes unsatisfied with unexplained evidence and whether they are misspec-

ified. The misspecification concern’s endogeneity naturally induces behavior cycles,

and we characterize the limit action frequency. This model is consistent with the

empirical evidence on monetary policy cycles and choices in the face of complex

tax schedules. Finally, we axiomatize in terms of observable choices this decision

criterion and how quickly the agent adjusts their misspecification concern.
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1 Introduction

Bayesian rationality requires that an agent uncertain about the data-generating process

postulates multiple probabilistic descriptions of the environment and uses Bayes rule to

adjust their relative weights. However, even rational agents may fear that they are mis-

specified and that none of these descriptions is correct. This concern is remarkably natural

in complex and high-dimensional settings, where uncertainty needs to be simplified to ob-

tain well-behaved optimization and learning procedures.

For example, none of the model economies considered by a central bank perfectly

describes the underlying data-generating process for output and inflation. Similarly, the

consumer response models that a firm uses to set prices and qualities are unlikely to

include one that considers all relevant decision factors. Moreover, the diffusion of complex

and not explicitly described machine learning algorithms naturally creates new reasons

for misspecification. Indeed, consumers increasingly rely on automated recommendations.

Although they may have some conjecture on how the alternative’s features translate into

a score or a “match quality” with their profile, they certainly do not consider the specific

algorithm used by these recommendation systems. Misspecification is even more relevant

when dealing with entirely novel issues, such as those faced by a regulatory body that tries

to mitigate the effect of climate change using theoretical models that take into account

human impacts never experienced in history.

Misspecification has been analyzed from two distinct perspectives. On the one hand,

several papers have studied the long-run implications of subjective expected utility (SEU)

maximizers learning with misspecified beliefs (see, e.g., Esponda and Pouzo, 2016, Fuden-

berg et al., 2021, Frick et al., 2023, and the references therein). These works assume that

the agents have no concern about being misspecified. Here we show that the absence of

such concern is normatively unappealing, as it can induce long-run average payoffs lower

than a safe guarantee. It also seems descriptively unrealistic, as the widely documented

ambiguity-averse behavior may be seen as a way to hedge against the incorrect specifica-

tion of the model. On the other hand, the robust control literature in macroeconomics

pioneered by Hansen and Sargent (2001) considers agents who fear model misspecification.

In particular, the first axioms-based decision criterion that accounts for model misspecifi-

cation was proposed in Cerreia-Vioglio et al. (2022).1

1It has as a particular case the robust control model of Hansen and Sargent (2001) axiomatized by Strza-
lecki (2011). Since in Strzalecki (2011) the reference probability is subjective, it can also be interpreted
as an axiomatization of robust prior analysis, see Hansen and Sargent (2022).
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This work reconciles these approaches and shows how popular decision criteria such as

maxmin expected utility, robust control preferences, and subjective expected utility arise

as the limit behavior of an agent concerned about misspecification and learning about

the actual data-generating process (DGP). We consider an agent that repeatedly chooses

among actions whose payoffs have an unknown distribution. This choice is taken using an

average of robust control assessments, where each assessment takes a different structured

model as the benchmark. We introduce endogeneity in the misspecification concern: the

better the structured models explain the past, the less concerned the agent is.

There are two critical determinants for the long-run dynamics: whether the agent is

correctly specified and how demanding they are in evaluating their models’ performance.

First, we consider the case of a correctly specified agent. In that case, the behavior

converges to a self-confirming equilibrium, regardless of how demanding the agent is in

evaluating their model. A self-confirming equilibrium means that they play an SEU best

reply to a belief supported over the data-generating processes that are observationally

equivalent to the true one given the chosen action.

Instead, to characterize the limit behavior under misspecification, a taxonomy of how

demanding the agent is turns out to be crucial. We first establish a normative benchmark:

a “statistically sophisticated” behavior that performs a likelihood ratio evaluation of the

agent’s subjective model. More precisely, we show that the achievement of two desirable

properties uniquely characterizes such behavior: global safety (i.e., guaranteeing the min-

max payoff even when misspecified) and consistency under correct specification (i.e., no

regret when correctly specified).2

We allow departures from this normative benchmark to obtain descriptive predictions

on the effect of an endogenous misspecification concern. We consider agents that are too

demanding in evaluating the models’ performance (this case includes believers in the Law

of Small Numbers, Tversky and Kahneman, 1971, that treat failures in explaining early

realizations as a statistician treats long-run failures). Similarly, we allow the opposite

case in which the agent is too lenient in evaluating their model and attributes too much

unexplained evidence to sampling variability.

We then characterize the long-run behavior of these different types of misspecified

agents. The actions of the lenient type converge to a Berk-Nash equilibrium, i.e., to an

SEU best reply to beliefs supported on the models closest to the actual data-generating

process. Instead, overemphasis on the model’s failures in explaining the data by the

2Moreover, we observe that SEU maximization and the original robust control of Hansen and Sargent
(2001) fail to jointly satisfy these requirements.

2



demanding type induces convergence to a maxmin best reply to the models that are

absolutely continuous with respect to the true one.

In contrast, a statistically sophisticated type maintains a nonextreme concern for mis-

specification. If their behavior converges, it converges to a robust control best reply to

the models closest to the actual data-generating process. Moreover, the misspecification

concern is endogenously determined by how well the best models fit the evidence generated

by the limit action.

Therefore, our learning results provide several novel predictions about the relation

between uncertainty attitudes and other individual traits.3 First, the extent of long-

run uncertainty aversion positively correlates with the agent being initially misspecified

and their belief in the Law of Small Numbers. Second, these correlations are causal:

repeated failures to explain the data (misspecification) and demanding evaluation of these

failures induce the agent to shift to cautious behavior. Third, even keeping constant the

misspecification and understanding of probability rules, the limit uncertainty attitudes are

stochastic. Initial realizations leading to a limit action with consequences poorly explained

by the agent’s models induce a long-run uncertainty aversion higher than realizations

leading to a limit action whose consequences are well explained.

We thus use the equilibrium behavior predicted by an endogenous concern for misspec-

ification to rationalize the labor supply in the face of complex tax schedules documented

in Rees-Jones and Taubinsky (2020). In particular, they show that around 40% of the

agents have beliefs corresponding to a heuristic that simplifies the tax schedule to a linear

one but that 20% fewer agents act accordingly to this heuristic. This is predicted by an

endogenous concern for misspecification, as agents with an incorrect model are less prone

to base their decisions on the conclusions they reach within the model.

In general, the behavior of a statistically sophisticated type is not guaranteed to con-

verge. Indeed, it is possible that their behavior cycles between phases of different mis-

specification concerns. Still, we characterize the limit action frequency and concern for

misspecification. We apply this result to revisit the cyclical behavior of monetary policies

documented in Sargent (1999) and Sargent (2008). Intuitively, the cycles have the fol-

lowing structure. The agent spends some time playing an action whose consequences are

well explained by one of their structured models (a conservative monetary policy in the

application). Playing this action lowers the concern for misspecification and eventually

leads to a more misspecification-vulnerable action (a more aggressive monetary policy).

3The empirical study of the correlation between behavioral biases is an active area of recent development.
See, e.g., Dean and Ortoleva (2019), Snowberg and Yariv (2021), and the references therein.
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Failures to explain the distribution of outcomes observed under this action lead to a return

to the more misspecification robust action.

We also obtain two results that provide a testable foundation for the model employed

in the learning part of the paper: An axiomatization of the static average robust control

criterion and testable axioms for when the agent is of the lenient, statistically sophisticated,

or demanding type. Two primary axioms pin down the static decision criterion. The first

is a weaker form of the Sure-Thing Principle imposed only on bets on the data-generating

process (e.g., bets on the urn composition) and bets conditional on the data-generating

process (e.g., bets on the ball color conditional on having been told the urn composition).

The second requires that conditional on being told the best-fitting model, the agent is

equally concerned about misspecification, regardless of which one it is.

For the dynamic representation, a dynamic consistency axiom on the acts that bet

on the data-generating process is shown to guarantee Bayesian updating over models.

More interestingly, the preference adjustment of a statistically sophisticated type is pinned

down by a novel Asymptotic Frequentism axiom, requiring arbitrarily similar preferences

conditional to sufficiently long histories with the same outcome frequency.

The rest of the paper is structured as follows. Section 2 introduces the average ro-

bust control decision criterion and how preferences are adjusted. Section 3 studies what

attitudes toward model failures induce good payoff performance and provides a learning

foundation for the different uncertainty attitudes. Section 4 characterizes the limit fre-

quency of time spent using the different actions when the behavior does not converge and

applies the result to a central banking problem. Section 5 provides the axiomatization

to the static decision criterion and how preferences are updated. Section 6 discusses the

related literature and possible extensions. Section 7 concludes. All proofs are collected in

the Appendix.

2 Decision Criterion

2.1 Static Decision Criterion

We describe the criterion used in the repeated decision problem and defer its axiomatiza-

tion to Section 5. We consider an agent who chooses from a finite number of actions a ∈ A
and let Y be a compact metric space representing the set of possible outcomes. The agent

has a continuous utility index u : A × Y → R over the action-outcome pairs that cap-

tures their preference when the uncertainty is resolved. However, the realized outcome is
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stochastic and endogenous as each action a ∈ A induces an objective probability measure

p∗a ∈ ∆(Y ) over outcomes.4

Subjective Beliefs The agent correctly believes that the map from actions to proba-

bility distributions over outcomes is fixed and depends only on their current action. Still,

they do not know p∗ = (p∗a)a∈A and deal with this uncertainty in a quasi-Bayesian way.

The agent postulates a set Q ⊆ ∆ (Y )A of structured models, i.e., action-dependent prob-

ability measures over outcomes q = (qa)a∈A. They have a prior belief µ ∈ ∆ (Q) with

support Q that describes the relative likelihood assigned to these models. For example,

the agent may be a central bank that considers a Keynesian Samuelson-Solow model where

the monetary policy affects the unemployment rate or a new classical Lucas-Sargent model

with no systematic effect of inflation on unemployment.5

We must impose a few regularity conditions.

Assumption 1. Q is compact and for every a ∈ A: (i) For all q ∈ Q, q̃a : = dqa
dp∗a

exists, is

continuous, and is p∗a-a.s. bounded away from 0, uniformly in Q, (ii) For p∗a-almost every

y ∈ Y the map q 7→ q̃a (y) is continuous.

Condition (i) allows us to compute the relevant expectations while allowing for both

discrete and continuous outcome spaces and guarantees that no subjective model of the

agent is ruled out in finite time.6 Continuity of the map from models to outcome distri-

butions is a standard requirement for parametric models.

A myopic Bayesian agent with complete trust in their models evaluates action a ac-

cording to its subjective expected utility (see, e.g., Cerreia-Vioglio et al., 2013b):∫
Q

Eqa [u (a, y)] dµ (q) .

That is, they compute a two-stage expectation of the utility function: they evaluate the

4For every subset C of a metric space, we denote as ∆ (C) the Borel probability measures on C, endowed
with the topology of weak convergence of measures.

5This formulation follows the recent literature on misspecified learning in assuming that both the true
data-generating process and the subjective models the agent considers are i.i.d. conditionally on the
agent’s behavior. This makes the true extent of misspecification time-invariant and “measurable”. It is
important to notice that this time invariance is often relaxed in the literature on dynamic decisions with
robust control preferences that follows Hansen and Sargent (2001).

6Condition (i) also plays a technical role in guaranteeing the existence of the equilibrium concepts we
consider. It is known it can be relaxed; see Anderson et al. (2022), but this relaxation comes at the cost
of requiring nonstandard analysis techniques (where nonstandard means using infinitesimal numbers),
something beyond this paper’s scope.
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utility of the action given the candidate model q, Eqa [u (a, y)], and then they average over

the models with weights given by their subjective belief µ.

However, we are interested in agents concerned with the possibility that none of these

models is the exact description of the data-generating process but only a valid approxi-

mation, i.e., that are concerned that there is no q ∈ Q with q = p∗. Therefore, in the

spirit of the robustness criterion advocated by Hansen and Sargent (2001), they penal-

ize actions that perform poorly under alternative distributions that are close in relative

entropy R (·||·) to some of the structured models.7

With this, an agent evaluates each action a ∈ A accordingly to the average robust

control criterion: ∫
Q

min
pa∈∆(Y )

(
Epa [u (a, y)] +

1

λ
R (pa||qa)

)
dµ (q) (1)

where λ > 0 is a parameter that trade-offs between decision robustness and performance

under the structured models.8

The original robust control model introduced by Hansen and Sargent (2001) is the case

in which µ is a Dirac measure (that in macroeconomics applications is often assumed to

satisfy rational expectations, i.e., to be degenerate on the actual data-generating process).

As described in Hansen et al. (2006), this case corresponds to when “[...] a maximizing

player (‘the decision maker’) chooses a best response to a malevolent player (‘nature’) who

can alter the stochastic process within prescribed limits. The minimizing player’s malev-

olence is the maximizing player’s tool for analyzing the fragility of alternative decision

rules.” Equation (1) follows Hansen and Sargent (2007) and Cerreia-Vioglio et al. (2022)

in extending this interpretation to a situation in which the agent is still uncertain about

the best-approximating model (i.e., µ is nondegenerate), allowing the malevolent nature

to alter each of the candidate structured models.

The representation adopts the distinction between two levels of uncertainty. At the

first level, given a probabilistic model q, the uncertainty about the exact specification of

the model is captured by minimizing the expected utility for probabilities that are not too

far away from q. At a higher level, the agent is also uncertain about the identity of the

best structured model and posits a prior probability µ over them. While the higher level

of uncertainty is already present under subjective expected utility, the lower level captures

7For every p, q ∈ ∆ (Y ), p � q means that q is absolutely continuous with respect to p, and p ∼ q
means that they are mutually absolutely continuous. Recall that for every p, p′ ∈ ∆ (Y ), R (p||p′) =∫
Y

log
(

dp
dp′

)
dp if p′ � p and R (p||p′) =∞ otherwise.

8Lemma 1 justifies the use of a min rather than an inf in equation (1) and throughout the paper.
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the agent’s concern for misspecification.

2.2 Preference Evolution

The average robust control criterion of equation (1) describes how the agent chooses for a

given belief and level of misspecification concern. However, the behavior responds to the

received information. Formally, time is discrete, and a history is a finite vector of past

actions and outcomes. In particular, the set of histories of length t ∈ N is Ht = (A× Y )t,

and the set of all histories is H =
⋃∞
t=0Ht. We will denote with at,yt, and ht the random

variables corresponding to the action, outcome, and history at time t, and we use the

non-bold version for their realizations.

On the one hand, we stick to the classical treatment of beliefs about the possible data-

generating processes. We let the belief be updated through standard Bayesian updating.

That is, for every measurable subset C of Q, we denote by

µ(C | (at, yt)) =

∫
C

∏t
τ=1 q̃aτ (yτ )dµ(q)∫

Q

∏t
τ=1 q̃aτ (yτ )dµ(q)

(Bayes Rule)

the subjective belief the agent obtains using Bayes rule after history (at, yt) ∈ Ht.
9

On the other hand, we introduce an endogenous and time-evolving concern for mis-

specification, i.e., we let λ depend on the realized history through a function Λ : H →R+.

Log-Likelihood Ratio In particular, we want to capture the idea that the concern

for misspecification is a function of how well the structured models explain the current

history. In statistics, a common measure of fit of a set of distributions Q against a set of

unstructured alternatives N (Q) ⊆ ∆ (Y )A is the log-likelihood ratio:10

LLR((at, yt), Q) = − log

(
maxq∈Q

∏t
τ=1 q̃aτ (yτ )

maxp∈N(Q)

∏t
τ=1 p̃aτ (yτ )

)
∀t ∈ N,∀(at, yt) ∈ Ht.

Here we want to take a conservative approach and not impose structure over the set

9By Assumption 1 (i), the posterior is well-defined after every positive probability history. We allow for
arbitrary belief revisions after events with zero ex-ante subjective probability.

10The Neyman-Pearson Lemma establishes the performance of the log-likelihood ratio test under correct
specification. At the same time, Foutz and Srivastava (1977) and Vuong (1989) contain the classical
results about the informativeness of the LLR under misspecification. Schwartzstein and Sunderam
(2021) is a recent paper that models agents in a persuasion problem who perform model selection using
this statistic. Lemma 1 justifies the use of max in the definition of the LLR under Assumption 2.
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of alternative unstructured distributions N (Q) used to evaluate the model’s fit. If Y is

finite and all outcomes have positive probability, there is a natural way to do so, i.e., to

consider as the set of alternatives unstructured distributions the entire (action-indexed)

simplex ∆ (Y )A. However, considering a completely unrestricted set of distributions with a

continuum of outcomes leads to an utterly uninformative test of the model, as the (discrete)

empirical distribution is an infinitely better fit to itself than any continuous distribution,

i.e., the log-likelihood ratio always returns +∞. To maintain informativeness, N (Q) must

then include only distributions that are mutually absolutely continuous with respect to

the ones in Q. In particular, all our results are invariant to the N (Q) choice as long as

the following assumption is satisfied.

Assumption 2. (i) p∗ ∈ N (Q) ⊇ Q. (ii) For every a ∈ A, the family of densities

{p̃a : p ∈ N (Q)} is a compact set of continuous functions.

We require that the unstructured set is a relaxation sufficiently large to include the

actual distribution and a continuity condition that rules out a Q that only contains con-

tinuous distributions and an N(Q) that includes discrete distributions.

With this, an important role will be played by the rule

Λ (ht) =
LLR(ht,Q)

ct
∀t ∈ N,∀ht ∈ Ht (2)

where c ∈ R. Observe that under this rule, the concern for misspecification is propor-

tional to the average log-likelihood ratio. This average log-likelihood ratio is often used

in statistics to measure the extent of model misspecification.11 Therefore, we informally

refer to an agent who uses such a rule as a “statistically sophisticated type”. Of course,

the estimation goal of a statistician can be very different from that of an agent involved

in a repeated decision problem under uncertainty. Proposition 1 confirms that this rule is

also a rationality benchmark in repeated decision problems, as it uniquely identifies the

behavior that induces no regret when the agent is correctly specified and is always maxmin

safe.

11This use of the average LLR complements the classical role of the total LLR in deciding whether to
reject or accept a model. In particular, Wilks Theorem (see, e.g., Theorem 10.3.3 in Casella and
Berger, 2021) shows that under correct specification, the likelihood ratio test statistic converges to a χ2

distribution. However, it says nothing about the distribution of the LLR if the model is misspecified.
See Hausman (1978) and the subsequent literature for a complementary approach to the measurement
of model misspecification when the statistician can compute a consistent quasi-maximum-likelihood
estimator.

8



3 Long-run Payoffs and Actions

In this section, we study the long-run consequences of using the decision criterion above.

Our primary interest is in what attitudes towards unexplained evidence, i.e., what Λ,

induce good payoff performance across environments and what are the limit actions and

preferences under uncertainty attitudes that arise given a specific attitude.

Let BRλ (ν) denote the set of average robust control best replies to belief ν when the

concern for misspecification is λ, i.e.,12

BRλ (ν) = argmax
a∈A

∫
Q

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa)
λ

)
dν (q) ∀λ ∈ R+,∀ν ∈ ∆ (Q) .

Also, let

BRSeu (ν) = argmax
a∈A

∫
Q

Eqa [u (a, y)] dν (q) ∀ν ∈ ∆ (Q)

denote the actions that maximize the (classical) subjective expected utility of an agent

with belief ν and

BRMeu (C) = argmax
a∈A

inf
p∈C

Epa [u (a, y)]

denote the actions preferred by a maxmin agent a la Gilboa and Schmeidler (1989) with

models C ⊆ ∆(Y )A.

A (pure) policy is a measurable Π : H → A that specifies an action for every history.

The objective action-contingent probability distribution and a policy Π induce a proba-

bility measure PΠ on (A× Y )N.13 Our interest is in policies derived from maximizing the

value in equation (1) for some rule Λ determining how the concern for misspecification is

adjusted.

Definition 1. Policy Π is Λ-optimal if for all ht ∈ H, Π (ht) ∈ BRΛ(ht) (µ (·|ht)) .

3.1 Normative Benchmark

We have mentioned that using the rule in equation (2) has the good statistical property

of keeping Λ asymptotically informative about the fit of the model. Now, we provide a

normative justification for considering it the relevant benchmark of rationality, showing

that it satisfies the desirable properties of safety and consistency (cf. Fudenberg and

12Throughout the paper, we use the convention 0 · ∞ = 0.
13We spell out the PΠ derivation in Appendix A.1.1.
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Levine, 1995; Hart and Mas-Colell, 2000) across all possible decision problems the agent

can face.

Definition 2. Let ε > 0. Λ is ε-safe for the decision problem (u,A, Y ) if for every

Λ-optimal policy Π and DGP p∗ ∈ ∆ (Y )A

lim inf
t→∞

∑t
i=1 u (ai,yi)

t
≥ max

a∈A
min
y∈Y

u (a, y)− ε PΠ-a.s. (3)

This is a very mild condition that only requires the agent to obtain an average payoff at

least ε close to what they can guarantee against every possible outcome. However, when

paired with misspecification, ε-safety has a significant bite: a Bayesian SEU agent fails it

in many decision problems. Indeed, such failures have been the basis of many critiques of

learning under misspecification with Bayesian SEU agents.

Example 1 (Unsafe SEU). Suppose A = {Bet Heads, Bet Tails, Out} and Y = {Heads, Tails}.
The utility is 0 if Out, 1 if the action matches the outcome, and −1 if there is a mis-

match. Each agent’s model is an action-independent probability of Heads. So identify

Q = {0.9, 0.4}, and let p∗a (Heads) = 0.6, and µ (0.9) = 1
2

= µ (0.4). The actions of

a Bayesian SEU maximizer converge to Bet Tails with an average performance of −0.2

versus a safe payoff of 0 under action Out.

This is the simplest possible example, but safety also fails in the more economically

motivated case of overconfidence, the key aspect being that good statistical fit does not

necessarily induces good decisions.

Definition 3. Let ε > 0. Λ is ε-consistent under correct specification for the decision

problem (u,A, Y ) if there exists δ > 0 such that for every Λ-optimal policy Π and DGP

p∗ ∈ ∆ (Y )

min
q∈Q

max
a∈A

R (p∗a||qa) < δ =⇒ lim inf
t→∞

∑t
i=1 u (ai,yi)

t
≥ max

a∈A
Ep∗a [u (a, y)]− ε PΠ-a.s.

ε-consistency under correct specification requires that sufficiently low levels of mis-

specification (i.e., the existence of a model q with distance less than δ from the true data

generating process) cannot induce considerable ex-post regret (i.e., a limit average payoff

more than ε lower than the expected payoff of the objectively optimal action). Intuitively,

we want that if the misspecification is minor, in the long run, the agent approximately

identifies the actual model and starts best replying to it. Therefore, in classical statistics
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terms, it can be interpreted as requiring that the long run, the probability of Type I error

goes to 0.14

Proposition 1. 1. For every ε > 0 and decision problem where (i) {q∗} = argminq∈QQ (a)

and (ii)

lim
n→∞

qna = q∗a =⇒ lim
n→∞

qna′ = q∗a′ ∀a, a′ ∈ A,∀ (qn)n∈N ∈ Q
N (4)

there exists c > 0 such that if

Λ (ht) =
LLR (ht, Q)

ct
∀t ∈ N,∀ht ∈ Ht,

Λ is both ε-safe and ε-consistent under correct specification.

2. There exist ε > 0 and a decision problem that satisfies (i) and (ii) for which there is

no ε-safe and ε-consistent under correct specification Λ with either15

Λ (ht) = o

(
LLR (ht, Q)

t

)
∀ (ht)t∈N ∈ ×t∈NHt.

or

o (Λ (ht)) =
LLR (ht, Q)

t
∀ (ht)t∈N ∈ ×t∈NHt.

The safety and consistency conditions we require are weak but are enough to single

out the statistically sophisticated type. When the concern for misspecification is adjusted

accordingly to equation (2), the combination of Bayesian updating over parameters and

dynamically adjusted concern for misspecification is consistent with Savage’s distinction

between small and large worlds (see pages 82-91 in Savage, 1954). Indeed, Savage ad-

vocates reducing the large-world uncertainty to small worlds (for us, the structured Q)

where Bayesian updating has appealing properties, but being aware that this description

is incomplete and that the agent should evaluate the fit of that simplification (for us, using

14Observe that, in the language of Fudenberg and Levine (1995), this consistency is not “universal” as it
is only required to hold against the DGPs in the support. That is, it captures the idea of a DM willing
to incur some long-run payoff loss to use a simpler model. But they want that if the simple model is
correct, this loss does not arise.

15Recall that given two sequences (xn)n∈N , (x
′
n)n∈N of real numbers, xn = o (x′n) means that limn→∞

xn
xn

=

0. Here we use the convention that 0
0 = 0, making the definition of o more permissive. Since o will

always appear as a requirement for a sequence in the hypothesis of our statements, such convention
makes our results stronger and able to cover a larger range of cases.
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a test that can measure the failures of this description). In terms of performance, this

procedure results in a behavior that is safe and consistent under correct specification.

At the same time, some less normatively appealing but descriptively relevant phenom-

ena are captured by other rules. On the one hand, a rule such that limt→∞
Λ(ht)

LLR(ht,Q)/t
=∞,

e.g., Λ (ht) = LLR(ht,Q)√
t

, overly penalizes minor imperfections of the model, expecting that

the frequency quickly converges to its theoretical value, as in the fallacy called the Law

of Small Numbers. On the other hand, an agent for which limt→∞
Λ(ht)

LLR(ht,Q)/t
= 0 applies

an excessively lenient adjustment to the likelihood ratio statistic and attributes too much

of the unexplained evidence to sampling variability. In this regard, Proposition 1 tells us

that there are decision problems where any way to adjust the concern for misspecification

that is globally more demanding or lenient than the average LLR violates either ε-safety

or ε-consistency under correct specification. Moreover, standard SEU maximization is not

safe, while always using a maxmin best reply to Q induces a behavior that is not consistent

under correct specification.16

Safety and consistency for the LLR-based rule are established under the conditions

of identification, i.e., that there is a unique minimizer q∗ regardless of the action, and

a minimal continuity requirement between the consequences induced by different actions

under the structured models. It allows for situations where the data-generating process

is (subjectively) perceived as exogenous, where the structured models represent different

Gaussian shifts or linear intercepts and, more generally, every example in the paper. How-

ever, it rules out (subjective) bandit problems with infinite Q, as in that case, structured

models that are very similar under an action may be completely different under a differ-

ent action. This is natural, as we should not expect consistency of an impatient agent

in a bandit problem. In the extension of this paper to patient agents, we confirm the

consistency of the LLR-based rule in bandit settings for sufficiently patient agents.

3.2 Positive Long-run Predictions

We are interested in the actions that can arise as the long-run behavior of agents with an

evolving concern for misspecification. The main results of this section show that we can

describe this limit behavior through fixed point conditions involving the agent’s action,

belief, and concern for misspecification. To this end, let Q (a) = argminq∈QR (p∗a||qa) be

16This observation about the inconsistency of a misspecified single agent complements the results of
Fudenberg and Kreps (1993) and Fudenberg and Levine (1995) about the inconsistency of a correctly
specified SEU player in games.
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the structured models that best fit the actual data-generating process when action a is

played.

Definition 4. Action a∗ is a:

1. Self-confirming equilibrium (SCE) if there exists ν ∈ ∆ (Q) with

suppν ⊆ {q ∈ Q : qa∗ = p∗a∗} and a∗ ∈ BRSeu (ν) .

2. Berk-Nash equilibrium if there exists ν ∈ ∆ (Q) with

suppν ⊆ Q (a∗) and a∗ ∈ BRSeu (ν) .

3. Maxmin equilibrium if

a∗ ∈ BRMeu
({
p ∈ ∆ (Y )A : ∃q ∈ Q,∀a ∈ A, qa � pa

})
.

4. c-robust equilibrium if there exists ν ∈ ∆ (Q) with

suppν ⊆ Q (a∗) , a∗ ∈ BRλ (ν) , and λ = min
q∈Q

R (p∗a∗||qa∗) /c.

Self-confirming equilibrium (Battigalli, 1987 and Fudenberg and Levine, 1993) de-

scribes a stable situation where the agent’s action is a best reply to a belief that is on-path

confirmed, in the sense of being concentrated over models that perfectly match the distri-

bution over outcomes induced by the equilibrium action.

Berk-Nash equilibrium (Esponda and Pouzo, 2016) relaxes the confirmed beliefs condi-

tion of SCE by only requiring that the supporting beliefs are concentrated on the models

that provide the best fit to the outcome distribution induced by the equilibrium action.

Importantly, this fit is not required to be perfect.

In a maxmin equilibrium, the agent evaluates each action under the worst-case sce-

nario that is minimally consistent with their structured descriptions of the environment

(i.e., those scenarios that do not assign positive probability to events impossible for every

structured models).

c-robust equilibrium is similar to Berk-Nash in requiring best reply to the best-fitting

models. However, the best reply is the average robust control, with misspecification con-

cern that decreases in how well the models fit the true DGP at the equilibrium.
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We are interested in what actions have a positive probability of becoming the long-run

behavior of the agent. The following definition captures this requirement.

Definition 5. Action a is a Λ-limit action if there is a Λ-optimal policy Π such that

PΠ [sup{t : at 6= a} <∞] > 0.

Our first limit result is a consistency check: Concern for misspecification is irrelevant

in environments with a finite number of outcomes if the agent is correctly specified about

the consequences induced by the limit action.

Proposition 2. If Y is finite, a∗ is a Λ-limit action with p∗a∗ ∈ {qa∗}q∈Q, and for every

history sequence (ht)t∈N ∈ ×t∈NHt

lim
t→∞

LLR (ht, Q)

t
= 0 =⇒ lim

t→∞
Λ (ht) = 0

then a∗ is a self-confirming equilibrium.

Instead, how quickly the agent becomes unsatisfied with their model plays a key role

when misspecified.

Theorem 1. Let a∗ be a Λ-limit action with p∗a∗ /∈ {qa∗}q∈Q.

1. If

Λ (ht) = o

(
LLR (ht, Q)

t

)
∀ (ht)t∈N ∈ ×t∈NHt, (5)

then a∗ is a Berk-Nash equilibrium.

2. If

o (Λ (ht)) =
LLR (ht, Q)

t
∀ (ht)t∈N ∈ ×t∈NHt, (6)

then a∗ is a maxmin equilibrium.

3. If

Λ (ht) =
LLR (ht, Q)

ct
∀t ∈ N,∀ht ∈ Ht,

then a∗ is a c-robust equilibrium.

The theorem characterizes the possible limit actions of all types of agents. At one

extreme, the concept of Berk-Nash equilibrium, introduced for subjective expected utility

maximizers, is still sufficient to describe the long-run behavior of lenient types. At the
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other extreme, the repeated failures in explaining the observed data lead demanding agents

to a highly pessimistic behavior and consider the worst-case scenario among all the DGPs

that are minimally consistent with the structured models.

Finally, if the behavior of the statistically sophisticated type converges, the limit action

is a best reply to beliefs that are supported on the relative entropy minimizers. Here the

misspecification concern is determined by the relative entropy between the actual DGP

and the best-fitting model.

3.3 Equilibrium Illustrations

In this section, we revisit two of the main biases that have been justified as a consequence

of misspecified learning (see Esponda and Pouzo, 2016). Within each example, adding an

endogenous concern for misspecification predicts a change in a clear direction. However,

one bias is reduced while the other is enhanced. Both changes are broadly consistent with

the documented evidence. The first example shows how the endogenous misspecification

concern moderates the Berk-Nash equilibrium’s prediction that a more complicated tax

schedule induces a higher labor supply.

Example 2 (Bias Reduction under Misperceived Taxation, Sobel, 1984 and Esponda and

Pouzo, 2016). An agent chooses effort a ∈ A at cost c(a) and obtains income z = a+ ωa,

where ωa is a stochastic term with Ep∗a [ωa] = 0 for all a ∈ A. The agent pays taxes

t = τ(z)+ lε1, where τ : R→ R is a convex tax schedule. Here y = (z, t), and the payoff is

u (a, y) = z−t−c (a). The agent believes in a random coefficient model, t = (θ + ε2,a) z, in

which the marginal and average tax rates are equal. The stochastic terms ε1, ε2,a ∼ N (0, 1)

measure respectively actual and conjectured uncertain aspects of the tax schedule, and the

(ωa, ε2,a)a∈A and ε1 are independent.17 See Liebman and Zeckhauser (2004) and Rees-

Jones and Taubinsky (2020) for the empirical evidence supporting this “schmeduling” bias.

Simple computations show that Q (a) ∼
{
Ep∗a

[
τ(a+ωa)
a+ωa

]}
for l small, i.e., the best fitting

marginal taxation is equal to the (lower) average taxation.18 Therefore, as pointed out by

Esponda and Pouzo (2016), in any Berk-Nash equilibrium, the agent ends up exerting

higher effort than the optimal. Moreover, the more complex (i.e., convex) the tax code

is, the more significant the gap between the average and marginal rate and the higher the

excess effort of the agent.

17Formally, ε normally distributed implies that Y is not compact, in contrast with the primary analysis of
the paper. Still, the conclusions below are unaffected by considering ε with a symmetrically truncated
normal distribution that allows remaining in our main framework.

18See Appendix A.3 for the computations supporting the claims of the examples.
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In every c-robust equilibrium, this bias is reduced. To see this observe that since the

agent is not perfectly able to explain the equilibrium data, i.e., minθ∈ΘR
(
p∗a||qθa

)
> 0,

they maintain a positive level of concern for misspecification. However, higher efforts are

perceived as more exposed to the uncertainty in the marginal rate (as the stochastic tax

rate gets multiplied by an, on average, higher z).

Therefore, c-robust equilibrium provides a natural force that reduces the counterintu-

itive prediction that complicated nonlinear taxation codes induce more effort: failures to

rationalize the received tax bill reduce effort. Moreover, the more complicated the tax code

is, i.e., the more nonlinear τ is, the larger the correction size. This set of predictions

is consistent with Rees-Jones and Taubinsky (2020), where it is shown that around 40%

of the agents have beliefs (elicited in an incentive-compatible way) corresponding with

the schmeduling heuristic but that there are 20% fewer agents who act accordingly to the

heuristic.19

The second example shows that an endogenous concern for misspecification can enhance

some biases. In particular, this is the case for Correlation Neglect, a bias that is indeed

widely documented (see Enke and Zimmermann, 2019 and the references therein).

Example 3 (Bias Increase under Correlation Neglect, Esponda, 2008). A buyer with

valuation v ∈ V and a seller submit a (bid) price a ∈ A, and an ask price s ∈ S ⊆ R+,

respectively. They play a double auction with price at the buyer’s bid, so the seller sets

their ask s equal to their value, and a sale occurs if the buyer’s bid a is at least s. The

payoff for the buyer is

u (a, v, s) =

{
v − a a ≥ s

0 otherwise.

The buyer mistakenly believes that the ask price and valuation are independent: Q =

∆ (V )×∆ (S). Easy computations show that for every a∗ ∈ A,

Q (a∗) = {q ∈ Q : ∀a ∈ A,∀s ∈ S, qa (s) = p∗a (s) , qa (v) = p∗a (v)} .

Therefore, in the Berk-Nash equilibrium, the agent makes a bid a∗ lower than the optimal

one, not realizing that higher successful bids are, on average, associated with higher-quality

19In this discussion we followed Rees-Jones and Taubinsky (2020) preferred interpretation in terms of
an heterogeneous population. They observe that their data are also compatible with all the agents
having beliefs induced by the schmeduling heuristic but under-responding to this biased estimation of
the marginal tax rate. This explanation is consistent with a c-robust equilibrium and inconsistent with
a Berk-Nash equilibrium, too.
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goods. In this case, the bias is reinforced in a c-robust equilibrium: a complete unraveling

of the market where the buyer bids 0 is easier to achieve with an endogenous concern

for misspecification. The correlation between valuations and prices results in a positive

minq∈QR (p∗a∗||qa∗) > 0 and makes the agent less confident in their model. Since offering

0 gives a certain payoff, it is less sensitive to the misspecification concern, and, therefore,

this positive concern makes market participation less desirable.

4 Cycles

Part 3 of Theorem 1 provides a necessary condition for the limit actions of the statistically

sophisticated type. However, as momentarily illustrated by the monetary policy applica-

tion of Section 4.1, there is no guarantee that such an action exists. In these cases, we

know by Theorem 1 that the agent behavior cannot stabilize. We now propose a general-

ization of c-robust equilibrium, show that it always exists, and prove that it characterizes

a weaker form of behavior convergence. Formally, for every α ∈ ∆ (A), let

Q (α) = argminq∈Q
∑
a∈A

α (a)R (p∗a||qa)

be the set of parameters with the lowest average relative entropy from the actual data-

generating process, where the average is computed using α.

Definition 6. A mixed action α∗ ∈ ∆ (A) is a mixed c-robust equilibrium if there exists

ν ∈ ∆ (Q) with

suppν ⊆ Q (α∗) , α∗ ∈ ∆
(
BRλ (ν)

)
, and λ = min

q∈Q

∑
a∈A

α∗ (a)R (p∗a||qa) /c.

A mixed robust equilibrium allows multiple actions to be played but requires that the

beliefs and the concern for misspecification are determined by the probability assigned to

each action. Intuitively, suppose actions for which the models in Q do not satisfactorily

explain the consequences are played more often. In that case, the mixed action α∗ must

best reply to a more significant misspecification concern.

Proposition 3. For every c > 0 there exists a mixed c-robust equilibrium.

Existence is established by proving that the conditions characterizing a mixed c-robust

(single-agent) equilibrium are equivalent to the ones of a Nash equilibrium in a game
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among the agent and two adversarial Nature players. The result is then obtained by

showing that this game satisfies the conditions that guarantee existence in Reny (1999).

Theorem 1 assumes convergence and characterizes the possible limit actions. However,

there are natural environments where the action process almost surely does not converge.

In that case, it is important to study a weaker form of behavior stabilization, i.e., the con-

vergence of the empirical action frequency, which allows for persistent changes in actions

and misspecification concerns. Let αt (ht) ∈ ∆ (A) be the empirical action frequency in

history ht, defined as

αt (ht) (a) =

∑t
τ=1 I{a} (aτ )

t
∀a ∈ A,∀t ∈ N, ∀ht ∈ Ht.

Definition 7. A mixed action α ∈ ∆ (A) is a Λ-limit frequency if there is a Λ-optimal

policy Π such that PΠ [limt→∞ αt (ht) = α] > 0.

The following result shows that mixed robust equilibrium is the relevant equilibrium

concept to capture the long-run stabilization of the average time spent playing each action.

Theorem 2. If

Λ (ht) =
LLR (ht, Q)

ct
∀t ∈ N,∀ht ∈ Ht

and α∗ is a Λ-limit frequency, then α∗ is a mixed c-robust equilibrium.

To interpret Theorem 2, consider the case where α∗ is supported over two actions a, a′

such that Q explains very well the consequences of a, —i.e., minq∈QR (p∗a||qa) is low— but

it explains poorly the consequences of a′ —i.e., minq∈QR (p∗a′ ||qa′) is high. Suppose also

that a is a best reply to a high misspecification concern, while a′ is a best reply to a low

misspecification concern. Then, the agent oscillates between periods with great concern

for misspecification, when they play a, and phases in which the excellent data fit leads

them to experiment with action a′.

Whenever cycles are involved, a natural concern is whether the agent can predict

them and whether they have the incentive to break them.20 This is not the case in this

model for two orders of reasons. First, the oscillations in behavior are stochastic, and the

agent cannot predict and anticipate the changes perfectly. Second and more important,

although the agent behavior does not converge, whenever Q (α) is a singleton, the agent’s

preferences converge.21 They are approaching indifference between all the actions with

20For example, this is what happens in fictitious play.
21A singleton Q(α) is a mild requirement satisfied in many cases. See Fudenberg et al. (2021) for a

discussion.
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positive frequency. This asymptotic indifference dramatically reduces the incentives to try

to detect and break the probabilistic cycles.

4.1 Application: Monetary Policy Cycles

Here we consider a monetary policy model taken from Sargent (1999), Cogley and Sargent

(2005), and Sargent (2008) and in particular its adaptation in Battigalli et al. (2022).22

A central bank is trying to control a two-dimensional consequence, Y ⊆ R2, where the yU

component is unemployment and the yπ component is inflation. The policy is aggressive

a = 1 or conservative a = 0.23 The central bank models are parametrized by the vector θ,

with the following specification:

yU = θ0 + θ1πyπ + θ1aa+ θ2εU

yπ = a+ θ3επ

where εU and επ are independent, zero-mean random shocks normalized to have the same

support [−1, 1]. Here θ0 > 0 is the natural unemployment level, θ1π < 0 is the impact of

the actual inflation on unemployment, and θ1a > 0 is the impact of the planned inflation

on unemployment, a reduced form of the fact that the market participants (partially)

incorporate the central bank actions in their inflation expectations. In particular, if θ1π +

θ1a = 0, this is a Lucas-Sargent model with no (structural) exploitable employment-

inflation trade-off. If θ1π+θ1a is negative, this is a Samuelson-Solow model with a structural

exploitable employment-inflation trade-off.

The agent’s model is misspecified in that it misses the fact that an aggressive monetary

policy, beyond raising its baseline level, also increases the inflation variability:

yU = θ∗0 + θ∗1πyπ + θ∗1aa+ θ∗2εU

yπ = a+ θ∗3fa (επ)

where f0 is the identity function, while f1 is a continuous, strictly increasing, and odd func-

tion with f1 (1) = 1 that is strictly concave on R++, i.e., that amplifies the inflation-specific

22Spiegler (2020) also considers the effect of a misspecified simpler model in the context of Philipps curve
estimation, with the difference being that the misspecification is on the side of the market rather than
the central bank.

23Two actions are assumed for simplicity, but a finite A is needed to apply our results.
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shocks.24 This form of misspecification is motivated by the findings in Primiceri (2005)

and Sims and Zha (2006) and recent inflation consequences of an aggressive monetary

policy.

The central bank is endowed with standard quadratic preferences:

u(a, (yU , yπ)) = −y2
U − y2

π.

Assumption 3. i) Some trade-off is present: (θ∗1π + θ∗1a + θ∗0)2 + 1 < (θ∗0)2. ii) Inflation is

more volatile than unemployment under the aggressive monetary policy: essinfp∗1 u (1, y) <

essinfp∗0 u (0, y). iii) Θ is a product set that includes θ∗ and for all θ ∈ Θ, (θ1a, θ2, θ3) =

(θ∗1a, θ
∗
2, θ
∗
3).

Observe that the exploitable trade-off required by (i) may be so small that the reduced

inflation variability under a conservative policy makes the latter optimal. Condition (ii)

requires that the additional inflation volatility induced by the aggressive policy is enough

to have the worst tail payoffs. Condition (iii) allows us to focus on the cycles induced by

the oscillation in the concern for misspecification. Without that, one would get the same

insights with other oscillations of beliefs that push even more towards cycles, a channel

pointed out by Nyarko (1991) in a monopoly pricing setting.

Corollary 1. There is c̄ > 0 such that for all c ≤ c̄

1. There is no c-robust equilibrium.

2. There exists a mixed c-robust equilibrium.

3. The maximal and minimal equilibria are such that α∗ (0) is increasing in θ∗1π + θ∗1a.

Playing the conservative policy is the best reply to a high misspecification concern

and θ∗ but induces a low concern as its consequences are well explained. In contrast,

the aggressive policy is a best reply to a low misspecification concern and θ∗ but induces

24An alternative, more parametric specification would have

yU = θ∗0 + θ∗1πyπ + θ∗1aa+ θ∗2εU

yπ =
(
1 + σ2

πaεπa
)
a+ θ∗3επ

where επa is an independent error and σ2
πa > 0. If we let the support of εU and επ be unbounded,

nothing in the analysis below would be affected by a shift to this alternative specification. However,
that change would bring us outside the compact Y setting study in the rest of the paper, so we opted
for preserving the consistency.
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a severe concern. Therefore, the policy cannot stabilize, consistently with the cyclical

behavior of monetary policies documented in Sargent (1999), Clarida et al. (2000), and

Sargent (2008). We also have some natural comparative statics in the extremal robust

equilibria, as a more significant exploitable trade-off between inflation and unemployment

induces more time spent using an aggressive monetary policy.25

In this application, we purposefully chose one of the most straightforward macroeco-

nomic frameworks to isolate and illustrate the effect of an endogenous concern for mis-

specification. However, incorporating an endogenous concern for misspecification in more

elaborate models is a valuable enterprise. For example, the fact that evidence impacts the

trust in the model may be used to explain the observed pattern of initial underreaction to

information when only beliefs within a model are adjusted and medium-run overreaction

when the belief adjustment compounds with a change in model trust (see Angeletos et al.,

2021 and the references therein for a discussion of this pattern).

5 Representation

We next move to characterize the average robust control model in terms of observable

choices in an Anscombe-Aumann framework. In line with the literature on decision theory

under uncertainty, our goal is to associate the decision criterion in equation (1) with axioms

on a binary preference relation over acts.

Before jumping into the details of the axiomatization, we provide a high-level de-

scription of the steps involved and the intuitive meaning of the axioms we link to the

representation. In terms of observability requirements, we allow the analyst to elicit pref-

erences for bets both on the data-generating process, e.g., the urn composition, and on

the actual realization, e.g., the color of the drawn ball.26 The analysis then has two nested

levels: 1) An axiomatization of the static decision criterion, 2) An axiomatization of the

changes in the preference parameters, and in particular, the speed of adjustment of the

concern for misspecification.

The static decision criterion belongs to the variational class of Maccheroni et al.

(2006a). More importantly, within this class, it is identified by a relaxed Sure-Thing

25It is well-known that non-extremal equilibria are less well-behaved in terms of comparative statics.
See Diamond (1982) for a very early example. A supermodularity condition between the concern for
misspecification and the conservative policy payoff guarantees equilibrium uniqueness.

26This is standard when dealing with multiple sources of uncertainty, see for example Klibanoff et al.
(2005) and Gul and Pesendorfer (2014), and Cerreia-Vioglio et al. (2013a) for a general framework and
results. We discuss how to relax this requirement in Section 6.4.
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Principle: the agent satisfies it for bets that involve the identity of the model (e.g., bets

on an urn composition) and for bets on events conditional on the model (e.g., bets on the

color after having revealed the urn composition). However, failures of the Sure-Thing prin-

ciple can happen for acts that involve the realization of the outcome without conditioning

on the model (e.g., bets on the color without knowing the urn composition, which are the

ones involved in the classical Ellsberg’s paradox). The final conceptual axiom involved

in the representation of equation (1) is a notion of uniform conditional misspecification

concern. It requires that conditional on being told the identity of their best-fitting model,

the agent is equally concerned about it not being exact regardless of which one it is.

We consider a collection of binary relations indexed by the observed history to charac-

terize the agent’s dynamic preferences. Three other axioms identify the qualitative changes

of the preference parameters u, λ, µ. Constant Preference Invariance guarantees that the

taste u for uncertain alternatives is stable over time. Dynamic Consistency over Models

guarantees that the probability distribution over models is updated in a Bayesian fashion.

Finally, we axiomatize the asymptotic speed of adjustment of the misspecification concern.

To do so, we need a quantitative notion of how similar two preference relations are, which

is defined using an event E and two deterministic and strictly ranked outcomes, x and y,

as measuring rods. Loosely speaking, two relations are (x, y, E, ε) similar if their certain

equivalents for the binary act that pays x if E realizes and y otherwise are ε close. With

this, an Asymptotic Frequentism axiom singles out the statistically sophisticated type: for

every (x, y, E, ε), the conditional preferences after sufficiently long sequences of outcomes

sharing the same empirical frequency must be (x, y, E, ε)-similar. Conversely, a lenient

type asymptotically becomes similar to those SEU preferences that are less misspecifi-

cation concerned than the initial preference. The demanding type must approach the

preferences of a maxmin agent, thus confirming in a decision-theoretic setting the insights

of Theorem 1.

5.1 Notation and Preliminaries

The agent evaluates simple acts, i.e., measurable and finite ranged maps from a state space

S into a convex set of outcomes X, where S is endowed with a σ-algebra of events Σ. The

set of those acts is denoted as F . Given any x ∈ X, x ∈ F is the act that delivers x in

every state, and in this way, we identify X as the subset of constant acts in F . If f, g ∈ F ,

and E ∈ Σ, we denote as gEf the simple act that yields g (s) if s ∈ E and f (s) if s /∈ E.

Since X is convex, for every f, g ∈ F , and γ ∈ (0, 1), we denote as γf + (1− γ) g ∈ F the
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simple act that pays γf (s) + (1− γ) g (s) for all s ∈ S.

We model the agent’s preference with a binary relation % on F . As usual, � and ∼
denote the asymmetric and symmetric parts of %. An event E is null if fEh ∼ gEh for

every f, g, h ∈ F . An event is nonnull if it is not null. For every E ∈ Σ, the conditional

preference relation %E is defined by f %E g if fEh % gEh for some h ∈ F .

A key concept to understand the concern for misspecification evolution is a notion of

being more misspecification concerned from Ghirardato and Marinacci (2002).

Definition 8. Given two preferences %1 and %2 on F , we say that %1 is more concerned

with misspecification than %2 if, for each f ∈ F and each x ∈ X, f %1 x implies f %2 x.

5.2 Decision Criterion

When formalized in terms of a binary relation, the average robust control decision criterion

reads as follows.

Definition 9. A tuple (u,Q, µ, λ) is an average robust control representation of the pref-

erence relation % if u : X → R is a nonconstant affine function, Q⊆∆ (S) is a nonempty

set, µ ∈ ∆ (Q), λ ≥ 0, and for all f, g ∈ F

f % g ⇐⇒ Eµ
[

min
p∈∆(S)

(∫
S

u (f) dp+
R (p||q)

λ

)]
≥ Eµ

[
min
p∈∆(S)

(∫
S

u (g) dp+
R (p||q)

λ

)]
.

(7)

The average robust control representation is the counterpart of (1) when expressed

over acts. An apparent difference is that u here takes as input only outcomes instead

of pair of actions and consequences. However, this discrepancy is inconsequential, as

in Section 2 we can define a larger space of consequences Ŷ = A × Y that includes

both actions and outcomes and transforming each model p ∈ ∆ (Y )A into an element of

p̂ ∈ ∆
(
Ŷ
)A

such that p̂a (a′, y) = 0 if a′ 6= a and p̂a (a, y) = pa (y) for all y ∈ Y . Still,

this embedding of actions into outcomes muddles the interpretation of the learning results

significantly. Therefore we opted to maintain the distinction explicit at the cost of some

visual discrepancy between equations (1) and (7).27

27See Fishburn (1970) Chapter 12.1 for a more detailed discussion of the equivalence of a formulation with
exogenously given states and one where states are maps from actions into consequences.
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5.3 Static Axioms

Our first axiomatic step is a static one. We characterize in terms of behavioral axioms an

agent that evaluates accordingly to equation (7) the acts whose consequences are obtained

in the same period and before any new information is received.

Axiom 1 (Variational Axiom). Weak Order.

Weak Certainty Independence. If f, g ∈ F , x, x′ ∈ X, γ ∈ (0, 1), and γf +

(1− γ)x % γg + (1− γ)x, then γf + (1− γ)x′ % γg + (1− γ)x′.

Continuity. If f, g, h ∈ F the sets {γ ∈ [0, 1] : γf + (1− γ) g % h} and

{γ ∈ [0, 1] : h % γf + (1− γ) g} are closed.

Monotonicity. If f, g ∈ F , and f (s) % g (s) for all s ∈ S, then f % g.

Uncertainty Aversion. If f, g ∈ F , γ ∈ (0, 1), and f ∼ g, then g + γ(f − g) % f .

Nondegeneracy. f � g for some f, g ∈ F .

Weak Monotone Continuity. If f, g ∈ F , x ∈ X, (En)n∈N ∈ ΣN with f � g,

E1 ⊇ E2 ⊇ ... and ∩n∈NEn = ∅, then there exists n0 ∈ N such that xEn0f � g.

Maccheroni et al. (2006a) shows that Axiom 1 characterizes the class of variational

preferences. Weak Order, Continuity, and Nondegeneracy are standard technical require-

ments. Weak Monotone Continuity guarantees that the probabilistic scenarios considered

by the agent are countably additive. Weak Certainty Independence allows the agent to

perceive some advantage in hedging, but this cannot come from mixing with different

constants using the same weights. Monotonicity requires that the preference over acts

is minimally consistent with the preference over the outcomes they induce. Uncertainty

Aversion leads to aversion for the acts that perform well for a postulated model but poorly

for its perturbations.

5.3.1 Structured Preferences

We are considering agents who face two levels of uncertainty: the uncertainty on the

best structured description of the data-generating process and whether each description is

exact. A representation is structured if it allows separating these two layers. In particular,

to achieve this separation, we consider a state space S that admits the decomposition

S = Ω×∆ (Ω) for some finite Ω endowed with its Borel sigma-algebra.

Definition 10. An average robust control representation (u,Q, µ, λ) is structured if Q is

finite and there exists
(
ρq
)
q∈Q such that for every q ∈ Q, and ω ∈ Ω, ρq ∈ ∆ (Ω) and

q
({
ω, ρq

})
= ρq (ω).
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The interpretation of a structured representation is that the state space can be factored

in two components, the realization of the single period consequence ω ∈ Ω and a component

ρ ∈ ∆ (Ω) that pins down the distribution over states each period. An event E is structured

if E = Ω × B for some B ∈ B (∆ (Ω)). The sigma-algebra generated by the structured

events is denoted as Σs.
28

We say that an event E ⊆ S satisfies the sure-thing principle if, for all f, g, h, h′ ∈ F
we have that fEh % gEh implies fEh′ % gEh′. We denote by Σst the set of events that

satisfy the sure-thing principle.

Axiom 2 (Structured Savage). (i) There is a finite set E ⊆ S such that S \ E is null.

(ii) P2. Σs ⊆ Σst. (iii) P4. If E,E ′ ∈ Σs and x, y, w, z ∈ X are such that x � y and

w � z, then

xEy � xE ′y ⇒ wEz � wE ′z.

Structured Savage requires that (i) the agent posits a finite number of models and (ii)

guarantees that when evaluating acts that only depend on the identity of the structured

model, the agent satisfies the Sure-Thing Principle.29 It also (iii) guarantees that when

an agent faces alternatives whose outcomes depend only on whether the DGP belongs to

two sets of models, their choices consistently reveal the one deemed more likely.

Axiom 3 (Intramodel Sure-Thing Principle). For every f, g, h, h′ ∈ F ,

fWh %ρ gWh =⇒ fWh′ %ρ gWh′ ∀W ⊆ Ω,∀ρ ∈ ∆ (Ω) .

Structured Savage’s P2 and the Intramodel STP imply that bets between models and

preference over acts within a model satisfy the STP. However, they admit violations of

the STP for acts whose payoff depends on both the model’s identity and the outcome

realization within the model, as the ones of the original Ellsberg’s paradox.

The case we study is when the relative likelihood of the structured models is only

captured by the belief µ. In particular, the agent is equally concerned about how much

each model departs from the actual data-generating process.

28With a slight abuse of notation for every B ∈ B (∆ (Ω)) and W ⊆ Ω we denote as %B and %W the
binary relations %Ω×B and %W×∆(Ω) and we write fBg and fWg for f (Ω×B) g and f (W ×∆ (Ω)) g.

29The extension to infinitely many models does not provide additional conceptual difficulties but makes
the conditioning involved in the dynamic axioms much more cumbersome. Gul and Pesendorfer (2014)
introduces the idea of sources of uncertainty for which the decision maker can quantify uncertainty and
connects it with the Sure-Thing Principle.
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Axiom 4 (Uniform Misspecification Concern). For every ρ, ρ′ ∈ ∆ (Ω) and f, g ∈ F such

that

ρ ({ω : f (ω, ρ) = y}) = ρ′ ({ω : g (ω, ρ′) = y}) ∀y ∈ X

and Ω× {ρ}, Ω× {ρ′} are nonnull we have

f %ρ x⇐⇒ g %ρ′ x ∀x ∈ X.

This axiom requires that if acts f and g induce identical outcome distributions under

ρ and ρ′, they are compared with a safe alternative in the same way conditional on the

best fitting model being revealed to be ρ or ρ′.

Definition 11. The state space is adequate if: (i) there exist k ∈ (0, 1) and (Wρ)ρ∈∆(Ω) ∈(
2Ω
)∆(Ω)

such that for all ρ ∈ ∆ (Ω) with Ω × {ρ} nonnull, ρ (Wρ) = k, (ii) for every

ω, ω′ ∈ Ω, and ρ ∈ ∆ (Ω) such that {ω} × {ρ} and {ω′} × {ρ} are nonnull, ρ (ω) = ρ (ω′).

All the agent’s structured models have an event with the same probability and are

uniform over a model-specific set of outcomes. It is well-known that equal probability

requirements are essential for probabilistic sophistication with respect to a finite measure

over states to have a bite (see, e.g., Chew and Sagi, 2006). They can be relaxed if we allow

for a continuum Ω. The only role of (i) for us is to obtain a concern for misspecification

λ that is not model dependent (i.e., not to have (λq)q∈Q in the representation) from

Uniform Misspecification Concern, an axiom with an unmistakable flavor of probabilistic

sophistication.

Axiom 5 (Uncertainty Neutrality Over Models). Let x, y, w, z ∈ X, ρ ∈ ∆ (Ω), and

γ ∈ (0, 1). Then [γx+ (1− γ) y]ρw ∼ yρz if and only if xρw ∼ [(1− γ)x+ γy]ρ z.

Uncertainty Neutrality over Models guarantees that at the level of bets over models,

the agent is “risk-neutral”, as changing the performance under ρ by (x− y) γ has an

impact that does not depend on the level of utility under that model. It is immediate

from the proof of Theorem 3 that if dropped, it leads to a more general representation

with a nonlinear utility index U over the performance of each robust control model.

Theorem 3. Suppose that S is adequate, there at least three disjoint nonnull events in Σs,

and every nonnull E ∈ Σs contains at least three disjoint nonnull events. The following

are equivalent:

1. % admits a structured average robust control representation (u,Q, µ, λ);
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2. % satisfies Variational Axiom, Structured Savage, Uniform Misspecification Con-

cern, Intramodel Sure-Thing Principle, and Uncertainty Neutrality over Models.

Moreover, in this case, every two structured average robust control representations share

the same µ.

The theorem characterizes the representation (u,Q, µ, λ) with probabilistic uncer-

tainty about the model (Structured Savage), probabilistic sophistication given a model

(Intramodel Sure-Thing Principle), and incomplete trust in any model (Uncertainty Aver-

sion).

Corollary 2. Suppose that % admits a structured average robust control representation

(u,Q, µ, λ). Then % is more misspecification concerned than the subjective utility prefer-

ence with utility index u and belief
∫
Q
qdµ (q).

5.4 Dynamic Axioms

We next provide axioms that characterize the dynamic adjustment of preferences in the

face of information. In particular, we look at joint axioms on a collection of history-

dependent binary relations
(
%h
)
h∈H indexed by the realized history. Recall that the

relevant set of length t ∈ N histories for structured preferences is Ωt.

Axiom 6 (Constant Preference Invariance). For every x, x′ ∈ X and h ∈ H,

x %h x′ ⇔ x %∅ x′.

This axiom captures the fact that we are not considering the problem of an agent

discovering their taste. The preferences over uncertain alternatives are fixed and do not

react to new information.

Axiom 7 (Dynamic Consistency over Models). Let f, g ∈ F be Σs-measurable, t ∈ N,

ωt ∈ Ωt and z̄, z ∈ X be such that z̄ % f (s) % z and z̄ % g (s) % z for all s ∈ S. Let

hω
t

(ω, ρ) = γh(ω,ρ)

t∏
i=1

ρ (ωi) z̄ +

(
1− γh(ω,ρ)

t∏
i=1

ρ (ωi)

)
z ∀ (ω, ρ) ∈ S,∀h ∈ {f, g}

where γh(ω,ρ) satisfies h (ω, ρ) ∼ z̄γh(ω,ρ) +
(
1− γh(ω,ρ)

)
z. Then, we have

f %ω
t

g ⇐⇒ fω
t

% gω
t

.
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The second dynamic axiom requires Bayesian rationality when considering acts whose

consequences only depend on the structured model. Formally, it requires that when com-

paring acts that only bet on the identity of the model, at a given history, we can reduce

the comparison to acts evaluated ex-ante. To do so, the payoff conditional to each model

must be scaled proportionally to the amount of evidence that has been generated in favor

of that model.30

To single out the quantitative speed at which the concern for misspecification is ad-

justed, we need a quantitative measure of similarity. For every x, y ∈ X with x � y and

E ∈ Σ let γxEy% be defined by

γxEy% x+
(

1− γxEy%

)
y ∼ xEy.

That is, γxEy% is the weight to alternative x in the certain equivalent to act xEy. It captures

both the confidence in event E and the attitudes towards uncertainty. It is easy to see

that under the Variational Axiom γxEy% always exists and is unique.

For every x, y ∈ X, E ∈ Σ, ε ∈ (0, 1), and % and %′ that satisfy the Variational

Axiom, we say that % is (x, y, E, ε)-similar to %′ if
∣∣∣γxEy% − γxEy%′

∣∣∣ ≤ ε. That is, the

certain equivalent of the binary act xEy is ε close under preferences % and %′.

Axiom 8 (Asymptotic Frequentism). For every ρ ∈ ∆ (Ω), x, y ∈ X with x �∅ y, ε > 0,

and E ∈ Σ there is τ ∈ N such that if min {t, t′} ≥ τ and ht, ht′ have outcome frequency ρ

then %ht is (x, y, E, ε)-similar to %ht′ .

The axiom requires that for every binary act xEy, a sufficiently long sequence of

outcomes with the same empirical frequency stabilize the certain equivalent.

Proposition 4. Suppose that: (i) For every h ∈ H, %h satisfies the axioms of Theorem

3 and (ii)
(
%h
)
h∈H satisfies Constant Preference Invariance, Dynamic Consistency over

Models, and Asymptotic Frequentism. Then for every h ∈ H, %h admits an average robust

control representation (u,Q, µ (·|h) , λh) and for every sequence (htn)n∈N with a constant

30This axiom can lead to fruitful implications beyond our average robust control decision criterion, as
it implies Bayesian updating for each decision criterion that performs an average of model-specific
evaluations (that could, for example, take the form of other divergence preferences or rank-dependent
utility evaluations). In this way, it would complement the elegant theory of subjective learning developed
in Dillenberger et al. (2014), which does not require that the analyst observes the same information as
the agent.
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outcome frequency not in
{
ρq : q ∈ Q

}
,

lim
n→∞

λhtn/

(
LLR (htn , Q)

tn

)
(8)

exists. Moreover, if for some q ∈ Q, x �∅ y, and E ⊆ Ω with ρq (E) > 0

lim inf
n→∞

γ
x(E×{ρq})y
%htn

> 0,

the limit is finite, and if

lim sup
n→∞

γ
x(E×{ρq})y
%htn

< ρq (E)µ (q) ,

it is strictly positive.

The proof has three main steps. First, we show that Constant Preference Invariance

and Dynamic Consistency over Models imply that the preference for constant acts is time-

invariant and that the belief over structured models is updated according to Bayesian

updating. Second, we show that the likelihood ratio statistic of the models Q is growing

linearly in tn along the sequence of histories (htn)n∈N, so that the denominator in equation

(8) converges.31 Because the outcome frequency does not correspond to a model in Q,

this limit is not 0. With this, the proof amounts to showing that the revealed concern

for misspecification also converges. The third step rules out the existence of different

finite limit points for (λtn)n∈N by contradiction. If these points exist, then for every pair

of strictly ranked outcomes x � y, we construct an event E for which the DM does

not satisfy the Sure-Thing Principle such that the preference with the high concern for

misspecification has a strictly lower certain equivalent than the one with the low concern.

Axiom 9 (Asymptotic Concern). Let f ∈ F , x ∈ X, and ρ̂, ρ ∈ ∆ (Ω) be such that Ω×{ρ̂}
is %∅-null, Ω×{ρ} is %∅-nonnull, and ρ� ρ̂. If ρ ({ω ∈ Ω : x � f (ω, ρ)}) > 0, then there

exists τ ∈ N such that for all t ≥ τ and all ht with outcome frequency ρ̂, x %htρ f .

Asymptotic Concern requires that long-run failures in explaining the data (i.e., an

empirical frequency ρ̂ that is not among the agent’s structured models) increase the concern

31Given the finiteness of Ω, we can focus on the case in which the alternative set of models N (Q) = ∆ (Ω),

discussed in Section 2, i.e., LLR (ht, Q) = − log
(

maxq∈Q
∏t
τ=1 ρq(ωτ )

maxρ∈∆(Ω)

∏t
τ=1 ρ(ωτ )

)
. The extension to general sets

of alternative models is straightforward.
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so that every certain outcome is preferable to an act with worse payoffs under a relevant

model ρ.

Proposition 5. Suppose that: (i) For every h ∈ H, %h satisfies the axioms of Theorem

3 and (ii)
(
%h
)
h∈H satisfies Constant Preference Invariance, Dynamic Consistency over

Models, and Asymptotic Concern. Then for every h ∈ H, %h admits an average robust

control representation (u,Q, µ (·|h) , λh) and for every sequence (htn)n∈N with a constant

outcome frequency that is not in
{
ρq : q ∈ Q

}
we have

lim
t→∞

LLR (htn , Q)

λhtn tn
= 0.

This result shows that Asymptotic Concern characterizes agents who apply an ex-

cessively demanding time discount to the log-likelihood ratio statistic (see equation (2)).

Indeed, the elicited ratio between the LLR and the concern for misspecification revealed

by the choices grows sublinearly over time, the condition that defines demanding agents.

Axiom 10 (Asymptotic Leniency). Let x, y ∈ X, E ∈ Σ, ρ ∈ ∆ (Ω) and ε > 0, be

such that x � y. For every Bayesian SEU preferences
(
�h
)
h∈H such that �∅ is less

misspecification averse than %∅, there exists τ ∈ N such that for every t ≥ τ and ht with

outcome frequency ρ, %ht is (x, y, E, ε)-similar to �ht.

Asymptotic Leniency requires that if the empirical distribution converges to some

ρ ∈ ∆ (Ω), the preferences of the agents approximate, i.e., are eventually (x, y, E, ε)-

similar to the updated preferences of an SEU whose model contingent preferences were

initially less misspecification averse than the agent.

Proposition 6. Suppose that: (i) For every h ∈ H, %h satisfies the axioms of Theo-

rem 3 and (ii)
(
%h
)
h∈H satisfies Constant Preference Invariance, Dynamic Consistency

over Models, and Asymptotic Leniency. Then for every h ∈ H, %h admits an average ro-

bust control representation (u,Q, µ (·|h) , λh) and for every sequence (htn)n∈N with constant

outcome frequency not in
{
ρq : q ∈ Q

}
lim
t→∞

LLR (htn , Q)

tnλhtn
=∞.

This proposition shows that convergence to subjective expected utility maximization

(in the form of Asymptotic Leniency) characterizes excessively lenient model evaluations.
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6 Discussion

6.1 Related Literature

A few papers allow the agents to realize that they are misspecified. In particular, in He

and Libgober (2022), Ba (2022), Fudenberg and Lanzani (2023), Gagnon-Bartsch et al.

(2022), and Cho and Libgober (2022) misspecification can be eliminated by “light bulb

realizations” evolutionary pressure, or the use of a machine-learning inspired algorithm.

The key difference with our approach is that in these papers, as well in the earlier Cho

and Kasa (2015) and Giacomini et al. (2020), where agents switch between models on

the basis of a specification test, the agents act as if they have complete trust in the set

of models currently entertained and are never concerned about being misspecified. Still,

there is a tight connection between the robust control decision criterion and a maxmin

decision criterion where the set of models expands as the penalization term in the robust

control increases (see Hansen and Sargent, 2011, for a textbook treatment). In light of

this, compared to the previous set of papers, our work can additionally be interpreted as

providing the first smooth framework for expanding (or restricting) the set of considered

models as a function of the evidence.

Although not dealing with misspecification, Epstein and Schneider (2007) also studies a

learning problem with nonSEU preferences and where the likelihood ratio between different

DGPs plays an important role. In the myopic case, and under the notation of our paper,

they consider a maxmin decision criterion

min
µ∈Ct

∫
Θ

Eqθa [u (a, y)] dµ (θ|ht)

where

Ct =

{
ν ∈ C0 :

∫
Θ

∏t
i=1 q

θ
at (yt) dµ (θ)

maxµ∈C0

∫
Θ

∏t
i=1 q

θ
at (yt) dµ (θ)

≥ β

}
,

β ∈ (0, 1) and C0 ⊆ ∆ (Θ). That is, the look at maxmin preferences with a set of

priors that only contains the priors that did not perform excessively worse than the best

rationalizing one. Beyond considering maxmin instead of robust control preferences, the

papers have a completely different set of results, as Epstein and Schneider (2007) only

deals with the question of beliefs stabilization. Crucially, by always considering models

that are only supported on Θ, Epstein and Schneider (2007) cannot capture the concern

for misspecification that is at the core of the motivation for this paper, but it rather
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captures a gradually increasing confidence in having understood which of the priors in Θ

is the most accurate. Importantly, they do not restrict the agent to be myopic.

Farther afield, Ortoleva (2012) proposes and axiomatizes a model where a decision

maker can reject their model in favor of a backup one when faced with events with suffi-

ciently low probability. Karni and Vierø (2013) proposes and axiomatizes a model where

the agent becomes progressively aware of more states and acts. However, their decision

maker trusts their probability over states completely when making decisions. Banerjee et

al. (2020) studies a Wald problem where the agent trade-offs between robustness and the

subjective expected utility performance of the experiment. Differently from us, the con-

cern in this model does not evolve, and the agent makes a single decision. Epstein and Ji

(2022) characterizes optimal stopping with a concern for robustness captured by maxmin

preferences, showing that the robustness concern, in general, induces earlier stopping.

There is fast-growing literature on learning under misspecification with subjective ex-

pected utility preferences. Arrow and Green (1973) gives the first general framework for

this problem, and Nyarko (1991) points out that the combination of misspecification and

endogenous data can lead to cycles. This literature has been revived by the more re-

cent Esponda and Pouzo (2016); see Bohren and Hauser (2021), Esponda et al. (2021a),

Fudenberg et al. (2021), and Frick et al. (2023) for analyses of more closely related settings.

The identification of an agent who is disappointed with minor discrepancies between

the empirical and the theoretical distributions as a believer in the Law of Small Numbers

follows the formalization of this bias proposed by Rabin (2002). The normative role of

the likelihood ratio that makes it proportional to the relative entropy (cf. Proposition 1

and Theorem 1) is somewhat reminiscent of the normative role of (absolute) entropy as a

measure of informativeness found by Cabrales et al. (2013).

Hansen and Sargent (2007) mentions a time-varying penalization parameter as a way

to maintain dynamic consistency in the robust control model. Maenhout (2004) also

uses a time-varying penalization parameter in a portfolio selection problem to keep the

recursive discounted preferences homothetic at any history. See Pathak (2002) for a critical

perspective on the latter paper and the subsequent literature. In both cases, the parameter

evolution does not capture the fit of the models to the observed data. Anderson et al.

(2003) and Barillas et al. (2009) pioneer a literature that calibrates the (time-invariant)

concern for misspecification from the acceptable error probability in likelihood ratio test

between the unperturbed model and the worst-case model (that does not depend on the

action there). See Hansen and Sargent (2011) for a textbook treatment.
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In the evolutionary game theory literature studying preferences formation, the closest

papers are Dekel et al. (2007) and Robatto and Szentes (2017). In the former, players may

be “misspecified” in the sense of having a vN-M utility different from the one determining

reproductive fit. In the latter, the evolutionary pressure determines the risk attitudes of

the players.

On the axiomatic side, the static decision criterion considered here is due to Cerreia-

Vioglio et al. (2022).32 The explicit use of a state space where every state describes both the

single-period outcome realization and the probability distribution over outcomes follows

the approach introduced in Cerreia-Vioglio et al. (2013a) as a two-stage “statistical” inter-

pretation and axiomatization of some of the decision criteria under ambiguity, in particular

the smooth ambiguity one. For this criterion, this approach has been recently extended

by Denti and Pomatto (2022). They allow for a fully revealed-preference elicitation of the

relevant probability distributions, viewed as subjective statistical models. See also Dean

and Ortoleva (2017) for a less related decision criterion where the agent has a prior over

multiple data-generating processes and evaluates each of them with rank-dependent utility

and Gilboa et al. (2020) for a different quasi-Bayesian criterion that combines Bayesian

updating with case-reasoning rather than misspecification considerations.

6.2 Experimental Evidence

We are unaware of experiments that explicitly test the positive relation between misspec-

ification and the belief in the Law of Small Numbers with uncertainty aversion. However,

the findings in Esponda et al. (2022) suggest that a mechanism similar to the one outlined

in this paper is actually at play. The paper studies the repeated behavior of two groups

of agents, one with an agnostic (full support) belief about the possible data-generating

process faced and one that is misspecified because of base rate neglect. The long-run aver-

age play of the misspecified agents is in between the best reply to the misspecified model

and the uniform distribution over outcomes. Notably, this behavior is not the best reply

to the observed empirical frequency, which suggests that, as in our model, even in the

medium run (200 repetitions in the experiment above), the agents do not altogether drop

their models; they rely less on them to make their choices. Instead, the correctly specified

agents converge to making choices that are optimal only under the actual data-generating

32Given the Donsker–Varadhan variational formula, our decision criterion can also be seen as the average
of CARA certain equivalents, an object studied and characterized from a statistical perspective in Mu
et al. (2021).
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process, i.e., they behave as a subjective expected utility maximizer with a belief con-

centrated on the true DGP. More indirectly De Filippis et al. (2022) shows that there is

an overreaction of beliefs to consistent signal than to inconsistent signal, suggesting that

agents who find a model consistently validated may rely more on it to make decisions. An-

other important avenue to bring the literature on misspecification is to try to bridge the

decision criterion proposed here and in Cerreia-Vioglio et al. (2022) with the distinction

between uncertainty about and within the experimental design advocated in Shmaya and

Yariv (2016).

6.3 Forward-looking Agents

One key generalization to our model would be to allow for forward-looking agents. Of

course, as for many decision criteria that depart from SEU, the main complication is deal-

ing with the fact that the most immediate extension of the criterion to forward-looking

agents would induce dynamic inconsistencies under some information structures (see Ap-

pendix A.3.3 for a simple explicit example). One approach would be to directly impose

a recursive formulation for the preferences, as in Maccheroni et al. (2006b) and Klibanoff

et al. (2009). Since the decision criterion belongs to the variational class, we know from the

first reference that a recursive formulation can be obtained. A complementary approach

does not impose recursivity and allows for dynamic inconsistency. Preliminary analysis

suggests that if we consider agents who do not anticipate their future taste variations,

little is changed. However, analyzing an uncommitted, forward-looking, and sophisticated

agent playing an intra-personal equilibrium with their future selves would require com-

bining the insights of this paper with the approach developed in Battigalli et al. (2019).

Analogously, to extend the axiomatic exercise to sophisticated agents, the techniques of

this paper should be combined with the consistent planning approach of Siniscalchi (2011).

6.4 Endogenous Structured Models

The more natural extension for the decision-theoretic part of the paper involves using

axioms that do not explicitly allow the agent to bet on the identity of the structured model.

Allowing such bets is relatively standard when dealing with two levels of uncertainty for

which the agent has different attitudes (Klibanoff et al., 2005 being the most prominent

example). However, Denti and Pomatto (2022) proposed an identifiability condition that

avoids the need for explicit bets on the structured models. Identifiability requires a way
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to partition S that singles out the probabilistic model. In particular, each probabilistic

model assigns probability one to its corresponding partition element.

When considering a structured environment, we required that this identification is

spelled out in the description of the states, with the second component being the distribu-

tion ρ. Although in light of the results of Denti and Pomatto (2022), the axiomatization

of this static criterion without this restriction does not generate conceptual complications,

the dynamic characterization becomes significantly more involved. In particular, the chal-

lenge is created by the conditioning with respect to the endogenously identified model.

This substantial extension is left for future work.

7 Conclusion

In this work, we propose a novel model of agents actively learning about the environment

and dynamically adjusting their concern for misspecification on the basis of the evidence

they face. We show that the agents develop different long-run uncertainty attitudes de-

pending on their understanding of how quickly evidence in favor or against a model is

accumulated. Statistically sophisticated agents converge to robust control preferences a la

Hansen and Sargent (2001), with the misspecification concern endogenously determined

by their models fit with the true DGP at the equilibrium action. In contrast, an agent

who is too demanding in evaluating their model converges to behave as a maxmin agent

a la Gilboa and Schmeidler (1989), while a lenient agent eventually becomes a standard

subjective expected utility maximizer. These results provide the first learning foundation

for nonstandard decision criteria.

We then point out that in natural environments, the behavior of the statistically so-

phisticated type need not converge, and we characterize the limit frequency of time spent

playing each action. We apply this result to a simple macroeconomic model and obtain a

new rationale for the periodic switches in monetary policies.

We also provide an axiomatization of the proposed decision criterion and its evolution in

the face of evidence. We introduce a new axiom type, Asymptotic Frequentism, requiring

long streams of outcomes with the same empirical frequency to induce similar preferences.

We prove that this axiom induces the statistically sophisticated behavior studied in the

learning part of the paper.
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A Appendix

A.1 Learning Results

A.1.1 Preliminaries

By Assumption 1, there exists K ∈ R++ such that for all a ∈ A and q ∈ Q

− ln q̃a ≤ K ∀q ∈ Q

holds p∗a-a.s. To see this, observe that the assumption directly implies that there exists

K ∈ R++ such that for all a ∈ A and q ∈ Q,

− ln q̃a ≤ 2K, p∗a-a.s. (9)

Suppose by contradiction that there exists a measurable C ⊆ supp p∗a such that maxq∈Q− ln q̃a(y) >

K for all y ∈ C. Take y∗ ∈ C and q′ ∈ Q such that − ln q̃′a(y
∗) > 2K. By the conti-

nuity of q′, there exists ε > 0 such that − ln q̃′a(y) > K for every y ∈ Bε(y
∗). But since

y∗ ∈ C ⊆ supp p∗a, p
∗
a(Bε(y

∗)) > 0, a contradiction with equation (9).

Throughout Appendix A.1, the symbol K will denote such a strictly positive real

number. For an arbitrary Borel measurable subset C of a metric space, we endow the

space CN with the Borel σ-algebra, B
(
CN
)
, corresponding to the product topology on CN.

For (k1, ..., kt) ∈ Ct, t ∈ N, we denote by kt = (k1, ..., kt) both the finite sequence in Ct and

the elementary cylinder in CN that it identifies. For every policy Π ∈ AH, the density of

the objective probability distribution over infinite histories is defined over a finite number

of periods I ⊆ N with tI = max I as

P̃Π

(
(aτ , yτ )τ∈I

)
=


1 if ∃ (âτ , ŷτ )

tI
τ=1 ∈ (A× Y )tI :

âτ+1 = Π (âτ , ŷτ ) , ∀τ ∈ {0, ..., tI − 1}
and (âτ , ŷτ ) = (aτ , yτ ) ,∀τ ∈ I,

0 otherwise,

(10)

and

PΠ

(
(aτ )τ∈I , C

)
=

∫
C

P̃Π

(
(aτ , ·)τ∈I

)
d

(∏
τ∈I

p∗aτ

)
∀C ∈ B

(
Y I
)
.

Since the corresponding set of finite-dimensional probability measures is consistent, there

is a unique probability measure over infinite sequences of action-outcome pairs with these
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marginals, defined through the Kolmogorov extension theorem (see Theorem V.5.1 in

Parthasarathy, 2005 for the version for standard separable Borel spaces used here).

For every t ∈ N and history ht = (at, yt) ∈ H let pht ∈ ∆ (Y )A be the action contin-

gent (finite support) probability measure over outcomes corresponding to the empirical

frequency: for all a ∈ A such that
∑t

τ=1 I{a} (aτ ) > 0,

phta (C) =

∑t
τ=1 I{(a,y):y∈C} (aτ , yτ )∑t

τ=1 I{a} (aτ )
∀C ⊆ B (Y )

and phta = δȳ for some arbitrary fixed ȳ ∈ Y if
∑t

τ=1 I{a} (aτ ) = 0. For every two histories

ht, hτ ∈ H we write ht � hτ if there is n ∈ N and (ai, yi)
n
i=1 such that ht = (hτ , (ai, yi)

n
i=1).

For all b ∈ A let Πb the policy that prescribes b at every period. Define the set Qε(a) as

the models at most ε away from a relative entropy minimizer given action a, Qε(a) = {q ∈
Q : ∃q′ ∈ Q(a) ∩Bε (q)}.

A.1.2 Results

Our first lemma justifies the repeated use of min and max rather than inf and sup in the

definitions of the average robust criterion and LLR.

Lemma 1. 1. For every a ∈ A, λ ∈ R++, and q ∈ Q, ∅ 6= argminpa∈∆(Y )

(
Epa [u (a, y)] + R(pa||qa)

λ

)
.

2. For every t ∈ N, ht ∈ Ht, ∅ 6= argmaxp∈N(Q)

∏t
τ=1 p̃aτ (yτ ).

Proof. 1) Fix a ∈ A, λ ∈ R++, and q ∈ Q. Since u is continuous and Y is compact, u (a, ·)
is bounded, Epa [u (a, y)] ≥ miny∈Y u (a, y) ∈ R for all pa ∈ ∆ (Y ), and pa 7→ Epa [u (a, y)]

is continuous. Since Y is a compact metric space, by, e.g., Royden and Fitzpatrick (1988),

it is a Polish space and so pa 7→ R (pa||qa) is lower semicontinuous by Lemma 1.4.3 in

Dupuis and Ellis (2011). Therefore, the set

E : =

{
pa ∈ ∆ (Y ) : Epa [u (a, y)] +

1

λ
R (pa||qa) ≤ Eqa [u (a, y)]

}
is closed, and as R (qa||qa) = 0 we clearly have

argminpa∈∆(Y ) Epa [u (a, y)] +
1

λ
R (pa||qa) = argminpa∈E Epa [u (a, y)] +

1

λ
R (pa||qa) .

Since Y is a compact metric space, by Theorem 15.11 in Aliprantis and Border (2013) and

Proposition 11.15 in Royden and Fitzpatrick (1988) so are ∆ (Y ) and E endowed with the
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topology of weak convergence of measures. Since

pa 7→ Epa [u (a, y)] +
1

λ
R (pa||qa)

is real-valued (with values in [miny∈Y u (a, y) ,Eqa [u (a, y)]]) and lower semicontinuous on

the compact E, it admits a minimizer by the generalized Weierstrass’ theorem (see, e.g.,

Theorem 2.43 in Aliprantis and Border, 2013).

2) Let t ∈ N, ht ∈ Ht. The map

{p̃ : p ∈ N(Q)} → R
p̃ 7→

∏t
τ=1 p̃aτ (yτ )

is continuous. Then, the maximum is attained since {p̃ : p ∈ N(Q)} is compact by

Assumption 2 (ii). �

The next lemma provides a useful rewriting of the LLR as a weighted average of the

empirical log-likelihood ratio when playing the different actions, with weights proportional

to how frequently each action has been used in the past.

Lemma 2. For every t ∈ N and ht = (at, yt) ∈ Ht, if q′ ∈ argmaxq∈Q
∏t

τ=1 q̃aτ (yτ ), and

p ∈ argmaxr∈N(Q)

∏t
τ=1 r̃aτ (yτ ) then LLR (ht, Q) =

∑
a∈A

∑t
τ=1 I{a} (aτ )

∫
Y

log
(

dpa(y)
dq′a(y)

)
dphta (y).

Proof. We have

LLR (ht, Q) = − log

(
maxq∈Q

∏t
τ=1 q̃aτ (yτ )

maxr∈N(Q)

∏t
τ=1 r̃aτ (yτ )

)
= log

(
maxr∈N(Q)

∏t
τ=1 r̃aτ (yτ )

maxq∈Q
∏t

τ=1 q̃aτ (yτ )

)

= log

(∏t
τ=1 p̃aτ (yτ )∏t
τ=1 q̃

′
aτ

(yτ )

)
= log

(
t∏

τ=1

p̃aτ (yτ )

)
− log

(
t∏

τ=1

q̃
′

aτ (yτ )

)

= log

(∏
y∈Y

∏
a∈A

p̃a (y)
∑t
τ=1 I{a}(aτ )p

ht
a ({y})

)
− log

(∏
y∈Y

∏
a∈A

q̃′a (y)
∑t
τ=1 I{a}(aτ )p

ht
a ({y})

)

=
∑
a∈A

t∑
τ=1

I{a} (aτ )
∑
y∈Y

phta ({y}) log (p̃a (y))−
∑
a∈A

t∑
τ=1

I{a} (aτ )
∑
y∈Y

phta ({y}) log (q̃′a (y))

=
∑
a∈A

t∑
τ=1

I{a} (aτ )
∑
y∈Y

phta ({y}) (log (p̃a (y))− log (q̃′a (y)))

=
∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

log

(
p̃a (y)

q̃′a (y)

)
dphta (y) .
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The next lemma shows that a robust control evaluation with respect to a structured

model q ∈ Q converges to a subjective expected utility evaluation as λ tends to 0, gener-

alizing previous results in the decision-theoretic literature, where the function evaluated

was a finite range one, to continuous utility functions.

Lemma 3. For every a ∈ A, q ∈ Q, and (qn, λn)n∈N ∈ (Q× R++)N with limn→∞ (qn, λn) =

(q, 0) we have

lim
n→∞

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa,n)

λn

)
= Eqa [u (a, y)] .

Proof. Fix a ∈ A and define ū = maxy∈Y u (a, y)−miny∈Y u (a, y). For every n ∈ N,

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa,n)

λn

)
∈
[
min
y∈Y

u (a, y) ,Eqa,n [u (a, y)]

]
⊆
[
min
y∈Y

u (a, y) ,max
y∈Y

u (a, y)

]
,

so possibly restricting to a subsequence, we can assume that the limit in the LHS of

the statement is well defined. The statement is then proved by showing that any such

subsequence converges to the RHS. In particular, we show that we cannot have

lim
n→∞

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa,n)

λn

)
< Eqa [u (a, y)] . (11)

This is sufficient as limn→∞ Eqa,n [u (a, y)] = Eqa [u (a, y)] and therefore we know by the

lower semicontinuity of R (see Lemma 1.4.3 in Dupuis and Ellis (2011)) that

lim
n→∞

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa,n)

λn

)
≤ Eqa [u (a, y)] .

If equation (11) held, there would be an ε ∈ R++ with

lim
n→∞

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa,n)

λn

)
= Eqa [u (a, y)]− ε. (12)

For every n ∈ N, let pna ∈ ∆ (Y ) be an arbitrary element of argminpa∈∆(Y )

(
Epa [u (a, y)] + R(pa||qa,n)

λn

)
.

Since Y is a compact metric space, by Theorem 15.11 in Aliprantis and Border (2013) so

is ∆ (Y ), and therefore, we can assume (by restricting to a subsequence) that pna converges
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to some p̂a ∈ ∆ (Y ). By equation (12) and the fact that limn→∞ p
n
a = p̂a, we have

Ep̂a [u (a, y)] ≤ Eqa [u (a, y)]− ε.

Therefore,∫ ū

0

1− p̂a
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) ≤ x

})
dx+

3

4
ε = Ep̂a [u (a, y)] +

3

4
ε−min

ȳ∈Y
u (a, ȳ)

≤ Eqa [u (a, y)]−min
ȳ∈Y

u (a, ȳ) =

∫ ū

0

1− qa
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) ≤ x

})
dx. (13)

Claim 1. There exist M ∈ R and L ∈ R++ such that

p̂a ({y ∈ Y : u (a, y) ≤M − L})− qa ({y ∈ Y : u (a, y) ≤M}) ≥ ε

2ū
. (14)

Proof of the Claim. Suppose that for every M ∈ R and L ∈ R++ equation (14) does not

hold. Then for every L ∈ R++∫ ū

0

1− p̂a
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) ≤ x

})
dx

=

∫ ū+L

0

1− p̂a
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) + L ≤ x

})
dx− L

≥
∫ ū+L

0

1− qa
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) ≤ x

})
− ε

2ū
dx− L

=

∫ ū

0

1− qa
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) ≤ x

})
dx− ε/2− L ε

2ū
− L.

Since L can be chosen to be arbitrarily small, we have∫ ū

0

1−p̂a
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) ≤ x

})
dx ≥

∫ ū

0

1−qa
({

y ∈ Y : u (a, y)−min
ȳ∈Y

u (a, ȳ) ≤ x

})
dx−ε

2
,

a contradiction with equation (13). �

The claim, in turn, implies that there exists N ∈ N such that for all n ≥ N

pna

({
y ∈ Y : u (a, y) ≤M − L

2

})
− qa,n

({
y ∈ Y : u (a, y) ≤M − L

2

})
≥ ε

4ū
.
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But then

min
pa∈∆(Y )

Epa [u (a, y)] +
1

λn
R (pa||qa,n)

= Epna [u (a, y)] +
1

λn
R (pna ||qa,n)

≥ min
y∈Y

u (a, y) +

(
pna

({
y ∈ Y : u (a, y) ≤M − L

2

})
log

pna
({
y ∈ Y : u (a, y) ≤M − L

2

})
qa,n

({
y ∈ Y : u (a, y) ≤M − L

2

})) /λn
+

(
pna

({
y ∈ Y : u (a, y) > M − L

2

})
log

pna
({
y ∈ Y : u (a, y) > M − L

2

})
qa,n

({
y ∈ Y : u (a, y) > M − L

2

})) /λn
where the inequality follows from Theorem 1.24 in Liese and Vajda (1987). But, the last

term diverges to +∞ as n goes to infinity, a contradiction with minpa∈∆(Y ) Epa [u (a, y)] +
R(pa||qa,n)

λn
≤ maxy∈Y u (a, y) <∞. �

Lemma 4. 1. For every a ∈ A, the function G : ∆ (Q)× R+ → R defined by

G (ν, λ) : =

∫
Q

min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa)
λ

)
dν (q) ∀ν ∈ ∆ (Q) , ∀λ ∈ R++

and

G (ν, 0) : =

∫
Q

Eqa [u (a, y)] dν (q) ∀ν ∈ ∆ (Q)

is continuous.

2. The correspondence BR· (·) : R+ ×∆ (Q)⇒ A where

BR0 (ν) : = BRSeu (ν) ∀ν ∈ ∆ (Q)

is upper hemicontinuous.

Proof. (1) Fix a ∈ A. For every q ∈ Q, let F (q, 0) := Eqa [u (a, y)] and observe that for

each λ ∈ R++, by Proposition 1.4.2 in Dupuis and Ellis (2011) we have

F (q, λ) : = min
pa∈∆(Y )

(
Epa [u (a, y)] +

R (pa||qa)
λ

)
=
− log

(∫
Y

exp (−λu (a, y)) dqa (y)
)

λ
.

Since Y is compact and u is continuous, for all λ ∈ R++ and q ∈ Q, the RHS belongs to

[miny∈Y u (a, y) ,maxy∈Y u (a, y)]. For every λ ∈ R++, exp (−λu (a, ·)) is a continuous and
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bounded function that is bounded away from 0. Recall that weak and vague convergence

for probability measures are equivalent when the state space is compact, and that Y is

indeed compact. Therefore,

q 7→
∫
Y

exp (−λu (a, y)) dqa (y)

is continuous by definition of the weak convergence of measures, and F is continuous by

Lemma 3 (at λ = 0) and Theorem 15.7.3 in Kallenberg (1973) (at λ 6= 0).

Let (νn, λn)n∈N ∈ ∆ (Q) × R++ be a convergent sequence with limit (ν, λ). Suppose

first that λ > 0. Then

lim
n→∞

∫
Q

log
(∫

Y
exp (−λnu (a, y)) dqa (y)

)
−λn

dνn (q) =

∫
Q

log
(∫

Y
exp (−λu (a, y)) dqa (y)

)
−λ

dν (q)

by Theorem 15.7.3 in Kallenberg (1973) and the joint continuity of F established above.

Next, suppose that λ = 0. Then limn→∞
∫
Q

log(Eqa [exp(−λnu(a,y))])

−λn dνn (q) =
∫
Q
Eqa [u (a, y)]dν (q)

again by Theorem 15.7.3 in Kallenberg (1973) and the joint continuity of F established

above. This proves (i).

(2) Follows by (1) and Theorem 17.31 in Aliprantis and Border (2013). �

Lemma 5. For every a ∈ A, if (qn, p
n
a)n∈N ∈ (Q×∆ (Y ))N is such that limn→∞ (qn, p

n
a)n∈N =

(q′, p̄a) and supppna ⊆ {y ∈ Y : maxq∈Q− ln q̃a (y) ≤ K} then

lim
n→∞

−
∫
Y

log (q̃a,n (y)) dpna (y) = −
∫
Y

log (q̃′a (y)) dp̄a (y) .

Proof. Recall that weak and vague convergence for probability measures are equivalent

when the state space is compact, and that Y is indeed compact. Therefore, by Assumptions

1-2 the assumptions of Theorem 15.7.3 in Kallenberg (1973) are satisfied for the sequence

of integrand functions and probability measures (log (q̃a,n) , pna)n∈N. �

The following lemma shows that under every policy, almost surely the infinite sequence

of observations do not contain a realization that provides an arbitrarily large evidence

against a structured model.

Lemma 6. For every Π ∈ AH,

PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∀t ∈ N,∀q ∈ Q,− ln q̃at (yt) ≤ K

})
= 1.
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Proof. By the definition of Radon-Nykodim derivative and equation (10), for every

t ∈ N,

PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∃q ∈ Q,− ln q̃at (yt) > K

})
= 0.

Since PΠ is a measure, it is countably subadditive and so

PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∀t ∈ N,∀q ∈ Q,− ln q̃at (yt) ≤ K

})
= 1− PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∃t ∈ N,∃q ∈ Q,− ln q̃at (yt) > K

})
≥ 1−

∞∑
t=1

PΠ

({
(ai, yi)i∈N ∈ (A× Y )N : ∃q ∈ Q,− ln q̃at (yt) > K

})
= 1,

proving the statement. �

The following lemma shows that, on every history where the empirical action process

stabilizes on α∗, and the empirical outcome distribution contingent on the actions played

infinitely often converges to the true distribution, the limit LLR can be rewritten as the

minimum of an α∗ weighted average of the relative entropy from the true DGP.

Lemma 7. Let α∗ ∈ ∆(A) and (at, yt)t∈N ∈ (A× Y )N be such that maxq∈Q,t∈N− ln q̃at (yt) ≤
K. For every t ∈ N, set ht = (at, yt), and let q (ht) and r (ht) be two arbitrary elements

of argmaxq∈Q
∏t

τ=1 q̃aτ (yτ ) and argmaxp∈N(Q)

∏t
τ=1 p̃aτ (yτ ), respectively. If

lim
t→∞

(
αt (ht) ,

(
phta
)
a∈suppα∗

)
=
(
α∗, (p∗a)a∈suppα∗

)
then

LLR (ht, Q)

t
= lim

t→∞

∑
a∈A

∑t
τ=1 I{a} (aτ )

∫
Y

log
(
r̃a(ht)(y)
q̃a(ht)(y)

)
dphta (y)

t
= min

q∈Q

∑
a∈A

α∗ (a)R (p∗a||qa) .

Proof. By assumption of the lemma, for all t ∈ N, we have

∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

log

(
r̃a (ht) (y)

q̃a (ht) (y)

)
dphta (y) /t

=

(∑
a∈A

t∑
τ=1

I{a} (aτ )

(∫
Y

log (r̃a (ht) (y)) dphta (y)−
∫
Y

log (q̃a (ht) (y)) dphta (y)

))
/t.
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By Assumption 2 (i), we have

∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

− log (r̃a (ht) (y)) dphta (y) /t ≤ 0 ∀t ∈ N.

By Assumption 2 (ii) and the Arzela-Ascoli Theorem, there exists K ′ ∈ R++ such that for

all a ∈ A,

− log (r̃a (ht) (y)) ≥ −K ′, (15)

p∗a-almost surely. Therefore, for all t ∈ N

∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

− log (r̃a (ht) (y)) dphta (y) /t ⊆ [0, K].

We know show that every convergent subsequence converges to 0. Indeed, take any such

subsequence of periods (tn)n∈N and, possibly restricting to a further subsequence, suppose

r̃a (htn) converges to some r̃a for every a ∈ suppα∗. Then

0 ≤
∑
a∈A

α∗ (a)

∫
Y

− log (r̃a (y)) dp∗a (y) ≤
∑
a∈A

α∗ (a) lim inf
n→∞

∫
Y

− log (r̃a (htn) (y)) dphtna (y)

= lim inf
n→∞

∑
a∈A

tn∑
τ=1

I{a} (aτ )

∫
Y

− log (r̃a (htn) (y)) dphtna (y) /tn

where the first inequality follows from Gibbs inequality and the second since by equation

(15) we can apply Lemma 3.2 in Serfozo (1982). Therefore, we have

lim
n→∞

∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

− log (r̃a (htn) (y)) dphtna (y) /t = 0.

Since this holds for every converging subsequence, it holds for the original sequence. So

lim
t→∞

∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

log

(
r̃a (ht) (y)

q̃a (ht) (y)

)
dphta (y) /t

= − lim
t→∞

∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

log (q̃a (ht) (y)) dphta (y) /t

= − lim
t→∞

min
q∈Q

∑
a∈A

t∑
τ=1

I{a} (aτ )

∫
Y

log (q̃a (y)) dphta (y) /t.
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Therefore the result follows from Lemma 5 and Theorem 17.31 in Aliprantis and Border

(2013). �

Lemma 8. For every a ∈ A,

lim
k→∞

sup
q∈Q

min
pa∈∆(Y )

∫
Y

u (a, y) dpa (y) +
R (pa||qa)

k
= min

y∈∪q∈Qsuppqa
u (a, y) .

Proof. Let ŷ ∈ argminy∈∪q∈Qsuppqa u (a, y). If maxy∈Y u (a, y) = u (a, ŷ) the statement is

trivially true, so suppose that maxy∈Y u (a, y) > u (a, ŷ). By Assumption 1 (i) we have

that

inf
q∈Q

qa (Bε (ŷ)) > 0 ∀ε ∈ R++.

Otherwise, by the compactness of Q the portmanteau theorem (see, e.g., Theorem 11.1.1

Dudley, 2018) would imply that there exists q̂ ∈ Q with q̂a
(
Bε/2 (ŷ)

)
= 0. But then, since

there exists q̄ ∈ Q with ŷ ∈ suppq̄a = suppp∗a, and so p∗a
(
Bε/2 (ŷ)

)
> 0, we would obtain

a contradiction with p∗a ∼ q̂a. Fix ε̄ ∈
(

0,
maxy∈Y u(a,y)−u(a,ŷ)

2

)
. Since u (a, ·) is continuous,

there exists ε such that

y ∈ Bε (ŷ) =⇒ u (a, y) ≤ u (a, ŷ) + ε̄.

Then, for all q ∈ Q

u (a, ŷ) ≤ min
pa∈∆(Y )

∫
Y

u (a, y) dpa +
R (pa||qa)

k
= −1

k
log

(∫
Y

exp (−ku (a, y)) dqa (y)

)
≤ −1

k
log

(
exp (−k (u (a, ŷ) + ε̄)) inf q̂∈Q q̂a (Bε (ŷ))

+ (1− inf q̂∈Q q̂a (Bε (ŷ))) exp (−kmaxy∈Y u (a, y))

)

where the equality follows from Proposition 1.4.2 in Dupuis and Ellis (2011). Moreover,

the last term converges to u (a, ŷ) + ε̄ as k goes to infinity by a simple application of

L’Hôpital’s rule. Since ε̄ <
maxy∈Y u(a,y)−u(a,ŷ)

2
was arbitrarily chosen, and the last term

does not depend on q this proves the desired uniformity of the convergence. �

Proof of Proposition 1. Let (u, a, Y ) be a decision problem where (i) and (ii) are

satisfied and ε ∈ R++. We start by showing that there exists c ∈ R++ such that

Λ (ht) =
LLR (ht, Q)

ct
∀t ∈ N,∀ht ∈ Ht, (16)
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is ε-safe and ε-consistent under correct specification. This is done by first deriving a

c ∈ R++ such that ε-safety is satisfied, and then showing that there exists a δ that delivers

ε-consistency under correct specification. Safety is trivially satisfied by every policy if

maxa∈A miny∈Y u (a, y) = mina∈A,y∈Y u (a, y), so in that case pick an arbitrary c ∈ R++.

Suppose instead that we have maxa∈A miny∈Y u (a, y) > mina∈A,y∈Y u (a, y). Let P̂ ⊆
∆ (Y )A be the set of p∗ that satisfy Assumption 1, (i) and (ii) jointly with Q, and define

A (p∗) : =

{
a′ ∈ A : max

a∈A
min
y∈Y

u (a, y) > Ep∗
a′

[u (a′, y)] +
ε

2

}
.

Claim 2. There exists ϕ∗ > 0 such that for every Π ∈ AH and p∗ ∈ P̂ ,

PΠ

( {
lim inft→∞

∑t
i=1 u(ai,yi)

t
−maxa∈A miny∈Y u (a, y)− ε < 0

}
∩{lim supt→∞ αt (ht) (a′) < ϕ∗,∀a′ ∈ A (p∗)}

)
= 0.

That is, almost surely the payoff is at most ε-lower than the safe guarantee if the actions

whose objective expected performance is lower than the guarantee are played sufficiently

rarely (i.e., each of them has an average frequency lower than ϕ∗).

Proof of the Claim. Consider the stochastic process defined by

Xt = u (Π (ht−1) ,yt)− Ep∗
Π(ht−1)

[u (Π (ht−1) , y)] ∀t ∈ N

with the sequence of sigma-algebras (Ft)t∈N generated by the stochastic process of histories

(ht)t∈N. The stochastic process is not i.i.d., as previous utility realizations affect current

period choices. Nevertheless it is a martingale difference sequence, as u is continuous in

y on the compact Y , so E [|Xt|] ≤ 2 maxa∈A,y∈Y |u (a, y) | < ∞ and E [Xt|Ft−1] = 0 by

equation (10). A fortiori, (Xt)t∈N is a mixingale difference sequence, and by the strong

law of large numbers for mixingale sequences (see Theorem 2.7 in Hall and Heyde, 2014

for the version that applies here), we have

lim
n→∞

∑n
t=1 Xt

n
= 0 PΠ-a.s.
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so that

lim inf
t→∞

∑t
i=1 u (ai,yi)

t
= lim inf

t→∞

t∑
i=1

Xi + Ep∗at [u (at, ·)]
t

≥
(

1− lim sup
t→∞

αt (ht) (A (p∗))

)(
max
ā∈A

min
y∈Y

u (ā, y)− ε

2

)
+ lim sup

t→∞
αt (ht) (A (p∗)) min

a∈a,y∈Y
u (a, y)

≥

1−
∑

a∈A(p∗)

lim sup
t→∞

αt (ht) (a)

max
ā∈A

min
y∈Y

u (ā, y)− ε

2
+

∑
a∈A(p∗)

lim sup
t→∞

αt (ht) (a) min
a∈a,y∈Y

u (a, y)

≥
(

1− |A| max
a∈A(p∗)

lim sup
t→∞

αt (ht) (a)

)
max
ā∈A

min
y∈Y

u (ā, y)− ε

2

+

(
|A| max

a∈A(p∗)
lim sup
t→∞

αt (ht) (a)

)
min

a∈a,y∈Y
u (a, y)

and therefore the claim follows from setting

ε

2 (maxā∈A miny∈Y u (ā, y)−mina∈a,y∈Y u (a, y)) |A|
= ϕ∗.

�

Claim 3. There exists λ̄ ∈ R++ such that if λ ≥ λ̄ then for every p∗ ∈ P̂ , a′ ∈ A (p∗),

ν ∈ ∆ (Q), we have a′ /∈ BRλ (ν).

That is, if the agent is sufficiently misspecification concerned, they do not play actions

that can perform worse than the safe guarantee.

Proof of the Claim. Observe that if A (p∗) 6= ∅, then by Assumption 1 (i) for all q ∈ Q,

there is y ∈ supp qa′ with u (a′, y) ≤ maxā∈A miny∈Y u (ā, y)− ε
2
. But then the claim follows

from Lemma 8. �

Claim 4. There exists J ∈ (0, 1) such that for every p∗ ∈ P̂ , a′ ∈ A (p∗), µ ∈ ∆ (Q), and

λ ∈ R+,

µ ({q ∈ Q : R (p∗a′ ||qa′ ) > J}) ≤ J =⇒ a′ /∈ BRλ (µ) . (17)

That is, if the beliefs are sufficiently concentrated on the parameters that are close

to the true DGP, and under the true DGP a′ performs worse than the safe guarantee, a′

cannot be chosen regardless of the level of misspecification concern.

Proof of the Claim. Observe that given Claim 3, the statement immediately holds for

λ > λ̄. Suppose by contradiction that equation (17) does not hold true. This means

that there exist a convergent (p∗n, µn, λn)n∈N ∈ P̂ × ∆ (Q) ×
[
0, λ̄
]

and a′ ∈ A with
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µn
({
q ∈ Q : R

(
p∗a′,n||qa′

)
> 1

n

})
≤ 1

n
, a′ ∈ A (p∗n), and a′ ∈ BRλn (µn). By the lower

semicontinuity of R and the fact that R (pa′ ||qa′) = 0 if and only if pa′ = qa′ , (see, e.g.,

Lemma 1.4.3 in Dupuis and Ellis (2011)), as well as Lemma 4 this in turn implies that there

exists q ∈ Q with a′ ∈ A (q) and Eqa′ [u (a′, y)] ≥ maxā∈A miny∈Y u (ā, y), a contradiction.

�

Let c = Jϕ∗

4λ̄
, and take an arbitrary p∗ ∈ P̂ . If for all a′ ∈ A (p∗) lim supt→∞ αt (ht) (a′) <

ϕ∗, PΠ-a.s., ε-safety follows by Claim 2. Suppose by contradiction that there is an action

a′ ∈ A (p∗) with lim supt→∞ αt (ht) (a′) ≥ ϕ∗. By Claim 4, it must be the case that

minq∈QR (p∗a′ ||qa′) = R (p∗a′ ||q∗a′) ≥ J .

But then, by Theorem 11.4.1 in Dudley (2018) as well as Lemmas 6 and 7 we have

that

lim inf
t→∞

Λ (ht) ≥
minq∈QR (p∗||q)

c
≥ J

c
= 2λ̄ PΠ-a.s.

Then by Claim 3, we have that for all a′ ∈ A (p∗)

lim sup
t→∞

αt (ht) (a′) = 0 PΠ-a.s.

a contradiction.

Since Q is compact, for every ε ∈ (0, 1) we can pick δ < 0 such that for all p∗ ∈ P̂ , and

a ∈ A, minq∈QR (p∗a||qa) < δ implies that for q ∈ Qε(a), by Lemma 3,

Ep∗
a′

[u (a′, y)]− min
p∈∆(Y )

(
Ep [u (a′, y)] +

R (pa′ ||qa′)
λ

)
≤ ε

4
∀a′ ∈ A, ∀λ ∈ [0, 2δ] .

But then Λ is ε-consistent with this δ by Lemmas 6, 7, and Berk (1966), page 54.

We show that there is a decision problem (u, a, Y ) such that if the concern for mis-

specification of the agent is such that

Λ (ht) = o

(
LLR (ht, Q)

t

)
PΠ-a.s.

then the decision rule is not 1
10

-safe. Suppose that A = {1,−1, 0} and Y = {−1, 1}.
The utility function is u (a, y) = ay. Each model q considered by the agent is de-

scribed by qa (1) for some arbitrary a ∈ A. With this, let Q = {0.9, 0.4}, p∗a (1) = 0.6,

and µ (0.9) = 1
2

= µ (0.4). Let N (Q) = [0, 1], i.e., the unstructured models include

all the action-independent data-generating processes. We have maxā∈A miny∈Y u (ā, y) =

miny∈Y u (0, y) = 0. However, by the Strong Law of Large Numbers it follows that PΠ-
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almost surely limt→∞
(∑t

τ=1 I{1} (yτ )
)
/t = 0.6. Therefore, by Lemma 2 we have that

lim
t→∞

LLR (ht, Q)

t
= R (0.6||0.4) PΠ-a.s.

and so

lim
t→∞

Λ (ht) = 0 PΠ-a.s.

Moreover, for the constant function φ (ε) = 1
2

for all ε ∈ R++ the prior is φ-positive on Q

in the sense of Fudenberg et al. (2022a), and by their Lemma 1, µ (0.4|ht) → 1, PΠ-a.s.

But then by the upper hemicontinuity of BR(·) (·) established in Lemma 4

lim inf
t→∞

∑t
i=1 u (ai,yi)

t
= −0.2 < 0 = max

ā∈A
min
y∈Y

u (ā, y) PΠ-a.s.

proving the desired result.

Finally, we show that there is a decision problem (u, a, Y ) such that if the concern for

misspecification of the agent is such that

o (Λ (ht)) =
LLR (ht, Q)

t
PΠ-a.s.

then the decision rule is not 1
10

-consistent. Let Π be a Λ-optimal policy.

Let δ ∈ (0, 0.4) and suppose A = {1,−1, 0}and Y = {−1, 1}. The utility function is

u (a, y) = ay. Again, each model q considered by the agent is described by qa (1) for some

arbitrary a ∈ A. With this, let Q = {0.6, 0.4} and p∗a (1) = 0.6+δ. Let N (Q) = [0, 1], i.e.,

the unstructured models include all the action-independent data-generating processes.

Let λ̄ be such that {0} = BRλ (µ) for all λ ≥ λ̄ and µ ∈ ∆ (Q). Such a λ̄ exists because

for a ∈ {−1, 1} and q ∈ Q, limλ→∞minpa∈∆(Y ) Epa [u (a, y)] + R(pa||qa)
λ

= −1. Let

Ct =

{
ht ∈ Ht :

(
t∑

τ=1

I{1} (yτ )

)
/t ≥ 0.6, R

((
t∑

τ=1

I{1} (yτ )

)
/t||0.6

)
≥ R (0.6 + δ||0.6) /2

}
.

For every ht ∈ Ct, by Lemmas 2, 6, and 7, limt→∞ LLR (ht, Q) /t ≥ R (0.6 + δ||0.6) /2 so

that Λ (ht) is diverging to +∞ and it is eventually larger than λ̄. But by Sanov’s Theorem

(see, e.g., Theorem 2.2.1 in Dupuis and Ellis, 2011), limt→∞ PΠ [Ct] = 1, so the result

follows. �

Proof of Proposition 2. Suppose that a∗ is a Λ-limit action. Thus, since for every
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policy Π ∈ AH

PΠ [sup{t : at 6= a∗} <∞] ≤
∞∑
t=0

∑
ht∈Ht

PΠ

[
a∗ ∈ BRΛ(hτ ) (µ (·|hτ )) ,∀τ ≥ t|ht

]
PΠ[ht],

there are a Λ-optimal policy Π̃ ∈ AH, t ∈ N0, and (at, yt) ∈ Ht with PΠ̃[(at, yt)] > 0

such that with positive probability Π̃ prescribes a∗ after (at, yt) in every future period.

Define ν = µ(·|(at, yt)), and notice that by Assumption 1 (i) supp ν = suppµ = Q. As

the evolution of beliefs and misspecification concern under Πa∗ , i.e., the policy that plays

a∗ in every period, is the same as under Π̃ for every history where the agent continues to

play a∗, we have that

PΠ̃[∀τ > t, a∗ = Π̃(hτ )|(at, yt)] > 0 =⇒ PΠa∗ [∀τ > 0, a∗ ∈ BRΛ((at,yt),hτ) (ν (·|hτ ))] > 0.

We now show that if a∗ is not a self-confirming equilibrium, the latter equals zero, which

establishes that a∗ cannot be a Λ-limit action. By the strong law of large numbers (see,

e.g., Theorem 8.3.5 in Dudley, 2018),

lim
τ→∞

phτ
a∗

= p∗
a∗

PΠa∗ -a.s.

Therefore, since by Lemma 6, maxq∈Q,t∈N− ln q̃at (yt) ≤ K, PΠa∗ -almost surely, by Lemma

7 we have limτ→∞
LLR((at,yt),hτ ,Q)

τ
= 0 = limτ→∞

Λ((at,yt),hτ)
τ

, PΠa∗ almost surely. With

this, as by Assumption 1 (ii), the assumptions of Berk (1966), page 54, are satisfied, for

every ε ∈ R++ we have

lim
τ→∞

ν (Bε ({q ∈ Q : qa∗ = p∗a∗}) |hτ ) = 1, PΠa∗ -a.s.

and the desired conclusion follows from Lemma 4. �

Proof of Theorem 1. We start with the preliminary observation that by Lemma 6,

maxq∈Q,t∈N− ln q̃at (yt) ≤ K, PΠa∗ -almost surely. This will allow us to invoke Lemma 7 in

all the various cases.

1) Suppose by contradiction that a∗ is a Λ-limit action but is not a Berk-Nash equilib-

rium. Thus, since for every policy Π ∈ AH

PΠ [sup{t : at 6= a∗} <∞] ≤
∞∑
t=0

∑
ht∈Ht

PΠ

[
a∗ ∈ BRΛ(hτ ) (µ (·|hτ )) ,∀τ ≥ t|ht

]
PΠ[ht],
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there are a Λ-optimal policy Π̃ ∈ AH, t ∈ N0, and (at, yt) ∈ Ht with PΠ̃[(at, yt)] > 0

such that with positive probability Π̃ prescribes a∗ after (at, yt) in every future period.

Define ν = µ(·|(at, yt)), and notice that by Assumption 1 (i) supp ν = suppµ = Q. As

the evolution of beliefs and misspecification concern under Πa∗ , i.e., the policy that plays

a∗ in every period, is the same as under Π̃ for every history where the agent continues to

play a∗, we have that

PΠ̃[∀τ > t, a∗ = Π̃(hτ )|(at, yt)] > 0 =⇒ PΠa∗ [∀τ > 0, a∗ ∈ BRΛ((at,yt),hτ) (ν (·|hτ ))] > 0.

We now show that the latter equals zero, which establishes that a∗ cannot be a Λ-limit

action.

Since Y is a compact metric space, it is separable (see, e.g., Proposition 9.24 in Royden

and Fitzpatrick, 1988). Thus, by Theorem 11.4.1 in Dudley (2018), limτ→∞ p
hτ
a∗

= p∗
a∗

,

PΠa∗ -a.s. Then, by Lemma 7 and equation (5) we have limτ→∞ Λ ((at, yt),hτ ) = 0, PΠa∗ -

a.s. By Assumption 1 (ii), the assumptions of Berk (1966), page 54, are satisfied, and we

have that for every ε ∈ R++, ν (Qε (a∗) |hτ )→ 1, PΠa∗ -a.s. Therefore, since Q is compact,

(Λ ((at, yt),hτ ) , ν (·|hτ ))τ∈N admits PΠa∗ almost surely a subsequence convergent to (0, ν∗)

for some ν∗ ∈ ∆ (Q (a∗)). With this, the result follows from Lemma 4.

2) Suppose by contradiction that a∗ /∈ BRMeu
({
p ∈ ∆ (Y )A : ∃q ∈ Q,∀a ∈ A, qa � pa

})
and that a∗ is a Λ-limit action. Thus, since for every policy Π ∈ AH

PΠ [sup{t : at 6= a∗} <∞] ≤
∞∑
t=0

∑
ht∈Ht

PΠ

[
a∗ ∈ BRΛ(hτ ) (µ (·|hτ )) ,∀τ ≥ t|ht

]
PΠ[ht],

there are a Λ-optimal policy Π̃ ∈ AH, t ∈ N0, and (at, yt) ∈ Ht with PΠ̃[(at, yt)] > 0

such that with positive probability Π̃ prescribes a∗ after (at, yt) in every future period.

Define ν = µ(·|(at, yt)), and notice that by Assumption 1 (i) supp ν = suppµ = Q. As

the evolution of beliefs and misspecification concern under Πa∗ , i.e., the policy that plays

a∗ in every period, is the same as under Π̃ for every history where the agent continues to

play a∗, we have that

PΠ̃[a∗ = Π̃(hτ ),∀τ > t|(at, yt)] > 0 =⇒ PΠa∗ [a
∗ ∈ BRΛ((at,yt),hτ) (ν (·|hτ )) , ∀τ > t] > 0.

We now show that the latter equals zero, which establishes that a∗ cannot be a Λ-limit

action.
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By Theorem 11.4.1 in Dudley (2018),

lim
τ→∞

phτ
a∗

= p∗
a∗

PΠa∗ -a.s.

Then, by Lemmas 2 and 7, and equation (6), we have

lim
τ→∞

Λ
(
(at, yt),hτ

)
=∞ PΠa∗ -a.s.

By Assumption 1 (i) for all q, q′ ∈ Q and a ∈ A we have qa ∼ q′a. So we obtain{
p ∈ ∆ (Y )A : ∃q ∈ Q,∀a ∈ A, qa � pa

}
=
{
p ∈ ∆ (Y )A : ∀q ∈ Q,∀a ∈ A, qa � pa

}
.

Therefore, by Lemma 8 for all a ∈ A we have that PΠa∗ almost surely

lim
τ→∞

sup
q∈Q

min
pa∈∆(Y )

∫
Y

u (a, y) dpa +
R (pa||qa)

Λ ((at, yt),hτ )
= min

y∈∪q∈Qsuppqa
u (a, y) .

But since by Assumption 1 (i) for all τ ∈ N, µ (·|hτ ) ⊆ Q, PΠa∗ almost surely, we have

lim
τ→∞

Eµ(·|hτ )

[
min

pa∈∆(Y )

∫
Y

u (a, y) dpa +
R (pa||qa)

Λ ((at, yt),hτ )

]
= min

y∈∪q∈Qsuppqa
u (a, y) PΠa∗ -a.s.

With this, the result follows from the finiteness of the action space.

3) It follows from the more general Theorem 2. �

Lemma 9. For every c ∈ R++ the function α 7→ minq∈Q
∑

a∈A α (a)R (p∗a||qa) /c is con-

tinuous and the correspondence Q (·) : ∆ (A)→ 2Q is upper hemicontinuous.

Proof. We first show that the function

∆ (A)×Q → R
(α, q) 7→

∑
a∈A α (a)R (p∗a||qa) /c

(18)

is continuous. Fix an a ∈ A and let (qn)n∈N ∈ QN be a sequence that converges to q ∈ Q.

By Assumption 1 (ii), q̃a,n(y) is converging to q̃a(y) for p∗a almost every y. Then

|R (p∗a||qa,n)−R (p∗a||qa) | =
∣∣∣∣∫
Y

log

(
q̃a (y)

q̃a,n (y)

)
dp∗a (y)

∣∣∣∣
and observe that the integrand on the right-hand side is dominated by a constant by As-
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sumption 1 (i). Therefore, by the dominated convergence theorem |R (p∗a||qa,n)−R (p∗a||qa) |
converges to 0. Since A is finite and the function in equation (18) is linear in α, we have

obtained the desired continuity. With this, the statement follows from Theorem 17.31 in

Aliprantis and Border (2013).

Proof of Proposition 3. Consider the following three-player game. The action sets are

A1 = ∆ (A), A2 = ∆ (Q), A3 = R+ with arbitrary elements denoted as α, ν, λ. The utility

functions are

U1 (α, ν, λ) =

{ ∑
a∈A α (a)

∫
Q

minpa∈∆(Y )

(
Epa [u (a, y)] + R(pa||qa)

λ

)
dν (q) λ 6= 0∑

a∈A α (a)
∫
Q
Eqa [u (a, y)] dν (q) λ = 0,

U2 (α, ν, λ) = −
∫
Q

∑
a∈A

α (a)R (p∗a||qa) dν (q) ,

U3 (α, ν, λ) = −

(
λ−min

q∈Q

∑
a∈A

α (a)R (p∗a||qa) /c

)2

.

Observe that for the purpose of finding the equilibria of this game, it is without loss

of generality to limit the actions of player 3 to
[
0, λ̄
]

with

λ̄ : =
maxα∈∆(A) minq∈Q

∑
a∈A α (a)R (p∗a||qa)

c

=
maxα∈∆(A) minq∈Q

∑
a∈A α (a)

∫
Y
− log (q̃a (y)) dp∗a (y)

c
<∞,

where the inequality holds by Assumption 1 (i). Therefore, since the compactness of Q

implies that also ∆ (Q) is compact by Theorem 15.11 in Aliprantis and Border (2013) all

the three action sets are compact. Moreover, they are clearly convex.

The utility function U1 is jointly continuous in its second and third argument by Lemma

4. Moreover, U2 is trivially continuous in its first and third argument and U3 is continuous

in its first and second argument by Lemma 9. Therefore the game is better-reply secure

(see Reny, 1999, page 1033). Moreover, U1 and U2 are respectively linear in A1 and A2

while U3 is concave in A3.

Therefore, by Theorem 3.1 and Footnote 8 in Reny (1999) this game admits a pure-

strategy equilibrium (α∗, ν∗, λ∗). But observe that

λ∗ ∈ argmaxλ∈R+
−

(
λ−min

q∈Q

∑
a∈A

α∗ (a)R (p∗a||qa) /c

)2

=⇒ λ∗ =
minq∈Q

∑
a∈A α

∗ (a)R (p∗a||qa)
c

,
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α∗ ∈ argmaxα∈∆(A) U1 (α, ν∗, λ∗) =⇒ α∗ ∈ ∆
(
BRλ∗ (ν∗)

)
,

and

ν∗ ∈ argmaxν∈∆(Q)−
∫
Q

∑
a∈A

α∗ (a)R (p∗a||qa) dν (q) =⇒ ν∗ ∈ ∆ (Q (α∗)) .

Therefore, α∗ is a mixed c-robust equilibrium sustained by the ν∗ and λ∗. �

Proof of Theorem 2. We start with the preliminary observation that by Lemma 6,

maxq∈Q,t∈N− ln q̃at (yt) ≤ K, PΠ-almost surely. This will allow us to invoke Lemma 7.

Let Υ = {α− α′ : α, α′ ∈ ∆ (A)} and for all ε ∈ R+ and α′ ∈ ∆ (A), Mε (α′) ={
ν ∈ ∆ (Q) :

∫
Q

∑
a∈A α

′ (a)R (p∗a||qa) dν (q) ≤ ε+ minq∈Q
∑

a∈A α
′ (a)R (p∗a||qa)

}
. By Esponda

et al., 2021a, Part 1a of the proof of Theorem 2,33 M(·) (·) is upper hemicontinuous. We

define F : R+ × R+ ×∆ (A)⇒ Υ by

F (ε, ε′, α) =
{
ι ∈
[
∆
(
∪λ′∈Bε′(minq∈Q

∑
a∈A α(a)R(p∗a||qa)/c)∩[0, 2Kc ]BR

λ′ (∆ (Mε (α)))
)
− α

]}
and χα = F (0, 0, α) + α.

Claim 5. F and χα are upper hemicontinuous, compact-valued, and convex-valued.

Proof of the Claim. We show that F has a closed graph to conclude that it is upper

hemicontinuous. Since Υ is compact, this is enough by, e.g., Proposition E.3 in Ok (2011).

The remaining claims are immediateLet

(ιn, εn, ε
′
n, αn)n∈N ∈ (Υ× R+ × R+ ×∆ (A))N

be such that ιn ∈ F (εn, ε
′
n, αn) for all n ∈ N and convergent to (ι, ε, ε′, α). Since A is finite,

it is without loss of generality (possibly truncating some initial elements of the sequence)

to take ιn (a) > −αn (a) for all n ∈ N and for all a for which ι (a) > −α (a). Then for all â

such that ι (â) > −α (â), there is a sequence
(
ν ân, λ

â
n

)
n∈N ∈ (∆ (Q)× [0, 2K/c])N such that

ν ân ∈ Mεn (α′n), λân ∈ Bε′n

(
minq∈Q

∑
a∈A αn (a)R (p∗a||qa) /c

)
, and â ∈ BRλân

(
ν ân
)
. Since

∆ (Q) and [0, 2K/c] are compact (by Theorem 15.11 in Aliprantis and Border, 2013) by

restricting to a subsequence we can take
(
ν ân, λ

â
n

)
n∈N to be convergent to some

(
ν â, λâ

)
∈

∆ (Q)× [0, 2K/c]. Since M(·) (·) is upper hemicontinuous ν â ∈ Mε (α). Since by Lemmas

33Observe that Assumption 1 (i-ii) implies their Assumption 2 (ii-iii), except for the fact that we do not
require finite dimensionality of Y and Q. It is readily checked that since they are still assumed to be
compact this does not create any issues in the proof of their Theorem 2.
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9 and 4 α 7→ minq∈Q
∑

a∈A α (a)R (p∗a||qa) /c is continuous and Q (·), BR(·) (·) are upper

hemicontinuous,

λâ ∈ Bε′

(
min
q∈Q

∑
a∈A

α (a)R (p∗a||qa) /c

)
.

and,

â ∈ BRλâ
(
ν â
)
⊆

{
BRλ̂ (ν̂) : ν̂ ∈Mε (α) , λ̂ ∈ Bε′

(
min
q∈Q

∑
a∈A

α (a)R (p∗a||qa) /c

)
∩
[
0,

2K

c

]}

showing that (ι, ε, ε′, α) belongs to the graph of the correspondence. �

Observe that (αt)t∈N satisfies the following differential inclusion: for all a ∈ A, t ∈ N,

ht ∈ Ht, and ht+1 ∈ Ht+1 such that ht+1 � ht

αt+1(ht+1)(a) ∈
{
αt(ht)(a) +

1

t+ 1

(
I{a′}(a)− αt(ht)(a)

)
: a′ ∈ BRΛ(ht)(µ (·|ht))

}
.

Set τ 0 = 0 and τ t =
∑t

i=1
1
i

for all t ∈ N. The continuous-time interpolation of αt is

the function w : R+ → ∆(A)

w(τ t + l) =

{
αt + lαt+1−αt

τ t+1−τ t , ∀t ∈ N,∀l ∈
[
0, 1

t+1

]
α1 t = 0,∀l ∈ [0, 1].

(19)

We use the theory of stochastic approximation for differential inclusions (Benaim et al.,

2005 and Esponda et al., 2021a) to show that (19) can be approximated by a solution to

α̇t ∈ χαt − αt. (20)

A solution over [0, T ], T ∈ R++, to the differential inclusion (20) with initial point

α̂ ∈ ∆(A) is a mapping α(·) : [0, T ] → ∆(A) that is absolutely continuous over compact

intervals such that α0 = α̂ and (20) is satisfied for almost every t. Let STα̂ be the set of the

solutions to (20) over [0, T ], T ∈ R++, with initial conditions α̂ ∈ ∆(A). A solution to (20)

exists by Claim 5 and Theorem 2.1.4 in Aubin and Cellina (2012), i.e., STα̂ is nonempty

for every T ∈ R++ and α̂ ∈ ∆(A). Let ST = ∪α̂∈∆(A)S
T
α̂ .

Observe that w is Lipschitz continuous of order 1 as for all (ht)t∈N ∈ ×t∈NHt,

ht+1 � ht ∀t ∈ N =⇒ ||αt+1 (ht+1)− αt (ht) ||∞
τ t+1 − τ t

≤ 1/(t+ 1)

1/(t+ 1)
= 1 ∀t ∈ N. (21)
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Therefore w is absolutely continuous, as for all n ∈ N and
(
li, l̃i

)n
i=1

,
∑n

i=1 ||w (li) −

w
(
l̃i

)
||∞ ≤

∑n
i=1 |li − l̃i|. Moreover, αt is uniformly bounded because it takes values in

∆(A).

By Claim 5, χα satisfies Hypothesis 1.1 in Benaim et al. (2005). Moreover, by Theorem

1 in Esponda et al. (2021a) and Lemma 7 we have that PΠ-almost surely, if limt→∞ αt (ht) =

α∗, we eventually have µ (·|ht) ∈Mε (α∗) and

Λ (ht) ∈ Bε′

(
min
q∈Q

∑
a∈A

α∗ (a)R (p∗a||qa) /c

)

for all (ε, ε′) ∈ R2
++. Thus, there is a sequence (ε̂t)t∈N ∈ RN

++ converging to 0 with

χαt − αt ∈ F (ε̂t, ε̂t, αt).

Fix T ∈ N and define the flow operator G : C (R,∆ (A))× R→C (R,∆ (A)) as

Gt (f) (s) = f (s+ t) ∀f ∈ C (R,∆ (A)) ,∀s ∈ R,∀t ∈ R.

We now show that every limit point of (Gt (w))t∈N is in ST . This argument borrows

extensively from the proofs Theorem 4.2 in Benaim et al. (2005) and Theorem 2 in Esponda

et al. (2021a). However they cannot be directly applied, because the interpolated process

w we consider is not a perturbed solution in the sense of Benaim et al. (2005). Indeed, it

may not be possible to find an α that jointly justifies at as a best reply to beliefs in Q (α)

and the concern for misspecification minq∈Q
∑

a∈A α (a)R (p∗a||qa) /c, as perturbations of

the empirical frequency αt−1 in different directions may be needed for the concern and the

belief. Nevertheless, the core of their arguments can be adapted by leveraging the upper

hemicontinuity of F established above.

Since w is uniformly continuous by equation (21), the family (Gt (w))t∈N is equicon-

tinuous, and thus it is relatively compact in the topology of uniform convergence over

compact sets by the Arzela-Ascoli theorem (see Willard, 2012 Theorem 43.15 for the ver-

sion with a noncompact domain). The topology of uniform convergence over compact sets

is metrizable since ∆ (A) is metrizable and R is open (see Theorem 1.14b in Simon, 2020),

and so there exists a limit point z = limtn G
tn (w). Define

m (t) = max {k ∈ N : τ k ≤ t}

and for all s ∈ R, v (s) = w′ (s+) = αm(s)+1 − αm(s) ∈ F
(
ε̂m(s), ε̂m(s), αm(s)

)
, and vn (s) =
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v (tn + s) so

z (T )− z (0) = lim
tn

(
Gtn (w) (T )−Gtn (w) (0)

)
= lim

tn
(w (T + tn)− w (tn)) = lim

n→∞

∫ T

0

vn (s) ds.

Since (vn)n∈N is uniformly bounded, it is bounded in L2
(
[0, T ] ,RA, Leb

)
. By the Banach-

Alaoglu theorem (see Theorem 6.21 in Aliprantis and Border, 2013), (by restricting to

a subsequence) we can take (vn)n∈N to be a weakly-convergent subsequence with limit

v∗ ∈ L2
(
[0, T ] ,RA, Leb

)
. By Mazur’s lemma (see Corollary V.3.14 in Dunford and

Schwartz (1988)), there exist a function N : N → N and a sequence of positive weights(
ρn (n) , ..., ρN(n) (n)

)
n∈N with

∑N(n)
i=n ρi (n) = 1 for all n ∈ N such that if we define

v̄n =

N(n)∑
i=n

ρi (n) vi,

then v̄n converges with respect to the L2
(
[0, T ] ,RA, Leb

)
norm, and thus almost surely,

to v∗.

Let τ ∈ [0, T ] be such that limn→∞ v̄n (τ) = v∗ (τ). For every t ∈ [0, T ] and n ∈ N,

define

γn (t) = ε̂m(tn+t) + ||w (tn + t)− αm(tn+t)||

and

wn (t) = w (tn + t) .

Observe that by definition of w, (ε̂t)t∈N, and z,

lim
n→∞

γn (t) = 0 and lim
n→∞

wn (t) = z (t) .

But then, by the upper hemicontinuity of F , for every ε ∈ R++ there exists Nε such that

for n ≥ Nε, F (γn (t) , γn (t) , wn (t)) ⊆ Bε (F (0, 0, z (t))), where the latter set is closed and

convex. But since vn (t) ∈ Bε (F (0, 0, z (t))), for all n ≥ Nε also v̄n (t) ∈ Bε (F (0, 0, z (t))).

Therefore, v∗ ∈ (F (0, 0, z (τ))). Since the fact that vn is weakly convergent to v∗ implies

by definition that limn→∞
∫ T

0
vn (s)ds =

∫ T
0
v∗ (s)ds we have that z ∈ ST .

Therefore, by (ii) =⇒ (i) of Theorem 4.1 in Benaim et al. (2005) (see Esponda et al.,
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2021b for the slightly corrected version used here)

lim
t→∞

inf
α̃∈ST

sup
0≤s≤T

||w(t+ s)− α̃s|| = 0 PΠ-a.s. for all T ∈ N. (22)

With this, we can replicate an argument from Fudenberg et al. (2022b) to rule out

convergence to nonequilibria. If α∗ ∈ ∆(A) is not a mixed c-robust equilibrium, there is a ∈
A with α∗(a) > 0 and δa /∈ χα∗ . Since χ(·) has a closed graph and maps into the compact

∆(A), there exists D ∈ R++ such that for all α′ ∈ BD(α∗), α′(a) − maxα̂∈χα′ α̂(a) >

α∗(a)/2. Therefore, for every initial condition ᾱ ∈ BD(α∗) and every solution of (20),

α(a) decreases at rate at least α∗(a)/4 until it leaves BD(α∗). So for every initial condition

ᾱ ∈ BD(α∗) and every solution, the differential inclusion leaves BD(α∗) before time T ∗ : =

4 (D + α∗ (a)) /α∗(a).

With this, we can prove that (αt (ht))t∈N does not converge to α∗ on a sample path on

which the convergence of equation (22) happens. Since the set of such sample paths has

probability 1 under policy Π, this fact concludes the proof. Suppose by contradiction that

on one of such paths (αt (ht))t∈N converges to α∗. Therefore, we can choose T̂ ∈ N such

that on that sample path αt (ht) ∈ BD/2(α∗) for all t ≥ T̂ and

inf
α∈ST∗

sup
0≤s≤T ∗

||w(T̂ + s)− αs|| ≤ D/4. (23)

Take any α ∈ ST
∗

with sup0≤s≤T ∗ ||w(T̂ + s) − α̃s|| ≤ D/2. Since w
(
T̂
)
∈ BD/2(α∗),

α ∈ ST ∗ᾱ for some initial condition ᾱ ∈ BD(α∗). But then by definition of T ∗ the differential

inclusion leaves BD(α∗) by time T ∗+T̂ , and by (23), (αt (ht))t∈N does not stay in BD/2(α∗),

a contradiction. �

Proof of Corollary 1. We first show that for a sufficiently low c there is no c-robust

equilibrium. Observe that by Assumption 3 (i) and Proposition 8 in Battigalli et al. (2022)

for every α ∈ ∆ (A), we have

Q (α) =
{
q(θ∗0,θ

∗
1π ,θ

∗
1a,θ

∗
2,θ
∗
3)
}

. (24)

Moreover, since θ∗ perfectly predicts the consequences under policy 0, we have

min
θ∈Θ

R
(
p∗0||qθ0

)
= 0.

By Assumption 3 (i) and Lemma 3 in Battigalli et al. (2022), BRSeu (∆ (Q (0))) = {1},
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and therefore 0 is not a c-robust equilibrium for any c ∈ R++. Since f1 is strictly concave

on R++, by Assumption 3 (iii) it follows that minθ∈ΘR
(
p∗1||qθ1

)
= R

(
p∗1||qθ

∗

1

)
> 0. By

Assumption 3 (ii) and Lemma 8 there exists a sufficiently small c̄ such that for all c ≤ c̄,

BR
minθ∈Θ R(p∗1||qθ1)

c (δθ∗) = {0}

proving that there is no c-robust equilibrium if c ≤ c̄. That a mixed c-robust equilibrium

exists follows from Proposition 3.34

In particular, the maximal (resp. the minimal) equilibrium is defined as the α such

that
∑

a∈A α (a)R
(
p∗a||qθ

∗

a

)
/c is equal to the maximal (resp. minimal) misspecification

concern λ such that 1 ∈ BRλ (δθ∗) (resp. 0 ∈ BRλ (δθ∗)). Since a larger θ∗1π + θ∗1a makes

action 0 more favorable, the comparative statics follows. �

A.2 Representation

A.2.1 Preliminaries

Let B0 (Σ) denote the set of all real-valued Σ-measurable simple functions endowed with

the supnorm. The subset of functions in B0 (Σ) that take values in C ⊆ R is denoted

as B0 (Σ, C). A functional I : Φ → R defined on a nonempty subset Φ of B0 (Σ) is a

niveloid if for every ϕ, ψ ∈ Φ, I (ϕ) − I (ψ) ≤ sup (ϕ− ψ). It is translation invariant if

I (αϕ+ (1− α) kIS) = I (αϕ) + (1− α) k for all α ∈ [0, 1], ϕ ∈ Φ, and k ∈ R such that

αϕ + (1− α) kIS and αϕ are in Φ. A niveloid is normalized if I (kIS) = k for all k ∈ R
such that kIS ∈ Φ. A function c : ∆(S) → R+ is grounded if c−1(0) 6= ∅. An event is

strongly nonnull if for every x, x′ ∈ X with x � x′, we have x � x′Ex.

A.2.2 Results

Our first lemma shows that the average robust control representation falls in the variational

class.

Lemma 10. Suppose that there exist a nonconstant affine function u : X → R, a

34To formally invoke Proposition 3, that requires absolute continuity with respect to the true data gen-
erating process for all θ ∈ Θ, restrict the parameter space to {θ∗}. Given equation (24) every mixed
c-robust equilibrium with the reduced parameter space remains a mixed c-robust equilibrium with the
original Θ.
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nonempty and finite Q⊆∆ (S), µ ∈ ∆ (Q), and (λq)q∈Q ∈ RQ
+ such that for all f, g ∈ F

f % g ⇐⇒ Eµ
[

min
p∈∆(S)

Ep [u (f)] +
R (p||q)
λq

]
≥ Eµ

[
min
p∈∆(S)

Ep [u (g)] +
R (p||q)
λq

]
. (25)

Then % satisfies Weak Order, Weak Certainty Independence, Continuity, Monotonic-

ity, Uncertainty Aversion, Nondegeneracy, Weak Monotone Continuity, and admits the

representation

f % g ⇐⇒ min
p∈∆(S)

∫
S

û (f) dp+ ĉ (p) ≥ min
p∈∆(S)

∫
S

û (g) dp+ ĉ (p) (26)

for some nonconstant affine û : X → R and a grounded, convex, and lower semicontinuous

function ĉ : ∆ (S) → [0,∞]. Moreover, we can choose û = u and ĉ is such that ĉ−1 (0) =

Eµ [q].

Proof. We first observe that without loss of generality we can take u to be such that

0 ∈ intu (X) in the representation of equation (25). Indeed, since u is nonconstant and

affine, there exists x ∈ X with u (x) ∈ intu (X). Define u′ (y) = u (y)−u (x) for all y ∈ X.

Then, we have

f % g ⇐⇒ Eµ
[

min
p∈∆(S)

Ep [u (f)] +
R (p||q)
λq

]
≥ Eµ

[
min
p∈∆(S)

Ep [u (g)] +
R (p||q)
λq

]
⇐⇒ Eµ

[
min
p∈∆(S)

Ep [u′ (f)] +
R (p||q)
λq

]
≥ Eµ

[
min
p∈∆(S)

Ep [u′ (g)] +
R (p||q)
λq

]
and 0 ∈ intu′ (X).

Fix q ∈ Q. The functional Iq : B0 (Σ,R)→ R defined as

Iq (ϕ) : = min
p∈∆(S)

∫
S

ϕ (s) dp+
1

λq
R (p||q) ∀ϕ ∈ B0 (Σ,R)

is easily seen to be monotone, translation invariant, and concave by Theorem 11.13 in

Aliprantis and Border (2013) and the concavity of the minimum. Since Q is finite,

Î (ϕ) : =

∫
Q

Iq (ϕ) dµ (q) ∀ϕ ∈ B0 (Σ,R)

is well-defined and Î is monotone, concave, and represents %. Let ϕ ∈ B0 (Σ, u (X)),

k ∈ u (X), and γ ∈ (0, 1). Since u is affine, X is convex, and 0 ∈ intu (X), we have
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γϕ+ (1− γ) k ∈ B0 (Σ, u (X)), γϕ ∈ B0 (Σ, u (X)), and

Î (γϕ+ (1− γ) k) =

∫
Q

Iq (γϕ+ (1− γ) k) dµ (q) =

∫
Q

Iq (γϕ)+(1− γ) kdµ (q) = Î (γϕ)+(1− γ) k.

But then, notice that∫
Q

(
min
p∈∆(S)

∫
S

u (f) dp+
1

λq
R (p||q)

)
dµ (q) =

∫
Q

Iq (u (f)) dµ (q) = Î (u (f))

where Î is monotone and translation invariant. Therefore, by Lemma 25 in Maccheroni

et al. (2006a), Î is a concave niveloid, and it is clearly normalized. With this, by Lemma

28 and Footnote 15 in Maccheroni et al. (2006a) % satisfies Weak Order, Weak Certainty

Independence, Continuity, Monotonicity, Uncertainty Aversion, and Nondegeneracy.

Fix f, g ∈ F , x ∈ X, and (Ei)i∈N ∈ ΣN with E1 ⊇ E2 ⊇ ..., ∩i≥1Ei = ∅, and f � g.

Then, for all q ∈ Q, limi→∞ q (Ei) = 0 for all i ∈ N and by Proposition 1.4.2 in Dupuis

and Ellis (2011)

−e−λq(Iq(xIEi+u(f)IS\Ei)) = −
∫
S\Ei

exp (−λqu (f (s))) dq (s)−
∫
Ei

exp (−λqu (x)) dq (s) .

But then

lim
i→∞
− exp

(
−λq

(
Iq
(
xIEi + u (f) IS\Ei

)))
=

∫
S

−e−λqu(f(s))dq (s) >

∫
S

−e−λqu(g(s))dq (s)

that is

lim
i→∞

Iq
(
xIEi + u (f) IS\Ei

)
>
− log

(∫
S

exp (−λqu (g (s))) dq (s)
)

λq

proving that there exists i ∈ N such that Iq
(
u (x) IEi + u (f) IS\Ei

)
> Iq (u (g)). Since

the statement holds for every q ∈ Q and Q is finite, there exists i ∈ N such that

Î
(
u (x) IEi + u (f) IS\Ei

)
> Î (u (g)) proving that % satisfies Weak Monotone Continu-

ity. Thus, by Theorem 3 and Lemma 30 in Maccheroni et al. (2006a) it admits the

representation in equation (26).

By the first part of the lemma we have

u (x) ≥ u (x′) ⇐⇒ x % x′ ⇐⇒ û (x) ≥ û (x′)

and therefore by the uniqueness up to a positive affine transformation of û guaranteed by

61



Corollary 5 in Maccheroni et al. (2006a) and the fact that every two affine functions that

represent % on X are positive affine transformations of each other (see, e.g., Theorem 5.11

in Kreps, 1988), we can choose u = û. Finally, by (ii) =⇒ (iii) of Lemma 32 in Maccheroni

et al. (2006a) for every q ∈ Q, and k ∈ u (X), ∂Iq (k) = {q}. Let k̄ ∈ intu (X) 6= ∅ and

observe that since Q is finite,

lim
α↓0

Î
(
k̄ + αϕ

)
− Î

(
k̄
)

α
= lim

α↓0

Eµ
[
Iq
(
k̄ + αϕ

)]
− Eµ

[
Iq
(
k̄
)]

α
= lim

α↓0
Eµ

[
Iq
(
k̄ + αϕ

)
− Iq

(
k̄
)

α

]

= Eµ

[
lim
α↓0

Iq
(
k̄ + αϕ

)
− Iq

(
k̄
)

α

]
= Eµ

[∫
S

ϕdq

]
.

Now, applying (iii) =⇒ (ii) of Lemma 32 in Maccheroni et al. (2006a), we obtain that the

unique ĉ identified by the choice of û has ĉ−1 (0) = {Eµ [q]} . �

Lemma 11. If E ∈ Σst is strongly nonnull and % satisfies Weak Order, Weak Cer-

tainty Independence, Continuity, Monotonicity, Uncertainty Aversion, and Weak Mono-

tone Continuity, then %E satisfies Weak Order, Weak Certainty Independence, Continuity,

Monotonicity, Uncertainty Aversion, Nondegeneracy, and Weak Monotone Continuity.

Proof. Let f, g, h ∈ F . By Completeness of % at least one between fEh % gEh and

gEh % fEh holds. Therefore, by definition of %E at least one between f %E g and g %E f

holds.

Let f, f ′, f ′′ ∈ F , with f %E f ′ and f ′ %E f ′′. By definition of %E, there exist

h′, h′′ ∈ F such that fEh′ % f ′Eh′ and f ′Eh′′ % f ′′Eh′′. Since E ∈ Σst, we have

fEh′′ % f ′Eh′′. By Transitivity of %, fEh′′ % f ′′Eh′′, and so by definition of %E,

f %E f ′′.

Let f, g ∈ F , x, x′ ∈ X, and γ ∈ (0, 1), be such that γf + (1− γ)x %E γg + (1− γ)x.

Since E ∈ Σst, we have (γf + (1− γ)x)Ex % (γg + (1− γ)x)Ex. By Weak Certainty In-

dependence of% we get (γf + (1− γ)x′)E (γx+ (1− γ)x′) % (γg + (1− γ)x′)E (γx+ (1− γ)x′).

But then by definition of %E, we have γf + (1− γ)x′ %E γg+ (1− γ)x′, proving that %E
satisfies Weak Certainty Independence.

Let f, g, h, h′ ∈ F . Since E ∈ Σst, we have that

{γ ∈ [0, 1] : γf + (1− γ) g %E h} = {γ ∈ [0, 1] : (γf + (1− γ) g)Eh′ % hEh′}

= {γ ∈ [0, 1] : γfEh′ + (1− γ) gEh′ % hEh′}
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and

{γ ∈ [0, 1] : h %E γf + (1− γ) g} = {γ ∈ [0, 1] : hEh′ % (γf + (1− γ) g)Eh′}

= {γ ∈ [0, 1] : hEh′ % γfEh′ + (1− γ) gEh′}

where the sets on the bottom lines are closed by Continuity of %, proving that %E satisfies

Continuity.

Let f, g, h ∈ F and f (s) %E g (s) for all s ∈ S. For every s ∈ S, since E is strongly

nonnull, we cannot have g (s) � f (s), as otherwise we would have g (s) � f (s)Eg (s), a

contradiction with f (s) %E g (s). Then, fEh % gEh by Monotonicity of %. Therefore,

by definition of %E, f %E g and so %E satisfies Monotonicity.

Let f, g, h ∈ F , γ ∈ (0, 1) and f ∼E g. Since E ∈ Σst, fEh ∼ gEh and by Uncertainty

Aversion, (γf + (1− γ) g)Eh = γfEh + (1− γ) gEh % fEh. By definition of %E, this

implies that γf + (1− γ) g %E f and so %E satisfies Uncertainty Aversion.

Since E is nonnull, there exist f, g, h ∈ F such that fEh � gEh. But then, since

E ∈ Σst, there is no h′ ∈ F with gEh′ % fEh′. Therefore, by definition of %E, f �E g

and %E satisfies Nondegeneracy.

Let f, g, h ∈ F , x ∈ X, (Ei)i∈N ∈ ΣN with E1 ⊇ E2 ⊇ ... and ∩n≥1En = ∅, and

f �E g. Since E ∈ Σst, fEh � gEh. Moreover, (E ′i)i∈N where E ′i = Ei ∩ E is such that

E ′1 ⊇ E ′2 ⊇ ... and ∩n≥1E
′
n ⊆ ∩n≥1En = ∅. Then (xE ′if)Eh = xE ′i (fEh) for all i ∈ N

and by Weak Monotone Continuity and the fact that fEh � gEh there exists n0 ∈ N
such that

(
xE ′n0

f
)
Eh � gEh. But notice that (xEn0f)Eh =

(
xE ′n0

f
)
Eh � gEh and

therefore xEn0f �E g, as E ∈ Σst. �

Lemma 12. Let Ω × {ρ} ∈ Σst be strongly nonnull and contain at least three disjoint

nonnull events, and suppose % satisfies Weak Order, Weak Certainty Independence, Con-

tinuity, Monotonicity, Uncertainty Aversion, Nondegeneracy, Weak Monotone Continuity,

the Intramodel Sure-Thing Principle, and Structured Savage. For every f, g ∈ F , we have

f %ρ g ⇐⇒ min
q∈∆(S)

Eq[uρ (f)] +
R (q||pρ)

λρ
≥ min

q∈∆(S)
Eq[uρ (g)] +

R (q||pρ)
λρ

(27)

where uρ is a nonconstant affine function, λρ ∈ R+, and pρ ∈ ∆ (S). Moreover, uρ can be

chosen to be the same for all such ρ and supp pρ ⊆ Ω× {ρ}.

Proof. By Lemma 11 %ρ satisfies Weak Order, Weak Certainty Independence, Continuity,

Monotonicity, Uncertainty Aversion, Nondegeneracy, and Weak Monotone Continuity. We
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now show that for every f, g, h, h̄ ∈ F and E ∈ Σ, we have

fEh %ρ gEh =⇒ fEh̄ %ρ gEh̄.

Observe that by definition of %ρ, fEh %ρ gEh implies that there exists ĥ ∈ F such that

(fEh) ρĥ % (gEh) ρĥ. But then, there exists h′ ∈ F such that

(fEh) ρĥ % (gEh) ρĥ

=⇒ (f {(ω, ρ) : (ω, ρ) ∈ E}h) ρĥ % (g {(ω, ρ) : (ω, ρ) ∈ E}h) ρĥ

=⇒ (f {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E}h) ρĥ % (g {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E}h) ρĥ

=⇒ (f {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E}h) %ρ (g {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E}h)

=⇒
(
f {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E} h̄

)
%ρ
(
g {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E} h̄

)
=⇒

(
f {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E} h̄

)
ρh′ %

(
g {(ω, ρ′) : ρ′ ∈ ∆ (Ω) , (ω, ρ) ∈ E} h̄

)
ρh′

=⇒
(
f {(ω, ρ) : (ω, ρ) ∈ E} h̄

)
ρh′ %

(
g {(ω, ρ) : (ω, ρ) ∈ E} h̄

)
ρh′

=⇒
(
fEh̄

)
ρh′ %

(
gEh̄

)
ρh′ =⇒ fEh̄ %ρ gEh̄

where the third, fifth, and eighth implications follow from the definition of %ρ, the

fourth implication follows from the Intramodel Sure-Thing Principle, and the other impli-

cations only rewrite the acts involved.

Next, observe that if E ⊆ Ω × {ρ} is nonnull, then there exist f, g, h ∈ F with

(fEh) ρh = fEh � gEh = (gEh) ρh. By Structured Savage P2, this implies that fEh �ρ
gEh, so that E is nonnull for the preference %ρ. With this, the first part follows from

Theorem 1 in Strzalecki (2011). For the second part, notice that by Theorem 3 and Lemma

30 in Maccheroni et al. (2006a), % admits a variational representation:

f % g ⇐⇒ min
p∈∆(S)

(∫
u (f) dp+ c (p)

)
≥ min

p∈∆(S)

(∫
u (g) dp+ c (p)

)
(28)

for some nonconstant affine u : X → R and a lower semicontinuous and grounded function

c : ∆ (S)→ [0,∞].

Next, notice that % and %ρ coincide on X. Indeed, let x � x′. Since Ω×{ρ} is strongly

nonnull x � x′ρx and given that Ω × {ρ} ∈ Σst it follows that x �ρ x′. Conversely, let

x % x′, then by equation (28) u (x) ≥ u (x′). Since c is grounded, there exists q∗ ∈ ∆(S)
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with c (q∗) = 0. But then

u (x) ≥ u (x′) q∗ (Ω× {ρ}) + (1− q∗ (Ω× {ρ}))u (x)

≥ min
q∈∆(S)

(u (x′) q (Ω× {ρ}) + (1− q (Ω× {ρ}))u (x) + c (q))

that is, x (Ω× {ρ})x % x′ (Ω× {ρ})x, and x %ρ x′. Therefore, by the uniqueness up

to a positive affine transformation of u guaranteed by Corollary 5 in Maccheroni et al.

(2006a) and the fact that every two affine functions that represent % on X are positive

affine transformations of each other (see, e.g., Theorem 5.11 in Kreps, 1988), we can

choose u = uρ. Suppose by way of contradiction that there exists E ∈ Σ such that

E ∩ (Ω× {ρ}) = ∅ and pρ (E) > 0. Let x, y ∈ X with x � y. Then,

u (x) > u (y) pρ (E) + u (x) (1− pρ (E)) ≥ min
q∈∆(S)

∫
u (yEx) dq +

1

λρ
R (q||pρ)

and so by equation (27), x �ρ yEx. But since x = x (Ω× {ρ})x, x = (yEx) (Ω× {ρ})x
and Ω× {ρ} ∈ Σst this would imply x � x, a contradiction to the Weak Order of %. �

Lemma 13. Suppose that the assumptions of Theorem 3 hold. Let % be such that for all

f, g ∈ F

f % g ⇐⇒ Eµ
[

min
p∈∆(S)

Ep [u (f)] +
R (p||q)
λq

]
≥ Eµ

[
min
p∈∆(S)

Ep [u (g)] +
R (p||q)
λq

]
where u : X → R is a nonconstant affine function, Q⊆∆ (S) is a finite and nonempty set

such that

q
({
ω, ρq

})
= ρq (ω) ∀q ∈ Q,∀ω ∈ Ω, (29)

for some ρq ∈ ∆ (Ω), µ ∈ ∆ (Q), and (λq)q∈Q ∈ RQ
+. Then:

1. For every Ω×B ∈ Σs and f, h ∈ F∫
Q

min
p∈∆(S)

∫
S

u (fΩ×Bh) dp+
R (p||q)
λq

dµ (q)

=

∫
{q∈Q:ρq∈B}

min
p∈∆(S)

Ep [u (f)] +
R (p||q)
λq

dµ (q) +

∫
Q\{q∈Q:ρq∈B}

min
p∈∆(S)

Ep [u (h)] +
R (p||q)
λq

dµ (q) .

2. For every Ω×B ∈ Σs, if µ
({
q ∈ Q : ρq ∈ B

})
= 0, then Ω×B is null.
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Proof. 1) Let Ω×B ∈ Σs and f, h ∈ F . We have∫
Q

min
p∈∆(S)

∫
S

u (fΩ×Bh) dp+
R (p||q)
λq

dµ (q)

=

∫
{q∈Q:ρq∈B}

min
p∈∆(S)

∫
S

u (fΩ×Bh) dp+
R (p||q)
λq

dµ (q)

+

∫
Q\{q∈Q:ρq∈B}

min
p∈∆(S)

∫
S

u (fΩ×Bh) dp+
R (p||q)
λq

dµ (q)

=

∫
{q∈Q:ρq∈B}

min
p∈∆(S):q�p

∫
S

u (fΩ×Bh) dp+
R (p||q)
λq

dµ (q)

+

∫
Q\{q∈Q:ρq∈B}

min
p∈∆(S):q�p

∫
S

u (fΩ×Bh) dp+
R (p||q)
λq

dµ (q)

=

∫
{q∈Q:ρq∈B}

min
p∈∆(S):q�p

Ep [u (f)] +
R (p||q)
λq

dµ (q)

+

∫
Q\{q∈Q:ρq∈B}

min
p∈∆(S):q�p

Ep [u (h)] +
R (p||q)
λq

dµ (q)

=

∫
{q∈Q:ρq∈B}

min
p∈∆(S)

Ep [u (f)] +
R (p||q)
λq

dµ (q) +

∫
Q\{q∈Q:ρq∈B}

min
p∈∆(S)

Ep [u (h)] +
R (p||q)
λq

dµ (q)

where the third equality follows from the fact that by equation (29) q � p and ρq ∈ B
imply suppp ⊆ suppq ⊆ Ω×B (and conversely q � p and ρq /∈ B imply suppp ⊆ suppq ⊆
S \ (Ω×B)).

2) It follows from 1), since in this case for every f, g, h ∈ F

fΩ×Bh % gΩ×Bh

⇐⇒
∫
{q∈Q:ρq /∈B}

min
p∈∆(S)

Ep [u (h)] +
R (p||q)
λq

dµ (q) ≥
∫
{q∈Q:ρq /∈B}

min
p∈∆(S)

Ep [u (h)] +
R (p||q)
λq

dµ (q)

and the RHS is always trivially satisfied as an equality. �

Lemma 14. Suppose that the assumptions of Theorem 3 hold and for all f, g ∈ F

f % g ⇐⇒ Eµ
[

min
p∈∆(S)

Ep [u (f)] +
R (p||q)
λq

]
≥ Eµ

[
min
p∈∆(S)

Ep [u (g)] +
R (p||q)
λq

]
where u : X → R is a nonconstant affine function, Q⊆∆ (S) is finite, nonempty, with

q
({
ω, ρq

})
= ρq (ω) ∀q ∈ Q,∀ω ∈ Ω,
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for some ρq ∈ ∆ (Ω), µ ∈ ∆ (Q), and (λq)q∈Q ∈ RQ
+. Then % satisfies Uniform Misspeci-

fication Concern if and only if there exists λ∗ with λq = λ∗ for all q ∈ suppµ.

Proof. (If) Let ρ, ρ′ ∈ ∆ (Ω), f, g ∈ F , and x ∈ X be such that Ω×{ρ} and Ω×{ρ′} are

nonnull,

ρ ({ω : f (ω, ρ) = y}) = ρ′ ({ω : g (ω, ρ′) = y}) ∀y ∈ X, (30)

and f %Ω×{ρ} x. Since Ω×{ρ} and Ω×{ρ′} are nonnull, by part 2 of Lemma 13 there exist

q, q′ ∈ Q with µ ({q}) > 0, µ ({q′}) > 0, ρq = ρ, and ρq′ = ρ′. Let φ (c) = − exp (−λ∗c)
for all c ∈ u (X) and ξ ∈ ∆ (X) be the finite support probability measure such that for

all y ∈ X, ξ (y) = q
({(

ω, ρq
)

: f
(
ω, ρq

)
= y
})

, then
∫

Ω
φ (u (f))dq =

∫
X
φ (u(y))dξ (y).

Moreover, equation (30) implies
∫

Ω
φ (u (g))dq′ =

∫
X
φ (u(y))dξ (y). Therefore, by Lemma

13 both f %Ω×{ρ} x and g %Ω×{ρ′} x mean that
∫
X
φ (u(y))dξ (y) ≥ φ (u (x)) proving that

% satisfies Uniform Misspecification Concern.

(Only if) Suppose by way of contradiction that there exist q, q′ ⊆ Q and k ∈ R++ with

µ ({q}) > 0, µ ({q′}) > 0, and

λq > k > λq′ . (31)

Since the state space is adequate there exist Wq ⊆ ∆ (Ω) ,Wq′ ⊆ ∆ (Ω) and c ∈ (0, 1)

with ρq (Wq) = ρq′ (Wq′) = c. Moreover, q
(
Wq ×

{
ρq
})

= c = q′
(
Wq′ ×

{
ρq′
})

and

q
(
Wq′ ×

{
ρq′
})

= 0 = q′
(
Wq ×

{
ρq
})

. Pick z, y ∈ X with z � y. We have that

ρq
({
ω : z

((
Wq ×

{
ρq
})
∪
(
Wq′ ×

{
ρq′
}))

y
(
ω, ρq

)
= x

})
= ρq′

({
ω : z

((
Wq ×

{
ρq
})
∪
(
Wq′ ×

{
ρq′
}))

y
(
ω, ρq′

)
= x

})
for all x ∈ X. By the convexity of X and Lemma 13 there exists x̂ ∈ X with z � x̂ � y and

z
((
Wq ×

{
ρq
})
∪
(
Wq′ ×

{
ρq′
}))

y ∼ρq′ x̂. But by equation (31) and Lemma 13 we have

x̂ �ρq z
((
Wq ×

{
ρq
})
∪
(
Wq′ ×

{
ρq′
}))

y a violation of Uniform Misspecification Concern.

�

Proof of Theorem 3. (Only if) That % satisfies Weak Order, Weak Certainty In-

dependence, Continuity, Monotonicity, Uncertainty Aversion, Nondegeneracy, and Weak

Monotone Continuity follows from Lemma 10.

Let ρ ∈ ∆ (Ω), W ⊆ Ω, f, g, h, h′ ∈ F , and fWh %ρ gWh. If Ω × {ρ} is null then

we trivially have fWh′ %ρ gWh′. Therefore, suppose Ω × {ρ} is nonnull. By Lemma

13, and since q 7→ ρq is injective, there exists q̄ ∈ ∆ (S) with ρq̄ = ρ, µ ({q̄}) > 0, and

minp∈∆(S)

∫
S
u (fWh)dp+ 1

λ
R (p||q̄) ≥ minp∈∆(S)

∫
S
u (gWh)dp+ 1

λ
R (p||q̄). By Proposition
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1.4.2 in Dupuis and Ellis (2011) this is equivalent to
∫
S
φ (u (fWh))dq̄ ≥

∫
S
φ (u (gWh))dq̄

with φ (·) = − exp (−λ (·)). This is also equivalent to∫
W×∆(Ω)

φ (u (f)) dq̄+

∫
(Ω\W )×∆(Ω)

φ (u (h)) dq̄ ≥
∫
W×∆(Ω)

φ (u (g)) dq̄+

∫
(Ω\W )×∆(Ω)

φ (u (h)) dq̄

or
∫
W×∆(Ω)

φ (u (f))dq̄ ≥
∫
W×∆(Ω)

φ (u (g))dq̄. But then, by reversing all the steps with

h′ in place of h we get fWh′ %ρ gWh′ and therefore % satisfies Intramodel Sure-Thing

Principle.

Moreover, % satisfies Uniform Misspecification Concern by Lemma 14. That there is

a finite set B ⊆ ∆ (Ω) such that Ω × (∆ (Ω) \ B) is null immediately follows from the

representation and part 2 of Lemma 13. Let Ω × B ∈ Σs and f, g, h, h′ ∈ F . If Ω × B is

null, we clearly have that Ω×B ∈ Σst. Suppose Ω×B is nonnull, then

f (Ω×B)h % g (Ω×B)h

⇐⇒∫
{q∈Q:ρq∈B}

min
p∈∆(S)

Ep [u (f)] +
R (p||q)
λq

dµ (q) ≥
∫
{q∈Q:ρq∈B}

min
p∈∆(S)

Ep [u (g)] +
R (p||q)
λq

dµ (q)

⇐⇒

f (Ω×B)h′ % g (Ω×B)h′

where the two equivalences follow by Lemma 13. This proves that Ω × B ∈ Σst. Since

B was chosen to be an arbitrary measurable subset of ∆ (Ω), Σs ⊆ Σst, and Structured

Savage P2 holds.

That % satisfies Structured Savage P4 and Uncertainty Neutrality over Models imme-

diately follows from Lemma 13 and the representation.

(If) By Structured Savage’s P2, Σs ⊆ Σst. Suppose E ∈ Σs is nonnull, and let x, x′ ∈ X
with x � x′. Then there exist f, g, h ∈ F such that fEh � gEh. Since f and g are simple

acts, they assume finitely many values, and by Weak Order, there exist x̄, x ∈ X with

x̄ % f (s) , g (s) % x, ∀s ∈ E.

Since E ∈ Σs ⊆ Σst, fEx̄ � gEx̄. By the Monotonicity and Weak Order parts of the

Variational Axiom, x∅x̄ = x̄Ex̄ % fEx̄ � gEx̄ % xEx̄. Therefore, by Structured Savage

P4, x = x′∅x � x′Ex. Since E ∈ Σs and x, x′ ∈ X were arbitrarily chosen, each nonnull

E ∈ Σs is also strongly nonnull.
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Next, fix a finite B ⊆ ∆ (Ω), such that for each ρ ∈ B, Ω×{ρ} is nonnull, and such that

S \{Ω×B} is null. Such a set exists by the Structured Savage axiom, and the cardinality

of B is at least 3 by assumption of the theorem. For every ρ ∈ B, by the previous part of

the proof Ω× {ρ} is strongly nonnull and so by Lemma 12 we have

f %ρ g ⇐⇒ min
p∈∆(S)

∫
S

û (f) dp+
1

λρ
R (p||qρ) (32)

for some qρ ∈ ∆ (S) with support contained in Ω× {ρ} and a nonconstant affine û.

Claim 6. We have qρ = ρ× δρ.

Proof of the Claim. Since the space is adequate, there exists vρ ∈ (0, 1) such that ρ (ω) ∈
{0, vρ}. In particular, by applying Uniform Misspecification Concern with ρ = ρ′, we

obtain that qρ (ω, ρ) = vρ ⇐⇒ ρ (ω) = vρ, and the desired conclusion follows. �

Let

Q = {qρ ∈ ∆(S) : ρ ∈ B}. (33)

Identify each act f ∈ F with the real-valued function f̂ : Q→ û (X) with

f̂ (qρ) = min
p∈∆(S)

∫
S

û (f) dp+
1

λρ
R (p||qρ) ∀ρ ∈ B

where λρ is given by equation (32).

We now show that

f̂ = ĝ =⇒ f ∼ g ∀f, g ∈ F .

We partition S in
{
{Ω× ρ}ρ∈B , S \ {Ω×B}

}
and establish the claim by induction on

the number of cells of the partition on which f and g are not identical. Let f and g be

such that f̂ = ĝ and they differ on one element of the partition, say E. Then f = fEg ∼ g

by definition of ∼E and Structured Savage P2, so f ∼ g. For the inductive step, suppose

that whenever f and g are such that f̂ = ĝ and they differ at most on n ∈ N elements of

the partition, we have f ∼ g. Let f and g be such that f̂ = ĝ and they differ on n+ 1 ∈ N
elements of the partition. Let E be an element of the partition on which they differ. Then,

fEg and g differ on one element of the partition, and fEg and f differ on n elements of

the partition. Therefore, by the inductive hypothesis, we have g ∼ fEg ∼ f .

Moreover, it is immediate to see that û (X)Q ⊆
{
f̂ : f ∈ F

}
. Therefore, with a slight

abuse of notation we let % denote also the binary relation on û (X)Q defined by f̂ % ĝ if

and only if f % g.
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Claim 7. For every v, v′, w, z ∈ û (X), ρ ∈ B, and γ ∈ (0, 1)

vρw % (γv + (1− γ) v′)ρ z ⇐⇒ ((1− γ) v + γv′)ρw % v′ρz.

Proof of the Claim. If v = v′ the equivalence is obvious. Suppose without loss of generality

that v′ > v.

1. Let vρw % (γv + (1− γ) v′)ρ z. This implies that w > z. Then, by Continuity,

Structured Savage, and the fact that Ω × {ρ} is strongly nonnull there exists α ∈ [0, 1]

with

vρ (αw + (1− α) z) ∼ (γv + (1− γ) v′)ρ z.

By Uncertainty Neutrality over Models, this implies that ((1− γ) v + γv′)ρ (αw + (1− α) z) ∼
v′ρz. By Monotonicity, this implies that ((1− γ) v + γv′)ρw % v′ρz.

2. Let ((1− γ) v + γv′)ρw % v′ρz. This implies that w > z. Then, by Continuity,

Structured Savage, and the fact that Ω × {ρ} is strongly nonnull there exists α ∈ [0, 1]

with ((1− γ) v + γv′)ρ (αw + (1− α) z) ∼ v′ρz. By Uncertainty Neutrality over Models,

this implies that vρ (αw + (1− α) z) ∼ (γv + (1− γ) v′)ρ z. By Monotonicity, this implies

that vρw % (γv + (1− γ) v′)ρ z. �

By the previous claim, Continuity, Structured Savage, and Theorem VII.3.5 in Wakker

(2013)35 there exists µ ∈ ∆ (Q) such that for all ψ, ψ′ ∈ û (X)Q

ψ % ψ′ ⇐⇒
∑
q∈Q

ψ (q)µ (q) ≥
∑
q∈Q

ψ′ (q)µ (q) .

Moreover, by Observation VII.3.5 in Wakker (2013), µ is uniquely identified.

35Formally, one needs to apply Theorem VII.3.5 in Wakker (2013) twice. The first application gives

ψ % ψ′ ⇐⇒
∑
q∈Q

Uq (ψ (q)) ≥
∑
q∈Q

Uq
(
ψ′ (q)

)
for some concave and increasing functions (Uq : û (X)→ R)q∈Q. The second application is to the pref-

erence %− defined over (û (X))
Q

by ψ %− ψ′ if and only if ψ′ % ψ for all ψ,ψ′ ∈ (û (X))
Q

. It gives that

for all ψ,ψ′ ∈ û (X)
Q

ψ % ψ′ ⇐⇒ ψ′ %− ψ ⇐⇒
∑
q∈Q

U−q
(
ψ′ (q)

)
≥
∑
q∈Q

U−q (ψ (q)) ⇐⇒
∑
q∈Q
−U−q (ψ (q)) ≥

∑
q∈Q
−U−q

(
ψ′ (q)

)
for some decreasing and concave functions

(
U−q : û (X)→ R

)
q∈Q. But since −U−q (·) is an increasing and

convex function, then by Observation VII.3.5 in Wakker (2013) ψ % ψ′ if and only if
∑
q∈Q U

L
q (ψ (q)) ≥∑

q∈Q U
L
q

(
ψ′ (q)

)
for some increasing and linear functions

(
ULq : û (X)→ R

)
q∈Q, and the result follows

by the Riesz Representation theorem.
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But then, by definition of %, we obtain that for all f, g ∈ F

f % g ⇐⇒ Eµ
[

min
p∈∆(S)

Ep [u (f)] +
R (p||qρ)

λρ

]
≥ Eµ

[
min
p∈∆(S)

Ep [u (g)] +
R (p||qρ)

λρ

]
.

Moreover, by Lemma 14 Uniform Misspecification Concern implies that λ = λρ for all

ρ ∈ B, proving the result. �

Proof of Corollary 2. It immediately follows from Lemma 10 and Proposition 8 in

Maccheroni et al. (2006a). �

Proposition 7. Suppose: (i) For every h ∈ H, %h satisfies the axioms of Theorem

3 and (ii)
(
%h
)
h∈H satisfies Constant Preference Invariance and Dynamic Consistency

over Models. Then for every h ∈ H, %h admits an average robust control representation

(u,Q, µ (·|h) , λh) where

q
({
ω, ρq

})
= ρq (ω) ∀q ∈ Q,∀ω ∈ Ω.

Proof. That each %h admits a average robust control representation (uh, Qh, µh, λh) where

q
({
ω, ρq

})
= ρq (ω) for all q ∈ Qh and ω ∈ Ω for some ρq ∈ ∆ (Ω) follows from (the proof

of) Theorem 3. That uh = u for some constant affine u follows from Constant Preference

Invariance.

We now prove that Dynamic Consistency over Models implies µ (·|ht) = µht for all

ht = (ωi)
t
i=1 ∈ Ht such that

∏t
i=1 ρq (ωi) > 0 for some q ∈ Q. By definition, we have

µht = µ for the empty history. Let f and g be measurable with respect to Σs. Then we

can suppress the dependence on ω in f (ω, ρ) and g (ω, ρ) and we have that f %ht g if and

only if fht %∅ ght .

But by construction, the latter is equivalent to Eµ
[
γf(ρq)

∏t
i=1 ρq (ωi) (u (z̄)− u (z))

]
≥

Eµ
[
γg(ρq)

∏t
i=1 ρq (ωi) (u (z̄)− u (z))

]
. Dividing both sides by the strictly positive ex-ante

probability of history ht, we obtain

Eµ
[
γf(ρq)

∏t
i=1 ρq (ωi) (u (z̄)− u (z))

]
∫

∆(∆(S))

∏t
i=1 ρq (ωi) dµ (q)

≥
Eµ
[
γg(ρq)

∏t
i=1 ρq (ωi) (u (z̄)− u (z))

]
∫

∆(∆(S))

∏t
i=1 ρq (ωi) dµ (q)

.
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But then, by the formula for Bayesian updating, this is equivalent to∫
∆(∆(S))

γf(ρq) (u (z̄)− u (z)) dµ (q|ht) ≥
∫

∆(∆(S))

γg(ρq) (u (z̄)− u (z)) dµ (q|ht)

that is
∫

∆(∆(S))
u
(
f
(
ρq
))

dµ (q|ht) ≥
∫

∆(∆(S))
u
(
g
(
ρq
))

dµ (q|ht). Stated differently, %ht

admits an SEU representation of the acts measurable with respect to Σs with Bernoulli

utility u and probability measure µ (·|ht). Since for the histories ht = (ωi)
t
i=1 ∈ Ht where∏t

i=1 ρq (ωi) = 0 for all q ∈ Q Bayesian updating does not impose any restriction, the

result follows. �

Proof of Proposition 4. By Proposition 7, %h admits an average robust control rep-

resentation (u,Q, µ (·|h) , λh) for every h ∈ H. Observe that since the outcome frequency

is constant along the sequence (htn)n∈N, by Lemma 2, LLR(htn ,Q)
tn

= 1/c for some c ∈ R++

and for all n ∈ N. Suppose by way of contradiction that

l : = lim inf
n→∞

cλhtn = lim inf
n→∞

λhtn
LLR(htn ,Q)

tn

< lim sup
n→∞

λhtn
LLR(htn ,Q)

tn

= lim sup
n→∞

cλhtn =: L.

Let q̄ ∈ Q be such that Ω×
{
ρq̄
}

is nonnull and so that q̄ ∈ minq∈QR
(
pht1 ||q

)
. Since

Ω ×
{
ρq̄
}

contains at least three nonnull events, by Lemma 13, there is E ⊆ W and

r ∈ (0, 1) with ρq̄ (E) = r. Let x, z ∈ X, γ∗, γ∗ ∈ (0, 1), and λ∗, λ∗ ∈
(
l
c
, L
c

)
be such that

x �∅ z, λ∗ > λ∗,

−µ (q̄) log (r exp (−λ∗ (u (z))) + (1− r) exp (−λ∗ (u (x))))

µ (minq∈QR (pht1 ||q))λ∗
+

(
1− µ (q̄)

µ (minq∈QR (pht1 ||q))

)
u (z)

= u (γ∗x+ (1− γ∗) z) ,

and

−µ (q̄) log (r exp (−λ∗ (u (z))) + (1− r) exp (−λ∗ (u (x))))

µ (minq∈QR (pht1 ||q))λ∗
+

(
1− µ (q̄)

µ (minq∈QR (pht1 ||q))

)
u (z)

= u (γ∗x+ (1− γ∗) z) ,

where the existence of such γ∗, γ
∗ is guaranteed by u being affine. Moreover, it is easy to

see that γ∗ > γ∗. Consider a subsequence (nm)m∈N such that

lim
m→∞

cλhtnm = l.
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Moreover, let M ∈ N be such that for all m ≥M

λhtnm <
λ∗ + l

c

2
.

Similarly, let (nm̃)m̃∈N such that

lim
m̃→∞

cλhtnm̃ = L.

Moreover, let M̃ ∈ N be such that for all m̃ ≥ M̃

λhtnm̃ >
λ∗ + L

c

2
.

With this, by Proposition 7 and Proposition 1.4.2 in Dupuis and Ellis (2011) we have

that for all m ≥M and m̃ ≥ M̃

γ
x(E×{ρq̄})z
%
htnm

> γ∗ and γ
x(E×{ρq̄})z
%
htnm̃

< γ∗.

But this in turn implies that %htnm is never
(
x, y,

(
E ×

{
ρq̄
})
, (γ∗ − γ∗)

)
-similar to %htnm̃

for

min {m, m̃} ≥ max
{
M, M̃

}
,

a contradiction. This shows that either λhtn converges or it diverges to plus infinity. The

last part of the statement immediately by taking E in the first part of the proof to be

equal to the one whose existence is asserted in the statement, and by the construction of

γ∗ and γ∗ above. �

Proof of Proposition 5. By Proposition 7 we know that each %h admits an average

robust control representation (u,Q, µ (·|h) , λh). Without loss of generality suppose that

µ ({q} |∅) > 0 for all q ∈ Q. Let (htn)n∈N ∈ ×n∈NΩtn be a sequence of histories with em-

pirical frequency ρ̂ /∈
{
ρq : q ∈ Q

}
. Observe that since the outcome frequency is constant

along the sequence (htn)n∈N, by Lemma 2, LLR(htn ,Q)
tn

= c for some c ∈ R++ and for all

n ∈ N. Suppose by way of contradiction that

L : = lim sup
n→∞

LLR (htn , Q)

λhtn tn
> 0. (34)

Since the state space is adequate there exist k ∈ (0, 1) and (Wq)q∈Q ∈
(
2Ω
)Q

such that
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ρq (Wq) = k for all q ∈ Q. Define E = ∪q∈Q
(
Wq ×

{
ρq
})

. Let x, y ∈ X with x �∅ y and

choose also z ∈ X such that x �∅ z �∅ y and

− exp
(
−2

c

L
u (z)

)
= −k exp

(
−2

c

L
u (x)

)
− (1− k) exp

(
−2

c

L
u (y)

)
where the existence of such z is guaranteed by u being affine and X being convex. Let

f ∈ F be defined as f = xEy. But then equation (34) implies that for infinitely many

n ∈ N
f �htnρ z

a contradiction with Asymptotic Concern for every ρ ∈
{
ρq : q ∈ Q

}
. �

Proof of Proposition 6. By Proposition 7 we know that each %h admits an average

robust control representation (u,Q, µ (·|h) , λh) where

q
({
ω, ρq

})
= ρq (ω) ∀q ∈ Q,∀ω ∈ Ω,

for some ρq ∈ ∆ (Ω). Without loss of generality suppose that µ ({q} |∅) > 0 for all q ∈ Q.

Consider a sequence of histories (htn)n∈N with outcome frequency constant and not in{
ρq : q ∈ Q

}
. Observe that since the outcome frequency is constant along the sequence

(htn)n∈N, by Lemma 2, LLR(htn ,Q)
tn

= c for some c ∈ R++ and for all n ∈ N. Suppose by

way of contradiction that

L : = lim inf
n→∞

LLR (htn , Q)

λhtn tn
∈ R. (35)

As the state space is adequate there exist k ∈ (0, 1) and (Wq)q∈Q ∈
(
2Ω
)Q

such that for

every q ∈ Q, ρq (Wq) = k. Let x, z ∈ X and γ ∈ (0, 1) be such that x �∅ z and

− ln

(
k exp

(
−cu (x)

2 max {1, L}

)
+ (1− k) exp

(
−cu (z)

2 max {1, L}

))
=
c (u (γx+ (1− γ) z))

2 max {1, L}
,

where the existence of such γ is guaranteed by u being affine, and γ < k. Define E =

∪q∈Q
(
Wq ×

{
ρq
})

. Consider a subsequence (nm)m∈N such that

lim
m→∞

LLR
(
htnm , Q

)
λhtnm tnm

= L.
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Moreover, let M be such that for all m ≥M

λhtnm /c >
1

2 max {1, L}
.

With this, by Proposition 7 if we let ≥ be the subjective utility preference with utility

index u and belief
∫
Q
pdµ (q), we have that for all m ≥M

γxEz
%
htnm

< γ and γxEz
≥htnm

= k.

By Corollary 2, this contradicts Asymptotic Leniency as then %htnm and ≥htnm are not

(x, y, E, k − γ)-similar for m ≥M . �

A.3 Computations supporting

A.3.1 Example 2

Observe that, compared Esponda and Pouzo (2016), we are adding (arbitrarily small) noise

lε1 to the true tax schedule, fixing a problem in their original example. Indeed, without

this modification, the relative entropy between the true and conjectured distribution is

infinity for every model. We have

R
(
p∗a||qθa

)
= const. +

∫
R

∫
R

exp
(

(t−τ(a+ωa))2

−2l2

)
−l
√

2π
log

exp

(
( t
a+ωa

−θ)
2

−2

)
√

2π

 dtdp∗a (ωa)

= const. +

∫
R

∫
R

1
l
√

2π
exp

(
−ε21
2l2

)(
τ(a+ωa)+ε1

a+ωa
− θ
)2

2
dε1dp∗a (ωa)

= const. +

∫
R

∫
R

(
1

l
√

2π
exp

(
−ε21
2l2

)(
θ2 − 2(τ(a+ωa)+(lε1)2)θ

a+ωa

))
2

dε1dp∗a (ωa)

taking the FOC, we get

θ = Ep∗a

[
τ (a+ ωa) + l2

a+ ωa

]
and so Q (a) ∼

{
qEp∗a [

τ(a+ωa)
a+ωa

]
}

for small l. The condition for not switching from an action

a to an action a′ with a ≥ a′ in a Berk-Nash equilibrium in which the belief is concentrated
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on θ is

Eωa,ε2,a [(a− a′) (1− θ − ε2)] = Eωa,ε2,a [(a+ ωa) (1− θ − ε2)]− Eωa′ ,ε2,a [(a′ + ωa′) (1− θ − ε2)]

≥ c (a)− c (a′) .

By Proposition 1.4.2 in Dupuis and Ellis (2011), the condition for not switching from

an action a to an action a′ with a ≥ a′ in a k-robust equilibrium in which the belief is

concentrated on θ is

−k
R (p∗a||qθa)

logEωa,ωa′ ,ε2,a

[
exp

(
R
(
p∗a||qθa

)
[(a′ + ωa′) (1− θ − ε2,a)− (a+ ωa) (1− θ − ε2,a)]

k

)]

=
−k

R (p∗a||qθa)
log

 Eωa,ε2,a
[
exp

(
−R(p∗a||qθa)(a+ωa)(1−θ−ε2,a)

k

)]
Eωa′ ,ε2,a

[
exp

(
−R(p∗a||qθa)(a′+ωa)(1−θ−ε2,a)

k

)]


=
−k

R (p∗a||qθa)
logEωa,ε2,a

[
exp

(
−
R
(
p∗a||qθa

)
(a+ ωa) (1− θ − ε2,a)

k

)]

+
k

R (p∗a||qθa)
logEωa′ ,ε2,a

[
exp

(
−
R
(
p∗a||qθa

)
(a′ + ωa′) (1− θ − ε2,a)

k

)]
≥ c (a)− c (a′) .

Since Eωa,ε2,a [| (a+ ωa) (1− θ − ε2,a) |] and Eωa′ ,ε2,a [| (a′ + ωa′) (1− θ − ε2,a) |] are finite,

by Jensen inequality (see 10.2.6 in Dudley, 2018 for the version that applies here) the LHS

is lower in the second case, and we obtain the desired conclusion.

A.3.2 Example 3

The condition for not switching from action 0 to an action a with a ≥ 0 in a Berk-Nash

equilibrium is

p∗a (s ≤ a)
(
Ep∗a (v)− a

)
≤ 0.

By Proposition 1.4.2 in Dupuis and Ellis (2011), the condition for not switching from

action 0 to an action a with a ≥ 0 in a k-robust equilibrium is

− k

R (p∗a||qa)
log

∫
R

∫
R

exp

(
−R (p∗a||qa)

k
[v − a] I[0,a] (s)

)
dp∗a (s) dp∗a (v) ≤ 0.
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Since Ep∗a (|v|) <∞, by Jensen inequality (see 10.2.6 in Dudley, 2018 for the version that

applies here) the LHS is lower in the second case, and we obtain the desired conclusion.

A.3.3 Example of Dynamic Inconsistency

Example 4. To provide a simple illustration of dynamic inconsistency, we consider the

two-period truncated problem. An urn contains black (b) or green (g) balls. At each time

t, the DM is asked to bet 1 dollar on the color of the ball drawn from the urn or to opt

out (o) and observe the drawn with a payoff of 0.6. That is, u (a, y) = I{y} (a) if a ∈ {b, g}
and u (o, y) = 0.6. Suppose that at period 0, the level of concern for misspecification is

Λ (h0) = 0 and that the agent considers two models, q, q′, that assign respectively probability

0.7 and 0.3 to drawing a black ball, independently of the agent action. The prior µ assigns

equal probability to these two models.

To illustrate the possibility of dynamic inconsistencies of a forward-looking agent, we

introduce a discount factor equal to δ = 0.9 and suppose that Λ ((0, b)) = 2. In this case,

at time 0, the decision maker would like to commit to the following plan: opt out in the

first period and then, in the second period, bet on the color of the ball drawn in the first

period. However, the increase in concern for misspecification created by the observation of

the black drawn makes this plan not feasible: at history (0, b), the agent will opt out again.
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