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Abstract

We solve an open problem in the literature that studies investment incentives
provided by the competition in matching markets. We approximate continuum
economies as in Peters and Siow’s (2002) competitive model of competing pre-
marital investments, with heterogeneous agents and frictionless matching under
non-transferable utility, by pre-match investment games with finitely many agents
and i.i.d. types. Our main result is a precise asymptotic characterization of side-
symmetric, strictly monotone Bayes-Nash equilibrium (SSMBNE) behavior in
large finite markets converging to an unbalanced limit economy. We show that
SSMBNE investments never converge to the efficient investments predicted by
competitive (hedonic) equilibrium. There is always inefficient overinvestment on
both sides of the market. Our analysis relies on a completely novel way of using
results about approximate distributions of order statistics that allows us to charac-
terize equilibrium behavior asymptotically even though the limit strategies feature
a discontinuity that is determined by a complex, two-sided interaction.
Keywords: Assortative matching, investment, large games, large contests.

1 Introduction
In many two-sided matching markets (labor, marriage, or education), participants

on both sides make investments that are valued by their potential partners before enter-
ing. If the agents believed the outcome they will receive in the matching market to be
independent of their ex ante, or pre-match, investments, the latter would suffer from a
“hold-up” problem: ignoring the benefits created by their investment for their (future)
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partner, the agents would underinvest. Of course, competition provides additional in-
centives. Agents’ market outcomes depend on their investments, and agents who make
investments that are more valuable for their potential partners will generally get higher
quality matches and earn higher returns.

An important question is then whether the anticipated competition for partners can
provide efficient investment incentives for all market participants, at least under the
ideal conditions of a large and frictionless matching market and a deterministic invest-

ment technology, i.e., a deterministic relationship between an agent’s choice of invest-
ment and his or her match-relevant characteristics. According to competitive models
of investment and one-to-one matching the answer is yes. For a two-sided continuum
economy with agents who must first make investments and then form matches in a fric-
tionless market, it is always possible to define an appropriate variant of hedonic pricing

equilibrium (Rosen 1974), and to support any pairwise efficient allocation as an equi-
librium allocation.1 Remarkably, this is true regardless of whether utility is perfectly
transferable (Cole, Mailath and Postlewaite 2001a, Dizdar 2018), imperfectly transfer-
able (Nöldeke and Samuelson 2015) or non-transferable (Peters and Siow 2002) within
pairs (after all agents have invested and entered the market). The other main compet-
itive equilibrium concept that has been studied in the literature, ex post (contracting)

equilibrium, allows for inefficient equilibria featuring coordination failures in invest-
ment activity, but efficient allocations can always be supported by an equilibrium (Cole,
Mailath and Postlewaite 2001a, Nöldeke and Samuelson 2015, Dizdar 2018).

It has been noted, however, that these results rely heavily on assumptions about
returns for off-equilibrium investments, and that there is a multitude of possible equilib-
rium concepts for the continuum economies, featuring different assumptions about such
off-equilibrium returns. Relatedly, Peters (2007, 2011) and Felli and Roberts (2016)
have identified cases where Nash or Bayes-Nash equilibrium investments in pre-match
investment games with finitely many participants do not converge to efficient invest-
ments as the market grows large. Our understanding of the differences between non-
cooperative and competitive models of pre-match investment has remained very lim-
ited, however, and Nöldeke and Samuelson (2015) have recently concluded that making
progress on this issue remains an important challenge for further work.

We make a major step in this direction, by resolving one of the main open ques-
tions in the literature. Motivated by the work of Peters (2007, 2011) and similar ap-
proaches in the literature on large double auctions (e.g., Rustichini, Satterthwaite and

1Pairwise efficiency is a refinement of Pareto efficiency that incorporates an “ex ante stability” re-
quirement. It is satisfied by any allocation that may result when agents can simultaneously negotiate
investments and matches in a frictionless market (see Nöldeke and Samuelson 2015).
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Williams 1994) and large contests (Olszewski and Siegel 2016), we approximate a con-
tinuum economy as in Peters and Siow (2002), with ex ante heterogeneous agents,
non-transferable utility (NTU) and positive assortative stable matching, by economies
with finitely many agents whose types are drawn i.i.d. from two commonly known
distributions. Following the most common terminology in the one-to-one matching
literature, we refer to the agents as men and women. In our model, an agent’s invest-
ment benefits his or her partner, these external benefits are increasing in the level of
the investment, and higher types value increases in their partner’s investment more than
lower types.2 We study the side-symmetric, strictly monotone Bayes-Nash equilibria3

(SSMBNE) of the pre-match investment game where all men and women (who know
their type and form beliefs about others’ types according to the common prior) simulta-
neously choose investments and are then matched positive assortatively based on their
investments, which corresponds to the stable outcome of the “post-investment” NTU
matching market. Thus, as in the competitive equilibria for the continuum economy,
the equilibrium matching in any SSMBNE is positive assortative, both with respect to
agents’ investments and with respect to their types.

Our objective is to characterize and understand SSMBNE behavior when the num-
bers of men (n) and women (kn) grow large and the ratio kn

n converges to a constant
1− r ∈ (0, 1). In this case, the empirical type distributions for the finite economies con-
verge to the type distribution of a continuum economy that is not exactly balanced (the
total measures of men and women are not exactly equal, as in Peters and Siow 2002).
Without loss of generality, we assume that men are on the long side of the market.

Our main results show that if agents prefer a match with a partner who made only
his or her autarchy investment (the optimal investment for the case that he or she re-
mains unmatched) to staying unmatched,4 SSMBNE allocations can never converge to
the efficient allocation. There is always an overinvestment problem in large markets,
regardless of any additional assumptions on preferences. In the finite economies, there
are always some agents on the long side who face substantial uncertainty in equilibrium
about whether they will be matched. It turns out that even though the measure of such
types shrinks to zero as the market grows, their incentives to invest more aggressively
to avoid “missing out” always have repercussions on both sides of the market that lead
to significant overinvestment by a large number of agents.

2Our main results do not hinge on how exactly a strict single-crossing condition is build into the
model. Analogous results apply if higher types have lower marginal costs of investment, as in Peters and
Siow’s (2002) original model, see Section 2.1 and Remark 4.

3All men (women) use the same, strictly increasing strategy.
4This assumption, made in Peters and Siow (2002) and most other models of pre-match investment

competition, ensures “full matching,” i.e., all agents on the short side get matched in equilibrium.
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We now describe the problem and our results in a little more detail. Let w denote the
lowest type of woman, and let mr denote the marginal type of man (Peters 2011). This
is the type who is matched to w in the assortative matching for the limit (continuum)
economy. The limit economy’s unique pairwise efficient allocation has the following
features. First, types below mr choose autarchy investments (anticipating that they will
stay unmatched). Secondly, the types mr and w make investments that are Pareto effi-
cient for their relationship, and such that the type mr is indifferent between this outcome
and making his autarchy investment and staying unmatched. In particular, these Pareto
efficient investments for the pair (mr,w) are strictly higher than the agents’ autarchy in-
vestments, and also strictly higher than the “bilateral Nash” investments that the agents
would make non-cooperatively (ignoring the external benefits for the partner) if they
took for granted that they will be matched to each other. Thirdly, investments then in-
crease continuously and are efficient for all pairs of higher, assortatively matched types.
Hedonic equilibrium supports this allocation by imposing particular assumptions about
the returns that agents expect to get for off-equilibrium investments, i.e., the investments
between the autarchy investment and the efficient investment for the type mr and below
the efficient investment for the type w, respectively, that deter deviations to these (less
costly) investments (see Section 2.2).

SSMBNE strategies are continuous but, like hedonic equilibrium investments, limits
of convergent subsequences of SSMBNE strategies must be discontinuous at mr, and
bounded away from the type w’s autarchy investment for all types above w. Indeed, it
is not difficult to see that SSMBNE strategies in the large finite markets must increase
rapidly, with maximal slopes of order

√
n, over intervals of types close to mr (who face

“non-negligible” uncertainty about whether they will get a partner) and w.
The paper’s central result, Theorem 2, provides an asymptotic characterization of

the equilibrium behavior of such types close to the marginal type on the long side and
close to the bottom on the short side, who face uncertain returns for their investment
even in very large markets. Shifting and re-scaling men’s type space so that men’s re-

scaled strategies (the strategies as functions of the re-scaled types, which correspond to
original types close to mr) satisfy a uniform Lipschitz bound, we show that any function
that is the (locally uniform) limit of a subsequence of re-scaled SSMBNE strategies
solves a particular fixed point (nonlinear integral) equation.

Obtaining this result requires a major methodological innovation. We introduce a
novel way of using results about approximate distributions of order statistics to ap-
proximate monotone BNE of a discontinuous game for which the limits of equilibrium
strategies are discontinuous, and for which the main object of interest, the size of the
discontinuity, is determined by a complex, two-sided interaction. In particular, we sys-
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tematically exploit that, due to the different concentration properties of central, inter-
mediate and extreme order statistics, different types of agents face different amounts
of uncertainty about their equilibrium outcome. These techniques are new to the liter-
ature on large Bayesian games, and should be useful for studying monotone BNE in
other games where (as in this paper) agents’ actions affect the payoffs of others directly,
rather than “only” through positional externalities and/or effects on a market clearing
price (as in contests with exogenously given prizes, or in double auctions).

Combining Theorem 2 with certain results from the theory of Wiener-Hopf equa-
tions, we then show that SSMBNE allocations can never converge to the efficient allo-
cation for the limit economy. For any allocation that is a limit of SSMBNE allocations,
types “just above” mr and w, and consequently also positive measures of types above
mr and w (potentially all), overinvest significantly (Theorem 3 and Theorem 4).

Thus, at least for matching under NTU, where the only possible “compensation” for
a higher investment is a higher quality match, the fact that some agents compete not only
to get a partner with a higher investment but also to get any match at all (combined with
the intense competition in large markets) implies equilibrium behavior by these agents
and their likely partners that “forces” a large share of market participants to overinvest.

The rest of the paper proceeds as follows. Section 1.1 discusses related work on
pre-match investment competition and large contests. Section 2.1 presents the finite
economy model. Section 2.2 explains the problems surrounding the choice of equilib-
rium concept for the limit economy. Section 2.3 defines notation and basic mathemat-
ical concepts. Section 2.4 establishes SSMBNE existence. In Section 3.1 we state and
describe our main results about SSMBNE behavior in large markets (Theorems 2, 3
and 4). In particular, we provide an intuitive (but informal) explanation of the central
fixed-point characterization, Theorem 2. In Section 3.2, we then present the formal
results about approximate distributions of order statistics that we need for the rigorous
proof of Theorem 2 (Section 3.2.1) and provide an overview of this proof, explaining
its structure and the key ideas behind each main step in the argument (Section 3.2.2).
Section 4 concludes with a brief discussion of open questions. The proofs of all formal
results are given in the Appendix and the Online Appendix.

1.1 Related literature
By means of an ingenious argument, Peters (2007) showed for a model with homo-

geneous agents on each side and with assortative NTU matching (based on investments)
that (mixed-strategy Nash) equilibria in large, unbalanced markets must feature over-
investment if certain sufficient conditions on the shapes of agents’ indifference curves
are satisfied. Peters (2011) adapted this argument for Bayesian pre-match investment
games approximating a continuum economy with heterogeneous agents and heteroge-
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neous equilibrium investments as in Peters and Siow (2002), i.e., for a model akin to
the one studied in the present paper. However, understanding the equilibrium behavior
of the types whose interaction determines whether overinvestment occurs, and hence
what really causes the inefficiency (and whether the, rather strong, sufficient conditions
for overinvestment are also necessary) seemed very much out of reach. Our results
solve these open problems. They show that overinvestment is always an issue in un-
balanced markets with assortative, NTU matching (without any additional assumptions
about preferences), and they demonstrate precisely why this is the case. They also show
how returns for off-equilibrium investments would have to be defined for an equilibrium
concept for the limit model that is approximated by SSMBNE in large markets.

Cole, Mailath and Postlewaite (2001b) and Felli and Roberts (2016) studied mod-
els with finitely many buyers and sellers whose types (which determine investment
costs in their models) are commonly known when all agents simultaneously invest, and
with matching under transferable utility (TU). Their results show that full efficiency is
unattainable unless the efficient investments satisfy certain “overlap” conditions, which
happens only for non-generic instances of ex ante heterogeneity. Moreover, the (under-
investment) inefficiencies can remain significant even in large markets. In particular,
this happens if the numbers of buyers and sellers are not equal, as the overlap condition
is not even approximately satisfied in such cases. These complete information models
are arguably more interesting for small markets, however, as they have the feature that a
single agent’s decision to deviate from the efficient investment can have a large impact
on the expected utility of everybody else, regardless of the size of the market.

If women’s (men’s) investment strategies were exogenous in our model, the strate-
gic interaction among men (women) would be equivalent to a standard all-pay contest
with i.i.d. contestants and heterogeneous “prizes” (which correspond to matches with
the various partners, characterized by their investments, see Sections 2.1 and 2.4). Ol-
szewski and Siegel (2016) showed that the equilibrium outcomes of such all-pay con-
tests with many agents and many prizes are always nicely approximated by the outcome
of a unique tariffmechanism (for a single agent with a continuum types) that can be de-
rived in a straightforward way from the utility function and the limits of the type and
prize distributions.5 These elegant results for one-sided contests (with exogenous prize
distributions) cannot be applied to characterize equilibrium behavior in pre-match in-
vestment games with bilateral investments and external benefits, however. The reason
is of course that the “prizes” that agents compete for are determined endogenously here,
as a result of a complex interdependence between investment behavior on both sides of
the market: the fundamental difficulty of understanding the equilibrium outcomes of

5Their results allow for ex ante asymmetric agents, and for incomplete or complete information.
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large pre-match investments games is due to two-sided investment.6

Dizdar, Moldovanu and Szech (2019) studied a matching contest model with NTU
matching, similar to the one of the present paper, where investments also serve as sig-

nals about agents’ types. They focused on quantitative features of the feedback effect
caused by the external benefits of investment in small markets, and on environments
where investments/signals are partially wasteful. Most importantly, their techniques
cannot be used to study SSMBNE behavior in large markets when investments are pro-
ductive in the sense that hold-up would be an issue without competition. Thus, they do
not allow addressing the questions at the heart of our study, which pertain to whether
“competition can solve the hold-up problem,” and to the difficulties of providing foun-
dations for competitive models of pre-match investment.

Building on the tournament model of Lazear and Rosen (1981), Bhaskar and Hop-
kins (2016) analyzed a model where each agent’s observable quality depends on his
or her investment and on the realization of an idiosyncratic shock. The (NTU) sta-
ble matching is positive assortative with respect to agents’ qualities. Assuming that
the agents on each side are homogeneous prior to investing, they studied pure-strategy
equilibria of a continuum model with balanced populations that assumes that an agent
whose quality is below the support of the equilibrium distribution of qualities gets a
match with the lowest-ranked partner with probability 1/2 and stays unmatched other-
wise. They also proved that their equilibria can be obtained as limits of equilibria of a
finite model where the agents are uncertain about whether they are on the long side or
the short side of a slightly imbalanced market. Their central finding is also an overin-
vestment result, albeit one that is very different from the results of the present paper. As
all agents on either side make the same deterministic investment in equilibrium, agents
compete solely to get a partner with a higher realization of the exogenous shock (rather
than a partner with a higher investment). Bhaskar and Hopkins (2016) then showed that,
as an intriguing but elementary implication of the Cauchy-Schwarz inequality, agents
overinvest relative to any Pareto efficient levels (for the economy with shocks) unless
men’s shock distribution is an affine transformation of women’s shock distribution.7

They also provided an elegant analysis of how gender differences affect whether men
(women) overinvest relative to utilitarian efficient levels.

6Given a sequence of large one-sided contests with a discontinuous limit prize distribution, under-
standing the equilibrium behavior of types likely to receive “prizes close to a discontinuity” is also not
easy (Olszewski and Siegel (2016) left this as an open problem; our Theorem 2 implies a characteriza-
tion of such behavior in the case of i.i.d. types). However, because the discontinuity is exogenous, this
behavior does not affect the limit allocation (that can easily be derived from the continuum model).

7Another difference compared to our paper is that the pure-strategy equilibria studied in Bhaskar
and Hopkins (2016) exist only if the utility from staying unmatched is sufficiently low, and that the
equilibrium investments are then completely independent of the exact value of this utility.
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2 Model and preliminaries
2.1 The finite economy model

Consider a two-sided, one-to-one matching market. To work with a consistent set
of terms throughout, we refer to the agents as men and women. The numbers of men
(n) and women (k) satisfy 2 ≤ k < n. Thus, the matching market is not exactly bal-
anced, and men are on the long side. Each agent is characterized by a type. Types are
independently distributed according to two commonly known, absolutely continuous
cumulative distribution functions F (for men) and G (for women). The densities f = F′

and g = G′ are strictly positive and continuously differentiable on the measure supports
[m,m] and [w,w], respectively, where 0 < m < m < ∞ and 0 < w < w < ∞.

Prior to matching, all agents make investments. If a man with type m and in-
vestment bM ∈ R+ matches with a woman with type w and investment bW ∈ R+,
the man’s utility is UM(bM, bW ,m,w) = mvM(bW) − bM, and the woman’s utility is
UW(bW , bM,w,m) = wvW(bM) − bW , where the strictly increasing, non-negative func-
tions vM and vW satisfy Assumption 1 below. A man who chooses investment bM

and remains unmatched receives utility U∅M(bM,m) = −bM. Similarly, the utility of
an unmatched woman with investment bW is U∅W(bW ,w) = −bW . Consequently, agents’
autarchy investments (Nöldeke and Samuelson 2014), the investments b∅M(m) and b∅W(w)
maximizing U∅M(·,m) and U∅W(·,w), are equal to 0 for all types. We sometimes model an
unmatched agent as being matched to a dummy type ∅, with dummy investment b∅ < 0.

Assumption 1. The functions vM : R+ → R+ and vW : R+ → R+ are strictly increasing,

twice continuously differentiable and concave, and at least one of the two functions is

strictly concave. Moreover, the following conditions are satisfied:

vM(0) > 0, (1)

mv′M(0)wv′W(0) > 1, (2)

m
(
lim
b→∞

v′M(b)
)

w
(
lim
b→∞

v′W(b)
)
< 1. (3)

We will explain all these assumptions on preferences in detail throughout this sec-
tion, and clarify in particular how they parallel assumptions in Peters and Siow (2002).

A matching of men and women is positive assortative in investments if all women
are matched and if any man (woman) whose investment is strictly higher than that of
another man (woman) is matched to a partner whose investment is weakly higher than
the investment of the latter man’s (woman’s) partner.8 Note that if all investments are

8For men one or both of these partners could be dummy types. We do not spell out the formal
definition of a matching involving agents’ identities (Roth and Sotomayor 1990), as we will not need it.
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positive, all (complete information) stable matchings (e.g., Roth and Sotomayor 1990)
for the nontransferable utility (NTU) matching market that results after everybody has
invested are positive assortative in investments.9 Furthermore, if there are no ties (i.e.,
there is no agent whose investment coincides with the investment of another agent from
the same side of the market) the stable matching is unique. These properties hold of
course because an agent’s utility is independent of his or her partner’s type, all agents
prefer partners with higher investments, and mvM(0) ≥ 0 and wvW(0) ≥ 0.

The pre-match investment game Γ(n, k) is the Bayesian game where all agents (who
are privately informed about their types) simultaneously choose observable investments
and utilities are determined as follows.10 If there are no ties, agents receive utilities
according to the unique stable matching. If there are ties, each agent’s utility is equal to
the expectation of a uniform lottery over her or his utilities in all stable matchings.11

As stable matchings do not depend on types, it is irrelevant (for interpreting the
game) whether agents observe others’ types (in addition to investments) in the “ex post”
matching market. In particular, signaling concerns (which arise if types are unobserv-
able ex post and values are interdependent) play no role here: investments are “purely
productive,” as in the existing competitive models of investment and matching.12

The asymmetric information at the investment stage implies of course that men and
women face the kind of (interim) uncertainty about their competitors that is standard
in Bayesian games with one-dimensional heterogeneity and ex ante symmetric agents.
Moreover, they also face some uncertainty about the realized types, and hence the equi-
librium investments, of their potential partners.

We study the side-symmetric, strictly monotone Bayes-Nash equilibria (SSMBNE)
of the games Γ(n, k), i.e., pure-strategy equilibria for which all men use the same, strictly
increasing strategy and all women use the same, strictly increasing strategy. Note that,
as higher types value any increase in their partner’s investment more than lower types,
agents’ preferences satisfy a strict single crossing property that will allow us to obtain
such monotone pure-strategy equilibria.13 Formally, preferences are separable and sat-

9If vW (0) = 0 and less than k men have made positive investments, there are additional stable match-
ings for which some women choose to remain unmatched. These stable matchings do not affect our
results (and we could rule them out by assuming vW (0) > 0 in addition to (1)).

10As the primitives F, G, vM and vW will always be fixed and arbitrary, subject to the assumptions
made in this section, we suppress them in the notation.

11The choice of tie-breaking rule does not affect any results. Ties occur with probability zero in the
side-symmetric equilibria we consider, regardless of the assumed tie-breaking rule.

12Remark 3 in the Online Appendix discusses the implications of our findings for settings in which
investments have both a signaling and a productive function, as in Dizdar, Moldovanu and Szech (2019).

13Moreover, it follows from standard arguments that any side-symmetric BNE of a game Γ(n, k) must
be in strictly increasing, pure strategies. Compare also the discussion of condition (1) below.
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isfy strict outer single crossing, as defined by Nöldeke and Samuelson (2014).14 More
specifically, agents’ utilities are of a form that is commonly assumed in the literature
on all-pay contests (Olszewski and Siegel 2016): each agent’s utility is multiplicative
in his or her type and in the “prize” that he or she gets, which is described here by
an increasing function of the partner’s investment. Moreover, this term is additively
separated from the investment cost, which is type-independent. Assuming this func-
tional form is convenient because, as is well known, the pure-strategy equilibrium of
a (one-sided) all-pay contest with ex ante symmetric contestants has a closed form in
this case. Our main results do not hinge on this assumption. Analogous characteriza-
tions of equilibrium behavior in large markets apply for models with type-dependent
autarchy investments and utilities that are additively separable in bM and bW and satisfy
strict outer single crossing (as in Peters and Siow 2002, Peters 2011, and Section 5.4
in Nöldeke and Samuelson 2014). Remark 4 in the Online Appendix provides a more
detailed discussion of this point. Our techniques could also be used to study environ-
ments where utilities are strictly supermodular in the investments. However, it is clear
that the details of the analysis would have to change very substantially to accommodate
such cases, so we do not pursue this further in the paper.

Conditions (1)-(3) parallel assumptions in Peters and Siow (2002). Each agent
weakly prefers a partner who made an autarchy investment to staying unmatched. By
condition (1), this preference is strict for agents on the long side, which rules out the ex-
istence of a trivial BNE where all agents make autarchy investments, and also ensures
full matching.15 Condition (2) implies that without competition, investments would
suffer from a “hold-up” problem. Indeed, following Peters and Siow (2002), let us
call a pair of investments (bM, bW) such that bM maximizes UM(·, bW ,m,w) and bW

maximizes UW(·, bM,w,m) bilateral Nash investments for the pair (m,w). The inter-
pretation is of course that these are investments that two types m and w would make
(non-cooperatively) if they somehow took for granted that they will be matched to each
other. As in Peters and Siow (2002) and Peters (2011), the bilateral Nash investments
coincide here with the pair of autarchy investments, (0, 0). Condition (2) implies that
for any pair (m,w), the bilateral Nash investments are too low compared to any Pareto

efficient pair of investments. Indeed, for a given (bM, bW), mv′M(bW) (wv′W(bM)) is the

14Men’s preferences are separable if there exist continuous, real-valued functions fM , f ∅M and ÛM

such that UM(bM , bW ,m,w) = ÛM( fM(bM , bW ), bM ,m), U∅M(bM ,m) = ÛM( f ∅M(bM), bM ,m) and ÛM is
strictly increasing in its first argument. This is obviously satisfied here, for ÛM(x, bM ,m) = mx − bM ,
fM(bM , bW ) = vM(bW ) and f ∅M ≡ 0. An analogous observation applies for women. Strict outer single
crossing is a standard strict single crossing property, defined for separable preferences. It requires that
for all m > m′, b > b′ and all x and x′, ÛM(x, b,m′) ≥ ÛM(x′, b′,m′) implies ÛM(x, b,m) > ÛM(x′, b′,m),
and that an analogous condition holds for women’s preferences.

15All women are matched. Peters and Siow’s assumptions correspond to vM(0) > 0 and vW (0) > 0.
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marginal benefit for the man (woman) from a marginal increase in the woman’s (man’s)
investment, and it is not difficult to see that if the product of these marginal external
benefits is greater than the product of marginal costs (which is equal to 1 here), there
is a pair of strictly higher investments that makes both partners better off. Finally, (3)
ensures that the set of pairs of investments for which the partners obtain at least their
outside options U∅M(b∅M(m),m) = 0 and U∅W(b∅W(w),w) = 0,

I(m,w) := {(bM, bW) ∈ R2
+ |mvM(bW) − bM ≥ 0 and wvW(bM) − bW ≥ 0}

is bounded, for all (m,w). We let (bM(m,w), bW(m,w)) denote the greatest element of
I(m,w) in the usual (product) partial order on R2

+ and note that (bM(m,w), bW(m,w)) is
the unique vector in (0,∞)2 satisfying

bM(m,w) = mvM(bW(m,w)) and bW(m,w) = wvW(bM(m,w)). (4)

We also define IM
0 (m) := {(bM, bW) ∈ R2

+ |mvM(bW) − bM = 0} and

P(m,w) := {(bM, bW) ∈ I(m,w) | (bM, bW) is Pareto efficient for (m,w)}

= {(bM, bW) ∈ I(m,w) |mwv′M(bW)v′W(bM) = 1},

and we let
(
be

M(m,w), be
W(m,w)

)
denote the Pareto efficient investments for which the

man’s utility is equal to his outside option. Figure 1 illustrates these definitions.



bW

bM

I (m,w)

ւ

տ
I M

0 (m)

P(m,w)(be
M(m,w),be

W (m,w))−→•

•

•(0,0)

(bM(m,w),bW (m,w))−→

Figure 1: The zero utility indifference curves for two types m (the blue curve I M
0 (m))

and w (orange curve), the sets I (m,w) and P(m,w), and the pairs of investments
(be

M(m,w),be
W (m,w)) and (bM(m,w),bW (m,w)), for a case where vW (0) = 0.

different assumptions about the returns (that agents expect to get) for off-equilibrium
investments. We briefly explain the existing competitive equilibrium notions, and in
particular how these support efficient behavior. We then explain some basic differences
between the off-equilibrium returns assumed by these competitive models and features
that off-equilibrium returns must have for a concept for which investments and returns
are approximated by SSMBNE investments and returns in large finite markets (see also
Peters 2011). As our main results (presented in Section 3) pertain to investment behav-
ior in large pre-match investment games approximating a continuum market that is not

exactly balanced, we will assume throughout that r > 0.
We refer the reader to Nöldeke and Samuelson (2014) for a general and fully rig-

orous definition of feasible allocations for the kind of continuum economy considered
here, formulated in the context of an “individualistic” model (with continuum popula-
tions of agents, each of which is characterized by his or her type).13 Roughly speaking,
a feasible allocation for the continuum economy consists of a measure-preserving, one-
to-one matching of men and women, and of two functions describing the investments
chosen by all men and women, along with the resulting utilities for all agents. Given

13Greinecker and Kah (2018) clarify the relationship between “individualistic” and “distributional”
continuum models of one-to-one matching markets and provide an elegant characterization of stability.
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Figure 1: The zero utility indifference curves for two types m (the blue curve IM
0 (m))

and w (orange curve), the sets I(m,w) and P(m,w), the bilateral Nash investments
(0, 0), and the pairs of investments (be

M(m,w), be
W(m,w)) and (bM(m,w), bW(m,w)), for

a case where vW(0) = 0.
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2.2 The continuum economy, competitive models, and the impor-
tance of off-equilibrium returns

Here we briefly consider a continuum economy akin to those studied by competitive
models of investment and matching. We maintain the assumptions about agents’ prefer-
ences and about F and G. The population of women is described by a probability distri-
bution with density g, and the population of men is described by a positive measure with
density f /(1 − r), where r ∈ [0, 1). The type distribution of this r-continuum economy

is the limit of the empirical type distributions, normalized such that the total measure of
women is equal to 1, for any sequence of games Γ(n, kn) satisfying limn→∞ kn/n = 1−r.16

There are many possible equilibrium concepts for the continuum economy, with
different assumptions about the returns (that agents expect to get) for off-equilibrium
investments. We briefly explain the existing competitive equilibrium notions, and in
particular how these support efficient behavior. We then explain some basic differences
between the off-equilibrium returns assumed by these competitive models and features
that off-equilibrium returns must have for a concept for which investments and returns
are approximated by SSMBNE investments and (on-path) returns in large finite markets
(see also Peters 2011). As our main results (presented in Section 3) pertain to investment
behavior in large pre-match investment games approximating a continuum market that
is not exactly balanced, we will assume throughout that r > 0.

We refer the reader to Nöldeke and Samuelson (2014) for a general and fully rig-
orous definition of feasible allocations for the kind of continuum economy considered
here, formulated in the context of an “individualistic” model (with continuum popula-
tions of agents, each of which is characterized by his or her type).17 Roughly speaking,
a feasible allocation consists of a measure-preserving, one-to-one matching of men and
women and of two functions describing investments, along with the resulting utilities
for all agents. Given our assumptions on preferences, equilibrium allocations always
feature the matching that is positive assortative with respect to agents’ types, or are
at least payoff equivalent to such an allocation. This holds for any of the equilibrium
concepts that we will discuss below (and more generally for any “reasonable” equi-
librium concept capturing frictionless matching ex post and a deterministic investment
technology). The positive assortative matching of types is described by the function

ψr(m) =

∅ if m < mr

wp if m = mr+p(1−r) for p ∈ [0, 1],

16The convergence is uniform almost surely, by the Glivenko-Cantelli theorem.
17Greinecker and Kah (2021) clarify the relationship between “individualistic” and “distributional”

continuum models of one-to-one matching markets and provide an elegant characterization of stability.
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where mp = F−1(p) and wp = G−1(p) for all p ∈ [0, 1]. Thus, types below the marginal

type mr remain unmatched, and the types in [mr,m] and [w,w] are matched positive
assortatively. Correspondingly, equilibrium investments can always be described by
nondecreasing functions γM : [m,m]→ R+ and γW : [w,w]→ R+.

For any r > 0, the r-continuum economy has a unique pairwise efficient allocation,18

featuring the matching ψr and the following investments γe
M and γe

W . Unmatched types
make autarchy investments, γe

M(m) = 0 for m < mr, the types in the lowest matched pair,
(mr,w), make the Pareto efficient investments for which the man receives his outside
option utility,

(
γe

M(mr), γe
W(w)

)
=

(
be

M(mr,w), be
W(mr,w)

)
, and investments then increase

(continuously) such that
(
γe

M(mr+p(1−r)), γe
W(wp)

)
∈ P(mr+p(1−r),wp) for all p ∈ [0, 1].

The first competitive equilibrium concept, due to Peters and Siow (2002), is a vari-
ant of hedonic pricing equilibrium (Rosen 1974) that is suitable for NTU matching,
and which we will simply call hedonic equilibrium.19 It requires that all agents choose
utility-maximizing investments with respect to matching possibilities that are described
by a single, strictly increasing and continuous return function rW : R+ → R+: for each
investment bW ≥ 0, women expect a deterministic return corresponding to a match with
a partner whose investment is rW(bW) and, at the same time, men expect to get a partner
with investment r−1

W (bM) in return for any investment bM ≥ rW(0) (a man who chooses
bM < rW(0) expects to remain unmatched).20 Of course, an equilibrium return func-
tion must also clear the market. The return function is the “functional equivalent of a
complete set of prices” (Nöldeke and Samuelson 2014, p. 60), and hedonic equilib-
ria are pairwise efficient. The intuition for this result is particularly clear for utilities
that are concave in (bM, bW): the equilibrium indifference curves of any two matched
agents, including those of the bottom pair, (mr,w), must be tangent to the graph of
the return function, and hence to each other. In particular, hedonic equilibrium sup-
ports efficiency by “automatically” imposing returns for the off-equilibrium investments
bM ∈ (0, be

M(mr,w)) and bW ∈ [0, be
W(mr,w)) that are low enough (and of a very specific

form, corresponding to deterministic matches with investments that no potential partner
actually makes) to deter deviations to these less costly investments.

Ex post equilibrium (Nöldeke and Samuelson 2014) assumes that a man (woman)
with some investment, “on-path or off-path”, can match with any “existing” partner,
given her (his) sunk investment, as long as he (she) provides the partner with her (his)

18Pairwise efficiency is a refinement of Pareto efficiency that is satisfied by any ex ante equilibrium
(see Nöldeke and Samuelson 2014).

19Peters and Siow (2002) called the concept rational expectations equilibrium, while Peters (2011)
refers to an equivalent concept as hedonic equilibrium.

20The definition reflects the separability of preferences. In general, the return function would have to
specify the investment and the type of the partner, depending on the agent’s type and investment.
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equilibrium utility, and that he (she) remains unmatched otherwise. Ex post equilibrium
is less demanding than hedonic equilibrium, and the pairwise efficient allocation is one
of many equilibrium allocations. For example, for every (bM, bW) ∈ IM

0 (mr) satisfying
wvW(bM) − bW ≥ wvW(0), the allocation with matching ψr and investments γM(m) = 0
for m < mr, γM(m) = bM for m ≥ mr and γW(w) = bW for all w is also an equilibrium.21

It should now be evident that there are many possible equilibrium concepts for the
continuum model, featuring different assumptions about returns for off-equilibrium in-
vestments. For any SSMBNE of a pre-match investment game Γ(n, k), the equilibrium
strategies are continuous (see Section 2.4), and the types m and w make zero invest-
ments (their optimal investments knowing that they are the lowest-ranked agents with
probability one). Moreover, by Helly’s selection theorem, every subsequence of a given
sequence of SSMBNE of games Γ(n, kn) satisfying n → ∞ and limn→∞ kn/n = 1 − r

contains a subsequence for which the equilibrium strategies converge to nondecreasing
functions γM and γW , pointwise at all continuity points of γM and γW . In Section 3, we
will see in particular that in large markets, SSMBNE strategies must increase rapidly
close to mr and w, so that γ+M(mr) > γ−M(mr) = 0, where γ+M and γ−M denote the usual one-
sided limits.22 As interim expected utilities are continuous for any SSMBNE, it follows
easily that (γ+M(mr), γ+W(w)) ∈ IM

0 (mr) and that men’s expected returns for investments
bM ∈ (0, γ+M(mr)), which are off-equilibrium for the limit strategy but on-path in the
large finite markets, must be such that (in the limit) the type mr becomes indifferent be-
tween all bM ∈ [0, γ+M(mr)]. Similarly, the type w must become indifferent between all
bW ∈ [0, γ+W(w)]. We will see in Section 3 that the returns for investments in (0, γ+M(mr))
and [0, γ+W(w)) remain non-deterministic in the limit and converge to particular lotter-
ies over partners with different investments (featuring positive probabilities of staying
unmatched for men). Our main results characterize the form of these non-deterministic
returns, and then show that all possible values of (γ+M(mr), γ+W(w)) are inefficiently high
(exceed the investments (be

M(mr,w), be
W(mr,w)) by uniform constants).

2.3 Mathematical notation and definitions
Vectors, norms, probabilities, etc.

For x ∈ R, ⌊x⌋ is the floor of x, the greatest integer less than or equal to x, and
⌈x⌉ is the ceiling of x, the smallest integer greater than or equal to x. We let δi j denote

21A type m ≥ mr has no incentive to deviate to some b′M < bM because, according to the assumed
off-equilibrium returns, he would stay unmatched (unable to provide any partner with her equilibrium
utility). A deviation to some b′M > bM is also unprofitable, as the agent does not get a higher return for
this: there are no women with investments above bW , and women cannot compensate the man ex post for
his higher investment, due to NTU. The conditions for all other types are easily checked as well.

22For a function η defined in a neighborhood of x ∈ R, η+(x) := limy→x,y>x η(y) and η−(x) :=
limy→x,y<x η(y) (if the limits exist, which is true for nondecreasing functions).
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the Kronecker delta and write 1S for the indicator function of a set S . For l ∈ N, we
label the coordinates of a vector u ∈ Rl from 0 to l − 1, i.e., u = (ui)i=0,...,l−1. We write
∥η∥∞ = sup{|η(s)| : s ∈ S } for the supremum norm of a bounded, real-valued function
η with domain S , and ∥η∥∞,T = sup{|η(s)| : s ∈ T } for the supremum norm of η on
T ⊂ S . For two real-valued functions η1 and η2 defined on a set S , η1 ≤ η2 means that
η1(s) ≤ η2(s) for all s ∈ S . The set of real-valued, bounded and continuous functions
on a topological space S is denoted Cb(S ). For a Lebesgue measurable set S ⊂ R,
we let L1(S ) denote the space of functions on S that are integrable with respect to the
restriction of Lebesgue measure, and we write ∥ · ∥L1(S ) for the corresponding norm. The
convolution η1 ∗ η2 : R→ R of two functions η1 : R→ R and η2 : R→ R is defined as
(η1 ∗ η2)(x) =

∫
R
η1(x − y)η2(y)dy, provided that the integral exists for all x.

P[·] denotes the probability of an event, and E[·], E[·|·] and Var[·] designate expec-
tations, conditional expectations, and variances of random variables. We write U(0, 1)
for the uniform distribution on (0, 1), and φt,σ2 for the density of a normal distribution
with mean t ∈ R and standard deviation σ, i.e., φt,σ2(y) = 1

σ
φ
(

y−t
σ

)
, where φ is the

density of the standard normal distribution, with c.d.f. Φ.

Definition 1. Let H denote the c.d.f. of a probability measure on R that is absolutely

continuous with respect to Lebesgue measure, has support [x, x] for some x, x satisfying

−∞ < x < x < ∞, and whose density h is strictly positive on [x, x].

As H is continuous and strictly increasing on [x, x], its quantile function is just the
usual inverse H−1 of H (restricted to [x, x]). We define, for all p ∈ [0, 1],

xp := H−1(p). (5)

We reserve the notation mp = F−1(p) and wp = G−1(p) for the quantiles of the distribu-
tions F and G, respectively.

Bachmann-Landau notation

We make extensive use of the following standard definitions. For two sequences (xl)
in R and (yl) in R+, xl = o(yl) if and only if liml→∞ xl/yl = 0, xl = O(yl) if and only
if lim supl→∞ |xl|/yl < ∞, xl = Ω(yl) if and only if lim infl→∞ xl/yl > 0,23 and (if the
elements of (xl) are nonnegative) xl = Θ(yl) if and only if xl = O(yl) and xl = Ω(yl).

We also define one non-standard piece of notation for sequences that decay expo-
nentially with some positive power of l: for a sequence (xl) in R,

xl = E(l) if and only if there exists α > 0 such that − ln |xl| = Ω(lα). (6)

23This is Knuth’s definition of Ω.
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Thus, xl = E(l) if and only if there exist γ > 0 and α > 0 such that xl = O
(
e−γlα

)
.

Order Statistics

The Bernstein basis polynomials Bi,l : [0, 1] → R of degree l ∈ N ∪ {0} are defined
as Bi,l(u) :=

(
l
i

)
ui(1 − u)l−i for 0 ≤ i ≤ l. We let Hi:l and hi:l denote the c.d.f. and density

of Xi:l, where X1:l ≤ ... ≤ Xl:l are the order statistics of l ∈ N i.i.d. draws from H. Thus,
we have for any 1 ≤ i ≤ l and x ∈ R (see for instance chapter 1.3 in Reiss 1989):

Hi:l(x) =
l∑

j=i

B j,l (H(x)) (7)

hi:l(x) = lh(x)Bi−1,l−1 (H(x)) . (8)

For notational purposes we also define X0:l ≡ x and H0:l = 1[x,∞), for all l ≥ 0.
Moreover, we always denote order statistics of i.i.d. draws from F, G and U(0, 1)

by Mi:l, Wi:l and Ui:l, respectively. The mean of Ui:l is

µi,l := E[Ui:l] =
i

l + 1
. (9)

We also define the following “approximate standard deviations,” which are used to state
the results about exponential bounds and about approximate distributions of order statis-
tics that we borrow from the literature (Lemma 4 and Theorem 5 in Section 3.2.1).24

ai,l :=
(
i(l + 1 − i)
(l + 1)2l

) 1
2

=

(
B1,2(µi,l)

2l

) 1
2

=

(
l + 2

l
Var[Ui:l]

) 1
2

. (10)

Note that µi,l = 1 − µl+1−i,l and ai,l = al+1−i,l, for all 1 ≤ i ≤ l.
For a c.d.f. H, l ∈ N, and a nondecreasing function η : [x, x] → R, we define the

vector dηH,l =
(
dηH,l,i

)
i=0,...,l−1

∈ Rl as follows:

For all 0 ≤ i ≤ l − 1, dηH,l,i := E[η(Xi+1:l) − η(Xi:l)].

Thus, if X is a random variable with c.d.f. H, the entries of dηH,l are the expectations of
the spacings (i.e., differences between adjacent order statistics) for l i.i.d. draws from
the distribution of η(X). For a c.d.f. H, l ∈ N and 1 ≤ i ≤ l, we define ξH,l,i : R→ R as

ξH,l,i(x) := (x − xµi,l)
h(xµi,l)

ai,l
. (11)

Note that the affine transformation ξH,l,i “approximately standardizes” the random vari-

24For the last identity in (10) see, for instance, chapter 1.7 in Reiss (1989).
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able Xi:l.25 We let ȟi:l denote the density of ξH,l,i(Xi:l), i.e.,

hi:l(x) =
h(xµi,l)

ai,l
ȟi:l

(
ξH,l,i(x)

)
. (12)

Finally, recall that (Xil:l) is a sequence of central order statistics if il = Ω(l) and l − il =

Ω(l), a sequence of lower (upper) extreme order statistics if there is some constant
K ≥ 0 such that il ≤ K for all l ∈ N (l − il ≤ K for all l ∈ N), and a sequence of lower

(upper) intermediate order statistics if il → ∞ and il/l→ 0 (l − il → ∞ and il/l→ 1).

2.4 Equilibrium existence and basic characterization
Given a strictly increasing strategy βW : [w,w] → R+ for women, the strategic in-

teraction among men in the game Γ(n, k) is equivalent to an all-pay contest with incom-
plete information, n ex ante symmetric contestants and k heterogeneous prizes. Indeed,
given the standard multiplicative form of the utility functions, the “prizes” that men are
competing for are described by the expectations of the random variables vM(βW(Wi:k)).
Moreover, the unique symmetric equilibrium of the all-pay contest is strictly monotone
and has a closed form (Hoppe, Moldovanu and Sela 2009). An analogous observation
applies for women, and we easily obtain the following basic relationship between men’s
and women’s equilibrium strategies.

Lemma 1. A pair (βM, βW) of strictly increasing functions βM : [m,m] → R+ and

βW : [w,w]→ R+ is a SSMBNE of the game Γ(n, k) if and only if βM and βW satisfy the

following system of equations. For all m ∈ [m,m] and w ∈ [w,w],

βM(m) =
∫ m

m
s

k−1∑
i=0

fn−k+i:n−1(s)
(
dvM◦βW

G,k,i + vM(0)δi0

)
ds (13)

βW(w) =
∫ w

w
s

k−1∑
i=1

gi:k−1(s)dvW◦βM
F,n,n−k+i. (14)

To understand (13), note that if a man with type m matches with the (i + 1)th
lowest ranked partner rather than with the ith lowest one, where 0 ≤ i ≤ k − 1 and
i = 0 corresponds to remaining unmatched, his expected (gross) utility increases by
mE[vM(βW(Wi+1:k)) − vM(βW(Wi:k))] = mdvM◦βW

G,k,i if i ≥ 1, and by mE[vM(βW(W1:k))] if
i = 0, which (using W0:k = w and βW(w) = 0) is equal to m

(
dvM◦βW

G,k,0 + vM(0)
)
. In equi-

librium, a man whose type is m receives the ith one of these utility increments with
probability Fn−k+i:n−1(m), the probability that at least n−k+ i of the other n−1 men have
a type below m. The identity (13) then follows from a straightforward application of

25As h is continuous, xµi,l and ai,l/h(xµi,l ) are good approximations of the mean and standard deviation
of Xi:l when l is large.
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the standard first-order approach. An analogous argument for women (who get at least
a match with the type Mn−k+1:n) yields (14).

The existence of a SSMBNE follows from an argument akin to those given in Peters
(2007, 2011). First, it is easy to see that equilibrium investments must be bounded by
the greatest element of I(m,w):

Lemma 2. For any SSMBNE (βM, βW) of a game Γ(n, k), it holds that

βM(m) ≤ bM(m,w) and βW(w) ≤ bW(m,w). (15)

The SSMBNE existence problem can then be formulated as a (finite-dimensional)
fixed-point problem for the vector dvM◦bW

G,k , and a simple application of Brouwer’s Theo-
rem yields the desired result.

Theorem 1. For any n > k ≥ 2, the game Γ(n, k) has a SSMBNE.

We note that Theorem 1 does not claim that there is a unique SSMBNE, and that
there is no reason to expect uniqueness.

3 Equilibrium behavior in large finite economies
To formulate our results, we fix F, G, vM, vW and r ∈ (0, 1) and consider an arbitrary

sequence (Γ(n, kn)) of pre-match investment games satisfying limn→∞ k̄n/n = r, where

k̄n := n − kn

is the number of men who stay unmatched. As mentioned in Section 2.2, the empirical
type distributions for the games (Γ(n, kn)) then converge to the type distribution of the
r-continuum economy. Throughout,

(
βM,n,kn , βW,n,kn

)
denotes a SSMBNE of Γ(n, kn).

With slight abuse of notation, we will identify equilibrium strategies with the trivial
extensions (defined on R) obtained by setting βM,n,kn(m) = 0 for m < m, βM,n,kn(m) =
βM,n,kn(m) for m > m, βW,n,kn(w) = 0 for w < w and βW,n,kn(w) = βW,n,kn(w) for w > w.

3.1 The main results
In large markets, men with types from intervals [mk̄n/n −Cn−

1
2 ,mk̄n/n +Cn−

1
2 ], where

C > 0 is any constant, face non-negligible uncertainty about whether they will be
matched: the (interim) probability of getting matched (in any SSMBNE of Γ(n, kn))
is Fk̄n:n−1(mk̄n/n −Cn−

1
2 ) for the type mk̄n/n −Cn−

1
2 , the (interim) probability of remaining

unmatched is 1 − Fk̄n:n−1(mk̄n/n + Cn−
1
2 ) for the type mk̄n/n + Cn−

1
2 , and both of these

terms are of order Ω(1). By contrast, for α > 1
2 , the probabilities Fk̄n:n−1(mk̄n/n − nα−1)
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and 1 − Fk̄n:n−1(mk̄n/n + nα−1) are of order E(n), i.e., they decay exponentially fast. Re-
latedly, for any α < 1, the conditional (interim) distributions over ranks that types
m ∈ [mk̄n/n − nα−1,mk̄n/n + nα−1], which we shall also refer to as types of men that are
close to the margin in the game Γ(n, kn), attain among men’s realized types concentrate
on integer intervals whose cardinality is of order “just above” Θ

(
n

1
2

)
. These simple

facts are due to basic concentration properties of central order statistics, which have
standard deviations of order Θ

(
n−

1
2

)
(while the expected difference between two neigh-

boring order statistics is of order Θ
(
n−1

)
).

Another simple but important observation is that the types of women who are likely
to match with types of men close to the margin face much lower uncertainty about their
rank (among women’s realized types) than these men. The reason is that these types
on the short side, very close to w, are very likely among certain lower intermediate or

extreme order statistics, which have much smaller standard deviations than central order
statistics. Using these observations, it is not difficult to show that the derivatives β′M,n,kn

and β′W,n,kn
are of order O

(
n

1
2

)
close to the margin and close to w, and in fact of order

Θ
(
n

1
2

)
on intervals of the form [mk̄n/n − Cn−

1
2 ,mk̄n/n + Cn−

1
2 ] and [w,w + Cn−

1
2 ] (see

Lemma 6 and footnote 36 in Section 3.2.2). The central, much more difficult task is
then to characterize the equilibrium behavior of types of men (very) close to the margin
and types of women (very) close to w, i.e., in the part of the type space where the
equilibrium strategies become very steep, in a way that is endogenously determined by
the strategic interaction induced by the bilateral external benefits of investment.

Maybe surprisingly, this is possible. We shift and re-scale men’s type space by suit-
able affine transformations, so that men’s re-scaled equilibrium strategies β̃M,n,kn (the
strategies as functions of the re-scaled types) satisfy a uniform Lipschitz bound. Con-
sequently, sequences of re-scaled equilibrium strategies have locally uniformly conver-
gent subsequences.26 Our central result, Theorem 2, then shows that any function that
is the limit of a subsequence of re-scaled equilibrium strategies solves a particular fixed
point (nonlinear integral) equation.

The proof of Theorem 2, and in particular the proof of the underlying asymptotic
bounds that we establish in Theorem 6 (see Section 3.2.2), constitutes the paper’s main
methodological contribution. Using advanced results about approximate distributions
of order statistics in a novel way, we provide a precise asymptotic characterization
of equilibrium behavior in a discontinuous game, for types close to a point where a
discontinuity must develop in the limit, in a setting where the size of the discontinuity
is the main object of interest and is determined by a complex, two-sided interaction.

26Recall that a sequence of functions on R (or any locally compact space) converges locally uniformly
if and only if it converges uniformly on every compact set.
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We will present the required tools in Section 3.2.1, and give an overview of the
main steps in the proofs of Theorem 6 and Theorem 2 in Section 3.2.2. The proofs of
all results presented in Section 3.2.2 are given in Appendix C and Online Appendix G.
In the present section, we only state Theorem 2 and provide intuition for the result.

Based on Theorem 2, we will then proceed and establish our second main result,
Theorem 3, which shows that types very close to (and above) mk̄n/n and w must ineffi-
ciently overinvest in sufficiently large markets. Types close to mk̄n/n compete not only to
get a partner with a higher investment but also to avoid staying unmatched. Our analy-
sis shows very clearly why this additional incentive must always lead to overinvestment
when utility is nontransferable ex post and the limit economy is not exactly balanced
(see below). Our final result, Theorem 4, which identifies non-empty intervals of types
above mr and w who overinvest will then be a simple corollary.

We use the affine functions ξF,n−1,k̄n to define men’s re-scaled strategies β̃M,n,kn . For
all z ∈ R,

β̃M,n,kn(z) := βM,n,kn

(
ξ−1

F,n−1,k̄n
(z)

)
. (16)

Recall that, by (9) and (11),

ξF,n−1,k̄n(m) =
(
m − mk̄n/n

) f (mk̄n/n)
ak̄n,n−1

.

Thus, in the game Γ(n, kn), the re-scaled type z ∈ R corresponds to the original type
m = mk̄n/n + z

ak̄n ,n−1

f (mk̄n/n) . The factor f (mk̄n/n)
ak̄n ,n−1

is of order Θ
(
n

1
2

)
, because ak̄n,n−1 = Θ

(
n−

1
2

)
(see

Lemma 5 (iii)) and
0 < min

m∈[m,m]
f (m) ≤ ∥ f ∥∞ < ∞. (17)

Note also that if (εn) is a sequence satisfying εn = Θ
(
nα−1

)
for some α ∈

(
1
2 , 1

)
, then

−ξF,n−1,k̄n(mk̄n/n − εn) = Θ
(
nα−

1
2
)

and ξF,n−1,k̄n(mk̄n/n + εn) = Θ
(
nα−

1
2
)
. (18)

Thus, the intervals [mk̄n/n−εn,mk̄n/n+εn] correspond to intervals of re-scaled types whose
boundaries tend to infinity like nα−

1
2 . The functions β̃M,n,kn satisfy a common Lipschitz

bound on such increasingly large intervals (see Corollary 3 in Section 3.2.2), so that the
following lemma is a simple consequence of the Arzèla-Ascoli Theorem.

Lemma 3. Any subsequence of a sequence of re-scaled strategies (β̃M,n,kn) has a subse-

quence that converges locally uniformly.

We let L denote the set of all accumulation points (with respect to the topology of

20



locally uniform convergence) of sequences of re-scaled equilibrium strategies:

L :=
{
β̃ ∈ Cb(R)| β̃ is an accumulation point of a sequence (β̃M,n,kn)

}
. (19)

We now define the operators that we need to state Theorem 2. Let

A1 :=
{
β̃ ∈ Cb(R)| β̃ is nondecreasing, Lipschitz continuous, and lim

y→−∞
β̃(y) = 0

}
,

A2 :=
{
ζ̃ ∈ Cb(R+)| ζ̃ is nondecreasing, Lipschitz continuous, and ζ̃(0) = 0

}
.

We let Ξ1 : A1 → A2 and Ξ2 : A2 → A1 denote the following operators:

For all x ∈ R+ : Ξ1[β̃](x) = w
(
φ ∗ (vW ◦ β̃)(x) − φ ∗ (vW ◦ β̃)(0)

)
. (20)

For all z ∈ R : Ξ2[ζ̃](z) = mr

∫ ∞

0
φ(z − x)(vM ◦ ζ̃)(x)dx. (21)

Using Assumption 1 and basic properties of the convolution, it is clear that Ξ1 indeed
maps A1 into A2, Ξ2 maps A2 into A1, and that the functions Ξ1[β̃] and Ξ2[ζ̃] are
smooth, for any β̃ ∈ A1 and any ζ̃ ∈ A2. Defining

Ψ1 := Ξ2 ◦ Ξ1 and Ψ2 := Ξ1 ◦ Ξ2,

we are ready to state our first main result.

Theorem 2. Every β̃ ∈ L, i.e., every function that is the (locally uniform) limit of

some subsequence of men’s re-scaled equilibrium strategies solves the nonlinear inte-

gral equation

β̃ = Ψ1[β̃]. (22)

The fixed point equation (22) is of course equivalent to the fixed point equation

ζ̃ = Ψ2[ζ̃]. (23)

The operators Ξ1 and Ξ2 may look complicated at first sight, but Theorem 2 has a
very clear interpretation. To explain this, let us assume (counterfactually) that a given
function β̃ ∈ A1 describes men’s re-scaled strategy in all games Γ(n, kn). In what
follows, we describe the intuition for why similarly re-scaled symmetric equilibrium
strategies for the resulting contests among women, expressed in types x ≥ 0 of the
form x = (w − w)dn where the dn are suitable scaling factors of order Θ

(
n

1
2

)
, must then

converge to Ξ1[β̃]. Similarly, we explain why for a given ζ̃ ∈ A2 describing women’s
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re-scaled strategy in all markets, the re-scaled symmetric equilibrium strategies of the
resulting contests among men must converge to Ξ2[ζ̃].

Remark 1. We “de-couple” the approximation arguments for men and women only for

the intuitive explanation of the different parts of the fixed point operator. The proof

of Theorem 6 uses only the actual equilibrium strategies, and shows how close the

derivatives of men’s re-scaled strategies are to solving the fixed point equation β̃′ =
mk̄n/n

mr
Ψ1[β̃]′. In particular, it will not be necessary to specify the factors dn for the re-

scaling of women’s types explicitly (they would of course depend on ξF,n−1,k̄n and g(w)).

The formulas for Ξ1 and Ξ2 reflect three facts. First, the relationship between a
man’s re-scaled type and his “approximate rank,” measured in multiples of the factor
nak̄n,n−1 = Θ

(
n

1
2

)
above or below the rank k̄n (from the bottom), remains uncertain as

n→ ∞. Secondly, the relationship between a woman’s re-scaled type and her “approx-
imate rank” becomes deterministic in the limit: in large markets, the rank (from the
bottom, among women’s realized types) attained by a woman with re-scaled type x is
very likely to be very close to xnak̄n,n−1. This is a consequence of the above mentioned
fact that the distributions of extreme and lower intermediate order statistics are much
more concentrated than those of central order statistics. Thirdly, standardized central
order statistics are asymptotically normal, which explains the occurrence of φ.

More precisely, if (in) is a sequence satisfying in − xnak̄n,n−1 = o
(
n

1
2

)
for some

x ∈ R+, then the distributions of the re-scaled order statistics ξF,n−1,k̄n(Mk̄n+in:n) converge
to a normal distribution with mean x and variance 1. Thus, given some β̃ ∈ A1, the
expectation of vW ◦ β̃ with respect to the conditional distribution over the re-scaled types
of partners for a woman with re-scaled type x, for whom the probability of matching
with a partner whose rank is not within an o

(
n

1
2

)
range around k̄n + xnak̄n,n−1 decays

exponentially fast, converges to
∫
R
φ(x − y)vW(β̃(y))dy = φ ∗ (vW ◦ β̃)(x). In the limit,

any given re-scaled type x must become indifferent between her equilibrium investment
and the zero investment (which is the equilibrium investment for x = 0), because the
corresponding original types converge to w. This explains the formula for Ξ1[β̃]. Next,
if a given ζ̃ ∈ A2 describes women’s strategy, then the expectation of vM ◦ ζ̃ with
respect to the conditional distribution over partners for a man with re-scaled type z is
approximately

∫ ∞
0
φ(z − x)(vM ◦ ζ̃)(x)dx in large markets. Again, this is a consequence

of the asymptotic normality of men’s order statistics, and of the fact that a woman with
re-scaled type x is very likely to have a rank very close to xnak̄n,n−1. In the limit, any
re-scaled type z corresponds to types that converge to mr and must therefore get the
same expected utility from making his equilibrium investment and from investing 0 and
remaining unmatched. This explains the formula for Ξ2[ζ̃].
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We reiterate that the above explanations are only meant to provide intuition for
Theorem 2. The rigorous argument is described in Section 3.2.2, and all related proofs
are given in the Appendix and the Online Appendix.

Definition 2. Throughout the paper, (β̃∗, ζ̃∗) ∈ A1 × A2 denotes a pair consisting of a

solution β̃∗ for (22) and of the corresponding solution for (23), i.e., ζ̃∗ = Ξ1[β̃∗].

Note that Theorem 2 and Lemma 3 show in particular that a solution of (22) exists,
which is a highly non-trivial result. The fixed point operators Ψ1 and Ψ2 are neither
contractions nor monotone,27 and topological fixed point theorems are also not easily
applicable, because neither R nor R+ is compact.

While we cannot expect solutions to be unique, we show that all (β̃∗, ζ̃∗) share prop-
erties which imply that SSMBNE of sufficiently large pre-match investment games fea-
ture overinvestment. Let us define

β̃∗(∞) := lim
z→∞

β̃∗(z) and ζ̃∗(∞) := lim
x→∞

ζ̃∗(x).

These limits exist because β̃∗ and ζ̃∗ are nondecreasing and bounded. Moreover, from
(20) and (21), it is straightforward to see that

β̃∗(∞) = mrvM(ζ̃∗(∞)) and ζ̃∗(∞) = w
(
vW(β̃∗(∞)) − φ ∗ (vW ◦ β̃∗)(0)

)
. (24)

Thus, (β̃∗(∞), ζ̃∗(∞)) ∈ IM
0 (mr), which reflects the obvious requirement that, in the limit,

the type mr must become indifferent between investing zero and staying unmatched and
investing β̃∗(∞) and getting a partner with investment ζ̃∗(∞) with certainty. Moreover,
(β̃∗(∞), ζ̃∗(∞)) ∈ I(mr,w), as wφ∗(vW ◦β̃∗)(0), which corresponds to the expected utility
for the type w in the limit, is positive. In particular, it follows that

β̃∗(∞) ≤ bM(mr,w) and ζ̃∗(∞) ≤ bW(mr,w). (25)

We are now ready to state our second main result.

Theorem 3. There is a constant c > 0 such that every solution ζ̃∗ of (23) satisfies

ζ̃∗(∞) ≥ be
W(mr,w) + c.

Given Theorem 2 and (β̃∗(∞), ζ̃∗(∞)) ∈ IM
0 (mr), Theorem 3 has the following im-

mediate implication. There are uniform constants (independent of ζ̃∗) such that for any

27Monotonicity fails for several “independent” reasons, notably due to the strict concavity assumptions
of Assumption 1, and because the term φ ∗ (vW ◦ β̃)(0) is substracted in the definition of Ξ1.
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convergent subsequence of re-scaled equilibrium strategies, the investments of suffi-
ciently large (but fixed) re-scaled types must eventually exceed the efficient investments
be

W(mr,w) and be
M(mr,w) by these constants.28

We next explain the proof of Theorem 3, which reveals why the combination of
an unbalanced limit economy and NTU matching must lead to overinvestment. The
formal overinvestment result that is implied for the limits of convergent subsequences
of original (not re-scaled) SSMBNE strategies is given in Theorem 4 below. Defining

λζ̃∗ := mrwv′M(ζ̃∗(∞))v′W(β̃∗(∞)), (26)

we note first that (β̃∗(∞), ζ̃∗(∞)) ∈ IM
0 (mr), mrwv′M(be

W(mr,w))v′W(be
M(mr,w)) = 1 and

Assumption 1 together imply that

ζ̃∗(∞) > be
W(mr,w) if and only if λζ̃∗ < 1. (27)

Similarly, the existence of a constant c > 0 such that ζ̃∗(∞) ≥ be
W(mr,w) + c holds for

all ζ̃∗ is equivalent to the existence of a constant λ̄ such that

λζ̃∗ ≤ λ̄ < 1 for all ζ̃∗. (28)

To show (28), we rely on certain results from the theory of convolution equations on
the half-line, also known as Wiener-Hopf equations, that are surveyed in Arabadzhyan
and Engibaryan (1987). Given some kernel function K ∈ L1(R), K ≥ 0, let K denote
the linear integral operator defined by

(Kη)(x) =
∫ ∞

0
K(x − y)η(y)dy for all x ∈ R+, (29)

which maps any Lebesgue measurable function η : R+ → R for which the integral∫ ∞
0

K(x − y)η(y)dy exists for all x ∈ R+ to a real-valued function on R+. A linear
integral equation of the form

(Id − K)η = R, (30)

where Id is the identity, R ∈ L1(R+), R , 0, and η is the unknown (not necessarily
in L1(R+)) is called inhomogeneous Wiener-Hopf equation. If ∥K∥L1(R) < 1, equation
(30) is called nonsingular. In this case, the operator K is a contraction in L1(R+). If
∥K∥L1(R) = 1, equation (30) is called conservative. In this case, the operator Id − K is
non-invertible as an endomorphism of L1(R+).

28How large these re-scaled types have to be might still depend on ζ̃∗, but they correspond of course
always to original types that converge to w and mr.
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We now outline how we use the theory for these linear equations to prove (28) and
hence Theorem 3. The detailed proof is given in Appendix B.

If ζ̃∗ solves (23), then its derivative ζ̃′∗ solves the fixed point equation ζ̃′∗ = Ψ2[ζ̃∗]′.
After a straightforward calculation, this yields the following identity, for all x ∈ R+:

ζ̃′∗(x) = mrw
∫
R

φ(x − z)v′W
(
Ξ2[ζ̃∗](z)

) (
φ(z)vM(0) +

∫ ∞

0
φ(z − y)v′M

(
ζ̃∗(y)

)
ζ̃′∗(y)dy

)
dz.

(31)
Equation (31) is highly nonlinear in ζ̃′∗, but another elementary calculation shows that
ζ̃′∗ coincides with a strictly positive29 solution of a Wiener-Hopf equation of the form

η(x) = min
(
1, λζ̃∗

) ∫ ∞

0
φ0,2(x − y)η(y)dy + Rζ̃∗(x), (32)

where the inhomogeneous term Rζ̃∗ ∈ L1(R+), which depends of course on ζ̃∗, is strictly
positive and given by (57) in Appendix B. This observation is useful for the following
reasons. Equation (30) has a unique, integrable solution if ∥K∥L1(R) < 1, but solutions
also exist if ∥K∥L1(R) = 1, for any R ∈ L1(R+), R , 0. Moreover, if R ≥ 0 (and K ≥ 0),
the conservative equation has a positive solution that is minimal, with respect to the
pointwise order, among all positive solutions. However, this solution is not integrable.
As we know that ζ̃′∗, which satisfies ∥ζ̃′∗∥L1(R+) = ζ̃∗(∞) ≤ bW(mr,w), coincides with a
positive solution of the Wiener-Hopf equation (32), and as ∥φ0,2∥L1(R) = 1 and Rζ̃∗ ≥ 0
and Rζ̃∗ , 0, it follows that λζ̃∗ must be strictly smaller than 1.

To prove the uniform bound (28), we show that there is a function R , 0 satisfying
0 ≤ R ≤ Rζ̃∗ for all ζ̃∗. This allows us to invoke two additional results about the
solutions ηλ,K,R ∈ L1(R+) of the nonsingular equations (Id − λK)η = R, where K ≥ 0,
∥K∥L1(R) = 1 and λ ∈ (0, 1). First, if R1,R2 ∈ L1(R+) satisfy 0 ≤ R1 ≤ R2, then
ηλ,K,R1 ≤ ηλ,K,R2 . Secondly, for any R ∈ L1(R+), R , 0, R ≥ 0, if we let λ tend to
1 monotonically, the functions ηλ,K,R converge monotonically to the (non-integrable)
minimal positive solution of the conservative equation (Id −K)η = R. From these facts
and ∥ζ̃′∗∥L1(R+) ≤ bW(mr,w), it is immediate that (28) holds for

λ̄ = inf
{
λ ∈ (0, 1) : ∥ηλ,φ0,2,R∥L1(R+) > bW(mr,w)

}
< 1, (33)

and Theorem 3 follows.
As mentioned above, the formal overinvestment result for limits of convergent sub-

sequences of original SSMBNE strategies is a simple corollary of Theorems 2 and 3.
For β̃∗ ∈ L, let p(β̃∗) := inf

{
p ∈ [0, 1] : (β̃∗(∞), ζ̃∗(∞)) ∈ P(mr+p(1−r),wp)

}
, with the

29From (20), (21) and vM(0) > 0, it is clear that ζ̃′∗ is strictly positive.
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convention p(β̃∗) = 1 if the set over which the infimum is taken is empty (i.e., if the
investments (β̃∗(∞), ζ̃∗(∞)) are inefficiently high even for the pair (m,w)). Theorem 3
implies infβ̃∗∈L p(β̃∗) > 0. If a pair of nondecreasing functions (βM,∞, βW,∞) is the limit
(pointwise at continuity points) of some convergent subsequence of SSMBNE, then
β+M,∞(mr) = β̃∗(∞) and β+W,∞(w) = ζ̃∗(∞) for some (β̃∗, ζ̃∗), and Theorem 4 pins down
βM,∞ and βW,∞ for types below mr+p(β̃∗)(1−r) and wp(β̃∗).

Theorem 4. Let β̃∗ ∈ L, and let ((βM,nl,knl
, βW,nl,knl

)) be any subsequence of SSMBNE such

that (β̃M,nl,knl
) converges to β̃∗.30 Then, the sequences (βM,nl,knl

) and (βW,nl,knl
) converge

pointwise on [m,mr+p(β̃∗)(1−r)) \ {mr} and (w,wp(β̃∗)), and the limits (on these sets) βM,∞ =

liml→∞ βM,nl,knl
and βW,∞ = liml→∞ βW,nl,knl

satisfy

βM,∞(m) = 0 for m < mr,

(βM,∞(mr+p(1−r)), βW,∞(wp)) = (β̃∗(∞), ζ̃∗(∞)) for p ∈ (0, p(β̃∗)).

Thus, all types in the intervals (mr,mr+p(β̃∗)(1−r)) and (w,wp(β̃∗)) overinvest in the limit.

It is now tempting to take it for granted that if (βM,∞, βW,∞) is the limit of a conver-
gent subsequence of SSMBNE, satisfying β+M,∞(mr) = β̃∗(∞) for β̃∗ ∈ L, pairs above
(mr+p(β̃∗)(1−r),wp(β̃∗)) must make Pareto efficient investments,31 but this is not warranted.
If we knew that βW,∞ is strictly increasing on [wp(β̃∗),w], the result would indeed be
straightforward, by the same reasoning that shows that hedonic equilibria are efficient
(see Section 2.2). However, the strategies that converge to βW,∞ become extremely
flat on (w,wp(β̃∗)),

32 and it is not clear if the intense local competition in large mar-
kets combined with the facts that SSMBNE strategies are never completely flat and that
mr+p(1−r)wpv′M(ζ̃∗(∞))v′W(β̃∗(∞)) > 1 for p > p(β̃∗) suffice to ensure that βW,∞ does not
remain flat beyond wp(β̃∗). It is also unclear if β′W,∞(w) > 0 for some w > wp(β̃∗) ensures
that βW,∞ remains strictly increasing for higher types.

These issues prohibit a more complete characterization of the limits of SSMBNE
strategies in our model, but this is arguably of secondary importance. The phenomenon
that agents might underinvest just because the strictly monotone strategy for agents on
the other side of the market has parts that are almost flat appears very fragile. First, this
kind of problem should disappear for any model with imperfectly transferable utility
(ITU).33 Secondly, the problem disappears even if we maintain the assumption of NTU

30Recall that any (sub)sequence of re-scaled equilibrium strategies has a convergent subsequence.
31Formally, (βM,∞(mr+p(1−r)), βW,∞(wp)) ∈ P(mr+p(1−r),wp) for all p ≥ p(β̃∗). The corresponding Pareto

efficient investments for pairs (mr+p(1−r),wp) with p ≥ p(β̃∗) are of course different from those for the
pairwise efficient allocation (see Section 2.2).

32The same is true, of course, for men’s strategies on the interval (mr,mr+p(β̃∗)(1−r)).
33The fact that agents cannot compensate partners at all for a higher investment (ex post) is part of
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matching, but introduce a tiny bit of signaling (see Remark 3 in Online Appendix I).

3.2 Proving the limit characterization (Theorem 2)
3.2.1 The main tools: exponential bounds and a local limit theorem

Here we present the results about concentration properties and approximate dis-
tributions of order statistics that we need to prove Theorem 6 and hence Theorem 2.
Recall that we assume throughout that a c.d.f. denoted by H satisfies the assumptions
of Definition 1. We first note the following well-known identities (Theorem 1.2.5 in
Reiss 1989): For 1 ≤ i ≤ l,

Xi:l =
d H−1(Ui:l) and H(Xi:l) =d Ui:l, (34)

where =d denotes equality in distribution. In particular, for any p ∈ [0, 1],

Hi:l(xp) = P[Ui:l ≤ p]. (35)

Lemma 4 (Lemma 3.1.1 in Reiss 1989). For every y ≥ 0 and 1 ≤ i ≤ l,

P
[
|Ui:l − µi,l| ≥ ai,ly

]
≤ 2e−

y2
3(1+y/(lai,l)) . (36)

Lemma 4 provides exponential bounds for the distributions of order statistics from
a uniform parent. We need Lemma 4 to prove Corollaries 1 and 2 below, which we use
to show the exponential decay of the probabilities of various “rare” events, for which
a given type of agent ranks “much higher” or “much lower” than expected among all
realized types on his or her side of the market. We start with some basic facts about the
order of magnitude of the approximate standard deviations ai,l.

Lemma 5. (i) (Monotonicity): For l ∈ N, ai,l is strictly increasing in i from 1 to ⌊ l+1
2 ⌋.

(ii) (Magnitude for extreme and intermediate OS): Let α ∈ [0, 1), and let (il) be an

integer sequence satisfying il = Θ (lα). Then, ail,l = Θ
(
l
α
2−1

)
.

(iii) (Magnitude for central OS): Let (il) be an integer sequence satisfying il = Ω(l)
and l − il = Ω(l). Then, ail,l = Θ

(
l−

1
2

)
.

Corollary 1 establishes concentration inequalities for distributions, and Corollary 2
provides related bounds for densities.34

the reason for the enormous multiplicity of ex post equilibria in the NTU case (see Section 2.2 and
Nöldeke and Samuelson 2014). This issue does not exist if agents have some ability to make ex post
utility transfers (Nöldeke and Samuelson 2015). Extending our techniques to perform a rigorous analysis
of Bayesian equilibria for a finite population model with ex ante symmetric agents and with an ITU or
TU matching market is an interesting direction for future work, but is beyond the scope of this paper.

34We actually prove stronger results, quantifying the exponential rates of decay (Online Appendix F).
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Corollary 1. (i) (Extreme and intermediate OS) For α1 ∈ [0, 1), let (il) be an integer

sequence such that il = O (lα1). Let α2 >
α1
2 , and let (εl) be a sequence in R+ satisfying

εl = Ω
(
lα2−1

)
. Then,

max
1≤i≤il

P
[
|Ui:l − µi,l| ≥ εl

]
= E(l). (37)

(ii) (Central OS) Let (il) be an integer sequence such that il = Ω(l) and il ≤
l
2 . Let

α2 >
1
2 , and let (εl) be a sequence in R+ satisfying εl = Ω

(
lα2−1

)
. Then,

max
il≤i≤l−il

P
[
|Ui:l − µi,l| ≥ εl

]
= E(l). (38)

The fact that (37) and (38) provide asymptotic bounds that hold uniformly over a
certain range of order statistics (see the “max” operators) will be crucial for the argu-
ments in Section 3.2.2. A similar remark applies for the bounds in Corollary 2.

Corollary 2. Assume that h is bounded. Then, the following bounds apply:

(i) (Extreme and intermediate OS) For α1 ∈ [0, 1), let (il) be an integer sequence

such that il = O (lα1). Let α2 > α1
2 , and let ( jl) be an integer sequence satisfying

jl = Ω (lα2). Moreover, let (γl) be a sequence in R+ such that γl = O(l−1). Then,

max
1≤i≤il

(
max
j≥i+ jl
∥h j:l∥∞,[x,xµi,l+γl ]

+ max
j≤i− jl
∥h j:l∥∞,[xµi,l−γl ,x]

)
= E(l). (39)

(ii) (Central OS) Let (il) be an integer sequence satisfying il = Ω(l) and il ≤
l
2 . For

1
2 < α2 < 1, let ( jl) be an integer sequence such that jl = Ω (lα2). Moreover, let (γl) be a

sequence in R+ such that γl = O(l−1). Then,

max
il≤i≤l−il

(
max
j≥i+ jl
∥h j:l∥∞,[x,xµi,l+γl ]

+ max
j≤i− jl
∥h j:l∥∞,[xµi,l−γl ,x]

)
= E(l). (40)

In addition to Corollaries 1 and 2, which are useful tools for eliminating terms that
are negligibly small, we will also use the following Local Limit Theorem, Theorem 5,
which is adapted from Theorem 4.7.1 in Reiss (1989).

Theorem 5 (Theorem 4.7.1 in Reiss 1989). There is a constant C1 > 0 such that for any

H whose density is strictly positive and continuously differentiable on [x, x] and all 1 ≤

i ≤ l, the following approximation of ȟi,l is valid on Ji,l :=
{
y ∈ R : |y| ≤ 1

2

(
i(l−i)

l

) 1
6
}
:35

|ȟi,l(y) − φ(y)|
φ(y)

≤ C1

(
1 + |y|3

) 
(

l
i(l − i)

) 1
2

+ ai,l
∥h′∥∞(

min[x,x] h(x)
)2

 . (41)

35Recall the definition of ȟi,l from (12).
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In particular, for a fixed H, any integer sequence (il) satisfying il = Ω(l) and il ≤
l
2 ,

α ∈
(
0, 1

6

)
, and any sequence (yl) in R such that yl = Θ (lα), it holds:

max
il≤i≤l−il

max
{y:|y|≤yl}

|ȟi,l(y) − φ(y)|
φ(y)

= O
(
l3α− 1

2
)
. (42)

3.2.2 The main steps in the proof

Recall that (βM,n,kn , βW,n,kn) always denotes a SSMBNE of the game Γ(n, kn). By
Lemma 1, β′M,n,kn

and β′W,n,kn
satisfy the system of equations

β′M,n,kn
(m) = m

kn−1∑
i=0

fk̄n+i:n−1(m)
(
dvM◦βW,n,kn

G,kn,i
+ vM(0)δi0

)
(43)

β′W,n,kn
(w) = w

kn−1∑
i=1

gi:kn−1(w)dvW◦βM,n,kn

F,n,k̄n+i
. (44)

We show first that on fixed intervals that do not contain m and w, β′M,n,kn
and β′W,n,kn

are
of order O

(
n

1
2

)
. The bound for β′M,n,kn

, inequality (45), relies only on the concentration
properties of central order statistics and on the boundedness of βW,n,kn (see Lemma 2).
The bound for β′W,n,kn

then follows easily as well, even though types very close to w

face less uncertainty and thus “stiffer local competition” than do “central types” (the
standard deviations of extreme order statistics are of order Θ

(
n−1

)
).36

Lemma 6. For any τ ∈
(
0, 1

2

)
,

∥∥∥β′M,n,kn

∥∥∥
∞,[m,m1−τ]

≤ mvM(bW(m,w)) max
k̄n≤i≤n−1

∥ fi:n−1∥∞,[m,m1−τ] = O
(
n

1
2
)
, (45)

max
0≤i≤(1−τ)n

dvW◦βM,n,kn
F,n,i = O

(
n−

1
2
)
, (46)∥∥∥β′W,n,kn

∥∥∥
∞,[w,w1−τ]

= O
(
n

1
2
)

and max
0≤i≤(1−τ)kn

dvM◦βW,n,kn
G,kn,i

= O
(
n−

1
2
)
. (47)

Using the identity

β̃′M,n,kn
(z) = β′M,n,kn

(
ξ−1

F,n−1,k̄n
(z)

) ak̄n,n−1

f (mk̄n/n)
, (48)

ak̄n ,n−1

f (mk̄n/n) = Θ
(
n−

1
2

)
, and the fact that the explicit bound in (45) is independent of the

particular sequence of equilibria, we immediately obtain Corollary 3, which provides
36Note that Lemma 6 provides upper bounds for β′M,n,kn

and β′W,n,kn
. As vM(0) > 0, it would also be

easy to show directly that β′M,n,kn
and β′W,n,kn

must in fact be of order Θ
(
n

1
2

)
on intervals of the form

[mk̄n/n −Cn−
1
2 ,mk̄n/n +Cn−

1
2 ] and [w,w +Cn−

1
2 ]. However, we do not need this additional information to

prove Theorem 6 (and the lower bounds on derivatives follow “ex post,” from Theorems 2, 3 and 6).
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the Lipschitz bound for men’s re-scaled strategies that we have used to show Lemma 3.

Corollary 3. For any sequence (εn) satisfying εn = Θ
(
nα−1

)
for some α ∈

(
1
2 , 1

)
, there

is a constant K < ∞ such that for all n and any SSMBNE strategy βM,n,kn of Γ(n, kn),
∥β̃′M,n,kn

∥∞,[ξF,n−1,k̄n (mk̄n/n−εn),ξF,n−1,k̄n (mk̄n/n+εn)] ≤ K.

With these preliminaries out of the way, we turn to the main quantitative result of
the paper, Theorem 6. As it simplifies notation, we use intervals of re-scaled types of
the following specific form to state and prove the result.

Definition 3. For α ∈
(

1
2 , 1

)
, let In,α :=

[
zn,α, zn,α

]
and I+n,α :=

[
0, zn,α

]
, where zn,α :=

ξF,n−1,k̄n

(
m(k̄n−⌊nα⌋)/n

)
and zn,α := ξF,n−1,k̄n

(
m(k̄n+⌊nα⌋)/n

)
.

From (17) and (18) (and the mean value theorem, for F−1), it is clear that

−zn,α = Θ
(
nα−

1
2
)

and zn,α = Θ
(
nα−

1
2
)
, (49)

i.e., the boundaries of the intervals In,α tend to infinity like nα−
1
2 .

Theorem 6. For α ∈
(

1
2 ,

7
12

)
and ε > 0,∥∥∥∥∥β̃′M,n,kn
−

mk̄n/n

mr
Ψ1[β̃M,n,kn]

′

∥∥∥∥∥
∞,In,α

= O
(
n
α
2+ε−

1
2
)
. (50)

Theorem 6 provides asymptotic bounds pertaining to how close the derivatives of
men’s re-scaled strategies are to solving the fixed point equation β̃′ =

mk̄n/n

mr
Ψ1[β̃]′. It

quantifies how fast the differences β̃′M,n,kn
−

mk̄n/n

mr
Ψ1[β̃M,n,kn]

′ tend to zero on the increas-
ingly large intervals In,α.37

We now give a broad overview of the two main steps in the proof of Theorem 6,
and in particular of how we use the tools of Section 3.2.1. The details are fairly in-
volved. The complete proof, with all auxiliary results, is given in Appendix C and On-
line Appendix G. The reader should also consult Appendix A for additional notation,
and Remark 2 (in Appendix C) for some useful comments about the proofs.

The identities (43) and (48) imply the following formula for β̃′M,n,kn
:

β̃′M,n,kn
(z) = ξ−1

F,n−1,k̄n
(z)

kn−1∑
i=0

ak̄n,n−1

f (mk̄n/n)
fk̄n+i:n−1

(
ξ−1

F,n−1,k̄n
(z)

) (
dvM◦βW,n,kn

G,kn,i
+ vM(0)δi0

)
. (51)

The first main step in the proof of Theorem 6 consists in approximating all terms
dvM◦βW,n,kn

G,kn,i
that are potentially relevant for the limit analysis (because men with types

37The order of the upper bound for the approximation error depends on α, i.e. on how fast the length
of the intervals for which the uniform approximation should hold tends to infinity.
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from the intervals In,α might receive the corresponding utility increments with probabil-
ities that do not decay exponentially fast) by terms that involve only men’s equilibrium
strategy. Such a result is provided by Lemma 7.

Lemma 7. For α1 ∈ (0, 1), let (in) be an integer sequence such that in = O (nα1). Then,

for any α2 satisfying α2 >
α1
2 ,

max
0≤i≤in

∣∣∣∣∣dvM◦βW,n,kn
G,kn,i

− dvW◦βM,n,kn

F,n,k̄n+i
wv′M

w i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

 ∣∣∣∣∣ = O
(
nα2−1

)
.

Lemma 7 approximates each of the terms dvM◦βW,n,kn
G,kn,i

by an expression that involves
only the “corresponding” increment dvW◦βM,n,kn

F,n,k̄n+i
, w, and v′M evaluated at a point close to

E[βW,n,kn(Wi:kn)]. This result, which is of course based on (44), ultimately relies only on
the concentration properties of lower intermediate and extreme order statistics, formal-
ized in Corollaries 1 (i) and 2 (i), and on a lemma (Lemma 8 in Appendix C) which
shows that the terms dvW◦βM,n,kn

F,n,k̄n+ j
cannot vary too fast with j for j close to i, because the

order statistics involved in the calculation of these terms are central order statistics.
The second main step in the proof of Theorem 6 then consists in using the local limit

theorem (Theorem 5) and Lemma 7 to show that the right hand side of (51) is uniformly
approximated by mk̄n/n

mr
Ψ1[β̃M,n,kn]

′ on intervals In,α for α < 7
12 , with approximation errors

satisfying the bounds of Theorem 6. We do this in Lemmas 9-14 and in the proof of
Theorem 6 (see Online Appendix G).

Once Theorem 6 has been established, showing Theorem 2 becomes straightfor-
ward. First, as we have zn,α − zn,α = Θ

(
nα−

1
2

)
, β̃M,n,kn(zn,α) = E(n) and Ψ1[β̃M,n,kn](zn,α) =

E(n) (for any α > 1
2 , see the proof of Corollary 4), Theorem 6 implies the following

bounds for the differences β̃M,n,kn −
mk̄n/n

mr
Ψ1[β̃M,n,kn].

Corollary 4. For α ∈
(

1
2 ,

7
12

)
and ε > 0,∥∥∥∥∥β̃M,n,kn −

mk̄n/n

mr
Ψ1[β̃M,n,kn]

∥∥∥∥∥
∞,(−∞,zn,α]

= O
(
n

3α
2 +ε−1

)
. (52)

Secondly, as 3α
2 < 1 for some (in fact, all) α ∈

(
1
2 ,

7
12

)
and limn→∞

mk̄n/n

mr
= 1, Corollary

4 immediately yields the following result.

Corollary 5. The sequence
(
β̃M,n,kn − Ψ1[β̃M,n,kn]

)
converges locally uniformly to zero.

Theorem 2 then follows easily (see Appendix C) from Corollary 5 and Lemma 3.
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4 Discussion
We have approximated the continuum economy by Bayesian games with a known

number of players for which the other key properties of the competitive model (a deter-
ministic investment technology and frictionless matching) hold exactly. This approach
is standard in many areas of economic theory, including the related literatures on large
contests and on large double auctions, but there are of course other ways of approx-
imating the frictionless continuum model. In particular, one could consider a model
with some uncertainty about the exact numbers of men and women, add small shocks
to preferences and/or investments, or introduce some search frictions. Each of these
approaches corresponds to a reasonable way of making returns more noisy, and will
in particular increase the range of types on the long side who face substantial uncer-
tainty about whether they will be matched. An interesting question is therefore whether
our paper’s main economic insight (in unbalanced markets with NTU (and assortative)
matching where all matches are acceptable and agents on the long side strictly prefer
getting matched, the competition for partners always leads to overinvestment) also ob-
tains for these alternative ways of approximating the frictionless continuum model. As
each of the possible approaches requires a different set of techniques and poses signifi-
cant challenges on its own, we must leave this question for future work.

Appendix
The technically standard and simple proofs for Section 2.4 and Theorem 4 are given

in Online Appendices D and E. Theorem 3 is proven in Appendix B. The technical re-
sults of Section 3.2.1 are shown in Online Appendix F. Appendix C contains the proofs
of Lemma 7 (the key step in the proof of Theorem 6) and of Theorem 2 (conditional on
Theorem 6), whereas Online Appendix G contains the proof of Lemma 6 and the (long
and mostly technical) remainder of the proof of Theorem 6 (conditional on Lemma 7).
Online Appendix H contains four auxiliary lemmas used throughout the proofs.

A Additional notation for the proofs

For a vector u ∈ Rl, we let |u|∞ = maxi∈{0,...,l−1} |ui| denote its maximum norm and
|u|1 =

∑l−1
i=0 |ui| its l1-norm.38 Next, we define for all 0 ≤ i ≤ n − 1,

∆i,n := ξF,n−1,k̄n(m(i+1)/n) − ξF,n−1,k̄n(mi/n). (53)

Using (17) and ak̄n,n−1 = Θ
(
n−

1
2

)
, it follows that

min
0≤i≤n−1

∆i,n = Θ
(
n−

1
2
)

and max
0≤i≤n−1

∆i,n = Θ
(
n−

1
2
)
. (54)

38We use the | · |∞ notation for vectors and ∥ · ∥∞ for functions to avoid confusion in some proofs.
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B Proofs of Lemma 3 and Theorem 3

Proof of Lemma 3. By Lemma 2, any subsequence of re-scaled strategies (β̃M,nl,knl
) is

uniformly bounded. Corollary 3 and (18) imply that the subsequence is also equicon-
tinuous on any compact set. Applying the Arzèla-Ascoli Theorem for each compact
interval [−L, L], L ∈ N and using the usual (Cantor) diagonalization argument, we ob-
tain a subsequence of (β̃M,nl,knl

) that converges uniformly on every compact set. □

Proof of Theorem 3. We start by proving (31). Given a solution ζ̃∗ of (23) and recalling
that β̃∗ = Ξ2[ζ̃∗], we differentiate ζ̃∗ = Ψ2[ζ̃∗] and obtain, using (20), that

ζ̃′∗(x) = w
(
φ ∗ (vW ◦ β̃∗)

)′
(x) = w

(
φ ∗ (vW ◦ β̃∗)′

)
(x) = w

∫
R

φ(x − z)v′W
(
β̃∗(z)

)
β̃′∗(z)dz.

Using (21), integration by parts, and ζ̃∗(0) = 0, we also have

β̃′∗(z) = mr

∫ ∞

0
φ′(z − y)(vM ◦ ζ̃∗)(y)dy

= mr

(
φ(z)vM (0) +

∫ ∞

0
φ(z − y)v′M

(
ζ̃∗(y)

)
ζ̃′∗(y)dy

)
, (55)

so that (31) follows. Next, we note that∫
R

φ(x − z)
∫ ∞

0
φ(z − y)ζ̃′∗(y)dydz = φ ∗ (φ ∗ (ζ̃′∗1R+))(x)

= (φ ∗ φ) ∗ (ζ̃′∗1R+)(x) = φ0,2 ∗ (ζ̃′∗1R+)(x) =
∫ ∞

0
φ0,2(x − y)ζ̃′∗(y)dy, (56)

(where we have extended the function ζ̃′∗ in some arbitrary way on (−∞, 0), so that the
pointwise product of ζ̃′∗ and the indicator function 1R+ is defined on all of R). Here,
the second equality holds as the convolution is associative, and the third equality uses
the well-known identity φ ∗ φ = φ0,2. Using (31) and (56), and recalling that λζ̃∗ =
mrwv′M(ζ̃∗(∞))v′W(β̃∗(∞)), we obtain

ζ̃′∗(x) = mrwvM(0)
∫
R

φ(x − z)φ(z)v′W
(
β̃∗(z)

)
dz

+ mrw
∫
R

φ(x − z)v′W
(
β̃∗(z)

) ∫ ∞

0
φ(z − y)v′M

(
ζ̃∗(y)

)
ζ̃′∗(y)dydz

= min
(
1, λζ̃∗

) ∫ ∞

0
φ0,2(x − y)ζ̃′∗(y)dy + Rζ̃∗(x),
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where

Rζ̃∗(x) = mrwvM(0)
∫
R

φ(x − z)φ(z)v′W
(
β̃∗(z)

)
dz

+ mrw
∫
R

φ(x − z)
(
v′W

(
β̃∗(z)

)
− v′W

(
β̃∗(∞)

)) ∫ ∞

0
φ(z − y)v′M

(
ζ̃∗(y)

)
ζ̃′∗(y)dydz

+ mrw
∫
R

φ(x − z)v′W
(
β̃∗(∞)

) ∫ ∞

0
φ(z − y)

(
v′M

(
ζ̃∗(y)

)
− v′M

(
ζ̃∗(∞)

))
ζ̃′∗(y)dydz

+max
(
λζ̃∗ − 1, 0

) ∫ ∞

0
φ0,2(x − y)ζ̃′∗(y)dy. (57)

In particular, ζ̃′∗ coincides with a strictly positive solution of the Wiener-Hopf equation
(32). From (57) and Assumption 1, it is clear that Rζ̃∗ ≥ 0. Moreover, using vM(0) > 0
and (25) we obtain a simple uniform lower bound for Rζ̃∗: for all ζ̃∗ and all x ∈ R+,

0 < mrwvM(0)v′W
(
bM(mr,w)

)
φ0,2(x) ≤ Rζ̃∗(x). (58)

We now give a more detailed description of the relevant results about solutions of
the equation (Id − K)η = R (i.e., (30)), synthesizing the results from Arabadzhyan and
Engibaryan (1987, henceforth AE) and providing precise references to the correspond-
ing sections or theorems in AE, and use these results to prove (28). We focus on the
case of symmetric and nonnegative kernels, i.e., K(x) = K(−x) for all x ∈ R+ and K ≥ 0.
All results have generalizations for asymmetric kernels, but only the symmetric case is
relevant for us, due to the symmetry of φ0,2.

If ∥K∥L1(R) ≤ 1, the operator Id − K admits a factorization

Id − K = (Id −V−)(Id −V+), (59)

whereV+ andV− are operators of the form

(V+η)(x) =
∫ x

0
V(x − t)η(t)dt (60)

(V−η)(x) =
∫ ∞

x
V(t − x)η(t)dt, (61)

and V is a nonnegative function in L1(R+) that satisfies ∥V∥L1(R+) = 1 −
√

1 − ∥K∥L1(R).
Equation (59) is understood as the equality of endomorphisms of L1(R+) (see sections
0 and 1 in AE, which also describe in detail how the function V can be found).

Theorem 6.1 in AE shows that for ∥K∥L1(R) = 1 and any R ∈ L1(R+) with R , 0
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and R ≥ 0, (30) has a nonnegative solution η∗ ∈ L1
loc(R+),

39 which can be obtained as
follows (see the proof of Theorem 6.1 in AE). First, the equation (Id −V−)ψ = R has a
canonical solution ψ ∈ L1

loc(R+), i.e., a solution that is equal to the limit of the iterative
process ψn+1 = R +V−ψn for ψ0 = 0. This canonical solution exists by Theorem 3.1
in AE and satisfies ψ ≥ 0 and ψ , 0 (as an element of L1

loc(R+)). Next, the equation
(Id−V+)η = ψ, has a unique solution η ∈ L1

loc(R+), which satisfies η ≥ 0 and which, due
to ψ , 0 and ∥V∥L1(R+) = 1, cannot be in L1(R+) (see page 753 in AE for these results;
the fact η < L1(R+) follows from a simple argument using the monotone convergence
theorem). It is then easy to verify (see Lemma 5.1 and the sentence before Theorem 6.1
in AE) that η∗ = η indeed solves (30).40

Having constructed the solution η∗ of (30) in this way, it is not difficult to see (page
765 and Theorem 6.3 in AE) that (30) has also a canonical solution η∗∗, i.e., a so-
lution equal to the limit of the iterative process ηn+1 = R + Kηn for η0 = 0, that
η∗∗ is the minimal positive solution of (30), and that η∗∗ = η∗. In particular, pos-

itive solutions of the conservative equation are not integrable. As ζ̃′∗ is integrable
(∥ζ̃′∗∥L1(R+) ≤ bW(mr,w)) and coincides with a positive solution of the Wiener-Hopf
equation with kernel min

(
1, λζ̃∗

)
φ0,2 and inhomogeneous term Rζ̃∗ , it follows from the

above results that λζ̃∗ < 1. As described in the main text, it holds for any K ≥ 0 with
∥K∥L1(R) = 1, that ηλ,K,R1 ≤ ηλ,K,R2 if 0 ≤ R1 ≤ R2, and that for any R ∈ L1(R+), R , 0,
R ≥ 0, the functions ηλ,K,R converge monotonically to the minimal positive solution of
the conservative equation (Id − K)η = R if λ tends to 1 monotonically (see page 765
and the proof of Theorem 6.3 in AE). Using (58), (28) with λ̄ given by (33) is then
immediate for R = mrwvM(0)v′W

(
bM(mr,w)

)
φ0,2.41 □

C Proofs of Lemma 7 and Theorem 2

Remark 2. (i) We often use the following basic tools without explicitly mentioning

them: the triangle inequality, and its consequence that for y1, y2, y3, y4 ∈ R

|y1y2 − y3y4| ≤ |y1 − y3||y2| + |y3||y2 − y4|, (62)

the mean value theorem, and inequalities that bound an inner product of two vectors

(functions) by the product of the l1-norm (L1-norm) of one of the vectors (functions) and

the l∞-norm (L∞-norm) of the other vector (function).

39L1
loc(R+) is the space of locally integrable (integrable on every compact set) functions on R+.

40The additional verification step is necessary because (59) is an identity of endomorphisms of L1(R+),
but the solution found is only in L1

loc(R+).
41One could of course try to prove tighter uniform lower bounds for Rζ̃∗ based on (57), but this would

require delving much deeper into the theory for the nonlinear equation.
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(ii) As limn→∞ kn/n = 1 − r > 0, for α ∈ R a sequence of real numbers is of order

Θ (nα) if and only if it is of order Θ
(
kαn

)
.

Lemma 8. For any τ > 0 such that r ∈ (τ, 1 − τ),

max
k̄n<i<(1−τ)n

∣∣∣∣dvW◦βM,n,kn
F,n,i − dvW◦βM,n,kn

F,n,i−1

∣∣∣∣ = O
(
n−1

)
. (63)

Proof of Lemma 8. Throughout the proof, H(n) denotes the c.d.f. of the random variable
vW(βM,n,kn(M)), where M is a random variable with c.d.f. F. In particular, the support
of H(n) is [x(n), x(n)] = [vW(βM,n,kn(m)), vW(βM,n,kn(m))]. We let h(n) denote the density of
H(n). The usual change of variables formula yields

f (m) = h(n)(vW(βM,n,kn(m)))(vW ◦ βM,n,kn)
′(m) for all m ∈ [m,m]. (64)

The term dvW◦βM,n,kn
F,n,i = E[vW(βM,n,kn(Mi+1:n) − vW(βM,n,kn(Mi:n)] is the mean of the i-th

spacing for the order statistics of n i.i.d. draws from H(n). We first note a general
formula for differences between the means of adjacent spacings (David and Groeneveld
1982, equation 3).42 For all i ∈ {1, ..., n − 1},

dvW◦βM,n,kn
F,n,i − dvW◦βM,n,kn

F,n,i−1 =

∫ x(n)

x(n)

(n + 1)n
i(n + 1 − i)

Bi−1,n−1(H(n)(x))(H(n)(x) − µi,n)dx

=

∫ x(n)

x(n)

n + 1
i(n + 1 − i)

h(n)
i:n (x)

H(n)(x) − µi,n

h(n)(x)
dx,

where we used (8) for the second step. Fixing an arbitrary τ′ ∈ (0, τ), we obtain

max
k̄n<i<(1−τ)n

∣∣∣∣dvW◦βM,n,kn
F,n,i − dvW◦βM,n,kn

F,n,i−1

∣∣∣∣
≤ max

k̄n<i<(1−τ)n

∣∣∣∣∣∣
∫ xτ′

x(n)

(n + 1)n
i(n + 1 − i)

Bi−1,n−1(H(n)(x))(H(n)(x) − µi,n)dx

∣∣∣∣∣∣
+ max

k̄n<i<(1−τ)n

∣∣∣∣∣∣
∫ x1−τ′

xτ′

n + 1
i(n + 1 − i)

h(n)
i:n (x)

H(n)(x) − µi,n

h(n)(x)
dx

∣∣∣∣∣∣
+ max

k̄n<i<(1−τ)n

∣∣∣∣∣∣∣
∫ x(n)

x1−τ′

(n + 1)n
i(n + 1 − i)

Bi−1,n−1(H(n)(x))(H(n)(x) − µi,n)dx

∣∣∣∣∣∣∣ . (65)

To prove Lemma 8, we show that the second term on the right hand side of (65) is of
order O(n−1), and that the other two terms are of order E(n). We turn to the main term

42The formula is also a straightforward consequence of the first identity in (151) from Lemma 17.

36



first and observe that (for all i ≥ 1)

∣∣∣∣∣∣
∫ x1−τ′

xτ′

n + 1
i(n + 1 − i)

h(n)
i:n (x)

H(n)(x) − µi,n

h(n)(x)
dx

∣∣∣∣∣∣ ≤ n + 1
i(n + 1 − i)

∫ x1−τ′

xτ′
|H(n)(x) − µi,n|h

(n)
i:n (x)dx

minx∈[xτ′ ,x1−τ′ ] h(n)(x)

≤
n + 1

i(n + 1 − i)

∫ x(n)

x(n) |H(n)(x) − µi,n|h
(n)
i:n (x)dx

minx∈[xτ′ ,x1−τ′ ] h(n)(x)
=

n + 1
i(n + 1 − i)

E[|Ui:n − µi,n|]
minx∈[xτ′ ,x1−τ′ ] h(n)(x)

≤
n + 1

i(n + 1 − i)
Var[Ui:n]

1
2

minx∈[xτ′ ,x1−τ′ ] h(n)(x)
=

(
1

i(n + 1 − i)(n + 2)

) 1
2 1

minx∈[xτ′ ,x1−τ′ ] h(n)(x)
,

where the equality in the second line uses (34), the last inequality uses the Cauchy-
Schwarz inequality, and the final equality follows from Var[Ui:n] = i(n+1−i)

(n+1)2(n+2) . As
minm∈[m,m] f (m) > 0, ∥v′W∥∞ < ∞ and

∥∥∥β′M,n,kn

∥∥∥
∞,[m,m1−τ′ ]

= O
(
n

1
2

)
(by (45) from Lemma

6), (64) yields 1
minx∈[xτ′ ,x1−τ′ ]

h(n)(x) =
∥∥∥∥ (vW◦βM,n,kn )′

f

∥∥∥∥
∞,[mτ′ ,m1−τ′ ]

= O
(
n

1
2

)
.

As 0 < limn→∞
k̄n
n = r < 1 − τ implies maxk̄n<i<(1−τ)n

(
1

i(n+1−i)(n+2)

) 1
2
= Θ

(
n−

3
2

)
, it then

follows that maxk̄n<i<(1−τ)n

∣∣∣∣∫ x1−τ′

xτ′
n+1

i(n+1−i)h
(n)
i:n (x) H(n)(x)−µi,n

h(n)(x) dx
∣∣∣∣ = O

(
n−1

)
.

We still have to show that the first and the third summand in (65) are of order E(n).
This is a simple consequence of Corollary 2 (ii). Indeed, consider the first summand,
which is bounded by

(
xτ′ − x(n)

)
maxi>k̄n

n+1
i(n+1−i)∥nBi−1,n−1∥∞,[0,τ′]. Note then that xτ′ −

x(n) ≤ vW(bM(m,w)) and that, by (8), nBi−1,n−1 is the density of the i-th order statistic of
n draws from U(0, 1). As k̄n − ⌊τ

′n⌋ = Ω(1) (by the assumptions on τ′ and τ) Corollary
2 (ii) implies maxi>⌊τ′n⌋+k̄n−⌊τ′n⌋ ∥nBi−1,n−1∥∞,[0,τ′] = E(n). The argument for showing the
exponential decay of the third summand in (65) is analogous. □

Proof of Lemma 7. Given α1 ∈ (0, 1) and a sequence in = O (nα1), we assume without
loss of generality that α2 ∈

(
α1
2 , α1

)
. We start by fixing an integer sequence jn = Θ (nα2)

and define the events S i,n := {wµi− jn ,kn
≤ Wi:kn} ∩ {Wi+1:kn ≤ wµi+ jn ,kn

}, for 0 ≤ i ≤ kn − 1,
where by convention wµi− jn ,kn

= w if i < jn, and wµi+ jn ,kn
= w if i + jn > kn + 1. We denote

the complement of S i,n by S c
i,n. Corollary 1 (i) implies

max
0≤i≤in

P[S c
i,n] = E(n). (66)

Indeed, P[S c
i,n] ≤ P[Wi:kn < wµi− jn ,kn

] + P[Wi+1:kn > wµi+ jn ,kn
] which, by (35), is equal

to P
[
Ui:kn − µi,kn < max

{
−µi,kn ,

− jn
kn+1

}]
+ P

[
Ui+1:kn − µi+1,kn > min

{
jn−1
kn+1 , 1 − µi+1,kn

}]
. As

jn
kn+1 = Θ

(
kα2−1

n

)
and α2 >

α1
2 , Corollary 1 (i) yields max0≤i≤in P

[
Ui:kn − µi,kn < −

jn
kn+1

]
=

E(n) and max0≤i≤in P
[
Ui+1:kn − µi+1,kn >

jn−1
kn+1

]
= E(n), so that (using the trivial facts

P[Ui:kn < 0] = P[Ui:kn > 1] = 0 as well), (66) follows. We next define the condi-
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tional expectations

dvM◦βW,n,kn
G,kn,i

|S i,n := E
[
vM(βW,n,kn(Wi+1:kn)) − vM(βW,n,kn(Wi:kn))

∣∣∣∣∣S i,n

]
. (67)

As the random variables vM(βW,n,kn(Wi+1:kn))−vM(βW,n,kn(Wi:kn)) are bounded by vM(bW(m,w)),
Lemma 16 implies that dvM◦βW,n,kn

G,kn,i
|S i,n is a very good approximation of dvM◦βW,n,kn

G,kn,i
for all

i ≤ in: max0≤i≤in

∣∣∣∣∣dvM◦βW,n,kn
G,kn,i

− dvM◦βW,n,kn
G,kn,i

|S i,n

∣∣∣∣∣ ≤ 2vM(bW(m,w))) max0≤i≤in P[S c
i,n] = E(n).

With this preliminary truncation argument out of the way, we now turn to the main task,
which is to show the following bound:

max
0≤i≤in

∣∣∣∣∣dvM◦βW,n,kn
G,kn,i

|S i,n − dvW◦βM,n,kn

F,n,k̄n+i
wv′M

w i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

 ∣∣∣∣∣ = O
(
kα2−1

n

)
. (68)

To this end, we invoke (44) to express dvM◦βW,n,kn
G,kn,i

|S i,n as

dvM◦βW,n,kn
G,kn,i

|S i,n = E
[∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))β′W,n,kn
(w)dw

∣∣∣∣∣S i,n

]
= E

∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))w
kn−1∑
j=1

g j:kn−1(w)dvW◦βM,n,kn

F,n,k̄n+ j
dw

∣∣∣∣∣S i,n

 , (69)

and then start by showing the following approximation result, based on Lemma 8: for
κ(n)

i :=
∥∥∥∥∑kn−1

j=1 g j:kn−1dvW◦βM,n,kn

F,n,k̄n+ j
− dvW◦βM,n,kn

F,n,k̄n+i
(kn − 1)g

∥∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
, it holds that

max
0≤i≤in

κ(n)
i = O

(
kα2

n
)
. (70)

To prove (70), we argue first that for i ≤ in and w ∈ [wµi− jn ,kn
,wµi+ jn ,kn

], only a small
number of summands with indices close to i can contribute non-negligible amounts to∑kn−1

j=1 g j:kn−1(w)dvW◦βM,n,kn

F,n,k̄n+ j
. More precisely, we show

max
0≤i≤in

∥∥∥∥∥∥∥
kn−1∑
j=1

g j:kn−1dvW◦βM,n,kn

F,n,k̄n+ j
−

i+2 jn∑
j=i−2 jn

g j:kn−1dvW◦βM,n,kn

F,n,k̄n+ j

∥∥∥∥∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]

= E(kn), (71)

where by convention g j:kn−1 ≡ 0 if j ≤ 0. Indeed, Corollary 2 (i) applied for the sequence
in + jn = O

(
kα1

n
)

yields max0≤i≤in max j≥ jn ∥gi+ jn+ j:kn−1∥∞,[w,wµi+ jn ,kn
] = E(kn). Similarly,

max0≤i≤in max j≥ jn ∥gi− jn− j:kn−1∥∞,[wµi− jn ,kn
,w] = E(kn) follows from applying Corollary 2 (i)
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for the sequence (in − jn). Thus, it follows that

max
0≤i≤in

max
j<{i−2 jn,...,i+2 jn}

∥g j:kn−1∥∞,[wµi− jn ,kn
,wµi+ jn ,kn

] = E(kn), (72)

which, combined with
∣∣∣∣∣dvW◦βM,n,kn

F,n

∣∣∣∣∣
1
≤ vW(bM(m,w)), proves (71). Next, for τ > 0 such

that r ∈ (τ, 1 − τ), in + 2 jn = O
(
kα1

n
)

implies k̄n + in + 2 jn < (1 − τ)n for all but finitely

many n, so that Lemma 8 yields max0≤i≤in maxmax{0,i−2 jn}≤ j≤i+2 jn

∣∣∣∣∣dvW◦βM,n,kn

F,n,k̄n+ j
− dvW◦βM,n,kn

F,n,k̄n+i

∣∣∣∣∣ =
O

(
2 jn
n

)
= O

(
kα2−1

n

)
. In particular, as

∑kn−1
j=1 g j:kn−1(w) = (kn − 1)g(w) < kn∥g∥∞ = Θ(kn),

where we have used (147) for the first identity, it follows that

max
0≤i≤in

∥∥∥∥∥∥∥
i+2 jn∑

j=i−2 jn

g j:kn−1

[
dvW◦βM,n,kn

F,n,k̄n+ j
− dvW◦βM,n,kn

F,n,k̄n+i

]∥∥∥∥∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]

= O
(
kα2

n
)
. (73)

Finally, using (147), (72) and
∣∣∣∣∣dvW◦βM,n,kn

F,n

∣∣∣∣∣
∞

≤ vW(bM(m,w)), we also have

max
0≤i≤in

∥∥∥∥∥∥∥dvW◦βM,n,kn

F,n,k̄n+i

(kn − 1)g −
i+2 jn∑

j=i−2 jn

g j:kn−1


∥∥∥∥∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]

= E(kn),

which, together with (71) and (73) proves (70). We then show

max
0≤i≤in

∣∣∣∣∣dvM◦βW,n,kn
G,kn,i

|S i,n − dvW◦βM,n,kn

F,n,k̄n+i
wµi,kn

v′M(βW,n,kn(wµi,kn
))
∣∣∣∣∣ = O

(
kα2−1

n

)
, (74)

as the next main intermediate step in the proof of (68), and thus of Lemma 7. Recalling
(69), we first consider the differences

dvM◦βW,n,kn
G,kn,i

|S i,n − dvW◦βM,n,kn

F,n,k̄n+i
(kn − 1)E

[∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))wg(w)
∣∣∣∣∣S i,n

]
= E

∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))w

kn−1∑
j=1

g j:kn−1(w)dvW◦βM,n,kn

F,n,k̄n+ j
− dvW◦βM,n,kn

F,n,k̄n+i
(kn − 1)g(w)

 dw
∣∣∣∣∣S i,n

 .
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From the definitions of S i,n and κ(n)
i , we obtain∣∣∣∣∣dvM◦βW,n,kn

G,kn,i
|S i,n − dvW◦βM,n,kn

F,n,k̄n+i
(kn − 1)E

[∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))wg(w)
∣∣∣∣∣S i,n

] ∣∣∣∣∣
≤ κ(n)

i E
[∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))wdw
∣∣∣∣∣S i,n

]
≤ κ(n)

i ∥v
′
M∥∞w E[Wi+1:kn −Wi:kn |S i,n]

≤ κ(n)
i ∥v

′
M∥∞w

(
E[Wi+1:kn −Wi:kn] + 2(w − w)P[S c

i,n]
)
= O

(
kα2−1

n

)
. (75)

Here the inequality in the last line uses (150), and the final bound is then immediate
from (66), (70) and max0≤i≤in E[Wi+1:kn −Wi:kn] ≤

1
(kn+1) minw∈[w,w] g(w) = Θ(k−1

n ) (by (152)).

As max0≤i≤in dvW◦βM,n,kn

F,n,k̄n+i
= O

(
n−

1
2

)
(by (46)), we see from (75) that (74) follows if we can

show that

max
0≤i≤in

∣∣∣∣∣(kn − 1)E
[∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))wg(w)dw
∣∣∣∣∣S i,n

]
− wµi,kn

v′M(βW,n,kn(wµi,kn
))
∣∣∣∣∣

= O
(
kα2−

1
2

n

)
. (76)

To prove (76), we note first that

max
0≤i≤in

∥∥∥Id − wµi,kn

∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
≤

jn

kn + 1
1

minw∈[w,w] g(w)
= O

(
kα2−1

n

)
, (77)

where Id is the identity map on R. Moreover, we have

max
0≤i≤in

∥∥∥g − g(wµi,kn
)
∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
≤ ∥g′∥∞ max

0≤i≤in

∥∥∥Id − wµi,kn

∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
= O

(
kα2−1

n

)
,

(78)

and (using that
∥∥∥β′W,n,kn

∥∥∥
∞,[w,wµin+ jn ,kn

]
= O

(
n

1
2

)
, by (47))

max
0≤i≤in

∥∥∥v′M ◦ βW,n,kn − v′M(βW,n,kn(wµi,kn
))
∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]

≤
∥∥∥v′′M

∥∥∥
∞,[0,bW (m,w))]

∥∥∥β′W,n,kn

∥∥∥
∞,[w,wµin+ jn ,kn

]
max
0≤i≤in

∥∥∥Id − wµi,kn

∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
= O

(
kα2−

1
2

n

)
.

(79)

For γ(n)
i :=

∥∥∥(v′M ◦ βW,n,kn) g Id − v′M(βW,n,kn(wµi,kn
))wµi,kn

g(wµi,kn
)
∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
, it now
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follows that

max
0≤i≤in

γ(n)
i ≤ w∥g∥∞ max

0≤i≤in

∥∥∥v′M ◦ βW,n,kn − v′M(βW,n,kn(wµi,kn
))
∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]

+
∥∥∥v′M

∥∥∥
∞
∥g∥∞ max

0≤i≤in

∥∥∥Id − wµi,kn

∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]

+
∥∥∥v′M

∥∥∥
∞

w max
0≤i≤in

∥∥∥g − g(wµi,kn
)
∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
= O

(
kα2−

1
2

n

)
, (80)

where the last step uses (77)-(79). Using the definitions of γ(n)
i and S i,n, it follows that

max
0≤i≤in

∣∣∣∣∣E [∫ Wi+1:kn

Wi:kn

(
v′M(βW,n,kn(w))wg(w) − v′M(βW,n,kn(wµi,kn

))wµi,kn
g(wµi,kn

)
)

dw
∣∣∣∣∣S i,n

] ∣∣∣∣∣
≤ max

0≤i≤in

(
γ(n)

i E
[
Wi+1:kn −Wi:kn

∣∣∣∣∣S i,n

])
= O

(
kα2−

3
2

n

)
,

where the last step uses (80) and max0≤i≤in E
[
Wi+1:kn −Wi:kn

∣∣∣∣∣S i,n

]
= O

(
k−1

n

)
(by the

bound used in the proof of (75) above). This in turn yields

max
0≤i≤in

∣∣∣∣∣(kn − 1)E
[∫ Wi+1:kn

Wi:kn

v′M(βW,n,kn(w))wg(w)dw
∣∣∣∣∣S i,n

]
− v′M(βW,n,kn(wµi,kn

))wµi,kn
g(wµi,kn

)(kn − 1)E
[
Wi+1:kn −Wi:kn

∣∣∣∣∣S i,n

] ∣∣∣∣∣ = O
(
kα2−

1
2

n

)
.

In view of this bound and max0≤i≤in

∣∣∣∣∣E [
Wi+1:kn −Wi:kn

∣∣∣∣∣S i,n

]
− E

[
Wi+1:kn −Wi:kn

] ∣∣∣∣∣ = E(kn)
(see above), the bound (76) follows from the fact that

max
0≤i≤in

∣∣∣∣∣g(wµi,kn
)(kn − 1)E

[
Wi+1:kn −Wi:kn

]
− 1

∣∣∣∣∣ = O
(
kα2−1

n

)
. (81)

To show (81),43 we first invoke (151) and Corollary 2 (i) to obtain

max
0≤i≤in

∣∣∣∣∣g(wµi,kn
)E

[
Wi+1:kn −Wi:kn

]
−

∫ µi+ jn ,kn

µi− jn ,kn

Bi,kn(u)
g(wµi,kn

)
g(G−1(u))

du
∣∣∣∣∣

= max
0≤i≤in

∣∣∣∣∣ ∫ µi− jn ,kn

0
Bi,kn(u)

g(wµi,kn
)

g(G−1(u))
du +

∫ 1

µi+ jn ,kn

Bi,kn(u)
g(wµi,kn

)
g(G−1(u))

du
∣∣∣∣∣ = E(kn). (82)

To see the application of Corollary 2 (i), recall the assumptions about (in)n∈N and ( jn)n∈N,
and note that (kn+1)Bi,kn is the density of Ui+1:kn+1 (and

∥∥∥g(wµi,kn
)/g

∥∥∥
∞
< ∞). Next, using

max0≤i≤in

∥∥∥g(wµi,kn
)/g − 1

∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]
= O

(
kα2−1

n

)
(by (78) and minw∈[w,w] g(w) > 0)

43Showing that the expression is of order O
(
kα2−

1
2

n

)
would of course also be sufficient.

41



and
∫ 1

0
Bi,kn(u)du = 1

kn+1 = O
(
k−1

n

)
, it follows that

max
0≤i≤in

∣∣∣∣∣ ∫ µi+ jn ,kn

µi− jn ,kn

Bi,kn(u)
g(wµi,kn

)
g(G−1(u))

du −
∫ µi+ jn ,kn

µi− jn ,kn

Bi,kn(u)du
∣∣∣∣∣

≤ max
0≤i≤in


∥∥∥∥∥∥g(wµi,kn

)
g

− 1

∥∥∥∥∥∥
∞,[wµi− jn ,kn

,wµi+ jn ,kn
]

∫ µi+ jn ,kn

µi− jn ,kn

Bi,kn(u)du

 = O
(
kα2−2

n

)
. (83)

Using Corollary 2 (i) once more, we also have max0≤i≤in

∣∣∣∣∣ 1
kn+1 −

∫ µi+ jn ,kn

µi− jn ,kn
Bi,kn(u)du

∣∣∣∣∣ =
E(kn), which together with (82) and (83) shows

max
0≤i≤in

∣∣∣∣∣(kn − 1)g(wµi,kn
)E

[
Wi+1:kn −Wi:kn

]
−

kn − 1
kn + 1

∣∣∣∣∣ = O
(
kα2−1

n

)
,

and thus also (81). This concludes the proof of (76), and thus establishes (74).
To prove (68), and thus Lemma 7, it remains to be shown that

max
0≤i≤in

dvW◦βM,n,kn

F,n,k̄n+i

∣∣∣∣∣wµi,kn
v′M

(
βW,n,kn(wµi,kn

)
)
− wv′M

w i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

 ∣∣∣∣∣ = O
(
kα2−1

n

)
. (84)

As max0≤i≤in dvW◦βM,n,kn

F,n,k̄n+i
= O

(
n−

1
2

)
, (84) follows if we can show

max
0≤i≤in

∣∣∣∣∣wµi,kn
v′M(βW,n,kn(wµi,kn

)) − wv′M

w i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

 ∣∣∣∣∣ = O
(
kα2−

1
2

n

)
. (85)

We also note that

max
0≤i≤in

∣∣∣∣∣wµi,kn
v′M(βW,n,kn(wµi,kn

)) − wv′M

w i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

 ∣∣∣∣∣
≤ max

0≤i≤in

|wµi,kn
− w|

∥∥∥v′M
∥∥∥
∞
+ w

∥∥∥v′′M
∥∥∥
∞,[0,bW (m,w)]

∣∣∣∣∣βW,n,kn(wµi,kn
) − w

i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

∣∣∣∣∣
 ,

max0≤i≤in |wµi,kn
− w| ≤ µin ,kn

minw∈[w,w] g(w) = O
(
kα1−1

n

)
, and α1 − 1 = α1

2 + (α1
2 − 1) < α2 −

1
2 , so

that (85) follows from the bound

max
0≤i≤in

∣∣∣∣∣βW,n,kn(wµi,kn
) − w

i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

∣∣∣∣∣ = O
(
kα2−

1
2

n

)
, (86)

which we show now. First, up to exponentially decaying error terms, we may bound
βW,n,kn(wµi,kn

) from below by w
∑i− jn

j=1 dvW◦βM,n,kn

F,n,k̄n+ j
and from above by wµi,kn

∑i+ jn
j=1 dvW◦βM,n,kn

F,n,k̄n+ j
.
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Indeed, starting from (44), we have

βW,n,kn(wµi,kn
) =

∫ wµi,kn

w
w

kn−1∑
j=1

g j:kn−1(w)dvW◦βM,n,kn

F,n,k̄n+ j
dw

≥ w
i− jn∑
j=1

(∫ wµi,kn

w
g j:kn−1(w)dw

)
dvW◦βM,n,kn

F,n,k̄n+ j
= w

i− jn∑
j=1

G j:kn−1(wµi,kn
)dvW◦βM,n,kn

F,n,k̄n+ j

= w
i− jn∑
j=1

P[U j:kn−1 ≤ µi,kn]d
vW◦βM,n,kn

F,n,k̄n+ j
,

and, invoking Corollary 1 (i), it also follows that

max
0≤i≤in

 i− jn∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j
−

i− jn∑
j=1

P[U j:kn−1 ≤ µi,kn]d
vW◦βM,n,kn

F,n,k̄n+ j

 = E(kn).

Similarly, βW,n,kn(wµi,kn
) ≤ wµi,kn

(∑i+ jn
j=1 dvW◦βM,n,kn

F,n,k̄n+ j
+

∑kn−1
j=i+ jn+1 P[U j:kn−1 ≤ µi,kn]d

vW◦βM,n,kn

F,n,k̄n+ j

)
and,

invoking Corollary 1 (i) again, max0≤i≤in
∑kn−1

j=i+ jn+1 P[U j:kn−1 ≤ µi,kn]d
vW◦βM,n,kn

F,n,k̄n+ j
= E(kn). It

follows that

max
0≤i≤in

∣∣∣∣∣βW,n,kn(wµi,kn
) − w

i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

∣∣∣∣∣
≤ max

0≤i≤in
max

w
i∑

j=i− jn+1

dvW◦βM,n,kn

F,n,k̄n+ j
, wµi,kn

i+ jn∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j
− w

i∑
j=1

dvW◦βM,n,kn

F,n,k̄n+ j

 + E(kn).

Now, jn = O
(
kα2

n
)

and max0≤i≤in dvW◦βM,n,kn

F,n,k̄n+i
= O

(
n−

1
2

)
imply max0≤i≤in

∑i
j=i− jn+1 dvW◦βM,n,kn

F,n,k̄n+ j
=

O
(
kα2−

1
2

n

)
. Moreover, max0≤i≤in

(
wµi,kn

∑i+ jn
j=1 dvW◦βM,n,kn

F,n,k̄n+ j
− w

∑i
j=1 dvW◦βM,n,kn

F,n,k̄n+ j

)
is bounded by

vW(bM(m,w))) max0≤i≤in(wµi,kn
− w) + w max0≤i≤in

∑i+ jn
j=i+1 dvW◦βM,n,kn

F,n,k̄n+ j
, and hence also of or-

der O
(
kα2−

1
2

n

)
(the first summand is of order O

(
kα1−1

n

)
because wµin ,kn

− w is; the second

summand is of order O
(
kα2−

1
2

n

)
as jn = O

(
kα2

n
)

and max0≤i≤in+ jn dvW◦βM,n,kn

F,n,k̄n+i
= O

(
n−

1
2

)
).

This shows (86) and thereby concludes the proof. □

Proof of Corollary 4. In view of formula (43) and the definitions of β̃M,n,kn and zn,α,
α > 1

2 and Corollary 2 (ii) immediately imply β̃M,n,kn(zn,α) = E(n). Moreover, from the
definition of Ξ2 and the fact that −zn,α = Θ

(
nα−

1
2

)
, Ψ1[β̃M,n,kn](zn,α) = E(n) is immediate

from basic properties of the tail of a normal distribution. Consequently, (52) follows
from (50), because the length of the interval In,α is of order Θ

(
nα−

1
2

)
. □

Proof of Theorem 2. Let β̃ ∈ L, and let (β̃M,nl,knl
) be a subsequence of re-scaled equi-
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librium strategies that converges locally uniformly to β̃. From the definitions of Ξ1

and Ξ2 and ∥β̃M,nl,knl
∥∞ ≤ bM(m,w), it is completely straightforward to show that the

sequence (Ψ1[β̃M,nl,knl
]) then converges locally uniformly to Ψ1[β̃] (we omit the for-

mal proof). Thus, for any compact interval I ⊂ R, liml→∞ ∥β̃ − β̃M,nl,knl
∥∞,I = 0 and

liml→∞ ∥Ψ1[β̃M,nl,knl
] − Ψ1[β̃]∥∞,I = 0. Invoking the key ingredient, Corollary 5, which

implies that liml→∞ ∥β̃M,nl,knl
− Ψ1[β̃M,nl,knl

]∥∞,I = 0, we obtain from

∥β̃ − Ψ1[β̃]∥∞,I ≤ ∥β̃ − β̃M,nl,knl
∥∞,I + ∥β̃M,nl,knl

− Ψ1[β̃M,nl,knl
]∥∞,I + ∥Ψ1[β̃M,nl,knl

] − Ψ1[β̃]∥∞,I

that β̃ = Ψ1[β̃] holds on I. As I was arbitrary, this concludes the proof. □
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Online Appendix
Parts D-H of this Online Appendix contain all proofs not given in the Appendix.

Part I contains Remarks 3 and 4 (referred to in the main text).

D Proofs for Section 2.4

Proof of Lemma 1. We derive (13) using the standard first-order approach.44 First, in a
SSMBNE, a man with type m makes the lowest-ranking investment with probability 1.
This implies βM(m) = 0.45 Similarly, βW(w) = 0. Secondly, for a man with type m > m

who assumes that all other agents use strictly increasing, differentiable strategies βM and
βW , the problem of maximizing his expected utility is to choose s ∈ [m,m] in order to
maximize m

∑k−1
i=0 Fn−k+i:n−1(s)

(
dvM◦βW

G,k,i + vM(0)δi0

)
− βM(s). This implies the equilibrium

first order condition β′M(m) = m
∑k−1

i=0 fn−k+i:n−1(m)
(
dvM◦βW

G,k,i + vM(0)δi0

)
. Integrating, we

obtain (13). The proof of (14) is analogous. □

Proof of Lemma 2. The equilibrium interim expected utilities of the types m and w,
uM(m) and uW(w), satisfy46 0 ≤ uM(m) = mE[vM(βW(Wk:k))] − βM(m) < mvM(βW(w)) −
βM(m) and 0 ≤ uW(w) = wE[vW(βM(Mn:n))] − βW(w) < wvW(βM(m)) − βW(w). In
particular, (βM(m), βW(w)) ∈ I(m,w), which implies (15). □

Proof of Theorem 1. The first part of the proof is analogous to the one of Lemma 1 in
Dizdar, Moldovanu and Szech (2019). We define T : Rk

+ → R
k
+ and S : Rk

+ → R
k
+ as

follows: for any y ∈ Rk
+ and i ∈ {0, ..., k − 1},

Ti(y) := E

vW

∫ Mn−k+i+1:n

m
s

k−1∑
j=0

fn−k+ j:n−1(s)
(
y j + vM(0)δ j0

)
ds




− E

vW

∫ Mn−k+i:n

m
s

k−1∑
j=0

fn−k+ j:n−1(s)
(
y j + vM(0)δ j0

)
ds


 ,

S i(y) := E

vM

∫ Wi+1:k

w
s

k−1∑
j=1

g j:k−1(s)y j ds

 − vM

∫ Wi:k

w
s

k−1∑
j=1

g j:k−1(s)y j ds


 .

The mapping ι : βW 7→ dvM◦βW
G,k is a bijection between the set of SSMBNE and the set of

fixed points of S ◦T (given βW , βM is determined by (13)). First, if βW is an equilibrium
strategy, it is immediate from (13), (14) and the definitions of T and S that dvM◦βW

G,k is
a fixed point of S ◦ T . Next, the mapping is one-to-one (if ι(β1

W) = ι(β2
W) for two

equilibrium strategies β1
W and β2

W , then (13) and (14) imply β1
W = β2

W) and onto: if y∗

44See Appendices A and C of Moldovanu and Sela (2001) for details on sufficiency.
45Otherwise, the type m could decrease his investment without changing his expected match.
46Note that each agent can ensure a nonnegative expected utility by making a zero investment.

46



is a fixed point of S ◦ T , then βM(m) :=
∫ m

m
s
∑k−1

j=0 fn−k+ j:n−1(s)
(
y∗j + vM(0)δ j0

)
ds and

βW(w) :=
∫ w

w
s
∑k−1

j=1 g j:k−1(s)dvW◦βM
F,n,n−k+ jds are equilibrium strategies and dvM◦βW

G,k = y∗.
The existence of a fixed point now follows from Brouwer’s Theorem (as in Peters

2007, 2011). Indeed, S ◦ T is continuous and, as shown by the following argument,
it maps the compact and convex set {y ∈ Rk

+| |y|1 ≤ vM

(
bW(m,w)

)
− vM(0)} into itself.

First, we have for all y ∈ Rk
+:

|S (T (y))|1 =
k−1∑
i=0

S i(T (y)) = E

vM

∫ Wk:k

w
s

k−1∑
j=1

g j:k−1(s)T j(y)ds


 − vM(0)

≤ vM (w|T (y)|1) − vM(0) ≤ vM (wvW (m(|y|1 + vM(0)))) − vM(0).

Consequently, for any y ∈ Rk
+ that satisfies |y|1 ≤ vM(bW(m,w)) − vM(0),

|S (T (y))|1 ≤ vM

(
wvW

(
mvM

(
bW(m,w)

)))
− vM(0)

= vM

(
wvW

(
bM(m,w)

))
− vM(0) = vM

(
bW(m,w)

)
− vM(0),

where the two last identities use (4). This concludes the proof. □

E Proof of Theorem 4

Proof of Theorem 4. Let (γM, γW) be a pair of nondecreasing functions for which there
is a subsequence ((βM,nl j ,knl j

, βW,nl j ,knl j
)) of ((βM,nl,knl

, βW,nl,knl
)) such that lim j→∞ βM,nl j ,knl j

(m) =
γM(m) at all continuity points of γM and lim j→∞ βW,nl j ,knl j

(w) = γW(w) at all continuity
points of γW . We will show γM(m) = 0 for m < mr and (γM(mr+p(1−r)), γW(wp)) =
(β̃∗(∞), ζ̃∗(∞)) for p ∈ (0, p(β̃∗)). In view of Helly’s selection theorem, this proves The-
orem 4. As β̃M,nl j ,knl j

converges locally uniformly to β̃∗ ∈ L, it is immediate from Theo-
rem 2 and limn→∞ k̄n/n = r that γM(m) = 0 for m < mr, and that γM(mr+p(1−r)) ≥ β̃∗(∞)
and γW(wp) ≥ ζ̃∗(∞) for all p > 0. As γM and γW are nondecreasing, they have at most
countably many discontinuities. In particular, the set of values of p such that γM is con-
tinuous at mr+p(1−r) and γW is continuous at wp is dense in (0, p(β̃∗)). Consider any such
joint continuity point p ∈ (0, p(β̃∗)). It follows that as j → ∞, the equilibrium utility
of mr+p(1−r) converges to mr+p(1−r)vM(γW(wp)) − γM(mr+p(1−r)), and that the equilibrium
utility of wp converges to wpvW(γM(mr+p(1−r))) − γW(wp) (due to the continuity of γM

and γW , and because agents’ uncertainty about the (non-rescaled) type of their equilib-
rium partner vanishes in the limit). As (β̃M,nl j ,knl j

) converges to β̃∗, we also know that the
expected return for the investment β̃∗(∞) converges to the return from a deterministic
match with a partner with investment ζ̃∗(∞), and vice versa. Using that equilibrium
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investments maximize expected utilities and letting j→ ∞, we obtain

mr+p(1−r)vM(γW(wp)) − γM(mr+p(1−r)) ≥ mr+p(1−r)vM(ζ̃∗(∞)) − β̃∗(∞), (87)

wpvW(γM(mr+p(1−r))) − γW(wp) ≥ wpvW(β̃∗(∞)) − ζ̃∗(∞). (88)

As p ∈ (0, p(β̃∗)), the investments (β̃∗(∞), ζ̃∗(∞)) correspond to overinvestment for the
types mr+p(1−r) and wp (the pair of investments lies “above” the set P(mr+p(1−r),wp)), so
that (87) and (88) imply (γM(mr+p(1−r)), γW(wp)) ≤ (β̃∗(∞), ζ̃∗(∞)) (there is no (bM, bW) ,
(β̃∗(∞), ζ̃∗(∞)) with (bM, bW) ≥ (β̃∗(∞), ζ̃∗(∞)) that yields weakly higher utilities for
both agents). Thus, (γM(mr+p(1−r)), γW(wp)) = (β̃∗(∞), ζ̃∗(∞)) at any joint continuity
point and hence (using monotonicity and that the set of continuity points is dense),
(γM(mr+p(1−r)), γW(wp)) = (β̃∗(∞), ζ̃∗(∞)) for all p ∈ (0, p(β̃∗)). □

F Proofs for Section 3.2.1

Proof of Lemma 4. See Lemma 3.1.1 in Reiss (1989). □

Proof of Lemma 5. (i) This follows from ai,l =
(

B1,2(µi,l)
2l

) 1
2 , B1,2(u) = 2u(1 − u) and µi,l =

i
l+1 .

(ii) As α < 1 and il = Θ (lα) imply l+1−il
l+1 = Θ(1), we have ail,l =

(
il(l+1−il)

(l+1)2l

) 1
2
=

Θ

((
il

(l+1)l

) 1
2
)
= Θ

(
l
α
2−1

)
.

(iii) As B1,2(µil,l) = Θ(1), we obtain ail,l = Θ
(
l−

1
2

)
. □

Proof of Corollary 1. (i) We show a stronger result that quantifies the exponential rate
of decay: for any α2 ∈ (α1

2 , 1] and any sequence (εl) such that εl = Θ
(
lα2−1

)
,

min
1≤i≤il

(
− ln P

[
|Ui:l − µi,l| ≥ εl

])
= Ω

(
lmin{2α2−α1,α2}

)
. (89)

Clearly, (89) implies (37). To prove (89), we first set yi,l := εl
ai,l

and apply the exponential

bound (36). This yields P
[
|Ui:l − µi,l| ≥ εl

]
= P[|Ui:l − µi,l| ≥ yi,lai,l] ≤ 2e−

y2
i,l

3(1+yi,l/(lai,l)) for
any i ∈ {1, ..., l}. Thus,

− ln P
[
|Ui:l − µi,l| ≥ εl

]
≥ − ln 2 +

y2
i,l

3(1 + yi,l/(lai,l))
= − ln 2 +

1
3

a2
i,l

ε2
l

+
1
lεl

−1

. (90)

We have 1
lεl
= Θ (l−α2) and, using α1 < 1, il = O (lα1) and parts (i) and (ii) of Lemma

5, also max1≤i≤il
a2

i,l

ε2
l
= O

(
lα1−2α2

)
. Thus, max1≤i≤il

(
a2

i,l

ε2
l
+ 1

lεl

)
= O

(
lmax{α1−2α2,−α2}

)
, i.e.,

min1≤i≤il

(
a2

i,l

ε2
l
+ 1

lεl

)−1
= Ω

(
lmin{2α2−α1,α2}

)
. In view of (90), this proves (89).
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(ii) We show a stronger result: for α2 ∈ ( 1
2 , 1] and εl = Θ

(
lα2−1

)
,

min
il≤i≤l−il

(
− ln P

[
|Ui:l − µi,l| ≥ εl

])
= Ω

(
l2α2−1

)
. (91)

The estimate (90) still applies, and we have 1
lεl
= Θ (l−α2). Lemma 5 (iii) implies

maxil≤i≤l−il
a2

i,l

ε2
l
= Θ

(
l1−2α2

)
. As α2 ≤ 1, this yields maxil≤i≤l−il

(
a2

i,l

ε2
l
+ 1

lεl

)
= Θ

(
l1−2α2

)
,

i.e., minil≤i≤l−il

(
a2

i,l

ε2
l
+ 1

lεl

)−1
= Θ

(
l2α2−1

)
, so that (91) follows. □

Proof of Corollary 2. (i) We show a stronger result: for any α2 ∈ (α1
2 , α1] and any se-

quence ( jl) satisfying jl = Θ (lα2),

min
1≤i≤il

(
− ln

(
max
j≥i+ jl
∥h j:l∥∞,[x,xµi,l+γl ]

+ max
j≤i− jl
∥h j:l∥∞,[xµi,l−γl ,x]

))
= Ω

(
l2α2−α1

)
. (92)

This result, which we will derive using the bound (89), clearly implies Corollary 2 (i).
To prove (92), we note first that for any i,

max
j≥i+ jl
∥h j:l∥∞,[x,xµi,l+γl ]

= sup
[x,xµi,l+γl ]

max
j≥i+ jl

h j:l(x) ≤ sup
[x,xµi,l+γl ]

l∑
j=i+ jl

h j:l(x)

≤ l∥h∥∞Hi+ jl−1:l−1(xµi,l+γl) = l∥h∥∞P[Ui+ jl−1:l−1 ≤ µi,l + γl]

= l∥h∥∞P[Ui+ jl−1:l−1 − µi+ jl−1,l−1 ≤ −(µi+ jl−1,l−1 − (µi,l + γl))]. (93)

Here, the inequality in the second line uses (147) and the monotonicity of Hi+ jl−1:l−1,
and the subsequent equality uses (35). Using (148), we similarly bound the expression
max j≤i− jl ∥h j:l∥∞,[xµi,l−γl ,x] (if i ≤ jl, the term is of course trivially equal to zero):

max
j≤i− jl
∥h j:l∥∞,[xµi,l−γl ,x] = sup

[xµi,l−γl ,x]
max
j≤i− jl

h j:l(x) ≤ sup
[xµi,l−γl ,x]

i− jl∑
j=1

h j:l(x)

≤ l∥h∥∞(1 − Hi− jl:l−1(xµi,l−γl)) = l∥h∥∞P[Ui− jl:l−1 > µi,l − γl]

= l∥h∥∞P
[
Ui− jl:l−1 − µi− jl,l−1 > µi,l − γl − µi− jl,l−1

]
. (94)

As α1
2 < α2 ≤ α1 and jl = Θ(lα2), we have il + jl − 1 = O (lα1) (where α1 < 1). We then

apply the bound (89) from the proof of Corollary 1 (i) with respect to the sequences
(il + jl − 1)l∈N and εl = min1≤i≤il(µi+ jl−1,l−1 − (µi,l + γl)) = Θ

(
lα2−1

)
. This implies

min
1≤i≤il

(
− ln P

[
Ui+ jl−1:l−1 − µi+ jl−1,l−1 ≤ −(µi+ jl−1,l−1 − (µi,l + γl))

])
= Ω

(
l2α2−α1

)
.

Similarly, applying the bound (89) with respect to the sequences il − jl = O (lα1) and
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εl = min jl<i≤il(µi,l − γl − µi− jl,l−1) = Θ
(
lα2−1

)
yields

min
jl<i≤il

(
− ln P

[
Ui− jl:l−1 − µi− jl,l−1 > µi,l − γl − µi− jl,l−1

])
= Ω

(
l2α2−α1

)
.

In view of (93) and (94), this proves (92).
(ii) We show: if jl = Θ (lα2), then

min
il≤i≤l−il

(
− ln

(
max
j≥i+ jl
∥h j:l∥∞,[x,xµi,l+γl ]

+ max
j≤i− jl
∥h j:l∥∞,[xµi,l−γl ,x]

))
= Ω

(
l2α2−1

)
. (95)

Clearly, (95) implies (40). The bounds (93) and (94) still apply. As il = Ω(l), il ≤
l
2

and α2 < 1, there is a sequence (i′l) with i′l = Ω(l) and i′l ≤
l
2 , such that i′l < il − jl and

il+ jl−1 < l−i′l for all but finitely many l. In view of (93) and (94), (95) then follows from
applying the bound (91) from the proof of Corollary 1 (ii), with respect to the sequences
(i′l)l∈N and εl := minil≤i≤l−il min{µi,l − γl − µi− jl,l−1, µi+ jl−1,l−1 − (µi,l + γl))} = Θ

(
lα2−1

)
. □

Proof of Theorem 5. For any given H and 1 ≤ i ≤ l, we let Zi,l denote the function

Zi,l(y) =
1

ai,l

[
H

(
xµi,l + y

ai,l

h(xµi,l)

)
− µi,l

]
.

By the case m = 1 of Theorem 4.7.1 in Reiss (1989) there is a constant C1 > 0 such
that for all H satisfying the assumptions of the Theorem and all 1 ≤ i ≤ l, we have

|ȟi,l(y) − φ(y)| ≤ C1φ(y)
(
1 + |y|3

) [(
l

i(l−i)

) 1
2
+ ∥Z′′i,l∥∞,Ji,l

]
for all y ∈ Ji,l.47 As Z′′i,l(y) =

h′
(
xµi,l + y ai,l

h(xµi,l )

)
ai,l

h2(xµi,l )
, it follows that for all y ∈ Ji,l,

|ȟi,l(y) − φ(y)| ≤ C1φ(y)
(
1 + |y|3

) 
(

l
i(l − i)

) 1
2

+ ai,l
∥h′∥∞(

min[x,x] h(x)
)2

 .
This proves (41). The estimate (42) is a simple corollary: given the assumptions about

il, we have maxil≤i≤l−il

(
l

i(l−i)

) 1
2
= Θ

(
l−

1
2

)
and maxil≤i≤l−il ai,l = Θ

(
l−

1
2

)
(by parts (i) and

(iii) of Lemma 5). Thus, for any given H,

max
il≤i≤l−il


(

l
i(l − i)

) 1
2

+ ai,l
∥h′∥∞(

inf[x,x] h(x)
)2

 = Θ (
l−

1
2
)
. (96)

47Theorem 4.7.1 in Reiss (1989) requires only that h(xµi,l ) > 0 and that Zi,l is twice differentiable on a
sufficiently large interval around 0. If this interval is smaller than Ji,l, the approximation is only ensured
on the smaller interval. Under our assumption that h is non-zero and differentiable on the entire support,
this issue does not occur.
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Moreover, minil≤i≤l−il

(
i(l−i)

l

) 1
6
= Θ

(
l

1
6

)
, so that yl = Θ (lα) for α < 1

6 implies that
[−yl, yl] ⊂ ∩il≤i≤l−il Ji,l for all but finitely many l. Applying (41) and using (96) and
maxy∈[−yl,yl] 1 + |y|3 = Θ

(
l3α

)
, we obtain (42). □

G Proofs of Lemma 6 and Theorem 6

Proof of Lemma 6. The inequality in (45) is a straightforward implication of (43) and∣∣∣∣∣dvM◦βW,n,kn
G,kn

∣∣∣∣∣
1
= E[vM(βW,n,kn(Wkn:kn)) − vM(βW,n,kn(W0:kn))] ≤ vM(bW(m,w)) − vM(0),

where the last step uses Lemma 2. Thus, (45) is implied by the bound

max
k̄n≤i≤n−1

∥ fi:n−1∥∞,[m,m1−τ] = O
(
n

1
2
)
, (97)

which is just a general fact about densities of order statistics. To prove (97), we fix two
integer sequences (in) and ( jn), such that µn−in,n − (1 − τ) = O(n−1) and jn = Ω(nα) for
some α ∈

(
1
2 , 1

)
. Corollary 2 (ii) implies that max j>n−in+ jn ∥ f j:n−1∥∞,[m,m1−τ] = E(n), so

that (97) follows from

max
k̄n≤i≤n−in+ jn

∥ fi:n−1∥∞,[m,m1−τ] ≤ max
k̄n≤i≤n−in+ jn

∥ fi:n−1∥∞ = O
(
n

1
2
)
, (98)

which holds as k̄n = Ω(n), in − jn = Ω(n), and the supremum norms of the densities of
central order statistics from a distribution with bounded density are of order O

(
n

1
2

)
.48

More precisely, Lemma 18 in Online Appendix H shows that there is a universal con-
stant C such that maxk̄n≤i≤n−in+ jn ∥ fi:n−1∥∞ ≤ C∥ f ∥∞(n−1)

1
2 (mink̄n≤i≤n−in+ jn B1,2(µi−1,n−3))−

1
2 ,

so that (98) follows because mink̄n≤i≤n−in+ jn B1,2(µi−1,n−3) = Ω(1). This concludes the
proof of (45). To prove (46), we first fix an arbitrary τ′ ∈ (0, τ). Then,

max
0≤i≤(1−τ)n

P[Mi+1:n > m1−τ′] ≤ P[M⌈(1−τ)n⌉+1:n > m1−τ′] = P[U⌈(1−τ)n⌉+1:n > 1 − τ′]

= P[U⌈(1−τ)n⌉+1:n − µ⌈(1−τ)n⌉+1,n > 1 − τ′ − µ⌈(1−τ)n⌉+1,n] = E(n). (99)

Here, the first inequality uses the fact that higher order statistics first order stochastically
dominate lower order statistics, and the final step uses Corollary 1 (ii). As the random
variables vW(βM,n,kn(Mi+1:n)) − vW(βM,n,kn(Mi:n)) are all bounded by vW(bM(m,w)), (99)

48If 1 − τ < r, the set {k̄n, ..., n− in + jn} is empty for all but finitely many n, so that ∥β′M,n,kn
∥∞,[m,m1−τ] =

E(n) in this case. The relevant case for us is of course r < 1−τ, as we need to bound β′M,n,kn
also for types

above the marginal type mr.

51



and the elementary estimate (150) from Lemma 16 in Online Appendix H imply

max
0≤i≤(1−τ)n

∣∣∣∣∣dvW◦βM,n,kn
F,n,i − E

[
vW(βM,n,kn(Mi+1:n)) − vW(βM,n,kn(Mi:n))

∣∣∣∣∣Mi+1:n ≤ m1−τ′

] ∣∣∣∣∣
≤ 2vW(bM(m,w)) max

0≤i≤(1−τ)n
P[Mi+1:n > m1−τ′] = E(n).

Thus (46) follows from

max
0≤i≤(1−τ)n

E
[
vW(βM,n,kn(Mi+1:n)) − vW(βM,n,kn(Mi:n))

∣∣∣∣∣Mi+1:n ≤ m1−τ′

]
= O

(
n−

1
2
)
, (100)

which is a simple implication of (45) and the mean value theorem. Indeed,

max
0≤i≤(1−τ)n

E
[
vW(βM,n,kn(Mi+1:n)) − vW(βM,n,kn(Mi:n))

∣∣∣∣∣Mi+1:n ≤ m1−τ′

]
= max

0≤i≤(1−τ)n
E

[∫ Mi+1:n

Mi:n

v′W(βM,n,kn(m))β′M,n,kn
(m)dm

∣∣∣∣∣Mi+1:n ≤ m1−τ′

]
≤ ∥v′W∥∞

∥∥∥β′M,n,kn

∥∥∥
∞,[m,m1−τ′ ]

max
0≤i≤(1−τ)n

E
[
Mi+1:n − Mi:n

∣∣∣∣∣Mi+1:n ≤ m1−τ′

]
= ∥v′W∥∞

∥∥∥β′M,n,kn

∥∥∥
∞,[m,m1−τ′ ]

(
max

0≤i≤(1−τ)n
E[Mi+1:n − Mi:n] + E(n)

)
,

where we have used (99) and (150) again in the final step. Using (45) and the bound
max0≤i≤(1−τ)n E[Mi+1:n−Mi:n] = O

(
n−1

)
, which holds by (152) from Lemma 17 in Online

Appendix H, (100) and thus (46) follow.
To show the first bound in (47), we again fix some τ′ ∈ (0, τ) and let in = ⌊(1−τ′)kn⌋.

Starting from (44), we bound
∥∥∥β′W,n,kn

∥∥∥
∞,[w,w1−τ]

as follows:

∥∥∥β′W,n,kn

∥∥∥
∞,[w,w1−τ]

≤ w

∥∥∥∥∥∥∥
in∑

i=1

gi:kn−1dvW◦βM,n,kn

F,n,k̄n+i

∥∥∥∥∥∥∥
∞

+ w

∥∥∥∥∥∥∥
kn−1∑

i=in+1

gi:kn−1dvW◦βM,n,kn

F,n,k̄n+i

∥∥∥∥∥∥∥
∞,[w,w1−τ]

≤ w(kn − 1)∥g∥∞ max
1≤i≤in

dvW◦βM,n,kn

F,n,k̄n+i
+ w max

i>in
∥gi:kn−1∥∞,[w,w1−τ]

∣∣∣∣∣dvW◦βM,n,kn
F,n

∣∣∣∣∣
1
, (101)

where the second inequality uses (148) from Lemma 15 (to bound the first summand in
the first line by the first summand in the second line). As n− (k̄n+ in) = kn− in = Θ(kn) =
Θ(n), (46) implies max1≤i≤in dvW◦βM,n,kn

F,n,k̄n+i
= O

(
n−

1
2

)
. It follows that the first summand in

(101) is of order O
(
n

1
2

)
. The second summand is of order E(n), because a simple

application of Corollary 2 (ii) yields maxi>in ∥gi:kn−1∥∞,[w,w1−τ] = E(n). This proves the
first bound in (47).49 The second bound in (47) then follows by an argument analogous

49Note that we had to prove (46) first. Establishing (47) by an argument analogous to the one we used
to prove (45) is not feasible because, as is easy to see, the supremum norm of the density of extreme
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to the one used above to prove (46) from (45). □

We prepare the proof of Theorem 6 in a series of Lemmas (Lemmas 9-14). The key
approximation result of Lemma 7 enters the argument in Lemma 14.

Lemma 9. For any β̃ ∈ A1 and z ∈ R,

Ψ1[β̃]′(z) = mr

(
vM(0)φ(z) +

∫ ∞

0
φ(z − x)

(
vM ◦ Ξ1[β̃]

)′
(x) dx

)
= mrvM(0)φ(z) + mrw

∫ ∞

0
φ(z − x)v′M

(
Ξ1[β̃](x)

) (
φ ∗ (vW ◦ β̃)′(x)

)
dx. (102)

Proof of Lemma 9. This is immediate from the calculation in (55) and the calculation
preceding it in the proof of Theorem 3. □

Lemma 10. Let ξ1(y) = (y − y1)c1 and ξ2(y) = (y − y2)c2 be two affine functions on R

with c2 , 0. Then, for all y ∈ R, ξ1 ◦ ξ
−1
2 (y) = c1

c2
(y − ξ2(y1)).

Proof of Lemma 10. This is completely straightforward:

ξ1

(
ξ−1

2 (y)
)
= ξ1

(
y2 +

y
c2

)
=

c1

c2
y − c1(y1 − y2) =

c1

c2
(y − ξ2(y1)) .

□

Definition 4. For n ≥ 2, l ∈ N and 1 ≤ j ≤ l, let

C j,l,n :=
f (mµk̄n ,n−1

)a j,l

f (mµ j,l)ak̄n,n−1
, (103)

i.e., C j,l,n is the ratio of the slopes of ξF,n−1,k̄n and ξF,l, j.50 For any α ∈ [0, 1), let

Kα,n := max
0≤i≤⌊nα⌋

Ck̄n+i,n−1,n and Kα,n := min
0≤i≤⌊nα⌋

Ck̄n+i,n−1,n. (104)

Lemma 11. For α ∈ [0, 1), let (in) be an integer sequence satisfying in = O (nα). More-

over, for any n, let l, l′ ∈ {n − 1, n, n + 1}. Then,

order statistics (of women’s types) is of order Θ(kn).
50We suppress the dependence on kn in the notation.
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max
(m,z)∈[mµk̄n−in ,l

,mµk̄n+in ,l
]×[mµk̄n−in ,l′

,mµk̄n+in ,l′
]

∣∣∣∣∣ f (m)
f (z)
− 1

∣∣∣∣∣ = O
(
nα−1

)
, (105)

max
0≤i≤in

∣∣∣∣∣ ak̄n+i,l

ak̄n,n−1
− 1

∣∣∣∣∣ = O
(
nα−1

)
, (106)

max
0≤i≤in

∣∣∣∣∣ξF,n−1,k̄n(mµk̄n+i+1,l
) − ξF,n−1,k̄n(mµk̄n+i,l

) −
1

l′ak̄n,n−1

∣∣∣∣∣ = O
(
nα−

3
2
)
, (107)

max
0≤i≤in

|Ck̄n+i,l,n − 1| = O
(
nα−1

)
, (108)

|Kα,n − 1| = O
(
nα−1

)
, |Kα,n − 1| = O

(
nα−1

)
and

∣∣∣∣∣Kα,n

Kα,n

− 1
∣∣∣∣∣ = O

(
nα−1

)
. (109)

Proof of Lemma 11. From mµ j,l = F−1
(

j
l+1

)
and ∥

(
F−1

)′
∥∞ < ∞, it follows that

max
(m,z)∈[mµk̄n−in ,l

,mµk̄n+in ,l
]×[mµk̄n−in ,l′

,mµk̄n+in ,l′
]
|z − m| = O

(
nα−1

)
.

(105) then follows from f (m)/ f (z) − 1 = ( f (m) − f (z))/ f (z), min[m,m] f (z) > 0 and
∥ f ′∥∞ < ∞. Next, we note that

(
l

n − 1

) 1
2 ak̄n+i,l

ak̄n,n−1
=

B1,2

(
k̄n+i
l+1

)
B1,2

(
k̄n
n

) 
1
2

= 1 +

√
B1,2

(
k̄n+i
l+1

)
−

√
B1,2

(
k̄n
n

)
√

B1,2

(
k̄n
n

) .

On any compact interval that does not contain 0 or 1,
√

B1,2 is bounded away from
zero and has a bounded derivative. As limn→∞

k̄n
n = r ∈ (0, 1) and in = O (nα) for

α < 1, it follows that max0≤i≤in

√
B1,2

(
k̄n+i
l+1

)
−
√

B1,2

(
k̄n
n

)
√

B1,2

(
k̄n
n

) = O
(
nα−1

)
, which (together with

|(l/n − 1)1/2 − 1| = Θ
(
n−1

)
) implies (106). Next,

max
0≤i≤in

∣∣∣∣∣ξF,n−1,k̄n(mµk̄n+i+1,l
) − ξF,n−1,k̄n(mµk̄n+i,l

) −
1

l′ak̄n,n−1

∣∣∣∣∣
= max

0≤i≤in

∣∣∣∣∣ 1
ak̄n,n−1

∫ µk̄n+i+1,l

µk̄n+i,l

( f (mµk̄n ,n−1
)

f (F−1(u))
−

l + 1
l′

)
du

∣∣∣∣∣
≤

1
(l + 1)ak̄n,n−1

max
0≤i≤in

∥∥∥∥∥∥ f (mµk̄n ,n−1
)

f
−

l + 1
l′

∥∥∥∥∥∥
∞,[mµk̄n+i,l

,mµk̄n+i+1,l
]

= O
(
nα−

3
2
)
,

where the final step uses (105), |(l+1)/l′−1| = Θ
(
n−1

)
, ak̄n,n−1 = Θ

(
n−

1
2

)
and 1/(l+1) =

Θ
(
n−1

)
. This shows (107). The bound (108) is straightforward from of (103), (105) and

(106), and the bounds in (109) are immediate from (108). □
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Lemma 12 (Bounds on the L1-distance between normal distributions). For t1, t2 ∈ R,

∥φt1,1 − φt2,1∥L1(R) ≤
√

2|t1 − t2|. Moreover, there is a constant C > 0 such that for all

t ∈ R and all σ1, σ2 > 0, ∥φt,σ2
1
− φt,σ2

2
∥L1(R) ≤ C|σ2

1/σ
2
2 − 1|.

Proof of Lemma 12. The first bound is the case p = 1 of Example 2.3 in DasGupta
(2008). The second bound is the case n = 1 of Lemma 4.8 in Klartag (2007). □

Lemma 13. (i) Let n ≥ 2, l ∈ N and 1 ≤ j ≤ l. Then, for all z ∈ R,

f j:l

(
ξ−1

F,n−1,k̄n
(z)

)
=

f (mµk̄n ,n−1
)

ak̄n,n−1
C−1

j,l,n f̌ j:l

(
z − ξF,n−1,k̄n(mµ j,l)

C j,l,n

)
. (110)

(ii) Let α ∈
(

1
2 ,

2
3

)
and α′ ∈

(
1
2 ,

2
3

)
, and let (in) be an integer sequence satisfying in =

Θ (nα). Moreover, for any n, let l ∈ {n − 1, n, n + 1}. Then,

max
0≤i≤in

∥∥∥∥∥∥∥∥∥∥
C−1

k̄n+i,l,n
f̌k̄n+i:l

(
Id−ξF,n−1,k̄n (mµk̄n+i,l

)

Ck̄n+i,l,n

)
− φξF,n−1,k̄n (mµk̄n+i,l

),C2
k̄n+i,l,n

φξF,n−1,k̄n (mµk̄n+i,l
),C2

k̄n+i,l,n

∥∥∥∥∥∥∥∥∥∥
∞,In,α′

= O
(
n3 max{α,α′}−2

)
,

(111)

max
0≤i≤in

∥∥∥∥∥∥C−1
k̄n+i+1,l,n f̌k̄n+i+1:l

( Id − ξF,n−1,k̄n(mµk̄n+i+1,l
)

Ck̄n+i+1,l,n

)
− φξF,n−1,k̄n (mµk̄n+i,n−1

),1

∥∥∥∥∥∥
L1(In,α′ )

= O
(
n3 max{α,α′}−2

)
.

(112)

(iii) For any α ∈ [0, 1), 0 ≤ i ≤ ⌊nα⌋ and y ∈ R,

K
−1
α,nφ

 y
Kα,n

 ≤ C−1
k̄n+i,n−1,nφ

(
y

Ck̄n+i,n−1,n

)
≤ K−1

α,nφ

 y

Kα,n

 .
Proof of Lemma 13. (i) Recall from (12) that f̌ j:l is the density of the distribution of
ξF,l, j(M j:l), i.e., f j:l(m) = f̌ j:l

(
ξF,l, j(m)

)
f (mµ j,l)/a j,l. Lemma 10 and (103) yield

f j:l

(
ξ−1

F,n−1,k̄n
(z)

)
=

f (mµ j,l)
a j,l

f̌ j:l

(
ξF,l, j

(
ξ−1

F,n−1,k̄n
(z)

))
=

f (mµ j,l)
a j,l

f̌ j:l

 f (mµ j,l)ak̄n,n−1

f (mµk̄n ,n−1
)a j,l

(
z − ξF,n−1,k̄n(mµ j,l)

) = f (mµk̄n ,n−1
)

ak̄n,n−1
C−1

j,l,n f̌ j:l

(
z − ξF,n−1,k̄n(mµ j,l)

C j,l,n

)
.

(ii) Note that (49) implies max0≤i≤in maxz∈In,α′

∣∣∣∣∣z − ξF,n−1,k̄n(mµk̄n+i,l
)
∣∣∣∣∣ = Θ (

nmax{α,α′}− 1
2

)
.

Moreover, by (108), max0≤i≤in |Ck̄n+i,l,n − 1| = O
(
nα−1

)
. Hence, the maximal modulus
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of the values for which one of the densities f̌k̄n+i:l is evaluated in (111) satisfies

max
0≤i≤in

max
z∈In,α′

∣∣∣∣∣z − ξF,n−1,k̄n(mµk̄n+i,l
)

Ck̄n+i,l,n

∣∣∣∣∣ = Θ (
nmax{α,α′}− 1

2
)
.

As 0 < max{α, α′} − 1
2 <

1
6 , k̄n = Ω(n) and n − (k̄n + in) = Ω(n), the bound (42) from

Theorem 5 then implies

max
0≤i≤in

max
z∈In,α′

∣∣∣∣∣ f̌k̄n+i:l

(
z−ξF,n−1,k̄n (mµk̄n+i,l

)

Ck̄n+i,l,n

)
− φ

(
z−ξF,n−1,k̄n (mµk̄n+i,l

)

Ck̄n+i,l,n

) ∣∣∣∣∣
φ
(

z−ξF,n−1,k̄n (mµk̄n+i,l
)

Ck̄n+i,l,n

) = O
(
n3 max{α,α′}−2

)
.

Expanding the fractions by C−1
k̄n+i,l,n

, we obtain (111). For (112), we note first that (111)
and ∥φξF,n−1,k̄n (mµk̄n+i+1,l

),C2
k̄n+i+1,l,n

∥L1(In,α′ ) ≤ 1 imply (via the obvious L1 − L∞ estimate) that

max
0≤i≤in

∥∥∥∥∥C−1
k̄n+i+1,l,n f̌k̄n+i+1:l

( Id − ξF,n−1,k̄n(mµk̄n+i+1,l
)

Ck̄n+i+1,l,n

)
− φξF,n−1,k̄n (mµk̄n+i+1,n−1

),C2
k̄n+i+1,l,n

∥∥∥∥∥
L1(In,α′ )

= O
(
n3 max{α,α′}−2

)
. (113)

Next, (108) implies max0≤i≤in |C
2
k̄n+i+1,l,n

− 1| = O
(
nα−1

)
, so that, by Lemma 12,

max
0≤i≤in

∥φξF,n−1,k̄n (mµk̄n+i+1,l
),C2

k̄n+i+1,l,n
− φξF,n−1,k̄n (mµk̄n+i+1,l

),1∥L1(R) = O
(
nα−1

)
. (114)

Moreover, max0≤i≤in |ξF,n−1,k̄n(mµk̄n+i+1,l
) − ξF,n−1,k̄n(mµk̄n+i,n−1

)| = O
(
n−

1
2

)
, so that we also

obtain, from the other estimate in Lemma 12, that

max
0≤i≤in

∥φξF,n−1,k̄n (mµk̄n+i+1,l
),1 − φξF,n−1,k̄n (mµk̄n+i,n−1

),1∥L1(R) = O
(
n−

1
2
)
. (115)

Together, (113), (114) and (115) imply (112), because 3 max{α, α′} − 2 > α − 1 > −1
2 .

(iii) The bounds are immediate from (104), which implies Kα,n ≤ Ck̄n+i,n−1,n ≤ Kα,n,
combined with the fact that φ(y) is decreasing in |y|. □

Lemma 14. Let α ∈
(

1
2 ,

7
12

)
. Then, for any ε > 0,

max
0≤i≤⌊nα⌋

|dvM◦βW,n,kn
G,kn,i

− ∆k̄n+i,n

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(ξF,n−1,k̄n(mµk̄n+i,n−1

))| = O
(
n
α
2+ε−1

)
. (116)

Proof of Lemma 14. From the definition of Ξ1 (and using the symmetry of φ and the
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basic formula for differentiating a convolution), we have for all x ≥ 0,(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x) = v′M

(
Ξ1[β̃M,n,kn](x)

)
Ξ1[β̃M,n,kn]

′(x)

= v′M

(
w

∫
R

(vW ◦ β̃M,n,kn)(z)(φ(z − x) − φ(z))dz
)

w
∫
R

(vW ◦ β̃M,n,kn)
′(z)φ(z − x)dz.

(117)

In particular, this formula applies for x = ξF,n−1,k̄n(mµk̄n+i,n−1
) ≥ 0 (for all i ≥ 0). Accord-

ing to Lemma 7, we have the following bound, for any ε > 0:

max
0≤i≤⌊nα⌋

∣∣∣∣∣dvM◦βW,n,kn
G,kn,i

− dvW◦βM,n,kn

F,n,k̄n+i
wv′M

(
wE[vW(βM,n,kn(Mk̄n+i+1:n)) − vW(βM,n,kn(Mk̄n+1:n))]

) ∣∣∣∣∣
= O

(
n
α
2+ε−1

)
. (118)

Fixing an arbitrary α′ ∈
(
α, 7

12

)
, we prove the following approximation results below:

max
0≤i≤⌊nα⌋

∣∣∣∣∣v′M (
wE[vW(βM,n,kn(Mk̄n+i+1:n)) − vW(βM,n,kn(Mk̄n+1:n))]

)
− v′M

w ∫
In,α′

(vW ◦ β̃M,n,kn)(z)
(
φ
(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)
− φ (z)

)
dz

 ∣∣∣∣∣ = O
(
n3α′−2

)
,

(119)

max
0≤i≤⌊nα⌋

∣∣∣∣∣dvW◦βM,n,kn

F,n,k̄n+i
− ∆k̄n+i,n

∫
In,α′

(vW ◦ β̃M,n,kn)
′(z)φ

(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)

dz
∣∣∣∣∣ = O

(
n3α′− 5

2
)
.

(120)

As max0≤i≤⌊nα⌋

∫
R\In,α′

φ
(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)
= E(n) (and ∥v′′M∥∞ < ∞, ∥v′W∥∞ < ∞ and

vW◦β̃M,n,kn ≤ vW(bM(m,w)), it is then immediate that the additional errors from replacing
the integrals over In,α′ in (119) and (120) by integrals over R is of order E(n). In view
of this, the approximations (119) and (120) and formula (117), we obtain

max
0≤i≤⌊nα⌋

∣∣∣∣∣dvW◦βM,n,kn

F,n,k̄n+i
wv′M

(
wE[vW(βM,n,kn(Mk̄n+i+1:n)) − vW(βM,n,kn(Mk̄n+1:n))]

)
− ∆k̄n+i,n

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(ξF,n−1,k̄n(mµk̄n+i,n−1

))
∣∣∣∣∣ = O

(
n3α′− 5

2
)
. (121)

Indeed, if we approximate the product of wv′M
(
wE[vW(βM,n,kn(Mk̄n+i+1:n)) − vW(βM,n,kn(Mk̄n+1:n))]

)
and dvW◦βM,n,kn

F,n,k̄n+i
by the product of the respective approximating terms (from (119) and

(120), with the integrals replaced by integrals over R), applying a bound as in (62)
for the error, both summands in the error bound are of order O

(
n3α′− 5

2

)
, because of
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∥v′M∥∞ < ∞ and max0≤i≤⌊nα⌋ d
vW◦βM,n,kn

F,n,k̄n+i
= O

(
n−

1
2

)
(by (46)).

As α′ < 7
12 is equivalent to 3α′ − 5

2 < −
3
4 and, moreover, α

2 + ε − 1 > −3
4 for any

ε > 0, the bounds (118) and (121) together imply (116).
Of course, we still have to prove (119) and (120). Starting from

E[vW(βM,n,kn(Mk̄n+i+1:n))] =
∫ m

m

(
vW ◦ βM,n,kn

)
(m) fk̄n+i+1:n(m)dm, (122)

we first truncate the above integral at mµk̄n−⌊nα
′
⌋,n−1

and mµk̄n+⌊nα
′
⌋,n−1

and use (35) and Corol-
lary 1 (ii) to bound the resulting error:

max
0≤i≤⌊nα⌋

∣∣∣∣∣E[vW(βM,n,kn(Mk̄n+i+1:n))] −
∫ mµ

k̄n+⌊nα
′
⌋,n−1

mµ
k̄n−⌊nα

′
⌋,n−1

(
vW ◦ βM,n,kn

)
(m) fk̄n+i+1:n(m)dm

∣∣∣∣∣
≤ vW(bM(m,w)) max

0≤i≤⌊nα⌋
P

[
Uk̄n+i+1:n − µk̄n+i+1,n ≥ µk̄n+⌊nα

′
⌋,n−1 − µk̄n+i+1,n

]
+ vW(bM(m,w)) max

0≤i≤⌊nα⌋
P

[
Uk̄n+i+1:n − µk̄n+i+1,n ≤ µk̄n−⌊nα

′
⌋,n−1 − µk̄n+i+1,n

]
= E(n), (123)

where the last step uses Corollary 1 (ii) (note that k̄n = Ω(n), n − (k̄n + ⌊nα⌋) = Ω(n),
µk̄n+⌊nα

′
⌋,n−1 − µk̄n+⌊nα⌋+1,n = Θ

(
nα
′−1

)
51 and µk̄n+1,n − µk̄n−⌊nα

′
⌋,n−1 = Θ

(
nα
′−1

)
).

We change variables via z = ξF,n−1,k̄n(m) (in particular, “dm =
ak̄n ,n−1

f (mµk̄n ,n−1
)dz ”) and use

(110) to obtain∫ mµ
k̄n+⌊nα

′
⌋,n−1

mµ
k̄n−⌊nα

′
⌋,n−1

(
vW ◦ βM,n,kn

)
(m) fk̄n+i+1:n(m)dm

=

∫
In,α′

(
vW ◦ β̃M,n,kn

)
(z) C−1

k̄n+i+1,n,n f̌k̄n+i+1:n

z − ξF,n−1,k̄n(mµk̄n+i+1,n
)

C−1
k̄n+i+1,n,n

 dz.

Using ∥vW ◦ β̃M,n,kn∥∞,In,α′ ≤ vW(bM(m,w)) and the bound (112), it follows that

max
0≤i≤⌊nα⌋

∣∣∣∣∣ ∫ mµ
k̄n+⌊nα

′
⌋,n−1

mµ
k̄n−⌊nα

′
⌋,n−1

(
vW ◦ βM,n,kn

)
(m) fk̄n+i+1:n(m)dm

−

∫
In,α′

(
vW ◦ β̃M,n,kn

)
(z)φ

(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)

dz
∣∣∣∣∣ = O

(
n3α′−2

)
. (124)

51This is true because α′ > α.
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Taken together, (123) and (124) establish

max
0≤i≤⌊nα⌋

∣∣∣∣∣E[vW(βM,n,kn(Mk̄n+i+1:n))]

−

∫
In,α′

(
vW ◦ β̃M,n,kn

)
(z)φ

(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)

dz
∣∣∣∣∣ = O

(
n3α′−2

)
. (125)

In particular, as ξF,n−1,k̄n(mµk̄n ,n−1
) = 0, it follows from (125) (and applying the triangle

inequality) that

max
0≤i≤⌊nα⌋

∣∣∣∣∣wE[vW(βM,n,kn(Mk̄n+i+1:n)) − vW(βM,n,kn(Mk̄n+1:n))]

− w
∫

In,α′

(
vW ◦ β̃M,n,kn

)
(z)

(
φ
(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)
− φ (z)

)
dz

∣∣∣∣∣ = O
(
n3α′−2

)
.

As ∥v′′M∥∞,[0,bW (m,w)] < ∞, this implies (119). To prove (120), we note first that

dvW◦βM,n,kn

F,n,k̄n+i
=

∫ m

m

(
vW ◦ βM,n,kn

)
(m)( fk̄n+i+1:n(m) − fk̄n+i:n(m))dm

=

∫ m

m

(
vW ◦ βM,n,kn

)′ (m)(Fk̄n+i:n(m) − Fk̄n+i+1:n(m))dm

=

∫ m

m

(
vW ◦ βM,n,kn

)′ (m)
fk̄n+i+1:n+1(m)
(n + 1) f (m)

dm, (126)

where the first equation uses only the definition of dvW◦βM,n,kn

F,n,k̄n+i
, the second equation follows

from integrating by parts, and the final equation uses (7) and (8). Therefore (compare
(126) and (122)), the proof of (120) is similar to, albeit a bit more involved than, the
proof of (125): first, from (126) and Corollary 2 (ii), it follows that

max
0≤i≤⌊nα⌋

∣∣∣∣∣dvW◦βM,n,kn

F,n,k̄n+i
−

∫ mµ
k̄n+⌊nα

′
⌋,n−1

mµ
k̄n−⌊nα

′
⌋,n−1

(
vW ◦ βM,n,kn

)′ (m)
fk̄n+i+1:n+1(m)
(n + 1) f (m)

dm
∣∣∣∣∣

≤
vW(bM(m,w)) − vW(0)
(n + 1) minm∈[m,m] f (m)

max
0≤i≤⌊nα⌋

∥∥∥ fk̄n+i+1:n+1

∥∥∥
∞,[m,mµ

k̄n−⌊nα
′
⌋,n−1

]∪[mµ
k̄n+⌊nα

′
⌋,n−1

,m]
= E(n).

(127)

Using
(
vW ◦ β̃M,n,kn

)′
(z) f (mµk̄n ,n−1

)/ak̄n,n−1 =
(
vW ◦ βM,n,kn

)′ (ξ−1
F,n−1,k̄n

(z)), which holds by
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the definition of β̃M,n,kn (see also (48)), and (110), it follows that∫ mµ
k̄n+⌊nα

′
⌋,n−1

mµ
k̄n−⌊nα

′
⌋,n−1

(
vW ◦ βM,n,kn

)′ (m)
fk̄n+i+1:n+1(m)
(n + 1) f (m)

dm

=
f (mµk̄n ,n−1

)

(n + 1)ak̄n,n−1

∫
In,α′

(
vW ◦ β̃M,n,kn

)′
(z)

C−1
k̄n+i+1,n+1,n

f̌k̄n+i+1:n+1

(
z−ξF,n−1,kc

n
(mµk̄n+i+1,n+1

)

Ck̄n+i+1,n+1,n

)
f
(
ξ−1

F,n−1,k̄n
(z)

) dz.

Using (n + 1)ak̄n,n−1 = Θ
(
n

1
2

)
, ∥(vW ◦ β̃M,n,kn)

′∥∞,In,α′ = O(1) (by Corollary 3) and

∥ f (mµk̄n ,n−1
)/( f ◦ ξ−1

F,n−1,k̄n
)∥∞,In,α′ = O(1), we have

∥∥∥∥∥∥ f (mµk̄n ,n−1
)(vW◦β̃M,n,kn)′

(n+1)ak̄n ,n−1

(
f◦ξ−1

F,n−1,k̄n

)
∥∥∥∥∥∥
∞,In,α′

= O
(
n−

1
2

)
.

Combining this with the L1-bound (112) from Lemma 13 ii), we obtain

max
0≤i≤⌊nα⌋

∣∣∣∣∣ ∫ mµ
k̄n+⌊nα

′
⌋,n−1

mµ
k̄n−⌊nα

′
⌋,n−1

(
vW ◦ βM,n,kn

)′ (m)
fk̄n+i+1:n+1(m)
(n + 1) f (m)

dm

−
f (mµk̄n ,n−1

)

(n + 1)ak̄n,n−1

∫
In,α′

(
vW ◦ β̃M,n,kn

)′
(z)
φ
(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)

f
(
ξ−1

F,n−1,k̄n
(z)

) dz
∣∣∣∣∣ = O

(
n3α′− 5

2
)
.

(128)

Next, ∥ f (mµk̄n ,n−1
)/( f ◦ ξ−1

F,n−1,k̄n
) − 1∥∞,In,α′ = O

(
nα
′−1

)
(by (105)), (n + 1)ak̄n,n−1 = Θ

(
n

1
2

)
and max0≤i≤⌊nα⌋ |∆k̄n+i,n − (n + 1)−1a−1

k̄n,n−1
| = O

(
nα−

3
2

)
(by (107)) imply

max
0≤i≤⌊nα⌋

∥∥∥∥∥∥∥ 1
(n + 1)ak̄n,n−1

f (mµk̄n ,n−1
)

f ◦ ξ−1
F,n−1,k̄n

− ∆k̄n+i,n

∥∥∥∥∥∥∥
∞,In,α′

= O
(
nα
′− 3

2
)
.

Combined with max0≤i≤⌊nα⌋ ∥φξF,n−1,k̄n (mµk̄n+i,n−1
),1 (vW ◦ β̃M,n,kn)

′∥L1(In,α′ ) = O(1) (as ∥(vW ◦

β̃M,n,kn)
′∥∞,In,α′ = O(1), by Corollary 3), this yields

max
0≤i≤⌊nα⌋

∣∣∣∣∣ f (mµk̄n ,n−1
)

(n + 1)ak̄n,n−1

∫
In,α′

(
vW ◦ β̃M,n,kn

)′
(z)
φ
(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)

f
(
ξ−1

F,n−1,k̄n
(z)

) dz

− ∆k̄n+i,n

∫
In,α′

(
vW ◦ β̃M,n,kn

)′
(z)φ

(
z − ξF,n−1,k̄n(mµk̄n+i,n−1

)
)

dz
∣∣∣∣∣ = O

(
nα
′− 3

2
)
. (129)

Taken together, (127), (128) and (129) prove (120) (note that α′− 3
2 < 3α′− 5

2 ), and thus
Lemma 14. □

Proof of Theorem 6. Given ε > 0, we fix some α′ ∈
(
α, 7

12

)
satisfying α′

2 < α
2 + ε

and note first that (51) and max j≥k̄n+⌊nα
′
⌋ ∥ f j:n−1∥∞,[m,mµk̄n+⌊nα⌋,n−1

] = E(n) (which holds by
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Corollary 2 (ii), as ⌊nα
′

⌋ − ⌊nα⌋ = Θ
(
nα
′
)

and α′ > 1
2 ), we have∥∥∥∥∥∥∥∥β̃′M,n,kn

− ξ−1
F,n−1,k̄n

⌊nα
′
⌋−1∑

i=0

(
dvM◦βW,n,kn

G,kn,i
+ vM(0)δi0

) ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n+i:n−1 ◦ ξ
−1
F,n−1,k̄n

∥∥∥∥∥∥∥∥
∞,In,α

= E(n). (130)

Next, as ∥ξ−1
F,n−1,k̄n

∥∞,In,α = Θ(1) and ∥β̃′M,n,kn
∥∞,In,α = O(1) (by Corollary 3), (130) implies

in particular that∥∥∥∥∥∥∥∥
⌊nα
′
⌋−1∑

i=0

(
dvM◦βW,n,kn

G,kn,i
+ vM(0)δi0

) ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n+i:n−1 ◦ ξ
−1
F,n−1,k̄n

∥∥∥∥∥∥∥∥
∞,In,α

= O(1).

Using that ∥ξ−1
F,n−1,k̄n

− mµk̄n ,n−1
∥∞,In,α = Θ

(
nα−1

)
, it thus follows that

∥∥∥∥∥∥∥∥
(
ξ−1

F,n−1,k̄n
− mµk̄n ,n−1

) ⌊nα′ ⌋−1∑
i=0

(
dvM◦βW,n,kn

G,kn,i
+ vM(0)δi0

) ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n+i:n−1 ◦ ξ
−1
F,n−1,k̄n

∥∥∥∥∥∥∥∥
∞,In,α

= O
(
nα−1

)
. (131)

Fixing some ε′ > 0 such that α′

2 + ε
′ < α

2 + ε, we show below that

∥∥∥∥∥ ⌊nα
′
⌋−1∑

i=0

(
dvM◦βW,n,kn

G,kn,i
+ vM(0)δi0

) ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n+i:n−1 ◦ ξ
−1
F,n−1,k̄n

−
Ψ1[β̃M,n,kn]

′

mr

∥∥∥∥∥
∞,In,α

= O
(
n
α′

2 +ε
′− 1

2

)
. (132)

The bounds (130), (131) and (132) imply (50), and hence the claim of Theorem 6,
because α − 1 < α′

2 + ε
′ − 1

2 (as α − 1 < α−1
2 < α′−1

2 ) and α′

2 + ε
′ < α

2 + ε.
To prove (132), we note first that by (110)

ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n+i:n−1

(
ξ−1

F,n−1,k̄n
(z)

)
= C−1

k̄n+i,n−1,n f̌k̄n+i:n−1

(z − ξF,n−1,k̄n(mµk̄n+i,n−1
)

Ck̄n+i,n−1,n

)
.

for all z ∈ R. Thus, the bound (111) yields

max
0≤i≤⌊nα′ ⌋

∥∥∥∥∥∥∥∥
ak̄n ,n−1

f (mµk̄n ,n−1
) fk̄n+i:n−1 ◦ ξ

−1
F,n−1,k̄n

φξF,n−1,k̄n (mµk̄n+i,n−1
),C2

k̄n+i,n−1,n

− 1

∥∥∥∥∥∥∥∥
∞,In,α

= O
(
n3α′−2

)
. (133)

In particular, ∥( fk̄n:n−1◦ξ
−1
F,n−1,k̄n

)ak̄n,n−1/(φ f (mµk̄n ,n−1
))−1∥∞,In,α = O

(
n3α′−2

)
(as ξF,n−1,k̄n(mµk̄n ,n−1

) =
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0 and Ck̄n,n−1,n = 1), which (as φ is bounded) implies∥∥∥∥∥∥vM(0)
ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n:n−1 ◦ ξ
−1
F,n−1,k̄n

− vM(0)φ

∥∥∥∥∥∥
∞,In,α

= O
(
n3α′−2

)
.

In view of equation (102) for Ψ1[β̃M,n,kn]
′ and 3α′ − 2 < α′

2 −
1
2 , it follows that to prove

(132), we still have to show that

∥∥∥∥∥ ⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n+i:n−1 ◦ ξ
−1
F,n−1,k̄n

−

∫ ∞

0
φ(Id − x)

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

∥∥∥∥∥
∞,In,α

= O
(
n
α′

2 +ε
′− 1

2

)
. (134)

The proof of (134) relies on Lemma 14 and on the bound (133). To deal with the
minor nuisance that the approximation of the terms ( fk̄n+i:n−1 ◦ ξ

−1
F,n−1,k̄n

)ak̄n,n−1/ f (mµk̄n ,n−1
)

provided by (133) involves normal distributions with different variances, we will use
Lemma 13 (iii), which ensures that for all 0 ≤ i ≤ ⌊nα

′

⌋ and all z ∈ R and t ∈ R,

Kα′,n

Kα′,n

φt,K2
α′ ,n

(z) ≤ φt,C2
k̄n+i,n−1,n

(z) ≤
Kα′,n

Kα′,n

φ
t,K

2
α′ ,n

(z). (135)

As a first step towards proving (134), we show that∥∥∥∥∥∥∥∥
⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

 ak̄n,n−1

f (mµk̄n ,n−1
)

fk̄n+i:n−1 ◦ ξ
−1
F,n−1,k̄n

− φξF,n−1,k̄n (mµk̄n+i,n−1
),C2

k̄n+i,n−1,n


∥∥∥∥∥∥∥∥
∞,In,α

= O
(
n3α′−2

)
. (136)

To this end, we note first that∥∥∥∥∥∥∥∥
⌊nα
′
⌋−1∑

i=0

φ
ξF,n−1,k̄n (mµk̄n+i,n−1

),K
2
α′ ,n

∥∥∥∥∥∥∥∥
∞,In,α

= O
(
n

1
2
)
. (137)

Indeed, 0 = ξF,n−1,k̄n(mµk̄n ,n−1
) < ξF,n−1,k̄n(mµk̄n+1,n−1

) < ... < ξF,n−1,k̄n(mµk̄n+⌊nα
′
⌋,n−1

) defines a
partition of the interval I+n,α′ , and (54) shows that the maximum and the minimum length
of the corresponding subintervals are of order Θ

(
n−

1
2

)
. In particular,∥∥∥∥∥∥∥∥

⌊nα
′
⌋−1∑

i=0

∆k̄n+i,nφξF,n−1,k̄n (mµk̄n+i,n−1
),K

2
α′ ,n

∥∥∥∥∥∥∥∥
∞,In,α

= O(1), (138)
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because for every n and z ∈ In,α,
∑⌊nα′ ⌋−1

i=0 ∆k̄n+i,nφξF,n−1,k̄n (mµk̄n+i,n−1
),K

2
α′ ,n

(z) is a (left) Riemann

sum for the integral
∫

I+n,α′
φ

0,K
2
α′ ,n

(z − x)dx. (138) and (54) show (137).

From (137), the second inequality in (135), max0≤i≤⌊nα′ ⌋ d
vM◦βW,n,kn
G,kn,i

= O
(
n−

1
2

)
(by (47))

and Kα′ ,n

Kα′ ,n
= O(1) (by (109)), it then follows that

∥∥∥∥∥∥∥∥
⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

φξF,n−1,k̄n (mµk̄n+i,n−1
),C2

k̄n+i,n−1,n

∥∥∥∥∥∥∥∥
∞,In,α

≤

(
max

0≤i≤⌊nα′ ⌋−1
dvM◦βW,n,kn

G,kn,i

)
Kα′,n

Kα′,n

∥∥∥∥∥∥∥∥
⌊nα
′
⌋−1∑

i=0

φ
ξF,n−1,k̄n (mµk̄n+i,n−1

),K
2
α′ ,n

∥∥∥∥∥∥∥∥
∞,In,α

= O(1).

The latter result and (133) imply (136) (via the obvious l1 − l∞ bound for the sum in
R⌊n

α′ ⌋, using that all terms dvM◦βW,n,kn
G,kn,i

φξF,n−1,k̄n (mµk̄n+i,n−1
),C2

k̄n+i,n−1,n
(z) are nonnegative). Next, as

all dvM◦βW,n,kn
G,kn,i

are nonnegative, (135) implies for all z ∈ R,

Kα′,n

Kα′,n

⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

φξF,n−1,k̄n (mµk̄n+i,n−1
),K2

α′ ,n
(z) ≤

⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

φξF,n−1,k̄n (mµk̄n+i,n−1
),C2

k̄n+i,n−1,n
(z)

≤
Kα′,n

Kα′,n

⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

φ
ξF,n−1,k̄n (mµk̄n+i,n−1

),K
2
α′ ,n

(z). (139)

Given (136), (139), and 3α′ − 2 < α′

2 −
1
2 , we see that (134) follows if we can show both

∥∥∥∥∥Kα′,n

Kα′,n

⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

φξF,n−1,k̄n (mµk̄n+i,n−1
),K2

α′ ,n

−

∫ ∞

0
φ(Id − x)

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

∥∥∥∥∥
∞,In,α

= O
(
n
α′

2 +ε
′− 1

2

)
(140)

and

∥∥∥∥∥Kα′,n

Kα′,n

⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

φ
ξF,n−1,k̄n (mµk̄n+i,n−1

),K
2
α′ ,n

−

∫ ∞

0
φ(Id − x)

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

∥∥∥∥∥
∞,In,α

= O
(
n
α′

2 +ε
′− 1

2

)
. (141)

We now prove (141). The proof of (140) is completely analogous. First, using Lemma
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14 (for α′ and ε′) and (137), we obtain

∥∥∥∥∥ ⌊nα
′
⌋−1∑

i=0

(
dvM◦βW,n,kn

G,kn,i
− ∆k̄n+i,n

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(ξF,n−1,k̄n(mµk̄n+i,n−1

))
)
φ
ξF,n−1,k̄n (mµk̄n+i,n−1

),K
2
α′ ,n

∥∥∥∥∥
∞,In,α

= O
(
n
α′

2 +ε
′− 1

2

)
. (142)

Next, we note that (for any n and any z ∈ In,α),

⌊nα
′
⌋−1∑

i=0

∆k̄n+i,n

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(ξF,n−1,k̄n(mµk̄n+i,n−1

))φ
ξF,n−1,k̄n (mµk̄n+i,n−1

),K
2
α′ ,n

(z)

is a (left) Riemann sum for the integral∫
I+n,α′

φ
0,K

2
α′ ,n

(z − x)
(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx. (143)

By (54), the mesh size of the corresponding partition, i.e., max0≤i≤⌊nα′ ⌋−1 ∆k̄n+i,n is of
order Θ

(
n−

1
2

)
, and it is easy to see that the derivative of the integrand in (143) is of

order O(1): More precisely,

∥Ξ1[β̃M,n,kn]
′∥∞ = w∥φ′ ∗ (vW ◦ β̃M,n,kn)∥∞ ≤ wvW(bM(m,w))∥φ′∥L1(R) < ∞,

∥Ξ1[β̃M,n,kn]
′′∥∞ = w∥φ′′ ∗ (vW ◦ β̃M,n,kn)∥∞ ≤ wvW(bM(m,w))∥φ′′∥L1(R) < ∞,

Kα′,n = Θ(1), ∥φ∥∞ < ∞, ∥φ′∥∞ < ∞, ∥v′M∥∞ < ∞ and ∥v′′M∥∞,[0,bW (m,w)] < ∞ imply

max
z∈In,α

max
x∈I+n,α′

d
dx

(
φ

0,K
2
α′ ,n

(z − x)
(
vM ◦ Ξ1[β̃M,n,kn]

)′)
= O(1).

Thus, (54) and the mean value theorem yield

max
0≤i≤⌊nα′ ⌋−1

∥∥∥∥∥ ∫ ξF,n−1,k̄n (mµk̄n+i+1,n−1
)

ξF,n−1,k̄n (mµk̄n+i,n−1
)

φ
0,K

2
α′ ,n

(Id − x)
(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

− ∆k̄n+i,nφ0,K
2
α′ ,n

(Id − ξF,n−1,k̄n(mµk̄n+i,n−1
))

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(ξF,n−1,k̄n(mµk̄n+i,n−1

))
∥∥∥∥∥
∞,In,α

= O
(
n−1

)
,
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and hence also∥∥∥∥∥ ∫
I+n,α′

φ
0,K

2
α′ ,n

(Id − x)
(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

−

⌊nα
′
⌋−1∑

i=0

∆k̄n+i,nφ0,K
2
α′ ,n

(Id − ξF,n−1,k̄n(mµk̄n+i,n−1
))

(
vM ◦ Ξ1[β̃M,n,kn]

)′
(ξF,n−1,k̄n(mµk̄n+i,n−1

))
∥∥∥∥∥
∞,In,α

= O
(
nα
′−1

)
,

which, combined with (142) and using α′ − 1 < α′

2 −
1
2 yields

∥∥∥∥∥ ⌊nα
′
⌋−1∑

i=0

dvM◦βW,n,kn
G,kn,i

φ
ξF,n−1,k̄n (mµk̄n+i,n−1

),K
2
α′ ,n
−

∫
I+n,α′

φ
0,K

2
α′ ,n

(Id − x)
(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

∥∥∥∥∥
∞,In,α

= O
(
n
α′

2 +ε
′− 1

2

)
. (144)

Finally, we also note that, in view of |K
2
α′,n − 1| = O

(
nα
′−1

)
(by (109)), applying the

second bound in Lemma 12 (for each fixed z, using the symmetry of φ and ∥(vM ◦

Ξ1[β̃M,n,kn])
′∥∞,I+n,α′

= O(1) as well) yields

∥∥∥∥∥ ∫
I+n,α′

(
φ

0,K
2
α′ ,n

(Id − x) − φ(Id − x)
) (

vM ◦ Ξ1[β̃M,n,kn]
)′

(x)dx
∥∥∥∥∥
∞,In,α

= O
(
nα
′−1

)
, (145)

while |Kα′,n/Kα′,n − 1| = O
(
nα
′−1

)
(by (109)) and ∥(vM ◦ Ξ1[β̃M,n,kn])

′∥∞,I+n,α′
= O(1) also

imply∥∥∥∥∥∥∥
Kα′,n

Kα′,n

− 1
 ∫

I+n,α′

φ(Id − x)
(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

∥∥∥∥∥∥∥
∞,In,α

= O
(
nα
′−1

)
, (146)

Recalling α′ − 1 < α′

2 −
1
2 once again, (144), (145), (146) and∥∥∥∥∥∥∥

∫
R+\I+n,α′

φ(Id − x)
(
vM ◦ Ξ1[β̃M,n,kn]

)′
(x)dx

∥∥∥∥∥∥∥
∞,In,α

= E(n)

(which is obvious from the decay properties of φ) imply (141). As mentioned above, the
proof of (140) is analogous. This concludes the proof of (134), and hence of (50). □
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H Auxiliary mathematical results

Lemma 15. For 1 ≤ i ≤ l and x ∈ [x, x]:

l∑
j=i

h j:l(x) = lh(x)Hi−1:l−1(x) (147)

i−1∑
j=1

h j:l(x) = lh(x)(1 − Hi−1:l−1(x)). (148)

Proof of Lemma 15. We have
∑l

j=i h j:l(x) = lh(x)
∑l−1

j=i−1 B j,l−1 (H(x)) = lh(x)Hi−1:l−1(x).
Here, the first equality uses (8). For i ≥ 2, the second equality is immediate from (7).
For i = 1, it follows from H0:l−1 ≡ 1 on [x, x] and the fact that the Bernstein polynomials
form a partition of unity. This proves (147). Substracting (147) for general i from (147)
for i = 1, we also obtain (148). □

Lemma 16. Let X be a real-valued random variable on some probability space, with

E[|X|] < ∞. Let S be an event, with complement S c, and assume 0 < P[S ] < 1. Then,

it holds that

|E[X] − E[X|S ]| = |E[X|S c] − E[X|S ]|P[S c], (149)

In particular, if there is some K > 0 such that |X| ≤ K, then

|E[X] − E[X|S ]| ≤ 2K(1 − P[S ]). (150)

Proof of Lemma 16. From the basic identity E[X] = E[X|S ]P[S ] + E[X|S c]P[S c] we
obtain E[X] − E[X|S ] = P[S c](E[X|S c] − E[X|S ]), and thus also (149) and (150). □

Lemma 17. If h is continuous on [x, x] and min[x,x] h(x) > 0, then the expected spacings
E[Xi+1:l − Xi:l], i ∈ {0, ..., l − 1} (recall that X0:l ≡ x) satisfy

E[Xi+1:l − Xi:l] =
∫ x

x
Bi,l(H(x))dx =

∫ 1

0

Bi,l(u)
h(H−1(u))

du. (151)

In particular, for all i ∈ {0, ..., l − 1},

1
(l + 1)∥h∥∞

≤ E[Xi+1:l − Xi:l] ≤
1

(l + 1) min[x,x] h(x)
. (152)

Proof of Lemma 17. The first identity in (151) is a classical representation (e.g., equa-
tion (2) in David and Groeneveld 1982).52 The second identity in (151) is immediate

52David and Groeneveld (1982) state the result only for 1 ≤ i ≤ l − 1. The case i = 0 follows from
X0:l = x and E[X1:l] = x +

∫ x
x 1 − H1:l(x)dx = x +

∫ x
x B0,l(H(x))dx.
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from the change of variables u = H(x), and (152) then follows from

1
∥h∥∞

∫ 1

0
Bi,l(u)du ≤

∫ 1

0

Bi,l(u)
h(H−1(u))

du ≤
1

min[x,x] h(x)

∫ 1

0
Bi,l(u)du

and
∫ 1

0
Bi,l(u)du = E[Ui+1:l − Ui:l] = 1

l+1 . □

Lemma 18. There is a constant C > 0 such that for any H and any 1 < i < l:

hi:l(x) ≤ Ch(x)
(

l
B1,2(µi−1,l−2)

) 1
2

.

Proof of Lemma 18. For any l ∈ N and 0 ≤ i ≤ l, Bi,l is maximized at i
l = µi,l−1. Next,

by Robbins’ (1955) error bound for Stirling’s approximation, it holds for all N ∈ N:

√
2πNN+ 1

2 e−Ne
1

12N+1 < N! <
√

2πNN+ 1
2 e−Ne

1
12N .

This implies that for 1 ≤ i < l, we have
(

l
i

)
< ll+

1
2 e

1
12l

√
2πii+

1
2 e

1
12i+1 (l−i)l−i+ 1

2 e
1

12(l−i)+1
, which is equiva-

lent to

Bi,l(µi,l−1) =
(
l
i

) ( i
l

)i (
1 −

i
l

)l−i

<
1
√

2π

(
l

i(l − i)

) 1
2

e
1

12l−
1

12i+1−
1

12(l−i)+1 .

In particular, as 1
12l −

1
12i+1 −

1
12(l−i)+1 < 0, it follows for any 1 ≤ i < l:

Bi,l(µi,l−1) <
1
√

2π

(
l

i(l − i)

) 1
2

=
1
√

2π

(
2

lB1,2(µi,l−1)

) 1
2

=
(
πlB1,2(µi,l−1)

)− 1
2 .

Using equation (8), we therefore obtain for any 1 < i < l and all x:

hi:l(x) = lh(x)Bi−1,l−1 (H(x)) ≤ lh(x)Bi−1,l−1(µi−1,l−2) ≤
lh(x)

((l − 1)πB1,2(µi−1,l−2))
1
2

.

This proves the claim of the lemma for C = supl≥3

(
l

(l−1)π

) 1
2
=

(
3

2π

) 1
2 . □

I Two Remarks

Remark 3. Assume that investments have both a signaling and a productive func-

tion, as in Dizdar, Moldovanu and Szech (2019). More precisely, let us assume that

UM(bM, bW ,m,w) = m(εw+vM(bW))−bM and UW(bW , bM,w,m) = w(εm+vW(bM))−bW

for some ε > 0.53 Arguments analogous to those for Theorem 2 show that the limits of

re-scaled SSMBNE strategies for a pre-match investment game as in Dizdar, Moldovanu

53All other assumptions, about preferences and type distributions, remain unchanged.
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and Szech (2019) (with positive assortative matching based on investments) must sat-

isfy (22), with the only difference that (vM ◦ ζ̃)(x) is replaced by (vM ◦ ζ̃)(x) + εw in

(21). The limits of the original strategies must be strictly increasing on (mr,m] and

[w,w] in this case, and it is then easy to see that as ε → 0, these functions are approx-

imately of the form that pairs below (mr+p(β̃∗)(1−r),wp(β̃∗)) overinvest while higher types

make investments that are approximately efficient.

Remark 4. Extending our results to models with type-dependent autarchy investments

and preferences that are additively separable in bM and bW (as in Peters and Siow

2002, Peters 2011, and the example in Nöldeke and Samuelson 2014) is conceptually

straightforward. A formulation that nests the existing models could posit an autarchy

utility function U∅M, concave in bM ≥ 0, for which autarchy investments b∅M(m) > 0 are

unique, nondecreasing and differentiable in m, and separable preferences of the form

UM(bM, bW ,m,w) = ÛM(bW , bM,m), where either ÛM(x, bM,m) = x + U∅M(bM,m) or

ÛM(x, bM,m) = mx + U∅M(bM,m). Similar assumptions should be made for women,

and preferences should satisfy strict outer single crossing. Our observations regarding

agents’ uncertainty about their equilibrium partners apply without changes and, under

mild technical conditions, the types whose behavior determines the limit equation for

re-scaled SSMBNE strategies have very similar preferences.54 Assuming that there is

some constant δ > 0 such that
(
∂U∅M
∂bM

)+
(b∅M(m),m) ≤ −δ and

(
∂U∅W
∂bW

)+
(b∅W(w),w) ≤ −δ for

all types,55 one can show an exact analogue of Theorem 2 based on the simple idea of

approximating the investment costs of the relevant types by those of the types mk̄n/n and

w in the equilibrium first order conditions. As the additional technicalities are extremely

tedious and do not provide further insights, we have chosen the standard “multiplicative

in types, quasi-linear in own investment” form of utilities for our analysis.

54For any α > 1/2, all relevant types are contained in intervals with length of order O(nα−1).
55This assumption, which essentially says that autarchy utility functions have a kink at the autarchy

investment levels (so that marginal costs are bounded away from 0), is needed to avoid problems with
SSMBNE existence due to a failure of the standard (Lipschitz) continuity conditions that ensure the
existence (and uniqueness) of solutions for ordinary differential equations.
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