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1 Introduction

In this paper, we develop a framework that jointly determines interbank trading links

and risk allocations through them. Even when banks are ex-ante homogeneous and risk

averse, we �nd that they could trade not only to share risks but also to concentrate them,

creating an asymmetric interbank network consistent with empirical regularities: a few

banks have large balance sheets, have large gross trading volume, and bear more risks

in their asset positions. Our approach also provides a tractable framework for policy

analysis and comparing market structures for assets with varied riskiness, providing new

insights on how and when the the interbank network and the risk exposure of large banks

may change.

Banks are averse to uncertain asset positions and their initial asset positions are

subject to idiosyncratic shocks. Interbank trade serves to diversify and reallocate their

risky asset positions. In this environment, we connect trading frictions in the OTC market

to the limited information that banks have about other banks' asset positions when they

form a �nite number of trading links.

Speci�cally, we assume banks are committed to with whom, when, and how they

trade (dynamic matchings with their counterparties and terms of trade) before they

observe their realized initial asset positions. We require that at any point in time bilateral

matchings and terms of trade with their trading counterparties in current and future

trading rounds be stable, thus allowing multiple pairwise deviations. The collection of

banks' counterparties and trades over all trading rounds forms an endogenous trading

network.

A bank's �nal payo� depends on the riskiness of its asset position after bilateral trades

in the OTC market. We allow for a general payo� function and analyze how it a�ects the

equilibrium network. When banks' private marginal cost of bearing risks is diminishing

in risk level, the standard risk-sharing strategies can be suboptimal even though banks

are risk averse and ex ante identical. Instead, banks may concentrate the risk exposure

on one side of bilateral matches.

The diminishing marginal cost of bearing risks is relevant in many applications. For

example, when bank have limited liability thus do not internalize the social cost of de-

fault, and when banks can invest in trading technologies to lower their risk-bearing cost,
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by accessing a faster trading platform or searching for trading counterparties more in-

tensively. The marginal cost is diminishing in the case of limited liability because banks

whose liability size is more uncertain are more likely to default. In the case of optional

investment in trading technologies, banks facing more uncertainty on their asset positions

are more likely to invest in faster trading technologies.

Having a few extremely risky banks may be optimal for the interbank network as a

whole because they have lower marginal costs of bearing risks and take on risks from

other banks. We can think of a bank's marginal cost of bearing risks as its risk bearing

capacity. Risky banks have greater risk bearing capacity. But concentrating risks on a

subset of banks generates greater overall risk exposure than sharing risks evenly across

banks because less risks are diversi�ed away through interbank trade. The equilibrium

network is determined by the trade-o� between risk concentration and risk sharing. An

asymmetric network emerges when the bene�t of risk-concentration outweighs the loss

from less diversi�cation.

As banks decide the sequence of bilateral trades under limited information, the belief

about a bank's asset position distribution at the beginning of each trading round is the

key dynamic element. It depends on with whom the bank has traded and how it has

traded with the counterparties. And how it evolves over future trading rounds a�ects the

expected payo� from matching and trade in the current trading round. We show that

the variance of a bank's position, which can be interpreted as the risk that a bank bears,

is a su�cient static for network formation. The main equilibrium objects are thus the

evolution of banks' risk exposures ( how they trade over times) and their counterparties

(with whom they trade).

To understand how risks are concentrated through dynamic connections, we �rst

show that, when banks have diminishing marginal cost of bearing risks, the interbank

network concentrates risk via positive sorting. Riskier banks, who bear more risks through

past transaction, are matched with riskier banks. We then show how banks allocate

risks within a match endogenously depends on their future connections, because future

connections and trade determine their marginal cost of bearing risks, or risk bearing

capacity. A bank's risk-bearing capacity evolves over time: its current-period capacity

equals the harmonic mean of the next-period capacities of the bank and its period-t

counterparty. Lastly, because the bene�t from concentrating risks materializes at the
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end of the dynamic trading game, we show that the globally optimal network delays

risk concentration and thus, banks have more symmetric risk capacity in earlier trading

rounds.

Having established the general properties of the equilibrium network, we apply the

framework to a few application. The �rst application studies the market structure when

banks have limited liability thus their payo�s are misaligned against their contribution to

the society. There we show that a small increase in the balance sheet cost of holding the

asset, either because of tightening regulation or because the asset becomes riskier, can

result in a regime shift in the interbank network, whereupon banks switch from sharing

risks with each other to concentrating risks to a small set of banks. The switch to risk

concentration results in a discontinuously large increase in aggregate default probability.

In this sense, a small shock can trigger �systematic risks� through the interbank trading

networks.

Endogenous default risks in this application are di�erent from those in standard the-

ories of �nancial contagion. Standard theories take the interbank network as given and

analyze how network ampli�es and dampens the propagation of default risks ex-post. We

study equilibrium network formation and highlight the ex-ante aggregate default risks can

increase when banks systematically change their trading behaviors through the interbank

network. Hence, even without contagion through interbank credit, we highlight another

source of systematic risks through the network.

The second application studies how the option of investing in faster trading tech-

nologies a�ects the bilateral interbank market structure. Speci�cally, banks can choose

whether or not to access a multilateral platform to increase their risk-bearing capacity at

a �xed entry fee in the �nal period. There the property of delayed risk concentration is

enough to pin down the unique optimal network given any size of core banks, those who

invest in faster trading technologies. The optimal network is then reduced to choosing

the optimal core size, trading o� the cost of bearing risks versus the entry fee. Core

size as a summary statistic allows us to derive positive and normative implications of

reforms that promote central clearing and/or discourage risk taking, taking into account

the equilibrium response of the underlying market structure.

Consistent with empirical evidence, our model predicts that policies that increase

balance sheet costs relative to the entry fee could result in a more symmetric market
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structure. Nevertheless, it can have ambiguous e�ects on transaction costs measured by

volume-weighted average bid-ask spreads.

Related Literature Methodologically, our dynamic framework with repeated bilateral

matching1 contributes a tractable approach to studying the formation of trading network.

It di�ers from existing approaches in the network formation literature2 as it breaks down

a complex network formation game into a sequence of subgames, each of which involves

one round of bilateral matching together with asset trading, and a subsequent sub-game.

How an agent traded in the past is summarized by her characteristic, which becomes

the state variable governing how she trades in later periods. By imposing sequential

rationality, we can solve the network formation problem through backward induction.

While we use pairwise stability to characterize the equilibrium matching in a subgame,

a deviating agent in a subgame can change all her future links, not just one link as in the

static setup that the literature usually adopts. This method derives a unique solution. It

is thus in sharp contrast to the standard network formation problem where agents form

multiple links simultaneously which is often subject to the curse of dimensionality and

prone to multiple equilibria, because pairwise stability allows for the deviation of only

one pair of traders even though traders form multiple links.

A similar approach has been used in our previous work, Chang and Zhang (2018),

where we consider a pure bilateral OTC market with risk-neutral agents and an indivisible

asset. This paper allows for risk-averse agents and unrestricted asset holdings, which

allows us to analyze risk concentration within the network.

Popular approaches to modeling OTC markets are based on random matching (e.g.,

Du�e, Gârleanu, and Pedersen 2005) or exogenous networks.3 Relative to the litera-

1Most works in the matching literature involve a static environment, with only a few exceptions.
Corbae, Temzelides, and Wright (2003) introduced directed matching into the money literature, where
the key state variable is the traders' money holding. Because there are no information frictions in
Corbae, Temzelides, and Wright (2003), belief updating is not essential for their analysis, whereas it is
a key component of our theory. With regard to the labor market, Anderson and Smith (2010) analyzed
the dynamic matching pattern for which the public belief about a trader's skill (i.e., her reputation)
evolves according to matching decisions. In our trading environment, the updating process depends
endogenously on both the traders' matching decisions and the terms of trade within a match.

2See the survey in Jackson 2005 for overview. Speci�cally, papers that have studied network formation
in the �nancial market include Hojman and Szeidl (2008), Gale and Kariv (2007), Babus and Hu (2017),
and Cabrales, Gottardi, and Vega-Redondo (2017), Farboodi (2014), Wang (2016)), where the last two
papers in particular focuses on the core-periphery structure.

3For example, see Gofman (2011), Babus and Kondor (2018), and Malamud and Rostek (2014).
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ture that takes the network as given, our model provides a formal analysis of how the

underlying structure of the OTC market might respond to policies.

One of our applications is on the joint determination of the bilateral trading network

and platform access. So, our paper also sheds new lights on the literature on the costs

and bene�ts of centralized vs. decentralized markets.4 Instead of focusing on the trade-

o� between these two markets, we allow for nonexclusive participation in both markets

and emphasize how the participation decision in the centralized markets interact with the

structure of the bilateral OTC market. The paper is related to recent works that studies

the co-existence of these two venues and market fragmentation, including Dugast, Üslü,

and Weill (2019) and Babus and Parlatore (2017). Our framework is designed to analyze

the network response and the results can be generalized to environment where agents can

access multiple types of platforms.

2 A Model of Trading Network Formation

2.1 Model Setup

The economy lasts N + 1 periods, indexed by t = 1, 2, . . . , N + 1. It is populated by a

continuum of banks of total measure 1, indexed by identity i ∈ I = [0, 1]. Each bank

is managed by a banker whose preference and choices governs the bank. There are two

types of consumption goods, numeraire goods and dividend goods, and one type of asset.

The asset is a claim to a unit of dividend good in each period.

A bank i receives a random initial asset position ai,1, which is independently and

identically distributed across banks, drawn from distribution π1(a). The randomness in

the initial asset position represents a liquidity shock that shifts the bank's asset position

away from its ideal position. It could be withdrawal of deposits from its customers. Or it

could be a shock to a bank's valuation over an asset. We discuss the latter interpretation

in more detail after specifying the bank's preference. Banks trade bilaterally from period

1 to period N . They have deep pockets in numeraire goods. In each period from t = 1 to

t = N , there is market place where banks meet bilaterally and exchange the asset with

4Speci�cally, existing studies (e.g., Malamud and Rostek (2014), Glode and Opp (2019), and Yoon
(2017)) consider other dimensions such as price impact and asymmetric information. They show that
OTC markets can be bene�cial for certain types of traders. In our model, a centralized platform is
assumed to be a superior trading technology but requires a higher participation cost.
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numeraire goods.

The preference of a bank i is

E1

{
N∑
t=1

[ut(ãi,t)− xi,t] + uN+1(ai,N+1)

}
, (1)

where E1 denotes the expectation in the beginning of period 1, ut : R → R is a concave

utility function, ãi,t denotes the amount of dividend goods bank i consumes in period

t = 1, 2, . . . , N , which equals the bank's posttrade asset position in that period, xi,t

denotes the amount of numeraire goods the bank pays in exchange for assets.

The curvature in the utility function can be associated with the balance sheet costs

of holding assets, which can be a�ected by regulations, the liquidity preference of a

bank's depositors, for example. The heterogeneity in asset positions is the source of gains

from trade because banks are risk averse. Transfers xi,t is a result of the transaction.

xi,t = pi,t(ãi,t − ai,t), where ai,t denotes the pretrade asset position and pi,t denotes the

price of the asset. The pretrade position in the following period, ai,t+1, for t = 1, 2, . . . , N ,

equals the posttrade asset position in period t, ãi,t. So consumption of dividend goods in

period N +1 equals the posttrade asset position in the penultimate period, ai,N+1 = ãi,N .

General preferences allowing both preference shocks and asset endowment shocks, like

in the frontier model in the literature on the OTC market, Üslü (2019), are allowed in

our setup. Agents' �ow utility from asset position ai,t in Üslü (2019) is −εi,tai,t − a2
i,t,

where εi,t is an idiosyncratic preference shock. It is equivalent to −(ai,t − āi,t)
2 where

āi,t = −εi,t/2. So the preference shock, εi,t, is equivalent to a shock to the ideal asset

position, āi,t. Agents receive shocks to their ideal asset positions rather than their asset

holding as in our setting. If we think of the asset position in a bank's preference (1) as

the deviation of from the ideal position, analysis in the rest of the paper applies to the

more general setting.

Formation of Ex Ante Trading Network At the beginning of period 1, banks

choose and commit to bilateral trading counterparties for periods t = 1, 2, . . . , N and

their trading strategies with their counterparties. Denote the trading counterparty of a

bank i in period t ji,t. The collection of a bank i's counterparties ji,t overN rounds of trade

forms her trading links. We assume that banks form their trading links unconditional
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on their realized asset holdings and valuations. Therefore, our setup e�ectively has a

network formation stage ex ante. We can interpret trading links as permanent trading

relationships between banks when we repeat the trading game with a fresh draw of shocks.

The assumption that banks form trading links ex ante and cannot be contingent

on realized trading needs also avoids some technical complications in matching models

under asymmetric information because trading needs can be banks' private information

at the trading stage. Without this assumption and if trading needs were banks' private

information, banks can in theory signal their types through di�erent matching decisions

and the equilibrium would depend on how we specify o�-equilibrium beliefs and require

heavier notations. One can in theory impose o�-equilibrium beliefs that support a pooling

equilibrium and obtain the same outcome.

Contacting Frictions in Bilateral Trades Because trading counterparties are de-

termined before banks receive shocks on their asset positions, bilateral trading counter-

parties are chosen subject to limited information which prevents banks from locating ideal

trading counterparties. Banks face uncertainty about their counterparty's asset position

before contacting their counterparties in the corresponding.

But information is only limited at the matching stage in the beginning of period 1.

Matched banks have complete information about each other's asset positions after they

make contact, upon which they observe their counterparties' pretrade asset positions in

the corresponding period.

If all banks could observe each other's realized positions before they choose their

matches, the economy could achieve perfect risk sharing with one round of trade. For

example, if banks' utility has a bliss point at 0, is symmetric around the bliss point,

and the asset distribution is symmetric around 0, banks with position a are matched

with banks with the opposite position −a, and their posttrade positions would net out to

zero (i.e., there would be perfect negative sorting on asset positions.) Hence, the assumed

contacting frictions aim to capture the spirit of conventional search frictions that prevents

banks from locating their ideal trading counterparties.

Terms of Trade: Contingent Asset Flows and Prices While the connections

are determined ex ante, trades depend on the realized asset positions of a bank and
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her counterparties, because trading takes place after she and her counterparties make

their contact and observe each other's realized asset positions. Thus, if we think of the

economy as a trading game within a trading day and repeat it over time, banks' realized

asset positions change how they trade (i.e., the asset �ows) within the network from day

to day, even though the network remains the same.

Formally, the terms of trade within a match, including both asset allocations and

transfers of numeraire goods, are contingent on the realized positions of a bank i and her

counterparty j, denoted by ai and aj respectively. Let y(i, j) = {ãk(ai, aj), x̃k(ai, aj), k ∈
{i, j}} be the terms of trade within the match (i, j), where ãk(ai, aj) denotes the posttrade

asset holding of bank k, and x̃k(ai, aj) denotes the transfer to bank k, k ∈ {i, j}. The

within-match transfers sum up to zero,

x̃i(ai, aj) + x̃j(ai, aj) = 0. (2)

The within-match asset allocation is feasible if

ãi(ai, aj) + ãj(ai, aj) = ai + aj. (3)

The allocation of asset positions is associated with the allocation of risks from uncertain

asset positions because given a distribution of banks i and j's pretrade asset positions,

the posttrade positions also follow a distribution, which is the key characteristic that

governs bilateral matching.

While the terms of trades are contingent on the realized positions within a pair, banks

are committed to the contingent terms of trade ex ante. This is a strong assumption.

Sequential Choices of Trading Links and Terms of Trade Banks play a sequen-

tial game at the beginning of period one when they decide trading links and terms of

trade ex ante: they make decisions for earlier trading rounds �rst. All trading links

and terms of trade before a period t are public information when banks decide matching

and within-match terms of trade for the period. They constitute the information set

contingent on which banks' period t strategies are chosen.

Notice that the information set for period t strategy does not include the realized

trading history contingent on that realized asset positions of a bank and her counterpar-
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ties. This is consistent with our assumption that both the trading network and trading

strategies are decided ex ante not contingent on the realized trading history.

A bank i's strategy in period t includes the choice of her counterparty, ji,t, and the

terms of trade with the counterparty, yt(i, j) for j = ji,t conditional on the informa-

tion set for that period. Period-t strategies are sequentially optimal given the common

information set.

The common information set for period t strategies can be summarized by the joint

distribution of banks' asset positions. As we will see later, the gains from trade from

period t onwards depend on the trading history only through the joint distribution. We

thus study a dynamic matching model with the joint distribution of banks' asset holdings

and the marginal asset distribution as the evolving characteristics.

Evolving Characteristics Now that banks' strategies are contingent on the public

belief, characterizing its evolution over time is an essential part of our analysis. To un-

derstand how a bank's asset holding distribution evolves over time, consider the following

example: suppose a bank i bears all position exposures within her match in period 1.

That is, her asset position in the next period equals the sum of her and her counterparty

j's current asset positions, ai,2 = ai,1 + aj,1. Denote the joint distribution of banks' asset

holdings at the beginning of period t πt : R[0,1] → [0, 1] and the marginal distribution

of bank i's asset position at the beginning of period πi,t(a) : R → [0, 1]. Her posttrade

asset distribution πi,2(a) now has mean zero and variance 2v1 when her pretrade posi-

tion is uncorrelated with her counterparty's. On the other hand, under this �rst-period

strategy, her counterparty's posttrade asset position is always zero, aj,2 = 0 (i.e., πj,2(a)

is degenerate with both its mean and variance being zero).

In general, the law of motion of the asset distribution of a bank i, πi,t(a), is given by

the Bayes' rule,

πi,t+1(a) =

� �
I(ãi,t(ai, aj) ≤ a)πi,j,t(dai, daj), for a ∈ R, (4)

where πi,j,t(ai, a−i) denotes the joint distribution of bank i and her counterparty j's

period-t pretrade asset positions. This again highlights the fact that bank i's posttrade

asset distribution, πi,t+1(a), depends on the the joint distribution of the pretrade asset

positions of bank i and her optimally chosen counterparty, and on how she trades with
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her counterparty, ãi.t(ai, aj).

2.2 Equilibrium De�nition

Denote the joint payo� between two banks i and j conditional on equilibrium trading

strategies before the trading round Ωt(i, j). Given the aggregate distribution in period t,

the joint payo� maximizes their joint �ow utility and continuation value posttrade,

Ωt(i, j) ≡ max
ãi,t,ãj,t

E1

[
ut(ãi,t) + ut(ãj,t);

(
yt, jt

)]
+ Ŵt+1(i) + Ŵt+1(j) (5)

subject to feasibility constraints, which depends on the pretrade joint asset distribution

of banks i and j, πi,j,t(ai, aj). The within-match transfers do not show up in (5) because

they sum up to zero. Ŵt+1(i) denotes the bank's maximum payo� in the next period for

marginal distribution πi,t+1(a) that resulted from asset allocations ãi,t and ãj,t and joint

distribution with other banks' asset holding.

Taking the aggregate distribution πt+1 and other banks' equilibrium payo�s Wt(j) as

given,

Ŵt(i) ≡ max
j

Ωt(i, j)−Wt(j). (6)

for t ≤ N . On the equilibrium path, a bank's payo� is given byWt(i), which equals Ŵt(i)

for a bank i that adopts equilibrium strategies before period t.

The equilibrium in our model can be understood as competitive equilibrium in the

literature of large games (McAfee 1993). Because there is a continuum of banks, a bank's

decisions a�ect her own payo� taking as given the aggregate distribution of matching and

trading decisions in the market and have negligible e�ect on the aggregate distribution.

A bank's deviating decision thus does not a�ect her counterparties' outside option and

their payo� from the deviation.

De�nition 1. Given the initial distribution of asset positions π1, an equilibrium consists

of strategies {s∗i,t}∀i,t, market utilities Wt(i), and a path of common beliefs π∗t such that

the following properties hold for all t ∈ {1, . . . , N + 1}:

1. Bilateral matches are stable. For any period t ≤ N , if bank j is bank i's optimal

counterparty, j ∈ jt(i), it solves (6), where the post-trade position {ãi,t, ãj,t} maxi-
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mizes Equation (5) and there is no pro�table deviation when a measure ε of traders

simultaneously deviate.

2. Feasibility of bilateral matching in any trading round t ≤ N .

3. Dynamic Bayesian consistency: The joint asset distributions evolves following the

Bayes rule given banks' strategies.

The equilibrium can be understood as multiple rounds of pairwise stable matching

and trading. Our solution is stronger than the static pairwise stability in the following

sense. First, our sequential setting allows for agents to deviate across periods. When

an agent deviates in a period t, she can switch her own subsequent trading partners

accordingly, provided that she promises her counterparties at least their equilibrium payo�

Wt+1(j). Second, we allow for a simultaneous deviation among a measure ε of agents in

period t. Therefore, the deviation in a period t will not be constrained to the equilibrium

distribution of πt, as such agents are free to create any π̃t+1 among this group. The

minimal number of agents in the deviation in period t so that the deviation is �exible

is 2N−t+1. This allows agents in a joint deviation to form matches �exibly not only in

the current period but also in later periods. Since the measure of any �nite number of

traders is zero, the measure ε can be any positive value. We assume that the measure

ε is su�ciently small so that the e�ect of a single pairwise deviation on the aggregate

distributions is negligible in our environment with a continuum of agents, and thus agents

can take equilibrium market utility as given.

2.3 Equivalence and Uniqueness

We �rst establish that the equilibrium outcome is unique and maximizes the aggregate

payo�. Denote the aggregate payo� of the economy in period t to be Πt, which depends

on the joint asset distribution πt. Given a strategy st in period t, the aggregate payo�

equals

Πt(πt) = E1

� 1

0

ut(ãi,t)di+ Πt+1(πt+1). (7)

where E1(ut(ãi,t)) =
� �

ut(ãi,t)πi,jt(i),t(dai, dajt(i)) and the terminal payo� is given by

ΠN+1(πN+1) = E1

� 1

0
uN+1 (ãi,N+1) di.
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The following proposition �rst shows that the equilibrium strategies - including agents'

bilateral connections and the terms of trade thin each match - maximizes the aggregate

payo�s.

Proposition 1. Strategies {si,t}∀i,t are equilibrium strategies if and only if they maximize

Π1(π1).

Proposition 1 has three implications. First, without any deviation between private

and social values, the equilibrium is e�cient.5 Second, when a deviation arises for various

reasons, one can implement the social planner's solution through taxes by simply align-

ing costs. Third, it implies that the equilibrium market structure and asset allocations

through the market structure are payo� unique. The multiplicity that often makes it

hard to characterize �nancial networks does not show up in our framework. This gives

the theoretical foundation to solve the trading network numerically.

Although the equilibrium is constrained e�cient taking banks' preferences as given,

the equilibrium is socially optimal only if banks' private payo� is aligned with the social

payo�. When there is a gap between the private payo� and the social payo�, we can use

our framework to evaluate the divergence of the equilibrium market structure from the

socially optimal structure.

3 Risk Distribution and Network Structure

We now focus on a more speci�c banks' risk preferences and analyze the resulting risk

distribution and network structure.

Assumption 1. For all trading round t ≤ N , the �ow utility is a quadratic function with

bliss point at 0, ut(ai,t) = −κta2
i,t where κt ≥ 0 is a parameter for the �ow cost in period

t.

Assumption 2. In the �nal period N + 1, the expected payo� of bank i, denoted by

WN+1(vi,N+1), is a decreasing function of post-trade risk-exposure, where vi,N+1 is the

variance of πi,N+1(a).

5Because agents have quasilinear preferences, this is equivalent to solving for Pareto optimal alloca-
tions.
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Assumption A1 can be understood as mean-variance utility from dividend goods,

where the mean (i.e., ideal asset position of a bank) is normalized to zero.6 Parameter κt

then represents the balance sheet cost of holding nonzero asset positions during trading

period t, which can be associated with the riskiness of the asset.

Assumption A2 allows the expected terminal payo� to be a general decreasing func-

tion of the variance of the post-trade asset position. We assume a decreasing function

to avoid trivial risk-taking behaviors. A1 and A2 together imply that holding risks is

fundamentally costly for all banks, which captures the standard risk-sharing incentives.

As we show below, Assumptions A1 and A2 allow us to reduce the relevant state

variable to the variance of the distribution πi,t(a), which represents a bank's risk exposure

over time.

Despite that all banks being risk-averse, we show below that whether banks would

engage in risk-sharing crucially depends on the convexity ofWN+1(v) � a convexWN+1(v)

represents diminishing marginal costs of bearing risks. Note that the mean-variance utility

for the terminal payo� can be nested as a special case in which the terminal payo� function

WN+1(v) is linear in v thus represents a constant marginal cost of bearing risks. Below

are two examples, which we discuss in more detail in Section 4 and 5, that naturally

results in a convex terminal payo� function WN+1(v).

Application 1 (Limited Liability) When banks are protected by limited liability,

the marginal cost of taking additional risks can be lower for riskier banks because they

are more likely to default and thereby o�oad the cost of holding low asset positions to

such external creditors as depositors.

For example, if the utility from �nal consumption of dividend goods is a CARA utility

function, u(c) = 1− e−c, the expected value given the variance of asset position v is

WN+1(v) =

�
[1− exp(max(aN+1,−D))] dπ(aN+1) (8)

where D > 0 denotes the face value of debt that the bank owes to depositors. We

normalize the expected value of aN+1 to 0 and assume that the expected position is �xed

due to regulation. One can then verify that WN+1(v) can be decreasing and convex in v

6More generally, ut(ai,t) = κ0,tai,t−κ1,ta2i,t, for positive κ0,t and κ1,t. Because κ0,t does not contribute
to the heterogeneity in marginal utility, it is without loss of generality to set it to zero.
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for v ≤ 2Nv0 for some value of debt face value D.

Application 2 (Optional Investment in Risk-Sharing Technologies) Banks in

practice have options to improve their risk-bearing capacity by investing in superior but

more costly trading technologies. These options lower their marginal cost of bearing risks

and are more valuable for banks more exposed to uncertain asset positions.

For example, if banks can access a competitive trading platform with probability 1−η
by paying �xed cost φ, their expected payo� from accessing the platform can be expressed

as −φ−ηκN+1a
2 if we normalize the market price to 0 and assume that banks' �nal period

payo� is quadratic in their asset holding, uN+1(a) = −κN+1a
2.7

We can then show that the terminal payo� function

WN+1(v) = max{−κN+1v,−φ− ηκN+1v}.

If a bank does not pay the �xed cost to access the trading platform, the expected payo�

is EuN+1(a) = −κN+1v. If she does, she reaches the ideal asset position 0 by trading

the asset at market price 0 with probability 1 − η. The bank chooses to invest in the

technology and reduce the marginal cost of bearing risks to ηκN+1 if and only if the

pretrade variance v is greater than φ
(1−η)κN+1

. So the value function is piece-wise linear

and convex in v.

The convexity of the terminal payo� function WN+1(v) holds more generally when a

bank has multiple options of investment in faster trading technologies and the decision

can be contingent on realized asset positions. We provide such an example in Section A.1

in the appendix.

7Under a centralized platform, participating agents only care about the the market-clearing price,
denoted by p. Speci�cally, if an agent chooses to enter CM with position ai,N+1, he can buy and sell
assets at the price p. Her expected payo� yields

−φ+

�
max
ã

[
p (ai,N+1 − ã)− κN+1ã

2
]
dπi,N+1(ai,N+1),

By the law of large numbers, the market clearing price must be such that all agents that participate CM
can adjust their positions to the target level (i.e, ã = 0), conditional on all participants' asset distribution
is symmetric around zero. In this case, the �nal payo� of a participant is reduced to −φ.
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3.1 Risk Sharing vs. Risk Concentration in Bilateral Trade

Reformulation: Variance Representation Instead of working with asset alloca-

tions, we �rst simplify the analysis by reformulating the problem to work with the variance

of asset position distribution (i.e., risks). Within a match (i, j), the posttrade positions

ãk(ai, aj) depend on the realized positions of the two banks (ai, aj). Given any allocation

rule, denote the variance of posttrade positions ṽk ≡ V ar(ãk(ai, aj)) and the variance of

the sum of pretrade positions Vij ≡ V ar(ai + aj). The feasibility constraint on bilateral

trade, Equation (3), implies the following connection between pretrade and posttrade

risk:

ṽi + ṽj + 2ρ̃ij
√
ṽiṽj = Vij, (9)

where ρ̃ij denotes the correlation of posttrade positions of two banks, which depends on

the allocation rule that banks choose.

Lemma 1. Under Assumptions 1 and 2, the optimal marginal distributions of the post-

trade position for all banks have zero mean, and the posttrade positions for any two

matched banks are perfectly positively correlated (ρ̃ij = 1). The pretrade positions of any

two matched banks in the e�cient solution are uncorrelated.

Since banks' payo� decreases with the variance and mean of their asset positions, it

is optimal to keep the means of their posttrade positions at zero and change only the

correlation and variances of their postrade positions.

Moreover, positive correlation between pretrade positions of two matched banks neces-

sarily increases the variance of their total pretrade positions, which is the right-hand-side

of the feasibility constraint for variance allocation, Equation (9). So, all else equal, it is

optimal to match banks whose asset positions are not correlated (negative correlation is

not available when banks trade optimally). This observation allows us to focus on the

variance of individual banks' positions. It also implies that it is not optimal to match two

banks twice because asset positions of any two previously matched banks are positively

correlated. The pretrade variance on any path of optimal matches can thus be simpli�ed

to Vij = vi + vj.

Given that the asset positions for all agents are uncorrelated on the path, the su�cient

statics of an agent's characteristic is her pre-trade variance vi,t. In other words, vi,t is the
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state variable and thus, we now use Wt(vi,t) to denote the bank's maximum payo� given

her characteristic vi,t.

Allocation of Risks Within Matches Given that an agent's continuation value can

be summarized by her posttrade variance and posttrade correlation is one (Lemma 1), the

optimal asset/risk allocation within any match (i, j) can thus be reformulated as choosing

optimally the share of the risks within a pair (i, j), given their pre-trade variance Vij,

where bank i holds a share αi ∈ [0, 1] of total position, so that ãi(ai, aj) = αi(ai+aj) and

bank j holds αj = 1−αi share. By abusing the notation, we use Ωt(Vij) to represent the

joint payo� between any two agents with pre-trade variance Vij in period t. The optimal

share α ∈ [0, 1] maximizes thus solves the joint expected payo�

Ωt(Vij) = max
α∈[0,1]

{
−κt

(
α2 + (1− α)2

)
Vij +Wt+1(α2Vij) +Wt+1((1− α)2Vij)

}
(10)

Given any match, the optimal risk allocation within the pair must satisfy the FOC

condition from Equation (10), so the share of total asset positions allocated to an agent

α =
κt +W ′

t+1((1− α)2V )(
κt +W ′

t+1((1− α)2V
)

+
(
κt +W ′

t+1(α2V )
) . (11)

Observe that share α = 1
2
represents the standard risk-sharing solution where agents

share their exposure equally with any match, which also minimizes the sum of post-trade

variance. Any concentration of risks (α 6= 1
2
) is costly in the sense that it leads to higher

post-trade pair-wise variance and such a cost increases with banks' balance cost κt.

3.2 Dynamic Risk Concentration via Sorting on Risk Exposures

In our framework, agents not only choose the risk allocation within a match but also

whom they trade with. The joint determination of these two decisions pins down the

underlying trading network.

The optimal solution of (10) crucially depends on the property of the value function

Wt(v), which endogenously depends on the optimal choice of counterparties and can be

expressed as

Wt(vi) = max
j

{Ωt(vi + vj)−Wt(vj)} ,∀t ≤ N
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where we use the fact that Vij = vi + vj as pretrade positions of any two matched banks

are uncorrelated (Lemma 1). The proposition below �rst establishes how the property of

the terminal payo� function WN+1(v) a�ects the dynamic matching outcomes.

Proposition 2. (1) (Full Risk-sharing and Random Matching) When the terminal payo�

function WN+1(v) is concave in variance v, the unique trading network is full risk-sharing

and the matching outcome is equivalent to random matching. (2) (Positive Assortative

Matching (PAM) on Risk Exposure) When the terminal payo� functionWN+1(v) is convex

in variance v, the optimal sorting outcome is PAM on variance vt in any trading round t.

Within any match in which agents have the same variance vt, the optimal share maximizes

joint payo� Ωt(2vt).

With a concave terminal payo� function WN+1(v), the solution is well understood:

risk-sharing (α = 1
2
) is the unique global maximum as the objective function in Equation

(10) is concave in α. Agents share their exposure equally with any match over time and

thus vi,t = 1
2
vi,t−1 =

(
1
2

)t
v0∀i, t. Since all agents share the risk equally, there is no cross-

sectional dispersion of vi,t, the matching outcome is equivalent to random matching. In

this sense, the trading outcome is the same as in Afonso and Lagos (2015), which can be

nested in our framework as WN+1(v) = −κN+1v.
8 9

We focus on the case in which WN+1(v) is convex throughout the rest of the paper.

With convex WN+1(v), one can show that Ωt(Vij) is also convex in Vij = vi + vj ∀t.
Hence, given any distribution of vi,t, agents are matched with counterparties that hold

the same risk exposure, thus on the equilibrium path, Vij = 2vi. In other words, agents

that take on risks from others (higher post-trade variance vi,t+1) are matched with each

other. Through this channel, these agents on average handle more risks compared with

random matching, where the risk exposure of their counterparties next period is drawn

randomly.

Figure 1 illustrates an example where risk concentration and PAM arise. Within

a match, we use the arrow to point toward the agent with higher post-trade variance

8Afonso and Lagos (2015) predicts that post-trade exposure is given by akt+1 =
ait+a

j
t

2 , which implies

that the post-trade variance is reduced to half, vit+1 =
vit+v

j
t

4 . Since all agents share the risk equally, their

characteristics remains the same (vit =
(
1
2

)t
v0 ∀i).

9More generally, concavity in WN+1(v) predicts negative assortative matching (NAM). Even if the
economy starts with two di�erent initial values (say half of agents start with low (high) exposure vL0
(vH0 )), all agents again become homogeneous next periods under NAM.
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Figure 1: Risk-concentrating Network with PAM (N = 2)

if asymmetric allocation arises and the dashed line to represent equal risk-sharing. In

this example, Agents 3 and 4 take on more risks from Agents 1 and 2 in period 1, thus

have higher post-trade variance. In period 2, PAM implies that Agent 4 (Agent 1) is

matched with Agent 3 (Agent 2). That is, an agent who gets a higher share of risks

from her counterparty in period t − 1 then matches with another agent who also holds

more risks from past transactions. Through this dynamic matching process, risks can be

concentrated on a smaller set of agents within the network.

3.3 General Properties

3.3.1 Risk-bearing Capacity

According to Equation (11), the allocation within the pair in period t crucially depends

on the marginal cost of bearing risks −W ′
t+1(vk). We refer the marginal cost of holding

risk for an agent with vt as her risk-bearing capacity in period t. The capacity depends

on her connections and trades from period t + 1 onwards. The lemma below establishes

that the risk-bearing capacity can be characterized recursively.

Lemma 2. The marginal cost of holding risks for agent with position v in period t is

given by

W ′
t(v) =

1

2
H
(
κt +W ′

t+1(ṽh(v)), κt +W ′
t+1(ṽl(v))

)
∀t ≤ N. (12)

Equation (12) has a simple interpretation: the risk-bearing cost of an agent i in period

t depends on the harmonic mean10 of the post-trade risk-bearing cost of bank i and her

10The harmonic mean of any two variables γj and γj is
2

γ−1
i +γ−1

j

.
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Figure 2: Late vs. early Concentration (N = 2)

counterparty jt(i). It also shows that, while currently matched agents can have di�erent

capacities next period, they currently must have the same capacity because matching is

positive assortative and matched agents allocate the risks jointly taking into their future

connections.

3.3.2 Delayed Risk Concentration

When WN+1(v) is convex in the variance of asset position distribution v, there in general

exists multiple locally optimal solution that satisfy �rst order necessary conditions and

PAM. They are not necessarily global optima. While �nding the globally optimal solution

� which is also the unique equilibrium outcome (Proposition 1) � is generally di�cult

analytically, we now further establish a general property for the globally optimal network.

As shown in Section 5, this property is su�cient to pin down the unique solution in the

case for binary choices at the end of the trading game.

Consider Figure 2 with the total number of trading rounds N = 2 and thus four banks

could potentially be connected. Suppose that the bilateral trading outcome under both

networks is such that Banks 3 and 4 (Banks 1 and 2) have higher (lower) post-trade

variance, given by vi,N+1 = vH for i = 3, 4 (vi,N+1 = vl for i = 1, 2). They, however, di�er

in terms of the timing of the bilateral connections. In the left graph of Figure 2, Bank

1 is �rst connected to Bank 2 and then Bank 3, but this order is reversed in the right

graph.

Observe that the ordering of matching outcomes must result in di�erent dynamic

paths of vi,t despite of having the same �nal outcome of vi,N+1. Speci�cally, in order to

concentrate risks on Agents 3 and 4, risk concentration takes place in period 2 for the

left graph but in period 1 for the right graph. Since concentration necessarily results in

higher total variance and is costly, it is optimal to delay the risk concentration whenever

the �ow marginal cost of bearing risks in period t ≤ N κt is strictly positive. Thus, any
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solution that violates back-loading property is dominated.

The lemma below establishes an additional necessary condition for the optimal path

of vi,t. Given that the solution could be asymmetric, we let ṽθ(v) denote the post-trade

variance within the pair v, where θ ∈ {h, l} and θ = h (θ = l) represents the agent who

takes on more (less) risks within the pair who both have pretrade variance v. For agents

that begin with vt in period t, there could be at most 2 post-trade variances, given by

ṽθt(vt) for θt in {h, l}. Then, there could be four paths of asset position variances in

period t+ 2, vt+2 = ṽθt+1 (ṽθt (v)) for θt and θt+1 in {h, l}.

Lemma 3. When the �ow marginal cost of bearing risks κt > 0, the optimal solution

must satisfy

ṽh(ṽh(vt)) ≥ ṽh(ṽl(vt)) ≥ ṽl(ṽl(vt)) ≥ ṽl(ṽh(vt)).

To understand the lemma, consider banks i and j who both take on more risks in

period t (i.e., vi,t+1 = vj,t+1 = ṽh(vt)). Because of PAM, both of them are matched in

period t + 1. Lemma 3 implies that, if bank j unloads more risks to bank i , then her

post-trade variance must be the lowest among all other values of ṽθt+1 (ṽθt (v)). In other

words, while bank j takes more risks in period t, her post-trade variance must be the

lowest after unloading more risks to bank i in period t+ 1. Bank j in fact becomes safer

after trading with bank i. The right graph violates the condition above, as bank 3 takes

on more risks in period 1 but still his �nal risk-position remain higher that others (as

v3,N+1 = vH > v1,N+1).

Formally, we prove this by showing that, if this condition is violated, �xing vk,t+2 but

changing the ordering of the matches among these four banks lowers the total variance

of vk,t+1. Hence, whenever κt > 0, such a deviation is pro�table.

3.3.3 Mapping to Trading Network

Let the solution onward for banks with variance vt in period t be summarized by gt(vt) ={
ṽθN

(
ṽθN−1

(
...ṽθt+1 (ṽθt (vt))

))}
∀θτ∈{h,l},τ=t,t+1,...,N

. It is the set of dynamic paths of vari-

ance that begin with variance vt in period t. We now map the solution gt(vt) and the

bilateral links that implement the paths in the set to the underlying network.

Ex-ante Network While all agents are ex-ante homogeneous, the set of paths g1(v1)

summarizes at most 2N di�erent paths of variance from period 1 to period N . It can

21



be interpreted as the network among 2N types of agents, where each type of agents is a

fraction 1
2N

of the group and is characterized a vector ik = {θkτ}1≤τ≤N , where θkτ ∈ {h, l}
indicates if agent k takes on higher or lower variance within her match in period τ. Note

that variance ṽh(vt) is only weakly greater than variance ṽl(vt). While there are 2N types

of agents, this de�nition also allows for agents to have the same realization.

Corollary 1. Given the set of dynamic paths of variance that begins with variance v1

in period 1, g1(v1), the bilateral links for each type k ∈ {1, 2, ..2N} can be constructed as

follows: in a trading round t,if her counterparty is of type k′, jt(i
k) = ik

′
then her path

overlaps with her counterparty's path before the period, θkτ = θk
′
τ for ∀τ < t and their path

diverges in period t θkt 6= θk
′
t .

The condition θkτ = θk
′
τ for ∀τ < t guarantees that any two matched agents in period

t have adopted the same path in the past and thus have the same variance vt. Thus

matching them in period t satis�es PAM. Moreover, if they meet in period t, by de�nition,

their posttrade risk exposure characterized by θkt ∈ {h, l} must di�er, which also implies

that they will not be matched a second time.

Dynamic Evolution of Connected Banks Our sequential formulation implies that

variance vt summarizes the e�ect of earlier connections and trading outcomes. Condi-

tional on variance vt, the allocation in period t only depends on the future direct and

indirect connections moving forward, summarized by the set of dynamic paths of variance

that begin with variance vt in period t, gt(vt). 11 In other words, from the viewpoint

of an agent with vt, the allocation of any other agent with di�erent value of vt is no

longer relevant. In this sense, while asset allocation among the 2N types of agents are

interdependent ex-ante, only 2N−t+1 type of agents are interdependent in trading round t.

Equivalently, the network among 2N agents is divided into di�erent submarkets in period

t, where each sub network has 2N−t+1 agents.

We now formally de�ne the notion of connected agents in any period t. In period N,

only two agents are connected, which is characterized by the bilateral link jN(i). In any

11Due to the dynamic nature of our framework, the future links are the speci�c factor that matters
for current trading decisions. Thus, the relevant connections for an agent can be understood as a tree
spanning from the current match. Nevertheless, the actual network does not need to be a tree. For
example, according to Figure 1, the network graph contains loops. This is because the network itself
can be static, in which case we are just solving a static network formation problem using a sequential
method.
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period t, an agent i is directly connected to counterparty jt(i),and thus is also indirectly

to future counterparties of agent jt(i). Denote a set of agents I and their counterparties

in period t Jt(I), where Jt(I) = ∪i∈I{i, jt(i)} is a list of period t link of agents in set I.

De�nition 2. An agent i is connected to an agent j in period t or later i�

j ∈ Ψt(i) ≡ JN(JN−1(. . . (Jt+1(Jt(i))) . . .)).

Ψt(i) denotes the set of agents who are connected to agent i in period t or later

trading rounds. The set of agents that agent i is connected to from period t onwards

can be understood as a tree with its root at the current match Jt(i) = {i, jt(i)}.12 By

de�nition, an agent i is connected to at most 2N−t+1 agents from trading round t onwards.

3.3.4 Expected Transfers and Prices

Given our model predicts that risk can be concentrated on a few agents, we now turn

to study the price of risks. Since holding risks is costly, an agent within the pair that

holds more post-trade variance needs to be compensated by receiving transfers from her

counterparty. The expected transfer makes any two banks matched under PAM receive

the same expected payo�, once we know the asset allocation between the match. Hence,

the expected transfer within a pair of banks with variance v matched in period t, denoted

by xt(v), solves

− κtṽl(v) +Wt+1(ṽl(v))− xt(v) = −κtṽh(v) +Wt+1(ṽh(v)) + xt(v), (13)

where RHS (LHS) represents the payo� of the agent with lower (higher) post-trade vari-

ance ṽl(v) (ṽh(v)).

Note that the equilibrium transfer xt(v) within the pair can be implemented as a

constant bid-ask spread times the expected trading volume. The bank that holds higher

post-trade variance within the pair commits to bid and ask prices regardless of their

realized asset positions, denoted PA
t (v) and PB

t (v) respectively. The bid-ask spread

12Due to the dynamic nature of our framework, the future links are the speci�c factor that matters
for current trading decisions. Thus, the relevant connections for an agent can be understood as a tree
spanned from the current match. Nevertheless, the actual network does not need to be a tree. For
example, according to Figure 1, the network graph contains loops.
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St(v) ≡ PA
t (v)− PB

t (v) then solves(
St(v)

2

)
ϑt(v) = xt(v),

where ϑt(v) ≡ E|α∗(v)(ai,t + aj,t)− ai,t| represents the expected volume between the pair

of banks i and j.

Note that equation (13) immediately implies that the higher the degree of concen-

tration, the higher the expected transfer. Hence, whenever the risk allocation changes

discontinuously with the underlying parameters, the bid and ask prices and the bid-ask

spread also change discontinuously.

3.3.5 Remarks on the Tractability of Our Framework

Our sequential approach admits a tractable numerical algorithm for anyWN+1(v). This is

primarily because the optimal solution is distribution-free under PAM. Since it is optimal

for an agent to match with a counterparty of the same type, her matching and trading

strategies holds for any distribution of risk exposures across agents.

The numerical solution can be found through the following procedure: First, solve

backward value functions, Wt(v), and policy functions for risk allocation, αt(v), from

the last period of bilateral trade, period N to the �rst period. Wt(v) and αt(v) for risk

exposure v is the solution to a one-dimensional optimization problem speci�ed in Eq (10)

which uses the equilibrium property that matching is positive assortative. When the

next-period continuation value Wt+1(v) in Eq (10) is strictly convex, optimal posttrade

risk exposures of matched agents may be di�erent. We solve the expected transfers within

a match so that matched agents are indi�erent between posttrade risk exposures. Second,

given the policy functions and positive assortative matching in equilibrium, solve for the

evolution of risk exposure for any agent i, vit from the �rst period to period N . Because

the numerical algorithm involves only one dimensional optimization, it is easy to solve

even if the objective function is convex in risk exposure.

Even when PAM does not hold in a more general environment, our framework gains

tractability by solving the network formation game recursively. Our framework breaks

a network formation game into a sequence of bilateral matchings as long as matching

and trading in previous trading rounds a�ects the continuation value of an agent through
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her risk exposure. Bilateral matching (and trading) in each round depends on agents'

current risk exposure and a�ects further network formation through the risk exposure

distribution in the following period.

Although we solve a sequential network formation problem, our methodology can be

applied to solve a static network formation problem by breaking it down into a sequence

of bilateral linkage formation games.

An important simplifying assumption that makes our framework tractable is that we

consider a large game with a continuum of agents. As we argued when de�ning the

equilibrium,

4 Application 1: Limited Liability

A prevalent concern in �nancial intermediation is the risk-taking incentive that results

from limited liability. We now show that banks might collectively use their network

to concentrate risks instead of sharing risks. This result holds despite that banks are

risk-averse (i.e., under Assumption 2).13 Since default e�ectively o�oads downside risks

to outside creditors, any risk-taking is ine�cient from viewpoint of planner. We then

consider how interventions can correct such incentives.

4.1 Structural Shift: from Full Risk-Sharing to Risk-Concentration

to One Core

We are interested in the interaction between any given banks' individual payo� WN+1(v)

and the outcome of bilateral networks. In particular, we show that a small change in such

incentives at the individual level can move the interbank network from the standard risk

sharing to risk concentration, generating a discontinuously large increase in aggregate

risks. In this sense, our model predicts that a small increase in risk-taking incentives can

trigger a �nancial crisis through the network.

13Note that, the standard risk-taking behavior arises where banks' payo�s are convex in their asset
positions and thus banks might prefer higher variance, which gives higher upsides. Our result here goes
beyond this channel as we assume that WN+1(v) decreases in v.
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Simple Case with Minimum Core Size We focus on the case when asymmetric

allocation arises, it is optimal to concentrate on at most one of the 2N connected agents

in this application. We refer to such an agent as the core agent, since his �nal risk

position and trading volume will be higher than others. In the next application, we

further consider the possibility of multiple core agents.

Assumption 3. (1) The terminal payo� function WN+1(v) is k−times continuously dif-

ferentiable with bounded derivatives, has a marginal cost of bearing risk converging to

0 at in�nite variance, limv→∞W
′
N+1(v) → 0, and is strictly convex, W ′′

N+1(v) > 0; (2)

Function χ(v) ≡ 1
2
W ′
N+1(v) +W ′′

N+1(v)v is concave for all variance v ∈ [0, 2Nv1].

The �rst part of A3 guarantees that the solution is interior and the convexity is

bounded. The bene�t of concentration is derived from the convexity W ′′
N+1(v) and the

cost of holding risks is captured by −W ′
N+1(v). χ(v) ≡ 1

2
W ′
N+1(v) + W ′′

N+1(v)v can be

interpreted as the net bene�t of taking risks. Observe that χ(v) < 0 when v is small so

the bene�t of concentration is relatively small.

We focus on the case when χ(v) is concave, which is a su�cient condition to guarantee

that (1) the objective function of Equation (10) for period N is single-peaked, and (2)

the corresponding solution αN(v) is continuous. In other words, discontinuous change

only arises when there is more than one round of bilateral trade. This further highlights

the e�ect of interconnectedness.

Lemma 4. (Minimum Core Size) Under Assumption A3 and the assumption that the

�ow utility in all trading rounds is zero, κt = 0 for all t ≤ N , risk allocations among

2N agents involve at most one core agents with post-trade variance vcN+1, and the rest of

non-core agents have the same terminal variance v0
N+1, where v

c
N+1 ≥ v0

N+1. The optimal

risk-allocation solves

Π(v1) =
1

2N
max
α≥ 1

2N

{
WN+1

(
α2
(
2Nv1

))
+
(
2N − 1

)
WN+1

((
1− α
2N − 1

)2 (
2Nv1

))}
. (14)

Thanks to Lemma 4, the allocation problem among 2N agents can be greatly reduced

to a one-dimensional problem. The aggregate payo� can be understood as 2N agents

sharing a total risk of V = 2Nv1, where one �core� agent may hold more risks than the

rest of 2N − 1 agents who bear even risks. Observe that α = 1
2N

represents the case with
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full risk-sharing among all agents; and thus post-trade position viN+1 =
(

1
2N

)2
V = v1

2N

∀i. Under assumption A3 and the assumption that the cost of bearing risk before the

terminal period is zero, κt = 0, there exists a cuto� v∗ such that the equilibrium features

full risk-sharing when banks' initial risk exposure is below the cuto�, v1 ≤ v∗, and

features risk-concentration to one core bank among connected banks when their initial

risk exposure is above the cuto�, v1 ≥ v∗. When there are multiple rounds of trade,

N > 1, the aggregate posttrade risk exposure,
�
vi,N+1di, and thus risk premium in the

asset price increases discontinuously at a threshold initial risk exposure v∗.

The proposition highlights that for small initial risk exposure v1 ≤ v∗, it is optimal

for banks to use their network to share risks, consequently less aggregate risk exposure.

For higher initial risk exposure v1 ≥ v∗, it is privately optimal for banks to shift to a

concentrated structure, where 1
2N

fraction of banks (i.e., the only core agent among 2N

interconnected banks) bear disproportionately large risks, resulting in greater aggregate

risks. Importantly, when N > 1, the solution to Equation (14) exhibits discontinuous

jump.

Figure 3 illustrates the result of regime shift using the speci�cation in Equation 8

with normal distribution. The red line represents the outcome where banks choose to

share risks. Hence, each of them has low �nal risk exposure and default probability. The

blue line, on the other hand, represents the case when it becomes optimal for banks to

concentrate risks on the core, which results in higher aggregate probability of default

(which is proportional to the total variance).

4.2 Distribution and Flow of Risks

When risk concentration arises, the core agent collects risk from others. While the �nal

allocation can be understood from a static model, our sequential setting further gives

predictions regarding how the asset �ows through the bilateral network. Intuitively, since

the marginal cost of bearing risk is lower for the core agent, an agent i connected to the

core in period t will then also have a lower marginal cost of bearing risk and thus can

take on more risks from her counterparties. We now show that the risk-bearing capacity

of an agent can be conveniently summarized by his core access.

De�nition 3. (Core Access) Let the number of core access ci,N+1 = 1 i� agent i is the
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Figure 3: Regime Shift: WN+1(v) = −1 + e−cv, c = 1.0196, v0L = 1.02 and v0H = 1.03.

core agent and ci,N+1 = 0 otherwise. The core access of an agent from period t onwards

is given by

ci,t ≡ Σk∈Ψt(i)ck,N+1. (15)

In general, the core agents can be de�ned as the ones whose �nal risk position vi,N+1

is above a certain percentile. In this speci�c example, since there is at most 1 core agent

out of 2N interconnected agents ex ante. The core is thus the one in the top 1
2N

percentile.

Since there can be at most one connected core agent, the core access is always binary in

any period t: ci,t ∈ {0, 1}. At most one agent within the pair (i, j) can maintain the core

access in period t+1. That is, ci,t+1 = 1 if the cost agent ic is in the set of agents connect

to agent i from period t onwards, ic ∈ Ψt+1(i) and ci,t+1 = 0 otherwise. Moreover, in

general, ci,t must be (weakly) decreasing over time because the set of agents connected

to agent i from period t + 1 onwards, Ψt+1(i), is a subset of the set of agents connected

to agent i from period t onwards, Ψt(i).

The corollary below shows that the risk position of an agent {vi,t} can then be char-

acterized as when she loses core access. Intuitively, an agent holds more risks from her

counterparty until she loses her core access.

Corollary 2. The dynamic path of core access for any agent i can be characterized by core

access {ci,t} for all trading rounds t = 1, . . . , N . For an agent whose ci,t = 1 ∀t ≤ τ and
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ci,t = 0 ∀t ≥ τ+1, she collects risks from her counterparties for τ−1 periods, unloads her

risks to her counterparty in period τ, and shares risks with her counterparties afterwards.

Given the �nal risk exposure of the core agents and other agents
{
vcN+1, v

0
N+1

}
, the risk-

bearing capacity of an agent in period t can be expressed as a function of core access ci,t,

denoted by γt(ci,t),∀t ≤ N,

γt(1) =
([
W ′
N+1(vcN+1)

]−1
+
(
2N−t+1 − 1

) [
W ′
N+1(v0

N+1)
]−1
)−1

>
1

2N−t+1
W ′
N+1(v0

N+1) = γt(0)

This expression of the risk-capacity can be seen from Lemma 2. When the �ow utility

in all trading rounds is zero, the risk-capacity of an agent in period t can be further

expressed as the harmonic mean of the marginal disutility of bearing risks in the terminal

period, W ′
N+1(vk,N+1), of all her connected counterparties from period t onwards.

W ′
t(vi,t) =

{
Σk∈Ψt(i)

[
W ′
N+1(vk,N+1)

]−1
}−1

. (16)

The core access is a key static in characterizing the risk-bearing capacity. For an agent

not connected to the core in period t, the capacity isW ′
N+1(v0

N+1). For an agent connected

to a core agent from period t onwards, one of terminal marginal cost, W ′
N+1(vk,N+1), is

valued at the risk-capacity of the core agent, W ′
N+1(vcN+1). Hence, an agent with a core

access from period t onwards will have a lower marginal cost of bearing risks.

Agents that collect risks for more periods thus have greater expected trading volume.

So agents with longer core access have greater expected volume. However, they are not

riskier at the end, because they eventually unload their risks to the core agent. According

to Lemma 4, they have the same �nal risk exposures and thus as �safe� as other banks.

When the �ow cost of bearing risks is positive, κt > 0 for a period t ≤ N , Lemma 3

shows that the noncore bank directly matched to the core in the �nal trading period in

fact has the lowest posttrade risk exposure. In this sense, while these banks have been

collecting risks over time and are �closest� to the core, they actually become least risky

in the end.
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4.3 Normative Implications

In this application, any risk taking is socially ine�cient because default e�ectively o�oads

downside risks to outside creditors. Since the social planner prefers risk-sharing, the

e�cient network can be restored by increasing the cost of holding risks � such as setting

a tax to increase banks' �ow costs of holding risks κt(1 + τκ).

Formally, the objective of the social planner is

−
� 1

0

[
N+1∑
t=1

κt(1 + τκ)vi,t

]
di+ T

where T is a lumpsum transfer from the planner. The planner maximizes the objective

subject to the government budget constraint,

� 1

0

[
N+1∑
t=1

κtτ
kvi,t

]
di− T ≥ 0.

Relation to Systematic Risk in Networks We �nd that banks can take risks collec-

tively by concentrating risks to a small set of banks through the interbank network. The

collective moral hazard of risk taking is in the spirit of Farhi and Tirole (2012) but our

theory points out a new channel of risk taking, through concentrating risk via interbank

trade.In the existing literature on �nancial networks, banks use their links to diversify

the risks, while the systemic risk could arise from cascading failures among banks in-

terconnected through a predetermined �nancial network. In the literature on �nancial

contagion, default propagates through banks' gross credit positions with each other. In

our analysis, banks default over their net credit positions. Even so, default risk is inter-

connected through the endogenous interbank trading network. We point out that, apart

from the ex post contagion, the aggregate default risk can increase as banks can change

their risk-taking behaviors by changing how banks are connected and concentrate risks

ex ante.
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5 Application 2: Platform Access

Many �nancial over-the-counter (OTC) markets operate as classical two-tiered markets

where a few core banks have exclusive access to an exchange-like interdealer market.

Such a structure have been the focus of regulation and policy debates after the 2007-08

�nancial crisis.14 Consistent with our model, an asymmetric structure arises naturally

when banks have options to invest in trading technologies to reduce their risk-bearing

cost. We now apply our framework to study the positive and normative implications of

reforms, taking into the equilibrium response of the market structure.

Assumption 4. Piece-wise linear with binary action. The terminal payo� function solves

the optimal decision of accessing a faster trading technology:

WN+1(v) = max
cN+1∈{0,1}

{γN+1(cN+1)v − ϕN+1(cN+1)} , (17)

where the marginal disutility of bearing risks when the bank does not access the faster

technology is denoted γN+1(0) = −κN+1, the disutility when the bank accesses the faster

technology is denoted γN+1(1) = −ηκN+1, with η ∈ [0, 1), and the �xed cost of accessing

the technology is denoted ϕN+1(1) = φ > ϕN+1(0) = 0.

Assumption A4 allows banks to choose a binary action, ci,N+1 ∈ {0, 1} in period

N + 1, which naturally gives rise to a convex payo� function WN+1(v). That is, cN+1 = 1

represents that a bank invests a superior but more expensive trading technology. We

refer agents that invest as core agents in this application. The cost of holding assets for

non-core banks is given by γN+1(0) = −κN+1, and hence η < 1 captures the bene�t of

using the platform, which lowers the cost of holding risks. A fully competitive centralized

market is a platform that allows fully risk-sharing with η = 0.

Remark 1. More generally, the usage cost can have variable components beyond the �xed

cost. For example, consider the required collateral may be higher with larger positions

conditional on entering the platform. This case could be nested by setting γN+1(1) > 0

and the same characterization can be applied.
14In particular, post crisis reforms have increased dealer banks' balance sheet costs through tightened

capital requirements and additional liquidity requirements and have promoted all-to-all exchanges. See
detailed discussions in Yellen (2013) and Du�e (2018).
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Remark 2. While the timing of our framework implies that the platform entry is at the

end, this assumption can be relaxed as long as there is a �xed cost associated with each

entry. If there is no delay cost, it is indeed optimal to postpone the access until the end,

as agents would prefer to accumulate as much risk as possible from bilateral trades �rst

before joining the platform.

5.1 Structural Shift with Di�erent Core Sizes

Our framework allows us to study how the market structure may respond to the un-

derlying parameters of the economy which may be in�uenced by regulations. In this

application, we are interested in the size of core and thus consider the general case with

more than one core agent among those interconnected from bilateral trade. The market

structure can thus be understood on two margins: First, the measure of banks that have

access to the platform (i.e, the core size). Second, how other banks are connected and

trade among each other.

Using Lemma 3, we �rst show that, given any core size, connections to the core is

uniquely pinned down. Speci�cally, the optimal network must distribute the core access

within the pair as even as possible next period, as it delays the needs for concentration.

For example, if Agents i and j are matched in period t and are connected to two core

agents from that period onwards, either of them maintains one core access from period

t+ 1 onwards. That is, if ci,t = cj,t = 2, then ci,t+1 = cj,t+1 = 1.15

Lemma 5. For any two agents i and j matched in period t, their posttrade core access is

adjacent integers, ci,t+1 = b ci,t
2
c and cj,t+1 = d cj,t

2
e. Under Assumption A4, the core access

ci,t is the su�cient static for agent i's risk capacity in period t, where

γt(ci,t) =
1

2
H
(
−κt + γt+1(bci,t

2
c),−κt + γt+1(dci,t

2
e)
)
∀t ≤ N, (18)

and γt(ci,t) increase in ci,t.

Assumption A4 implies that an agent's risk-capacity only depends on her access in

period N + 1 (piece-wise linear). Similar to Application 1, using Lemma 2, one can

15Recall that an agent's core access is de�ned in Equation 15, which must be (weakly) decreasing over
time. The only di�erence is that ci,t can now be more than one, since an agent could be connected to
more than one core agent.
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show that the core access is again a su�cient static for agent i′s risk capacity. The only

di�erence is that core access ci,t can be larger than one. As before, given γt(ci,t), one can

then pin down variance {vi,t} for all agents: since γt(ci,t) increases in ci,t, agents who have
more core access posttrade bear more risks.

Optimal Core Size We have established that there is a unique optimal market struc-

ture given any core size c, which equals the initial core access for all agents connected

from period 1 onwards, ci,1. The optimal network can then be further reduced to choos-

ing the number of core agents in the beginning of the trading game among 2N connected

agents from period 1 onwards. The expected ex ante payo� of an agent solves

Π(v1) = max
c

{
γ1(c)v1 −

( c

2N

)
φ
}
. (19)

Given any core size c, γ1(c) represents the risk-bearing capacity for all agents, taking into

account future connections according to Equation 18. If there are c core agents among

2N agents, the total measure of core agents would be c
2N
; hence, the second term captures

the total entry costs.16

The trade-o� of core size can be seen from Equation 19: a larger core size results

in higher total entry costs but lower risk-bearing costs. To explore how the core size

depends on the underlying parameters, we further assume the parameter for the �ow cost

of bearing risks, κt = δκN+1 ∀t ≤ N , where the parameter δ represents the �ow cost of

bearing risks in a trading period relative to the terminal period.

Proposition 3. Under Assumption A4 and positive �ow marginal cost of bearing risks,

the optimal measure of cores weakly decreases in the cost of accessing faster trading tech-

nology relative to the terminal marginal cost of bearing risks, φ
κN+1v1

. When δ = 0 and

η = 0, the core size is 1
2N

if φ
κN+1v1

≥ φ̄ and zero otherwise.

We prove this result by showing that, given any (δ, η), the risk-capacity γt(c) is a

homogeneous function of degree 1 in κN+1. Recall that κN+1 represents the balance cost

of holding the assets and can be mapped to riskiness of the underlying assets and v1

represents the ex-ante exposure. Hence, the ratio, φ
κN+1v1

, captures the entry cost relative

16Recall that, an agent i can connect, directly or indirectly, to at most 2N agents in N rounds of trade,
where each type has a measure of 1/2N . Then, there are 1/2N identical replica of the �nite network of
size 2N .
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Figure 4: Pre vs. Post-regulation Market Structure.
Each panel shows the graph of the equilibrium trading network. In the network graph, each

node represents a bank. The area of the node represents the gross trading volume involving the

bank. The edges between nodes represent bilateral trading relationships. The width of an edge

represents the bilateral trading volume. The left panel illustrates the pre-regulation market

structure. The right panel illustrates the post-regulation market structure with increased

balance sheet costs and lowered cost of accessing the centralized trading platform.

to level of risks. The higher the ratio means a relatively higher costs of using the platform,

and thus the lower the optimal core size. The special case where δ = 0 and η = 0

represents that both intraday holding costs and the core agent's marginal cost of holding

risks are zero. Hence, similar to Application 1, there is no need to have more than one

core agent.

The E�ect of Reforms We think of the polices that promote central clearing and/or

discourage risk taking as providing subsidy of platform participation and/or taxing banks'

net exposure. In other words, the policy can be understood as increasing κt (i.e., making

it more costly for banks to hold risks) and/or decreasing the entry cost of the platform

(φ). Hence, the equilibrium response is then characterized by Proposition 3 with a lower
φ
κv1
. Figure 4 illustrates the change in the market structure before and after such a policy,

which induces an increase in participation in the central platform (i.e., a larger core size).

Our model predicts that the structure becomes more symmetric; nevertheless, the

two-tier market structure persists. This explains why, as discussed in Collin-Dufresne,

Junge, and Trolle (2018) and Du�e (2018), all-to-all trading has not materialized and

the provision of clearing services remains concentrated.
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Moreover, as the size of cores increases, banks transit from risk-concentrating, market-

making trades towards risk-sharing trades. Since trades among customers share risks on

asset positions symmetrically and have zero spread, such a structural change could result

in lower average transaction costs despite the increase in the spread that market-makers

charge.

Our prediction is consistent with the empirical �ndings in Choi and Huh (2018) and

rationalizes the seemingly contradicting evidence in the post-Volcker rule era.17 The stan-

dard results that banks' balance sheet cost increases the bid-ask spreads and transaction

costs may not hold when the market structure changes in response. Our result further

suggests that under an endogenous market structure, transaction costs are generally no

longer a su�cient measure of welfare.

5.2 Normative Implications

Concentration Can be E�cient Our results highlight that the optimal intervention

should not be targeting all-to-all trading or reducing risk concentration because the ex-

istence of exclusive core members and a high concentration of risks and volume can be

e�cient, if there is no gap between private incentives of risk taking and entry-cost.

Welfare-maximizing Policy On the other hand, whenever there are frictions that lead

to a deviation between private incentives of risk taking and entry-cost, the equilibrium

can be ine�cient. According to Proposition 1, such an ine�ciency (if it exists) can be

corrected by aligning private and social value of risk-taking and/or entry.

Entrenchment by Incumbent Cores One common concern, for example, is that the

platform might be controlled or entrenched in by the incumbent dealers. One can capture

this in our environment by assuming that a set I0 of agents with exogenous measure c0
2N

have built relationships among themselves and collectively operate the trading platform

at cost φ. The incumbent agents jointly own the platform and decide whether to charge

a new entrant to the platform an exogenous fee ∆ > 0.

17Bao, O'Hara, and Zhou (2016) and Bessembinder et al. (2018) show that the Volcker rule leads to
lower inventories and capital commitment for bank-a�liated dealers. Such a decline, however, does not
worsen the overall market liquidity measured by the bid-ask spread.
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Given any fee, this setup can thus be understood as our trading game with heteroge-

neous costs φi where φi ≡ φ + ∆ for potential entrants i /∈ I0 and φi = φ for incumbent

banks i ∈ I0. That is, the incumbent cores have a lower entry cost than the rest of the

market. The existence of the fee thus generate the wedge between private and social

value of platform.

Our model thus predicts that by setting the subsidy for entry so that c∗(φ+∆−sc) =

c∗(φ), or introducing a new platform with entry cost φ will restore the e�cient market

structure.

6 Conclusions

In this paper, we develop a tractable framework of endogenous trading networks and use

it to analyze how the market structure may respond to underlying parameters and/or

regulatory changes. Exactly because banks can accumulate risks from others, any policy

must take into account the network e�ect of risk-taking behaviors among banks. Although

the network structure seems complex, our framework provides a tractable and unique

characterization as well as a simple guideline for possible interventions when private

incentives are distorted relative to the social cost.

A Appendix

A.1 Diminishing Marginal Cost of Bearing Risks and Endogenous Search Inten-

sity: An Example

Suppose that banks can pay a quadratic cost − c
2γ

2 to have access to the competitive market

with probability γ and that they choose the search intensity, γ, conditional their realized asset

holding. Denote

WN+1(v) =

�
Ŵ (a)dπN+1(a)

where Ŵ (a) is a bank's expected payo� conditional on pretrade asset holding being a.
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Ŵ (a) = max
γ
− c

2
γ2 − (1− γ)a2

So the optimal search intensity conditional on pretrade asset holding a is

γ(a) = c−1a2

and

Ŵ (a) = − c
2
γ(a)2 − (1− γ(a))a2 = −a2 + c−1a4.

If the asset holding follows a normal distribution with mean 0 and variance v, the Kurtosis of

the distribution is Ea4 = 3v2.

WN+1(v) = EvŴ (a) = −v + 3c−1v2

The marginal risk-bearing cost is decreasing in v, W ′(v) = −1 + 6c−1v.

A.2 E�ciency, Uniqueness, and Variance Representation

Because agents have quasilinear utility, Pareto optimal allocations are the solution to a simple

social planner's optimization problem where the planer maximizes the present value of total

utility of the economy. The planner's choices in period t include any agent i's counterparty ji,t,

asset allocation within a match, ãi,t+1(ai,t, aji,t,t) and ãji,t,t+1(ai,t, aji,t,t). The planner chooses

period-t counterparties given period-0 information and asset distribution in period t. The plan-

ner's value function in period t has the joint asset distribution across agents as its state variable

and can be characterized as

Πt(πt) =

�
E1ut(ãi,t(ai,t, aji,t,t))di+ βΠt+1(πt+1), for t ≤ N,

ΠN+1(πN+1) =

�
E1uN+1(ai,N+1)di.

The constraints that the planner faces include:
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(1) Given πt, the planner's period-t is feasible if and only if

� i

0
Pr(jι,t ≤ ι)dι ≤ i, (A.1)

ãi,t(ai, aji,t) + ãj(ai, aji,t) = ai + aji,t , (A.2)

where (A.1) is the feasibility constraint of the matching allocation of the planner, ∆(πi,t) refers

to the support of the marginal distribution πi,t; (2) The joint distribution evolves consistently

with the counterparty assignment and within match asset allocations.

Proposition 1 holds because the equilibrium value of a bank i in period t equals the shadow

value of adding bank i to the planner's optimization problem in period t. For a more detailed

proof, see for example Chang and Zhang (2022).

Under risk preferences speci�ed in Section 3.1, because agents' utility is quadratic in their

asset holding, only the mean and variance of a distribution are relevant to their payo�. In general,

we can represent the joint distribution by the means and variances of agents' asset holdings and

covariances between their asset holdings. To do this, we �rst show that it is optimal to keep

the means of individual asset holding at zero. We then show that it is optimal to match agents

whose asset holdings are not correlated.

Lemma 6. It is optimal to keep the means of individual asset holding at zero.

Proof. Assumption (3) can be translated into controlled changes in the mean and variance of

an agent's asset holding. Denote Etai,t = mi,t, Et(ai,t−mi,t)
2 = vi,t and ρi,j,t =

Cov(ai,t+1,aj,t+1)√
vi,t+1vj,t+1

for all i, j, and t. Because the utility function of the agent is quadratic, the marginal asset

distribution for Agent i enter the social planner's objective through its expected value and

variance. Let mt = {mi,t}∀i, vt = {vi,t}∀i, ρt = {ρi,j,t}∀i,j . Then the period-t state variable of

the social planner can be summarized by (mt,vt,ρt).

The planner's objective function is then

Πt(mt,vt,ρt) = −
�
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1), for t ≤ N, (A.3)

where

ΠN+1(mN+1,vN+1,ρN+1) =

�
WN+1(vi,N+1)di. (A.4)

The feasibility of within-match asset allocation between agent i and her counterparty j implies

that ai,t+1 + aj,t+1 = ai,t + aj,t for all t ≤ N , which is translated into two separate constraints
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for the mean and the variance of asset allocation to Agents i and j

mi,t+1 +mj,t+1 = mi,t +mj,t, (A.5)

vi,t+1 + vj,t+1 + 2
√
vi,t+1vj,t+1ρi,j,t+1 = vi,t + vj,t + 2

√
vi,tvj,tρi,j,t. (A.6)

Notice that the choice over the expected asset holding is subject to a separate constraint, (A.5),

from the choice over its variance, (A.6). And the law of motion of asset holding variance and

correlation does not depend on the expected asset holding.

The planner's optimization problem in period t can be summarized by the following La-

grangian,

Lt(mt,vt,ρt) = −
�
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1) (A.7)

+

�
λmi,ji,t,t (mi,t −mi,t+1) di

+

�
λvi,ji,t,t(vi,t +

√
vi,tvji,ttρi,ji,t,t − vi,t+1 −

√
vi,t+1vji,t+1,t+1ρi,ji,t,t+1)di

for all t ≤ N, where λmi,ji,t,t refers to the Lagrangian multiplier for constraint (A.5) for agent i

and her counterparty ji,t, λ
v
i,ji,t,t

refers to the Lagrangian multiplier for constraint (A.6).

For periodN+1,
∂ΠN+1(mN+1,vN+1,ρN+1)

∂mi,N+1
= 0 ≥ ∂ΠN+1(mN+1,vN+1,ρN+1)

∂vi,N+1
and

∂ΠN+1(mN+1,vN+1,ρN+1)

∂ρi,j,N+1
=

0 for all i, j.

Using mathematical deduction, we can then show that
∂Πt(mt,vt,ρt)

∂mi,t
≤ 0 for all i and all

t ≤ N , where the inequality is strict if and only if there exits t ≤ t′ ≤ N such that κt′ > 0. This

is because given the counterparty choices, ji,t, the �rst order condition with respect to mi,t+1

implies that λmi,ji,t,t < 0 when κt > 0 or
∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0.

The e�ect of within-match asset allocation on Agent i's expected asset holding can be

summarized by αmi,t, such that mi,t+1 = αmi,t(mi,t + mj,t), mj,t+1 = (1 − αmi,t)(mi,t + mj,t). If
∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0, it is clear that αmi,t should be between 0 and 1. If αmi,t were greater

than 1 or less than 0, the planner can strictly increase either agent i or her counterparty ji,t's

marginal contribution to the planner's period t objective function without reducing other agents'

contribution. For example, if αmi,t > 1, by setting αmi,t to 1 reduces m2
i,t+1 to (mi,t + mj,t)

2 and

m2
ji,t,t+1 to 0. If

∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, but κi,t > 0, the same argument applies so that

0 ≤ αmi,t ≤ 1. If
∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, and κi,t = 0, it is without loss to the social planner to

impose 0 ≤ αmi,t ≤ 1.

Because the expected value of agents' initial marginal asset distribution is zero, the fact that

0 ≤ αmi,t ≤ 1 implies that mi,t = 0 for all i and all period.
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Lemma 6 is the �rst step in characterizing the e�cient asset allocation. It implies that the

socially optimal asset distribution in any period can be represented by the variance of individual

agents' asset holdings and the correlation of their asset holdings.

Lemma 7. In the socially optimal matching assignments and asset allocations, the post trade

asset holdings of two matched Agents i and j are perfectly correlated, and the planner always

match agents with uncorrelated asset holding. That is, ρi,ji,t,t = 0, and ρi,ji,t,t+1 = 1, for any

agent i and their optimal counterparty ji,t.

Proof. The proof takes two steps. First, we show that if ρi,ji,t,t = 0 for for any agent i and their

optimal counterparty ji,t, it is optimal to have within match asset allocation perfectly correlated.

If ρi,ji,t+1,t+1 = 0, then for all i, j such that ρi,j,t+1 > 0, we can show by di�erentiating the

planner's Lagrangian, (A.7), that
∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0. Following similar argument to that

in the proof for Lemma 6, we can see that the marginal value of increasing an agent's variance

is negative
∂Πt+1(mt+1,vt+1,ρt+1)

∂vi,t+1
≤ 0.

The feasibility of within-match asset allocation implies that variances of asset allocations

satisfy (A.6). According to (A.6), increasing the correlation between the asset allocations to

matched agents reduces the total variance of asset allocation to them, vi,t+1 + vji,t,t+1. Because
∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0, it is then optimal to set ρi,ji,t,t+1 = 1.

The second step is to show ρi,ji,t,t = 0. Because the initial asset holdings are not correlated, if

ρi,ji,t,t+1 = 1, then the asset allocations are either uncorrelated or perfectly positively correlated.

Because there is a continuum of agents in the economy, for any agent i, if the planner is to match

him with an agent with variance v′, there always exists such an agent whose asset holdings are

uncorrelated with agent i. According to (A.7), this shadow value of ρi,ji,t,t equals λ
v
i,ji,t,t

, which is

weakly negative. It is then optimal to match two agents whose asset holdings are not correlated.

Lemma 7 implies that even though agents have the option to trade repeatedly with a coun-

terparty, repeated trade without receiving new asset holding shocks is suboptimal. Trading once,

the asset holdings of Agent i and the counterparty become positively correlated. Then, trading

twice is dominated by trading with a new counterparty with the same asset holding variance but

whose asset holding is not correlated with Agent i's. Thus, we can characterize the equilibrium

using a representation of the aggregate asset holding distribution by the variances of individual

agents' asset holding distribution.
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A.3 Network Properties

A.3.1 Proposition 2

For result (1): From Equation 10, let

Ft(α) ≡ −κt
{
α2 + (1− α)2

}
V +Wt+1(α2V ) +Wt+1((1− α)2V )

We thus have

F ′t(α) =
(
−κt +W ′t+1(α2V )

)
2αV −

(
−κt +W ′t+1((1− α)2V )

)
2(1− α)V.

If W ′′t+1 < 0,Ft(α) is a concave function in α, as

F ′′t (α) =
(
−κt +W ′t+1(α2V )

)
2V +

(
−κt +W ′t+1((1− α)2V )

)
2V

+W ′′t+1(α2V )(2αV )2 +W ′′t+1((1− α)2V ) (2(1− α)V )2 < 0.

Hence, if WN+1(V ) is concave in V, α = 1
2 , which satis�es the FOC, is the global maximizer.

Thus

ΩN (vi + vj) = −κN
(
vi + vj

2

)
+WN+1(

vi
2

) +WN+1(
vj
2

),

Given that WN (vi) = maxj ΩN (vi + vj)−WN (vj), we thus have

W ′N (vi) = −κN +
1

2
W ′N+1(

vi
2

)

and hence, W ′′N (vi) < 0 if W ′′N+1(vi2 ) < 0. By backward induction, we have W ′′t (v) < 0 ∀t, v and

thus risk-sharing is always the optimal solution. We thus have vi,t = 1
2vi,t−1 =

(
1
2

)t
v0 ∀i. Since

all agents are symmetric over time, it is WLOG to assume random matching.

For result (2): Given that Vij = vi+ vj , to establish PAM, it is su�cient to show that Ωt(V )

is convex in V ∀t. Let α = α∗(V ) denote the optimal allocation under V.

Ωt(λV ) + Ωt((1− λ)V )

≥κt
{

(α2 + (1− α)2)V
}

+Wt+1(α2λV ) +Wt+1((1− α)2λV )

+Wt+1(α2(1− λ)V ) +Wt+1((1− α)2(1− λ)V )

≥
{
κt(α

2 + (1− α)2)V +Wt+1

(
α2 (λV + (1− λ)V )

)
+Wt+1

(
(1− α)2 (λV + (1− λ)V )

)}
= Ωt(V ).

where the �rst inequality follows that the surplus under optimal allocation α∗(λV ) and α∗((1−
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λ)V ) is higher than using the allocation rule α∗(V ). The second follows that Wt+1(v) is convex

in v, which is true for WN+1(v). Assume that Wt+1(v) is convex, it thus implies that Ωt(Vij) is

convex in Vij = vi + vj . Moreover, since

Wt(vi) = max
j
{Ωt(vi + vj)−Wt(vj)} ,

it thus shows that Wt(v) is convex in v ∀t. Hence, by backward induction, Ωt(vi + vj) is convex

in vi + vj and hence PAM ∀t.

A.3.2 Proof for Lemma 3

Proof. For any α(V ) that satis�es the FOC condition and PAM, we thus have

Ωt(V |gt) = Σk

{
−κtα2

kV +Wt+1(α2
kV |gt+1(α2

kV ))
}
,

where αi = α(V ) = 1− αj .

By Envelop, and v = 2V,Wt(v|gt) = 1
2Ωt(2v|gt), we have

W ′t(v|gt) = Ω′t(2v|gt) =
{
−κt +W ′t+1(α2V |gt+1(α2V ))

}
α2 +

{
−κt +W ′t+1((1− α)2V |gt+1((1− α)2V ))

}
(1− α)2

=

∏
k∈{i,j}

(
−κt +W ′t+1(α2

kV |gt+1(α2
kV ))

)
Σk∈{i,j}

(
−κt +W ′t+1(α2

kV |gt+1(α2
kV ))

) =
1

2
H(−κt +W ′t+1(α2V |gt+1(α2V )),−κt +W ′t+1((1− α)2V |gt+1((1− α)2V ))

, where using the fact that from FOC αk =
−κt+W ′t+1(α2

−kV |gt(α
2
−kV ))

Σk(−κt+W ′t+1(α2
kV |gt(α

2
kV )))

.

A.3.3 Proof For Lemma 3

Let gt(v) be the set of solutions that satis�es FOC. We now show that if gt(v) violates the

condition, there exists a network ĝt such that Ωt(v|gt) < Ωt(v|ĝt) for any κt > 0.

Given that the constraint yields (
√
vi,t+2 +

√
vj,t+2)2 = 2vi,t+1, we thus have,

Ωt(v|gt) = −κt
1

2

{[√
vi,t+2 +

√
vj,t+2

]2
+
[√
vi,t+2 +

√
vj,t+2

]2}
+ Σk (−κt+1vk,t+2 +Wt+2(vk,t+2))

≤ −κt
1

2

[√v1,t+2 +
√
v4,t+2

]2︸ ︷︷ ︸
v1,t+1

+
[√
v2,t+2 +

√
v3,t+2

]2︸ ︷︷ ︸
v2,t+1

+ Σk (−κt+1vk,t+2 +Wt+2(vk,t+2))

= Ωt(v|ĝt)
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The �rst inequality uses the fact that f(vi, vj) ≡
[√
vi +

√
vj
]2

and f12(vi, vj) > 0; hence NAM

sorting minimizes the �ow payo�. The last equality uses the fact that

vt =
(√
v1,t+1 +

√
v2,t+1

)2
=

1

4

[√
v1,t+2 +

√
v4,t+2 +

√
v2,t+2 +

√
v3,t+2

]2
.

In other words, di�erent matching plan in period t + 1 only a�ects changes the �ow payo� in

period t. Hence, if the condition is violated, then there exists ĝt+2 that are identical with gt+2

from period t+ 2 onward but its matching plan satis�es negative sorting.

A.3.4 Proof for Lemma 4

Proof. Let F (α) ≡ 1
2N

{
WN+1

(
α2 (V )

)
+
(
2N − 1

)
WN+1

((
1−α

2N−1

)2
V

)}
,the FOC thus yields

F (1)(α) =2
√
V

W ′ ((α2V
))√

α2V −W ′
((

1− α
2N − 1

)2

V

)√(
1− α

2N − 1

)2

V

 . (A.8)

=2V

{
W ′ (vh(α))α−W ′ (vl(α))

(
1− α

2N − 1

)}
.

Note that, F (1)(1) = W ′(V ) < 0 for any �nite V, which means that the solution can't be at the

boundary α = 1. Moreover let g(v) ≡
{(

dW ′(v)
√
v

dv

)√
v
}

= 1
2W

′(v) + W ′′(v)v, SFOC can be

rewritten as

F (2)(α) = 4V

(
g(α2V ) + g

((
1− α

2N − 1

)2

V

)
1

2N − 1

)
. (A.9)

Since g(v) is concave, F (2)(α) is concave. Let g(v̄) such that g′(v̄) = 0, we thus have g′(v) > 0

i� v < v̄. Moreover, g(0) = 1
2W

′(0) < 0 and limv→∞ g(v) > 0, we have g(v̄) > 0. There thus

exists v̂ < v̄ such that g(v̂) = 0, and g(v) < 0 i� v < v̂. Lastly, since dW ′(v)
√
v

dv > 0 i� v > v̂,

W ′(v)
√
v is a unimodal function with the minimum at v̂. Hence, for any asymmetric root that

satis�es FOC , it must be the case that vl(α) < v̂ < vh(α). We now use the next two lemma to

establish that there can be at most one core.

Lemma 8. For period N, α∗N (v) continuously increases in v

Proof. Observe that

F (3)(
1

2N
) =

{
g′(

1

2N
V )

√
1

2N
V

}(
1−

(
1

2N − 1

)2
)
, (A.10)
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hence when N = 1, F (3)(1
2) = 0. As F (2)(α) is concave, we thus have F (2)(1

2) is the maximum of

F (2)(α), and F (2)(α) < 0 and F (3)(α) < 0, ∀α ≥ 1
2 . This means that (1) if F (2)(1

2) = g(V4 ) < 0,

then 1
2 is the unique local maximum. To see this, suppose that there are two local maxima,

then there must exist a local minimum αmin where F (2)(αmin) > 0, which contradicts that

F (2)(α) < 0 ∀α ≥ 1
2 . (2) if F

(2)(1
2) = g(V4 ) > 0, then 1

2 is the local minimum. Moreover, then

can be at most one local maximum. Suppose that there are two maximum (α1, α2), then there

must exists αmin ∈ (α1, α2),where F (2)(αmin) > 0, which again contradicts that F (2)(α) < 0

∀α ≥ 1
2 .

By implicit theorem, for any α∗N (V ) ≥ 1
2 ,since g(v) = 1

2W
′(v) +W ′′(v)v, and we have

dα∗N (V )

dV
= −FαV (α, V )

Fαα(α, V )
|α=α∗∝ 2

{
W ′′N+1(α2V )α3V −W ′′N+1((1− α)2V )(1− α)3V

}
= 2

{
g(vh(α)− 1

2
W ′(vh(α))

}
α−

{
g(vl(α)− 1

2
W ′(vl(α))

}
(1− α)

= 2g(vh(α))α− g(vl(α))(1− α) ≥ 0.

The �rst equality uses the fact that g(v) = 1
2W

′(v)+W ′′(v)v, and the second usesW ′(vh(α))
√
α =

W ′(vh(α))
√

(1− α) at α∗. The last inequality uses the fact that, for any α∗N (V ) > 1
2 , it must

be the case that vl(α) < v̂ < vh(α); hence, g(vl(α)) < 0 < g(vh(α)).

Lemma 9. Under A3 and κt = 0, (1) there can be at most two di�erent values of vN+1;and

(2) if max{vkN+1} > min{vkN+1}, there can be at most one core agent when κt = 0.

Proof. First of all, from Equation A.8, F (1)(1) = W ′(V ) < 0, which means that the solution

must be interior. For Result (1), observe that any vN+1 must satisfy the FOC from the static

problem, where {vk,N+1} maximizes

max Σ2N

k=1WN+1(vk,N+1) (A.11)[
Σk
√
vk,N+1

]2
= 2Nv1. (A.12)

Hence,
√
vk,N+1

(
W ′N+1(vk,N+1)

)
= λ

√
2Nv1, (A.13)

where λ is Lagrange multiplier of the constraint A.12. Since W ′(v)
√
v is a unimodal function

with the minimum at v̂, Hence, there can be at most two roots for Equation A.13.
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For Result (2): let vcN+1 = max{vkN+1} and v0
N+1 = min{vkN+1}. This statement holds

automatically when N = 1. We now show this holds when N ≥ 2. Suppose that there are

more than one agent with vcN+1. Given that the outcome can be achieved under any ordering of

matching, �rst consider the case that the core is matched with a non-core agent in period N ,

which means that v1
N =

(
√
vcN+1+

√
v0
N+1)2

2 and it must be the case that α∗N (v1
N ) > 1

2 . The same

outcome, however, can be achieved by have two core agents meet in period N,which implies

their v2
N =

(
√
vcN+1+

√
vcN+1)2

2 and they adopt risk-sharing, where α∗N (v2
N ) = 1

2 . Since v
1
N < v2

N ,

the fact that α∗N (v2
N ) = 1

2 but α∗N (v1
N ) > 1

2 violates the fact that that α∗N (vN ) increases in vN .

Contradictions.

Lastly, given that there can be at most one core agent and the problem is identical to

a static allocation, Equation 14 thus follows from Equation A.11, using the constraint that[√
α2V +

(
2N − 1

)√
vl(α)

]2
= 2Nv1, we thus have vl(α) =

(√
V−
√
α2V

(2N−1)

)2
.

A.3.5 Proof for Proposition 4.1

Proof. Step 1: We �rst show that, for any N > 1, F (α) has at least two local maxima (α∗e, α
∗
c)

from some mid-range of V ∈ (V`, Vh), where α∗e = v1

2N
and α∗c ∈ ( v1

2N
, 1). To do so, we show that

F (α) is convex in some region (α1, α2), where 1
2N

< α1 < α2 < 1.

First of all, in order to guarantee that full risk-sharing is a local maximum, we need

F ′′(
1

2N
) = 4V

{
g(

V

(2N )2 )
2N

2N − 1

}
< 0,

hence, this condition holds whenever
(

1
2N

)2
V < v̂. Hence, we set Vh = 2Nv1 =

(
2N
)2
v̂. More-

over, from Equation A.10,

F (3)(
1

2N
) =

{
g′(

(
1

2N

)2

V )

√
1

2N
V

}(
1−

(
1

2N − 1

)2
)
> 0,

as g′(v) > 0 for v < v̂ < v̄. To show that F (2)(α) > 0 for some interior range of α, it is su�cient

to show that the maximum value of F ′′(α) is large than zero. Let Γ(V ) = maxα F
′′(α|V ). One

can show that Γ(v) increases in v. To see this, let α̂(V ) be the solution above. For any V ′ > V,
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let α̃ = α̂(V )
√

V
V ′ , and thus

Γ(V ′) ≥ g
((

α̂2(V )V

V ′

)
V ′
)

+ g


1−

(
α̂(V )V
V ′

)
2N − 1

2

V ′

( 1

2N − 1

)

= g
(
α̂2(V )V

)
+ g


√V ′ −

(
α̂(V )

√
V
)

2N − 1

2
( 1

2N − 1

)

≥ g
(
α̂2(V )V

)
+ g


√V −

(
α̂(V )

√
V
)

2N − 1

2
( 1

2N − 1

)
= Γ(V ),

where the last inequality uses the fact that g′(vl(α)) ≥ 0. Let V̄ such that Γ(V̄ ) = 0, we thus have

Γ(V ) > 0, for V > V̄ , and by continuity, there exists a region where F ′′(α|V ) > 0. Moreover,

since

Γ(Vh + ε) > g(v̂ +
ε

2N
)

2N

2N − 1
> 0,

it must be the case that to V̄ < 2N v̂. Lastly, we need to have

F ′′(1|V ) = g(V ) + g (0)
1

2N − 1
< 0, (A.14)

so that F ′′(α|V ) is concave when α is large enough. Note that since F ′(1|V ) < 0, together with

F ′′(1|V ) < 0, it then guarantees the existence of another local maximum α∗c < 1. Condition A.14

is possible as 2Nv1 > v̄, g′(v) < 0 for v < v̄ and g(0) < 0, this condition is thus guarantees when

v1 is large enough. Let Ṽ > v̄ such that F ′′(1|Ṽ ) = 0, we thus have F ′′(1|V ) < 0 for V > Ṽ .

Hence, set V` = max{V̄ , Ṽ }, there exists a region where F ′′(α|V ) > 0 when V ∈ (V`, Vh).

Step 2: We now show that the exists V ∗ ∈ (V`, Vh) such that α∗e is the global optimal i�

V < V ∗.

D(V,N) ≡ max
α> 1

2N

{
WN+1

(
α2V

)
+
(
2N − 1

)
WN+1

((
1− α

2N − 1

)2

V

)}
−2NWN+1

((
1

2N

)2

V

)
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∂D(V,N)

∂V
=

{{
W ′N+1 (vh(α))

vh(α)

V
+
(
2N − 1

)
W ′N+1 (vl(α))

vl(α)

V

}
− 2NW ′(

(
1

2N

)2

V )

((
1

2N

)2
V

V

)}

= W ′N+1 (vl(α))
√
vl(α)

1

V

{√
vh(α) +

(
2N − 1

)√
vl(α)

}
−W ′(

(
1

2N

)2

V )
1

2N

= W ′N+1 (vl(α))
√
vl(α)−W ′(

(
1

2N

)2

V )

=
1√
V

{
W ′N+1 (vl(α))

√
vl(α)−W ′(

(
1

2N

)2

V )

√
V

(2N )2

}
> 0

where the �rst equality uses FOC and thusW ′
((
α2V

))√
α2V−W ′

((
1−α

2N−1

)2
V

)√(
1−α

2N−1

)2
V =

0, the second equality uses the variance constraint
√
vh(α) +

(
2N − 1

)√
vl(α) =

√
V , and the

last inequality uses the fact that
d(W ′(v)

√
v)

dv < 0 for v < v̂.

A.3.6 Proof for Corollary 2

We �rst show that, according to Lemma 3, when κt=0, we haveW
′
t(vi,t) = 1

2N−t+1

 2N−t+1

Σk∈Ψt(i)

(
1

W ′
N+1

(vk,N+1)

)
 .

This holds for period N. Assume that W ′t+1(vi,t+1) =

 1

Σk∈Ψt(i)

(
1

W ′
N+1

(vk,N+1)

)
 ,by backward

induction, we thus have

W ′t(vi,t) =
1

2

 2

Σ 1
W ′t+1(vi,t+1)

 =
1

Σk∈Ψt+1(i)

(
1

W ′N+1(vk,N+1)

)
+ Σk∈Ψt+1(j)

(
1

W ′N+1(vk,N+1)

)
=

1{
Σk∈Ψt(i)

(
1

W ′N+1(vk,N+1)

)}−1

Hence, the value above only depends on whether ic ∈ Ψt(i). If so, ci,t = 1, and thus have

γt(1) =
1

1
W ′N+1(vcN+1)

+ (2N−t+1−1)
W ′N+1(v0

N+1)

>
1

1
W ′N+1(v0

N+1)
+ (2N−t+1−1)

W ′N+1(v0
N+1)

=
W ′N+1(v0

N+1)

2N−t+1
= γt(0),

where the inequality uses the fact that 1
W ′N+1(vcN+1)

< 1
W ′N+1(v0

N+1)
.
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A.3.7 Proof for Lemma 5

Proof. Given the payo� in the �nal period N+1, WN+1(v) = maxcN+1 γN+1(cN+1)v−φ(cN+1),

where γN+1(cN+1) increase in cN+1 ∈ {0, 1}, and thus if ci,N+1 > cj,N+1, then it must be the

case that vi,N+1 > vj,N+1. Since ci,N = ci,N+1 + cjt(i),N+1 ∈ {0, 1, 2},the value of γN (c) is given

by Equation 12, which inreases in c. Thus, c∗N+1(v) must increase in v.

For any period t = N −1, suppose that cj,N − ci,N ≥ 2. which is only possible when cj,N = 2

and ci,N = 0, as ck,N ∈ {0, 1, 2}. Since γN (c) increases in c, Agent j must hold strictly higher

post-trade varaince (i.e., vj,N > vi,N ). Moreover, as ck,N ∈ {0, 1, 2}, cj,N − ci,N ≥ 2 is only

possible when cj,N = 2 and ci,N = 0. This thus means that cj,N+1 = cjN (j),N+1 = 1 and

ci,N+1 = cjN (i),N+1 = 0. Since c∗N+1(v) must increase in v, it thus implies that

min{vj,N+1, vjN (j),N+1} > min{vi,N+1, vjN (i),N+1},

which contracts Lemma 3. Hence, for any cN−1 ∈ {0, 1, 2, 3, 4},the connections are unique,

where ci,N =
{
b ci,N−1

2 c, d ci,N−1

2 e
}
and thus cN−1 is su�cient statics. Lastly, since γN (c) decrease

in c, γN−1(c) thus also increases in c.

By backward induction, assume that ci,t =
{
b ci,t2 c, d

ci,t
2 e
}
and let γt+1(c) denote its corre-

sponding risk-capacity, which decrease in c and the value function yields

Wt(v) = max
c
γt(c)v − φ(c),

and hence if ci,t > cj,t, then it must be the case that vi,t > vj,t. Hence, by similar logics, if

cj,t+1 − ci,t+1 ≥ 2, then

min
{
cj,t+2, cj∗t+1(j),t+2

}
> min

{
ci,t+2, cj∗t+1(i),t+2

}
and thus

min{vj,t+2, vj∗t+1(j),t+2} > min{vi,t+2, vj∗t+1(i),t+2},

which violates Lemma 3. Lastly, since γt+1(c) is decreasing in c and, under the optimal access,

γt(c) = 1
2H(κt+γt+1(b c2c), κt+γt+1(d c2e)) is thus increasing in c in period t. This thus establishes

that Lemma 5 must hold for any t.
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A.3.8 Proof of Proposition 3

We �rst show that γ∗t (c|δ, η, κ) = κγ∗t (c|δ, η, 1) is a homogeneous function of κ. This holds for

N+1, as γN+1(1) = −ηκ and γN+1(0) = −κ. Given the expression of γ∗t (c|δ, η, κ) from equation

18, we thus have

γ∗t (c|δ, η, κ) =
1

2
H
{
κ(−δ + γ∗t+1(b c

2
c|δ, η, 1)), κ(−δ + γ∗t+1(d c

2
e|δ, η, 1))

}
= κ

1

2

{
H
(
−δ + γ∗t+1(b c

2
c|δ, η, 1)

)
,
(
−δ + γ∗t+1(d c

2
e|δ, η, 1)

)}
.

Hence, Equation (19) can be rewritten as Π = κv1 maxc

{
γ̂1(c)− c

2N

(
φ
κv1

)}
, where γ̂1(c) =

γ∗t (c|δ, η, 1). By comparative statics, c∗
(

φ
κv1

)
increases in φ

κv1
.
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