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Abstract

Large incumbent firms routinely acquire startups. The effect of these acquisitions on

innovation and productivity growth is a priori unclear. On the one hand, acquisitions

provide an incentive for startup creation, and a way to transfer ideas to potentially more

efficient users. On the other hand, incumbents might “kill” some ideas of their targets,

and acquisitions may create a less competitive environment with lower incentives for

innovation. Our paper quantitatively assesses the net effect of these forces. To do

so, we build an endogenous growth model with heterogeneous firms and acquisitions.

We discipline the model by matching micro-level evidence on startup acquisitions and

patenting. Our calibrated model implies that acquisitions do raise the startup rate, but

lower incumbents’ own innovation as well as the percentage of implemented startup

ideas. The negative forces are slightly stronger. Thus, a startup acquisition ban would

increase growth by 0.04 percentage points per year.
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1 Introduction

Large incumbent firms routinely acquire startups. For instance, the Tech giants Amazon,

Apple, Facebook, Google and Microsoft have acquired at least 770 firms since their foun-

dation.1 Moreover, even though Tech acquisitions have recently captured the headlines,

startup acquisitions are common in other industries as well.

Startup acquisitions are, however, viewed with increasing scepticism by regulators. In

the United States, the Federal Trade Commission (FTC) recently announced an inquiry into

several high-profile cases, and subsequently filed lawsuits against Facebook and Google.2

While these inquiries traditionally focus on competition and prices, regulators have recently

also started to worry about the effects of startup acquisitions on innovation. However, these

effects are not obvious a priori. On the one hand, acquirers may choose to sideline startup

innovations that threaten their existing business, and this could slow down productivity

growth. On the other hand, the prospect of being acquired may stimulate startup creation,

and actual acquisitions could improve the allocation of ideas between firms, which might ac-

celerate productivity growth. Finally, acquisitions lower competition, which has ambiguous

effects on innovation and growth.

In this paper, we aim to assess the relative strength of these forces. To do so, we develop

a Schumpeterian growth model with heterogeneous firms and acquisitions. We discipline

the model by matching important patterns of acquisitions and patenting in the United States,

including some new empirical evidence on the effect of acquisitions on the implementation

probability of startup ideas. Our calibrated model implies that the negative forces slightly

dominate, so that reducing the frequency of acquisitions (e.g., through stricter antitrust

enforcement) would lead to a modest increase in aggregate productivity growth.3

Our model builds on the Schumpeterian endogenous growth framework. Each incum-

bent firm produces a differentiated product, and seeks to innovate in order to increase its

productivity. A large mass of non-producing startups, in turn, seeks to innovate in order

to displace incumbents and enter the market. We introduce two novel elements into this

setting. First, we distinguish between invention and implementation. That is, all firms

first need to invest into invention (or research) in order to come up with an idea. After

obtaining an idea, they then need to invest additional resources to implement it. Second,

1See https://www.cbinsights.com/research/tech-giants-billion-dollar-acquisitions-infographic/. Between
2015 and 2017 alone, these five firms did 175 acquisitions (Gautier and Lamesch, 2020).

2See https://www.ftc.gov/news-events/press-releases/2020/02/ftc-examine-past-acquisitions-large-
technology-companies. The FTC sued Google and Facebook in October and December 2020.

3Note that startup acquisitions are currently virtually unregulated. Indeed, as most of them have a
relatively low deal value, they do not need to be reported to antitrust authorities (Wollmann, 2019).
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we allow for startup acquisitions: when a startup has developed an idea that could displace

an incumbent, the incumbent might be able to avoid this outcome by acquiring the startup.

However, incumbents are not automatically able to acquire all threatening startups. Instead,

their ability to acquire depends on their effort in monitoring the startup scene.

The model reflects the multiple channels through which acquisitions affect innovation

and aggregate growth. Some of these channels suggest a negative link. First, incumbents

have an incentive to acquire startups in order to preserve their existing profits. However,

precisely because they already earn some profits, their marginal benefit from implementing

a startup idea is smaller than the one of the startup itself (this is the classical replacement

effect first discussed in Arrow, 1962). Thus, some ideas which would have been imple-

mented in the absence of an acquisition might now be shelved. Such events are sometimes

called “killer acquisitions” (a term coined by Cunningham, Ederer and Ma, 2020). Second,

all else equal, acquisitions slow down creative destruction, by allowing incumbents to

avoid displacement more frequently. This creates an economy populated by entrenched

incumbents, which have high productivity advantages over their competitors and therefore

low innovation incentives.

Other channels instead suggest a positive link between startup acquisitions and growth.

First, incumbents might be more efficient at implementing ideas than startups (due to

economies of scale and scope, a larger customer base, greater business experience, etc.).

When this is the case, acquisitions transfer innovations to more efficient users, and might

increase the number of ideas that are successfully implemented.4 Second, the prospect of

an acquisition provides an incentive for startup creation and startup innovation. In our

model, acquisitions only occur if the incumbent pays the startup a price that exceeds its

outside option of independent entry. Thus, all else equal, incentives for startup creation

are higher in the presence of acquisitions. In the business world, many commentators see

acquisitions as a natural outcome for startups, and numerous guides advise entrepreneurs

how to position their startup in order to be acquired.5 Finally, startup acquisitions increase

the expected lifespan of incumbents, and this increases their innovation incentives. Thus,

the effect of lower competition on innovation is actually ambiguous, as famously argued by

Aghion, Bloom, Blundell, Griffith and Howitt (2005).6

4Indeed, this might reflect a beneficial division of labor, with startups specializing in generating ideas
and incumbents specializing in implementing them. Likewise, acquisitions might enable startup founders to
focus on their core strengths instead of having to deal with management and organizational problems (see
https://time.com/3815612/silicon-valley-acquisition for a discussion of these issues).

5For some examples, see (1) https://www.forbes.com/sites/alejandrocremades/2019/08/02/how-to-get-
your-business-acquired, (2) https://www.inc.com/john-boitnott/how-to-boost-your-businesss-odds-of-an-
acquisition or (3) https://thinkgrowth.org/how-to-build-a-startup-that-gets-acquired-85ada592bfd7.

6Another effect that we do not explore in our paper is that acquisitions reallocate employees and researchers.
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To discipline the different forces in our model, we rely on two data sources. First, we

use a database assembled by Guzman and Stern (2020), which covers the universe of

startups in 32 US states between 1988 and 2008. This database provides some information

of the frequency with which startups are acquired (or, alternatively, grow into large firms

themselves). However, it does not allow us to identify the firms in the actual acquisition

deals and to follow their outcomes over time. Therefore, we construct ourselves a new

micro database that can be used to track firms before and after acquisitions, and thus to

analyse the impact of acquisitions on the involved firms. To do so, we combine information

on acquisitions (from the ThomsonONE M&A database), patents (from the NBER patent

data project) and accounting data (from Compustat).

We use our dataset to document some stylized facts, showing for instance that there is

positive assortative matching in the startup acquisition process. Most importantly, however,

we use it to study the impact of acquisitions on the implementation of ideas. To do so, we

analyse the post-acquisition behavior of patent citations. We interpret an increase in the

citations received by a startup patent after acquisition as evidence for the associated idea

being implemented (consistent with incumbents having an implementation advantage),

and a decrease as evidence for the idea being sidelined (consistent with killer acquisitions).

To control for selection, we match each patent of an acquired startup to a patent of a

non-acquired startup with the same application year, technology class and pre-acquisition

citations. For the average industry, we find that acquisition does not affect startup patent

citations, implying that positive and negative effects roughly cancel out. In some industries,

however, killer acquisitions dominate (and in line with Cunningham et al., 2020, this

includes the pharmaceutical industry).

While this cross-sectional evidence provides some insights about the effects of acquisi-

tions, it is obviously silent about aggregate general equilibrium effects that affect all firms

simultaneously. To take these channels into account, we rely on our model. However, we

use our cross-sectional findings, as well as other moments from the micro data, to calibrate

the model and identify its parameter values.

To understand the link between acquisitions and growth in the calibrated model, we

first consider comparative statics with respect to incumbents’ startup search costs. These

costs can be seen as a reduced-form indicator of frictions in the acquisition market. When

The extent of reallocation varies widely: Cunningham et al. (2020) show that in the pharmaceutical industry,
only 22% of researchers keep working for the acquirer, but Time Magazine (article cited in Footnote 3) reports
this number is three times as high at Google. Tech companies have even coined the term "acqui-hire", with
Facebook’s CEO Mark Zuckerberg stating that “we have not once bought a company for the company. We
buy companies to get excellent people” (https://www.youtube.com/watch?v=OlBDyItD0Ak). Reallocation
may change the productivity of the affected researchers (and their colleagues) through knowledge spillovers,
discouragement and other effects.

3

https://www.youtube.com/watch?v=OlBDyItD0Ak


they are zero, incumbents may acquire any threatening startup, if they find it optimal to do

so. When they are infinite, there are no acquisitions. Our calibration suggests that high

search costs (infrequent acquisitions) imply high productivity growth, while low search

costs (frequent acquisitions) imply low productivity growth.

To understand this relationship, we rely on a useful decomposition. We show that any

change in the growth rate from its baseline calibration value can be computed as a weighted

average of the change in incumbents’ own innovation and the change in innovation due

to startup ideas (which, in turn, is the product of the startup rate and the percentage of

startup ideas being implemented). Analysing these three sources of variation, we find that

more frequent acquisitions are associated with a higher startup rate, as startups benefit

from the option of selling out. However, acquisitions also slow down creative destruction,

so that the average incumbent is more likely to have a high productivity advantage over

its competitors, and therefore low incentives to innovate and to implement an acquired

idea. Moreover, the higher startup rate erodes the value of incumbents: even though they

might avoid displacement by buying startups, these acquisitions are costly. As the value of

incumbents falls, their innovation incentives decrease. Therefore, as acquisitions become

more frequent, both incumbent innovation and the percentage of implemented startup

ideas fall. Because incumbents represent the largest share of overall innovation, we find

that these effects more than compensate for the higher startup rate, dragging the growth

rate down.

In line with these results, we find that a ban on all startup acquisitions would increase

the aggregate growth rate by about 0.04 percentage points by year. This occurs despite a

significant fall in the startup rate, as the former is compensated by an increase in incumbent

innovation and an increase in the percentage of implemented startup ideas.

Finally, we explore how these findings depend on our calibration choices. We find that

startup acquisitions are particularly harmful when they are frequent and when incumbents

cannot develop ideas efficiently. In contrast, startup acquisitions can enhance growth in

situations in which startups have a strong comparative advantage in idea generation, while

incumbents have a strong comparative advantage in implementation and development.

However, our calibration indicates that most US industries are not in such a beneficent

“division of labor” equilibrium.

Related literature There is a growing empirical literature on the effect of acquisitions on

innovation. The influential work of Cunningham et al. (2020) on the US pharmaceutical

industry provides evidence for several of the channels discussed above. The authors show

that acquirers are likely to stop drug research projects of acquired firms when these overlap
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with their own drug portfolio. These killer acquisitions are more likely if incumbents have a

dominant market position. In earlier studies, Seru (2014) and Haucap, Rasch and Stiebale

(2019) also provide evidence for a negative effect of mergers and acquisitions (M&As) on

firm R&D. Phillips and Zhdanov (2013) instead argue that acquisitions stimulate innovation

by small firms that want to be acquired in the future. Using data on publicly traded

firms, they show that the R&D of small firms increases after an industry-level acquisition

shock. Bena and Li (2014) provide evidence for positive knowledge spillovers after mergers,

while Kim (2020) shows that employee mobility after acquisitions can be detrimental to

the acquirer in the long run. We provide empirical evidence from a new data set that

corroborates some of these findings. However, the main contribution of our paper is to

use a general equilibrium model (disciplined by the empirical evidence) to assess the

macroeconomic significance of these cross-sectional findings.

On the theoretical side, there has been an intense interest in the industrial organization

literature on the effect of M&As on innovation (see Federico, Langus and Valletti, 2017;

Cabral, 2018; Bourreau, Jullien and Lefouili, 2018; Bryan and Hovenkamp, 2020; Callander

and Matouschek, 2020; Fumagalli, Motta and Tarantino, 2020; Kamepalli, Rajan and

Zingales, 2020; Letina, Schmutzler and Seibel, 2020; Denicolò and Polo, 2021). These

studies are based on partial equilibrium models, while we take an aggregate general

equilibrium perspective.

There are also some recent studies on the macroeconomic effect of M&As. For instance,

Dimopoulos and Sacchetto (2017) and David (2020) analyze the effects of M&As on the

allocation of capital, but do not consider innovation and productivity growth.7 More closely

related to us, Cavenaile, Celik and Tian (2020) develop an endogenous growth model

with mergers between incumbents, and analyze the effect of these mergers on innovation

incentives. Our focus is different, as we study the acquisition of startups by incumbents,

leading us to consider novel issues such as killer acquisitions.8 Finally, Lentz and Mortensen

(2016) and Akcigit, Celik and Greenwood (2016) incorporate different versions of a market

for ideas (through buyouts or patent sales) in endogenous growth models, showing that

such markets improve the allocation of ideas. More broadly, we contribute to the literature

on endogenous growth and firm dynamics (Klette and Kortum, 2004; Aghion, Akcigit and

7There is also an extensive literature on the microeconomic effects of M&As on investment, the allocation
of capital, firm productivity and competition. Important studies include Jovanovic and Rousseau (2002),
Rhodes-Kropf and Robinson (2008), Blonigen and Pierce (2016), and Wollmann (2019). Some studies have
also considered startup acquisitions in particular. For instance, Andersson and Xiao (2016) document a
number of stylized facts on startup acquisition in Sweden.

8Our paper is also related to Celik, Tian and Wang (2020), who study the effects of information frictions in
the merger market on firm innovation and business dynamism.
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Howitt, 2014; Akcigit and Kerr, 2018; Peters, 2020), by extending its standard framework

to incorporate acquisitions and study their macroeconomic impact.

The remainder of the paper is organized as follows. Section 2 describes our micro-level

data, and uses it to derive some stylized facts on acquisitions, innovation and the link

between these two in the United States. Section 3 presents our model, derives its solution,

and discusses its main properties. Section 4 discusses the calibration, comparative statics

and our counterfactual experiments. We conclude in Section 5.

2 Data and stylized facts

2.1 Startup acquisitions in the United States

How frequent are acquisitions of innovative startups in the United States? Answering

this question is not straightforward, as there is a limited amount of publicly available data

on startup activity. The most comprehensive data is due to Guzman and Stern (2020), who

compiled a database containing all new firms incorporated in 32 states (representing around

80% of US GDP) between 1988 and 2014.9 Their database contains information about

firm characteristics at incorporation (e.g., whether the firm holds a patent application) and

about growth outcomes. In particular, for all firms incorporated between 1988 and 2008,

Guzman and Stern record whether, during their first six years of existence, the firms are

acquired, do an initial public offering (IPO), or grow to 100 or more employees.

Table 1: Startup growth outcomes

(1) (2) (3)
Sample All startups Patenting startups Patent & Delaw. inc.

Total number 18,764,856 37,588 10,804
Outcome after 6 years
... Acquisition 0.06% 4.02% 9.32%
... IPO 0.01% 1.13% 2.94%
... 100+ employees 0.23% 6.60% 13.74%

Source: Guzman and Stern (2020), own computations. The sample contains all newly incor-
porated firms incorporated in 32 US states between 1988 and 2008. Column (1) refers to all
startups, column (2) to startups with a patent application, and column (3) to startups with a
patent application and an incorporation in Delaware.

Column (1) in Table 1 shows that in the overall population of startups, acquisitions are

9Their data can be downloaded at https://www.startupcartography.com/.
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very rare events: only 0.06% of startups are acquired within their first 6 years of existence.

However, it is well known that most newly created firms do not have growth ambitions and

remain small throughout their existence (Hurst and Pugsley, 2011). Thus, for our purpose,

it is more relevant to consider a subsample of potentially innovative and growth-oriented

startups. To do so, we focus on patenting startups (precisely, on startups that hold a patent

application at the time of incorporation). As shown in column (2), acquisitions of patenting

startups are much more frequent: a little over 4% of them are acquired within their first

six years of existence. Patenting startups are also much more likely to achieve an IPO or

significant employment growth.10

Figure 1 plots the percentage of acquired patenting startups by incorporation year.

Acquisitions peak for the 1999-2000 startup cohorts, i.e., in the middle of the dot-com

boom, at around 6%. However, there does not appear to be a decisive trend over time.11
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Figure 1: Acquisitions of patenting startups (data from Guzman and Stern (2020))

Overall, the evidence presented in this section suggests two insights. First, around 4% of

innovative startups in the US get acquired during their first six years of existence. Second,

10Column (3) shows that acquisitions, IPOs and employment growth are even more prevalent among
patenting firms that, apart from incorporating in their home state, also file an incorporation in Delaware
(which offers tax and judicial advantages). Indeed, Guzman and Stern (2020) show that holding a patent and
incorporating in Delaware is one of the strongest correlates of entrepreneurial success.

11In line with the literature, we do observe, however, a downward trend in the percentage of startups
doing an IPO (see e.g. Ewens and Farre-Mensa, 2020), as well as in the percentage of startups experiencing
strong employment growth (see e.g. Decker, Haltiwanger, Jarmin and Miranda (2016)). The fact that startup
acquisitions do not increase seems to indicate that these trends are not primarily due to high-growth startups
being acquired more frequently.
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while there has been some cyclical fluctuation, this percentage has neither trended up or

down during the period 1988-2014.

These facts provide us a good first sense of the prevalence of startup acquisitions.

However, the Guzman and Stern (2020) database does not contain information about the

acquiring firm, or about the startup’s patenting behaviour (beyond the fact of holding a

patent application in the incorporation year). Therefore, in the next section, we construct a

dataset that contains information on these elements. While our data has some disadvantages

with respect to Guzman and Stern (most importantly, the fact that we do not observe firm

incorporation dates), it also contains important new information, allowing us to describe

further characteristics of startup acquisitions and to uncover causal evidence of the effect of

startup acquisitions on the involved firms.

2.2 Combining acquisition and patenting data

To construct our dataset, we merge three sources of information: data on acquisitions

from the financial information provider Refinitiv (formerly Thomson Financial), patent data

from the NBER Patent Data Project, and accounting data for public firms from Compustat.

This section describes our data sources in greater detail.

Acquisitions data To track acquisitions, we rely on the ThomsonONE database, using

information between 1981 and 2014.12 The database provides transaction-level data on

mergers and acquisitions (M&As) and includes practically all deals involving US firms over

the considered time period. ThomsonONE provides several variables of interest, such as

the names of the involved firms, the industries in which they operate, the announced and

effective dates of the deal, the transaction value, and sometimes even the revenue and total

assets of the involved firms.

Patent data In order to measure the innovation activity of firms, we rely on patent data,

as provided by the NBER Patent Data Project (NBER-PDP), which provides US patent data

for 1976-2006.13. In addition to the patent owner, this dataset also provides us with the

forward and backward citations to the patent, a measure of each patent’s originality and

generality, and IPC technology classes.

12This is a commercial database, which can be accessed at https://www.refinitiv.com/en/
products/sdc-platinum-financial-securities. Due to various changes for the providing firm,
the database has frequently changed names and is currently branded as the Refinitiv SDC Platinum database.
It is the standard database used in M&A analysis (see e.g. David (2020) or Guzman and Stern (2020)).

13The dataset can be downloaded at https://sites.google.com/site/patentdataproject/.
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A challenge in matching firm-level data to patents is that firm names are inconsistently

recorded on patent files, which leads to many false negative matches. There are two

reasons for this: first, the lack of a unique firm identifier in the patent data; second, the

lack of uniformity in how company names appear. To address this problem, the NBER-PDP

standardizes commonly used words in firm names (Bessen, 2009).

Accounting data Finally, we use the Compustat North America database, provided by

Standard & Poor’s.14 This database contains balance sheet and income statement informa-

tion for all publicly traded firms in the United States.

Merging these three databases is straightforward for publicly listed firms, because both

ThomsonONE and the NBER Patent Data Project provide firm identifiers that are consistent

with Compustat. For private firms appearing in the M&A dataset, the situation is more

challenging. First, for these firms, we do not have accounting data. Second, in order to

match them to their patents, we can only rely on their names. Precisely, we standardize

the company name provided by ThomsonONE, and then employ a fuzzy name matching

algorithm and a large scale manual check to match each company to its patents recorded in

the NBER PDP database.

2.3 Definitions and descriptive statistics

Startups: definition and importance In line with our focus on innovative firms, we will

consider throughout acquisitions in which the acquired firm holds at least one patent. Our

dataset does not allow us to observe the exact incorporation date of a firm, but it does

provide us with its complete patent history. Therefore, we define a firm as a startup if it

is within 6 years of its first patent. Using this definition, we find that around 47% of all

acquisitions of private firms in our sample are acquisitions of patenting startups. Thus,

innovative startup targets account for a sizeable share of overall acquisition activity.

Startups are also important drivers of the overall innovation effort. Startups (i.e., firms

within 6 years of their first patent) account for 25% of all patent applications. Remarkably,

however, their patents collect 65% of all patent citations. This suggests that startup patents

are on average of higher quality than patents filed by older firms (in line, for instance, with

the findings of Akcigit and Kerr, 2018). Thus, their innovation behavior (and the way in

14The database can be accessed at https://www.spglobal.com/marketintelligence/en/
?product=compustat-research-insight.
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which it is affected by acquisitions) is likely to have a disproportionate impact on aggregate

outcomes.

Selection into acquisition The acquisition process is obviously not random: both the

acquiring firms and the startups that they acquire are a selected sample of the overall

population of firms. For instance, Figure 2 compares the sales of acquiring to non-acquiring

public firms in our sample. Through our sample period, acquirers are systematically larger

than non-acquirers, by a factor of about 3.

Figure 2: Sales by type of firm: acquirers vs. non-acquirers. Data from ThomsonONE, NBER Patent Data
project and Compustat.

Likewise, acquired startups are different from non-acquired startups. For instance, we

find that around 1.6% of patenting startups in our sample are eventually acquired. However,

these startups represent 6% of all startup patent citations, suggesting that their patents are

of above-average quality. In sum, there appears to be positive assortative matching in the

acquisition process, as the largest incumbents match with the “best” startups. Our model

will reproduce some of these selection effects.

These stylized facts provide some further information on the importance and character-

istics of startup acquisitions. However, our data also allows us to dig deeper into the effects

of these acquisitions on innovation. We do so in the next section.

2.4 The effect of acquisitions on the implementation of ideas

Our important channel through which acquisitions can affect innovation is their effect on

the implementation probability of startup ideas. An acquisition may increase this probability
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(if incumbents have advantages in developing ideas and bringing them to the market) or

decrease it (if incumbents are engaging in killer acquisitions). In this section, we try to

assess the relative strength of these forces.

To do so, we need a proxy for the implementation of startup ideas. We propose to rely

on the evolution of patent citations after the acquisition event. That is, we consider the

set of patents that the startup held before the acquisition. If citations to these pre-existing

patents increase after the acquisition, we interpret this as evidence for the startup’s ideas

being further developed and built upon. If, on the other hand, citations to these patents

decrease after the acquisition, we interpret this as evidence for the idea being shelved.15

Of course, just considering the change in patent citations after acquisition faces an

endogeneity problem: in the previous section, we have shown that acquired patents are

different from the average patent. Therefore, we use a matching method (nearest neighbor

matching), to link each treated patent (i.e., belonging to a startup that will eventually be

acquired) to a control patent (belonging to a non-acquired startup). We match on several

patent and firm characteristics including technological subsector, citations received before

acquisition, or patent application year. We artificially assign to each control patent the

acquisition year of its matched treated patent.

The regression specification looks as follows:

NumCitesit = β0 + β1 · D(Treatment)i + β2 · D(Post)it

+β3 · D(Treatment)i · D(Post)it + uit,

where NumCitesit are the number of citations received per patent-year, D(Treatment)i

takes value 1 for treated patents, and D(Post)it takes value 1 for the years after acquisition.

If β3 > 0, then a patent receives more citations (our proxy for the implementation of ideas)

after being acquired. Instead, if β3 < 0, a patent receives relatively more citations if it is

not acquired.

Table 2 presents the estimation results. When a patent changes ownership from a startup

to the acquiring firm, its number of citations received (compared to the change experienced

by the control patent) stays roughly the same in the full sample (columns (1) and (3)).

Thus, it seems that potential development advantages and killer acquisition motives of

incumbents roughly cancel out for the average acquisition.

This average finding potentially hides substantial heterogeneity. Indeed, columns (2)

and (4) of Table 2 show that results change substantially when we restrict the sample to

15In line with this interpretation of patent citations, Argente, Baslandze, Hanley and Moreira (2020) show
that in the consumer goods sector, more highly cited patents lead to a higher likelihood of introducing new
products.
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Table 2: Effects of Acquisitions on the Implementation of Ideas

Dep.Var.: Number of Cites (1) (2) (3) (4)

D(Post) 0.623*** 0.496 0.738*** 0.503*
(0.101) (0.313) (0.096) (0.301)

D(Treatment) 0.398*** 0.669***
(0.132) (0.175)

D(Post)*D(Treatment) 0.145 -0.401** 0.034 -0.337*
(0.187) (0.179) (0.175) (0.184)

Observations 13,518 1,410 13,536 1,410
Sample Full Pharma Full Pharma
Year FE X X X X
Patent FE X X
Matched Pair FE X X

Notes: A Poisson estimator is used. The dependent variable is the number of citations received at
the patent-year level. D(Treatment)i takes value 1 for treated patents, and D(Post)it takes value
1 for the years after acquisition. significant at 10%; ** significant at 5%; *** significant at 1%.

the pharmaceutical industry: now, acquisitions are associated with a 33% drop in citations

to the startups’ pre-existing patents. This finding is consistent with the evidence provided

by Cunningham et al. (2020) for this industry.

Figure 3: Estimated coefficients of the matching estimation for each technological subcategory

Graphically, Figure 3 displays the estimated coefficient of the interaction term for

each technological subcategory. The small blue dots represent non-statistically significant

12



coefficients, while the larger red dots display the ones that are statistically different from

zero. The pharmaceutical industry (subcategory 31) is one of the six subcategories with

an estimated coefficient that is statistically different from zero. For all the remaining

subcategories, we cannot reject a zero value.

Summing up, our findings in this section indicate that the average acquisition does not

seem to affect the likelihood that startup ideas are implemented. Therefore, acquisitions

appear unlikely to substantially affect innovation and growth through this channel. How-

ever, the implementation channel is not the only potential link between acquisitions and

innovation: acquisitions also affect the innovation behavior of incumbents, as well as the

incentives to create a startup in the first place. Moreover, many of these effects are general

equilibrium effects that affect all firms and can thus not be identified with a cross-sectional

analysis. To fully study these links, we now introduce our model. However, we will return

to the stylized facts and the regression evidence when calibrating the model.

3 Model

In this section, we develop a model of the macroeconomic linkages between startup

acquisitions and innovation. While we build on Schumpeterian heterogeneous-firm growth

models, our model introduces two important new elements: a distinction between the

invention and the implementation of ideas, and the possibility of startup acquisitions.

3.1 Assumptions

Preferences and technology Time is continuous, runs forever and is indexed by t ∈ R+.

A representative consumer maximizes lifetime utility, given by

U =
∫ +∞

0
e−ρt ln (Ct) dt, (1)

where ρ > 0 is the time discount rate and Ct stands for the consumption of the unique

final good at instant t. We normalize the price of the final good to one. The household is

endowed with L units of time, which she supplies inelastically at the market-clearing wage

wt. Furthermore, the household owns all firms in the economy and accumulates wealth At

according to the budget constraint Ȧt = rtAt + wtL− Ct, where rt is the rate of return on

assets.

The final good is produced under perfect competition and assembled from a continuum

of differentiated products with a CES production function. Thus, final output is

13



Yt =

(∫ 1

0

(
ωjt
) 1

ε
(
yjt
) ε−1

ε dj
) ε

ε−1

, (2)

where yjt is the output of product j at instant t, ωjt is the quality of product j at instant

t, and ε > 1 is the elasticity of substitution between products. Product quality follows an

exogenous stochastic process. We assume that quality can take values in a finite set Ω, and

that firms transition from state ω to state ω′ at a Poisson rate τω,ω′ . We also assume that

the economy starts in the steady state of this process, and for convenience we normalize∫ 1
0 ωjtdj = 1.

Each product can potentially be produced by a large number of firms f , with a linear

production technology using labor:

yj f t = aj f tlj f t, (3)

where yj f t is the output of product j by firm f at instant t, aj f t is the productivity of the

firm, and lj f t is the labor input. We assume that there is static Bertrand competition on

product markets. As we show later, this implies that each product is only produced by the

highest-productivity firm in equilibrium. We denote the productivity of this firm by ajt, and

define average productivity At as

At ≡
(∫ 1

0
aε−1

jt dj
) 1

ε−1

. (4)

Productivity is improved through innovations, which are the result of a two-step process.

First, firms invest into research in order to generate new ideas. Then, they invest into

development in order to implement these ideas and turn them into innovations. The next

sections describe these research and development (R&D) technologies.

Research and Development Innovations are generated by incumbent firms (i.e., firms

which already produce at instant t) and by a large mass of potential entrants, which we

refer to as startups.

To generate an idea at a Poisson arrival rate z, an incumbent must pay a research cost of

ξ I · zψ · ãε−1
jt ·Yt units of the final good. In this cost function, ξ I > 0 is a cost shifter, ãjt ≡

ajt
At

is the relative productivity of the incumbent firm, and ψ > 1 is the elasticity of research

output with respect to research spending. Thus, research costs are increasing and convex in

the arrival rate of ideas. Furthermore, they are proportional to the relative productivity of

the incumbent and to aggregate GDP. These scaling assumptions are necessary to ensure
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balanced growth.16

To implement an idea, the incumbent needs to invest into development. Precisely, if

the incumbent invests κI · i
ψ
I · ã

ε−1
jt ·Yt units of the final good (with κI > 0), it successfully

implements the idea with probability iI.17 As usual in endogenous growth models, we

assume that productivity evolves on a ladder, with step size λ > 1. An implemented idea

(an innovation) increases the productivity of the incumbent by one step on this ladder, i.e.,

by a factor λ. Instead, an idea that is not implemented disappears forever. Therefore, ideas

are either implemented immediately or never.

Ideas and innovations are also generated by startups. We assume that a startup can be

created at a fixed cost ξS ·Yt, and generates a Poisson arrival rate 1 of ideas. A startup’s idea

applies to a randomly drawn good j ∈ [0, 1]. As for incumbents, startup ideas are either

implemented immediately or never. Precisely, when the startup invests κS · i
ψ
S · ã

ε−1
jt · Yt

units of the final good (with κS > 0), it implements the idea with probability iS. To reflect

the empirical fact that startup ideas might represent larger advances than incumbent ideas

(see Section 2.3), we assume that a startup idea increases productivity by nS = 1 + N steps

(of size λ each), where N ∈ N is drawn from a Poisson distribution with parameter γ.

Thus, on average, a startup idea represents γ more steps on the productivity ladder than an

incumbent idea. Importantly, we assume that the quality of the idea is only revealed after

investing into development.

In equilibrium, a startup that implements its idea displaces the incumbent producer of

product j and becomes the new incumbent in this product line. However, the startup may

not always choose to implement: alternatively, it can be acquired by the incumbent. In the

next section, we describe these acquisitions.

Acquisitions We assume that acquisitions can take place if, and only if, there is a “meeting”

between the startup and the threatened incumbent producer.

The meeting probability is endogenous, and depends on the effort of the incumbent

in monitoring the startup scene. We assume an incumbent needs to spend χ · sϕ · ãε−1
jt ·Yt

(with χ > 0 and ϕ > 1) units of the final good in order to generate a probability s to meet

a startup that innovates on its product. Thus, the search costs for startups are increasing

16In particular, the fact that costs scale with relative productivity makes research choices independent of
current productivity, as in Peters (2020). Without this assumption, more productive incumbents innovate
more, and production is eventually taken over by an arbitarily small number of firms.

17In fact, we assume that the implementation probability is given by min (iI , 1), so that it is always well
defined. However, we choose parameter values ensuring that firms never choose an implementation probability
of 1. For simplicity, we therefore omit the min operator in the text. The same statement applies to all other
implementation and meeting probabilities introduced below.
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and convex in the search effort. As usual, they also scale with relative productivity and

aggregate GDP to ensure balanced growth. We think of this framework as a reduced-form

model of information and search frictions in the acquisition market. These frictions prevent

incumbents from noticing all threatening startups and force them to spend resources in

order to monitor the market.

When there is a meeting, the incumbent may acquire the startup. The incumbent then

transfers pA
jt units of the final good (the acquisition price) to the startup, in exchange for

the startup exiting forever and handing over its idea to the incumbent. The incumbent then

invests into the development of the startup’s idea, using its own development technology.

That is, by investing κI · i
ψ
A · ã

ε−1
jt · Yt units of the final good, it implements the idea with

probability iA.

Acquisitions occur if, and only if, they generate a surplus, that is, if and only if the joint

value of both firms after the acquisition is larger than the sum of their outside options.

The acquisition price is determined through Nash bargaining over the surplus, where the

incumbent has a bargaining weight α ∈ (0, 1). There are two reasons for which acquisitions

may generate a surplus in the model. First, the startup’s idea may be more valuable in the

hands of the incumbent (e.g., because the latter has lower development costs). Second,

acquisitions prevent entry, and therefore prevent the destruction of incumbent rents. While

the first force corresponds to a socially valuable transfer of ideas, the second does not.

As we will see later, the relative strength of these forces plays an important role for the

aggregate implications of startup acquisitions.

Startup idea
appears

Meeting

No Acquisition

Acquisition

Incumbent
implements

Incumbent
doesn’t

implement

Startup
implements

Startup
doesn’t

implement

Entry

s

1−
s

Surplus > 0 i A

1− iA

iS

1− iS

Surplus < 0

Figure 4: Timing of events for a startup idea within a period (t, t + dt).

Timing Figure 4 summarizes the timing of events for a startup idea within an instant

of length (t, t + dt). After the idea appears, the incumbent might or might not notice it,
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depending on the search probability s. If there is no meeting, the startup decides whether

or not to implement it (with probability iS), which leads to possible entry and displacement

of the incumbent. If there is a meeting, then there is an acquisition if, and only if, the

acquisition surplus is positive. In case of an acquisition, the incumbent then chooses the

probability iA with which to implement the startup’s idea.

3.2 Equilibrium

Throughout, we consider a balanced growth path (BGP) equilibrium with positive entry,

in which all aggregate variables grow at a constant rate g.

3.2.1 Household decisions, prices and profits

On the BGP, the representative consumer’s optimal consumption choice satisfies the

Euler equation
Ċt

Ct
≡ g = r− ρ. (5)

Bertrand competition implies that each product is only produced by the highest-

productivity firm. However, pricing decisions depend on the relative productivity of this

firm with respect to its closest follower (the firm with the second-highest productivity).

As productivity evolves on a ladder, we can define the “technology gap” (the number of

productivity steps between the incumbent and the follower), as the integer njt holding

λnjt ≡
ajt

aF
jt

, (6)

where aF
jt is the productivity of the follower. Note that in our model, the follower is an old

incumbent: once a startup displaces an incumbent, the latter becomes the new follower.

The demand for each product j is given by the isoelastic function yjt = ωjt ·
(

pjt
)−ε ·Yt.

Thus, if incumbents could freely choose their price, they would set a constant markup over

their marginal cost. However, their price must also be low enough to keep the follower out

of the market. For any product j, the average cost of the follower at instant t is by a factor

λnjt higher than the one of the incumbent. Thus, when the incumbent charges a markup

λnjt , the follower makes zero profits and does not produce. Accordingly, markups are

µ(njt) = min
(

λnjt ,
ε

ε− 1

)
. (7)

For high technology gaps, the incumbent can charge the monopoly markup, while for
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low technology gaps, it must charge a lower markup to keep the follower out.

This markup choice implies that the price of any product j is given by pjt = µ(njt) · wt
ajt

,

and profits are

πt
(
ωjt, njt, ajt

)
= ωjt ·

(
1− 1

µ
(
njt
)) · (µ (njt

))1−ε ·
(

ajt

wt

)ε−1

·Yt (8)

Equation (8) shows that profits are increasing in product quality ωjt, in productivity ajt

and in the technology gap njt. In particular, note that profits are concave in njt. Indeed,

higher technology gaps imply higher markups, but as the firm approaches the unconstrained

monopoly markup, these gains become smaller and eventually vanish.

3.2.2 Research, Development and Acquisitions

Incumbent’s dynamic decisions At every point in time, incumbents need to choose an

optimal level of research spending z and search effort s. Moreover, whenever they obtain

an idea, they need to choose an optimal level of development spending, and whenever they

meet a startup, they must decide whether to acquire it.

The dynamic problem of the incumbent has two endogenous state variables (the tech-

nology gap n and productivity a) and one exogenous state variable (product quality ω).

Furthermore, the value function also depends on some aggregate variables, which change

over time. Thus, we denote the value function by Vt(ω, n, a). On the BGP, the Hamilton-

Jacobi-Bellman (HJB) equation is

r ·Vt(ω, n, a) = max
z,s

{
πt (ω, n, a)︸ ︷︷ ︸

Profits

− ξ I · zψ · ãε−1
t ·Yt︸ ︷︷ ︸

Research cost

− χ · sϕ · ãε−1
t ·Yt︸ ︷︷ ︸

Search effort

+ z ·max
iI

[
iI ·
(

Vt(ω, n + 1, λa)−Vt(ω, n, a)
)
− κI · i

ψ
I · ã

ε−1
t ·Yt

]
︸ ︷︷ ︸

Own innovation

+ x ·
[

s ·VMeet
t (ω, n, a) + (1− s) ·VNoMeet

t (ω, n, a)−Vt(ω, n, a)
]}

︸ ︷︷ ︸
Startup appears

+ ∑
ω′∈Ω

τω,ω′ ·
[

Vt(ω
′, n, a)−Vt(ω, n, a)

]
︸ ︷︷ ︸

Quality shock

+ V̇t(ω, n, a)︸ ︷︷ ︸
Drift

. (9)

The HJB equation shows how the discounted value of the firm changes over time. First,
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at every instant, the firm collects static profits and spends on research and startup search,

as shown in the first line. As shown in the second line, the incumbent discovers an idea at

Poisson rate z, and then chooses the optimal development investment iI. An implemented

idea increases its technology gap by one step and its productivity by a factor of λ. The third

line shows that at rate x, a startup makes an innovation on the incumbent’s product. In

that case, there is a meeting (and thus potentially an acquisition) with probability s, and

no meeting with probability 1− s. We denote by VMeet
t (ω, n, a) the expected continuation

value of the incumbent in case there is a meeting, and by VNoMeet
t (ω, n, a) the expected

continuation value of the incumbent in case there is no meeting. Finally, the fourth line

shows that the incumbent is subject to exogenous product quality shocks, and that its value

drifts over time due to aggregate growth.

Acquisitions and Startup creation To analyze the interaction between an incumbent

and a startup that threatens to replace it, we first consider the case in which there is no

meeting between both firms. In that case, there is no acquisition, and the incumbent’s

expected continuation value is

VNoMeet
t (ω, n, a) =

[
1− iS,t (ω, a)

]
·Vt(ω, n, a), (10)

where iS,t (ω, a) is the startup’s optimal development probability. When the startup does

not implement its idea, the incumbent’s continuation value is just its current value. Instead,

when the startup implements its idea, the incumbent is displaced and its continuation value

is zero.

Likewise, we can derive the expected value of a startup in the absence of a meeting,

denoted by VNoMeet
S,t (ω, a). This quantity holds

VNoMeet
S,t (ω, a) = max

iS

{
iS ·
( +∞

∑
nS=1

θ(nS) ·Vt(ω, nS, λnS a)
)
− κS · i

ψ
S · ã

ε−1
t ·Yt

}
(11)

where θ(nS) ≡ e−γ · γnS−1

(nS−1)! denotes the probability that the startup’s innovation ad-

vances productivity by nS = 1, 2, . . . steps. In the absence of a meeting, a startup chooses

an optimal level of development investment iS. When its idea is implemented, the startup

becomes the new incumbent producer. With probability θ(nS), it takes nS steps on the

productivity ladder. It then has a technology gap of nS (over the previous incumbent, which

is now the follower) and productivity λnS a. On the other hand, if the idea fails, the startup

exits forever and has a continuation value of zero.

Next, we turn to the case in which a meeting does take place. To determine whether this
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leads to an acquisition, we compute the surplus that would be generated by an acquisition,

denoted Σt (ω, n, a). The surplus holds

Σt(ω, n, a) = max
iA

{
(1− iA) ·Vt(ω, n, a) + iA ·

+∞

∑
nS=1

θ(nS) ·Vt(ω, n + nS, λnS a)

− κI · i
ψ
A · ã

ε−1
t ·Yt

}
−VNoMeet

t (ω, n, a)−VNoMeet
S,t (ω, a) .

(12)

In equation (12), the term inside the curly brackets captures the joint value of incumbent

and startup after an acquisition. The acquisition allows the incumbent to keep its baseline

value Vt(ω, n, a). Moreover, the incumbent acquires the startup’s idea and chooses an

optimal development investment iA in order to implement it. In case of success, the quality

of the idea is revealed, and an idea of quality nS improves the incumbent’s technology

gap by nS units and its productivity by a factor λnS . Finally, the incumbent transfers the

acquisition price to the startup (and this acquisition price is the startup’s post-acquisition

value). As this is a pure transfer, it does not feature in the joint value shown above. To

obtain the surplus, we subtract from the joint value the outside options of incumbent and

startup, which are equal to their expected values in the absence of a meeting.

An acquisition takes place if, and only if, the expected surplus is positive. Then, the

surplus is split between both firms according to their Nash bargaining weights. Accordingly,

the continuation value for an incumbent in case of a meeting with the startup is:

VMeet
t (ω, n, a) = VNoMeet

t (ω, n, a) + α ·max
(

0, Σt(ω, n, a)
)

. (13)

For the startup, the continuation value conditional on meeting the incumbent is

VMeet
S,t (ω, n, a) = VNoMeet

S,t (ω, a) + (1− α) ·max
(

0, Σt(ω, n, a)
)

. (14)

Whenever an acquisition takes place, this continuation value is also equal to the acquisi-

tion price. Finally, in an equilibrium with positive startup creation (x > 0), the following

free-entry condition must hold:

ξS ·Yt = Et

[
st(ω, n, a) ·VMeet

S,t (ω, n, a) +
(

1− st(ω, n, a)
)
·VNoMeet

S,t (ω, a)
]

. (15)

where st(ω, n, a) denotes the optimal search effort by the incumbent. This equation

shows that the cost of creating a startup, ξS ·Yt, must be equal to the expected benefit of

creating a startup, shown on the right-hand side. The startup’s idea falls on a randomly
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chosen product j, characterized by a quality ω, a technology gap n and productivity a. The

expectation operator refers to the joint distribution of products over these states. Depending

on whether the startup meets an incumbent or not, it then obtains one the continuation

values defined in equations (11) and (14).

Optimal policies To solve for the BGP policies, we guess and verify that the incumbent’s

value function holds Vt(ω, n, a) = v(ω, n) · ãε−1
t ·Yt, i.e., that the value function scales (with

a time-invariant factor of proportionality) in relative productivity and aggregate GDP. Fur-

thermore, we conjecture that aggregate productivity At grows at the same rate as aggregate

consumption Ct and wages wt. These guesses allow us to simplify the dynamic problem

considerably. First, combining them with the Euler equation (5) and the continuation values

defined in equations (10) and (13), we can rewrite the HJB equation as

(
ρ + (ε− 1) g

)
· v(ω, n) = max

z,s

{
ω ·
(

1− 1
µ (n)

)
· (µ (n))1−ε ·

(
At

wt

)ε−1

− ξ I · zψ − χ · sϕ

+ z ·max
iI

[
iI ·
(

λε−1 · v(ω, n + 1)− v(ω, n)
)
− κI · i

ψ
I

]
+ x ·

[
s · α · σ̃(ω, n)− iS(ω) · v(ω, n)

]}

+ ∑
ω′

τω,ω′ ·
[

v(ω′, n)− v(ω, n)
]

(16)

where σ̃(ω, n) ≡ max(0,Σt(ω,n,a))
ãε−1

t ·Yt
, the normalized acquisition surplus, is time-invariant

as shown in Appendix A.1. This equation pins down the value function v as a function

of three endogenous aggregate constants: aggregate growth g, the startup rate x and the

productivity-to-wage ratio At
wt

.18

The HJB equation implies that the incumbent’s optimal research investment is

z(ω, n) =

 iI(ω, n) ·
(

λε−1 · v(ω, n + 1)− v(ω, n)
)
− κI ·

(
iI(ω, n)

)ψ

ξ Iψ


1

ψ−1

(17)

where iI (ω, n) is the optimal development probability chosen by the incumbent for its

own ideas. As usual, the firm equalizes the marginal cost of research to its marginal benefit,

18As each startup has a Poisson arrival rate 1 of ideas, x corresponds both to the mass of startups and the
arrival rate of startup ideas. As there is a mass 1 of incumbents, x is also the startup rate. Note that because
average productivity and wages grow at the same rate, At/wt is a constant.
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which is the arrival of an undeveloped idea.

In turn, the optimal startup search investment is given by

s (ω, n) =
(

x · α · σ̃(ω, n)
χϕ

) 1
ϕ−1

. (18)

Intuitively, the search effort is increasing in the arrival rate of startup ideas x, in the

acquisition surplus σ̃ (ω, n) and in the incumbent’s surplus share α.

Regarding development, the investment of incumbents into their own ideas holds

iI (ω, n) =
(

λε−1 · v(ω, n + 1)− v(ω, n)
κIψ

) 1
ψ−1

. (19)

Again, firms equalize the marginal cost of development to its marginal benefit, which

comes from improving productivity and widening the technology gap.

Investment of incumbents into acquired ideas holds

iA (ω, n) =


+∞
∑

nS=1
θ(nS) · λnS·(ε−1) · v(ω, n + nS)− v(ω, n)

κIψ


1

ψ−1

(20)

Finally, the optimal development probability chosen by startups, defined in equation

(11), is given by

iS (ω) =


+∞
∑

nS=1
θ(nS) · λnS·(ε−1) · v(ω, nS)

κSψ


1

ψ−1

(21)

Comparing equation (20) with equation (21) shows that incumbents and startups may

make different development choices for the same idea. These differences stem from three

sources. First, development costs may be different, and all else equal, a lower marginal

cost (a lower cost shifter κ) implies higher investment. Second, incumbents can apply their

innovation to their existing high technology gap (and as the profit function (8) shows,

productivity and markup are complements). Third, as the value function is concave in the

technology gap n, there is an Arrow replacement effect: the fact that the incumbent already

earns some monopoly rents makes it less attractive to implement. When this last effect

dominates, some ideas that would have been implemented by a startup will be shelved by

the incumbent (i.e., some acquisitions will be killer acquisitions).

Finally, as shown in greater detail in Appendix A.1, our guesses imply that the quality,
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productivity and technology gap of a product at at a given point in time are independent

random variables. Therefore, we have

mt(ω, n, a) = m(ω) ·m(n) ·mt(a), (22)

where m(•) stands for the mass of products with a certain characteristic. Using this

property, the free entry condition simplifies to

ξS = ∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) ·
[

vNoMeet
S (ω) + s(ω, n) · (1− α) · σ̃(ω, n)

]
. (23)

This shows that research, development and acquisition decisions are independent of

productivity a. Therefore, we do not need to keep track of the productivity distribution.

The invariant distribution of quality ω is exogenous. Finally, the invariant distribution

of technology gaps n depends on innovation and acquisition decisions, and is derived in

Appendix A.2.

In equilibrium, the startup rate x will be such that the expected value of startup creation

equals the fixed cost ξS. However, as the previous equations show, firms’ innovation and

acquisition decisions also depend on two other aggregate variables, the productivity-to-

wage ratio At
wt

and aggregate growth g. To close the model, we derive these variables in the

next section.

3.2.3 Closing the model

First, using the definition of the CES price index, in Appendix A.3 we show that the

productivity-to-wage ratio holds

At

wt
=

(
+∞

∑
n=1

m(n) ·
(
µ(n)

)1−ε

) 1
1−ε

. (24)

This shows that, along the BGP, aggregate productivity At grows at the same rate as the

wage wt. The ratio of both variables depends on the markup distribution across incumbents.

Next, we need to impose labor market clearing. Labor is in fixed supply L > 0 and

is used only in production. Imposing labor market clearing gives an expression for the

aggregate labor share (see details in Appendix A.3):

wtL
Yt

=

(
At

wt

)ε−1 +∞

∑
n=1

m(n) ·
(
µ(n)

)−ε. (25)
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Product market clearing, in turn, implies that aggregate output is fully used for con-

sumption (Ct), research (Rt), development (Dt) and search (St). Therefore, we have

Yt = Ct + Rt + Dt + St (26)

where

Rt = Yt ·
(

∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) · ξ I ·
(
z(ω, n)

)ψ
+ x · ξS

)
(27)

Dt = Yt ·
(

∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) ·
[

z(ω, n) · κI ·
(
iI(ω, n)

)ψ (28)

+ x ·
(

s̃(ω, n) · κI ·
(
iA(ω, n)

)ψ
+ (1− s̃(ω, n)) · κS ·

(
iS(ω)

)ψ
)])

,

St = Yt · ∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) · χ ·
(
s(ω, n)

)ϕ, (29)

where s̃(ω, n) ≡ s(ω, n) · 1σ̃(ω,n)>0 is the probability that, conditional on an arrival of a

startup idea on a product of type (ω, n), an acquisition occurs. This shows that consumption

grows at the same rate as output.

Finally, as shown in Appendix A.4, the growth rate is

g =
1

ε− 1
·
[

∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) · b(ω, n)

]
, (30)

where b(ω, n) ≡ bI (ω, n) ·
(
λε−1 − 1

)
+ bS(ω, n) ·

(
λε−1 · eγ·(λε−1−1) − 1

)
is the overall

arrival rate of innovations (on average across innovation steps), and

bI(ω, n) ≡ z(ω, n) · iI(ω, n)

bS(ω, n) ≡ x ·
(

s̃(ω, n) · iA(ω, n) +
(

1− s̃(ω, n)
)
· iS(ω)

)
are the arrival rates of innovations generated by incumbents (bI) and startups (bS),

respectively. The formula illustrates that when γ is positive, (implemented) startup ideas

contribute relatively more to growth.

This concludes the description of our model’s equilibrium conditions. Appendix B

provides details on its numerical solution. In the next section, we proceed to analyse its

quantitative implications.
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4 Quantitative Analysis

Our quantitative analysis proceeds in several steps. First, in Section 4.1, we calibrate

our model’s parameters, matching aggregate and micro-level moments (including several

moments introduced in Section 2). In Section 4.2, we review some relevant qualitative

properties of the model, and in Section 4.3 we study the relationship between the fre-

quency of acquisitions and aggregate growth. In Section 4.4, we evaluate the effects of an

acquisition ban, and in Section 4.5, we discuss several robustness checks.

4.1 Calibration Strategy

We assume that a period of length 1 in the model corresponds to one year in the data.

Then, we set several parameters externally. First, we set the discount rate to ρ = 0.02
(which, combined with a 2% growth rate, implies a 4% annual interest rate). Second,

we set the elasticity of substitution to ε = 4, a standard value in the literature (Aghion,

Bergeaud, Boppart, Klenow and Li, 2021; Galí and Monacelli, 2016).

We assume that there are two product quality classes, Ω = {ωL, ωH} with ωL < ωH.

At every point in time, 20% of firms belong to the H class, and their sales account for

80% of GDP (in line with the average industry-level sales share of the top 20% of firms in

Compustat). This implies that ωH/ωL = 16. Moreover, we assume that firms transition

from ωH to ωL at a Poisson rate τ = 0.1, matching the fact that in every year, 10% of

Compustat firms belonging to the top 20% of sales in their industry drop out of that category

in the subsequent year. We set the elasticity of R&D costs to innovation to ψ = 2, following

empirical evidence in Akcigit and Kerr (2018). Following David (2020), we set the Nash

bargaining parameter for incumbents to α = 0.5. Finally, we set the average step size

advantage for startup ideas to γ = 0.36. To obtain this number, we rely on findings from

Kogan, Papanikolaou, Seru and Stoffman (2017), who estimate that the elasticity of a

patent’s market value to its number of forward citations is 0.17. Our results from Section

2.3 indicate that the average startup patent is cited six times as much as the average

incumbent patent. Therefore, we assume that a startup patent represents on average

γ = 60.17 − 1 ≈ 36% more steps than an incumbent patent.

This leaves seven parameters to be identified: the productivity step size, λ; the research

and development cost shifters for incumbents, ξ I and κI; the fixed cost of startup creation,

ξS; the development cost shifter for startups, κS; and the scale and curvature parameters

in the incumbent’s effort cost function, χ and ϕ. We calibrate these parameters internally

using an indirect inference approach: that is, we choose the set of parameter values that
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minimizes the distance between a set of model-generated moments and their empirical

counterparts.19 The success of this calibration strategy relies on choosing moments that

are both relevant for the economic intuitions we want to highlight, as well as sufficiently

sensitive to variation in individual parameters. As the model is non-linear, all moments are

affected by all parameters, making identification challenging. Nevertheless, we provide

economic intuitions for the identification power of different moments, and support these by

performing a more rigorous global identification exercise in Appendix B.2.

Precisely, we choose seven moments. First, we target a growth rate of 2%, the long-run

growth rate of GDP per capita in the United States (Jones, 2016). This moment identifies

the innovation step λ, and we find that an innovation increases productivity by about 5.8%.

Second, we target average outcomes for startups. In the model, startups face three

potential outcomes: acquisition, successful own innovation and entry, or failure to innovate

and exit. In Section 2.1, we found that around 4% of innovative startups in the United

States are acquired. We impose this target, which allows us to identify χ, the search cost

of incumbents for startups. The data from Section 2.1 also shows that, conditional on not

being acquired, 6.6% of startups either achieve an IPO or manage to grow to more than

100 employees. We interpret these events as successful entry, and therefore impose that on

average, non-acquired startups have a 6.6% probability to implement their idea and enter.

This moment identifies κS, the development cost shifter for startups.

Third, we use our regression evidence from Section 2.4 to set the development cost scale

parameter of incumbents, κI. Precisely, we match our finding that on average, acquisitions

do not affect the implementation probability of startup ideas, by imposing that the average

probability to implement an idea is the same for startups and incumbents.20 As shown

in Panel B of Table 3, our calibration implies that the implementation cost of incumbents

is about 70% lower than the one of startups. Indeed, with equal implementation costs,

our model would imply that incumbents are less likely to implement ideas than startups,

due to the replacement effect. To account for the fact that acquisitions do not seem to

affect implementation probabilities in the data, our model assigns a large cost advantage to

incumbents.

Forth, we target selection into acquisition (on the acquirer side), by matching the sales

19Formally, the vector of parameters θ = (λ, ξ I , κI , ξS, κS, χ, ϕ) is chosen to minimize the following criterion
distance function: ∑M

m=1
|Momentm(Model,θ)−Momentm(Data)|

0.5|Momentm(Model,θ)|+0.5|Momentm(Data)| .
20That is, we target

∑
ω

∑
n

m(ω) ·m(n) · iS(ω)−∑
ω

∑
n

m(ω) ·m(n) · iA(ω, n) = 0
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Table 3: Calibrated parameters and model fit.

A. Externally Calibrated Parameters

Parameter Description Value Target/Source

ρ Discount rate 0.02 4% annual real interest rate
ε Elasticity of substitution 4 Standard value

ωH/ωL Relative product quality 16 Top 20% sales share (Compustat)
τHL Transition rate from high to low quality 0.10 Likelihood to drop from Top 20% (Compustat)
ψ R&D cost curvature 2 Akcigit and Kerr (2018)
α Bargaining weight for incumbents 0.5 David (2020)
γ Step size advantage of startup ideas 0.36 Kogan et al. (2017) and Section 2

B. Internally Calibrated Parameters

Parameter Description Value

λ Innovation step size 1.058
ξS Startup creation cost 0.074
κS Development cost scale for startups 9.857
ξ I Research cost scale for incumbents 0.002
κI Development cost scale for incumbents 2.760
χ Search cost scale for incumbents 0.700
ϕ Search cost curvature for incumbents 2.222

C. Model Fit

Targeted moment Model Data Data source Identifies

Growth rate 2.00% 2.00% Jones (2016) λ

Entry rate 5.8% 5.8% Akcigit and Kerr (2018) ξS

Growth contribution of entrants 25.7% 25.7% Akcigit and Kerr (2018) ξ I

Startup avg. implementation probability 6.6% 6.6% Section 2 κI

Effect of acq. on impl. prob. (percentage points) 0.0 0.0 Section 2 κS

Percentage of startups acquired 4.0% 4.0% Section 2 χ

Relative size of acquiring firms 3.6 2.8 Section 2 ϕ
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difference between acquiring firms and non-acquiring firms. In Section 2.3, we showed that

acquirers were about 2.8 times larger than non-acquirers. We target this moment in our

model. This identifies the model parameter ϕ, the curvature in the search cost function,

which governs how steeply costs increase for firms that search harder for startups.

Finally, we target both the absolute entry rate as well as the contribution of entrants

to overall productivity growth. Both of these moments are not directly observable in our

data. We therefore choose targets that are in line with the literature on firm dynamics

and innovating firms. Precisely, we follow Akcigit and Kerr (2018), setting an entry rate

of 5.8% and imposing that entry accounts for 25.7% of total productivity growth.21 Note

that in conjunction with the other moments, this target for the entry rate implies a target

for the startup rate x in our model.22 This target for the startup rate identifies ξS, the cost

of startup creation. Finally, while the contribution of entrants to growth is affected by a

variety of parameters, it is particularly sensitive to the research costs of incumbents, ξ I,

which shifts the contribution of incumbents’ own innovation to growth.

Table 3 lists the calibrated parameter values and summarizes the model fit. With the

exception of the size difference between acquiring and non-acquiring firms, the model

matches all moments exactly.

4.2 Equilibrium properties

Before turning to the quantitative analysis, we discuss some key properties of the BGP

equilibrium in this section (using the calibrated set of parameters).

Figure 5 plots the value function v and the research policy function z for an incumbent

firm. Firm value is increasing in quality ω and in the technology gap n. Moreover, firm

value is concave in n, as the marginal effect of higher technology gaps on markups and

profits gets smaller when the incumbent gets further ahead of its follower. Accordingly,

once the incumbent is far ahead enough to charge the unconstrained monopoly markup,

firm value no longer depends on the technology gap. The research investment of the firm,

in turn, depends on the increments of the value function. Therefore, it is increasing in

quality ω, and decreasing in the technology gap n. Note, however, that a firm which has

21Akcigit and Kerr (2018) structurally estimate a creative destruction model on the universe of patenting
firms in the United States. This focus on patenting firms makes their setup most closely related to ours.
However, the influential study of Garcia-Macia, Hsieh and Klenow (2019), which focuses on all firms, finds
similar numbers: a 21.1% contribution of entry to productivity growth over our sample period, and an exit
rate for “large” firms of 6% (entry and exit rates are equal in our model).

22Precisely, the entry rate is the product of the startup rate x, the fraction of startups that are not acquired
(96%) and the fraction of non-acquired startups that successfully implement their innovation (6.6%). Thus,
an entry rate of 0.058 implies a startup rate of 0.058

0.96·0.066 ≈ 0.915.
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Figure 5: Value functions and research policy functions of incumbent firms, by firm type.

reached the unconstrained monopoly markup still continues to invest into research: even

though its markup cannot be increased further, the firm can still increase its market share

by increasing productivity.

Figure 6: Acquisition surplus and meeting probabilities, by firm type.

Figure 6 plots the acquisition surplus σ and the incumbent meeting probabilities s. In our

model, acquisitions may have a positive surplus for two reasons. First, acquisitions could

transfer an idea to a more efficient user (as κI < κS). Second, they allow the technology

gap n to remain at least at its current value, instead of being potentially lowered through

entry. The first motive reflects a socially useful transfer of ideas, while the second motive

just preserves the rents of the incumbent firm (transferring part of them to the startup).

A higher product quality ω and a higher technology gap n both imply greater benefits

of transferring an idea to a better user and greater rents of maintaining the incumbent’s

position. Thus, the acquisition surplus is increasing in both variables, and firms with higher

quality and higher technology gaps invest more resources into startup search.
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Finally, the left panel of Figure 7 plots the implementation probabilities for a startup

idea, distinguishing between the case in which the startup is not acquired and invests into

implementation itself (iS), and the case in which the startup is acquired and the incumbent

invests into implementation (iA). As shown in the previous section, incumbents face lower

implementation costs than startups. Accordingly, at low levels of the technology gap, incum-

bents are more likely to implement a startup idea than the startup itself. As the technology

gap increases, however, the marginal benefit of innovation for incumbents decreases (as the

replacement effect becomes stronger). As a consequence, the implementation probability

of ideas for incumbents falls below that of startups, and some acquisitions become killer

acquisitions. On average, however, acquisitions do not affect the implementation probability,

as imposed by our calibration.

Figure 7: Development probabilities by firm type, and the invariant distribution of technology gaps.

The previous discussion shows that incumbent firm decisions about research, imple-

mentation and startup search crucially depend on the technology gap n. Therefore, the

distribution of technology gaps across industries, shown in the right panel of Figure 7, is

a crucial equilibrium object. This distribution is endogenous, shaped by the innovation

choices of incumbents and startups. As we will see in the next sections, prohibiting or

encouraging acquisitions will trigger shifts in this distribution.

4.3 The Aggregate Effects of Acquisitions

Comparative statics: the growth rate To study the aggregate effect of acquisitions, we

first consider our model’s implication for changes in the search cost for startups χ. That is,

we solve for the BGP equilibrium for different values of χ, keeping all other parameters

at their baseline values. Recall that χ represents frictions in the search for startups: a low
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value of this parameter implies low frictions and frequent acquisitions, while a high level

implies high frictions and infrequent acquisition. Accordingly, as shown in the left panel of

Figure 8, the equilibrium frequency of acquisitions is monotonically decreasing in χ.

Figure 8: BGP equilibria for different values of search costs χ. The baseline calibration value of χ is marked
with a vertical line in the left plot. The right plot shows the reduced-form relationship between the frequency
of acquisitions and growth. Again, the vertical line marks the baseline frequency of acquisitions.

The right panel of Figure 8 plots the growth rate of the economy for different values

of search costs. Note that for convenience, we plot the growth rate directly against the

frequency of acquisitions implied by different search costs.23 This figure illustrates the main

result of our paper: a higher frequency of acquisitions is associated with a lower growth

rate.

A useful decomposition Why is the growth rate lower when acquisitions are more

frequent? In order to answer this question, we rely on a useful decomposition of the

sources of aggregate growth in our model. Indeed, it is easy to show that in our model, the

difference in growth rates between different balanced growth paths can be expressed as

g
g∗

=σ∗I ·
Incumbent own innovation
Incumbent own innovation∗

+

(1− σ∗I ) ·
(

Startup rate
Startup rate∗

· Perc. of impl. startup ideas
Perc. of impl. startup ideas∗

)
,

(31)

where x∗ stands for the baseline BGP value of variable x and σ∗I stands for the BGP

share of growth accounted for by incumbents’ own innovation. Formally, the variables in

23This choice is only to made improve readability: the frequency of acquisitions is obviously an endogenous
outcome, and all variation in it is due to underlying variation in the search cost parameter χ.
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this decomposition are given by

Incumbent own innovation = ∑
ω,n

m(ω, n) · bI(ω, n)

Startup rate =x

Perc. of impl. startup ideas = ∑
ω,n

m(ω, n) ·
(

s̃(ω, n) · iA(ω, n) +
(

1− s̃(ω, n)
)
· iS(ω)

)
Equation (31) shows that any change in the growth rate with respect to its baseline

BGP value can be decomposed into three elements: changes in incumbent’s own innovation

behavior, changes in the startup rate, and changes in the percentage of startup ideas that

are implemented. The weights in this expression are given by the baseline BGP share of

growth accounted for by incumbents’ own innovation. In our baseline calibration, this share

is σ∗I = 72.4%.24

Decomposing growth Figure 9 uses the decomposition in equation (31) to investigate

the sources of the negative relationship between acquisitions and growth. The top left panel

plots the three sources of growth identified in the decomposition, normalized to 1 at their

baseline BGP level. It shows that when acquisitions increase, the arrival rate of startup

ideas increases substantially. Thus, acquisitions have a strong incentive effect on startup

creation in our model, which all else equal would imply that they are growth-enhancing.

However, this positive effect is more than compensated by a decrease in incumbent’s own

innovation and in the percentage of startup ideas being implemented.

There are two main reasons for the change in these variables. First, higher acquisitions

trigger a composition effect. As the percentage of acquired startups increases more strongly

than the startup rate, the entry rate falls in our calibrated model. Creative destruction

slows down, and the distribution of technology gaps shifts to the right (as shown in the

bottom left panel of Figure 9). At a higher technology gap, the average incumbent has less

incentives to invest into research, or to implement its own and startup ideas. Second, a

higher startup rate reduces the value of incumbents: even though incumbents can buy out

startups and thereby avoid displacement, every acquisition implies a costly sharing of rents

with the threatening startup. This decrease in incumbent value contributes to the fall in

incumbent innovation, and explains why both incumbents and startups invest less into the

implementation of ideas (as shown in the bottom right panel of Figure 9).

24Note that the share of growth due to startup ideas (27.6%) is close to the share of growth due to entry
(25.7%), which was one of our calibration targets. This is because implementation of a startup idea by an
incumbent is a relatively infrequent event with respect to entry (few startups are acquired, and incumbents
implement startup ideas at the same rate as startups themselves).
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Figure 9: Important equilibrium outcomes for different values of search costs χ. All plots show the frequency
of acquisitions on the x-axis (and all variation in this frequency is driven by changes in search costs). The
vertical line marks the baseline frequency of acquisitions.

These comparative statics results hint at a positive effect of stricter antitrust policy on

growth. To confirm this impression, the next section considers a simple policy experiment.

4.4 Policy: the effects of an acquisition ban

In this section, we consider a simple government intervention that bans all startup

acquisitions. Table 4 shows that this policy would lead to a slight increase in the aggregate

growth rate, by 0.04 percentage points (or 2.2%) per year. In line with the intuitions

developed above, this is the net effect of a 7.6% decrease in the arrival rate of startup ideas

and an (overcompensating) 4.8% increase in the own innovation effort of incumbents and

a 3.1% increase in the percentage of implemented startup ideas. Banning acquisitions also

increases the entry rate and slightly lowers the aggregate markup.

As discussed earlier, there are two reasons for which incumbents’ own innovation and the

implementation of startup ideas increase after the acquisition ban. First, with greater entry,
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the technology gap distribution shifts to the left (towards more innovative firms). Second,

the disappearance of costly acquisitions increases the value of incumbents. To assess the

relative strength of these two channels, we consider a counterfactual accounting exercise in

which we only shift the distribution of technology gaps to its post-policy level, but keep all

other variables at their baseline levels. This shows that the shift in the distribution alone

explains less than 10% of the total growth effect, with the remainder due to changes in

incumbent value.

Table 4: The effects of an acquisition ban

Outcome Baseline Acq. Ban % Change

Growth rate 2.00% 2.04% +2.2%
Incumbent own inn. rate 0.236 0.247 +4.8%
Startup rate 0.917 0.848 −7.6%
Percentage of imp. startup ideas 6.8% 7.0% +3.1%
Entry rate 0.058 0.059 +2.3%
Percentage of startups acquired 4.0% 0% −100%
Aggregate markup 22.1% 22.1% −0.1%

Notes: In this table, we compare our baseline BGP to an alternative “acquisition ban” BGP, in which
startup acquisitions are not allowed. To compute the latter equilibrium, we impose that the surplus
from acquisitions is always zero (as it would be, for instance, if the government would impose an
arbitrarily high tax on startup acquisitions).

Overall, our results in this section suggest that the negative effects of acquisitions on

growth are slightly stronger than their positive effects. In the remainder of the paper, we

explore the robustness of these baseline results to various different choices for the targeted

data moments and the externally calibrated parameters. This provides us with a better

sense of the main drivers behind our result.

4.5 Robustness

4.5.1 Do acquisitions always lower growth?

First, it is important to point out that the negative effect of acquisitions on growth is

not a foregone conclusion in our model. In fact, a key driver of our baseline result is the

fact that incumbents’ own innovation accounts for the bulk of economic growth. Thus, the

negative effect of acquisitions on incumbents’ own innovation has a disproportionate effect

on the aggregate growth rate.
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This implies, in turn, that acquisitions might be growth-enhancing in a situation in

which the majority of ideas are generated in startups. Table 5 shows a calibration in

which this is the case. This calibration represents a situation in which startups have a

large comparative advantage in inventing ideas, but incumbents have a large comparative

advantage in implementing them. In that case, acquisitions allow an efficient division of

labor between startups and incumbents: startups come up with ideas, and incumbents

implement them. As shown in the table, this makes the sign of our results flip: acquisitions

are now growth-enhancing, and accordingly, an acquisition ban lowers the growth rate.

In the calibration considered here, in which incumbents implement at a rate that is 50

percentage points higher than the one of startups, and half of all startups are acquired, this

effect is very large.

Table 5: The effects of an acquisition ban in a “division of labor” equilibrium

Outcome Division of labor BGP Acq. Ban % Change

Growth rate 2.02% 0.94% −53.4%
Incumbent own inn. rate 0.060 0.133 +120.5%
Startup rate 0.556 0.154 −72.3%
Percentage of imp. startup ideas 34.1% 10.0% −70.5%

Notes: This table illustrates the effect of an acquisition ban in a “division of labor” calibration. This
calibration targets a entry rate of 2%, a growth contribution of entrants of 5%, a 50 percentage
point increase in the implementation probability of a startup idea due to acquisition, and imposes
that 50% of startups are acquired. All other targets and external parameter values are the same as
in the baseline calibration.

This example is admittedly extreme. However, it does help to understand the main

drivers of our baseline result: we find a negative effect of acquisitions on growth because

incumbents account for the largest share of overall productivity growth, and do not imple-

ment ideas at decisively higher rates than startups. The first fact is widely supported by

the firm dynamics literature, and the second follows directly from our regression results

in Section 2.4. However, it is important to point out that these statements hold for the

average industry: thus, there might well be industries which are closer to a “division of

labor” equilibrium, and in which acquisitions have therefore a more positive effect.

4.5.2 Robustness checks with respect to parameters

Finally, we explore in this section how our results change when we vary certain key

parameters.
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Search costs Figure 10 shows the effects of an acquisition ban for different values of

search costs χ (leaving all other parameter values unchanged). It shows that in our baseline

calibration, the growth effects of an acquisition ban are decreasing in χ (and therefore

increasing in the frequency of acquisitions).

Figure 10: Robustness: the role of χ. This figure shows outcomes for different values of the parameter χ (0.7
in the baseline, as marked by the vertical line). All other parameter values are unchanged.

This suggests that the predictions of our model are monotonic in the frequency of

acquisitions: everything else equal, more acquisitions are more harmful to growth.

Incumbent bargaining power Figure 11 shows the effects of an acquisition ban for

different values of incumbent bargaining power α (leaving all other parameter values

unchanged). The figure shows an inverted U-shape: acquisition bans are most growth-

enhancing for intermediate values of incumbent bargaining power. On the other hand,

when incumbents have no bargaining power, a ban has no effect, and when incumbents

have all the bargaining power, a ban actually reduces growth.

To explain these results, note that when incumbents have no bargaining power (α = 0),

they have no incentives to acquire startups. Thus, there are no acquisitions, and accordingly,

an acquisition ban has no effects. On the other hand, when incumbents have all the

bargaining power (α = 1), acquisitions are growth-enhancing. This is because incumbents

can acquire startups for the lowest possible price in this case. Accordingly, the decrease in

the startup rate due to the acquisition ban does not stimulate their innovation much (see

the right panel of Figure 11), as startups did not pose a costly challenge to begin with.25

25Higher bargaining power for incumbents also increases the startup rate, as it gives incumbents greater
incentives to search for startups. Even though startups now obtain a smaller share of the surplus, this is more
than compensated by the higher rate at which they are acquired.
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Figure 11: Robustness: the role of α. This figure shows outcomes for different values of the parameter α (0.5
in the baseline, as marked by the vertical line). All other parameter values are unchanged.

Hence, the negative effect of the ban on the startup rate drags the overall growth rate

down.

Overall, the robustness checks in this section suggest that the effects of acquisitions

depend to an important extent on the characteristics of the initial equilibrium. Given the

large variation in circumstances across industries, one would therefore expect antitrust

policy to have much stronger effects in some industries than in others.

5 Conclusion

In this paper, we assess the effect of startup acquisitions on productivity growth, using

a macroeconomic model that takes into account positive effects (on the startup rate and

idea transfers) and negative effects (killer acquisitions and spillovers on incumbents’ own

innovation incentives). We calibrate the model using micro-level data, and find that higher

acquisitions increase the startup rate, by providing additional incentives for startup creation.

However, this is more than compensated by a decrease in incumbent’s own innovation

and in the implementation probability of ideas. Accordingly, a policy that bans all startup

acquisitions would increase the rate of growth by around 0.04 percentage points per year.

As our discussion above has shown, our results depend to a large extent to the data we

feed into the model. For instance, acquisitions are likely to be more beneficial if startups

represent the main source of ideas, but incumbents have decisive development advantages.

This suggests that the effects of startup acquisitions could widely differ across industries.

Further exploring this industry-level heterogeneity represents a promising path for future

research.
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Appendix Materials

A Derivations and Proofs

A.1 Normalized value functions and free entry condition

Using our guess for the value function, we can rewrite Equations (10) to (14) as

vNoMeet(ω, n) = (1− iS(ω)) · v(ω, n), (A.1)

vNoMeet
S (ω) = max

iS

{
iS ·
(

+∞

∑
nS=1

θ(nS) · λnS(ε−1) · v(ω, nS)

)
− κS · i

ψ
S

}
(A.2)

σ̃(ω, n) = max
iA

{
v(ω, n) + iA ·

(
+∞

∑
nS=1

θ(nS) · λnS(ε−1) · v(ω, n + nS)− v(ω, n)

)

− κI · i
ψ
A

}
− vNoMeet(ω, n)− vNoMeet

S (ω) (A.3)

vMeet(ω, n) = vNoMeet(ω, n) + α · σ̃(ω, n) (A.4)

vMeet
S (ω, n) = vNoMeet

S (ω) + (1− α) · σ̃(ω, n). (A.5)

In all of these expressions, lower-case letters denote values that are normalized by

relative productivity and aggregate GDP (e.g., vNoMeet(ω, n) · ãε−1 · Yt = VNoMeet
t (ω, n, a),

and so on). Using these expressions, we can rewrite the value of a startup - the right-hand

side of equation (15) - as

Et

[
s(ω, n) ·VMeet

S,t (ω, n, a) +
(

1− s(ω, n)
)
·VNoMeet

S,t (ω, a)
]

= ∑
ω∈Ω

+∞

∑
n=1

∑
a∈At

m(ω) ·m(n) ·mt(a) ·
[

s(ω, n) · vMeet
S (ω, n)

+
(

1− s(ω, n)
)
· vNoMeet

S (ω)

]
· ãε−1 ·Yt

where At stands for the set of all productivities at instant t (note that because pro-
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ductivity evolves on a ladder, this set is always countable), and we have used the fact

that the distributions of quality, technology gaps and productivity are independent. This

independence allows us to rewrite the value of a startup as

Yt · ∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) ·
[

s(ω, n) · vMeet
S (ω, n)+

(
1− s(ω, n)

)
· vNoMeet

S (ω)

]
·
(

∑
a∈At

mt(a) · ãε−1

)
.

Next, note that that by definition,

∑
a∈At

mt(a) · ãε−1 =
∫ 1

0

(
ajt

At

)ε−1

dj = 1.

Replacing this into the previous expression yields equation (23) in the main text.

A.2 The invariant distribution of technology gaps

To determine the invariant distribution over technology gaps n, we build an intensity
(also known as infinitesimal generator) matrix. For a homogeneous continuous-time Markov

chain zt taking values in some discrete space {z1, z2, . . . , zS} ∈ RS, a generator matrix Mz

is defined by:

Mz ≡


−∑j 6=1 λ1j λ12 . . . λ1S

λ21 −∑j 6=2 λ2j . . . λ2S
...

... . . . ...

λS1 λS2 . . . −∑j 6=S λSj

 (A.6)

where λij ≥ 0 is the intensity rate for a zi-to-zj transition. Note that the diagonal

elements of Mz collect outflows, while the off-diagonal elements collect inflows. Thus, each

row of an infinitesimal generator matrix must add up to zero.

To build this matrix in our model, we assume n ∈ {1, 2, . . . , nmax}, i.e. that the technol-

ogy gap is bounded above by nmax < +∞.

We denote by mt(n) the share of firms in state n at time t. The law of motion of mt(n)
can be written as follows:

∂~mt

∂t
= M>n ~mt (A.7)

To find the invariant distribution, we impose ∂~mt
∂t =~0 in equation (A.7) and solve for the
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unique solution of the system of linear equations holding ∑n m(n, k) = 1.

What are the transition rates? For any transition from n to n + 1, with n + 1 < nmax,

the transition rate is

∑
ω

m(ω) ·
[

z(ω, n) · iI(ω, n)+ x ·
(

s̃(ω, n) · iA(ω, n) · θ(1)+ (1− s̃(ω, n)) · iS(ω) · θ(n+ 1)
)]

.

Transitions occur because of incumbent ideas, 1-step startup ideas implemented by

incumbents, and (n + 1)-step startup ideas implemented by startups.

For transitions from nmax − 1 to nmax, the transition rate is

∑
ω

m(ω) ·
[

z(ω, nmax − 1) · iI(ω, nmax − 1)+

x ·
(

s̃(ω, nmax − 1) · iA(ω, nmax − 1) + (1− s̃(ω, nmax − 1)) · iS(ω)
+∞

∑
nS=nmax

θ(nS)

)]
.

The intuition is the same as before, but now any startup idea implemented by an

incumbent brings us into nmax, as well as any startup idea of quality nmax or larger.

Next, for transitions from n to n + k, with k > 1 and n + k < nmax, we have a transition

rate

∑
ω

m(ω) · x ·
(

s̃(ω, n) · iA(ω, n) · θ(k) + (1− s̃(ω, n)) · iS(ω) · θ(n + k)
)

.

These transitions can only occur because of startup ideas allowing an incumbent to take

k steps or a startup to take n + k steps.

For transitions from n to nmax, with n < nmax − 1, we have

∑
ω

m(ω) · x ·
(

s̃(ω, n) · iA(ω, n)
+∞

∑
nS=nmax−n

θ(nS) + (1− s̃(ω, n)) · iS(ω)
+∞

∑
nS=nmax

θ(nS)

)
.

These transitions happen when startup ideas allow an incumbent to take nmax − n steps

or more, or a startup to take nmax steps or more.

Finally, for downward transitions, from n1 to n2 with n1 > n2, we have a transition rate

∑
ω

m(ω) ·
(

x · (1− s̃(ω, n1)) · iS(ω) · θ(n2)

)
Downward transition happen only when there is entry, and the entering startup takes n2

steps on the quality ladder.
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A.3 Aggregate ratios

To obtain equation (24) in the main text, we use the CES price index. The price of the

final consumption good holds

Pt = 1 =

(∫ 1

0
ωjt · p1−ε

jt dj
) 1

1−ε

= ∑
ω∈Ω

+∞

∑
n=1

∑
a∈At

m(ω) ·m(n) ·mt(a)
[

ω · µ(n) · w1−ε
t · aε−1

]

As markups are only dependent on n, we can use the fact that ∑ω∈Ω ωm(ω) = 1 and

∑a∈At mt(a) · aε−1 = Aε−1
t to obtain the equation in the main text.

To derive the labor market clearing condition, we first note that the labor demand of

each individual firm is

ljt = ωjt ·
(
µ(njt)

)−ε · w−ε
t
(
ajt
)ε−1 ·Yt.

Integrating over all producers and imposing labour market clearing, we get

L =

[ ∫ 1

0
ωjt ·

(
µ(njt)

)−ε ·
(
ajt
)ε−1

]
· w−ε

t ·Yt

=

[
∑

ω∈Ω

+∞

∑
n=1

∑
a∈At

m(ω) ·m(n) ·mt(a) ·
(

ω · (µ(n))−ε · aε−1
)]
· w−ε

t ·Yt

=

[
+∞

∑
n=1

m(n) · (µ(n))−ε

]
· Aε−1

t · w−ε
t ·Yt,

which immediately yields equation (25) in the main text.

A.4 Growth Rate

As shown in the main text, on the BGP, aggregate output, consumption and wages all

grow at the same rate as average productivity At. To derive the growth rate of average

productivity, we first note

ln(At) =
1

ε− 1
· ln
(∫ 1

0
aε−1

jt dj
)

.

Now, consider an infinitesimally small time period dt. In this period, every product in

state (ω, n) has a probability b(ω, n, k) · dt of seeing its productivity increase by a factor λk,
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where b(ω, n, k) is defined as:

b(ω, n, k) ≡

bI(ω, n) + θ(1) · bS(ω, n) if k = 1

θ(k) · bS(ω, n) if k ≥ 2

and (bI , bS) are the arrival rates of innovation by incumbents and startups defined in the

main text. Therefore, applying the law of large numbers, we can write average productivity

at instant t + dt as

ln(At+dt) =
1

ε− 1
· ln
[

∑
a∈At

∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) ·mt(a) ·
((

1−
+∞

∑
k=1

dt · b(ω, n, k)

)
· aε−1

+
+∞

∑
k=1

dt · b(ω, n, k) · λk·(ε−1) · aε−1

)]

= ln(At) +
1

ε− 1
· ln
[

∑
a∈At

∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) ·mt(a) ·
(

a
At

)ε−1

+ dt · ∑
a∈At

∑
ω∈Ω

+∞

∑
n=1

m(ω) ·m(n) ·mt(a) ·
(

a
At

)ε−1 +∞

∑
k=1

b(ω, n, k) ·
(

λk·(ε−1) − 1
) ]

.

Using again that fact that relative productivity aggregates up to 1, and dividing by dt,
we get

ln(At+dt)− ln(At)

dt
=

1
ε− 1

·
ln
(

1 + dt ·∑ω∈Ω ∑+∞
n=1 m(ω) ·m(n)∑+∞

k=1 b(ω, n, k) ·
(

λk·(ε−1) − 1
))

dt
.

Taking the limit as dt goes to 0 (and using the fact that limx→0
ln(1+x)

x = 1), we get:

Ȧt

At
=

1
ε− 1

·
(

∑
ω∈Ω

+∞

∑
n=1

[
+∞

∑
k=1

b(ω, n, k) ·
(

λk(ε−1) − 1
)])

.

The term in square brackets is the overall innovation rate in state (ω, n), on average

across step sizes. Note:

+∞

∑
k=1

b(ω, n, k) ·
(

λk(ε−1)− 1
)
= bI(ω, n) ·

(
λε−1− 1

)
+ bS(ω, n) ·

[
+∞

∑
k=1

θ(k) ·
(

λk(ε−1) − 1
)]

.

Using that θ(k) = γk−1

(k−1)! · e
−γ and ∑+∞

k=1 θ(k) = 1, we can write the term in brackets
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from the last expression as follows:

+∞

∑
k=1

θ(k) ·
(

λk(ε−1) − 1
)
= e−γ ·

(
+∞

∑
k=1

γk−1

(k− 1)!
· λk·(ε−1)

)
− 1

= λε−1 · e−γ ·
(

+∞

∑
k=1

(
γ · λε−1)k−1

(k− 1)!

)
− 1

= λε−1 · eγ·(λε−1−1) − 1

where, to go from the second to the third line, we note that the term in parenthesis on

the second line is equal to eγ·λε−1
, as e−γ·λε−1 · (γ·λε−1)

k−1

(k−1)! equals the probability of a Poisson

distribution with parameter γ · λε−1. Putting everything together, we obtain equation (30).

B Numerical Appendix

B.1 Solution Algorithm

To solve for our model’s BGP solution, we use the following algorithm.

1. We guess a value for the aggregate productivity-wage ratio, At
wt

.

2. We guess a value for the startup rate x, and for the distribution of incumbents across

technology gaps, (m(n))n∈N.26

3. Given these guesses, we solve for the value function of incumbent firms, using the

following value function iteration algorithm.

(a) We guess a value function v.

(b) Using the first order conditions stated in the main text, we deduce from this

guess the policy functions z, s, iI, iA, iS as well as the acquisition surplus σ.

(c) Using our guess for the distribution (m(n)) and our results from (b), we compute

the implied value for the growth rate g.

(d) We use equation (16) to compute a new implied value for the value function,

vnew.

26Note that once the incumbent firm has a technology gap that allows it to charge the unconstrained
monopoly markup, the exact value of the technology gap does not matter any more for model outcomes.
Therefore, we only need to keep track of the distribution of firms below this threshold, which is a finite object.
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(e) If ‖ v−vnew
vnew
‖∞ < 10−4, the algorithm has converged and we proceed to step 4. If

this condition does not hold, we compute a new guess for the value function as

0.998 · v + 0.002 · vnew and go back to step 3 (b).

4. Compute the value of an entrant vS (the right-hand side of equation (23)), using our

guesses for x and (m(n)) and the incumbent policy functions computed in step 3.

Then, compute the distribution of technology gaps (mnew(n)) implied by our guess

for x and the innovation rates obtained in step 3. When the condition

min
(∣∣∣∣ξS − vS

vS

∣∣∣∣, ∥∥∥∥m−mnew

mnew

∥∥∥∥
∞

)
< 10−4

holds, we proceed to step 5. Otherwise, we update our guesses for x and m(n) and

return to step 3.

5. Using our result for the distribution m(n), we compute the implied value of the

productivity-to-wage ratio, using equation (24). When
∣∣∣∣
(

At
wt

)
new
− At

wt
At
wt

∣∣∣∣ < 10−4, the

algorithm has converged and we have found the BGP equilibrium. Otherwise, we

update our guess for At
wt

and return to step 2.

B.2 Estimation Procedure and Global Identification

Next, we explain the estimation procedure and present a global identification test for

the calibration exercise presented in Section 4.1.

We seek to find the set of M parameters, collected in the vector θ, that minimizes the

distance between M moments generated by the model and their counterparts in the data.

The distance function is:

D(θ) ≡
M

∑
m=1

|Momentm(Model, θ)−Momentm(Data)|
0.5 |Momentm(Model, θ)|+ 0.5 |Momentm(Data)|

To perform such a minimization, rather than relying on gradient-based methods, we

use an algorithm that efficiently searches over a large region of the parameter space and

searches for the model solution that yields the lowest distance.

In particular, first we create a large M-dimensional hyper-cube P in the parameter

space.27 Then, we pick quasi-random realizations from it using a Sobol sequence, which

27In order to do so, we need to specify bounds for different parameters. In particular, we set a lower bound
of 2 for the parameter ϕ.
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successively forms finer uniform partitions of the parameter space. For a sufficiently large

number of Sobol draws, this routine efficiently and comprehensively explores every corner

of P . For each parameter evaluation, we then solve the model and store its results in a

matrix. For this step, we use a high performance computer (HPC), allowing us to parallelize

the procedure into hundreds of separate CPUs, thereby saving us an enormous amount of

computation time. After N draws (in practice, N ≈ 1.5 million), we have a N ×M matrix

R of results and a N ×M matrix Θ ∈ P of the corresponding parameters. We then select

the row vector θ̂ ∈ Θ for which D(θ̂) ≤ D(θ), ∀θ 6= θ̂.

The advantage of this method over other estimation techniques is that the model-

generated data contained in the (R, Θ) matrices can be exploited to obtain information

about identification. Particularly, we implement the following procedure, adapted from

Daruich (2020). First, for each parameter p, we select a target moment m which we believe

is particularly sensitive to the parameter. Note that, because of the Sobol routine, for each

given value of p there is a distribution of values for m resulting from underlying random

variation in all the remaining M− 1 parameters. Using this fact, we then divide the support

of p into 50 quantiles, and compute the 25th, 50th and 75th percentiles of this underlying

distribution at each quantile.

We may now study how sensitive m is to changes in p by exploring the properties

of how the moment’s distribution behaves across different values for p. We say that p
is well-identified by m when (i) the distribution changes across quantiles of p, (ii) the

rate of this change is high, and (iii) the inter-quartile range of the m distribution is small

throughout the support for p. Criterion (i) implies that m is sensitive to variation in p, (ii)

gives an idea of how strong this relationship is, and (iii) implies that other parameters are

relatively unimportant to explain it. Importantly, as all the remaining parameters are not

fixed throughout this analysis but rather are varying in a random fashion, this method gives

us a global view of identification and, therefore, presumably outperforms identification

methods based on local elasticities (that is, based on moment pseudo-derivatives obtained

by keeping the remaining parameters fixed at their calibrated values).

Figure B.1 presents the results from the global identification procedure explained above,

where we have associated each targeted moment with the parameter that the moment most

plausibly identifies (the same pairing as in Table 3 and in our verbal discussion in Section

4.1). All in all, we find that the parameters of the model are well-identified by criteria (i)

and (ii) above and, with some exceptions, by criterion (iii).
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Figure B.1: Global identification results.
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