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Abstract

We provide the first behavioral characterization of nested logit, a foundational and widely

applied model in discrete choice, through the introduction of a non-parametric version of nested

logit that we call Nested Stochastic Choice (NSC). NSC is characterized by a single axiom

that weakens Independence of Irrelevant Alternatives based on revealed similarity to allow

for the similarity effect. Nested logit is characterized by an additional menu-independence

axiom. Our axiomatic characterization allows us to derive a practical, data-driven algorithm that

identifies the true nest structure from choice data. We also discuss limitations of generalizing

nested logit by studying testable implications of cross-nested logit.
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1 Introduction

Nested logit (Ben-Akiva (1973), McFadden (1978)) is the most widely applied generalization

of multinomial logit (or Luce’s (1959) model) due to its ability to capture various substitution

patterns.1 In nested logit, each alternative belongs to a nest (or subset) of “similar” alternatives,

and choice may be decomposed into two Luce procedures: the probability that a is chosen from

menu A is the probability that a’s nest is chosen from among nests available in A multiplied

∗Kovach: Virginia Tech (mkovach@vt.edu); Tserenjigmid: UC Santa Cruz (gtserenj@ucsc.edu ). We thank José
Apesteguia, Miguel A. Ballester, Khai Chiong, Ian Crawford, Federico Echenique, Mira Frick, Sean Horan, Ryota
Iijima, Shaowei Ke, Jay Lu, Fabio Maccheroni, A.A.J. Marley, Paulo Natenzon, Pietro Ortoleva, Collin Raymond,
Matthew Shum, Tomasz Strzalecki, the audiences of the BGSE Summer Forum 2018 and SAET 2019, and the seminar
participants at UC Santa Cruz, University of Sussex, KAIST, and Hitotsubashi University. We are also very grateful
to the editor, Emir Kamenica, and four anonymous referees for their excellent suggestions and feedback.

1Nested logit has been used to study transportation demand (Anderson and De Palma (1992), Forinash and
Koppelman (1993)), airline competition (Lurkin, Garrow, Higgins, Newman, and Schyns (2018)), automobile demand
(Brownstone and Small (1989), Goldberg (1995)), telephone use (Train, McFadden, and Ben-Akiva (1987), Lee
(1999)), and much more. See Chapter 4 of Train (2009) for an excellent discussion.
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by the conditional probability that a is chosen from that nest. Despite its immense importance,

nested logit has escaped behavioral characterization. In this paper, we provide the first behavioral

characterization of nested logit through the introduction of a fully non-parametric version that

we term Nested Stochastic Choice (NSC). This axiomatic characterization sheds light on the

implicit assumptions behind nested logit and related models while also inspiring a tractable method

to identify subjective nests from data.

Nested logit was developed to address the limitations of multinomial logit when dealing with

“similar alternatives.” In the Luce model, choice probabilities are proportional to a utility index

and hence satisfy Independence of Irrelevant Alternatives (IIA): probability ratios are menu-

independent. The similarity effect (Debreu (1960), Tversky (1972)) is a violation of IIA in which

the introduction of an alternative to a menu has a much larger effect on the choice probabilities

of alternatives of a “similar type” than on those of a “different type.” Nested logit allows the

similarity effect by assuming nested (similar) alternatives are more substitutable (e.g., because

they receive a correlated utility shock). Our main result shows that nesting of similar alternatives,

a key behavioral feature of nested logit (and also NSC), is captured by a weakening of IIA that

allows for the similarity effect. This finding reveals a deep connection between nested logit and the

similarity effect.

To illustrate the similarity effect, consider the red bus/blue bus example from Debreu (1960).

A commuter making a choice between a red bus and a train may choose either with probability

0.5. If the option to take a blue bus is introduced, it is plausible that it will have no effect on the

commuter’s likelihood of taking the train; the blue bus only affects the probability of selecting the

red bus (e.g., by reducing it to 0.25). The intuition behind this is that the buses are similar to each

other in a way that neither one is to the train. Nested logit handles this by placing the two buses

into a bus nest (buses receive a correlated utility shock). While this example provides an extreme

case of the similarity effect (the buses are perfect substitutes, or “duplicates”), the principle that

“similar alternatives affect each other” readily extends to many situations of interest to economists,

firms, and policy-makers, such as a consumer’s choice of vehicle or apartment.2

Our analysis of nested logit relies on the introduction of NSC, a non-parametric version of

nested logit. Formally, a stochastic choice function p is an NSC if there exist nests X1, . . . , XK

that partition the set of all alternatives X and functions v and u such that, for each choice set A,

the probability of choosing a ∈ A ∩Xi is given by

(1) p(a,A) =
v(A ∩Xi)∑K
j=1 v(A ∩Xj)

u(a)∑
b∈A∩Xi u(b)

.

The NSC is defined by two Luce rules where the attractiveness of the nest A ∩Xi is measured by

v(A∩Xi), and the attractiveness of the alternative a is measured by u(a) (or simply Luce’s utility

of a). In terms of the red bus/blue bus example, v governs the choice between general modes, “a

2In these cases, the correct nest specification is not easily observed by the analyst. For instance, apartments in a
city might be nested based on subjective neighborhoods, which may depend on a variety of factors, some of which
may be observable and others may be subjective or difficult to observe.

2



bus” or “a train,” while u governs the choice between specific alternatives, the red or blue bus.

Notice that nested logit is the special case of NSC in which, for each i ≤ K,

(2) v(A ∩Xi) =

 ∑
a∈A∩Xi

u(a)

ηi

for some ηi > 0.

Hence, NSC is nested logit without any assumptions on the relationship between v and u. It is

commonly assumed in the applied literature that ηi ≤ 1, as this ensures that nested logit is a

GEV (McFadden, 1978), and therefore this restriction is sufficient for consistency with the random

utility model (RUM). However, this restriction (ηi ≤ 1) is not necessary for Equation 2 to be a

RUM and nested logit has been estimated without this restriction.3 Therefore, for simplicity of

exposition we will refer to Equation 2 as a nested logit for any parameter value. To provide further

clarity, we may sometimes refer to nested logit satisfying the restriction (ηi ≤ 1) as the random

utility (RU) nested logit. We provide behavioral foundations for NSC and nested logit, along with

a characterization of random utility nested logit.

We utilize a revealed preference approach to identify the subjective/endogenous nest structure

of the NSC. This is achieved by introducing a notion of revealed similarity. In nested logit, if

two alternatives are in the same nest, then their probability ratio will always be independent of

other alternatives. Consistent with nested logit, we use this insight to define a notion of similarity:

alternatives a and b are revealed categorically similar, denoted a ∼p b, if IIA holds between

a and b at any menu. Otherwise, they are revealed categorically dissimilar. Therefore, the core

notion of similarity underpinning nested logit is binary: alternatives are similar or not.

Equipped with this notion of reveled similarity, we can weaken IIA to allow for the similarity

effect. To do so, we decompose IIA into two axioms. The first axiom, Independence of Sym-

metric Alternatives (ISA), imposes an IIA condition between a and b in the presence of a third

alternative x, when x is symmetrically related to a and b in terms of revealed similarity (i.e., both

are revealed categorically similar or dissimilar to x). In terms of the red bus/blue bus example,

IIA should hold between the buses in the presence of the train. The second axiom, Independence

of Asymmetric Alternatives (IAA), “completes” ISA by imposing an IIA condition when x is

asymmetrically similar to a and b (i.e., x is similar to one and not the other). For example, IAA

implies that the introduction of the blue bus impacts the red bus and the train equally, which

directly rules out the similarity effect.

Our main result is that ISA characterizes NSC (Theorem 1). Further, since ISA is the minimal

departure from IIA that allows for the similarity effect (i.e., violations of IAA), our analysis reveals

3This parameter restriction is sometimes referred to as the Daly-Zachary-McFadden condition (Daly and Zachary
(1978), McFadden (1978)), as they showed that this is sufficient for consistency with RUM for arbitrary values of the
other variables (e.g., utilities). However, this restriction is not always imposed. For instance, Train, McFadden, and
Ben-Akiva (1987) provide estimates of a model for which ηi > 1, remarking that it represents greater substitutability
between nests than within nests (see also Train, Ben-Akiva, and Atherton (1989), Lee (1999), Foubert and Gijsbrechts
(2007)). Further, nested logit with ηi > 1 may still be consistent with RUM (see Börsch-Supan (1990) and Herriges
and Kling (1996)).
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that NSC is the model obtained when IIA is relaxed to allow for the similarity effect.

To see how our axiomatization provides a clearer picture of nested logit, recall its standard

textbook description. For instance, Chapter 4 of Train (2009) states that for nested logit “IIA holds

over alternatives in each nest and independence of irrelevant nests (IIN) holds over alternatives

in different nests.” NSC also satisfies these properties. Indeed, ISA ensures the existence of

endogenous nests and imposes exactly these properties on them. But this finding shows that “IIA

and IIN” are not sufficient for a nested logit representation, as ISA is equivalent to NSC. Since there

are missing behavioral assumptions behind nested logit, the textbook description is incomplete.

To provide a complete picture of nested logit, we establish two characterizations of nested logit

as well as a characterization of random utility nested logit. Our first characterization shows that

an NSC is a nested logit if and only if it satisfies Log Ratio Invariance. This axiom requires

that the natural logarithm of certain probability ratios featuring collections of similar alternatives

is menu-independent. The explicit use of a functional form in the axiom allows us to establish

necessary and sufficient conditions for the functional form assumed in nested logit with finite data.

Our second characterization is based upon a novel monotonicity condition, Relative Like-

lihood Independence, that is necessary for nested logit and becomes sufficient under a mild

richness assumption. To understand this axiom, note that nested logit (Equation 2) requires that

the attractiveness of a nest is increasing in the sum of utilities. Relative Likelihood Indepen-

dence implies that this feature must hold in a relative sense; the attractiveness of a nest relative

to another nest is increasing in the sum of utilities, holding the alternatives in the other nest fixed.

Finally, random utility nested logit is characterized by one additional axiom, Regularity, a well-

known monotonicity property that all random utility models must satisfy (under the same richness

assumption). We summarize all of our characterization results in Table 1.

NSC ⇔ ISA

Luce ⇔ ISA + IAA ⇔ IIA

Nested Logit ⇔ ISA + LRI ⇔ ISA + RLI (Richness)

RU Nested Logit ⇔ Nested Logit + Regularity (Richness)

Table 1: Summary Of Characterization Results.

Independence of Symmetric Alternatives implies that the revealed similarity relation ∼p is

transitive, which ensures that the nests form a partition. Hence, our axiomatic characterizations

show that the notion of (categorical) similarity in nested logit, as well as in NSC, is quite structured.

In some applications, an analyst may want to allow for more flexible forms of substitutability. For

this reason, cross-nested logit, a generalization of nested logit, has been proposed and widely

applied in empirical work (see Vovsha (1997), Ben-Akiva and Bierlaire (1999)). The main difference

between nested logit and cross-nested logit is that alternatives may belong to several nests in cross-

nested logit. Since we are focused on the problem of recovering the endogenous nesting structure,

we consider a generalization of cross-nested logit that relaxes the typical parameter restriction,

and refer to this as the unrestricted cross-nested logit. We show that the unrestricted cross-nested
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logit does not have testable implications. Therefore, our results reveal the trade-off between nested

logit and cross-nested models: relaxing the partition structure of nested logit results in an overly

permissive model. In other words, the behavioral content of cross-nested logit is essentially driven

by the analyst’s assumption of the nest structure and parameter restrictions.

In practice, p is estimated from observed choices and “IIA like” conditions never hold exactly.

However, we show that the true nest structure can still be identified, for any NSC, by solving a

minimization problem. In particular, our axiomatic characterization allows us to derive a “distance”

function D that measures, for a given nest structure, the degree of violations of IIA within and

across nests for a given set of observations. When the data are close to the true (or theoretical) p,

the true nest structure will be the unique minimizer of D. In applied settings where the researcher

has several nest structures in mind, D may also be useful as a selection criteria.

Because the number of possible nests grows so rapidly in comparison to the number of alter-

natives, the full minimization problem may become intractable quickly. However, this issue can be

managed due to insights from our similarity relation; one only needs to check nest structures that

are consistent with an empirical approximation of ∼p . In fact, we show that there are at most |X|
potential nests that we need to check, where |X| is the number of alternatives. We illustrate our

theoretical finding and our data-driven algorithm to reduce the number number of candidate nests

with a simulation exercise.

The rest of the paper is organized as follows. In section 2, we discuss setup and notation as

well as define NSC and nested logit. In section 3, we define revealed similarity and the similarity

effect (3.1) before characterizing NSC (3.2) and nested logit (3.3). We discuss ways of extending

our notion of similarity and the testable implications of unrestricted cross-nested logit in section 4.

The identification of nest structure from choice data is presented in section 5. We conclude with a

discussion of related literature in section 6. We also discuss the relationship between the similarity

effect and regularity in Appendix B.1.

2 Nested Stochastic Choice and Nested Logit

All of our models are developed in the standard stochastic choice setup. Accordingly, let X be a

finite set of alternatives and A be the collection of all nonempty subsets of X (menus). Let R+

(R++) denote the non-negative (positive) real numbers.

Definition 1. A function p : X ×A → [0, 1] is a stochastic choice function if for any A ∈ A ,∑
a∈A p(a,A) = 1 and p(x,A) = 0 when x 6∈ A. In some instances, we may write p(B,A) =∑
b∈B p(b, A) for B ∈ A .

Throughout this paper, we assume that p is positive; i.e., p(a,A) > 0 for all A ∈ A and a ∈ A.

For notational simplicity, we write A ∪ x instead of A ∪ {x}.
The Luce model is the most widely-known and influential stochastic choice model. In this

model, choice probabilities are proportional to a utility index. In his seminal paper, Luce (1959)
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proves that a stochastic choice function can be represented by the Luce model if and only if it

satisfies IIA for every pair of alternatives.

Definition 2 (IIA). A stochastic choice function p satisfies IIA at a, b ∈ X if, for any A ∈ A

with a, b ∈ A,
p(a,A)

p(b, A)
=
p(a, {a, b})
p(b, {a, b})

.

Further, we say that p satisfies IIA if p satisfies IIA at any a, b ∈ X.

It is well known that IIA may fail when similar alternatives are added to the menu, as was

illustrated by Debreu’s (1960) famous “red bus/blue bus” example. In this example a commuter

is initially equally likely to take the (red) bus or the train. After the city introduces a second

(blue) bus, the commuter’s likelihood for taking the train is unchanged and the two buses now split

the remaining probability. This particular violation of IIA is an example of the similarity effect

(Tversky, 1972) — introducing the blue bus takes more from the red bus than from the train since

the busses are similar.

The nested logit is the most commonly applied generalization of Luce’s model and was devel-

oped to accommodate violations of IIA like the similarity effect. We now formally define nested

logit and the NSC, which is a novel, non-parametric version of nested logit.

Definition 3. A stochastic choice function p is a Nested Stochastic Choice (NSC) if there

exist a partition X1, . . . , XK of X, a utility function u : X → R++, and a nest utility function

v :
⋃K
i=1 2Xi → R+ with v(∅) = 0 such that for any A ∈ A and a ∈ A ∩Xi,

(3) p(a,A) =
v(A ∩Xi)∑K
j=1 v(A ∩Xj)

u(a)∑
b∈A∩Xi u(b)

.

Moreover, p is a nested logit if there exist real numbers η1, . . . , ηn > 0 such that for any A ∈ A

and i ≤ K,

(4) v(A ∩Xi) =
( ∑
x∈A∩Xi

u(x)
)ηi

.

Finally, we say that p is a random utility (RU) nested logit when ηi ≤ 1 for each i ≤ K.

The NSC is defined by two Luce procedures, where v governs the choice over nests (e.g.,

transportation modes or neighborhoods) and u governs the choice over the particular alternatives

in the selected nest (e.g., the red/blue bus or a specific apartment). Note that the nest value function

v is not necessarily related to alternative utilities u, which enables the NSC to capture rich behavior

(see 3.4). Despite this generality, the NSC may be falsified with relatively few observations. This

is because behavior is disciplined by u and the partition structure of the nests, both of which are

menu-independent.4

4It is straightforward to derive from the representation that for any A ⊆ X with |A| = 3, there is a distinct pair
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The nested logit imposes a specific parametric relationship between v and u. Notice that

the NSC, and consequently nested logit, reduces to the Luce model when there is a single nest.

Additionally, it is simple to see from Definition 3 that any NSC satisfies (i) IIA within a nest and

(ii) an “IIA like” property across nests that is often referred to as Independence of Irrelevant

Nests (IIN).5 These properties are often taken as the hallmark of nested logit, yet they apply to

all NSC (with endogenous nests). Since NSC permits behavior that nested logit does not (three

examples are discussed in section 3.4), this means that there are additional behavioral assumptions

underpinning nested logit. We elucidate these assumptions in section 3.3.

In nested logit, 1−ηi is usually considered a measure of correlation or substitutability between

alternatives in nest i. When ηi < 1 alternatives within the same nest are substitutes. Further, it is

well known that when ηi < 1, the nested logit is always a RUM for any profile of utilities.

When ηi > 1, choice frequencies may (but do not always) violate regularity, a necessary prop-

erty of every random utility model (RUM) which states that the probability of choosing some

alternative must never increase as the menu expands.6 Behaviorally, we can interpret ηi > 1 as

indicating complementarities among alternatives.7 In certain contexts, we may even anticipate

ηi > 1. For instance, Foubert and Gijsbrechts (2007) study the effects of “product bundling” and

find a parameter greater than one, consistent with the effectiveness of bundling.8 As NSC allows

for violations of regularity, formally defined below, the NSC is not nested by RUM.

Definition 4 (Regularity). A stochastic choice function p satisfies regularity if p(x,A ∪ y) ≤
p(x,A) for any A ∈ A and x, y ∈ X with x ∈ A.

Finally, note that when ηi = 1 the nest value is exactly proportional to the sum of Luce utilities.

If this proportionality happens for every nest i, the model reduces to Luce. In fact, in this case

the Luce model has multiple NSC (and nested logit) representations with different partitions and

identification of a unique nest structure is not possible. To rule this out, we say that an NSC p

with (v, u, {Xi}Ki=1) is nondegenerate if there is at most one nest where this proportionality occurs:

there is at most one i ≤ K such that for some a ∈ Xi,∑
x∈Ai u(x)

v(Ai)
=
u(a)

v(a)
for any Ai ⊆ Xi with a ∈ Ai.

a, b ∈ A such that p(a,{a,b})
p(b,{a,b}) = p(a,A)

p(b,A)
. This is because for any three alternatives, either (i) at least two belong to

the same nest or (ii) all three belong to distinct nests. Hence there must exist some pair for which IIA holds and
therefore NSC may be rejected with only three alternatives.

5If a and b are from distinct nests, then the addition of an alternative c from a third nest will not affect the relative
probabilities of a and b.

6There is some experimental evidence that violations of regularity occur when similar alternatives are introduced,
in-line with convex aggregation. This has been observed in humans (Rieskamp, Busemeyer, and Mellers, 2006) and
animals (Shafir, Waite, and Smith, 2002). Recently, Batley and Hess (2016) estimated nested logit parameters to
check for consistency with regularity (and various forms of stochastic transitivity) and found that parameter values
consistent with violations of regularity provided the best fit.

7Relatedly, Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2019) suggests that regularity may be violated due
to deliberate randomization between complementary lotteries.

8Indeed, in regard to whether ηi should be less than or greater than one, Train, McFadden, and Ben-Akiva (1987)
state that “...the value of [ηi] indicates relative substitutability within and among nests, and neither possibility can
be rule out a priori.”
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This restriction rules out cases when v is always proportional to the sum of Luce utilities. Further,

the Luce model has a unique nondegenerate NSC representation in which there is a single nest,

X1 = X.9 This nondegeneracy condition will be crucial for the unique identification of nests, but

it is not required for the sufficiency part of our characterization (Theorem 1).

3 Behavioral Characterizations

3.1 The Similarity Effect and Revealed Similarity

Following the intuition behind the similarity effect, we introduce a notion of revealed similarity that

will be essential to our analysis. Consider the effect of adding an alternative x on the probabilities

of choosing a and b from some menu A. Adding x might decrease these probabilities as it competes

with a and b. If x disproportionately affects one of them, say a relative to b, this reveals that a and

b are dissimilar. Conversely, if x takes away from a and b proportionally, then this reveals that a

and b are similar (symmetric) in menu A. We take a conservative approach and call two alternatives

similar only if this is true for any menu A (they are symmetric to all other alternatives).

Definition 5. For any alternatives a, b ∈ X, we say that a and b are revealed categorically

similar, denoted by a ∼p b, if p satisfies IIA at a, b. We also say that a and b are revealed

categorically dissimilar if a 6∼p b.

The similarity effect is often defined using an exogenously given similarity relation. With our

formal notion of revealed similarity, we may establish a fully behavioral definition of the similarity

effect given ∼p. Recalling the red bus/blue bus example, adding the blue bus had a larger effect

on the red bus than on the train. Hence the blue bus “takes more away” from similar alternatives

than from dissimilar alternatives.

Definition 6. A stochastic choice function p exhibits the similarity effect if for all A ∈ A ,

a, b ∈ A, and x 6∈ A,

if a ∼p x and b 6∼p x, then
p(a,A ∪ x)

p(b, A ∪ x)
<
p(a,A)

p(b, A)
.

Intuitively, x hurts the revealed categorically similar alternative a more than a revealed cat-

egorically dissimilar alternative b. Since a and x are closer substitutes, x competes more with a

than it does with b.

3.2 Characterization of NSC

In order to introduce our axiom, we consider the general effect of introducing an alternative x on the

choice probabilities of two alternatives a and b. IIA requires that the relative probability between a

9Indeed, if there are i, j such that
∑

x∈Ai
u(x)

v(Ai)
= u(a)

v(a)
and

∑
y∈Aj

u(y)

v(Aj)
= u(b)

v(b)
for any Ai ⊆ Xi, Aj ⊆ Xj , a ∈ Ai,

and b ∈ Aj , then Xi ∪ Xj should be treated as one nest. It is also not difficult to show that the set of degenerate
NSC is measure zero with respect to the set of all NSC.
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and b is always independent of x. However, as the similarity effect suggests, (asymmetric) similarity

between x and a, b might affect the relative probabilities. We therefore divide IIA into two logically

independent axioms based on the revealed similarity between x and a, b.

Axiom 1 (Independence of Symmetric Alternatives). For any A ∈ A , a, b ∈ A, and x /∈ A,

a ∼p x and b ∼p x

or

a 6∼p x and b 6∼p x

=⇒ p(a,A)

p(b, A)
=
p(a,A ∪ x)

p(b, A ∪ x)
.

Axiom 2 (Independence of Asymmetric Alternatives). For any A ∈ A , a, b ∈ A, and x /∈ A,

a ∼p x and b 6∼p x =⇒ p(a,A)

p(b, A)
=
p(a,A ∪ x)

p(b, A ∪ x)
.

The first axiom requires that the relative probability between a and b is independent of x when

a and b are revealed categorically (dis)similar to x. Intuitively, if a and b are symmetric from the

perspective of x, then x should symmetrically influence a and b; it does not affect the relative

probability between a and b. The similarity effect directly contradicts the second axiom yet is

unrelated to the first axiom.

Observation 1. Luce’s IIA is equivalent to the joint assumption of Independence of Symmetric

Alternatives and Independence of Asymmetric Alternatives. Moreover, the two axioms are

independent.

We show in Theorem 1 that NSC is characterized by Independence of Symmetric Alternatives,

and thus NSC is precisely the generalization of Luce’s model that accommodates the similarity

effect.

Theorem 1. Let p be a stochastic choice function with at least three alternatives that are dissimilar

to each other. Then p satisfies Independence of Symmetric Alternatives if and only if p is a

nondegenerate NSC.

Theorem 1 characterizes NSC when there are at least three nests; a 6∼p b, b 6∼p c, and a 6∼p c
for distinct alternatives.10 While the proof is in the appendix, we discuss briefly how our axiom

characterizes NSC. It should be apparent from the definition that ∼p is reflexive and symmetric. It

turns out that the first part of Independence of Symmetric Alternatives (a ∼p x and b ∼p x) implies

that ∼p is transitive.11 Hence, transitivity of ∼p immediately generates a partition X1, . . . , Xk of X

10When the assumption is violated (i.e., there are only two nests), we can still obtain the characterization result
by modifying Independence of Symmetric Alternatives. In particular, we can impose a modification of Luce’s (1959)
Product Rule instead of the second part of Independence of Symmetric Alternatives. It is well known that IIA is
equivalent to the Product Rule for menus with two alternatives (see Luce (1959)).

11More general notions of similarity may be intransitive (e.g., due to context dependence). Since we take a

conservative definition of similarity, we find transitivity quite reasonable in our setting. That is, by requiring p(a,A)
p(b,A)

=
p(a,{a,b})
p(b,{a,b}) for any menu, we eliminate much of the context dependence. Further, transitivity of this revealed similarity
relation is implicitly assumed in nested logit. See section 4.
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(or disjoint nests) such that any two alternatives in Xi are revealed categorically similar.12 However,

by itself it imposes no particular structure on choice, nor does it establish a relationship between the

partition and choices (except that IIA is satisfied within each nest). The essential structure of NSC

is captured by the second part of Independence of Symmetric Alternatives (a �p x and b �p x).

Therefore, almost all of the proof is devoted to showing that the second part of Independence of

Symmetric Alternatives implies a nested choice structure consistent with this partition.

Lastly, we state the uniqueness properties of the NSC representation. The following proposition

shows that the nest structure is unique, the nest utility v is unique up to a positive scalar, and

Luce’s utility u is unique up to a positive scalar at each nest.

Proposition 1 (Uniqueness). Suppose p is a nondegenerate NSC with respect to (v, u, {Xi}Ki=1)

as well as to (v′, u′, {X ′i}K
′

i=1). Then K = K ′ and {Xi}Ki=1 = {X ′i}K
′

i=1. Moreover, there is

(α1, . . . , αK , δ) ∈ RK+1
++ such that v′ = δ v and for any xi ∈ Xi, u

′(xi) = αi u(xi).

3.3 Characterizations of Nested Logit

The most well-known special case of NSC is nested logit, which was specifically created to handle the

similarity effect. The difference between NSC and nested logit is that the latter imposes additional

restrictions on the nest values: v(A ∩Xi) =
(∑

a∈A∩Xi u(a)
)ηi with ηi > 0.

Despite its widespread use, nested logit has not been subject to careful axiomatic analysis in

the way that other choice models have been. We provide two characterizations of nested logit that

clarify the behavioral assumptions embedded in this model. The first characterization uses one

additional axiom that imposes a menu independence condition on certain probability ratios.

Axiom 3 (Log Ratio Invariance). For any a, x ∈ X and A,B ∈ A such that a ∼p a′ for all

a′ ∈ A ∪B,

log
(
p(A,A∪x)
p(x,A∪x)

/ p(a, {a, x})
p(x, {a, x})

)
log
(
p(A,A∪ a)
p(a,A∪ a)

) =
log
(
p(B,B∪x)
p(x,B∪x)

/ p(a, {a, x})
p(x, {a, x})

)
log
(
p(B,B ∪ a)
p(a,B ∪ a)

) .

Log Ratio Invariance requires that the ratio log
(p(A,A∪x)
p(x,A∪x)

/ p(a, {a, x})
p(x, {a, x})

)
and log

(p(A,A∪ a)
p(a,A∪ a)

)
are

proportional.

Theorem 2. A nondegenerate NSC satisfies Log Ratio Invariance if and only if it is an nested

logit.

The explicit use of a functional form in Log Ratio Invariance allows us to establish testable

implications for the functional form assumed in nested logit even with finite data.

In the rest of this section, we discuss an alternative axiom that captures the essential features of

nested logit without an explicit functional form and shows that is characterizes nested logit under a

richer domain assumption. To state this axiom, first notice that an important behavioral property

12Transitivity of ∼p is imposed in Li and Tang (2016), which will be carefully discussed in section 6. A weak
version of transitivity of ∼p is also used in Echenique et al. (2018).
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of nested logit, beyond its treatment of similarity (ISA), is that the probability of choosing a nest

depends on the total attractiveness of the nest: v(A ∩Xi) is increasing in
∑

a∈A∩Xi u(a).

This behavior is characterized by a simple monotonicity property imposed among similar alter-

natives. Suppose that A,A′ ∈ A are menus such that all alternatives in A∪A′ are revealed similar.

When A is more attractive than A′, then alternatives in A are always chosen more frequently

than alternatives in A′ when they are compared with any other alternative x. More formally,

p(A,A ∪ A′) ≥ p(A′, A ∪ A′) implies p(A,A ∪ x) ≥ p(A′, A′ ∪ x) for any x 6∈ A ∪ A′. This can be

viewed as an additional form of context independence, as it requires that there is no interaction

between alternatives in A ∪A′ and x which might create a choice frequency reversal.

Because nested logit involves a power function, it satisfies a stronger version of the monotonicity

property above. In particular, the monotonicity property holds even in relative terms: if A is

relatively more attractive than A′ when they are compared to any other menus, B and B′, then

alternatives in A will be chosen relatively more frequently than A′ when they are chosen against x.

Axiom 4 (Relative Likelihood Independence). For any x ∈ X and A,B,A′, B′ ∈ A such that

a ∼p a′ for any a, a′ ∈ A ∪B ∪A′ ∪B′,

p(A,A ∪B)

p(B,A ∪B)
≥ p(A′, A′ ∪B′)
p(B′, A′ ∪B′)

=⇒ p(A,A ∪ x)

p(x,A ∪ x)

/p(B,B ∪ x)

p(x,B ∪ x)
≥ p(A′, A′ ∪ x)

p(x,A′ ∪ x)

/p(B′, B′ ∪ x)

p(x,B′ ∪ x)
.

In our next result, we prove that Relative Likelihood Independence is a necessary condition for

nested logit. Moreover, it implies that v(A ∩Xi) is increasing in
∑

a∈A∩Xi u(a).

Proposition 2. Any nested logit satisfies Relative Likelihood Independence. Conversely, if

a nondegenerate NSC with (v, u, {Xi}Ki=1) satisfies Relative Likelihood Independence, then for each

i ≤ K there is an increasing function fi : R++ → R++ such that v(A) = fi
(∑

x∈A u(x)
)

for any

A ⊆ Xi.

While Relative Likelihood Independence is not sufficient for nested logit, this is essentially

due to the limitations of finite data. Indeed, we show that Relative Likelihood Independence

characterizes nested logit when the following richness condition is satisfied.

Axiom 5 (Richness). For any a ∈ X and ρ ∈ (0, 1), there is b ∈ X such that a ∼p b and

p(a, {a, b}) = ρ.

On its own, Richness is relatively mild and simply ensures that there are alternatives for each

utility value. However, under this condition Relative Likelihood Independence yields the well-

known functional form of nested logit. Consequently, Relative Likelihood Independence captures

all remaining behavioral features of nested logit.

Theorem 3. Any nondegenerate NSC that satisfies Relative Likelihood Independence and

Richness is a nested logit.

In applied settings, nested logit is often restricted to ηi ∈ (0, 1], as this is sufficient for it to

be a RUM. Since any RUM satisfies Regularity, a random utility nested logit must as well. It is
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well known that Regularity is necessary but not sufficient for a model to be a RUM in general.

However, we show that Regularity is sufficient for the nested logit to be a RUM under Richness.

Proposition 3. Any nested logit that satisfies Regularity and Richness is a random utility nested

logit.

If ηi > 1, nested logit will violate regularity for some specifications of u. Therefore Richness

strengthens the bite of Regularity and ηi ∈ (0, 1] is ensured.

3.4 Beyond Nested Logit

It is a matter of folk knowledge that the aforementioned “IIA within a nest and IIN” properties

serve as the behavioral underpinnings of nested logit. However, our results show that “IIA within

a nest and IIN” (with an endogenous nest structure) in fact characterize NSC, and nested logit

requires an additional property (Relative Likelihood Independence). In this subsection, we present

three special cases of NSC that are distinct from nested logit. These examples illustrate some

natural choice behaviors that Relative Likelihood Independence rules out, further clarifying the

behavioral assumptions behind nested logit.

3.4.1 Linear NSC

One interesting example of NSC that is distinct from nested logit is the Linear NSC. In this example,

the nest value is linear in total nest utility, in contrast to the power function used in nested logit.

For each nest i, there exist parameters λi ≥ 0 and νi, so that

(5) v(A ∩Xi) = λi

( ∑
x∈A∩Xi

u(x)
)

+ νi.

In the Linear NSC, the attractiveness of a nest depends on both its instrumental utility, through

λi, and an intrinsic “category” utility, through νi. It turns out that the Linear NSC is a special

case of both Elimination-by-Aspects (EBA) of Tversky (1972) and the Attribute Rule (AR) of Gul,

Natenzon, and Pesendorfer (2014). Consequently, the Linear NSC is also a RUM.

3.4.2 Menu-Dependent Substitutability

In nested logit, the nest parameter ηi captures substitutability of alternatives. While the standard

nested logit only allows for a single substitution parameter for each nest, NSC can accommodate

menu-dependent substitutability. For instance, consider the following example where substitutability

depends on the size of the menu, capturing the idea that consumers may find it more difficult to

distinguish between alternatives in larger option sets.

For each nest i, there exists a threshold τi ∈ {1, . . . , |Xi|}, and nest parameters ηi, η̃i > 0, so

12



that

(6) v(A ∩Xi) =


(∑

x∈A∩Xi u(x)
)ηi if |A ∩Xi| > τi(∑

x∈A∩Xi u(x)
)η̃i if |A ∩Xi| ≤ τi.

If 1 − ηi > 1 − η̃i, this means the agent perceives fewer differences among alternatives as the

nest becomes “more represented.” That is, when |A ∩ Xi| exceeds τi, alternatives are “more

substitutable.” In this example, τi has a natural interpretation as the consumer’s “distinction

capacity.” Further, if 1 − ηi > 0 > 1 − η̃i, then whether the alternatives are complements or

substitutes depends on the size of the nest. Lastly, when the change in substitutability is small (ηi

and η̃i are sufficiently close), this example is also consistent with RUM.

3.4.3 Attention and Spillover Effects

The NSC also allow for cases where the nest value is not directly tied to alternative utility. We

consider a particular example in which v is determined by the “salience” of alternatives. For some

function S : X → R++,

(7) v(A ∩Xi) = max
x∈A∩Xi

S(x).

In this specification, the value of a nest is determined the “attractiveness” or “noticeability”

of its most salient alternative. To illustrate its behavioral implications, suppose there are three

alternatives, X = {x, y, z}, with nests X1 = {x, z} and X2 = {y}. When z is highly salient but

low utility, S(z)u(x) > S(x)[u(x) + u(z)], then p(x,{x,y,z})
p(y,{x,y,z}) >

p(x,{x,y})
p(y,{x,y}) . Examples of such z include

brands offering a high-end good with a high price to attract attention, expecting all consumers to

purchase their “moderate” offering x. When the value of S(z) is large enough relative to the value

of u(z), this may induce a violation of regularity. Similar examples can generate “spillover” effects.

For example, one successful or attractive product may funnel attention to others, causing demand

spillover. This is the traditional rationale behind the use of “loss-leaders” (Lal and Matutes (1994))

or “attention-grabbers” (Eliaz and Spiegler (2011)).

4 Revealed Similarity and its Extensions

We say that two alternatives are revealed categorically similar if IIA is satisfied between them

at all menus. Requiring this eliminates the menu dependence of similarity, and so our notion of

revealed similarity captures a form of absolute or fundamental similarity. Consequently, similarity

is symmetric and, under Independence of Symmetric Alternatives, transitive.13 One drawback is

13There are other ways to define similarity and other properties one might demand of a similarity relation. For
instance, Rubinstein (1988) studies similarity and choice under risk. In his paper, the similarity relation is reflexive
and symmetric, like ours, but also must satisfy a form of betweenness with respect to objective attributes and violates
transitivity, unlike ours.
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that this notion does not allow statements about comparative similarity; two alternatives are similar

or not. Additionally, in some cases impressions of similarity may be context-dependent.14 Because

of these apparent limitations, we consider two ways in which to extend NSC to accommodate more

complex notions of similarity.

The first extension of NSC relaxes the requirement that an alternative must belong to a single

nest. In section 4.1, we consider the (unrestricted) cross-nested logit (Vovsha, 1997) and the (more

general) generalized nested logit (Wen and Koppelman, 2001), which allow for each alternative to

be “allocated” across several nests. While overlapping nests allows for the most flexible notion of

similarity, these models have no testable implications if the nests are not known a priori. Thus we

demonstrate an important trade-off between nested and cross-nested models.

The second extension of NSC allows for “intermediate nests.” These intermediate nests are

often visually represented through a multi-level decision tree. Within this structure, we can al-

low for a more nuanced notion of similarity through the introduction of a second similarity rela-

tion that is conceptually related to our core similarity notion. This secondary relation captures

“context-dependent” similarity and allows for comparative statements. We provide an axiomatic

characterization of this model (Theorem 6) in appendix B.3.15

4.1 Overlapping Nests

In NSC, each alternative belongs to one, and only one, nest. This feature of NSC places restrictions

on the similarity relation. Because of these restrictions, in some settings, applied researchers have

proposed allowing alternatives to exist in multiple nests. This leads to a class of models known

as “cross-nested logits” (see Vovsha (1997), Ben-Akiva and Bierlaire (1999), Wen and Koppelman

(2001), Papola (2004), and Bierlaire (2006)). In the cross-nested logit and the generalized nested

logit, each alternative is allocated among the various nests.16 This allocation is specified with a

vector of weights, one for each alternative, which describes to what extent an alternative belongs

to each nest.

We show that any stochastic choice rule p can be rationalized by some unrestricted cross-

nested logit. That is, for any p, there exist some nesting structure, X1, . . . , XK , allocations to

these nests, (αkx)Kk=1, and utilities so that the resulting unrestricted cross-nested logit generates

identical choice frequencies. Hence, unlike the nested logit and Luce models, there can be no

14There is a sense in which our notion is somewhat moderate. Consider Debreu’s red bus/blue bus example. In
this case, the similar alternatives (buses) are in fact identical, often called duplicates (or in some cases replicas).
Duplicates are not merely similar alternatives; they are similar and provide the exact same utility value. For example,
in Gul et al. (2014) the use of duplicates is essential to their characterization of the Attribute Rule. Formally, x and
y are duplicates if p(a,A ∪ x) = p(a,A ∪ y) for any A and a ∈ A. However, our notion of similarity is not tied to
utility. A commuter may regard all buses as similar (i.e., they belong to the same nest), yet nothing in our model
restricts an agent from exhibiting a preference over different buses (e.g., because some bus routes may be faster or
cheaper than others).

15Just as our similarity relation identifies endogenous nests, this secondary relation identifies endogenous, interme-
diate nests. Thus, Theorem 6 shows that we may identify an endogenous tree structure.

16The generalized nested logit was introduced by Wen and Koppelman (2001) and includes various “cross nested
logits” as special cases.
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behavioral characterization of the unrestricted cross-nested logit. More importantly, our result

demonstrates the critical importance of the a priori specification of nests and model parameters

typically utilized by applied researchers. The only testable implications of the model are due to

the analysts’ assumptions about alternative categorization and parameter restrictions.

Definition 7 (Generalized Nested Logit). A stochastic choice function p is an unrestricted gener-

alized nested logit if there is a collection of subsets X1, . . . , XK of X and a vector (αkx)Kk=1 ∈ RK+
with

∑K
k=1 α

k
x = 1 for each x ∈ X such that x 6∈ Xk iff αkx = 0, a utility function u : X → R++,

and parameters (λk)
K
k=1 ∈ RK++ such that for any A ∈ A and x ∈ A,

(8) p(x,A) =
∑

k:x∈A∩Xk

(
αkx u(x)

) 1
λk∑

y∈A∩Xk
(
αky u(y)

) 1
λk

·

(∑
y∈A∩Xk

(
αky u(y)

) 1
λk

)λk
∑

l:A∩Xl 6=∅

(∑
z∈A∩Xl

(
αlz u(z)

) 1
λl

)λl .
Moreover, we say that p is an unrestricted cross-nested logit if λk = λk′ for any k, k′ ≤ K.

Theorem 4. Every stochastic choice function is an unrestricted cross-nested logit.

Corollary 1. Every stochastic choice function is an unrestricted generalized nested logit.

Our result relies on the key insight that the cross-nested logit is behaviorally equivalent to a

form of menu-dependent utility. We first prove this equivalence as Lemma 1 and show how we can

go from menu-dependent utility to weighted allocations and back. This equivalence between the

cross-nested logit and menu-dependent utility allows us to reduce the problem of finding weights to

the problem of finding menu-dependent utility values for each menu that satisfy the cross-nested

logit equation. The bulk of the proof is dedicated to showing that the existence of these menu-

dependent utilities is equivalent to the existence of a fixed point for some self-map. The proof is

completed by applying Brouwer’s fixed point theorem.

This result precisely shows the trade-offs between using nested logit and related models: either

accept a restrictive form of similarity or impose assumptions on nest structure and model parame-

ters. As we mentioned previously, further assumptions on parameters or nest structure may lead to

testable restrictions. In the literature, similar to nested logit, it is commonly assumed that λ ≤ 1,

since this is sufficient for cross-nested logit to be RUM. As with our handling of nested logit, we

refer to such specifications as the random utility cross-nested logit. Note that our result shows

that this restriction is not necessary for consistency with RUM; By Theorem 4, every RUM has an

unrestricted cross-nested logit representation with λ > 1.

In any case, a random utility cross-nested logit must have, at least, the same testable restric-

tions as RUM. However, our result suggests that random utility cross-nested logit may not have

any testable restrictions beyond RUM. In fact, although it does not prove our hypothesis, Fosgerau,

McFadden, and Bierlaire (2013) prove that the set of random utility cross-nested logit models is

dense in the set of RUMs. Note that our Theorem 4 is quite different from the result of Fosgerau

et al. (2013) for the following reasons: (i) we prove an exact result while they prove an approxima-

tion result, (ii) they focus on random utility cross-nested logit, and (iii) our proof techniques are
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completely different because their proof relies on the properties of the CDF for GEV distributions

while we use Brouwer’s fixed point theorem.

5 Identifying Nests

In most applications of nested logit to market data, researchers assume nests based on knowledge

of alternative attributes. This is potentially problematic, as in many environments there are many

plausible structures. When studying vehicle choice, the researcher might construct nests based on

brand, body type (e.g., sedan vs. truck), or country of origin.17 In other environments, classification

may be subjective. When studying choice over apartments, nests might depend on both observable

attributes and a myriad of unobservables: subjective impressions of neighborhoods, proximity to

landmarks, or a host of other features. If the nest structure is misspecified, this may lead to biased

conclusions regarding substitutability of goods and systematically inaccurate predictions.18

We show in subsection 5.1 that the true (subjective) nest structure can be identified from the

data by solving a minimization problem. Any potential nest structure has implications for when

IIA may and may not be violated between alternatives. For a hypothesized nest structure, Y, we

propose a measure of the total magnitude of IIA violations within and across the proposed nests,

D(Y). We show that the true nest is a minimizer of D and that it will be the unique minimizer of

D under a mild identification assumption (Proposition 4). In cases where the researcher has several

potential nest structures in mind, such as in vehicle choice, our procedure for nest identification

could be useful for nest selection. The researcher can calculate D for the particular nests in mind

and select the one that best fits.

Because the number of possible nests grows rapidly in comparison to the number of alternatives,

the full minimization problem becomes intractable. However, this issue can be managed due to

insights from our similarity relation; by Proposition 5, one only needs to check nest structures that

are consistent with an empirical approximation of ∼p . Note that in finite data sets it is unlikely

that IIA will hold between any alternatives (e.g., since we observe a finite sample from the true

distribution). However, one can measure the magnitude of the the IIA violation between a, b across

various menus in the data. If this magnitude is below some threshold ε, then we conclude that

a and b are approximately similar: a ∼ε b. When ∼ε is transitive, then there are at most |X|
potential nests that we need to check, as stated in Proposition 6.

17A common approach to this type of problem is to utilize multiple levels of nesting (which we characterize in
appendix B.3). Even under this approach, the order of the levels matters.

18Greene (2003) provides an excellent summary of this issue: “To specify the nested logit model, it is necessary
to partition the choice set into branches [nests]. Sometimes there will be a natural partition ... In other instances,
however, the partitioning of the choice set is ad hoc and leads to the troubling possibility that the results might be
dependent on the branches so defined. ... There is no well-defined testing procedure for discriminating among tree
structures, which is a problematic aspect of the model.”
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5.1 Identifying Nests by Distance Minimization

To analyze the problem of nest identification, we consider a data set denotedO = {A, {pt(·, A)}NAt=1}A∈A ,

where NA is the number of observations of menu A and pt(a,A) = 1 means that a was chosen from

A at observation t ≤ NA. We also require
∑

x∈A pt(x,A) = 1 for each A, so that pt(a,A) = 1

implies pt(b, A) = 0 for any b ∈ A \ {a}. Note that we may always write

pt(a,A) = p(a,A) + εt,a,A,

where p(a,A) is the probability that a is chosen from A according to the NSC with (v, u, {Xi}Ki=1).

Then, the observed choice frequency of a from A in O is

p(a,A) ≡
∑NA

t=1 pt(a,A)

NA
= p(a,A) + εa,A where εa,A ≡

∑NA
t=1 εt,a,A
NA

.

We assume that {pt(·, A)}NAt=1 are independently drawn according to p(·, A). Then, by the classical

Glivenko-Cantelli theorem, εa,A
a.s.−−→ 0.19 For notational simplicity, we write

rA(A′, B′) ≡ p(A′, A)

p(B′, A)
and r̄A(A′, B′) ≡ p(A′, A)

p(B′, A)
for any A,A′, B′ ∈ A .

Finally, let X denote the set of all partitions of X and X ∗ denote the true partition {Xi}Ki=1.

Consider the following minimization problem.

(NMP) min
Y∈X

D(Y) = D1(Y) +D2(Y),

(9) D1(Y) =

∑
Y ∈Y

∑
A,B∈A ,a,b∈A∩B∩Y

(
log
(
rA(a, b)

)
− log

(
rB(a, b)

))2∑
Y ∈Y |{(A,B, a, b)|a, b ∈ A ∩B ∩ Y }|

,

(10) D2(Y) =

∑
Y,Y ′∈Y

∑
A,B∈A :A∩Y=B∩Y,A∩Y ′=B∩Y ′

(
log
(
rA(Y, Y ′)

)
− log

(
rB(Y, Y ′)

))2∑
Y,Y ′∈Y |{(A,B)|A ∩ Y = B ∩ Y, A ∩ Y ′ = B ∩ Y ′}|

.

Intuitively, D1(Y) measures the degree to which the data violates IIA among elements in the

same nest in Y, while D2(Y) measures the degree to which the data violates IIA among different

nests in Y. These measures are motivated by our axiom Independence of Symmetric Alternatives:

D1 measures the extent to which the first part of Independence of Symmetric Alternatives holds,

and D2 measures the extent to which the second part of Independence of Symmetric Alternatives

holds.

Similarly, let us define loss functions D∗, D∗1, D
∗
2 when there is no observational noise; these

19All convergence statements in this paper are with respect to N∗ →∞ where N∗ = minA∈A NA.
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are defined by replacing p with p̄ in Equations 9-10. Moreover, let X̂ = arg minY∈X D(Y). Note

that X̂ is an M-estimator (Amemiya (1985), Newey and McFadden (1994)). Hence, by standard

results, X̂ is a strongly consistent estimator of X ∗ if X ∗ is the unique minimizer of D∗. Indeed,

X ∗ is a minimizer of D∗ since D∗(X ∗) = 0. It turns out that it is the unique minimizer under the

following identification assumption.

Assumption 1. For all subsets Ai ⊂ Xi and Aj ⊆ Xj , there are menus A,B ∈ A such that

r̄A(Ai, Aj) 6= r̄B(Ai, Aj), A ∩Ai = B ∩Ai, and A ∩ Yj = B ∩ Yj .

We now can state our strong consistency result.

Proposition 4. X̂ a.s.−−→ X ∗ under Assumption 1.

Proposition 4 shows that the true nest structure can be found by solving NMP. The intuition

behind the result is as follows. As we see in our axiomatization, a ∼p b if and only if a, b ∈ Xi for

some i. Hence, IIA is satisfied between a and b when a, b ∈ Xi and IIA is violated at least once

between a and b when a ∈ Xi and b ∈ Xj . Hence, the distance
∑

A,B∈A ,a,b∈A∩B∩Y

(
log
(
rA(a, b)

)
−

log
(
rB(a, b)

))2
between a and b is smaller whenever a, b ∈ Xi. Hence, minimizing D1(Y) helps us

to correctly identify that elements from different nests are in fact from different nests.

However, it is important to notice that D1(Y) alone is not sufficient to identify X ∗. For

example, suppose X = {a1, . . . , a5} and X ∗ is given by X1 = {a1, a2, a3} and X2 = {a4, a5}. Since

the data provide a noisy measure of p̄, it is possible that D1 is minimized at some finer partition,

say Y1 = {a1}, Y2 = {a2, a3}, and Y3 = {a4, a5}. Note that Y splits X1, and since D1 measures IIA

violations within nests, D1(Y) ≤ D1(X ∗) because Y never combines two elements from different

nests into the same nest (i.e., it is finer than X ∗).
This example illustrates a potential problem. D1 by itself tends to select finer partitions (it

wants to create “too many nests”). The second term, D2, corrects this problem. If Y were the true

nest structure, our axiomatization (i.e., the second half of Independence of Symmetric Alternatives)

requires that the relative likelihoods between alternatives in Y2 (for instance, a2) and alternatives

in Y3 (for instance, a4) are unaffected by the presence of a1. Accordingly, Y is penalized by D2

if introducing a1 changes the relative likelihoods between alternatives in Y2 and Y3. Importantly,

since the true nest structure, X ∗, groups a1 with a2 and a3, X ∗ will not be penalized, and so

when N∗ becomes sufficiently large, D2(Y) > D2(X ∗)→ 0 almost surely. Thus D2(·) enables us to

correctly conclude that a1 and a2 do in fact belong to the same nest.

Notice that solving NMP is quite different from the typical exercise of selecting a nest structure

in the literature. In a typical nested logit estimation, a researcher assumes a nest structure and

then runs a maximum likelihood (ML) estimation to identify model parameters. To compare

different nest structures, the researcher has to run a full ML estimation for each nest structure.

Hence, it is computationally expensive to compare many different nest structures. However, our

NMP provides a data-driven way to compare different nest structures without estimating the full

parametric model. Moreover, NMP does not rely on the functional form of nested logit, since it

applies to any NSC.
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Finally, note that X ∗ is a minimizer of D without any further assumptions; our identifying

Assumption 1 is only required to ensure that X ∗ is the unique minimizer. Consequently, when

Assumption 1 is violated, X ∗ will always be contained in the set of minimizers of D. This sug-

gests that D may still be used to eliminate nest structures and that solving NMP can facilitate

identification of the true nest structure.

5.2 Revealed Similarity and Nest Selection

There is a practical concern with directly applying Proposition 4 to identify the nest structure be-

cause |X | grows exponentially as |X| increases.20 Therefore, we further refine our result by showing

that we only need to compare |X| different partitions, rather than |X |. This dramatically reduces

the number of calculations; comparing |X| different partitions is computationally inexpensive even

when X contains hundreds of alternatives. To establish this result, we introduce the following

measure of IIA violations. For any a, b ∈ X, let

(11) d(a, b) ≡

∑
A,B∈A :a,b∈A∩B

(
log
(
rA(a, b)

)
− log

(
rB(a, b)

))2

|{(A,B, a, b)|a, b ∈ A ∩B}|
.

The value of d(a, b) captures the total “distance” between a and b, in terms of IIA violations in

the data O. Consistent with our axiomatization, and the intuition behind D1, the value of d(a, b)

is smaller when a and b are from the same nest than when they are from different nests. While

conceptually similar to D1, note that it is defined over the alternatives, not on nest structures.

This crucial distinction allows us to use d to narrow our candidate nests purely based on the data.

Proposition 5. Under Assumption 1, there are ε∗, N̄ > 0 such that for any N∗ > N̄ ,

max
i

max
a,b∈Xi

d(a, b) < ε∗ < min
i<j

min
a′∈Xi,b′∈Xj

d(a′, b′) with probability one.

Proposition 5 shows that for large enough N∗, there exists a “separating” threshold that cor-

rectly identifies whether two alternatives belong, or do not belong, to the same nest. If the researcher

knows ε∗, then identifying the nest structure is a straightforward task due to this result. But when

ε∗ is unknown, Proposition 5 is not sufficient to identify the nest structure.21 However, the insights

provided by Proposition 5 allow us to show that in order to identify the correct nest structure for

any NSC, only |X| different partitions are worth considering. In fact, we will explicitly construct

the set of partitions that need to be considered using d and prove that this set contains the true

nest X ∗.
20Unlike the standard method of estimating nested logit, it is not computationally expensive to solve NMP by

going through all possible partitions of X when |X| is small. For instance, there are 877 different partitions when
|X| = 7. Indeed, many papers in the literature study situations with relatively few alternatives (e.g., transportation
modes or cellphone providers), and Proposition 4 can be applied to these situations directly.

21Suppose a researcher chooses ε and uses it to construct nests: she decides that a and b are in the same nest if
d(a, b) < ε. When ε is too small compared to ε∗, she may wrongly conclude that a and b belong to different nests due
to noise. If ε is too large compared to ε∗, she may wrongly conclude that a and b belong to the same nest.
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In order to construct the set of relevant partitions, we introduce the following “approximately

similar” relation: for any ε ≥ 0 and a, b ∈ X, let a ∼ε b if d(a, b) < ε. When ∼ε is transitive, let

Xε ≡ X/ ∼ε, which is the partition of X such that for any A ∈ Xε, a ∈ A, and b ∈ X, a ∼ε b if and

only if b ∈ A.

Since we have finite data, if ε and ε′ are close enough, they will result in the same relation

(∼ε=∼ε′), except for certain knife-edge cases (which happens at most |X| times). Notice that for

smaller ε, we are “more discriminating” in declaring similarity and this results in a finer partition.

For larger ε, we are “less discriminating” in declaring similarity and this results in a coarser parti-

tion. Let ε ≡ maxa,b∈X d(a, b), the maximal distance calculated in the data. Then for any ε > ε,

the resulting relation ∼ε is complete, which reduces to the Luce model (ε = 0 also gives the Luce

model). Consequently, we never need to use an ε above ε. Because of these two key features of

∼ε, it turns out that the set X ∗ ≡ {Xε}ε∈[0,ε] is the desired collection of partitions and contains at

most |X| different elements.

Proposition 6. |X ∗| ≤ |X| under Assumption 1.

Combining Propositions 4-6, we can immediately show that X ∗ contains the true partition

structure, and it can be found by solving NMP, as formalized below. Let X̂ ∗ = arg minY∈X ∗ D(Y).

Corollary 2. X̂ ∗ a.s.−−→ X ∗ under Assumption 1.

The minimization problem NMP is not computationally demanding since |X ∗| ≤ |X|. Hence,

we can find the true nest structure even if there are many products. In practice, computing X ∗

from choice frequencies is quite simple. First note that any partition of X can be represented by

an |X| × |X| matrix M such that Mx,y = 1 when x and y are from the same nest and 0 otherwise.

Hence, to compute X ∗, we follow the following steps:

1) Calculate εab := d(a, b) for each pair (a, b) in X ×X;

2) For each εab, construct the |X| × |X| matrix Mab such that Mab
x,y = 1 if d(x, y) < εab and 0

otherwise;

3) Include the matrix Mab in X ∗ if for any x, y, z ∈ X, Mab
x,z = 1 whenever Mab

x,y = Mab
y,z = 1.

The first step determines the collection of relevant thresholds from the data to construct candi-

date relations ∼ε. The second step generates |X|(|X|−1)/2 matrices, which represent the similarity

thresholds found in the previous step. The third step reduces the number to |X|, as we prove in

Proposition 6, since ∼ε must be transitive.

5.3 Identification from Simulations

To illustrate our algorithm and our theoretical result on identification, we ran the following sim-

ulation with six alternatives. We assumed that the true nest structure is X1 = {x1, x2, x3} and

X2 = {x4, x5, x6}, with X = X1 ∪X2, and calculated the fraction of trials in which our procedure
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Error
δ

Identified

100%

98.75%

97.75%

0 0.01 0.025 0.035 0.05 0.075

Figure 1: Percentage of trials with correctly identified nest structure with error δ.

correctly identified the nest structure. To do so, we randomly generated values for u and v and

calculated p, which is the NSC given by (v, u, {X1, X2}). To introduce sampling error, we drew in-

dependent errors from a uniform distribution U [0, δ] and perturbed p.22 As shown by Proposition 4,

when δ is small enough, the true nest structure will be identified correctly. This was confirmed by

our simulation.

We considered six different values for δ ({0, 0.01, 0.025, 0.035, 0.05, 0.075}) and ran a total of

2400 trials, the results of which are summarized in Figure 1. For δ ∈ {0, 0.01, 0.025, 0.035}, the

nest structure was correctly identified in all trials. For δ = 0.05 (0.075), the nest structure was

correctly identified 395 (391) times out of 400 trials. In other words, in line with our theoretical

result (Proposition 4), when error is relatively small (e.g., δ ≤ 0.035) the true nest is recovered

100% of the time. Even for relatively large errors (e.g., δ ≥ 0.05), we recover the true nests over

97% of the time.

6 Related Literature

NSC has a large overlap with RUM, which goes back to Block and Marschak (1960), Falmagne

(1978), and Barbera and Pattanaik (1986). For example, both nested logit and Linear NSC are

RUM. The nested logit goes back to Ben-Akiva (1973) and McFadden (1978) and has been widely

applied in many fields, as mentioned in the introduction.

Aside from nested logit, the two most prominent models dealing with the similarity effect

are Elimination-By-Aspects (EBA) of Tversky (1972) and the Attribute Rule (AR) of Gul et al.

(2014). Both EBA and AR are RUMs and generalize the Luce model. In Tversky’s EBA, each

alternative is a collection of aspects. The decision maker randomly selects one of these aspects from

the aspects available in the menu, via a Luce rule, and eliminates alternatives that do not have the

selected aspect. The decision maker repeats this procedure until a single alternative remains. EBA

22Specifically, for each menu A and each simulation trial t, we independently draw errors {ζa,A,t}a∈A from U [0, δ]

and construct pt(·, A) as follows: pt(a,A) =
pt(a,A)+ζa,A,t∑

b∈A pt(b,A)+ζb,A,t
for each a ∈ A.
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is conceptually similar to an N -step nested logit, where N is the total number of alternatives. We

can show that the Linear NSC is a special case of EBA, but EBA is disjoint from nested logit.

In the AR of Gul et al. (2014), each alternative has many attributes. A decision maker randomly

selects one attribute from the attributes available in the menu via a Luce rule. When the selected

attribute is ω, alternative x will be chosen with a probability that is proportional to γωx , where

γωx is the intensity of ω in x. The AR is conceptually similar to cross-nested logit. In fact, one

can show that the AR is a special case of a non-parametric version of cross-nested logit in which

weights assigned to nests are menu-independent (i.e., γωx is menu-independent). Because of the

menu independence of γωx , the AR is more restrictive than unrestricted cross-nested logit. We can

also show that the Linear NSC is a special case of the AR but nested logit is not.

Another recent paper motivated by the similarity effect is Natenzon (2018), which introduces

the Bayesian probit model. In the Bayesian probit model, the decision maker receives a signal

about the true utility of each alternative, where signals follow a normal distribution. With regards

to similarity, the author utilizes a notion of revealed similarity that is not directly related to IIA.

His notion of similarity typically does not induce a partition structure on the set of alternatives.

In addition to EBA, AR, and nested logit, many special cases of RUM have been proposed,

including: Gul and Pesendorfer (2006), in which each preference has an expected utility represen-

tation; Apesteguia et al. (2017), in which the collection of preferences satisfy the single-crossing

property; and Manzini and Mariotti (2014), in which randomness occurs due to stochastic consider-

ation. Our characterization of random utility nested logit contributes to this area of the stochastic

choice literature.

One related RUM is the Luce Model with Replicas (LR) by Faro (2018). LR is a special case of

Tversky’s EBA and corresponds to the special case of Linear NSC in which nest values and Luce

utilities are constant: v(A) = vi for each A ⊆ Xi and u(a) = u(b) for any a, b ∈ Xi. In terms

of behavior, Faro’s model only allows for restrictive forms of the similarity effect in which similar

alternatives are replicas.

Another closely related model is the Associationistic Luce Model (AL) by Li and Tang (2016).

AL is a special case of NSC with v(A) =
∑

a∈A γ(a) for some function γ. Because of the additive

structure of v, AL is significantly more restrictive than NSC. In fact, the Luce model is the only

intersection between nested logit and AL. We note that the AL also allows for violations of regularity

(e.g., the attraction effect). However, since v is increasing, the AL cannot simultaneously allow

for violations of regularity and the similarity effect (see Appendix B.1). In terms of axiomatic

foundations, they also use the revealed similarity relation ∼p, and impose transitivity of ∼p as one

of their axioms.

Another model that has an interesting connection to NSC is by Ravid and Steverson (2018).23

They introduce the following stochastic choice model that captures a decision-making procedure

23This model is a special case of Marley (1991).
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that involves a sequence of binary comparisons:

p(x,A) =

∏
y∈A\{x} π(x, y)∑

z∈A
∏
t∈A\{z} π(z, t)

.

This model is disjoint from nested logit, but when π(x, y) = 1
u(y) and π(x, z) = 1

w(z) for any x, y ∈ Xi

and z ∈ Xj , we obtain an NSC with v(A ∩Xi) =
(∑

y∈A∩Xi u(y)
)∏

y∈A∩Xi
w(y)∏

y∈A∩Xi
u(y) .

Finally, we note that Manzini and Mariotti (2012) study a choice procedure similar to NSC in

a deterministic choice environment.
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A Proofs

A.1 Proof of Theorem 1

Sufficiency. We first prove the sufficiency part of Theorem 1 by the following nine steps. Suppose

p satisfies Independence of Symmetric Alternatives.

Step 1: ∼p is transitive.

Take any x, y, z ∈ X such that x ∼p y and y ∼p z. We shall prove that p(x,{x,z})
p(z,{x,z}) = p(x,A)

p(z,A) for

any A with x, z ∈ A.

Take any A with x, z ∈ A and y 6∈ A. Since x ∼p y and y ∼p z, by Independence of Symmetric

Alternatives we have p(x,A∪y)
p(z,A∪y) = p(x,A)

p(z,A) and p(x,{x,y,z})
p(z,{x,y,z}) = p(x,{x,z})

p(z,{x,z}) . By the definition of ∼p, x ∼p y
implies p(x,A∪y)

p(y,A∪y) = p(x,{x,y,z})
p(y,{x,y,z}) and y ∼p z implies p(y,A∪y)

p(z,A∪y) = p(y,{x,y,z})
p(z,{x,y,z}) . By combining all the
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previous equalities,

p(x,A)

p(z,A)
=

p(x,A ∪ y)

p(z,A ∪ y)
=
p(x,A ∪ y)

p(y,A ∪ y)
· p(y,A ∪ y)

p(z,A ∪ y)

=
p(x, {x, y, z})
p(y, {x, y, z})

· p(y, {x, y, z})
p(z, {x, y, z})

=
p(x, {x, y, z})
p(z, {x, y, z})

=
p(x, {x, z})
p(z, {x, z})

.

Hence, x ∼p z.

Step 2: Let X/ ∼p≡ {Xi}Ki=1; that is, for any xi, x
′
i ∈ Xi and xj ∈ Xj , xi ∼p x′i and xi 6∼p xj .

Since ∼p is reflexive, transitive, and symmetric, we have a well-defined partition of X.

Step 3: The construction of u.

Notice that for each i ≤ K, IIA is satisfied at all subsets of Xi. Therefore, for each i, there is

a utility function ui : Xi → R++ such that p(a,A) = ui(a)∑
b∈A ui(b)

for any A ⊆ Xi and a ∈ A (as in

the characterization of the Luce model). Since X1, . . . , Xk are disjoint, we also have u : X → R++

such that for any A ⊆ Xi and a ∈ A, p(a,A) = u(a)∑
b∈A u(b) .

Step 4: For any A ∈ A and a ∈ A ∩Xi,

p(a,A) =
u(a)∑

x∈A∩Xi u(x)
p(A ∩Xi, A).

Take any A and a ∈ A ∩ Xi. By the definitions of ∼p, u, and {Xj}Kj=1, we have p(a′,A)
p(a,A) =

p(a′,{a′,a})
p(a,{a′,a}) = u(a′)

u(a) for any a′ ∈ A ∩ Xi. Then p(A∩Xi,A)
p(a,A) =

∑
a′∈A∩Xi

u(a′)

u(a) . Hence, p(a,A) =
u(a)∑

a′∈A∩Xi
u(a′) p(A ∩Xi, A).

Step 5. Take alternatives a, b, x such that a ∈ Xi, b ∈ Xj , and x ∈ Xk. By Independence of

Symmetric Alternatives, for any A ∈ A with a, b, x ∈ A, we have p(a,A)
p(b,A) = p(a,A\{x})

p(b,A\{x}) since a 6∼p x
and b 6∼p x. Equivalently,

u(a)∑
y∈A∩Xi

u(y)

u(b)∑
z∈A∩Xj

u(z)

· p(A ∩Xi, A)

p(A ∩Xj , A)
=

u(a)∑
y∈A∩Xi

u(y)

u(b)∑
z∈A∩Xj

u(z)

· p(A ∩Xi, A \ {x})
p(A ∩Xj , A \ {x})

.

Therefore, for any A ∈ A and a, b, x ∈ A such that a ∈ Xi, b ∈ Xj , and x ∈ Xk,

(12)
p(A ∩Xi, A)

p(A ∩Xj , A)
=
p(A ∩Xi, A \ {x})
p(A ∩Xj , A \ {x})

.

Step 6. We will construct the nest utility function v :
⋃K
i=1 2Xi → R+ for subsets of X2, . . . , Xk

in the following way.
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First, let us take αi ⊆ Xi where i ≥ 2. Let

v(αi) ≡
p(αi, αi ∪X1)

p(X1, αi ∪X1)
.

Fact 1. For any αi ⊆ Xi, αj ⊆ Xj with i, j ≥ 2,

p(αi, αi ∪ αj)
p(αj , αi ∪ αj)

=
v(αi)

v(αj)
.

Proof of Fact 1. Notice that from Equation (12) we can obtain the following by repeatedly

eliminating x ∈ X1 from αi ∪ αj ∪X1:

p(αi, αi ∪ αj ∪X1)

p(αj , αi ∪ αj ∪X1)
=
p(αi, αi ∪ αj)
p(αj , αi ∪ αj)

.

Similarly, from Equation (12) we obtain

p(αi, αi ∪ αj ∪X1)

p(X1, αi ∪ αj ∪X1)
=

p(αi, αi ∪X1)

p(X1, αi ∪X1)
= v(αi)

and
p(αj , αi ∪ αj ∪X1)

p(X1, αi ∪ αj ∪X1)
=
p(αj , αj ∪X1)

p(X1, αj ∪X1)
= v(αj).

Combining the above three equalities, we obtain

v(αi)

v(αj)
=

p(αi,αi∪αj∪X1)
p(X1,αi∪αj∪X1)

p(αj ,αi∪αj∪X1)
p(X1,αi∪αj∪X1)

=
p(αi, αi ∪ αj ∪X1)

p(αj , αi ∪ αj ∪X1)
=
p(αi, αi ∪ αj)
p(αj , αi ∪ αj)

.

Fact 2. For any αi ⊆ Xi, αj ⊆ Xj with i, j ≥ 2 and A ⊆ ∪s 6=i,jXs,

p(αi, αi ∪ αj ∪A)

p(αj , αi ∪ αj ∪A)
=
v(αi)

v(αj)
.

Proof of Fact 2. By Equation (12), we obtain the following equality by repeatedly eliminating

x ∈ A from αi ∪ αj ∪A:

p(αi, αi ∪ αj ∪A)

p(αj , αi ∪ αj ∪A)
=
p(αi, αi ∪ αj)
p(αj , αi ∪ αj)

=
v(αi)

v(αj)
.

Step 7. We will construct the nest utility function v :
⋃K
i=1 2Xi → R+ for subsets of X1 in the

following way.

First, let us take α1 ⊆ X1. Let

v(α1) ≡ p(α1, α1 ∪X2)

p(X2, α1 ∪X2)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)
.
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Fact 3. For any α2 ⊆ X2,

p(α1, α1 ∪ α2)

p(α2, α1 ∪ α2)
=
v(α1)

v(α2)
.

Proof of Fact 3. Since v(α2) = p(α2,X1∪α2)
p(X1,X1∪α2) , we shall prove that

p(α1, α1 ∪X2)

p(X2, α1 ∪X2)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)
=
p(α1, α1 ∪ α2)

p(α2, α1 ∪ α2)
· p(α2, X1 ∪ α2)

p(X1, X1 ∪ α2)
.

Notice that from Equation (12) we can obtain the following equalities by repeatedly eliminating

x ∈ X3 from α1 ∪X2 ∪X3 and α1 ∪ α2 ∪X3,

p(α1, α1 ∪X2)

p(X2, α1 ∪X2)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)
=
p(α1, α1 ∪X2 ∪X3)

p(X2, α1 ∪X2 ∪X3)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)

and
p(α1, α1 ∪ α2)

p(α2, α1 ∪ α2)
· p(α2, X1 ∪ α2)

p(X1, X1 ∪ α2)
=
p(α1, α1 ∪ α2 ∪X3)

p(α2, α1 ∪ α2 ∪X3)
· p(α2, X1 ∪ α2)

p(X1, X1 ∪ α2)
.

Therefore, we shall prove that

p(α1, α1 ∪X2 ∪X3)

p(X2, α1 ∪X2 ∪X3)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)
=
p(α1, α1 ∪ α2 ∪X3)

p(α2, α1 ∪ α2 ∪X3)
· p(α2, X1 ∪ α2)

p(X1, X1 ∪ α2)
.

Moreover,

p(α1, α1 ∪X2 ∪X3)

p(X2, α1 ∪X2 ∪X3)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)
=

p(α1, α1 ∪X2 ∪X3)

p(X3, α1 ∪X2 ∪X3)
· p(X3, α1 ∪X2 ∪X3)

p(X2, α1 ∪X2 ∪X3)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)

=
p(α1, α1 ∪X2 ∪X3)

p(X3, α1 ∪X2 ∪X3)
· v(X3)

v(X2)
· p(X2, X1 ∪X2)

p(X1, X1 ∪X2)
, by Fact 2,

=
p(α1, α1 ∪X2 ∪X3)

p(X3, α1 ∪X2 ∪X3)
· v(X3)

v(X2)
· v(X2), by the definition of v,

and

p(α1, α1 ∪ α2 ∪X3)

p(α2, α1 ∪ α2 ∪X3)
· p(α2, X1 ∪ α2)

p(X1, X1 ∪ α2)
=

p(α1, α1 ∪ α2 ∪X3)

p(X3, α1 ∪ α2 ∪X3)
· p(X3, α1 ∪ α2 ∪X3)

p(α2, α1 ∪ α2 ∪X3)
· p(α2, X1 ∪ α2)

p(X1, X1 ∪ α2)

=
p(α1, α1 ∪ α2 ∪X3)

p(X3, α1 ∪ α2 ∪X3)
· v(X3)

v(α2)
· p(α2, X1 ∪ α2)

p(X1, X1 ∪ α2)
, by Fact 2,

=
p(α1, α1 ∪ α2 ∪X3)

p(X3, α1 ∪ α2 ∪X3)
· v(X3)

v(α2)
· v(α2), by the definition of v.

Finally, we shall prove that

(13)
p(α1, α1 ∪X2 ∪X3)

p(X3, α1 ∪X2 ∪X3)
=
p(α1, α1 ∪ α2 ∪X3)

p(X3, α1 ∪ α2 ∪X3)
,

which immediately follows from Equation (12) by repeatedly eliminating x ∈ X2 \ α2 from α1 ∪
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X2 ∪X3.

Fact 4. For any αi ⊆ Xi with i ≥ 3,

p(α1, α1 ∪ αi)
p(αi, α1 ∪ αi)

=
v(α1)

v(αi)
.

Proof of Fact 4. By Equation (12) and Facts 2-3,

p(α1, α1 ∪ αi)
p(αi, α1 ∪ αi)

=
p(α1, α1 ∪ αi ∪X2)

p(αi, α1 ∪ αi ∪X2)
=
p(α1, α1 ∪ αi ∪X2)

p(X2, α1 ∪ αi ∪X2)
· p(X2, α1 ∪ αi ∪X2)

p(αi, α1 ∪ αi ∪X2)

=
p(α1, α1 ∪X2)

p(X2, α1 ∪X2)
· v(X2)

v(αi)
=
v(α1)

v(X2)
· v(X2)

v(αi)
=
v(α1)

v(αi)
.

Fact 5. For any αi ⊆ Xi with i ≥ 2 and A ⊆ ∪s 6=i,1Xs,

p(α1, α1 ∪ αi ∪A)

p(αi, α1 ∪ αi ∪A)
=
v(α1)

v(αi)
.

Proof of Fact 5. From Equation (12), we have

p(α1, α1 ∪ αi ∪A)

p(αi, α1 ∪ αi ∪A)
=
p(α1, α1 ∪ αi)
p(αi, α1 ∪ αi)

=
v(α1)

v(αi)
.

Step 8. By Facts 2, 4, and 5, for any A ∈ A and i, j ≤ K,

p(A ∩Xi, A)

p(A ∩Xj , A)
=
v(A ∩Xi)

v(A ∩Xj)
.

Since
∑K

i=1 p(A ∩ Xi, A) = 1, we have p(A ∩ Xi, A) = v(A∩Xi)∑K
j=1 v(A∩Xj)

. Since p(a,A)
p(b,A) = u(a)

u(b) for any

a, b ∈ Xi, we have

p(ai, A) =
u(ai)∑

x∈A∩Xi u(x)
· v(A ∩Xi)∑K

j=1 v(A ∩Xj)
for each ai ∈ A ∩Xi.

Step 9. An NSC p is nondegenerate.

By way of contradiction, suppose there are i, j ≤ K such that for some a ∈ Xi and b ∈ Xj ,∑
x∈Ai u(x)

v(Ai)
=
u(a)

v(a)
and

∑
y∈Aj u(y)

v(Aj)
=
u(b)

v(b)
for any Ai ⊆ Xi and Aj ⊆ Xj .

In other words,∑
x∈Ai u(x)

v(Ai)

/u(a)

v(a)
=

∑
y∈Aj u(y)

v(Aj)

/u(b)

v(b)
for any Ai ⊆ Xi and Aj ⊆ Xj .

Then by NSC representation, we have p(a,{a,b})
p(b,{a,b}) = p(a,A)

p(b,A) for any A ∈ A ; i.e., a ∼p b, which

contradicts the construction of {Xk}Kk=1.

29



Necessity. Suppose p is a nondegenerate NSC with (v, u, {Xi}Ki=1).

Step 1. For any a, b ∈ X, a ∼p b if and only if either a, b ∈ Xi for some i.

Take any a, b ∈ X. We consider two cases.

Case 1. Suppose a, b ∈ Xi.

In this case, by NSC representation, p(a,A)
p(b,A) = u(a)

u(b) = p(a,{a,b})
p(b,{a,b}) for any A ∈ A . Therefore, a ∼p b.

Case 2. Suppose a ∈ Xi and b ∈ Xj with i 6= j.

We shall prove that a 6∼p b. By nondegeneracy of p, either∑
x∈Ai u(x)

v(Ai)
6= u(a)

v(a)
for some Ai ⊆ Xi with a ∈ Ai

or ∑
y∈Aj u(y)

v(Aj)
6= u(b)

v(b)
for some Aj ⊆ Xj wtih b ∈ Aj .

Without loss of generality, suppose the former is true. Then we have

p(a, {a, b})
p(b, {a, b})

=
v(a)

v(b)
6= p(a,Ai ∪ b)
p(b, Ai ∪ b)

=
u(a)∑

x∈Ai u(x)

v(Ai)

v(b)
.

Therefore, a 6∼p b.

Step 2. The first part of Independence of Symmetric Alternatives is satisfied.

Take any A ∈ A , a, b ∈ A, and x 6∈ A such that a ∼p x and b ∼p x. By Step 1, we have

a, b, x ∈ Xi for some i. Therefore, a ∼p b implies p(a,A)
p(b,A) = p(a,{a,b})

p(b,{a,b}) = p(a,A∪x)
p(b,A∪x) .

Step 3. The second part of Independence of Symmetric Alternatives is satisfied.

Take any A ∈ A , a, b ∈ A, and x 6∈ A such that a 6∼p x and b 6∼p x. By Step 1, a 6∼p x and

b 6∼p x imply x ∈ Xi and a, b 6∈ Xi for some i.

Case 1. a, b ∈ Xj for some j.

Since a ∼p b,
p(a,A)

p(b, A)
=
p(a, {a, b})
p(b, {a, b})

=
p(a,A ∪ x)

p(b, A ∪ x)
.

Case 2. a ∈ Xj and b ∈ Xk for some j, k with j 6= k.

In this case, we have

p(a,A)

p(b, A)
=

u(a)∑
y∈Aj

u(y) v(Aj)

u(b)∑
z∈Ak

u(z) v(Ak)
=
p(a,A ∪ x)

p(b, A ∪ x)

since Aj = (A ∪ x) ∩Xj = A ∩Xj and Ak = (A ∪ x) ∩Xk = A ∩Xk.

30



A.2 Proof of Proposition 1

Since the uniqueness of Luce utilities and nest utilities follows standard arguments, we only prove

that the nest structure is unique. By way of contradiction, suppose p is a nondegenerate NSC

with respect to both of (v, u, {Xi}Ki=1) and (v′, u′, {X ′i}K
′

i=1), and {X ′i}K
′

i=1 is not a permutation of

{Xi}Ki=1. Without loss of generality, suppose K ′ ≥ K. Then there are xi, x
′
i ∈ Xi such that xi ∈ X ′j

and x′i ∈ X ′k. Since
p(xi,{xi,x′i})
p(x′i,{xi,x′i})

= p(xi,A)
p(x′i,A)

for any A, by NSC representation with {v′, u′, {X ′i}K
′

i=1},
we have

v′(xi)

v′(x′i)
=

u′(xi)∑
xj∈Aj

u′(xj)
v′(Aj)

u′(x′i)∑
xk∈Ak

u′(xk)v
′(Ak)

for any Aj ⊆ X ′j and Ak ⊆ X ′k.

Let us first set Aj = {xi}. Then we have
u′(x′i)
v′(x′i)

=

∑
xk∈Ak

u′(xk)

v′(Ak) for any Ak ⊆ X ′k. Similarly,

by setting Ak = {x′i}, we also obtain u′(xi)
v′(xi)

=

∑
xj∈Aj

u′(xj)

v′(Aj)
for any Aj ⊆ X ′j . Therefore, we ob-

tain a contradiction since the above two equalities contradict the assumption that NSC p with

(v′, u′, {X ′i}K
′

i=1) is nondegenerate.

A.3 Proof of Theorem 2

Since the necessity part is straightforward, we only prove the sufficiency part. Suppose p is an NSC

with (v, u, {Xi}Ki=1) and that it satisfies Log Ratio Invariance. If K = 1, then we immediately have

a Luce model. Suppose now K ≥ 2. For each i ≤ K, fix some a∗i ∈ Xi. Then define

ηi ≡
log
(
v(Xi)/v({a∗i })

)
log
(∑

ai∈Xi u(ai)/u(a∗i )
) .

For any A ⊂ Xi and any x ∈ X \Xi, by Log Ratio Invariance, we have

log
(
p(Xi, Xi ∪x)
p(x,Xi ∪x)

/p(a∗i , {a∗i , x})
p(x, {a∗i , x})

)
log
(
p(Xi, Xi ∪ a∗i )
p(a∗i , X ∪ a∗i )

) =
log
(
p(A,A∪x)
p(x,A∪x)

/p(a∗i , {a∗i , x})
p(x, {a∗i , x})

)
log
(
p(A,A∪ a∗i )
p(a∗i , A∪ a∗i )

) .

Since
log
(
p(Xi, Xi ∪x)
p(x,Xi ∪x)

/p(a∗i , {a∗i , x})
p(x, {a∗i , x})

)
log
(
p(Xi, Xi ∪ a∗i )
p(a∗i , X ∪ a∗i )

) =
log
(

v(Xi)
v({a∗i })

)
log
(∑

b∈Xi
u(b)

u(a∗i )

) = ηi,

we have

ηi =
log
(
p(A,A∪x)
p(x,A∪x)

/p(a∗i , {a∗i , x})
p(x, {a∗i , x})

)
log
(
p(A,A∪ a∗i )
p(a∗i , A∪ a∗i )

) =
log
(

v(A)
v({a∗i })

)
log
(∑

b∈A u(b)

u(a∗i )

) ;

equivalently, v(A)
v({a∗i })

= (
∑
b∈A u(b)

u(a∗i ) )ηi . Let δi =
v({a∗i })

(u(a∗i ))ηi . Then v(A) = δi (
∑

b∈A u(b))ηi . Therefore, p

is the nested logit with (η1, . . . , ηK , u
′, {Xi}Ki=1) such that u′(x) = δ

1
ηi
i u(x) when x ∈ Xi.
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A.4 Proof of Proposition 2

Suppose p is a nested logit with (η1, . . . , ηK , u, {Xi}Ki=1). Take any A,A′ ∈ A such that IIA is

satisfied at A ∪ A′. We shall prove that Relative Likelihood Independence is satisfied. Since p is

a nondegenerate NSC, by Step 1 of the necessity part proof of Theorem 1, x ∼p y if and only

if x, y ∈ Xi for some i ≤ K. Take any A,B,A′, B′ ∈ A and x ∈ X such that a ∼p a′ for any

a, a′ ∈ A ∪ B ∪ A′ ∪ B′. By the previous argument, A ∪ B ∪ A′ ∪ B′ ⊆ Xi. By the nested logit

representation,

p(A,A ∪B)

p(B,A ∪B)
=

∑
a∈A u(a)∑
b∈B u(b)

≥ p(A′, A′ ∪B′)
p(B′, A′ ∪B′)

=

∑
a∈A′ u(a)∑
b∈B′ u(b)

.

When x ∈ Xi,

p(A,A ∪ x)

p(x,A ∪ x)

/p(B,B ∪ x)

p(x,B ∪ x)
=

∑
a∈A u(a)∑
b∈B u(b)

≥ p(A′, A′ ∪ x)

p(x,A′ ∪ x)

/p(B′, B′ ∪ x)

p(x,B′ ∪ x)
=

∑
a∈A′ u(a)∑
b∈B′ u(b)

.

When x ∈ Xj and i 6= j,

p(A,A ∪ x)

p(x,A ∪ x)

/p(B,B ∪ x)

p(x,B ∪ x)
=

(
∑

a∈A u(a))ηi

(
∑

b∈B u(b))ηi
≥ p(A′, A′ ∪ x)

p(x,A′ ∪ x)

/p(B′, B′ ∪ x)

p(x,B′ ∪ x)
=

(
∑

a∈A′ u(a))ηi

(
∑

b∈B′ u(b))ηi
.

Hence,

p(A,A ∪B)

p(B,A ∪B)
≥ p(A′, A′ ∪B′)
p(B′, A′ ∪B′)

implies
p(A,A ∪ x)

p(x,A ∪ x)

/p(B,B ∪ x)

p(x,B ∪ x)
≥ p(A′, A′ ∪ x)

p(x,A′ ∪ x)

/p(B′, B′ ∪ x)

p(x,B′ ∪ x)
.

Suppose p is the nondegenerate NSC with (v, u, {Xi}Ki=1) and satisfies Relative Likelihood

Independence. If K = 1, we trivially obtain the desired result. Suppose K ≥ 2. Take any i, j ≤ K
with i 6= j. Take any A,B,A′ ⊆ Xi and x ∈ Xj . By Relative Likelihood Independence,

p(A,A ∪B)

p(B,A ∪B)
≥ 1 implies

p(A,A ∪ x)

p(x,A ∪ x)

/p(B,B ∪ x)

p(x,B ∪ x)
≥ 1;

equivalently,

p(A,A ∪B) ≥ p(B,A ∪B) implies
p(A,A ∪ x)

p(x,A ∪ x)
≥ p(B,B ∪ x)

p(x,B ∪ x)
.

By the NSC representation,
∑

a∈A u(a) ≥
∑

b∈B u(b) implies

p(A,A ∪ x)

p(x,A ∪ x)
=
v(A)

v(x)
≥ p(B,B ∪ x)

p(x,B ∪ x)
=
v(B)

v(x)
.

Then
∑

a∈A u(a) ≥
∑

b∈B u(b) implies v(A) ≥ v(B). Therefore, there is an increasing function

fi : R++ → R++ such that v(A) = fi
(∑

a∈A u(a)
)

for any A ⊆ Xi.
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A.5 Proof of Theorem 3

Suppose p is the nondegenerate NSC with (v, u, {Xi}Ki=1) and satisfies Relative Likelihood Inde-

pendence and Richness. We shall show that p is a nested logit. If K = 1, we trivially obtain the

desired result. Suppose K ≥ 2. Let us fix i ≤ K.

Take any j ≤ K with i 6= j. Take any A,B,A′, B′ ⊆ Xi and x ∈ Xj . By Relative Likelihood

Independence and the NSC representation,

p(A,A ∪B)

p(B,A ∪B)
=

∑
a∈A u(a)∑
b∈B u(b)

≥ p(A′, A′ ∪B′)
p(B′, A′ ∪B′)

=

∑
a∈A′ u(a)∑
b∈B′ u(b)

implies
p(A,A ∪ x)

p(x,A ∪ x)

/p(B,B ∪ x)

p(x,B ∪ x)
=
v(A)

v(B)
≥ p(A′, A′ ∪ x)

p(x,A′ ∪ x)

/p(B′, B′ ∪ x)

p(x,B′ ∪ x)
=
v(A′)

v(B′)
.

Equivalently, ∑
a∈A u(a)∑
b∈B u(b)

≥
∑

a∈A′ u(a)∑
b∈B′ u(b)

implies
v(A)

v(B)
≥ v(A′)

v(B′)
.

When A′ = B′,
∑

a∈A u(a) ≥
∑

b∈B u(b) implies v(A) ≥ v(B). Therefore, there is an increasing

function fi : R++ → R++ such that v(A) = fi
(∑

a∈A u(a)
)

for any A ⊆ Xi. Let Ri = {x ∈
R++|x =

∑
a∈A u(a) for some A ∈ A }. Then we have for any v, v′, w, w′ ∈ Ri,

v

v′
≥ w

w′
implies

fi(v)

fi(v′)
≥ fi(w)

fi(w′)
.

Take any a ∈ Xi. By Richness, for any ρ ∈ (0, 1), there is b ∈ Xi such that u(b) = 1−ρ
ρ u(a).

Therefore, for any α > 0, there is b ∈ Xi such that u(b) = α. Hence, u(Xi) = R++.

Take any α, β ∈ R++. Since u(Xi) = R++, there are alternatives a, b, a′, b′ ∈ Xi such that

u(a) = αβ, u(b) = β, u(a′) = α, and u(b′) = 1. By the above implication of Relative Likelihood

Consistency, we have
fi(αβ)

fi(β)
=
fi(α)

fi(1)
for any α, β > 0.

Let g(t) ≡ fi(t)
fi(1) . Then g(1) = 1 and g(αβ) = g(α) g(β) for any α, β > 0. Finally, we can prove

that g is a power function. Since g > 0, let h(t) = log(g(exp(t))) for any t ∈ R. Then for any

t, t′ ∈ R, we have h(t+t′) = log(g(exp(t+t′))) = log(g(exp(t) exp(t′))) = log(g(exp(t)) g(exp(t′))) =

log(g(exp(t))) + log(g(exp(t′))) = h(t) + h(t′). We have obtained a typical Cauchy functional

equation for h. Hence, there is ηi ≥ 0 such that h(t) = ηi t. In other words, g(a) = aηi . Therefore,

p(a,A) =
fi(1)

(∑
x∈A∩Xi u(x)

)ηi∑
j:A∩Xj 6=∅ fj(1)

(∑
y∈A∩Xj u(y)

)ηj u(a)∑
b∈A∩Xi u(b)

.

=

(∑
x∈A∩Xi ū(x)

)ηi∑
j:A∩Xj 6=∅

(∑
y∈A∩Xj ū(y)

)ηj ū(a)∑
b∈A∩Xi ū(b)

,

where ū(x) = (fi(1))
1
ηi u(x) for each x ∈ Xi. That is, p is a nested logit.
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A.6 Proof of Proposition 3

Suppose p is the nested logit with (η1, . . . , ηK , u, {Xi}Ki=1) and satisfies Regularity and Richness. If

K = 1, we obtain the desired result since the Luce model is a nested logit. Suppose K ≥ 2. Let us

fix i ≤ K. We shall prove that ηi ≤ 1. Take any a, a′ ∈ Xi and b′ ∈ Xj with i 6= j. By Richness, for

any ρ ∈ (0, 1) there is b ∈ Xj such that u(b) = 1−ρ
ρ u(b′). By Regularity, p(a, {a, b}) ≤ p(a, {a, b, a′});

i.e.,

p(a, {a, b}) =
(u(a))ηi

(u(a))ηi + (u(b))ηj
≥ p(a, {a, b, a′}) =

u(a)

u(a) + u(a′)
· (u(a) + u(a′))ηi

(u(a) + u(a′))ηi + (u(b))ηj
.

After simplifying the above inequality, we obtain

(u(a) + u(a′))ηi + (u(b))ηj

(u(a))ηi + (u(b))ηj
= 1 +

(u(a) + u(a′))ηi − (u(a))ηi

(u(a))ηi + (u(b))ηj
≥ (u(a) + u(a′))ηi−1

(u(a))ηi−1
;

equivalently,
(u(a))ηi−1

(u(a))ηi + (u(b))ηj
≥ (u(a) + u(a′))ηi−1 − (u(a))ηi−1

(u(a) + u(a′))ηi − (u(a))ηi
.

Notice that when ρ is close to 0, we can obtain arbitrary large u(b). Then the left-hand side of

above inequality can be arbitrary close to zero. Therefore, the right-hand side must be negative.

Hence, since ηi > 0 implies (u(a) + u(a′))ηi − (u(a))ηi > 0, we have ηi ≤ 1.

A.7 Proof of Theorem 4

Before we proceed to the proof of Theorem 4, it is useful to consider the following generalization

of unrestricted cross-nested logit:

(14) p(x,A) =
∑

k:x∈A∩Xk

ukx∑
y∈A∩Xk u

k
y

·

(∑
y∈A∩Xk u

k
y

)λ
∑

l:A∩Xl 6=∅

(∑
z∈A∩Xl u

l
z

)λ .
Note that the representation (14) reduces to unrestricted cross-nested logit by setting ukx =(

αkx u(x)
) 1
λ . It turns out that the representation (14) is behaviorally equivalent to the unrestricted

cross-nested logit.

Lemma 1. Any stochastic choice p that admits the representation (14) is an unrestricted cross-

nested logit.

Proof. Suppose that p admits the representation (14) with {Xk}Kk=1, {ukx}k≤K,x∈X , and λ. Let us

define u : X → R++ and αkx as follows: for each x ∈ X and k ≤ K,

u(x) ≡
K∑
l=1

(ulx)λ and αkx ≡
(ukx)λ∑K
l=1(ulx)λ

.
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Then we have ukx = (αkx u(x))
1
λ and

∑K
k=1 α

k
x = 1. Hence, we obtain an unrestricted cross-nested

logit.

By Lemma 1, we shall prove that any stochastic choice function p admits the representation

(14) with some {Xk}Kk=1, {ukx}k≤K,x∈X , and λ. We first set the collection of subsets X1, . . . , XK

to be equivalent to A . That is, for any A ∈ A , there i ≤ K such that A = Xk. Moreover,

Xi 6= Xj whenever i 6= j. Let us now write uAx rather than ukx when A = Xk. Then we shall find

U = {uAx }A∈A ,x∈A ∈ RN++ where N ≡
∑

A∈A |A| and λ > 0 such that

(15) p(x,A) =
∑
B:x∈B

uBx∑
y∈A∩B u

B
y

·

(∑
y∈A∩B u

B
y

)λ
∑

C:A∩C 6=∅

(∑
z∈A∩C u

C
z

)λ .
We prove the above by two steps.

Step 1. There is some function σ : RN++ → RN such that U ∈ RN++ is a fixed point of σ iff p

admits the representation (16) with respect to U .

Let Ũ = {ũAx }A∈A ,x∈A. Let us define the following mapping for each U, Ũ , and λ:

q(x,A|U, Ũ , λ) ≡ uAx∑
y∈A u

A
y

·

(∑
y∈A ũ

A
y

)λ
∑

C:A∩C 6=∅

(∑
z∈A∩C ũ

C
z

)λ
+

∑
B:x∈B,A 6=B

ũBx∑
y∈A∩B ũ

B
y

·

(∑
y∈A∩B ũ

B
y

)λ
∑

C:A∩C 6=∅

(∑
z∈A∩C ũ

C
z

)λ .

Now note that it is enough for us to find U and λ such that p(x,A) = q(x,A|U,U, λ). For notational

simplicity, let

fA(Ũ , λ) ≡

(∑
y∈A ũ

A
y

)λ
∑

C:A∩C 6=∅

(∑
z∈A∩C ũ

C
z

)λ
and

gAx (Ũ , λ) ≡
∑

B:x∈B,A 6=B

ũBx∑
y∈A∩B ũ

B
y

·

(∑
y∈A∩B ũ

B
y

)λ
∑

C:A∩C 6=∅

(∑
z∈A∩C ũ

C
z

)λ .
Then we have q(x,A|U, Ũ , λ) = uAx∑

y∈A u
A
y
· fA(Ũ , λ) + gAx (Ũ , λ). For any M ≡ {mA}A∈A ∈ R

|A |
++, let

σAx (Ũ , λ,M) ≡ mA p(x,A)− gAx (Ũ , λ)

fA(Ũ , λ)
and σ(Ũ , λ,M) ≡ {σAx (Ũ , λ,M)}A∈A ,x∈A.

Note that fA(·, λ,M) and gAx (·, λ,M) are strictly positive and continuous functions on RN++. Hence,
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σ(·, λ,M) : RN++ → RN is continuous for each (λ,M). Moreover,

q(x,A|σ(Ũ , λ,M), Ũ , λ) =
σAx (Ũ , λ,M)∑
y∈A σ

A
y (Ũ , λ,M)

· fA(Ũ , λ) + gAx (Ũ , λ)

=
mA p(x,A)−gAx (Ũ ,λ)

fA(Ũ ,λ)∑
y∈Am

A p(y,A)−gAy (Ũ ,λ)

fA(Ũ ,λ)

· fA(Ũ , λ) + gAx (Ũ , λ)

= p(x,A) since fA(Ũ , λ) = 1−
∑
x∈A

gAx (Ũ , λ).

Therefore, it is enough to find U ∈ RN++ such that σ(U, λ,M) = U ; i.e., a fixed point of σ(·, λ,M)

in RN++. To apply Brouwer’s fixed point theorem,24 we shall show that for some (λ,M) there

is a non-empty, convex, compact set S ⊂ RN++ such that σ(·, λ,M) is a self-map on S; that is,

σ(·, λ,M) : S → S.

Step 2. For some λ and M , there is a non-empty, closed, convex set S ⊂ RN++ such that

σ(U, λ,M) ∈ S for any U ∈ S. Let p∗ ≡ min{minB∈A ,y∈B p(y,B), 1
|X|} > 0 and

S ≡ {U ∈ RN++|
∑
x∈A

uAx = 1 +
|A|
|X|2

p∗ and
∑
x∈B

uAx ≤ 1− (p∗)2

4
for any A,B with B ⊂ A}.

Step 2.1. S is non-empty.

We will show that U ∈ S when uAx = 1
|A| +

p∗

|X|2 for each A ∈ A and x ∈ X. First,
∑

x∈A u
A
x =

1 + |A|
|X|2 p

∗. Second, for any B ⊂ A,

∑
x∈B

uAx ≤ (|A| − 1)
( 1

|A|
+

p∗

|X|2
)

= 1− (
1

|A|
+

p∗

|X|2
− |A|
|X|2

p∗) < 1− (
1

|A|
− |A|
|X|2

p∗)

≤ 1− (
1

|X|
− |X|
|X|2

p∗) = 1− (1− p∗)
|X|

≤ 1− 1

2|X|
≤ 1− p∗

2
≤ 1− (p∗)2

4
.

Step 2.2. S is convex.

Let

S1 ≡ {U ∈ RN++|
∑
x∈A

uAx = 1 +
|A|
|X|2

p∗}

and

S2 ≡ {U ∈ RN++|
∑
x∈B

uAx ≤ 1− (p∗)2

4
for any A,B with B ⊂ A}.

Note that S1, S2 are convex sets. Hence, S = S1 ∩ S2 is convex.

24Brouwer’s fixed point theorem: Let S ⊂ Rm be convex and compact and let f : S → S be continuous. Then
f has a fixed point; that is, there is s ∈ S such that f(s) = s. For example, see Ok (2007), p.279.
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Step 2.3. S is compact.

Note that S ⊂ [0, 2]N . Hence, S is bounded. Moreover, note that S1, S2 are closed sets. Hence,

S = S1 ∩ S2 is closed.

Step 2.4. For some λ, fA(U, λ) ∈ (1− p∗

2 , 1) for any U ∈ S.

First, it is immediate that

fA(U, λ) =

(∑
y∈A u

A
y

)λ
∑

C:A∩C 6=∅

(∑
z∈A∩C u

C
z

)λ < 1 when U � 0.

Second, in order to show that

fA(U, λ) =

(∑
y∈A u

A
y

)λ
∑

C:A∩C 6=∅

(∑
z∈A∩C u

C
z

)λ > 1− p∗

2
,

it is enough to prove that

1

fA(U, λ)
− 1 =

∑
C:A∩C 6=∅,C 6=A

(∑
z∈A∩C u

C
z

)λ
(∑

y∈A u
A
y

)λ <
p∗

2
.

By the construction of S, we have
(∑

y∈A u
A
y

)λ
=
(

1 + |A|
|X|2 p

∗
)λ

. Moreover,

∑
C:A∩C 6=∅,C 6=A

( ∑
z∈A∩C

uCz

)λ
=
∑
B⊂A

(∑
y∈B

uBy

)λ
+

∑
C:A∩C 6=∅,C 6⊆A

( ∑
z∈A∩C

uCz

)λ
and by the construction of S,

∑
B⊂A

(∑
y∈B

uBy

)λ
=
∑
B⊂A

(
1 +

|B|
|X|2

p∗
)λ

< 2|X|
(

1 +
|A| − 1

|X|2
p∗
)λ
.

Moreover, since C ∩A 6= C whenever C * A, by the construction of S,

∑
C:A∩C 6=∅,C*A

( ∑
z∈A∩C

uCz

)λ
≤

∑
C:A∩C 6=∅,C*A

(
1− (p∗)2

4

)λ
< 2|X|.

Combining the last two inequalities, we have

1

fA(U, λ)
− 1 =

∑
C:A∩C 6=∅,C 6=A

(∑
z∈A∩C u

C
z

)λ
(∑

y∈A u
A
y

)λ <
2|X|(1 + |A|−1

|X|2 p
∗)λ + 2|X|

(1 + |A|
|X|2 p

∗)λ
.
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Let λ∗ ≡ maxA∈A

log

(
2|X|+2

p∗

)
log

(
1+
|A|
|X|2

p∗

1+
|A|−1

|X|2
p∗

) and λ > λ∗. Then we have 2|X|+2

p∗ <
( 1+

|A|
|X|2

p∗

1+
|A|−1

|X|2
p∗

)λ
. Consequently,

p∗

2
>

2|X|+1
(
1 + |A|−1

|X|2 p
∗)λ(

1 + |A|
|X|2 p

∗
)λ >

2|X|
(
1 + |A|−1

|X|2 p
∗)λ + 2|X|(

1 + |A|
|X|2 p

∗
)λ >

1

fA(U, λ)
− 1.

Step 2.5. When λ > λ∗, gAx (U, λ) ∈ [0, p
∗

2 ) for any U ∈ S.

It is immediate that gAx (U, λ) ≥ 0. Moreover, since
∑

x∈A g
A
x (U, λ) = 1− fA(U, λ) ∈ (0, p

∗

2 ) by

Step 2.4, gAx (U, λ) < p∗

2 .

Step 2.6. Let mA = 1 + |A|
|X|2 p

∗ and λ > λ∗. Then σ(U, λ,M) ∈ S for any U ∈ S.

To show that σ(U, λ,M) ∈ S, we shall prove that for any A ∈ A , (i) σAx (U, λ,M) > 0, (ii)∑
x∈A σ

A
x (U, λ,M) = 1 + |A|

|X|2 p
∗, and (iii)

∑
y∈B σ

A
y (U, λ,M) ≤ 1− (p∗)2

4 for any B ⊂ A.

Step 2.6.(i). σAx (U, λ,M) > mA p∗

2 .

By Step 2.5 and the definition of p∗, we have p(x,A) ≥ p∗ and p∗

2 > gAx (U, λ). Therefore, since

fA(U, λ) < 1, σAx (U, λ,M) = mA p(x,A)−gAx (U,λ)
fA(U,λ)

> mA
p∗
2

fA(U,λ)
> mA p∗

2 .

Step 2.6.(ii).
∑

x∈A σ
A
x (U, λ,M) = 1 + |A|

|X|2 p
∗.

Since fA(U, λ) = 1−
∑

x∈A g
A
x (U, λ) and by the definition of mA,∑

x∈A σ
A
x (U, λ,M) =

∑
x∈Am

A p(x,A)−gAx (U,λ)
fA(U,λ)

= mA 1−
∑
x∈A g

A
x (U,λ)

fA(U,λ)
= mA = 1 + |A|

|X|2 p
∗.

Step 2.6.(iii).
∑

y∈B σ
A
y (U, λ,M) ≤ 1− (p∗)2

4 for any B ⊂ A.

Suppose x ∈ A \B. Then by Step 2.6.(i),

∑
y∈B

σAy (U, λ,M) ≤
∑
y∈A

σAy (U, λ,M)− σAx (U, λ,M) = mA − σAx (U, λ,M) < mA − mA p∗

2
.

Finally,

mA − mA p∗

2
= (1− p∗

2
)(1 +

|A|
|X|2

p∗) ≤ (1− p∗

2
)(1 +

|X|
|X|2

p∗) ≤ (1− p∗

2
)(1 +

1

2
p∗) = 1− (p∗)2

4
.

To sum up, Step 1 shows that p admits the representation (16) with respect to U if and only

if U is a fixed point of σ. Step 2 shows that σ has a fixed point by Brouwer’s fixed point theorem.

Therefore, by Steps 1-2 and Lemma 1, any p is an unrestricted cross-nested logit.
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A.8 Proof of Proposition 4

We use standard strong consistency results for M-estimators (e.g., see p. 2121-2 of Newey and

McFadden (1994)). To obtain X̂ a.s.−−→ X ∗, since the set of all nest structures is finite, we only need

to prove that X ∗ is the unique minimizer of D∗ and D
a.s.−−→ D∗.

We first simplify the calculation ofD1(Y). Let ε̄B,A ≡
∑
a∈A∩B εa,A
p(A∩B,A) . Then rA(a, b) =

p(a,A)+εa,A
p(b,A)+εb,A

=

r̄A(a, b)
1+ε̄a,A
1+ε̄b,A

. Let

ζa,b,A,B ≡ log
(1 + ε̄a,A

1 + ε̄b,A

/1 + ε̄a,B
1 + ε̄b,B

)
and δa,b,A,B ≡ log

( r̄A(a, b)

r̄B(a, b)

)
.

Then

log
(rA(a, b)

rB(a, b)

)
= δa,b,A,B + ζa,b,A,B.

We now simplify the calculation of D2(Y). Note that

rA(Y, Y ′) =
p(A ∩ Y,A)

p(A ∩ Y ′, A)
=

p(A ∩ Y,A) +
∑

a∈A∩Y εa,A

p(A ∩ Y ′, A) +
∑

a∈A∩Y ′ εa,A
= r̄A(Y, Y ′)

1 + ε̄Y,A
1 + ε̄Y ′,A

.

Similarly, let

ζY,Y ′,A,B ≡ log
( 1 + ε̄Y,A

1 + ε̄Y ′,A

/ 1 + ε̄Y,B
1 + ε̄Y ′,B

)
and δY,Y ′,A,B ≡ log

( r̄A(Y, Y ′)

r̄B(Y, Y ′)

)
.

Then

log
(rA(Y, Y ′)

rB(Y, Y ′)

)
= δY,Y ′,A,B + ζY,Y ′,A,B.

Let N1(Y) =
∑

Y ∈Y |{(A,B, a, b)|a, b ∈ A ∩ B ∩ Y }| and N2(Y) =
∑

Y,Y ′∈Y |{(A,B)|A ∩ Y =

B ∩ Y, A ∩ Y ′ = B ∩ Y ′}| and take any M > maxY N1(Y),maxY N2(Y). Hence,

D(Y) =

∑
Y ∈Y

∑
A,B∈A ,a,b∈A∩B∩Y (δa,b,A,B + ζa,b,A,B)2

N1(Y)

+

∑
Y,Y ′∈Y

∑
A,B∈A :A∩Y=B∩Y,A∩Y ′=B∩Y ′(δY,Y ′,A,B + ζY,Y ′,A,B)2

N2(Y)
.

We then show that X ∗ is the unique minimizer of D∗. Since D∗(X ∗) = 0, we shall show that

D∗(Y) > 0 for any nest structure Y 6= X ∗. It is enough to consider the following two cases.

Case 1. Y is a partition of X such that there are a ∈ Xi and b ∈ Xj such that a, b ∈ Y for some

Y ∈ Y.

By Assumption 1, there are A,B with r̄A(a, b) 6= r̄B(a, b); i.e., δa,b,A,B 6= 0. Then we have

D∗(Y) ≥ D∗1(Y) > (δa,b,A,B)2/M > 0.

Case 2. Y is a partition of X such that for any Y ∈ Y, Y ⊆ Xi for some i, and Y ′ ⊂ Xj for some

Y ′ ∈ Y and j.
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Take any Y, Y ′ such that Y ⊂ Xi and Y ′ ⊆ Xj . By Assumption 1, there are A,B such such

that r̄A(Y, Y ′) 6= r̄B(Y, Y ′), A∩ Y = B ∩ Y , and A∩ Y ′ = B ∩ Y ′. That is, δY,Y ′,A,B 6= 0. Then we

have D∗(Y) ≥ D∗2(Y) ≥ (δY,Y ′,A,B)2/M > 0.

We finally show that D(Y)
a.s.−−→ D∗(Y) for every Y. We have

D(Y)−D∗(Y) =
∑(

(δa,b,A,B + ζa,b,A,B)2 − (δa,b,A,B)2
)

N1(Y)
+
∑(

(δY,Y ′,A,B + ζY,Y ′,A,B)2 − (δY,Y ′,A,B)2
)

N2(Y)

=
∑ ζa,b,A,B (2 δa,b,A,B + ζa,b,A,B)

N1(Y)
+
∑ ζY,Y ′,A,B (2 δY,Y ′,A,B + ζY,Y ′,A,B)

N2(Y)

a.s.−−→ 0

since ζa,b,A,B
a.s.−−→ 0, ζY,Y ′,A,B

a.s.−−→ 0, and δa,b,A,B and δY,Y ′,A,B are constants.

A.9 Proof of Proposition 5

Take any a, b ∈ X. As we showed in the proof of Proposition 6, we have log
(
rA(a, b)/rB(a, b)

)
=

δa,b,A,B + ζa,b,A,B. If a, b ∈ Xi for some i, then

d(a, b) =

∑
A,B∈A :a,b∈A∩B ζ

2
a,b,A,B

|{(A,B, a, b)|a, b ∈ A ∩B}|
a.s.−−→ 0.

If a ∈ Xi and b ∈ Xj for some i, j with i 6= j, then by Assumption 1, there are A∗, B∗ with

r̄A∗(a, b) 6= r̄B∗(a, b); i.e., δa,b,A∗,B∗ 6= 0. Hence,

d(a, b) >
(δa,b,A∗,B∗ + ζa,b,A∗,B∗)

2

M
≥

(δa,b,A∗,B∗)
2

2M
almost surely.

Let

ε∗ ≡ min
a′,b′,A′,B′:δa′,b′,A′,B′ 6=0

(δa′,b′,A′,B′)
2

2M
.

Then by the previous inequality, d(a, b) > ε∗ almost surely. Since ε∗ > 0, there is N̄ such that for

any N∗ > N̄ ,

max
i

max
a,b∈Xi

d(a, b) < ε∗ < min
i<j

min
a′∈Xi,b′∈Xj

d(a′, b′) with probability one.

A.10 Proofs of Proposition 6 and Corollary 2

Proof of Proposition 6. Since X and A are finite, there is a set {d1, . . . , dm} of positive real

numbers such that maxa,b d(a, b) = dm > . . . > d2 > d1 = mina,b d(a, b) ≥ 0 and for any a′, b′ ∈ X,

d(a′, b′) = ds for some s ≤ m. Hence, it is immediate that |X ∗| ≤ |X|2.

Let us prove |X ∗| ≤ |X| by induction on the number of alternatives |X|. When |X| = 2, we

have |X ∗| ≤ |X | = 2 = |X|. Suppose that the hypothesis is true for any set X with |X| = k. We

shall prove that this also holds for all sets X with |X| = k + 1.

Take a set X and suppose |X| = k + 1. Let a∗, b∗ be elements of X such that d1 = d(a∗, b∗).
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Hence, for any ε ∈ (d1, dm], a∗ ∼ε b∗. In other words, a∗ and b∗ belong to the same nest for any

partition Xε with ε ∈ (d1, dm]. If d1 = d(a∗, b∗) = dm = maxa,b∈X d(a, b), then we obtain the desired

result since |X | = 1. Suppose that d(a∗, b∗) < dm. Then, without loss of generality, we can assume

that dm = maxa,b∈X′ d(a, b) where X ′ = X \ {b∗}. Because |X ′| ≤ k, it follows from the induction

assumption that there are at most k different partitions in X ′∗ = {X ′ε}ε∈[0,dm].

Now let us consider X ∗. When ε ∈ (d1, dm], adding b∗ to X ′ does not increase the number of

distinct partitions in {X ′ε}ε∈[0,dm] since a∗ and b∗ must belong to the same nest. Note that if ∼ε is

transitive on X, then it is also transitive on X ′. Hence, adding b∗ to X ′ does not extend the set of

ε such that ∼ε is transitive. Therefore, there is at most one new partition when b∗ is added to X ′.

Therefore, by induction, |X ∗| ≤ |X|.

Proof of Corollary 2. In the proof of Proposition 6, we show that there is ε∗ > 0 such that

max
i

max
a,b∈Xi

d(a, b) < ε∗ < min
i<j

min
a′∈Xi,b′∈Xj

d(a′, b′) almost surely.

Hence Xε∗ = X ∗ almost surely. Therefore, X ∗ ∈ X ∗ almost surely. By Proposition 6, X̂ a.s.−−→ X ∗.
Therefore, since X ∗ ∈X ∗ almost surely and X ∗ ⊂X , we have X̂ ∗ a.s.−−→ X ∗.

B Additional Results

B.1 Regularity, Increasing NSC, and The Similarity Effect

Proposition 3 shows that regularity has important behavioral implications for nested logit. In

this section, we study the implications of regularity for general NSC. We show that there is a deep

connection between regularity, increasing NSCs, and the similarity effect. To clarify the implications

of regularity, we divide regularity into two logically independent axioms (as we did for IIA).

Axiom 6 (Dissimilar Regularity). For any A ∈ A , x ∈ A, and y ∈ X,

p(x,A ∪ y) ≤ p(x,A) when x �p y.

Axiom 7 (Similar Regularity). For any A ∈ A , x ∈ A, and y ∈ X,

p(x,A ∪ y) ≤ p(x,A) when x ∼p y.

The first axiom, Dissimilar Regularity, says that regularity should hold when x and y are

revealed dissimilar, while the second axiom, Similar Regularity, requires regularity when x and y

are revealed similar. It is immediate that the joint assumption of Dissimilar Regularity and Similar

Regularity is equivalent to regularity.

The first result shows that Similar Regularity is closely related to the similarity effect. In fact,

the similarity effect implies Similar Regularity in a setting that is more general than NSC.
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Proposition 7. For any stochastic choice function p, if ∼p is transitive, then the similarity effect

implies Similar Regularity.

The intuition behind this result is quite simple. If an alternative y is introduced and it is

similar to some existing alternative x, the similarity effect requires that y hurts x more than it

hurts anything that it is not similar to. Thus, the probability of x must decrease. Note that this

result only requires that ∼p is transitive; it does not rely on the structure of NSC. Consequently,

it is difficult to explain both the similarity effect and violations of regularity. Further, we can show

that under some richness condition, Similar Regularity will imply a weak version of the similarity

effect, and thus the similarity effect is essentially equivalent to Similar Regularity.

The second result shows that Dissimilar Regularity is equivalent to a mild but behaviorally

important restriction on v: monotonicity in the size of the nest. We say p is an increasing NSC

if v(A) ≥ v(B) for any i ≤ K and nonempty sets A,B ⊆ Xi with B ⊆ A.

Proposition 8. A nondegenerate NSC p satisfies Dissimilar Regularity if and only if it is an

increasing NSC.

Increasing NSC are interesting because they subsume many of the models in the literature,

including nested logit. However, increasing NSC are incompatible with certain violations of regu-

larity, such as choice overload.25 In fact, Propositions 7 and 8 imply that increasing NSC cannot

allow the similarity effect and violations of regularity simultaneously. Thus, non-increasing NSC

(e.g., the menu-dependent substitutability example from section 3.4) are of independent interest.

B.2 Alternative Axiomatization

In this section, we provide an alternative axiomatic characterization of NSC in which characterizing

axioms do not rely on our revealed similarity relation ∼p. To characterize NSC, we “divide” ISA

into two axioms.

Axiom 8 (ISA-1). For any A ∈ A , a, b ∈ A, and x 6∈ A,

p(a, {a, x})
p(x, {a, x})

=
p(a, {a, b, x})
p(x, {a, b, x})

and
p(b, {b, x})
p(x, {b, x})

=
p(b, {a, b, x})
p(x, {a, b, x})

=⇒ p(a,A)

p(b, A)
=
p(a,A ∪ x)

p(b, A ∪ x)
.

Note that the above axiom is essentially identical to the first part of ISA with a ∼p x and

b ∼p x.

Axiom 9 (ISA-2). For any A,B,C ∈ A , a ∈ A ∩B, b ∈ A ∩ C, and x ∈ B ∩ C,

p(a, {a, x})
p(x, {a, x})

6= p(a,B)

p(x,B)
and

p(b, {b, x})
p(x, {b, x})

6= p(b, C)

p(x,C)
=⇒ p(a,A)

p(b, A)
=
p(a,A ∪ x)

p(b, A ∪ x)
.

25Moreover, in an increasing NSC, the likelihood of choosing a nest can never decrease after expansion. This rules
out “aversion to large choice sets” or “preference for commitment” type behavior which may be accommodated by
more general NSC.
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Similarly, the above axiom is essentially identical to the second part of ISA with a 6∼p x and

b 6∼p x.

We also need to strengthen our notion of nondegeneracy as follows. The NSC p with (v, u, {Xi}Ni=1)

is strict if for any Ai ⊂ Xi with a ∈ Ai and x ∈ Xi \Ai,

if
u(a) + u(x)

u(x)
=
v({a, x})
v(x)

, then

∑
a′∈Ai u(a′) + u(x)∑

a′∈Ai u(a′)
=
v(Ai ∪ x)

v(Ai)
.

Theorem 5. Let p be a stochastic choice function with at least three alternatives that are dissimilar

to each other. Then p satisfies Axiom 8 and Axiom 9 if and only if it is a strict nondegenerate

NSC.

B.3 Three-Step Nested Stochastic Choice

Theorem 1 shows that all two-level nested logit models are in fact special cases of NSC and are

characterized by a strong notion of categorical similarity. A natural question is, can we capture

more complex substitution patterns through a more general notion of similarity? Put another way,

can we allow for contextual or comparative similarity?

Consider a decision maker who is choosing between wines and beers. As in NSC, it is natural

to think that there are three nests: one for white wines, one for red wines, and one for beers.

Intuitively, the wines are “more similar” to each other than they are to the beers. This can

be captured though an intermediate step in which, before deciding between red or white wines,

the decision maker decides between wines and beers. After deciding between wine and beer, the

consumer decides between different styles of wine (red vs. white), and then selects a specific one

to consume. This can be represented through a three-level nested structure, which we refer to as a

3-step NSC. In this section, we show that we can capture such complex relationships through the

introduction of a second similarity relation and a generalization of our main axiom.

Formally, any 3-step NSC consists of a nesting structure (tree) and conditional Luce rules.

Definition 8 (3-step NSC). A stochastic choice function p is a 3-Step Nested Stochastic Choice

if there exist a partition X1, . . . , XK of X, a partition X1
k , . . . , X

qk
k of Xk for each k ≤ K, and

functions u : X → R++, w :
⋃K
i=1 2Xi → R+, and v :

⋃K
k=1

⋃qk
l=1 2X

l
k → R+ with w(∅) = v(∅) = 0

such that for any A ∈ A and x ∈ A ∩Xj
k,

p(x,A) =
u(x)∑

y∈A∩Xj
k
u(y)

·
v
(
A ∩Xj

k

)∑qk
l=1 v

(
A ∩X l

k

) · w
(
A ∩Xk

)∑K
i=1w

(
A ∩Xi

) .
We now introduce a secondary notion of similarity which applies to alternatives that are not

categorically similar, but satisfy IIA in the presence of mutually dissimilar alternatives.

Definition 9. For any a, b ∈ X, we say a and b are approximately revealed similar, denoted
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by a ./p b, if a 6∼p b and

p(a,A)

p(b, A)
=
p(a,A ∪ x)

p(b, A ∪ x)
for any A ∈ A and x /∈ A with x 6∼p a and x 6∼p b.

We write a 'p b if either a ∼p b and a ./p b.

It is crucial to note that our approximately revealed similar relation requires that a and b are

not categorically similar. Thus we have two distinct “layers” of similarity; ./p does not include

∼p as a sub-relation. In terms of our drink example, all the red wines are categorically similar

(related through ∼p), while red and white wines are approximately similar (related through ./p),

as IIA will hold between them when a beer is introduced but not if another wine were introduced.

Hence this second layer delineates the “intermediate” nests in the tree and captures aspects of

context-dependent similarity. Consequently, this approach distinguishes between fundamental and

contextual similarity.

We now introduce a generalization of our main axiom, to characterize 3-step NSC.

Axiom 10 (Generalized Independence of Symmetric Alternatives). For any A ∈ A , a, b ∈ A, and

x /∈ A,

a ∼p x and b ∼p x,

a ./p x and b ./p x,

or

a 6'p x and b 6'p x

=⇒ p(a,A)

p(b, A)
=
p(a,A ∪ x)

p(b, A ∪ x)
.

Recall that the second part of Independence of Symmetric Alternatives requires that p(a,A)
p(b,A) =

p(a,A∪x)
p(b,A∪x) when a 6∼p x and b 6∼p x. However, the second part of Generalized Independence of

Symmetric Alternatives requires that p(a,A)
p(b,A) = p(a,A∪x)

p(b,A∪x) when either a ./p x and b ./p x or a 6'p x
and b 6'p x. Hence, Generalized Independence of Symmetric Alternatives relaxes the second part

of Independence of Symmetric Alternatives.

Lastly, we need a consistency condition to hold between the similarity relations.

Axiom 11 (Consistency of Revealed Similarities). For any x, y, x′ ∈ X, if x ∼p x′, then

x ./p y if and only if x′ ./p y.

In the language of our drink example, y is a white wine and x, x′ are two red wines. Since

x ∼p x′, it must be the case that if a white wine y is approximately similar to some red wine x,

then it is approximately similar to any other red wine x′.

Theorem 6. Consider a stochastic choice function p such that there are a, b, c with a 6'p b, b 6'p c,
and a 6'p c. Suppose, for any x ∈ X, there are y, z ∈ X such that x ./p y, y ./p z, and x ./p z.

If p satisfies Generalized Independence of Symmetric Alternatives and Consistency of
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Revealed Similarities, then it is a 3-step NSC.26

The major insight from this result is that multi-step NSC is characterized by revealing mul-

tiple, layered similarity relations, and then imposing a generalization of our key axiom. Just as

our similarity relation identifies endogenous nests, this secondary relation identifies endogenous,

intermediate nests. Thus, Theorem 6 shows that we may identify an endogenous tree structure.

Multi-level nested logit models have been applied to many situations. Most famously, Goldberg

(1995) uses a multi-level nested logit to study automobile demand. It is well known that the “order”

in which the tree-structure of nests is specified matters for estimates. Our approach reveals the

entire, endogenous tree, and so the “order” is also recovered: ./p captures upper nests and ∼p
captures lower nests. It is straightforward to see how our approach could be extended to characterize

an N -Step NSC.

B.4 Remaining Proofs

B.4.1 Proof of Proposition 7

As discussed in the proof of Theorem 1, when ∼p is transitive, there is a partition {Xi}Ki=1 such

that for any x, y ∈ X, x ∼p y if and only if x, y ∈ Xi for some i ≤ K. Suppose that p satisfies the

similarity effect; that is, for any A ∈ A and a, a′ ∈ Xi and b ∈ Xj with a, b ∈ A and a′ 6∈ A,

p(a,A)

p(b, A)
>
p(a,A ∪ a′)
p(b, A ∪ a′)

.

Step 1. For any A ∈ A and a′ ∈ Xi \A with A ∩Xi 6= ∅, p(A ∩Xi, A) > p(A ∩Xi, A ∪ a′).

The similarity effect implies that for any b ∈ A \Xi and a ∈ A ∩Xi,

(16) p(b, A ∪ a′) p(a,A) > p(b, A) p(a,A ∪ a′).

Let us first add Inequality (16) across all a ∈ A ∩Xi. Then we have

p(b, A ∪ a′) p(A ∩Xi, A) > p(b, A) p(A ∩Xi, A ∪ a′).

Let us add again the above inequality across all b ∈ A \Xi. Then we obtain

(
1− p(A ∩Xi, A ∪ a′)− p(a′, A ∪ a′)

)
p(A ∩Xi, A) >

(
1− p(A ∩Xi, A)

)
p(A ∩Xi, A ∪ a′).

The above inequality implies

(
1− p(A ∩Xi, A ∪ a′)

)
p(A ∩Xi, A) >

(
1− p(A ∩Xi, A)

)
p(A ∩Xi, A ∪ a′);

equivalently, p(A ∩Xi, A) > p(A ∩Xi, A ∪ a′).
26Indeed, just as in Theorem 1, the necessity direction also holds when the appropriate nondegeneracy condition

is imposed on p.
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Step 2. For any A ∈ A , a ∈ A ∩Xi, and a′ ∈ Xi \A, p(a,A) > p(a,A ∪ a′).

For any ã ∈ A ∩Xi, we have p(a,A∪a′)
p(ã,A∪a′) = p(a,A)

p(ã,A) . Let us add the equality p(a,A ∪ a′) p(ã, A) =

p(a,A) p(ã, A ∪ a′) for all ã ∈ A ∩ Xi. Then we obtain p(a,A ∪ a′) p(A ∩ Xi, A) = p(a,A) p(A ∩
Xi, A ∪ a′). Finally, since p(A ∩Xi, A ∪ a′) < p(A ∩Xi, A), we need to have p(a,A) > p(a,A ∪ a′).

B.4.2 Proof of Proposition 8

Let p be a nondegenerate NSC with (v, u, {Xi}Ki=1).

Sufficiency. Take any Aj ⊂ Xj and y ∈ Xj \ Aj . Take any x ∈ Xi with i 6= j. Since x 6∼p y, by

Dissimilar Regularity, we have

p(x,Aj ∪ x ∪ y) =
v(x)

v(x) + v(Aj ∪ y)
≤ p(x,Aj ∪ x) =

v(x)

v(x) + v(Aj)
iff v(Aj) ≤ v(Aj ∪ y).

Necessity. Suppose v is increasing. Take any A ∈ A , x ∈ A, and y 6∈ A with x 6∼p y. Therefore,

x ∈ Xi and y ∈ Xj for some i, j with i 6= j. Since v(A ∩Xj ∪ y) ≥ v(A ∩Xj), we have

p(x,A ∪ y) =
p(x,A ∩Xi) v(A ∩Xi)

v(Aj ∪ y) +
∑

k 6=j v(A ∩Xk)
≤ p(x,A) =

p(x,A ∩Xi) v(A ∩Xi)

v(Aj) +
∑

k 6=j v(A ∩Xk)
.

B.4.3 Proof of Theorems 5

Sufficiency. Take any A ∈ A , a, b ∈ A, and x 6∈ A. Suppose a ∼p x and b ∼p x. Then we have
p(a,{a,x})
p(x,{a,x}) = p(a,{a,b,x})

p(x,{a,b,x}) and p(b,{b,x})
p(x,{b,x}) = p(b,{a,b,x})

p(x,{a,b,x}) . Hence, by Axiom 8, p(a,A)
p(b,A) = p(a,A∪x)

p(b,A∪x) . Suppose

a 6∼p x and b 6∼p x. Then there are B,C such that p(a,{a,x})
p(x,{a,x}) 6=

p(a,B)
p(x,B) and p(b,{b,x})

p(x,{b,x}) 6=
p(b,C)
p(x,C) .

Hence, by Axiom 9, p(a,A)
p(b,A) = p(a,A∪x)

p(b,A∪x) . Therefore, ISA is satisfied. Hence, by Theorem 1, p is a

nondegenerate NSC with some (v, u, {Xi}Ki=1) where X/ ∼p= {Xi}Ki=1.

To show the strictness, take any a, x ∈ Xi such that u(a)+u(x)
u(x) = v({a,x})

v(x) . Then for any b ∈ Xj ,
p(b,{b,x})
p(x,{b,x}) = p(b,{a,b,x})

p(x,{a,b,x}) . Since p(a,{a,x})
p(x,{a,x}) = p(a,{a,b,x})

p(x,{a,b,x}) , by Axiom 8, we have p(a,A)
p(b,A) = p(a,A∪x)

p(b,A∪x) . By

NSC, we have
u(a)∑

a′∈A∩Xi
u(a′)v(A ∩Xi)

u(b)∑
b′∈A∩Xj

u(b′)v(A ∩Xj)
=

u(a)∑
a′∈A∩Xi

u(a′)+u(x)v(A ∩Xi ∪ x)

u(b)∑
b′∈A∩Xj

u(b′)v(A ∩Xj)

equivalently, ∑
a′∈A∩Xi u(a′) + u(x)∑

a′∈A∩Xi u(a′)
=
v(A ∩Xi ∪ x)

v(A ∩Xi)
.

Necessity. Suppose p is the strict nondegenerate NSC with (v, u, {Xi}Ki=1). By the necessity part

of Theorem 1, p satisfies ISA and a ∼p b if and only if a, b ∈ Xi.

To prove Axiom 8, take any A ∈ A , a, b ∈ A, and x 6∈ A with p(a,{a,x})
p(x,{a,x}) = p(a,{a,b,x})

p(x,{a,b,x}) and
p(b,{b,x})
p(x,{b,x}) = p(b,{a,b,x})

p(x,{a,b,x}) . We shall prove that p(a,A)
p(b,A) = p(a,A∪x)

p(b,A∪x) . It is immediate when a, b ∈ Xi.

Hence, suppose a ∈ Xi and b ∈ Xj . If x ∈ Xk, then we have a 6∼p x and b 6∼p x. Consequently,

by ISA, we have p(b,{b,x})
p(x,{b,x}) = p(b,{a,b,x})

p(x,{a,b,x}) . Hence, suppose now either x ∈ Xi or x ∈ Xj . Since
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the role of a and b are symmetric, suppose a ∈ Xi without loss of generality. By the NSC,
p(b,{b,x})
p(x,{b,x}) = p(b,{a,b,x})

p(x,{a,b,x}) implies v(b)
v(x) = v(b)

u(x)
u(a)+u(x)

v({a,x})
; equivalently, u(a)+u(x)

u(x) = v({a,x})
v(x) . Since by the

strictness,

∑
a′∈Ai

u(a′)+u(x)∑
a′∈Ai

u(a′) = v(Ai∪x)
v(Ai)

for any Ai ⊂ Xi.

By the NSC, p(a,A)
p(b,A) = p(a,A∪x)

p(b,A∪x) is equivalent to

u(a)∑
a′∈A∩Xi

u(a′)v(A ∩Xi)

u(b)∑
b′∈A∩Xj

u(b′)v(A ∩Xj)
=

u(a)∑
a′∈A∩Xi

u(a′)+u(x)v(A ∩Xi ∪ x)

u(b)∑
b′∈A∩Xj

u(b′)v(A ∩Xj)
.

The above equality holds by the strictness since it is equivalent to∑
a′∈A∩Xi u(a′) + u(x)∑

a′∈A∩Xi u(a′)
=
v(A ∩Xi ∪ x)

v(A ∩Xi)
.

To prove Axiom 9, take any A,B,C ∈ A , a ∈ A ∩ B, b ∈ A ∩ C, and x ∈ B ∩ C with
p(a,{a,x})
p(x,{a,x}) 6=

p(a,B)
p(x,B) and p(b,{b,x})

p(x,{b,x}) 6=
p(b,C)
p(x,C) . Then a 6∼p x and b 6∼p x. Hence, by ISA, p(a,A)

p(b,A) = p(a,A∪x)
p(b,A∪x) .

B.4.4 Proof of Theorems 6

We prove Theorem 6 by four steps.

Step 1. Note that the first part of Generalized Independence of Symmetric Alternatives is identical

to the first part of Independence of Symmetric Alternatives. Hence, by Steps 1-2 of the proof of

Theorem 1, ∼p is reflexive, transitive, and symmetric, we have a partition X/ ∼p≡ {Ei}Ki=1 of X

such that for any xi, x
′
i ∈ Ei and xj ∈ Ej , xi ∼p x′i and xi 6∼p xj .

Step 2. 'p is transitive.

Take any x, y, z ∈ X such that x 'p y and y 'p z. If x ∼p y and y ∼p z, then by Step 1,

x ∼p z. If x ∼p y and y ./p z, then by Consistency of Revealed Similarities, x ./p z. If x ./p y and

y ∼p z, then by Consistency of Revealed Similarities, x ./p z. Finally, we consider the case where

x ./p y and y ./p z.

Suppose x 6∼p z. Then we shall prove that x ./p z; i.e., for any A and t 6∈ A such that x 6∼p t
and z 6∼p t, p(x,A)

p(z,A) = p(x,A∪t)
p(z,A∪t) .

Case 1. y ∈ A. In this case, we can write p(x,A)
p(z,A) = p(x,A)

p(y,A)/
p(z,A)
p(y,A) and p(x,A∪t)

p(z,A∪t) = p(x,A∪t)
p(y,A∪t)/

p(z,A∪t)
p(y,A∪t) .

If y 6∼p t, x ./p y implies p(x,A)
p(y,A) = p(x,A∪t)

p(y,A∪t) and y ./p z implies p(z,A)
p(y,A) = p(z,A∪t)

p(y,A∪t) . Therefore,
p(x,A)
p(z,A) = p(x,A)

p(y,A)/
p(z,A)
p(y,A) = p(x,A∪t)

p(z,A∪t) = p(x,A∪t)
p(y,A∪t)/

p(z,A∪t)
p(y,A∪t) . Instead, if y ∼p t, then by Consistency

of Revealed Preferences x ./p y and y ./p z imply x ./p t and z ./p t. Then by Generalized

Independence of Symmetric Alternatives, p(x,A)
p(z,A) = p(x,A∪t)

p(z,A∪t) .

Case 2. y 6∈ A. By Generalized Independence of Symmetric Alternatives, x ./p y and z ./p y

imply p(x,A)
p(z,A) = p(x,A∪y)

p(z,A∪y) and p(x,A∪t)
p(z,A∪t) = p(x,A∪y∪t)

p(z,A∪y∪t) . Now by Case 1, p(x,A)
p(z,A) = p(x,A∪y)

p(z,A∪y) = p(x,A∪y∪t)
p(z,A∪y∪t) =

p(x,A∪t)
p(z,A∪t) .
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Step 3. Let X/ 'p≡ {Xi}ni=1. Since 'p is reflexive, transitive, and symmetric, {Xi}ni=1 is a

partition of X such that for any xi, x
′
i ∈ Xi and xj ∈ Xj , xi 'p x′i and xi 6'p xj . Moreover, by the

definition of 'p, for any i ≤ K, there is some j ≤ n such that Ei ⊆ Xj . Hence, without loss of

generality, let Xi =
⋃ti
s=1X

s
i such that for any s ≤ ti, Xs

i = El for some l ≤ K.

Step 4. For any x, y ∈ Xi, x ./p y if and only if x 6∼ y. Hence, the first two parts of Generalized

Independence of Symmetric Alternatives are equivalent to Independence of Symmetric Alternatives

when p is restricted on Xi. Hence, by Theorem 1, p is an NSC on Xi with some (ui, vi, {Xs
i }
ti
s=1).

Since Xi and Xj are disjoint for each i, j with j 6= i, without loss of generality, we can say that p

is an NSC on Xi with the same (v, u).

Step 5. Since there are a, b, c ∈ X such that a 6'p b, b 6'p c, and a 6'p c, we have n ≥ 3. Take any

A ∈ A . Let Ai = A ∩Xi for each i ≤ n. Take any a ∈ Ai, b ∈ Aj , and x ∈ Ak. Note that a 6'p x
and b 6'p x. Then by Generalized Independence of Symmetric Alternatives, we have

p(a,A)

p(b, A)
=
p(a,A \ {x})
p(b, A \ {x})

.

Then by Steps 5-8 of Theorem 1 (also recall Equation (12)), there is a function w : 2X → R+ such

that p(Ai,A)
p(Aj ,A) = w(Ai)

w(Aj)
. In other words, p(Ai, A) = w(Ai)∑

j w(Aj)
. Since p is an NSC on Xi, we also have

p(a,Ai) =
v(Ai ∩Xs

i )∑
l v(Ai ∩X l

i)

u(a)∑
b∈Ai∩Xs

i
u(b)

when a ∈ Ai ∩Xs
i . Finally,

p(a,A) = p(Ai, A) p(a,Ai) =
w(Ai)∑
j w(Aj)

v(Ai ∩Xs
i )∑

l v(Ai ∩X l
i)

u(a)∑
b∈Ai∩Xs

i
u(b)

.
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