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Abstract

New ideas are often combinations of existing goods or ideas, a point empha-

sized by Romer (1993) and Weitzman (1998). A separate literature highlights the

links between exponential growth and Pareto distributions: Gabaix (1999) shows

how exponential growth generates Pareto distributions, while Kortum (1997) shows

how Pareto distributions generate exponential growth. But this raises a “chicken

and egg” problem: which came first, the exponential growth or the Pareto dis-

tribution? And regardless, what happened to the Romer and Weitzman insight

that combinatorics should be important? This paper answers these questions by

demonstrating that combinatorial growth in the number of draws from standard

thin-tailed distributions leads to exponential economic growth; no Pareto assump-

tion is required. More generally, it provides a theorem linking the behavior of the

max extreme value to the number of draws and the shape of the tail for continuous

probability distributions.
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Pete Klenow, Sam Kortum, Erzo Luttmer, Ben Moll, Chris Tonetti, Tom Winberry, and seminar participants
at Cornell, the Harvard Growth Lab, the LSE, the Minneapolis Fed, Peking University, Stanford, UAB
Barcelona, UC Riverside, and Wharton for helpful discussions and comments and to Jack Hirsh for
excellent research assistance.
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1. Introduction

It has long been appreciated that new ideas are often combinations of existing goods or

ideas. Gutenberg’s printing press was a combination of movable type, paper, ink, met-

allurgical advances, and a wine press. State-of-the-art photolithographic machines for

making semiconductors weigh 180 tons and combine inputs from 5000 suppliers, in-

cluding robotic arms and mirrors of unimaginable smoothness (The Economist, 2020).

Romer (1993) observes that ingredients from a children’s chemistry set can create more

distinct combinations than there are atoms in the universe. Building on this insight,

Weitzman (1998) constructs a growth model in which new ideas are combinations of

old ideas. Because combinatorial growth is so fast, however, he finds that growth is

constrained by our limitations in processing an exploding number of ideas, and the

combinatorics plays essentially no formal role in determining the growth rate: there

are so many potential combinations that the number is not a constraint. It is somewhat

disappointing and puzzling that the combinatorial process does not play a more central

role.

A separate literature highlights the links between exponential growth and Pareto

distributions. Gabaix (1999), Luttmer (2007), and Jones and Kim (2018) emphasize that

exponential growth, tweaked appropriately, can generate a Pareto distribution for city

sizes, firm employment, or incomes. Conversely, Kortum (1997) shows that Pareto dis-

tributions are key to exponential growth: if productivity is the maximum over a number

of draws from a distribution (you use only the best idea), then exponential growth in

productivity in his setup requires that the number of draws grows exponentially and

that the distribution being drawn from is Pareto, at least in the upper tail. Exponential

growth and Pareto distributions, then, seem to be two sides of the same coin.

But this leads to a “chicken and egg” problem: which came first, the exponential

growth or the Pareto distribution? And regardless, what happened to the Romer and

Weitzman insight that combinatorics should be central to understanding growth?

This paper answers these questions by combining the insights of Kortum (1997)

and Weitzman (1998). As in Kortum, we think of ideas as draws from some probability

distribution. Building on Weitzman, we highlight a crucial role for combinatorics.

To see the insight, suppose ideas are combinations of existing ingredients, much

like a recipe. Each recipe has a productivity that is a draw from a probability dis-
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tribution. As in Romer and Weitzman, the number of combinations we can create

from existing ingredients is so astronomically large as to be essentially infinite, and we

are limited by our ability to process these combinations. Let Nt denote the number

of ingredients whose recipes have been evaluated as of date t. In other words, our

“cookbook” includes all the possible recipes that can be formed from Nt ingredients: if

each ingredient can either be included or excluded from a recipe, a total of 2Nt recipes

are in the cookbook. Finally, research consists of adding new recipes to the cookbook

— i.e. evaluating them and learning their productivities. In particular, suppose that

researchers add new ingredients to the cookbook and learn their productivities in such

a way that Nt grows exponentially. We call a setup with 2Nt recipes with exponential

growth in Nt combinatorial growth.

One key result in the paper is this: combinatorial expansion is so fast that drawing

from a conventional thin-tailed distribution — such as the normal, exponential, or

Weibull distribution — generates exponential growth in the productivity of the best

recipe in the cookbook. Combinatorics and thin tails lead to exponential growth.

The way we derive this result leads to broader insights. For example, let K denote

the cumulative number of draws (e.g. the number of recipes in the cookbook) and

let ZK be max of the K outcomes. Let F̄ (x) denote the probability that a draw has a

productivity higher than x — the complement of the cdf — so that it characterizes the

search distribution. Then a key condition derived below relates the rise in ZK to the

number of draws and to the search distribution: ZK increases asymptotically so as to

stabilizeKF̄ (ZK). That is, given a time path for the number of drawsKt, the maximum

productivity marches down the upper tail of the distribution so as to make KtF̄ (ZKt)

stationary.

Kortum (1997) can be viewed in this context: exponential growth in the max ZK is

achieved by an exponentially growing number of draws K from a Pareto tail in F̄ (·).
Alternatively, with thinner tailed distributions like the normal or the exponential, com-

binatorial growth inK is required to get exponential growth in the max. Even the Romer

(1990) model can be viewed in this light: linear growth in K requires a log-Pareto tail

for the search distribution if the max is to exhibit exponential growth.

This perspective suggests a resolution of the “chicken and egg” problem mentioned

above: exponential growth is the primitive and comes first. Economic growth does
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not require a Pareto assumption but can be obtained from combinatorial expansion

with standard thin-tailed distributions. Then, through the logic suggested by Gabaix

(1999) and Luttmer (2007), exponential growth can generate the Pareto distributions

we observe.1

Finally, the model features an important and testable empirical prediction. Kortum

(1997) predicts that the flow of valuable new ideas should be constant over time, even

as the number of researchers grows. For example, the discovery of 40,000 valuable new

ideas in 1915, 1950, and 1985 can deliver constant exponential growth. The reason is

that successful new ideas are “large” in some sense. They are drawn from a Pareto dis-

tribution and therefore generate proportional improvements in productivity on aver-

age. In the combinatorial version in which ideas are drawn from a thin-tailed distribu-

tion, new ideas are “small” and exponential growth therefore requires an exponentially-

rising flow of valuable new ideas. Empirical evidence shows that the annual flows of

academic publications and patents, both in the aggregate and by technology class, have

risen sharply over time, supporting the combinatorial model.

The remainder of the paper is organized as follows. Section 2 below explains these

basic insights in a simple setting, while Section 3 embeds the setup in a full growth

model. Section 4 connects our results with the literature on extreme value theory and

shows how the results generalize to different distributions. Section 5 presents the ev-

idence on patents and publications, providing empirical support for the model. We

defer a further review of the literature to the end of the paper in Section 6; several of the

other important inspirations for this project — especially Acemoglu and Azar (2020) —

are easier to discuss after we’ve laid out our framework.

2. Combining Weitzman and Kortum

Suppose there are a huge number of ingredients that can potentially be combined into

recipes, which we call ideas. Moreover, new ideas can also serve as future ingredients,

making the number of potential combinations effectively infinite. Our cookbook, C, is

the set of all recipes we’ve evaluated as of some point in time. LetK denote the number

1Other resolutions to the “chicken and egg” problem are possible, of course: any theory of exponential
growth that doesn’t rely on Pareto distributions can qualify, such as Aghion and Howitt (1992) or Luttmer
(2015). What is new here is explaining how to do this in the class of models that involves marching down
the tail of some probability distribution.
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of recipes in the cookbook.

Each recipe can be good or bad or somewhere in between. In one of the early sem-

inars in which Paul Romer discussed these combinatorial calculations, George Akerlof

is said to have remarked, “Yes the number of possible combinations is huge, but aren’t

most of them like chicken ice cream!” Suppose the value (productivity) associated

with each recipe is an independent draw from some distribution. In particular, let zc

denote the value of recipe c and let F (x) be the cumulative distribution function for

each independent zc. The only condition we make on F (x) is that it is continuous and

strictly increasing.

Now assume that we are interested in only the best recipe in our cookbook. That

is, different ideas have different productivities, zc, and we use the idea with the highest

productivity, as in Kortum (1997). Let ZK ≡ max zc where c ∈ {1, ...,K}. Because we

care about the best idea, it is convenient to define the tail probability (sometimes called

the survival function):

Pr [ zc ≥ x ] = F̄ (x) ≡ 1− F (x). (1)

From a growth perspective, the question is this: How does the productivity asso-

ciated with the best idea, ZK , change as the number of recipes in the cookbook, K,

increases over time? And in particular, under what conditions can we get exponential

growth in ZK?

To answer these questions, consider the distribution of the maximum productiv-

ity, ZK , if we have taken K draws from the distribution F (x). Because the draws are

independent,

Pr [ZK ≤ x ] = Pr [ z1 ≤ x, z2 ≤ x, . . . , zK ≤ x ]

= F (x)K

= (1− F̄ (x))K . (2)

If we take more and more draws from the distribution over time so that K gets larger,

then obviously F (x)K shrinks. To get a stable distribution, we need to “normalize” the

max by some function of K, analogous to how in the central limit theorem we multiply

the mean by the square root of the number of observations to get a stable distribution.

Mechanically, we need to “replace” the F̄ (x) on the right side of (2) with something that
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depends on 1/K and then take the limit as K goes to infinity so that the exponential

function appears.

The following theorem provides a general result that will be useful in our growth

application but may be useful more broadly as well.

Theorem 1 (A simple extreme value result). Let ZK denote the maximum value from

K > 0 independent draws from a continuous distribution F (x), with F̄ (x) ≡ 1 − F (x)

strictly decreasing on its support. Then for m ≥ 0

lim
K→∞

Pr
[
KF̄ (ZK) ≥ m

]
= e−m. (3)

Proof. Given that ZK is the max over K i.i.d. draws, we have

Pr [ZK ≤ x ] = (1− F̄ (x))K . (4)

Let MK ≡ KF̄ (ZK) denote a new random variable. Then for 0 ≤ m < K

Pr [MK ≥ m ] = Pr
[
KF̄ (ZK) ≥ m

]

= Pr
[

F̄ (ZK) ≥ m

K

]

= Pr
[

ZK ≤ F̄−1
(m

K

) ]

=
(

1− m

K

)K

where the penultimate step uses the fact that F̄ (x) is a strictly decreasing and con-

tinuous function and the last step uses the result from (4). The fact that limK→∞(1 −
m/K)K = e−m proves the result. QED

Let’s pause here to notice what is happening in Theorem 1. We have a new random

variable, KF̄ (ZK). As K goes to infinity, ZK — the max over K draws from the distri-

bution — is getting larger. So F̄ (ZK) — the probability the next draw exceeds ZK —

is shrinking toward zero as we march down the tail of the distribution. Multiplying by

K raises the value away from zero, and it is the product KF̄ (ZK) that is asymptotically

stationary. Theorem 1 says that under very weak conditions — basically that the under-

lying distribution we draw from is continuous and monotone — KF̄ (ZK) converges in
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distribution to a standard exponential distribution.

A few remarks about this theorem are helpful. First, for using the theorem, it is

convenient to note that the result can be written as

KF̄ (ZK) = ε+ op(1) (5)

where ε is an exponential random variable with a mean equal to one. This version

helps make apparent the sense in which the increases in K and ZK offset in a way that

is mediated by the tail F̄ (·) of the underlying distribution.

Second, KF̄ (ZK) is a measure of “luck relative to trend.” Asymptotically, it has a

mean equal to one. Values bigger than one suggest that F̄ (ZK) is high relative to K, so

that ZK is unexpectedly low given the number of draws. Values less than one similarly

suggest that the max ZK is surprisingly high. On average, though, the luck cancels out.

Third, nothing in the theorem requires that the distribution be unbounded. For

example, the theorem applies to the uniform distribution as well: even though the max

is bounded, F̄ (ZK) is falling to zero, and blowing this up by the factor K leads to an

exponential distribution for the product.

Finally, an alternative version of Theorem 1 is presented in Section 3 that uses a

Poisson assumption as in Kortum (1997) to derive a similar result at each point in time

without needing to take the limit as t goes to infinity.

Results related to Theorem 1 are of course known in the mathematical statistics lit-

erature. The earliest reference I have found is Barton and David (1959). It is also closely

related to Proposition 3.1.1 in Embrechts, Mikosch and Klüppelberg (1997). Galambos

(1978, Chapter 4) develops a “weak law of large numbers” and a “strong law of large

numbers” for extreme values; some of the results below will fit this characterization.2

However, the tight link between the number of draws, the shape of the tail, and the

way the maximum increases is not emphasized in these treatments. More generally, I

discuss the result’s relationship with standard extreme value theory in Section 4.

The result in (3) means that KF̄ (ZK) is asymptotically stationary. Since ZK and K

are both rising, the rate at which the tail F̄ (·) decays tells us how the rates of increase

of ZK and K are related. We now apply this logic to growth models, first as in Kortum

2But not all: for example, the Kortum (1997) result and the Romer (1990) example at the end are
convergence in distribution results, not convergence in probability results.
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(1997) and then in a new way involving combinatorics.

2.1 Kortum (1997)

Kortum (1997) showed one way to get exponential growth in productivity ZK in a setup

similar to this: assume that F (x) is a Pareto distribution, at least in the upper tail, and

haveK grow exponentially — for example because of population growth in the number

of researchers.

To see how this works, let F (x) = 1 − x−β so that F̄ (x) = x−β , which is a Pareto

distribution where a higher β means a thinner upper tail. In this case,KF̄ (ZK) = KZ−β
K

and Theorem 1 gives

KF̄ (ZK) = ε+ op(1)

KZ−β
K = ε+ op(1)

K

Zβ
K

= ε+ op(1)

and therefore
ZK

K1/β
= (ε+ op(1))

−1/β . (6)

In words, to get a stable distribution for the max over K draws from a Pareto dis-

tribution, we divide the max ZK by K1/β . This scaled-down max then is distributed

asymptotically just like ε̃ ≡ ε−1/β , which has a Fréchet distribution. For K large,

ZK ≈ K1/β ε̃.

If the number of draws K grows exponentially at rate gK (say because each researcher

gets one draw per period and there is population growth), then the growth rate of

productivity ZK asymptotically averages to

gZ =
gK
β
. (7)

It equals the growth rate of the number of draws deflated by β, the rate at which good

ideas are getting harder to find. This is the Kortum (1997) result.
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2.2 Weitzman meets Kortum

The Kortum result is beautiful, and it may be the way the world works. However, there

are two features that are slightly uncomfortable. First, does the real world’s idea dis-

tribution have a Pareto upper tail? Maybe. But given the large literature on generating

Pareto distributions from exponential growth, it is slightly uncomfortable to have to

assume an underlying Pareto distribution to get economy-wide growth. Can we do

without this assumption?

Second, the combinatorics of ideas that Romer (1993) and Weitzman (1998) empha-

sized is entirely missing from this structure. What we show next is that addressing these

two concerns together reveals an elegant alternative.

Let’s change the Kortum setup in two ways. First, rather than drawing from a distri-

bution with a Pareto upper tail, we draw from a standard thin-tailed distribution, such

as the normal or exponential. To illustrate the logic, we begin with the exponential

distribution: F (x) = 1− e−θx so that F̄ (x) = e−θx.

Second, let’s assume that our cookbook consists of all recipes that come from com-

biningN ingredients. Each ingredient can either be included or excluded from a recipe,

so there are a total of K = 2N recipes. (Recall that 2N =
∑N

k=0

(
N
k

)
, the total number

of combinations.) At a given point in time, the economy picks from K = 2N different

combinations and chooses the recipe that is best. We say K exhibits combinatorial

growth if K = 2N and N itself grows at a constant and positive exponential rate.

Applying Theorem 1 to this setup with F̄ (x) = e−θx gives

KF̄ (ZK) = ε+ op(1)

Ke−θZK = ε+ op(1)

⇒ logK − θZK = log(ε+ op(1))

⇒ ZK =
1

θ
[logK − log(ε+ op(1))]

⇒ ZK

logK
=

1

θ

(

1− log(ε+ op(1))

logK

)

and therefore
ZK

logK

p−→ Constant (8)

where here and later we will follow the convention that “Constant” denotes an unim-
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portant positive constant that may change across equations. With draws from an expo-

nential distribution, the max grows asymptotically with the natural log of the number

of draws, a well-known result.

If the number of draws K were to grow exponentially at rate gK , say because of

population growth in the number of researchers, then productivity would grow linearly

rather than exponentially, and the exponential growth rate would converge to zero, a

point noted by Kortum (1997).

A key insight in this paper is that if the number of draws is combinatorial instead,

exponential growth is restored. In particular if K = 2N and N grows exponentially at

rate gN , then
ZK

logK
=

ZK

N log 2

p−→ Constant (9)

and the asymptotic growth rate of productivity in this economy will equal

gZ = glogK = gN . (10)

Productivity growth is asymptotically equal to the growth rate of the number of ingre-

dients whose recipes have been evaluated.

To summarize, the first new growth result is this: if recipes are combinations of N

ingredients, and if the number of ingredients processed by the economy grows expo-

nentially over time, then we no longer require draws from a thick-tailed Pareto distribu-

tion. Combinatorial expansion is so fast that we get enough draws from the thin-tailed

exponential distribution to generate exponential growth in productivity.

2.3 The Weibull Distribution

A convenient shortcut allows us to generalize this result to other distributions. For now,

we show how it generalizes to the Weibull distribution, as this will be particularly useful.

In Section 4, we will derive a necessary and sufficient condition for combinatorial draws

to generate exponential growth, precisely characterizing the generality.

Equation (8) states that the max from K draws of an exponential, divided by logK,

converges in probability to a constant. Now, consider the Weibull distribution, F (x) =

1 − e−xβ
and define y = xβ . If x is distributed as Weibull, then y is exponentially

distributed. We can combine this change of variables with the scaling result for an
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exponential:

max y

logK

p−→ Constant

⇒ maxxβ

logK

p−→ Constant

⇒ maxx

(logK)1/β
p−→ Constant (11)

That is, the maximum overK draws from a Weibull distribution grows asymptotically as

(logK)1/β . Assuming K = 2N , the max grows with N1/β , and if N grows exponentially

at rate gN , the growth rate of the max is asymptotically given by

gweibull
Z =

gN
β

(12)

Intuitively, a higher value of β means a thinner tail of the Weibull distribution — the

exponential tail decays more rapidly. The growth rate of the max is the growth rate of

the number of ingredients deflated by β, the rate at which ideas are getting harder to

find. The Weibull distribution is to combinatorial growth what the Pareto distribution

was to an exponentially growing number of draws in Kortum (1997).

3. Growth Model

This section embeds the extreme value logic provided above into a basic growth model.

The setup is similar to Kortum (1997) except that we use a thin-tailed search distribu-

tion and combinatorial growth in the number of draws.

3.1 A Poisson Version of Theorem 1

We first state a corollary to Theorem 1 that uses a Poisson assumption to get the extreme

value result for all t rather than as an asymptotic result. I am grateful to Sam Kortum

for suggesting it and outlining a derivation.

Corollary 1 (Poisson version of Theorem 1). Let ZK denote the maximum over P in-

dependent draws from a distribution with tail cdf F̄ (x) that is strictly decreasing and

continuous on its support, and suppose P is distributed as Poisson with parameter K.
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Then for 0 ≤ m < K and when P > 0 (so there are observations over which to take the

max)

Pr
[
KF̄ (ZK) ≥ m

]
=
e−m − e−K

1− e−K
. (13)

Proof. See Appendix A.2. QED

In the corollary, notice that the e−K term appears because Pr [P = 0 ] = e−K and

Pr [P > 0 ] = 1−e−K — the max only exists once P > 0. Also, notice that asK → ∞, we

get the pure exponential distribution, as in Theorem 1. The advantage of this Poisson

version is that it applies for any K, not just asymptotically. Therefore we can average

over a continuum of sectors to get rid of the randomness and then use continuous

time methods for the growth theory, which simplifies the presentation and derivation

of several of the later results.

3.2 The Environment

The economic environment for the full growth model is shown in Table 1. The setup

embeds combinatorial draws from a Weibull distribution into a simple continuous-

time growth framework.

Aggregate output is a CES combination of a unit measure of varieties, as in equa-

tion (14). The production of each variety is given by (15). Each variety is produced

using a different recipe from the cookbook. A recipe uses Mit ≤ Nt ingredients that

combine in a CES fashion, and one unit of each ingredient can be produced with one

worker, as in equation (16). The M
−1/ρ
it term in (15) is a Benassy (1996)-type term that

neutralizes the standard love-of-variety effect, so that recipes that use more ingredients

are neither better nor worse inherently. Instead, the productivity of a recipe is captured

completely by its productivity index, zc.

We assume the productivity of recipes in the cookbook is revealed as a Poisson

process. In particular, the flow of recipes that are learned between date s and date t

is Poisson with parameterKt−Ks. Because of the additivity of the Poisson process, the

total number of recipes in the cookbook as of date t is Poisson with parameterKt = 2Nt .

A new recipe applies to one of the unit measure of varieties, with equal probability; Cit
is the set of recipes that apply to variety i at date t. Each recipe has a productivity that



12 CHARLES I. JONES

Table 1: The Economic Environment

Aggregate output Yt =

(∫ 1

0
Y

σ−1

σ
it di

) σ
σ−1

with σ > 1 (14)

Variety i output Yit = ZKit



M
− 1

ρ

it

Mit∑

j=1

x
ρ−1

ρ

ijt





ρ
ρ−1

with ρ > 1 (15)

Production of ingredients xijt = Lijt (16)

Best recipe ZKit = max
c∈Cit

zc (17)

Weibull distribution of zc zc ∼ F (x) = 1− e−xβ
(18)

Number of ingredients evaluated Ṅt = αRλ
tN

φ
t , φ < 1 (19)

Cookbook (Poisson parameter) Kt = 2Nt (20)

Resource constraint: workers Lit =

Mi∑

j=1

Lijt and

∫ 1

0
Litdi = Lyt (21)

Resource constraint: R&D Rt + Lyt = Lt (22)

Population growth (exogenous) Lt = L0e
gLt (23)
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is i.i.d. with z ∼ F (z). For now, we assume the draws are from a Weibull distribution;

in the next section, we will explain how this generalizes. One way to think about the

randomness of the Poisson process versus the combinatorics associated with 2N is that

occasionally a recipe can apply to more than one variety or can be completely useless,

and that is the randomness that allows the cookbook to contain more or fewer than 2Nt

recipes precisely at date t.

The Poisson parameter governing the evolution of recipes in the cookbook follows

a combinatorial growth process, as defined earlier. That is, Kt = 2Nt , where Nt will

(eventually) grow at a constant exponential rate. We generalize it slightly to incorporate

two possible spillovers. With Rt as the measure of researchers, Ṅt = αRλ
tN

φ
t is the flow

of new ingredients whose recipes get evaluated each period, whereλ > 0 andφ < 1 as in

Jones (1995). The parameter λ allows for “stepping on toes” effects such as duplication,

for example if λ < 1. The parameterφ allows for intertemporal spillovers: as researchers

evaluate more ingredients over time, it can get easier via “standing on shoulders” effects

(φ > 0) or possibly harder because of “fishing out” effects (φ < 0).

The remainder of Table 1 gives the resource constraints for the economy. In short,

the sum of all the workers and the researchers is equal to the total population, of mea-

sure Lt. And there is exponential population growth at a constant rate gL.

Does the idea distribution shift out over time? The model is built around the as-

sumption that there is a single fixed distribution F̄ (x) that determines the productivity

of all recipes. At some philosophical level, this is arguably a plausible assumption: the

space of past, current, and future technologies is a set of recipes and each technology is

associated with some productivity. Let F̄ (x) be the distribution of these productivities.

When one asks about a shifting distribution, what one really has in mind is that

ideas are discovered in some order: it would have been inconceivable that the smart-

phone was discovered before telephones, radio, and semiconductors. This insight is

captured in the current framework through the processing of ingredients. Imagine

ingredients are ordered in such a way that the recipes for the telephone and radio get

evaluated before the recipe for the smartphone. In that sense, the framework we’ve

laid out incorporates the notion that the internet and television could not have been

discovered before electricity.
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3.3 Solving the Model

To keep things simple, we consider the allocation that maximizes Yt at each point in

time with a fixed rule-of-thumb allocation of people between research and working:

Rt = s̄Lt.

The symmetry in equations (15) and (16) imply that it is efficient to use the same

quantity of each ingredient, so that

xijt = xit =
Lit

Mit
.

Substituting this into the production function in (15) gives

Yit = ZKitLit. (24)

Given a number of workers Lyt = (1− s̄)Lt, the allocation that maximizes Yt solves

max
{Lit}

Yt =

(∫ 1

0
(ZKitLit)

σ−1

σ di

) σ
σ−1

(25)

subject to
∫ 1
0 Litdi = Lyt. The solution to this standard CES problem is given by

Yt = ZKt(1− s̄)Lt where (26)

ZKt =

(∫ 1

0
Zσ−1
Kit di

) 1

σ−1

(27)

Turning to the research side of the model,

Ṅt

Nt
=

αRλ
t

N1−φ
t

=
α(s̄Lt)

λ

N1−φ
t

.

This stable differential equation implies a constant asymptotic growth rate for N . In

that case, the ratio on the right-hand side of the equation must be constant, which

implies that the numerator and denominator grow at the same rate. Therefore

gN ≡ lim
t→∞

Ṅt

Nt
=

λgL
1− φ

. (28)
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Given the combinatorial growth process, we then have

glogK = gN =
λgL
1− φ

and therefore Kt goes to infinity as a double exponential process.

Combining Corollary 1 with the Weibull distribution F̄ (x) = e−xβ
gives

KF̄ (ZKi) = ε

Ke−Zβ
Ki = ε

⇒ logK − Zβ
Ki = log ε

⇒ ZKi = (logK − log ε)1/β

⇒ ZKi = (logK)1/β
(

1− log ε

logK

)1/β

where ε ∼ G(ε) and G(ε) is the normalized exponential distribution from Corollary 1

with 0 ≤ ε < K.

Now we can integrate across the different sectors — and change the variable of

integration to ε — to get aggregate productivity. Now, however, we have to recall that a

fraction e−K of our sectors will not have received any draws from the Poisson process

and we assume their productivity defaults to zero. Therefore,

ZKt =

(∫ 1

0
Zσ−1
Kit di

) 1

σ−1

=

[

e−K · 0 + (1− e−K)(logK)(σ−1)/β

∫ (

1− log ε

logK

)σ−1

β

dG(ε)

] 1

σ−1

= (logK)1/β

(

(1− e−K)

∫ (

1− log ε

logK

)σ−1

β

dG(ε)

) 1

σ−1

︸ ︷︷ ︸

≡ h(K)

= (logK)1/β h(K)

where h(K) is a particular moment of the G(ε) distribution that depends on K. More
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importantly, notice that h(K) converges to one as K goes to infinity and therefore

gZ ≡ lim
K→∞

ŻKt

ZKt
=
glogK
β

=
gN
β

and

gy = gZ =
gN
β

=
1

β

λgL
1− φ

. (29)

As was suggested by the basic statistical model, we have a setting where output

per person, y ≡ Y/L, grows exponentially. Valuable new ideas get increasingly hard

to find over time, at a rate that depends on β, the parameter governing the thinness

of the tail of the Weibull distribution. But combinatorial growth in the number of

recipes, driven by population growth in the number of researchers, offsets the thinness

of the tail and produces exponential growth in incomes. Interestingly, this formulation

simultaneously allows for both “ideas get harder to find” via β and “standing on the

shoulders of giants” via φ > 0.

4. Generalizing to other distributions

In the previous sections, we characterized the asymptotic growth rate of ZK when the

underlying distribution was Pareto, exponential, or Weibull. In this section, we explain

how these results generalize.

4.1 Relationship with extreme value theory

The classic results in extreme value theory take the following form: Let aK > 0 and bK

be normalizing sequences that depend only on K. If ZK−bK
aK

converges in distribution,

then it converges to one of three types, two of which are the Fréchet and the Gumbel

mentioned above. Moreover, this convergence occurs if and only if the tail of the dis-

tribution behaves in particular ways. In other words, the theorem requires strong as-

sumptions on the underlying F (x). This featured prominently in Kortum (1997) and is

given textbook treatment by Galambos (1978), Johnson, Kotz and Balakrishnan (1995),

Embrechts, Mikosch and Klüppelberg (1997), de Haan and Ferreira (2006), and Resnick

(2008).

Interestingly, the result thatKF̄ (ZK) converges in distribution to an exponential, as
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shown in Theorem 1, does not require any such assumptions. In particular, essentially

all we assumed is that the distribution function is continuous and invertible.

At some level, of course, this is not surprising: we are applying the distribution

function F̄ (·) itself to the max, and this “undoes” the role played by the distribution

in the convergence. This logic leads to a tighter intuition. Because ZK is a random

variable, F̄ (ZK) is also a random variable. Importantly, recall that F̄ (x) is uniformly

distributed on (0, 1) when x is a continuously-distributed random variable, and this is

true regardless of the particular distribution. Since ZK is the max from F (x) and since

F̄ (x) is a decreasing function, F̄ (ZK) is the minimum over K draws from a U(0, 1). In

this interpretation, equation (3) of Theorem 1 is an example of the result that K times

the minimum ofK draws from aU(0, 1) is asymptotically distributed as an exponential.

This result is well-known in statistics and is just one special case of the extreme value

theorem.3 What is novel here is that the special case ofKF̄ (ZK) is of particular interest:

the fact that this random variable is asymptotically stationary has broad implications

for how the max ZK increases with K.

4.2 A General Condition for Combinatorial Growth

Up to this point, we have shown that the exponential and Weibull distributions lead

combinatorial growth in the number of draws to produce exponential growth in the

max extreme value. In this section and the next, we explain how this result generalizes.

We begin by characterizing the set of distributions such that this is true.

Theorem 2 (A general condition for combinatorial growth). Consider the growth model

of Section 3 but with zi ∼ F (z) as a general continuous and unbounded distribution,

where F (·) is monotone and differentiable on its support [z0,∞) with z0 ≥ 0. Let η(x)

denote the elasticity of the tail cdf F̄ (x); that is, η(x) ≡ −d log F̄ (x)
d log x . Then

lim
t→∞

ŻKt

ZKt
=
gN
α

(30)

if and only if

lim
x→∞

η(x)

xα
= Constant > 0 (31)

3In particular, it leads to the third type of extreme value distribution, the Weibull, of which the
exponential distribution is a special case.
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for some α > 0.

Proof. See Appendix A.3. QED

It has long been appreciated that constant exponential growth requires power func-

tions, and this result shows that combinatorial growth is no different. The set of distri-

butions that lead to constant exponential growth in the max when draws are combina-

torial is the set for which the elasticity of the tail cdf is asymptotically a power function;

that is, the elasticity of the elasticity (the superelasticity?) is itself asymptotically con-

stant.4

Some remarks and examples are helpful to understand this result. First, consider

the Kortum (1997) result where the upper tail must be equivalent to a Pareto distribu-

tion. For Pareto, F̄ (x) = x−α so η(x) = α; the elasticity itself is constant. Combinatorial

growth moves the constant elasticity “down a log-derivative.” For example, consider

the Weibull distribution with F̄ (x) = e−xβ
. In this case, it is straightforward to show

that η(x) = βxβ ; the exponential distribution is the same with β = 1.

Another useful example is the standard normal distribution, which has tail cdf F̄ (x) =

1 − 1√
2π

∫ x
−∞ e−u2/2du. The similarity between the normal and the Weibull with β = 2

is suggested by the fact that the tail of a normal falls with e−x2

and the tail of a Weibull

falls with e−xβ
. In fact, η(x) behaves like x2 asymptotically in the normal case, just like

the Weibull with β = 2. Therefore, the max over K draws from a normal rises with

(logK)1/2, and combinatorial draws from a normal distribution lead to exponential

growth at the rate gN/2.5

Next, consider a “generalized Weibull” distribution with F̄ (x) = xγe−xβ
. In this

case, η(x) = βxβ − γ, which is asymptotically a power function with parameter β once

again. Or generalizing a different way, suppose F̄ (x) = e−(xβ+xγ) where β > γ. It is

straightforward to show that the asymptotic power exponent is again just β.

Familiar examples of distributions in this class include the normal, the exponential,

the Weibull, the Gumbel, the logistic, and the gamma distributions. Additional less

familiar examples are provided in the next section.

4Klenow and Willis (2016) consider demand functions with this property. It would be interesting to see
if such a demand function might be microfounded when taste heterogeneity has a Weibull distribution or
a normal distribution.

5For the standard normal distribution, η(x) = xe−x2/2/F̄ (x) (where we ignore the 1/
√
2π since it does

not affect the elasticity). Then η(x)/x2 = e−x2/2/(xF̄ (x)) and one use of L’Hopital’s rule verifies that this
has a constant limit as x → ∞. (The result uses the fact that η(x) → ∞ for the normal.)
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One final remark about Theorem 2 is helpful in putting the result into context. There

is nothing essential about the number 2 in the expression K = 2N for generating the

result (though it is of course valuable for the combinatorial interpretation). Instead, for

example, we could make the base e itself so that Kt = ee
nt

and the tail of F̄ continues

to behave like e−xα
. Compare this to Kortum (1997), where Kt = ent and F̄ looks

like x−α. We are making the tail exponentially thinner but marching down this thin

tail exponentially faster. It just so happens that many conventional distributions have

precisely this kind of thin tail, and combinatorial growth is an intuitive example of this

“double” exponential growth.

4.3 Scaling and Growth for Other Distributions

The previous subsection characterized the class of distributions for which combinato-

rial growth in draws leads to exponential growth in the extreme value. We now consider

some other distributions and use Theorem 1 to characterize the max.

First, consider the lognormal distribution. In that case, log x has a normal distribu-

tion. Using the change-of-variables method and the normal scaling discussed above,

we obtain

max log x

(logK)1/2
p−→ Constant

⇒ maxx

exp(
√
logK)

p−→ Constant .

That is, the max grows with exp(
√
logK). If K = 2N and N itself grows exponentially,

then the max grows with exp(
√
N) and gZ = 1/2 · gN

√
N , so the growth rate itself grows

exponentially.

This is an important and perhaps slightly surprising finding: not all thin-tailed dis-

tributions give rise to exponential growth when draws are combinatoric. When x is

drawn from a normal distribution, exponential growth emerges. But when log x is drawn

from a normal distribution, the tails are now too thick: we are drawing proportional

increments from the normal and those proportional increments grow exponentially,

which delivers faster than exponential growth. This same logic applies to other cases:

if we find a distribution for which the max x grows as a power function of logK, then if

log x is drawn from that same distribution, its tail will be “too thick” and combinatorial
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growth in K will cause the max to explode.6

However, one can calculate the growth rate of K that is required to produce expo-

nential growth in ZK in the lognormal case. Because the max grows with exp(
√
logK),

we need
√
logK = gt and therefore logK = (gt)2 orKt = exp(gt)2: the number of draws

grows faster than exponentially but slower than combinatorially.

Our next instructive example features tails that are “thinner” than the class of exponential-

like distributions. Consider the Gompertz distribution, which is commonly used by de-

mographers to model life expectancy. Its distribution function isF (x) = 1−exp(−(eβx−
1)) so that its tail is F̄ (x) = exp(−(eβx − 1)). In other words the exponential tail of the

distribution itself falls off exponentially as eβx rather than as a power function like xβ in

the Weibull case. It is well known (and easy to show using Theorem 3 in Appendix A.1)

that the Gompertz distribution is in the Gumbel domain of attraction. The change-of-

variables method works here: assume y is exponentially distributed, and let y = eβx− 1

so that x has a Gompertz distribution. Then

max y

logK

p−→ Constant

⇒ max eβx − 1

logK

p−→ Constant

⇒ max eβx

logK

p−→ Constant

⇒ maxx
1
β log(logK)

p−→ Constant

In this case, the max grows with log(logK). Exponential growth in the max requires

log(logK) to grow exponentially. Even combinatorial expansion is not enough: if K =

2N , the max grows with logN , and exponential growth in N yields arithmetic (linear)

growth in the max.

Another distribution that features a double exponential is the Gumbel distribution

itself, F (x) = e−e−x
. However, notice that the Gumbel distribution is “tail equivalent”

6To see another interesting application of this fact, suppose log x is drawn from an exponential
distribution. Notice that this is equivalent to xbeing drawn from a Pareto distribution. Exponential growth
in K delivers exponential growth in the max, as in Kortum (1997). Therefore, combinatorial draws will lead
to explosive growth.
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to the exponential distribution, in the sense that F̄ (x)/Ḡ(x) → Constant:

lim
x→∞

e−x

1− e−e−x = 1.

That is, for x large, e−e−x ≈ 1 − e−x, so the Gumbel has an exponential upper tail. For

this reason, the max grows directly with logK, just like the exponential.

Microfoundations for Romer (1990). There is a final special case worth considering.

One of the interesting findings in Kortum (1997) is that, in his setup, there did not exist

a stationary distribution from which a constant number of draws each period leads to

exponential growth in the max. In other words, in Kortum’s environment, there was no

microfoundation for the Romer (1990) model, in which a constant population leads

to exponential growth. However, this turns out to result from the fact that Kortum

restricted his setup to one in which the classic Extreme Value Theorem applies (i.e.

that an affine transformation of the max converges in distribution). The alternative

approach here can be used to derive just such a microfoundation.

Suppose y is drawn from a Pareto distribution. Let y = log x and let us say that x

has a log-Pareto distribution (analogous to the lognormal): F (x) = 1 − 1/(log x)α and

F̄ (x) = 1/(log x)α. We could use the change-of-variables method to get the scaling

immediately, but it is even more instructive to go back to equation (5):

KF̄ (ZK) = ε+ op(1)

⇒ K

(logZK)α
= ε+ op(1)

⇒ logZK

K1/α
=

(
1

ε+ op(1)

)1/α

(32)

Next, because ε is distributed as exponential with mean one, ε−1/α is a Fréchet
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random variable with parameter α.7 Using this fact in equation (32) gives

logZK

K1/α

a∼ Fréchet(α) (33)

and therefore

logZK = K1/α(ε̃+ op(1)) (34)

where ε̃ is a Fréchet random variable with parameter α.

To see the microfoundations for Romer (1990), suppose ∆Kt = βL where L is a

constant population. Then Kt = K0 + gt grows linearly where g ≡ βL and — if α = 1

— logZK will grow linearly as well, apart from the shocks, which delivers exponential

growth in ZK .8 In other words, if our productivity draws are log-Pareto distributed

with the Pareto parameter equal to one, we get a microfoundation for the Romer (1990)

model.

It is interesting to contrast this result with Kortum (1997). Kortum found that stan-

dard Extreme Value Theory could not provide a microfoundation for Romer (1990).

Looking at equation (32), we can see why: to get a stationary distribution, we need

to take the natural logarithm of ZK . This is a nonlinear transformation rather than an

affine transformation and therefore does not fit the framework of the standard Extreme

Value Theory.

Finally, it is worth noting that the microfoundation of the Romer case leads to sev-

eral counterfactual predictions. For example, according to equation (33), the log of

productivity, not the level, would have a Fréchet distribution and therefore a Pareto

upper tail. This implies much more inequality in the firm size distribution than we

7Since ε has an exponential distribution with a mean equal to one,

e−m = Pr [ ε ≥ m ]

= Pr

[

1

ε
≤ 1

m

]

= Pr

[

(

1

ε

)

1/α

≤
(

1

m

)

1/α
]

Now let y ≡ ε−1/α and x ≡ m−1/α so that m = x−α. With these substitutions we have

Pr [ y ≤ x ] = e−x−α

.

8The Fréchet distribution now shocks the growth rate, and for α = 1, the tail of the Fréchet distribution
is so thick that the mean of these shocks does not exist.
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Table 2: Scaling of ZK for Various Distributions

bK(N) for Growth rate

Distribution cdf bK for K = 2N for K = 2N

Exponential 1− e−θx logK N gN

Gumbel e−e−x
logK N gN

Weibull 1− e−xβ
(logK)1/β N1/β gN

β

Normal 1√
2π

∫
e−x2/2dx (logK)1/2

√
N gN

2

Lognormal 1√
2π

∫
e−(log x)2/2dx exp(

√
logK) e

√
N gN

2 ·
√
N

Gompertz 1− exp(−(eβx − 1)) 1
β log(logK) 1

β logN Arithmetic

Log-Pareto 1− 1
(log x)α exp(K1/α) ... ...

Note: In all rows except the final one, ZK/bK
p−→ Constant. The final row is more subtle, as

discussed in the main text. The last two columns focus on the combinatorial case. The penultimate
column translates this into scaling with N for K = 2N (ignoring some multiplicative constants).
The final column shows the asymptotic growth rate of ZK if N(t) grows exponentially at rate gN .

observe; see Axtell (2001) and Luttmer (2010). In addition, if K rises linearly, then the

variance of log productivity would increase over time.9 But even that prediction is more

complicated than it first appears: for α = 1, neither the mean nor the variance of the

Fréchet distribution for ε̃ exist; the tail of the distribution is too thick. All of this is to

say that I see the microfoundations for the Romer case as an interesting illustration of

the technique, not as providing a realistic model of growth.

Summary. These results are collected together in Table 2. In particular, they show

how the number of draws from the search distribution, Kt, must behave in order to

generate exponential growth in ZK for different distributions. That is, they show how

to stabilize KF̄ (ZK). There is a tradeoff between the shape of the tail of the search

distribution and the rate at which we march down that tail.

In Kortum (1997), an exponentially-growing number of draws from any distribution

9For this to hold, suppose α > 2, so the variance of the Fréchet distribution exists.
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in the Fréchet domain of attraction leads to exponential growth in the max. One might

have conjectured that combinatorial growth would work the same way. In particular,

a natural guess is that all distributions in the basin of attraction of the Gumbel dis-

tribution could deliver exponential growth in productivity when the number of draws

grows combinatorially. This guess turns out to be wrong. The set of distributions in

the Gumbel basin of attraction is large and includes “slightly thick” tails like the lognor-

mal, thin tails like the normal, exponential, gamma, and the Gumbel itself, as well as

even thinner tails, like the Gompertz. Only the intermediate class delivers exponential

growth in the max for combinatorially growing draws.

5. Evidence

One of the facts that Kortum (1997) sought to explain was the time series of patents in

the United States. In particular, Kortum emphasized the relative stability of patents:

the number of patents granted to U.S. inventors in 1915, 1950, and 1985 was roughly

the same, around 40,000. In his setup, each new idea is endogenously a proportional

improvement on the previous state-of-the-art, so a constant flow of new ideas can

generate exponential growth.

However, even in the 1990s, the validity of this interpretation was unclear. Figure 1

shows the time series for patents granted by the U.S. Patent Office, both in total (i.e.

including foreign inventors) and to U.S. inventors only. Far from being constant, the

patent series viewed from the perspective of 2020 looks much more like a series that

itself exhibits exponential growth. This is especially true for the “Total” series, which is

surely the most relevant: growth in a country depends on ideas that are used there, re-

gardless of where they are invented. Put differently, in the Kortum (1997) setup, the rise

in patents in the United States would imply an 8-fold increase in the rate of economic

growth, something we certainly do not see in the data.

One resolution is that perhaps the meaning of a “patent” has changed over time.

Legal reforms and other changes may imply that a patent in 2020 is not the same as a

patent in 1980; if they are not comparable, then one cannot view this graph as telling

us about the behavior of ideas over time. Perhaps a true series for new ideas is actually

constant. Alternatively, the rise in patents may be driven by a few technologies, perhaps
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Figure 1: Patents Granted by the U.S. Patent and Trademark Office
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reflecting the rise of software and information technology.

Figure 2 shows the average annual growth rate of patents granted by the USPTO

for 129 technology classes over the period 1950 to 1990, i.e. before the explosion of

patenting associated with legal changes. Only 8 of the technology classes show declines

in patenting over this period, and this is primarily in classes related to industries that

are either in decline or offshored, such as Leather/Pelts (C14), Railways (B61), and

Textile Treatments (D06). The other 121 classes show positive and typically substan-

tial rates of growth in patenting; the weighted average of the growth rates is 3.6% per

year. Including more recent data (not shown) would only reinforce this point: between

1950 and 2019, only a single technology class (Leather/Pelts C14) displays a decline

in patenting, and the average growth rate rises slightly to 4.4% per year (though legal

changes make this rise in the growth rate hard to interpret).

Alternatively, we can also consider a different measure of innovation: academic

publications. Figure 3 shows that exponential growth also characterizes annual pub-

lication counts. Depending on the measure used, publications grew at between 3.3%

and 4.4% per year, increasing overall by a factor of between 5 and 9 since 1970.

While none of these measures is perfect (and indeed, one drawback of the inno-
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Figure 2: U.S. Patent Growth by Technology Class, 1950–1990
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Figure 3: Annual Academic Publication Counts, 1970–2020
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vation literature is that we do not have great measures of innovation), they suggest

that valuable new ideas are well-characterized as growing over time rather than being

constant. The interesting observation I want to put forward in the remainder of this

section is that this is precisely what the combinatorial growth model predicts.

To see this point, we first have to define what we mean by a patent or a valuable

new idea in the model. We follow Kortum (1997) in defining valuable new ideas as

improvements over the state-of-the-art. If there are Kt recipes in the cookbook, how

many of them exceeded the “state-of-the-art” when they were discovered?

The theory of record breaking suggests the following simple insight. If the draws are

independent, then the probability that any one of theKt recipes is the best is just 1/Kt.

In fact, this insight links very nicely with our main extreme value result. First, recall that

the main result of Theorem 1 can be written as

KF̄ (ZK) = ε+ op(1).

Rearranging implies

F̄ (ZK) =
1

K
(ε+ op(1)). (35)
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In words, after K draws, the probability that the next draw exceeds the max is approx-

imately 1/K. This is a nice connection between Theorem 1 and the theory of record

breaking. The difference with the exact 1/K intuition given at the start of this paragraph

is that now ZK is a random variable, but the spirit is the same.

What does this imply about the flow of patents in the growth model? With K̇t new

ideas being discovered at date t and the fraction 1/Kt exceeding the frontier, the time

series of “patents” in the model is simply K̇t
Kt

. This is precisely the logic in Kortum (1997),

and it is therefore easy to see how the flow of patents could be constant in that setup.

In the combinatorial model, however, this quantity is not constant. Instead, first

consider the model in which Ṅt = αRt (i.e. λ = 1 and φ = 0).

Kt = 2Nt

⇒ K̇t

Kt
= log 2 · Ṅt

= log 2 · αRt

= log 2 · αs̄L0e
gLt (36)

That is, the number of patents in the combinatorial model grows exponentially over

time. In fact, the number of patents per researcher would actually be constant in this

case. More generally, if one allows for λ 6= 1 or φ 6= 0, the number of patents will

(asymptotically) exhibit exponential growth and the number of patents per researcher

can either decline or increase over time.10

The intuition for this result is straightforward: because of the thin tail of the prob-

ability distribution, the typical new idea is only slightly better than the previous state-

of-the-art. Exponential growth in productivity requires us to march down the tail very

quickly — combinatorially — and this delivers exponential growth in the number of

“patents” in the model. The growth that we see empirically in the data on patents and

publications, then, is potentially evidence for the combinatorial growth process itself.

Can researchers evaluate a combinatorially growing number of recipes? This is now

a good place to discuss one of the features of the model that might raise a question. An

10Kogan, Papanikolaou, Seru and Stoffman (2017) document that patents per capita were relatively
stationary between 1930 and 1990 but have risen since then. The pre-1990 evidence would be consistent
with the combinatorial model with φ = 0, while the period since 1990 is more consistent with φ > 0.
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implication of our setup is that researchers are evaluating the productivity of a rapidly-

increasing number of recipes over time: they each evaluate the recipes associated with,

say, α new ingredients each period, but the number of recipes that can be formed from

the new and existing number of ingredients grows combinatorially. Is it possible for

researchers to evaluate a combinatorially growing number of recipes to find the best

one?

We have two responses to this question. The first is the empirical evidence pro-

vided above: the combinatorial process leads to exponential growth in valuable new

ideas, which is a good description of the data itself. Second, and more philosophically,

perhaps it is only the truly good ideas that take time to evaluate: Akerlof’s “chicken

ice cream” can be discarded quickly. Chess grandmasters sort through a combinato-

rial number of moves with remarkable speed and often find the best move accord-

ing to computers that search billions of moves per second (Sadler and Regan, 2019).

The number of “truly new” ideas grows exponentially precisely with the number of

researchers in equation (36) above, so each researcher would need to devote time to

a constant number of new ideas, which seems reasonable.

6. Discussion and Further Connections to the Literature

This concluding section explores various extensions of the setup and connections to

the literature.

Acemoglu and Azar (2020). Beyond Kortum (1997) and Weitzman (1998), the most

important inspiration for this paper is Acemoglu and Azar (2020). They study endoge-

nous production networks in which every good uses a combination of other goods as

an intermediate input. If there are N goods in the economy, then there are 2N possible

combinations of intermediate goods that could be used to produce a particular prod-

uct, and Acemoglu and Azar (2020) let the productivity of each of these combinations

be a draw from a probability distribution. Their setup inspired the approach taken in

this paper.

The two papers differ in thinking about how the number of goods/ingredients evolves

over time. Because it is not the main contribution of their paper, Acemoglu and Azar

(2020) focus on the case in which one new good gets introduced each period, so there
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is arithmetic growth in Nt and therefore exponential growth in 2Nt . For this to produce

exponential growth in productivity, they require the standard Kortum (1997) assump-

tion that the probability distribution determining productivity has a Pareto upper tail.11

Their Corollary 2 suggests that broader results are possible with different growth rates

for the number of new goods, and the present paper can be viewed as exploring those

broader results.

Another paper that exploits combinations is Agrawal, McHale and Oettl (2019). They

explore the effect of combininations on the idea production function and assume the

elasticity of new ideas with respect to combinations declines to zero in order to prevent

explosive growth.

New ideas as new ingredients? To what extent are new ideas themselves new in-

gredients that can be used in future recipes? We made a conscious decision early in

this paper to follow the lead of Weitzman (1998) in emphasizing that there are large

numbers of potential ideas and growth is limited by our ability to evaluate the merits

of those ideas. In this sense, the evaluation equation Ṅt = αRλ
tN

φ
t and the size of

the cookbook 2Nt do not change just because new ideas are themselves potential new

ingredients that can be tried. As in Weitzman, there are so many potential ideas that

processing and evaluation are the key limits. An alternative approach one could take,

however, is to say the number of ingredients is initially small and that the new ideas

are themselves new ingredients. This approach can lead to faster-than-combinatorial

expansion, more like the “towers” of 22
2
...

. Ultimately, this is just another reason why

our ability to evaluate ideas is the decisive constraint.

Correlation. A related concern is that of correlation. What if the draws from the

search distribution F̄ (x) are correlated for recipes that share many ingredients? This

would be a useful extension to explore but is beyond the scope of the present paper.

Most of the results in the extreme value literature, for example, consider the i.i.d. case.

Still, broader results are possible. For example, if the correlation dies off quickly, there

are results related to “blocks” of draws that can be viewed as i.i.d. In this sense, the

11They state the assumption in a different form: that the log of productivity is drawn from a Gumbel
distribution. But, as they note, this is identical to saying that productivity itself is drawn from a Fréchet
distribution.
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result is likely to generalize to cases with correlation.

Models of technology diffusion. A potentially interesting direction for future research

is related to Lucas and Moll (2014), Perla and Tonetti (2014), and the extensive literature

that has built on these papers. The basic insight in these papers is similar to Kortum

(1997): an exponentially growing number of draws (e.g. because of meetings between

firms or people) from a Pareto distribution can generate exponential growth and an

evolving distribution of heterogeneous productivities. Because of revolutions in com-

munication technologies, it is arguable that the diffusion of ideas occurs much faster

today than in the past. Perhaps combinatorial diffusion plus thinned-tailed distribu-

tions can be applied in this setting as well.

Conclusion. In the end, the paper can be read in two ways. First, there is the “Weitz-

man meets Kortum” interpretation: if we have the number of draws grow combinatori-

ally then we do not need thick-tailed Pareto distributions to generate economic growth.

Instead, draws from standard distributions with thin exponential tails are sufficient.

Second, there is a broader contribution embodied in Theorem 1. In considering the

max ZK over K i.i.d. draws from a distribution with tail distribution function F̄ (x), the

transformed random variable KF̄ (ZK) asymptotically has an exponential distribution

under very weak conditions. This result can be used to characterize the way in which

the maxZK increases for any continuous distribution F̄ (x) and any time path of (large)

K.

A. Appendix

A.1 Extreme Value Theory

This appendix section provides a brief discussion of the standard Extreme Value Theo-

rem and how it relates to results derived using Theorem 1 in the main text.

Like the Central Limit Theorem, the Extreme Value Theorem is quite general. In

particular, it says that if the asymptotic distribution of the normalized maximum over

K i.i.d. random variables exists, then it takes one of three forms: Fréchet, Gumbel,
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or a bounded distribution. The bounded case occurs when the draws themselves are

from a distribution that is bounded from above, which is not especially interesting

from a growth standpoint, so we will ignore that case. The other two have already

been suggested by the examples in the main text. Here, we note how those examples

generalize. These points are explored in great detail by Galambos (1978), Johnson, Kotz

and Balakrishnan (1995), Embrechts, Mikosch and Klüppelberg (1997), and de Haan

and Ferreira (2006).

The tail characteristics of the F (x) distribution determine whether the normalized

maximum has a Fréchet or a Gumbel distribution. If tail probability F̄ (x) declines as a

power function (polynomial function), then the normalized max converges to a Fréchet

distribution. Examples of distributions that satisfy this condition are the Pareto, the

Cauchy, the Student t, and the Fréchet distribution itself.12

Alternatively, if F̄ (x) declines as an exponential function, then the normalized max

has a Gumbel distribution. Many familiar unbounded distributions fall into this cat-

egory: the normal, lognormal, exponential, Weibull, Gompertz, logistic, and gamma

distributions, as well as the Gumbel distribution itself. These distributions feature a

wide range in terms of the thickness of the upper tail.

The extreme value theorem for distributions in the domain of attraction of the Gum-

bel distribution can be stated as follows, using definitions we’ve already provided.

Theorem 3. Consider the unbounded distribution F (x), and let ZK be the maximum

over K i.i.d. draws from the distribution. Define h(x) = (1− F (x))/F ′(x) = F̄ (x)/F ′(x)

to be the inverse hazard function. If limx→∞h′(x) = 0, then there exist normalizing

sequences aK > 0 and bK such that

lim
K→∞

Pr

[
ZK − bK
aK

≤ x

]

= e−e−x
. (37)

Furthermore, let U(t) be defined as the inverse function of 1/(1 − F (x)). Then the nor-

malizing sequences aK and bK can be chosen as bK = U(K) and aK = KU ′(K) =

1/(KF ′(bK)).

12Example 1.3.3 of Galambos (1978) considers F (x) = 1 − 1/ log(x). Notice that this tail falls off more
slowly than a power function. It has a thicker tail even than a Pareto distribution with parameter value
1, for which the mean fails to exist. The distribution of the normalized maximum fails to converge in this
case. Galambos calculates that the maximum over just four draws from this distribution has a greater than
20 percent probability of being larger than 60 million!
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Proof. This is just a restatement of (a simplified version of) Theorem 1.1.8 in de Haan

and Ferreira (2006).

Some remarks about this theorem. First, the function h(x) is just a scaled version

of the probability that the draws are above x. If this tail probability falls to zero suffi-

ciently quickly, then the normalized maximum asymptotically has a standard Gumbel

distribution. Written differently,

ZK − bK
aK

a∼ Gumbel (38)

Now we can show how this standard EVT result relates to the results derived in the

paper. Letting ε be a random variable from a standard Gumbel distribution, equa-

tion (38) is equivalent to

ZK = bK + aKε+ op(aK). (39)

Dividing both sides by bK ,

ZK

bK
= 1 +

aK
bK

· ε+ op(aK)

bK
.

Finally, it can be shown that limK→∞ aK/bK = 0 according to Embrechts, Mikosch and

Klüppelberg (1997).13 Therefore, we have the result that

ZK

bK

p−→ 1. (40)

This is a special case of Theorem 4.1.1 in Galambos (1978) (his theorem further allows

for dependence rather than assuming the draws are i.i.d.).

That is, the ratio of the max to bK converges in probability to the value one. Asymp-

totically, in other words, the max grows just like the normalizing sequence bK = U(K).

To understand the growth of the max, then, we just need to understand bK = U(K).

Table 3.4.4 of Embrechts, Mikosch and Klüppelberg (1997) reports the bK (which is

dn in their notation) for many distributions, confirming the results derived in the main

text for distributions in the Gumbel domain of attraction.

13See p. 149 and p. 141, noting that their notation is cn/dn; it is easy to verify for example distributions
in their Table 3.4.4.
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A.2 Proof of Corollary 1

Proof. Let Mp ≡ KF̄ (ZK) denote a new random variable, conditional on P = p. Given

thatZK is the max overP i.i.d. draws, exactly the same steps used in proving Theorem 1

give

Pr [Mp ≥ m ] =
(

1− m

K

)p

when p > 0.

Now we use the Poisson assumption to get the unconditional distribution. Impor-

tantly, notice that it is only when the realized number of draws P is greater than zero

that the problem is well defined; if there are zero draws to consider, there is nothing

to take the max over. Recall that Pr [P = p ] = e−KKp

p! so that Pr [P = 0 ] = e−K and

Pr [P > 0 ] = 1− e−K . Therefore for 0 ≤ m < K

Pr
[
KF̄ (ZK) ≥ m

]
=

∞∑

p=1

Pr [Mp ≥ m ] · Pr [P = p |P > 0 ]

=
∞∑

p=1

(

1− m

K

)p
· Pr [P = p ]

Pr [P > 0 ]

=
1

Pr [P > 0 ]

∞∑

p=1

(

1− m

K

)p
· e

−KKp

p!

=
1

Pr [P > 0 ]





∞∑

p=1

(

1− m

K

)p
· e

−KKp

p!
+ e−K − e−K





=
1

Pr [P > 0 ]





∞∑

p=0

(

1− m

K

)p
· e

−KKp

p!
− e−K





=
1

Pr [P > 0 ]



e−m
∞∑

p=0

e−K(1−m/K)(K(1−m/K))p

p!
− e−K





=
e−m − e−K

1− e−K

where the last step uses the fact that the summation term is just the probability that

any number of events occurs for a Poisson distribution with parameter K(1 − m/K),

i.e., the value of the CDF at infinity which is equal to one. QED
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A.3 Proof of Theorem 2

Here we prove Theorem 2, which provides a necessary and sufficient condition on

the shape of the search distribution for combinatorial growth in the draws to deliver

exponential growth in the max extreme value.

In proving this result, the following lemma is very helpful, as it allows us to go

back and forth between the elasticity of F̄ and the elasticity of F̄−1. We will use the

notation ∼ to denote the following type of convergence: f(x) ∼ xα is equivalent to

limx→∞ f(x)/xα = Constant.

Lemma 1. Let y = F̄ (x) where F̄ is a continuous, differentiable, and invertible function.

Then

−d log F̄ (x)
d log x

∼ xα

if and only if

−d log F̄
−1(y)

d log y
∼ [F̄−1(y)]−α

(recognizing that the relevant limits are as x→ ∞ and therefore y = F̄ (x) → 0).

Proof. Let h(y) ≡ F̄−1(y). Applying the function F̄ to both sides gives

y = F̄ (h(y))

log y = log F̄ (h(y))

d log y =
d log F̄ (h(y))

d log h(y)
· d log h(y).

Rearranging then gives

d log h(y)

d log y
=

[
d log F̄ (h(y))

d log h(y)

]−1

and therefore

d log F̄−1(y)

d log y
=

[
d log F̄ (h(y))

d log h(y)

]−1
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Then the result is obvious. If −d log F̄ (x)
d log x ∼ xα, then −d log F̄−1(y)

d log y ∼ [F̄−1(y)]−α and vice

versa since y = F̄ (x). QED

Proof of Theorem 2. We are now ready to prove Theorem 2.

Proof. By Corollary 1, we have

KtF̄ (ZKit) = ε

where ε ∼ G(ε) and G(ε) is the normalized exponential distribution from Corollary 1

with 0 ≤ ε < K.

Inverting the distribution function and solving for ZKit gives

ZKit = F̄−1

(
ε

Kt

)

.

Recall the definition of aggregate productivity: ZKt is a power mean of the individual

variety productivites. Changing the variable of integration from i to ε to take advantage

of the continuum of varieties and recalling that the fraction e−Kt of sectors have zero

Poisson draws and therefore zero productivity:

Zσ−1
Kt = (1− e−Kt)

∫

Zσ−1
Kεt dG(ε)

= (1− e−Kt)

∫ [

F̄−1

(
ε

Kt

)]σ−1

dG(ε).

To simplify the notation, define h(y) = F̄−1(y). Taking logs and differentiating both

sides of the above equation with respect to time gives

(σ − 1)
ŻKt

ZKt
=

e−Kt

1− e−Kt

dKt

dt
+
σ − 1

Zσ−1
Kt

∫ [

h

(
ε

Kt

)]σ−2

h′
(
ε

Kt

)(

− ε

K2
t

)
dKt

dt
dG(ε)

=
e−Kt

1− e−Kt

dKt

dt
+
σ − 1

Zσ−1
Kt

∫ [

h

(
ε

Kt

)]σ−1(

−h
′(ε/Kt) · ε/Kt

h(ε/Kt)

)
K̇t

Kt
dG(ε)

=
e−Kt

1− e−Kt

dKt

dt
+
σ − 1

Zσ−1
Kt

∫ [

F̄−1

(
ε

Kt

)]σ−1(

−d log F̄
−1(ε/Kt)

d log(ε/Kt)

)
K̇t

Kt
dG(ε)
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Rearranging the terms slightly and taking limits gives

lim
t→∞

ŻKt

ZKt
=

∫

lim
h(ε/Kt)

σ−1

∫
h(ε/Kt)σ−1dG(ε)

· lim
(

−d log F̄
−1(ε/Kt)

d log(ε/Kt)

)
K̇t

Kt
dG(ε) (41)

where we’ve used the fact that e−Kt goes to zero to eliminate the first term.

Only If: At this point, we are ready to consider the two directions of the proof. We be-

gin with the “only if” portion. In particular, we can apply Lemma 1 to see that−d log F̄−1(ε/K)
d log(ε/Kt)

∼
F̄−1(ε/Kt)

−α which gives

lim
t→∞

ŻKt

ZKt
=

∫

lim
h(ε/Kt)

σ−1

∫
h(ε/Kt)σ−1dG(ε)

· lim ψK̇t/Kt

F̄−1(ε/Kt)α
dG(ε) (42)

where ψ is the limiting factor of proportionality from the elasticity term.

Now consider the limit of the second key term in equation (42) for each fixed value

of ε and using the combinatoric growth of Kt:

vt ≡
ψK̇t/Kt

F̄−1(ε/Kt)α

=
ψṄt log 2

F̄−1(ε/Kt)α

= Constant
ψegN t

F̄−1(ε/Kt)α

where the last expression uses the fact that Nt grows at a constant exponential rate.14

By inspection, the limit of vt is ∞/∞ as t → ∞, so we apply L’Hopital’s rule to get

the limit:

lim vt = lim Constant
ψgNe

gN t

αF̄−1(ε/Kt)α−1(F̄−1)′(ε/Kt)
(

− ε
K2

t

)

K̇t

=
gN
α

· lim Constant egN t

K̇t/Kt

· lim ψ

[F̄−1(ε/Kt)]α ·
(

−d log F̄−1(ε/Kt)
d log(ε/Kt)

)

=
gN
α

where the last two terms in the penultimate equation each are equal to one.

14This is easiest in the case where Nt = N0e
gN t is just assumed, but also holds exactly for Ṅ = αRt =

αs̄Lt when λ = 1 and φ = 0, or asymptotically when λ > 0 and φ < 1.
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Finally, substituting this expression in for the limit of vt back into equation (42) gives

lim
t→∞

ŻKt

ZKt
=
gN
α

lim

∫
h(ε/Kt)

σ−1

∫
h(ε/Kt)σ−1dG(ε)

dG(ε)

=
gN
α

That completes the “only if” part of the proof.

If: Now return to equation (41) for the “if” direction: if lim ŻKt
ZKt

= gN/α, then η(x) is

asymptotically a power function with exponent α. Applying this condition to (41) gives

gN
α

=

∫

lim
h(ε/Kt)

σ−1

∫
h(ε/Kt)σ−1dG(ε)

· lim
(

−d log F̄
−1(ε/Kt)

d log(ε/Kt)

)
K̇t

Kt
dG(ε)

The first term on the right-hand side of this expression is a collection of weights that

integrate to the value one for all Kt. Therefore, this term does not trend over time.

Since the left-hand side is constant, though, this means that the second term on the

right-hand side must also be constant. In particular, this means that the elasticity term

must decline exponentially at the rate gN . Defining v(K) to be this elasticity, we have

v(K) ≡ −d log F̄
−1(ε/Kt)

d log(ε/Kt)

and we require

v(K)
K̇t

Kt
→ gN

α

Now recall K = 2N so that K̇t
Kt

= Ṅ log 2 and therefore

K̇t
Kt

α logK
=

Ṅt log 2

αNt log 2

→ gN
α
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Combining these last two expressions means that we require

v(K)α logK → 1.

Let y ≡ ε/K for a fixed ε. Substituting into the previous expression gives

[

−d log F̄
−1(y)

d log y

]

[−α log y] → 1

since − log y
logK → 1 for a fixed ε.

To finish the proof, we write this equation in terms of − log y, which is positive since

0 < y < 1. We also switch to the “∼” version of this equation (being sure to keep α since

the convergence is to 1 rather than to any constant) and then integrate:

d log F̄−1(y)

d(− log y)
∼ 1

α
· 1

(− log y)

⇒ d log F̄−1(y) ∼ 1

α
· d(− log y)

(− log y)

⇒
∫

d log F̄−1(y) ∼ 1

α
·
∫
d(− log y)

(− log y)

⇒ log F̄−1(y) ∼ Constant+
1

α
log(− log y)

⇒ F̄−1(y) ∼ Constant
[

elog(− log y)
]1/α

⇒ x ∼ (− log y)1/α

⇒ − log y ∼ xα

⇒ − log F̄ (x) ∼ xα

⇒ −d log F̄ (x)
dx

∼ αxα−1

⇒ −d log F̄ (x)
d log x

∼ xα

where we use the notation y = F̄ (x) and take advantage of the ∼ notation to drop the

(positive) constants whenever convenient.

QED
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