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Abstract

This paper studies how labor income taxation interacts with the organization of

knowledge and production, and ultimately the distribution of wages in the economy.

A more progressive tax system reduces the time that managers allocate to work. This

makes the organization of production less efficient and reduces wages at both tails

of the distribution, which increases lower tail wage inequality and decreases upper

tail wage inequality. The optimal tax system is substantially less progressive than the

current one in the United States. However, if wages were exogeneous, the optimal

tax progressivity would be much higher.
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1 Introduction

The United States and other developed economies have recently experienced substan-

tial changes in wage inequality. In particular, after 1986, the upper tail wage inequality

(90/50 percentile ratio) has increased significantly, while the lower tail wage inequality

(50/10 percentile wage ratio) has decreased, see for example Autor et al. (2006), Ace-

moglu and Autor (2011), Autor and Dorn (2013) or Garicano and Rossi-Hansberg (2015).

In this paper, we analyze the interaction between taxation and wage inequality using a

theory that studies how society organizes and uses knowledge in production (Garicano

(2000), Garicano and Rossi-Hansberg (2006)).

We augment the theory by endogenizing hours worked by the agents. Endogenous

hours worked provide a key link between taxes and the wage structure of the economy:

a change in taxes changes hours worked, which in turn changes the organization of pro-

duction in the economy and the equilibrium wage structure, in addition to the standard

effects on earnings. We assume that the income-tax function that the government uses

has the constant-rate-of progressivity form as in Benabou (2000) and Benabou (2002) and

solve for the optimal Ramsey taxes given this tax function. We find that the optimal tax

progressivity is substantially lower than in the United States.

In our model, a change in taxes can simultaneously change the upper tail and the

lower tail wage inequality in the opposite direction for the following reason. The effi-

cient organization of production requires time to coordinate and communicate knowl-

edge between managers and production workers. If managers decrease leisure due to

a decrease in taxes, time available for communication between managers and workers

increases. More time for communication makes more able managers relatively more

useful in solving tasks, which increases wages of more able managers relative to less

able managers (an increase in upper tail wage inequality). At the same time, more time

for communication allows managers to supervise more production workers. Even the

production workers at the bottom of the distribution benefit from being matched with

better managers, which reduces lower tail wage inequality.
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We show that this logic applies in our quantitative model. For a simplified version

of the model, we provide comparative statics in closed form to illustrate the economic

mechanisms in more detail. The equilibrium wage structure responds to a decrease in tax

progressivity in two related ways: by changing the level of wages (the absolute effect),

and the slope of the wage schedule (the relative effect). The relative effect increases the

slope of the wage schedule for managers, and decreases it for production workers. This

corresponds to an increase in the upper tail inequality, and a decrease in the lower tail

inequality. The absolute effect is more complex: while the level of wages decreases for

all production workers and higher skilled managers, lower skilled managers may see

their wages increase.

We calibrate a quantitative version of the model to the U.S. wage data. The model

matches the moments of the wage distribution well. It is also consistent with the empir-

ical evidence on the elasticity of wage changes with respect to changes in marginal and

average tax rates, both qualitatively and quantitatively, as we discuss in detail below. We

then solve for the optimal tax progressivity using the calibrated version of the model

and show that it is 0.108, which is substantially lower than 0.186, the value estimated for

the United States by Heathcote et al. (2020). For comparison, we also calculate optimal

wage progressivity assuming that wages are exogeneous. In this case, optimal tax pro-

gressivity is much higher at 0.341. Lower tax progressivity increases hours worked by

everyone (analogously to a decrease in the communication costs), which increases wage

of everyone, in particular of the poor. This leads to a decrease in bottom wage inequal-

ity. Ignoring endogenous wage changes would imply that the planner would choose

excessively high progressivity, which in turn would lead to large welfare losses.

The rest of this paper is organized as follows. In the next section, we discuss the

related literature. Section 3 lays out the general model with multiple layers of manage-

ment. Section 4 characterizes the equilibrium. Section 5 characterizes analytically the

optimal tax progressivity. Section 6 discusses the calibration of a one-management-layer

version of the model and presents the main quantitative results. Section 7 concludes.
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2 Related Literature

Our setup generalizes Garicano (2000) and Garicano and Rossi-Hansberg (2006) in that

we endogenize hours of work. Endogeneous labor supply choice implies a role for (pro-

gressive) income taxation since with inelastic labor supply income taxation would be

non-distortionary. To match the key moments of the U.S. wage distribution, we also al-

low for the communication cost per task itself to depend on the skills of the subordinate.

Standard models that study optimal taxation either assume that the wage distribution

is exogenous, or that it can be partially modified by human capital investment. This is

true for papers that use mechanism design techniques such as Mirrlees (1971) and many

followers, as well as for papers that use parametric tax functions, such as Heathcote et al.

(2017) and others. Neither of these approaches can explain the changes observed in the

upper and lower wage inequality without artificially engineering “correct" changes in

the underlying exogenous distributions of wages or abilities. In addition, the interaction

between changes in wage inequality and changes in taxes is nonexistent or limited.

There are several strands of literature that do consider the interaction between taxes

and wages. A large volume of research provides a connection between the wage distri-

bution and taxes through general equilibrium effects. Meh (2005), Boháček and Zubrický

(2012) and Brüggemann (2021) follow Quadrini (2000) and Cagetti and De Nardi (2006),

and consider tax reforms in Bewley-Aiyagari economies with entrepreneurial activity.

Taxes affect workers’ wages firstly through changes in capital accumulation and, sec-

ondly through endogenous occupational choice. These papers do not consider optimal

taxation, however. Optimal taxation in models with entrepreneurship is considered by

Albanesi (2011) and Shourideh (2012) who, however, do not model workers, and hence

there is no occupational choice. Ales and Sleet (2016) study optimal taxation of top

CEOs. They assume that higher effort by top earners (CEOs) positively affects the pro-

ductivity and profits of the firm. However, workers are not explicitly modeled either,

and therefore there is no direct channel through which taxation of top earners would

influence the wage schedule of regular workers.
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Several recent papers study optimal taxation in models with heterogeneous occupa-

tions and endogeneous wages. Rothschild and Scheuer (2013) and Scheuer (2014) study

optimal taxation in an occupational choice Roy model. Slavík and Yazici (2014) study

optimal taxation in a growth model with skilled and unskilled labor and capital-skill

complementarity, and Ales et al. (2015) study optimal taxation in a task-to-talent as-

signment model of the labor market. As in the aforementioned papers, the interaction

between different occupations (or workers and entrepreneurs) in these papers is only

through general equilibrium effects.

Models in which managers, or enterpreneurs, interact with workers and thus affect

their wages directly, are less frequent. Saez et al. (2014) consider a model in which

workers’ wages are the result of bargaining between workers and CEOs. If top marginal

rates are lower, then the CEOs will bargain more aggressively for higher compensation,

which increases wage dispersion. As a result, endogeneous wages (which are a result of

compensation bargaining) lead to higher optimal wage progressivity, in contrast to the

present paper.

Ales et al. (2017) and Scheuer and Werning (2017) study models similar to our model.

Ales et al. (2017) build upon Rosen (1982)’s assignment model of talent allocation within

a firm and focus on the optimal taxation of top labor incomes. In contrast to our model,

the potential impact of taxes on workers’ wages is limited. Workers are ex-ante identical,

receive the same consumption, and their assignment to different managers is indetermi-

nate. We relax the assumptions leading to the assignment indeterminacy, and study the

relationship between taxes and wage inequality at both tails of the wage distribution.

We are thus able to model both lower- and upper-tail income inequality, a key aspect

of our paper. Scheuer and Werning (2017) also focus on optimal taxation of top-income

individuals in a Mirrleesian optimal tax analysis. They show that the usual Mirrleesian

tax formulas apply even with ‘superstar’ effects, but the convexity of the wage func-

tion implies higher elasticities at the top, leading to lower optimal top marginal rates.

In their basic environment, matching between agents and firms is one-on-one, but they
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show that their main theoretical results carry over to an assignment model with fixed

communication costs, which is similar to a special case of our model. We find that in

such a model, it is impossible to match the bottom and top income inequality. Therefore,

we focus on a richer model with a general communication cost function.

Lopez and Torres (2020) considers a framework very similar to ours, but with inelas-

tic labor supply. Since labor income taxation is non-distortionary in their framework

(as in Garicano (2000), Garicano and Rossi-Hansberg (2006)), they focus on the role of

size-dependent policies in Mexico. In the same spirit, Tamkoc (2020) studies the impli-

cations of size-dependent distortions in an international context using a model similar

to ours and Garicano et al. (2016) analyze the equilibrium and welfare effects of French

size-contingent policies through the lens of a simple span-of-control model of Lucas

(1978). Finally, Lawson (2019) studies efficient income taxation in hierarchical models

with bargaining.

3 Setup

There is a measure one of agents. Agents like to consume, and dislike to work. Their

preferences are represented by an additively separable utility function

U(c)− V(ℓ),

where c ≥ 0 is consumption, ℓ ≥ 0 is time spent at work, U is increasing, concave and

differentiable, and V is increasing, convex and differentiable. We assume that the utility

function takes the form

U(c) = log c, V(ℓ) = κ
1

1 + η
ℓ1+η

for η > 0 being the inverse of Frisch elasticity of labor, and κ > 0.
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Agents differ in their knowledge, z ∈ [z, z], exogenously given. The distribution

of knowledge is G(z), with G(z) = 0, G(z) = 1 and has density function g(z). The

agents receive a continuum of tasks distributed according to F(z) defined on [0, z], with

a density function f (z). An agent with knowledge z can solve all tasks in [0, z] and

produce F(z) per unit of time. An agent working ℓ units of time can thus produce ℓF(z).

If z > 0 then there is a mass of problems F(z) > 0 that every agent can solve.

Rather than producing on their own, agents form teams, where only some agents

(workers) solve tasks while other agents (managers) specialize in explaining harder tasks

to the others. There can be more than one layer of management. We make two assump-

tions about communication between workers and managers. First, agents do not know

whether they can solve a problem when it arrives. Thus, the agents first try to solve

a particular problem by themselves and, if they cannot, ask the manager for help. A

worker with knowledge x0 asks for help with tasks that he cannot solve, that is with

tasks z ≥ x0. The manager in the first layer helps them understand how to solve the

problem, if he can. If the manager has knowledge x1 then he helps the worker with

tasks z ∈ [x0, x1]. Tasks harder than x1 are passed on to the managers in the second

layer, where the process is repeated. If there are I layers of management and the top

layer manager has knowledge xI , then the management will ultimately be able to ex-

plain all tasks weakly easier than xI . Tasks harder than xI will be unsolved by the

organization. In any case, the problem itself is solved by the worker; managers do not

solve problems themselves.

Second, we assume that managers spend time communicating over the delegated

problems (all the communication costs are incurred by the managers). The way to

think about this assumption is that a worker approaches a manager with a problem

that he/she cannot solve. The worker explains the problem to the manager, at which

point the manager incurs the time costs. After the problem has been communicated, the

manager helps the worker solve the problem, if he can. A problem needs to be explained
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to the worker only once; once it has been explained, the worker can solve it whenever it

arrives.

Organizations have a team consisting of production workers and I layers of manage-

ment.1 The set [z, z] is partitioned into I + 1 connected subsets separated by I thresholds

z1, z2, . . . , zI . For easier notation, we set z0 = z and zI+1 = z to be the lower and up-

per bounds on knowledge. Agents with knowledge in [z0, z1] are production workers.

Agents with knowledge in (z1, z2] are first level managers, agents with knowledge in

(zi, zi+1] are managers of level i. Managers of level I, who are at the top of the hier-

archy, have knowledge (zI , zI+1]. The workers and the top layer managers are special:

the workers because they are the only ones who produce output, and the top managers

because they are residual claimants.

We denote the knowledge of the production worker by x0 and the knowledge of the

manager in layer i by xi. After receiving advice, workers produce output. The production

of the team is

y = n0F(xI)ℓ0,

where n0 is the number of production workers, ℓ0 are hours worked by the production

workers, and xI is the knowledge of the layer I manager. Note that it is the skill of the

layer I manager xI that ultimately determines the mass of tasks that the workers solve.2

The managers face a time constraint that limits how many production workers they

can supervise. Consider an organization with n0 production workers with skill x0 and

ni managers in layer i that have skill xi. The total time supplied by managers in layer

i is niℓi. The total time cost depends on two factors. First, more workers will pass on

proportionally more tasks to be solved and explained in layer i, and so the time cost is

linear in n0. Second, the time cost per task, θ, is allowed to depend on the skill of the

1We do not allow for self employment. A model with self employment shares many features with our
model.

2For each worker, F(x0) problems are solved by the worker himself without help of a manager, F(x1)−
F(x0) problems are explained by the manager in the first layer to the worker (and solved by the worker),
F(xi)− F(xi−1) are problems explained by the manager in layer i to his/her subordinates, and 1 − F(xI)
problems remain unsolved.
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subordinate manager or worker, xi−1. Overall, the time constraint for the managers in

layer i is

n0θ (xi−1) = niℓi, i = 1, . . . , I − 1, (1)

where we assume that the time cost function θ has the following properties:

Assumption 1. θ is strictly positive, differentiable and decreasing in xi−1.

Since the production technology is constant returns to scale, we assume without loss

of generality that there is only one manager at the top of the firm structure, that is,

n(xI) = 1. As a result, the time constraint of the top manager becomes

n0θ (xI−1) = ℓI . (2)

Garicano (2000) and Garicano and Rossi-Hansberg (2006) present a special case of

this time constraint with θ(xi−1) = h[1 − F(xi−1)]. The time constraint is derived as

follows. Since the subordinate managers solve a fraction F(xi−1) of problems, they pass

the remaining fraction of problems 1 − F(xi−1) to their superiors. Managers spend time

dealing with a problem regardless of whether they know the answer or not. Each prob-

lem has a fixed communication cost h units of time, and so the time cost per production

worker is h[1 − F(xi−1)].

Constraints (1) and (2) show one of the key properties of the model. Having pro-

duction workers with higher knowledge allows the manager to form larger teams and

multiply their production. That is, there is a skill complementarity between the knowledge

of a manager, and the knowledge of a worker. Moreover, dividing both sides of the con-

straints by ℓi, one can see that it is only the ratio of the time cost θ and manager’s hours

ℓm that matters for the time constraint. A change in either one of these variables means

that the manager is able to manage a team of workers of a different size. Thus:
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Remark 2. A decrease in manager’s hours ℓi is equivalent to an upward shift in the time cost

function θ.

Let w(x0) be the hourly wage rate of a production worker with skill xi, and w(xi)

be the hourly wage rate of a level-i manager with knowledge xi. They are determined

as follows. The payoff of a top manager with knowledge xI who employs a production

worker with skill x0 and subordinate managers with knowledge (x1, . . . , xi−1) are

Π = F(xI)n0ℓ0 − w(x0)n0ℓ0 − w(x1)n1ℓ1 . . . − w(xI−1)nI−1ℓI−1.

The top manager’s hourly wage rate is w(xI) = Π
ℓI

. Using the time constraints to sub-

stitute away the number of production workers and intermediate managers yields an

alternative expression for the top managers’ wage:

w(xI) =
F(xI)− w(x0)

θ (xI−1)
ℓ0 −

θ (x0)

θ (xI−1)
w(x1) . . . − θ (xI−2)

θ (xI−1)
w(xI−1). (3)

The top manager’s hourly wage rate, and thus his profits, increase linearly with

hours worked by the production worker. This is because the manager keeps a fraction

of output F(xI)− w(x0) from each hour that the worker spends working. Equation (3)

shows a second key complementarity in the model: there is working time complementarity

between the hours worked by a worker, and those by a top manager.

The government taxes individual earnings by a tax function T(y) regardless of whether

the earnings are earned by production workers or managers. We assume that the tax

function T(y) exhibits a constant rate of progressivity (Benabou (2002), Heathcote et al.

(2014), Heathcote et al. (2017), Kapička (2020)),

T(y) = y − λy1−τ,

where the wedge τ determines the progressivity of the tax system and the level param-

eter λ of the tax function is chosen in such a way that the government budget constraint
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holds,

EyT(y) = G,

where G is government consumption, exogenously given. To simplify notation, we in-

troduce the retention function Γ(y) = λy1−τ to be the after tax income as a function of

pre-tax income.

3.1 The Equilibrium

Assignment. We start the description of the equilibrium conditions by characterizing

the assignment of workers to managers. There is positive assortative matching, where

the worst production worker is matched with the worst managers, and the best pro-

duction worker is matched with the best managers.3 Let m(xi) for xi ∈ [zi−1, zi] be the

knowledge of the manager at level i + 1 who employs a subordinate of knowledge xi

(either a lower level manager, or a production worker). We extend the function on the

whole space by defining m(xI) = xI for xI ≥ zI . The matching function is illustrated in

Figure 1.

The equilibrium assignment matches the worst workers with the worst managers at

each level:

m(zi) = zi+1, i = 0, . . . , I. (4)

We require the supply of subordinate workers (either production workers or man-

agers) to be equal to the demand for subordinate workers. Equivalently, the demand for

superiors by their production teams has to be equal to the supply of superiors. Let n(xi)

for xi ∈ [zi−1, zi] be the number of direct subordinates of managers with skill m(xi).

That is, n(xi) is the size of a team of workers or managers with knowledge xi. Then the

3We do not justify here that the equilibrium assignment takes this form. The reader is referred to
Garicano and Rossi-Hansberg (2006), Proposition 1, for such a justification.
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z0

Production workers

z1

Level 1

z2

Level 2

z3

. . .

zI

Level I

zI+1

Managers

m(x0)

x0 x1

m(x1)

x2 xI−1 xI

m(xI−1)

Figure 1: The equilibrium assignment m(x) of subordinates to their immediate superiors. The
subordinates are either workers or managers.

market clearing condition is

∫ x

zi

g(t)
n(t)

dt =
∫ m(x)

zi+1

g(t)
n(t)

dt, x ∈ [zi, zi+1] i = 0, . . . , I − 1. (5)

The left hand side is the demand for managers who have knowledge between zi+1 and

m(x) by their subordinate workers or managers with knowledge between zi and x. The

right-hand side is the supply of those managers by the organization.

Top managers. A top manager chooses hours worked ℓ, but also the vector of skills of

her subordinates (x0, x1, . . . , xI−1) so as to maximize her own wage rate w(xI). When

making the choice, the top manager takes hours worked and wages of her subordinates

as given. The wage rate of the top manager is given by (3), and so the problem to

maximize the top manager’s wage rate is

[
m−I(xI), . . . , m−1(xI)

]
∈ arg max

x0,...,xI−1

[
F(xI)− w(x0)

θ (xI−1)
ℓ0(x0)−

I−1

∑
i=1

θ (xi−1)

θ (xI−1)
w(xi)

]
. (6)

The maximization problem uses the fact that, by the definition of the assignment function

m, a top manager with skill xI chooses a level-i subordinate mI−i(xI).
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Conditional on the wage rate w(xI), the hours worked are chosen in a standard way

to maximize their utility:

ℓ(xI) ∈ arg max
ℓ

U [Γ(ℓw(xI))]− V(ℓ), zI ≤ xI ≤ xI+1. (7)

Production workers and intermediate level managers. Production workers and inter-

mediate level managers have only one choice. They face a wage rate w(xi) and choose

hours worked ℓ(xi) to solve

ℓ(xi) ∈ arg max
ℓ

U [Γ(ℓw(xi))]− V(ℓ), zi ≤ xi ≤ zi+1. (8)

Finally, we require that the marginal agents with the threshold knowledge zi for

i = 1, . . . , I − 1 must be indifferent between being the best at the lower level, and being

the worst at the higher level. Given that the agents simply choose hours worked given the

wage, they will be indifferent between both options if the wage function is continuous

at the thresholds.

Aggregates. Aggregate output in the economy consists of workers’ production (recall

that managers do not directly produce output):

Y =
∫ z1

z
ℓ(t)F(mI(t))g(t) dt.

Aggregate consumption in the economy is the sum of total consumption of production

workers, and of managers:

C =
∫ z

z
Γ (w(t)ℓ(t)) g(t) dt.

By Walras Law, the requirement that the government budget constraint holds can be

expressed as C + G = Y.
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Definition 1. Given θ, F and G, the equilibrium consists of threshold values z, matching

function m : [z0, zI−1] → [z1, zI ], wage function w : [z0, zI ] → R+ and hours worked

ℓ : [z0, zI ] → R+ such that m satisfies (4) (5) and (6), ℓ satisfies (8) and (7), w is continu-

ous at z, and the government budget constraint holds.

Before proceeding further and characterizing the equilibrium, we will show that the

model can be simplified substantially: without loss of generality, we can normalize the

skill distribution to be uniform. This normalization is based on the following proposi-

tion:

Proposition 1. The allocation z, m, w and l constitutes the equilibrium given θ, F and G if

and only if z̃ = G(z), m̃(p) = G
(
m(G−1(p))

)
, w̃(p) = w

(
G−1(p)

)
and ℓ̃(p) = ℓ

(
G−1(p)

)
constitute an equilibrium given θ̃(p) = θ

(
G−1(p)

)
, F̃(p) = F

(
G−1(p)

)
and G̃ = p, where

p = G(x) are percentiles of the skill distribution.

Proof. The matching function m and thresholds z satisfy (4) if and only if m̃ and z̃ satisfy (4). To

show that (5) holds given θ̃ and G̃, rewrite (5) for i = 1, . . . , I − 1 and x ∈ [zi, zi+1] as follows:

0 =
∫ x

zi

g(t)
θ (m−1(t))

dt −
∫ m(x)

zi+1

g(t)
θ (m−1(t))

dt

=
∫ G(x)

G(zi)

1
θ (m−1(G−1(q)))

dq −
∫ G(m(x))

G(zi+1)

1
θ (m−1(G−1(q)))

dq

=
∫ p

z̃i

1
θ̃ (G(m−1(G−1(q)))

dq −
∫ m̃(p)

z̃i+1

1
θ̃ (G(m−1(G−1(q)))

dq

=
∫ p

z̃i

1
θ̃ (m̃−1(q))

dq −
∫ m̃(p)

z̃i+1

1
θ̃ (m̃−1(q))

dq,

where the first line changes the variable of integration from t to q = G(t), the second line replaces

the limits from G(x) and zi to p and z̃i and uses the definition of θ̃, and the last line uses the

definition of m̃i. Identical arguments show that (5) holds for i = 0, in which case

0 =
∫ x

z0

g(t) dt −
∫ m(x)

z1

g(t)
θ (m−1(t))

dt =
∫ p

0
dq −

∫ m̃(p)

z̃1

1
θ̃ (m̃−1(q))

dq.
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Hence, (5) continues to hold. To see that z̃, m̃, w̃ and l̃ satisfy (6) given θ̃ and F̃, rewrite the

right-hand side of (6)

F(xI)− w(x0)

θ (xI−1)
ℓ0(x0)−

I−1

∑
i=1

θ (xi−1)

θ (xI−1)
w(xi) =

F̃(pI)− w̃(p0)

θ̃ (pI−1)
ℓ̃0(p0)−

I−1

∑
i=1

θ̃ (pi−1)

θ̃ (pI−1)
w̃(pi). (9)

Since the left-hand side of (3.1) is maximized by [m−I(xI), . . . , m−1(xI)], the right-hand side is

maximized by

[
G
(

m−I(xI)
)

, . . . , G
(

m−1(xI)
)]

=
[

G(m−I(G−1(pI))), . . . , G(m−1(G−1(pI)))
]

=
[
m̃−I(pI), . . . , m̃−1(pI)

]
.

Hence (6) holds as well. It is straightforward to show that ℓ̃ satisfies (8) and (7), w̃ is continuous

at z̃, and that the government budget constraint holds as well. Therefore, if (z, m, w, ℓ) constitutes

an equilibrium given (θ, F, G), then (z̃, m̃, w̃, l̃) constitutes an equilibrium given (θ̃, F̃, G̃). Since

all operations are equivalent, the reverse implication holds as well.

Proposition 1 says that a change in the underlying distribution of skills can always be

represented as a joint transformation of the time cost function θ, and of the task arrival

distribution F. There is nothing in the model that allows us to distinguish between

the two. Equivalently, we can express the problem in the percentiles of the underlying

distribution G, and transform θ and F appropriately. This not only simplifies the problem

technically but, as we shall see, allows us to characterize its properties more sharply. This

is so because most of the properties of the equilibrium matching and wage functions

might be ambiguous when expressed as functions of the underlying skills, but they gain

clarity when expressed as functions of the percentiles. We will henceforth assume:

Assumption 3. G is uniform on [0, 1].

In what follows, we will impose various assumptions on θ and F in the normalized

problem. In the light of Proposition 1 , these should be understood as joint assumptions

on θ and F, and G. For example, assuming that θ̃ satisfies Assumption 1 is equivalent
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to assuming that θ is decreasing in x and g is increasing in x, or that θ is increasing in x

and g is decreasing in x. Similarly, assumptions about F̃ translate into joint assumptions

about F and G in the original problem.4

4 Characterizing the Equilibrium

We now characterize the equilibrium of the model. First, it is easy to show that, given

that the utility is logarithmic in consumption, income and substitution effects cancel out,

and the agents choose hours worked that are independent of their knowledge. Every-

one’s hours worked are given by ℓ(z) = ℓ̄(τ) where

ℓ̄(τ) =

(
1 − τ

κ

) 1
1+η

. (10)

The fact that hours worked are constant across all agents allows us to substantially

simplify the problem. It is only the ratio of communication costs θ(·) and hours worked

that matters for the wage distribution rather than θ(·) and ℓ̄(τ) individually (or the par-

ticular values of κ, η and τ). That is, we can normalize ℓ to one for all agents and redefine

the communication cost function by setting it equal to θ(·)/ℓ̄(τ). The wage rate and rent

rate schedule satisfy the following property: w (z; ℓ(τ), θ(·)) = w
(
z; 1, θ(·)/ℓ̄(τ)

)
, and

the earnings of each agent are ℓ̄(τ) times wages or rents. We can then characterize the

equilibrium wage and rent distribution. Any changes in hours worked due to a change

in taxes will manifest themselves as a change in the communication costs θ. In what

follows, we normalize ℓ̄(τ) = 1 .

Solving the assignment problem. It turns out that the equilibrium assignment can be

easier to characterize by using matching functions that map the worker’s knowledge

4From a practical perspective, the normalization is perhaps less important. In our quantitative analysis
of Section 6 we find it convenient to normalize F to be uniform on [0, 1] and calibrate a flexible distribution
of skills G.

16



z0 = z

Production workers

z1

Level 1

z2

Level 2

z3

. . .

zI

Level I

zI+1

Managers

m0(x0)

m1(x0)
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x2
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Figure 2: The equilibrium assignment mi(x0) of workers to their superiors in level i.

x ∈ [z, z1] directly to the knowledge of the manager in each layer. To that end, define a

function mi(x) for i = 0, . . . , I recursively by m0(x) = x and mi+1(x) = m(mi(x)). The

function mi(x) represents the knowledge of a manager in layer i that is matched with a

worker with knowledge x, as figure 2 illustrates. The equilibrium assignment (4) gives

mi(z) = zi, mi(z1) = zi+1. (11)

Differentiating the market clearing condition (5) with respect to x, multiplying both

sides by g(m(xi)), integrating back and using the equilibrium conditions (11), we write

the equilibrium assignment function as

mi(x) = zi + ρi−1(x), x ∈ [z, z1], i = 1, . . . , I, (12)

where the function ρi is given by

ρi(x) =
∫ x

z
θ (mi(t)) dt, x ∈ [z, z1], i = 0, . . . , I − 1.
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We obtain immediately from (12) that the functions mi are differentiable and strictly

increasing in x. They are also concave if the time cost function θ satisfies Assumption 1.

Lemma 1. Suppose that Assumption 1 holds. Then the matching functions mi are strictly

increasing, differentiable and concave for all i = 1, . . . , I.

Proof. Differentiating (12) with respect to x, we obtain that mi is differentiable, with a derivative

m′
i(x) = θ (mi−1(x)), which is strictly positive. Differentiating again for i = 1, m′′

1 (x) = θ′(x),

and, since θ is decreasing in x, m1 is concave in x. Differentiating for i = 2, . . . , I, m′′
i (x) =

θ′(mi−1(x))m′
i−1(x), which is also negative, because m′

i−1 is positive.

The main force behind the matching function is that more productive workers require

less supervision, and so demand fewer managers. If the mass of production workers

increases by one unit, the mass of managers that are needed to match with them must

increase by less than one unit. This creates a concavity in the matching functions.5

Evaluating (12) at the thresholds z and using (4) yields a unique equilibrium condi-

tion for the threshold values:

zi+1 = zi + ρi−1(z1) i = 1, . . . , I, (13)

where we take zI+1 = z in the last equation. Summing over, the equilibrium value of z1

is a solution to the following equation:

1 − z1 = ρ(z1), (14)

where ρ(z1) = ∑I
i=1 ρi−1 (z1) is only a function of z1. Figure 3 illustrates how z1 is

determined. Since ρ′i−1(z) = θ (mi(z)) > 0, ρ(z) is strictly increasing and concave in

z. Since the left-hand side of (14) starts at one, is strictly decreasing in z and ends at

5Note that Lemma 1 does not claim that the original equilibrium mapping m(x) is increasing, dif-
ferentiable and concave. It can easily be shown that m(x) is continuous and differentiable except for
differentiability at z1. Concavity is, however, not guaranteed for x ≥ z1.
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1 − z

ρ(z)

ρ̂(z)

z′1
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Figure 3: The equilibrium value of z1. An increase in the time cost from θ to θ′ > θ increases ρ
to ρ̂ > ρ and decreases the equilibrium z1.

zero, there is a unique value of z1 that satisfies the equilibrium assignment. At z1 = 0,

the left-hand side is strictly positive, while the right-hand side is zero, and at z1 = 1,

the left-hand side is zero, while the right-hand side is strictly positive. Thus, there

is a unique solution to the equilibrium condition (14). Moreover, when the time cost

function increases from θ to θ̂ > θ,6 the threshold knowledge z1, and hence the fraction

of workers, decreases unambiguously. Figure 3 illustrates the comparative statics. To

summarize,

Proposition 2. There is a unique threshold knowledge z1 ∈ [0, 1] that solves (14). Moreover, z1

is decreasing in θ.

Wage schedule. A second key equilibrium relationship obtained from the managers’

problem of choosing the type of his subordinates. Solving the managers’ problem (6)

6θ̂ > θ if θ̂(x) > θ(x) for all x ∈ [0, 1].
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yields a differential equation in production workers’ wages

w′(x0) = −θ′(x0)w(x1) (15a)

w′(xi) = − θ′(xi)

θ(xi−1)
w(xi+1), i = 1, . . . , I − 1 (15b)

w′(xI) =
f (xI)

θ(xI−1)
. (15c)

The intuition behind equation (15a ) is very simple. Consider the marginal costs and

marginal benefits of choosing a slightly better type. The marginal cost is the marginal

increase in the production worker’s wage, w′(x0). The marginal benefit is that a better

production worker can solve more tasks himself, and saves his superior’s time. The time

saved is −θ′(x0). What is the value of one unit of time for the superior? It is exactly his

wage rate, w(x1). In the optimum, the marginal costs of a better production worker are

equated to the marginal benefits, i.e. (15a ) holds. The intuition behind (15b ) is similar.

Lemma 2. The wage function w(x) is strictly increasing, differentiable for all x, except possibly

at z1 and zI . If θ′′ < 0 and f ′ ≥ 0 then w(x) is convex for all x, except possibly at zI .

Proof. Differentiability inside each segment follows from (15) and Assumption 1. Evaluating

the left-hand and right-hand derivatives at the thresholds gives

w′
−(z1) = −θ′(z1)w(z2) <

−θ′(z1)

θ(z0)
w(z2) = w′

+(z1)

w′
−(zi) = w′

+(zi) i = 2, . . . , I − 1.

Hence the wage function is differentiable everywhere except at z1 and zI (for which the difference

between left-hand and right-hand derivatives cannot be signed). Since it is continuous and the

derivatives are all strictly positive, w(x) is strictly increasing.
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Differentiating (15a) and (15b) for i = 1, . . . , I − 1 again yields

w′′(x0) = −θ′′(x0)w(x1)− θ′(x0)w′(x1)m′
1(x0) > 0

w′′(xi) =
−θ′′(x1)w(xi+1)θ(xi−1)− θ′(xi)w′(xi+1)m′

i+1(x0) +
θ′(xi−1)
m′

i(x0)
θ′(xi)w(xi+1)

θ(xi−1)2 > 0

w′′(xi) = f ′(xI)−
f (xI)θ

′(xI−1)θ(xI−2)

θ(xI−1)2 > 0,

where the inequalities follow from θ′ < 0, θ′′ < 0 and f ′ ≥ 0. This establishes convexity

everywhere except for z1 and zI . But the wage function is convex at z1 as well, since the left-hand

derivative is smaller than the right-hand derivative.

Lemma 2 shows that the wage function is, in general, convex, except possibly at

the threshold between the top managerial and the subordinate levels zI . The reason

for the potential nonconvexity comes from the fact that the top managers’ wages are

determined as residuals. If the wage schedule in the subordinate levels becomes steeper,

the slope at the top level decreases. If the movement of slopes in the opposite direction

is strong enough, nonconvexity at zI follows. Section 4.1 establishes conditions under

which nonconvexity happens in a special case.

Note also that, in general, convexity tends to be more pronounced in the lower layers.

A given inequality in a layer i will be convexified in the subordinate layer i − 1, because,

by (15), the slope of the wage function w′
i−1 decreases with the manager’s skill in layer

i. For example, if wI is linear in x then wI−1 will tend to be quadratic in x.

4.1 An Example

In this section, we characterize the equilibrium in a special case of our model in which

the distribution of wages and other relevant objects are easy to characterize analytically.

We derive comparative statics results in the tax progressivity parameter τ, which are
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shown to hold in the richer version of the model (which we bring to the data in Section

6.1).

The model is assumed to have only one managerial layer (I = 1). The productivity

shocks are drawn from a unit interval, z = 0, z = 1, and the underlying distributions

are uniform with F(z) = G(z) = z. The normalized communication cost function is

θ(x) = h(1 − x). Hence, we interpret h as h/ℓ̄(τ) and assume that h < 1. An increase

in h can then arise from an increase in the communication cost h or an increase in the

tax progressivity parameter τ.7 The assumptions made here imply that Assumption 1 is

satisfied.

The problem has a closed form solution. The function ρ0 is given by ρ(z) = h[1 −

(1 − z)2]/2. Equation (14) is a quadratic equation in 1 − z1, and z1 solves

z1 = 1 −
√

1 + h2 − 1
h

. (16)

The threshold value z1 is clearly decreasing in h, confirming the results of Proposition 2.

An increase in the effective communication cost h thus increases the fraction of managers

in the economy. The reason is that it is more costly to supervise the production workers.

The matching function is quadratic and concave in the workers’ skill x:

m1(x) = z1 + hx − h
2

x2. (17)

Since m′
1(x) = h(1− x), an increase in h makes the matching function steeper. A smaller

mass of workers is now matched with a larger mass of managers, and so workers’ skills

must be spread over a larger span of managers’ skills. In other words, a worker that has

only a small skill advantage over another worker will now gain a larger advantage by

being matched with a comparatively better manager.

7This configuration delivers a distribution of wages with a Pareto right tail, see Geerolf (2017).
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Wages of the production workers are increasing and quadratic in their skill, and

wages of the managers are increasing and convex in their skill:

w(x) = z1 + A(x − 1) +
h
2

x2, 0 ≤ x < z1, (18)

=
A
h
+ 1 −

√
1 − 2

x − z1

h
, z1 ≤ x ≤ 1, (19)

where A = [1+ (1+ h)2]/
√

1 + h2 − 2− h. It is easy to verify that A is positive. One can

also show that A is increasing in h and that A/h is decreasing in h.

What happens to the wage schedule if h changes? Individuals at different parts of the

skill distribution are affected differently and we characterize the response both in terms

of the level (the absolute effect) and slope of the wage function (the relative effect). In what

follows, we explicitly index the wage function w by h and denote the partial derivative

of the wage function with respect to skill x by wx(x, h) = ∂w(x, h)/∂x. Starting with the

relative effect, we obtain:

Lemma 3. Relative Effect. ∂wx(x, h)/∂h > 0 for all x ∈ [0, z1) and ∂wx(x, h)/∂h < 0 for all

x ∈ [z1, 1].

Proof. Differentiating the marginal wage schedule of the production workers with skill x ∈

[0, z1) with respect to h yields ∂wx(x, h)/∂h = A′(h) + x, which is strictly positive since A′ >

0. The marginal wage of the managers with skill x ∈ [z1, 1] is wx(x, h) = h−1[1 − 2 x−z1
h ]−1/2.

Differentiating with respect to h, we obtain

∂wx(x, h)
∂h

= B′(h)−
(

1 − 2
x − z1

h

)− 3
2 1 − h√

1+h2 +
1−x

h

h2 < 0,

where B(h) = A(h)/h, and we show that B′(h) < 0. Since 1 − x > 0, the numerator of the last

term is positive and the expression must be negative.

Lemma 3 shows that the increase in the effective communication cost unambiguously

increases the dispersion of wages of the production workers and decreases the disper-

sion of managers’ wages. This happens because the number of managers increases and,
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as a result, better workers are matched with relatively more productive managers. Part

of the relative efficiency gains is translated into their wages. The managers’ wage sched-

ule becomes flatter for the same reason the workers’ wage schedule becomes steeper.

Two managers of given skills are now matched with more similar workers, and their

productivity differences decrease. The results also imply that the difference in wages

between any two production workers increases, while the difference between any two

managers decreases. 8

The absolute effect is less straightforward because, under certain conditions, wages

may move in either direction for lower skilled managers:

Lemma 4. Absolute Effect. There is a value of h̄ such that if h > h̄ then ∂w(x, h)/∂h < 0 for

all x ∈ [0, 1]. If h < h̄ then ∂w(x, h)/∂h < 0 for x ∈ [0, z1) ∪ (z̃, 1] and ∂w(x, h)/∂h > 0 for

x ∈ [z1, z̃) and ∂w(z̃, h)/∂h = 0 for some z̃ < 1.

Proof. The wage schedule for the production workers with skill x ∈ [0, z1) changes according to

∂w(x, h)
∂h

= z′1(h) + A′(h)(x − 1) +
1
2

x2

= z′1(h) + A′(h)(z1 − 1) +
1
2

z2
1 + A′(h)(x − z1) +

1
2

x2 − 1
2

z2
1

= −
(

1 − 1√
1 + h2

)
2 − h
h + h3 + A′(h)(x − z1) +

1
2

x2 − 1
2

z2
1 < 0.

For the managers with skill x ≥ z1, we obtain

∂w(x, h)
∂h

= B′(h)− 1√
1 − 2 x−z1

h

x − z1 + hz′1
h2 .

It has already been shown in Lemma 3 that ∂w(x, h)/∂h is decreasing in x. The wage schedule

of all managers will thus decrease if the change at the threshold ∂w(z1, h)/∂h = B′(h)− z′1(h)/h

8The fact that the slopes of the wage schedule move in the opposite direction in both segments indicates
that the overall wage schedule will in general have a kink at z1, as already shown in Lemma 2. For low
values of h, the managers’ schedule will be steeper than the workers’ schedule at z1. As h increases, the
left and right derivatives at z1 move in the opposite direction and reduce the kink. For sufficiently large
h, in particular for h > 0.918, the slope of the production workers’ wage schedule exceeds the slope of the
managers’ schedule. The overall wage schedule then exhibits nonconvexity at z1.
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is negative. After some algebra, we show that this happens if h > h̄. If h < h̄, ∂w(z1, h)/∂h > 0

and, since ∂w(1, h)/∂h = B′(h) + z′1(h) < 0, by continuity there exists a value of z̃ ∈ (z1, 1) such

that ∂w(x, h)/∂h > 0 for x ∈ [z1, z̃), and ∂w(x, h)/∂h < 0 for x ∈ (z̃, 1].

An increase in the effective communication costs thus unambiguously decreases

wages for all production workers. The reason is that an increase in h increases the cost of

creating teams. Higher costs imply that each production worker is being matched with

a less productive manager, which shifts the worker’s wage down. Wages also decrease

for high skilled managers (those with skills greater than x̄). Interestingly, lower skilled

managers may see their wages increase. They, too, suffer from a higher cost of creating

teams, but are matched with slightly better workers. The second effect dominates if h is

low enough and the cost of creating teams is not as important.9 Both cases are illustrated

in Figure 4.

While it is not necessarily true that an increase in the effective communication cost

h decreases wages for all workers, we show that the aggregate output of the economy

must decrease:

Lemma 5. The aggregate output Y =
∫ z1

0 m1(t) dt is decreasing in h.

Proof. Y has a closed form solution Y = [z1 (h + 2(1 + z1))− 1] /3. Differentiating with respect

to h, we get Y′(h) = [z1 + (2 + h + 4z1)z′1(h)] /3. Since z1z′1 < 0, the Lemma will be proven if

z1 + (2 + h)z′1(h) < 0. To show this, write

z1 + (2 + h)z′1(h) =
2 − h2 − 2

√
1 + h2

h2
√

1 + h2
+ 1 =

2 − h3 − (2 − h2)
√

1 + h2

h2
√

1 + h2

The numerator is equal to zero for h = 0 and is decreasing in h, as can be verified by differenti-

ating. Thus, the numerator is negative. Since the denominator is positive, the whole expression

is negative, finishing the proof.

9The threshold value of h is a solution to the polynomial equation 2h3 − 2h2 + 2h − 1 = 0 and its value
is approximately 0.648.
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(a) h ≥ h̄

0 1

(b) h ≤ h̄.

Figure 4: A change in the wage schedule before (blue line) and after (red line) an increase in the
effective communication cost h.

5 Optimal progressivity

We now characterize the optimal value of the progressivity parameter τ and its determi-

nants. Let E[w|τ] = Y [1, h/ℓ(τ)] be the average wage and rental rate, and E[w1−τ|τ] =

C [1, h/ℓ(τ)] /λ be the average of wages and rents to the power 1− τ. Putting back labor

supply ℓ̄(τ) given by (10), we can write the resource constraint as

λℓ̄(τ)1−τE[w1−τ|τ] + G = ℓ̄(τ)E [w|τ] .

Solving for the equilibrium λ and substituting back to the expected utility yields the

aggregate welfare (where each agent’s utility receives equal weight) for a given progres-

sivity wedge τ

W = ln
[
ℓ̄(τ)E [w|τ]− G

]
− 1 − τ

1 + η
− ln E[w1−τ|τ] + (1 − τ)E [ln w|τ] . (20)
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The expression has a standard form, but the moments of the wage distribution are not

exogeneous, but depend on τ.

To further inspect the novel role of taxes in determining the wage distribution, we

approximate the penultimate term in (20) as follows:

ln E[w1−τ|τ] = ln E[e(1−τ) ln w|τ]

≈ (1 − τ)E [ln w|τ]

+ ln E

[
1 + (1 − τ) (ln w − E[ln w|τ]) + (1 − τ)2

2
(ln w − E[ln w|τ])2 |τ

]
≈ (1 − τ)E [ln w|τ] + ln

[
1 +

(1 − τ)2

2
E
[
(ln w − E ln w)2 |τ

]]
≈ (1 − τ)E[ln w|τ] + (1 − τ)2

2
E
[
(ln w − E ln w)2 |τ

]
,

where the second line uses a Taylor approximation around E ln w and rearranges terms,

and the last line uses a well known property of logarithm. The approximation is exact

if the distribution of wages is lognormal. We cannot, of course, assume that this is the

case. Substituting into (20) and canceling terms yields an approximate expression for

welfare:

W ≈ ln
[
ℓ̄(τ)E [w|τ]− G

]
− 1 − τ

1 + η
− (1 − τ)2

2
V[ln w|τ], (21)

where V[ln w|τ] = E
[
(ln w − E ln w)2 |τ

]
is the variance of log wages. The expression

(21) makes it clear how endogenous wage distribution affects welfare. First, and perhaps

most importantly, it changes the mean of wages, E [w|τ]. Second, it can change the

variance of log wages V[ln w|τ].

One might expect that a higher progressivity parameter τ, by decreasing hours

worked and so increasing the effective communication cost θ/ℓ̄, will decrease the aver-

age wage in the economy. Similarly, increasing the progressivity parameter τ is expected

to increase the variance of log wages by increasing bottom wage inequality. While we
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cannot prove these results analytically, we show that they apply in the calibrated model

in the next section. Taken together, these two forces suggest that the optimal tax pro-

gressivity will not be high, as we confirm in what follows.

6 Quantitative Analysis

This section calibrates the model to the U.S. data and solves for the optimal taxes.

6.1 Model Calibration

The model is calibrated to the U.S. economy for the 2012 - 2016 period. We assume that

I = 1, and so there is only one layer of management in the organization. Knowledge

is distributed on a unit interval, with z = 0 and z = 1. The distribution of problems F

is uniform (this assumption is without loss of generality due to Proposition 1) and the

underlying distribution of skills G is polynomial:

F(x) = x, G(x) = 1 − (1 − x)1+ρ.

The case when ρ = 0 corresponds to the uniform distribution of skills. If ρ > 0 then skill

density decreases with skills, while if ρ < 0 then it increases in skills. We consider the

following time cost function θ:

θ(x) = h(1 − x)γ [1 − F(x)] = h(1 − x)1+γ, γ ≥ 0.

One can interpret the communication cost as follows. Workers incur two types of costs

on their managers. First, lower skilled workers need help with a larger fraction of prob-

lems, which is represented by the second term 1 − F(x). Second, the time needed to

communicate each problem is h(1 − x)γ, which is larger for lower skilled workers. The
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special case with γ = 0 corresponds to the specification in Garicano (2000) or Garicano

and Rossi-Hansberg (2006).

Clearly, Assumption 1 is satisfied; θ is differentiable and decreasing in x. Proposition

1 implies that an isomorphic way of writing the model would assume that G is uniform.

This is equivalent to writing the cost function θ and the distribution of tasks F as a

function of the percentiles, θ̃(p) = h(1 − p)
1+γ
1+ρ and F̃(p) = 1 − (1 − p)

1
1+ρ . These consid-

erations imply that the sufficent conditions for Lemma 6 ( f̃ ′ < 0, θ̃′′ < 0) are satisfied if

0 < γ < ρ.

As noted earlier, given γ and ρ, only the ratio of h/ℓ̄ matters from the wage distribu-

tion. We calibrate ρ and γ and the relative costs h/ℓ̄ to match three empirical moments:

a fraction of individuals in managerial positions in the population, the 90/50 log wage

ratio, and the 50/10 log wage ratio. The data are taken from the CPS March supplement,

where we compute the averages over the 2012-2016 period. The details are relegated to

Appendix A. The fraction of managers is 18.7 percent, the 90/50 log wage ratio is 0.877,

and the log 50/10 ratio is 0.743. This yields ρ = 1.540, γ = 2.153 and h/ℓ̄ = 0.429.10

The calibration of γ and ρ and h/ℓ̄(τ) is independent of the rest of the parameters,

but comparative statics and optimal taxes are, in general, not independent of the rest

of the parameters. Hence, they need to be specified. One exception is κ, which is a

scaling factor, irrelevant for comparative statics in τ and the optimal tax exercise due

to log utility (notice that κ does not appear separately in equation (21), unlike η). We

thus normalize κ to 1. We set η = 2 in the benchmark, impying a Frisch labor supply

elasticity of 0.5. The current U.S. tax system can be approximated by τ = 0.186 as

estimated for the 2012-2016 period by Heathcote et al. (2020) (see also Guner et al. (2014)

10A relatively high value of γ means that a substantial amount of heterogeneity in the communication
cost is needed to calibrate the model. Communicating about a given task with the worst production
worker takes about four times longer than communicating about it with the best production worker. The
heterogeneity in the communication costs is needed to match the wage inequality at the bottom of the
distribution, as we discuss in the next subsection. A relatively high value of ρ means that the density of
high skills is much smaller than that of low skills. While the worst production worker can solve none of
the tasks that arrive, the best production worker can solve about 48 percent of all tasks. The decreasing
density is needed to match the wage distribution at the top, as we show in Section 6.4.
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Table 1: Baseline Parameters

Parameter Value Target Value Source

Calibrated parameters
ρ 1.540 log 90/50 wage ratio 0.877 CPS
γ 2.153 log 50/10 wage ratio 0.743 CPS

h/ℓ̄ 0.429 Share of managers 0.187 CPS

Parameters set outside the model
κ 1 Disutility of labor Normalization
η 2 Frisch elasticity
τ 0.186 Tax progressivity Heathcote et al. (2020)

G/Y 0.16 Gvt consumption NIPA

This table shows the benchmark parameters. CPS stands for the March supplement of the Current Pop-
ulation Survey (the values are averages over 2012-2016) and NIPA stands for the National Income and
Product Accounts. The details of the data constructions are contained in Appendix A.

for estimates of this and other tax functions). As reported in the National Income and

Product Accounts (NIPA), the government consumption-to-output ratio has been fairly

stable with an average of about 16% since the 1980’s. This is the value we use for

the share of government expenditure relative to GDP. This is also the income-weighted

average tax in the economy. The resulting benchmark parameters are summarized in

Table 1.

We solve the model by discretizing the set of workers’ skills [0, z1] into 1000 equally

spaced gridpoints. This effectively makes the grid endogeneous to the threshold value

z1. All the relevant functions, including the matching function, are then computed using

this grid. As a result, the grid of managers’ skills are not necessarily equally spaced.

6.2 Model Fit

Figure 5 plots the resulting distribution of wages in the benchmark economy (the blue

segment of the solid line corresponds to the wages of the workers and the red segment

to those of the managers) and compares it to the empirical distribution of wages (black

dotted line). The horizontal axis depicts the population percentiles. Table 2 shows
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Table 2: Moments of the Wage Distribution

CPS Data Model

Calibrated moments
log 50/10 ratio 0.743 0.743
log 90/50 ratio 0.877 0.877

Uncalibrated moments
log 25/10 ratio 0.329 0.302
log 50/25 ratio 0.415 0.441
log 75/50 ratio 0.444 0.411
log 90/75 ratio 0.433 0.466
log 95/90 ratio 0.260 0.306
log 99/95 ratio 0.643 0.521
Variance of log wages 0.430 0.378
Gini of wages 0.386 0.362

This table shows the moments of the wage distribution computed using the CPS data (averaged over
2012-2016) and in the calibrated model.

additional moments of the wage distribution in the benchmark economy relative to the

CPS data. Both distributions are remarkably close, despite the fact that we are matching

only the 50-10 and 90-50 log wage ratio. The model-implied wage function is convex

even though the sufficient conditions for Lemma 6 are not satisfied, as γ > ρ and θ′′ > 0.

As both Figure 5 and Table 2 show, the model is slightly less succesful in matching

the wage distribution at the very bottom and the very top. At the bottom of the wage

distribution, the model predicts larger wages than those observed in the data, while at

the very top, the model predicts a somewhat thinner upper tail. For example, the log

99/95 wage inequality, not targeted by the model, is 0.643 in the data and 0.521 in the

model. Overall, however, the model matches the empirical distribution of wages well.

Wage Elasticity to Tax Changes. In our model with endogeneous wages, changes in

taxes imply changes in wages. To the extent that we are interested in optimal taxes,

we need to make sure that the relationship between taxes and wages in the model

matches that in the data. The empirical literature estimates the elasticity of wages to

the (net of) marginal tax rate 1 − MTR as well as the elasticity of wages to the (net
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Figure 5: Distribution of wages, benchmark economy. Median normalized to one. Blue and red segments
of the solid line represent production workers and managers. Dotted black line represents CPS data,
averaged over 2012-2016. The horizontal axis shows the population percentiles.

of) average tax rate 1 − ATR. The broad agreement in the empirical literature is that:

d log w/d log(1 − MTR) > 0 while d log w/d log(1 − ATR) < 0, see Aronsson et al.

(1997), Hansen et al. (2000), Blomquist and Selin (2010) or Holmlund and Kolm (1995).

These papers use Scandinavian data. Lockwood and Manning (1993), Schneider (2005)

and Frish et al. (2020) report similar findings using British, German and Israeli data, re-

spectively. There is less work on the effects of tax changes on wages in the United States.

A notable exception is Moffitt and Wilhelm (1998), who show that wages of rich males

have increased in response to the 1986 U.S. (marginal) tax rate cuts, consistent with the

above literature.

To compare our model to the empirical papers, we solve another version of it in which

we vary the tax progressivity marginally relative to the benchmark value τ = 0.186. We

then run two regressions on the model-generated data before and after this tax change

to estimate the two tax elasticities. We find that: (i) d log w/d log(1 − MTR) = 0.21, and,
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(ii) d log w/d log(1 − ATR) = −0.46.11 These elasticity estimates are not very sensitive

to the magnitude of the tax change. These results are consistent with the literature not

only qualitatively, but also quantitatively. The estimates of d log w/d log(1 − MTR) in

the literature range from 0.15 to 0.8 and the estimates of d log w/d log(1 − ATR) tend to

be between -0.2 and -0.7. 12

Section B.1 in the Appendix discusses additional features of the calibrated model.

6.3 Optimal Taxes

This section solves for optimal taxes from the perspective of a utilitarian government

that puts equal weight on each agent’s utility, as in Section 5. The planner chooses

tax progressivity τ and tax-level parameter λ to maximize welfare subject to being able

to finance a fixed level of government expenditure G; held fixed at the level from the

calibrated model. All remaining parameters, including the communication costs h are

held constant. As a result of the tax change(s), however, labor supply ℓ̄(τ) changes and

the normalized communication costs h/ℓ̄(τ) change as well. We can thus compare the

results of this section to the theoretical results derived for a simpler version of the model

in Section 4.1.

For illustration purposes, we plot aggregate welfare as a function of τ (bearing in

mind that there is an underlying change in λ) as the blue line in Figure 6. The optimal

level of progressivity is 0.108, which is substantially lower than in the current U.S. tax

code, namely 0.186. The welfare gains of optimal taxes are non-negligible at 0.36% in

consumption units. Decreasing tax-progressivity is redistributive: implementing the

11Holding the ATR constant when estimating the elasticity with respect to MTR (and the other way
around), as sometimes done in the literature, yields the following estimates on the model-generated data:
(i) d log w/d log(1 − MTR) = 0.27, and, (ii) d log w/d log(1 − ATR) = −0.53.

12Schneider (2005) estimates that the effect of changes in the ATR on wages is larger in absolute terms
than the effect of changes in the MTR (as in our model). Aronsson et al. (1997) report the same finding
for some specifications of their empirical model.
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Figure 6: Welfare as a function of the progressivity wedge τ, with endogenous wage distribution (blue
line) and exogenous wage distribution (red line).

optimum would harm (approximately) the lower half of the distribution and help the

upper half, as we discuss in more detail below.

For comparison, the red line in Figure 6 shows aggregate welfare as a function of τ

assuming that wages are exogeneously given at the levels from the benchmark calibrated

model. In this case, the optimal progressivity is much higher at τ = 0.341. Indeed, if the

planner implements the progressivity that would be optimal with exogeneous wages in

a world in which wages are endogeneous, the welfare loss is substantial at 3.15%.

With endogeneous wages, the optimal (lower) progressivity implies higher pre-tax

wages for everyone, as shown in Figure 7. This increases welfare by increasing the

first element of the welfare function (21). The result is also consistent with Figure 4 in

Section 4.1. The wage effect is particularly strong at the low end of the wage distribution.

This is the first reason for why with endogeneous wages, optimal tax progressivity is

much lower than with exogeneous wages. The interesting finding is that taxes should

be substantially less progressive than they currently are in the United States. Decreasing

the tax progressivity to the optimal level of τ = 0.108 boosts labor supply (increasing the
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Figure 7: Change in wages between the benchmark progressivity τ = 0.186 and the optimal progressivity
τ = 0.108. The horizontal axis shows the population percentiles. Agents who are workers with τ = 0.108
correspond to the blue part of the curve, while managers correspond to the red part.

first element of the welfare function (21) further) increasing the number of workers each

manager can supervise, thereby decreasing the share of managers from the benchmark

18.7% to 18.2%.13 Average wages increase and while wage inequality increases at the top,

it decreases at the bottom, consistent with the analytical results of Section 4.1. Table 3

summarizes these results by reporting crucial statistics in our endogeneous-wage model

for the various levels of progressivity.

Figures 8 and 9 make the same points graphically. While inequality at the very top

decreases with tax progressivity, it increases elsewhere in the distribution, see Figure 8.

More general inequality indices, such as variance of logs or the Gini coefficient increase

with τ as well, see Figure 9. As equation (21) indicates, the increase in the variance of

log wages is detrimental for welfare. This is the second reason for why our model with

endogeneous wages features low optimal tax progressivity.

13Similar effects are described in the context of size-dependent policies in Lopez and Torres (2020) and
Garicano et al. (2016).
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Table 3: Moments of the Wage Distribution

CPS Data Benchmark Optimum Exo-wage Optimum
τ = 0.186 τ = 0.108 τ = 0.341

log 50/10 ratio 0.743 0.743 0.707 0.835
log 90/50 ratio 0.877 0.877 0.860 0.914
log 95/90 ratio 0.260 0.306 0.311 0.296
log 99/95 ratio 0.643 0.521 0.528 0.503
Variance of log wages 0.430 0.378 0.358 0.431
Gini of wages 0.386 0.362 0.355 0.401
Mean wages – – 1.23% -3.03%
Welfare gains – – 0.36% -3.15%

This table shows the moments of the wage distribution computed using the CPS data (averaged over
2012-2016). The column denoted ’Benchmark, τ = 0.186’ shows the statistics for the calibrated model.
The column denoted ’Optimum, τ = 0.108’ shows the results for the optimal tax level. The column
denoted ’Exo-wage Optimum, τ = 0.341’ shows the statistics in our endogeneous-wage model, if the tax
progressivity τ is set at 0.341, which would be optimal if wages were exogeneous. ’Mean wages’ and
’Welfare gains’ are shown relative to the benchmark model. ’Welfare gains’ are shown as a fraction of
consumption.
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Figure 8: Log-wage ratios as a function of the progressivity wedge τ.
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Figure 9: Variance of log wages and Gini of wages as a function of the progressivity wedge τ.

As for the tax rates that agents face, the first obvious implication of the decline in pro-

gressivity from the calibrated to the optimal level is that marginal taxes decrease for most

agents, see Figure 15. Average taxes, on the other hand, decrease for high-income agents

and increase for low-income agents, see Figure 16. As a result, low-income agents re-

ceive lower transfers (or pay higher taxes), and even though their pre-tax wages increase,

their after-tax wages (=consumption) decrease, see Figure 17. Overall, the decrease in tax

progressivity thus has the expected effect: it increases efficiency by boosting output, but

provides a lower degree of redistribution decreasing welfare of the poor and increasing

that of the rich, see Figure 18. These figures are relegated to Appendix B.2.

6.4 Sources of Wage Inequality

The calibrated parameter values show that the model requires i) heterogeneity in the

time cost of communication, ρ > 0, and ii) a decreasing density of skills, γ > 0. Without

either of those two ingredients, the model cannot simultaneously match both the 90/50

and the 50/10 wage ratio, and the fraction of managers in the data. This is an important
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result, as it shows that it is necessary to generalize the models of Garicano (2000), Gar-

icano and Rossi-Hansberg (2006) (as well as that of Scheuer and Werning (2017)) for a

quantitative assessment of optimal taxes in this class of models.

Figure 10 illustrates this point graphically. The blue line represents all the combina-

tions of the log 50/10 ratio and the log 90/50 ratio that can be generated by a model

with no time-cost heterogeneity (i.e. in a model with γ = 0). In producing the blue

line, we vary the density parameter ρ, but use the value of h that keeps the fraction of

managers to 18.7%, as in the data. This reduces the two-dimensional parameter space

to a one-dimensional one. Clearly, a model with no heterogeneity in the time cost can

produce the required log 50/10 ratio only at the expense of counterfactually reducing

the log 90/50 ratio to very low levels. This scenario requires a density that is signifi-

cantly increasing in z (ρ ≈ −0.7), and so produces relatively few workers of low ability.

Alternatively, the model with no time cost heterogeneity can produce realistic values for

the 90/50 low wage ratio, at the expense of too little inequality at the bottom.

A model with a uniform density of skills cannot match both inequality targets either,

as shown by the red line, which fixes ρ = 0 and varies γ. The figure shows that the

time cost parameter γ is key in determining the wage inequality at the bottom of the

distribution. This is not surprising, given that higher γ makes low skill workers more

costly to their employers relative to high skilled workers. However, the model now

generates too little wage inequality at the top, regardless of the value of γ.

6.5 Additional Quantitative Exercises

Sensitivity to Labor Supply Elasticity. Labor supply elasticity affects optimal taxes in

the expected way. With higher labor supply elasticity, optimal progressivity is expected

to be lower, since labor supply responds more strongly to changes in progressivity, see

Equation 10. In our model, there is an additional effect. Changes in labor supply map

into changes in effective communication costs affecting matching and teamsize, and,

ultimately, wages. As as result, optimal tax progressivity responds even more strongly

38



0 0.2 0.4 0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

U.S.

 = 0

 = 0

Figure 10: Feasible combinations of the log 50/10 ratio and the log 90/50 ratio conditional on
the fraction of managers being 18.7%. Blue line: a model with polynomial distribution but no
time cost heterogeneity, γ = 0, ρ ∈ [−0.72, 2]. Red line: a model with a uniform skill distribution
with time cost heterogeneity, ρ = 0, γ ∈ [−1, 2]. Their intersection corresponds to ρ = α = 0.

to changes in labor supply elasticity. More specifically, we calibrate our model to a

higher labor supply elasticity of 0.75 as suggested by Chetty et al. (2011), implying

η = 4
3 . As we have argued, wages themselves do not depend on η, but we need to

calculate government consumption so that the government consumption-to-output ratio

equals 16%. Government consumption is then held constant in levels when we compute

optimal taxes. We find that for this level of labor supply elasticity optimal τ = 0.024,

meaning that the optimal tax system is almost linear. More generally, our finding that

the optimal tax system is more progressive that the current one in the United States

holds true for a range of parameters, namely for any labor supply elasticity larger than

approximately 1
3 .

Wage Inequality and Optimal Tax Progressivity. Changes in wage inequality can oc-

cur for several reasons: the underlying distribution of skills G can change, the level time

cost parameter h can change, or the heterogeneity in time cost can change. All changes
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Figure 11: Optimal tax progressivity τ∗ as a function of the variance of log wages, depending on
the source of the difference.

might imply the same change in wage inequality, as measured, for example, by the vari-

ance of log wages. However, the implications for the optimal tax progressivity can be

very different. Figure 11 shows the optimal progressivity parameter τ for each of the

three cases, as a function of the resulting variance of log wages. It shows not only that

the optimal tax response depends very strongly on what the source of the differences

is, but that there could also be more than one value of the optimal progressivity for a

given variance of log wages; depending on where the wage inequality comes from. This

reasoning would also hold for other inequality statistics.

A Naive Government. We now consider choices of a naive government, which believes

that the wage structure is exogenous, and maximizes welfare under that perception. Ob-

viously, that perception is wrong, and the naive government will realize that once the

reform is implemented. We thus consider a sequence of reforms, where the planner, real-

izing that the wage distribution is not what he expected, implements additional reform,

again under the assumption that the wage distribution is exogenous. Such a sequence
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Figure 12: Solution to the naive government’s problem, first 8 rounds of reform. Arrows show
perceived welfare gains.

of reforms converges to a self-confirming equilibrium, where the naive planner takes

the current wage distribution as given, and the distribution replicates itself post-reform.

Figure 12 shows such a sequence of reforms. In the first round of the reform, the pro-

gressivity wedge chosen is equal to the one that was chosen under the exogenous wage

distribution above, i.e. 0.341. However, the wage distribution changes as a result of the

tax reform: average wages decrease, wage dispersion increases, and welfare decreases

drastically, see Figure 12a. Paradoxically, an increase in the wage dispersion compels the

naive government to increase the progressivity wedge even further as Figure 12b shows,

and the vicious cycle is repeated. After several rounds of such ill-conceived tax reforms,

the progressivity wedge converges to a self-confirming value of 0.361. The resulting

welfare is substantially lower, namely by 3.82%, than in the original U.S. benchmark.

Optimal Taxes Over Time. Inequality has increased substantially in the last several

decades. For example, according the the CPS data, the log 90-50 wage ratio increased
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Table 4: Calibrated Parameters Over Time

Parameter Target Parameter Value Target Value Parameter Value Target Value
2012-2016 2012-2016 1979 - 1983 1979 - 1983

ρ log 90/50 ratio 1.540 0.877 1.622 0.697
γ log 50/10 ratio 2.153 0.743 3.168 0.686

h/ℓ̄ Share managers 0.429 0.187 0.367 0.141

This table shows calibrated parameters along with the targets for two time periods, 2012-2016 (benchmark)
and 1979 - 1983. All target values are averages computed using the CPS data. The details of the data
constructions are contained in the appendix.

from 0.697 to 0.877 from 1979-1983 to 2012-2016 and the log 50-10 wage ratio increased

from 0.686 to 0.743 over the same time period. At the same time, the fraction of managers

increased from 14.1% to 18.7%. In this section we calibrate the model to 1979 - 1983 and

compute optimal tax progressivity. We then compare the optimal tax progressivity in

1979-1983 to that which we computed for the benchmark period 2012-2016.

Table 4 compares the calibration of the model in 1979-1983 to the benchmark. Heath-

cote et al. (2020) report that the progressivity wedge τ was equal to the same value

of 0.186 in 1979-1983 and we use this estimate in the calibration. The government

consumption-to-GDP ratio is held constant at 16%. No parameter, other than the cal-

ibrated ones, changes between the calibrations. As a result, labor supply ℓ̄(τ) does not

change and the change in h/ℓ̄(τ) is, in fact, a change in h.

Inequality and the share of managers was lower in 1979-1983. The model’s way of

matching this difference is a smaller value of h, which decreases the share of managers,

the 50-10 log wage ratio and the 90-50 log wage ratio. The larger γ decreases the com-

munication costs overall, but makes differences among workers larger. This decreases

the share of managers in 1979-1983 even further, but mitigates the change in the 50-10

log wage ratio. However, it further decreases the 90-50 log wage ratio. As a result, the

90-50 log wage ratio changes more than the 50-10 log wage ratio. The change in ρ has a

small effect.14

14Given Assumption 1 and the assumption that the task distribution is not changing over time, our
results should be interpreted as saying that the model can match the observed changes in the U.S. wage

42



We find that the optimal labor tax progressivity in 1979-1983 is τ = 0.095, lower

than in the U.S. tax code and lower than the optimal τ for 2012-2016, which is 0.108. In

response to an increase in inequality the planner makes the tax code more progressive.15

7 Conclusions

In this paper, we study the effects of taxation in a model with knowledge based hi-

erarchies. In the model, agents self-select into being workers or managers based on

their ability to solve tasks. Individual labor supply is endogeneous, leading to impor-

tant interactions between taxes and wage inequality. If taxes become more progressive,

managers work less, which decreases their wages as well as those of their employees

(workers). We calibrate a one-management-layer version of the model to the U.S. wage

data. We find that the optimal tax schedule is substantially less progressive than the one

currently in place in the United States. Ignoring the fact that wages are endogeneous

would make the planner choose a substantially higher level of progressivity leading to

large welfare losses.

inequality over time by changes in time communication costs relative to the distribution of tasks. Caicedo
et al. (2019) report a similar finding in a more complex model.

15Suppose now, for comparison, that the planner would have to finance the same level of G in 2012-2016
as in 1979-1983. In addition, let us take into account the empirical fact that GDP per capita grew by a
factor of 1.75 over that period. This would effectively mean that the planner has to finance a smaller
G-to-Y in 2012-2016 compared to 1979-1983. In this case, the optimal progressivity in 2012-2016, driven
solely by changes in the parameters h, γ and ρ that affect wage inequality, would be even larger, namely
0.142. Assuming that the same G-to-Y needs to be financed does not affect wage inequality, but brings the
2012-2016 optimal τ down to 0.108.
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Appendix

A Data Construction

CPS Data. We use the March Current Population Survey (CPS) supplements from 1962
to 2018 (contains information covering 1961 to 2017). In all computations, the CPS sam-
ple weights are used. We follow Acemoglu and Autor (2011) in our sample selection and
include only full time, full year private employees between the ages of 16 and 64. The re-
striction of full time, full year employees includes only those employees who worked at
least 40 weeks in a year and more than 35 hours in a week. Self-employed are excluded
from the sample as we do not have self-employed in the model.

Annual earnings are simply wage income, variable incwage (not including business
income, variable incbus). Hourly earnings (wages) are then the ratio of annual earnings
and the product of weeks worked in a year and typical hours worked in a week. Since
data on hours is only available after the 1976 CPS, our final sample includes data from
this sample to the 2018 CPS data. We only make use of a subset of the years as explained
in the main text. Following Heathcote et al. (2010), we drop those employees that report
a wage rate less than half the federal minimum wage.

The share of managers is computed as the ratio of the number of managers divided
by the total number of managers and non-managerial employees (self-employed are ex-
cluded again), where the definition of a managerial occupation follows Dorn (2009) and
Autor and Dorn (2013).

Government Consumption-to-GDP Ratio. The government consumption-to-output ra-
tio is recovered from the National Income and Product Accounts (NIPA) data. It is de-
fined as the ratio of nominal government consumption expenditure (line 15 in NIPA
Table 3.1) to nominal GDP (line 1 in NIPA Table 1.1.5).
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Figure 13: Distribution of wages w(z) (red and blue line) and productivities F(z) (black solid line) in the
benchmark economy. Wages are not normalized in this figure. The horizontal axis shows the population
percentiles.

B Additional Results

B.1 Benchmark Model Properties

The wage distribution differs significantly from the underlying distribution of abilities.
Agents at all skill levels experience significant welfare gains relative to autarky, in which
every agent would have a wage equal to F(z). Workers gain from being matched with
a manager that provides advice for some of their problems, while managers gain from
being able to supervise production workers and not having to solve tasks on their own.
Figure 13 shows the distribution of skills vs. the distribution of wages/productivities.

Figure 13 shows that the efficiency gains are largest at the top of the wage distri-
bution. This is because very high ability agents are able to supervise a relatively large
number of production workers, as shown in Figure 14. The figure shows that while the
worst manager supervises about two workers, the top manager supervises ten times as
many workers.
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Figure 14: Teamsize in benchmark economy. The horizontal axis shows the population percentiles (of the
managers). The vertical axis shows the number of workers supervised by a given manager.

B.2 Optimal Tax Progressivity Relative to Calibrated Benchmark

This section presents additional results comparing the properties of the optimum with
the calibrated benchmark.
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Figure 15: Marginal tax rates. The blue (workers) and red (managers) line is the benchmark calibrated
economy with τ = 0.186. The yellow (workers) and purple (managers) line is the counterfactual economy
with τ = 0.108. The horizontal axis shows the population percentiles.
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Figure 16: Average tax rates. Blue (workers) and red (managers) line is the benchmark calibrated econ-
omy with τ = 0.186. Yellow (workers) and purple (managers) line is the counterfactual economy with
τ = 0.108. The horizontal axis shows the population percentiles.
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Figure 17: Change in after-tax income/consumption between the benchmark progressivity τ = 0.186 and
the optimal progressivity τ = 0.108. The horizontal axis shows the population percentiles. Agents who
are workers with τ = 0.108 correspond to the blue part of the curve, while managers to the red part.
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Figure 18: Welfare gains in fraction of consumption between the benchmark progressivity τ = 0.186 and
the optimal progressivity τ = 0.108. The horizontal axis shows the population percentiles. Agents who
are workers with τ = 0.108 correspond to the blue part of the curve, while managers to the red part.
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C Proofs Not For Publication

Lemma 6.

1. The functions wi are increasing in x for all i = 0, . . . , I + 1.

2. If θ′′ < 0 and f ′ ≥ 0 then the functions are convex for all i = 0, . . . , I + 1.

3. The functions wi satisfy w′
i(z1) = w′

i+1(z) and w′′
i (z1) = w′′

i+1(z) for i = 0, . . . , I − 2.

Proof. Part 1. The wage functions satisfy, using (15), the following differential equations

w′
i(x) = −θ′ (mi(x))wi+1(x), i = 0, 1, . . . , I. (22)

and so are increasing. The top manager’s wage is

wI(x) =
F (mI(x))− w0(x)

θ (mI−1(x))
− θ (x)

θ (mI−1(x))
w1(x) . . . − θ (mI−2(x))

θ (mI−1(x))
wI−1(x). (23)

Differentiating the function wI , we obtain

w′
I(x) = −

θ′ (mI−1(x))m′
I−1(x)

θ (mI−1(x))
wI(x) + f (mI(x))

m′
I(x)

θ (mI−1(x))
− w′

0(x)
θ (mI−1(x))

− θ′(x)w1(x) + θ(x)w′
1(x)

θ (mI−1(x))
− θ′(m1(x))m′

1(x)w2(x) + θ(m1(x))w′
2(x)

θ (mI−1(x))

. . . −
θ′(mI−2(x))m′

I−2(x)wI−1(x) + θ(mI−2(x))w′
I−1(x)

θ (mI−1(x))
.

Using m′
i(x) = θ (mi−1(x)), (22) and cancelling terms we simplify to

w′
I(x) = f (mI(x)) .

The derivative is positive, and so wI is increasing in x.

Part 2. Differentiating again, w′′
I (x) = f ′ (mI(x))m′

I(x), which is positive if f ′ ≥ 0, and so wI
is convex. Differentiating marginal ages below the top layer, we get that for i = 0, 1, . . . , I − 1,

w′′
i (x) = −θ′′ (mi(x))wi+1(x)− θ′ (mi(x))w′

i+1(x).

Under the assumptions of the lemma, w′′
i > 0 and so the wage function is convex.

Part 3. Equating the derivatives for i = 0, 1, . . . I − 2,

w′
i(z1) = −θ′ (mi(z1))wi+1(z1) = −θ′ (zi+1)wi+1(z1) = −θ′ (mi+1(z))wi+2(z) = w′

i+1(z),
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where the penultimate inequality follows from the properties of the matching function and con-
tinuity of the age function. Similarly for second derivatives:

w′′
i (z1) = −θ′′ (mi(z1))wi+1(z1)− θ′ (mi(z1))w′

i+1(z1)

= −θ′′ (zi+1)wi+1(z1)− θ′ (zi+1)w′
i+1(z1)

= −θ′′ (mi+1(z))wi+2(z)− θ′ (mi+1(z))w′
i+2(z)

= w′′
i+1(z)

54


	Introduction
	Related Literature
	Setup
	The Equilibrium

	Characterizing the Equilibrium
	An Example

	Optimal progressivity
	Quantitative Analysis
	Model Calibration
	Model Fit
	Optimal Taxes
	Sources of Wage Inequality
	Additional Quantitative Exercises

	Conclusions
	Data Construction
	Additional Results
	Benchmark Model Properties
	Optimal Tax Progressivity Relative to Calibrated Benchmark

	Proofs Not For Publication

