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Abstract

I study the distributional impact of industrial robots using administrative data

that link workers, firms, and robots in Denmark. I estimate a dynamic model

of how firms select into and reorganize production around robot adoption. I

find that firms expand output, lay off production workers, and hire tech work-

ers when they adopt robots. I embed the firm model into a general equilibrium

framework that endogenizes the dynamic choice for workers to switch occu-

pations in response to robots. To this end, I develop a fixed-point algorithm

for solving the general equilibrium that features two-sided (firm and worker)

heterogeneity and dynamics. I estimate that robots have increased average real

wages by 0.8 percent but have lowered the real wages of production workers

by 5.4 percent. Welfare losses from robots are concentrated on old production

workers, as younger workers benefit from the option value of switching into

tech.
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1 Introduction

The arrival of industrial robots in modern manufacturing is one of the most salient

technological changes in recent decades. Defined as “automatically controlled, re-

programmable, multipurpose manipulators programmable in three or more axes”

(ISO 8373), industrial robots were developed for car assembly in the 1990s but have

since diffused widely in manufacturing. Today, robot adopters represent half of

Danish manufacturing sales, and adoption rates are accelerating. The potential

labor displacing effects of industrial robots have received much public attention,

culminating when the European Parliament voted in 2017 on a proposal to tax the

use of robotics (Delvaux, 2016).

This paper asks who gains and who loses when industrial robots are adopted.

To answer this question, I use administrative data that link workers, firms, and

robots in Denmark. My first contribution is to combine event studies with a struc-

tural model that rationalizes how firms select into and reorganize production around

robot adoption. I find that firms expand output by 20 percent but shrink their wage

bill on production workers, such as assemblers and welders, by 20 percent when

they adopt industrial robots. Firms’ total wage bill increases 8 percent as labor

demand shifts toward tech workers, such as skilled technicians, engineers, and re-

searchers. I structurally estimate a dynamic model of the firm that matches these

reduced-form responses to robot adoption, the observed size premium in the se-

lection of firms into robot adoption, as well as the S-shape in robot diffusion over

time.

To understand the macroeconomic implications of robot adoption, I embed the

firm model into a general equilibrium framework that endogenizes the dynamic

option for workers to reallocate across occupations. The estimated general equilib-

rium model captures several indirect effects of industrial robots that are not iden-

tified in micro-level diff-in-diff designs. These indirect effects include the extent to

which the expansion of robot adopters crowds out non-adopter firms in product

and labor markets, as well as the ability of workers to reallocate across occupations

in response to equilibrium wage pressures from robot diffusion.

Using the general equilibrium model, I estimate that industrial robots have in-
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creased average real wages by 0.8 percent, but with substantial distributional con-

sequences. At the opposite ends of the spectrum, I find that production workers

employed in manufacturing have lost 5.4 percent in real wages, while tech workers

have gained 3.3 percent. I find that welfare losses from robots are concentrated on

old production workers. Younger workers, with less specific skills and a long ca-

reer ahead of them, benefit from the option value of switching into tech and other

occupations whose premiums rise as robots diffuse in the economy.

Occupational reallocation in response to industrial robots can account for 26

percent of the fall in the employment share of production workers and 8 percent

of the rise in the employment share of tech workers in Denmark since 1990. The

adoption of industrial robots has thus been a driver of employment polarization

(Autor and Dorn, 2013; Goos et al., 2014). Without these labor supply responses,

I find that the real wage loss of production workers from robots would have been

eight times larger.

These findings highlight the importance of allowing for labor supply responses

when evaluating the distributional impact of industrial robots. I use a dynamic

occupational choice model that represents the state of the art for studying labor

market dynamics in response to trade liberalizations (Dix-Carneiro, 2014; Traiber-

man, 2019), and I estimate the barriers to occupational switching using observed

worker transitions together with a conditional choice probability (CCP) estimator

that controls for the unobserved continuation values of workers.

As a final counterfactual exercise, I evaluate the dynamic incidence of a robot

tax. The undistorted equilibrium of the model is efficient (except for markups in

product markets), but I use the estimated model to quantify the distributional im-

plications of a robot tax and to evaluate its impact on aggregate economic activity.

I find that a temporary robot tax can be an effective way to slow the diffusion of

industrial robots. However, compared to a permanent tax of similar magnitude,

a temporary tax creates larger welfare losses per dollar of revenue collected and

a larger fraction of its deadweight burden falls on workers. These larger adop-

tion elasticities and relative efficiency losses reflect the forward-looking nature of

adoption whereby firms foresee that the temporary tax will expire and postpone

adoption until then. Based on the estimated responses, I conclude that a robot tax
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is an ineffective and costly way to redistribute income to production workers in

manufacturing.

Evaluating the counterfactuals above requires solving the firm and worker prob-

lems jointly, and I develop a fixed-point algorithm for solving the dynamic general

equilibrium of this class of models. A key property of the general equilibrium

model is that the firm and worker problems are separable conditional on the path

of wages. This separable structure is highly useful in estimation and in simula-

tion. First, it allows me to estimate the firm (worker) model without specifying

the problem of the worker (firm) by simply conditioning on the observed path of

wages. Second, it breaks the curse of dimensionality wherein firm variables be-

come states for the worker, and worker variables become states for the firm. The

separable structure enables me to incorporate the rich firm and worker heterogene-

ity estimated in the micro data, and still be able to compute the general equilibrium

featuring joint firm and worker dynamics.

This paper builds on several literatures. The most immediately related work

is a recent series of papers that have collected reduced-form evidence on how in-

dustrial robots affect firm performance and labor market outcomes (Acemoglu and

Restrepo, 2020; Bessen et al., 2020; Graetz and Michaels, 2018; Koch et al., 2021). I

complement this work with two theoretical contributions. First, I estimate a model

of firm robot adoption that allows me to interpret the new reduced-form evidence

in terms of structural primitives. Second, I embed the model into a general equilib-

rium framework, enabling me to extend the identified micro-level effects to quan-

tify the macroeconomic impacts of industrial robots. The two-sided nature of the

general equilibrium model allows me to connect evidence on firm (e.g., Koch et al.

(2021)) and worker outcomes (e.g., Dauth et al. (2021)) of robotization.

The methodology developed in this paper builds heavily on the literature of dy-

namic discrete choice models. The robot adoption model draws on the Rust (1987)

optimal stopping model, and the labor supply module follows closely a series of

structural labor papers, including Dix-Carneiro (2014) and Traiberman (2019). In

the structural estimation, I build on the work by Doraszelski and Jaumandreu

(2018) on estimating production functions with endogenous technical change, and

I apply the methods of Arcidiacono and Miller (2011) on conditional choice proba-
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bility (CCP) estimation of dynamic discrete choice models.

The remainder of the paper is structured as follows. Section 2 describes the

Danish data and collects stylized facts on firm robot adoption. Sections 3 and 4

develop and estimate a partial equilibrium model of firm robot adoption. Section

5 estimates the labor supply module. Section 6 unites the firm and worker blocks,

and uses the general equilibrium model to estimate the distributional impact of

industrial robots and to evaluate the incidence of a robot tax. Section 7 concludes.

2 Data

I use register data that link workers, firms, and robots in the Danish economy from

1995 to 2015. The dataset is the product of merging the Danish matched employer-

employee data with two new micro data sources on firm robot adoption. Appendix

OA1 describes each of the data sources in detail. The linked dataset contains un-

usually rich information on both firms and workers, making it ideally suited to

studying the distributional impacts of industrial robots.

To measure robot adoption at the firm level, I leverage the fact that almost all

industrial robots used in Denmark are not actually produced in the country. In

particular, once an imported robot crosses the country border, it is recorded by

the customs authorities under the 6-digit product code 847950 Industrial Robots. I

supplement the customs records with a representative robot adoption survey con-

ducted by Statistics Denmark, and I validate that these micro data sources on robot

adoption align with industry-level measures used in the prior literature.

2.1 Stylized Facts on Firm Robot Adoption

In this section, I present two stylized facts that will inform the modeling choices

in Section 3. The first fact concerns the observed lumpiness of firm robot expendi-

tures, which motivates modeling robot adoption as a one-off decision. The second

fact documents the non-random selection of firms into robot adoption, which in-

forms the specification of a selection model for firm robot adoption.
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Fact 1. Robot Adoption Is Lumpy

Table 1 reports summary statistics for the robot adoptions identified from firm cus-

toms records in Appendix OA1.3. The take-away from the table is that robot adop-

tion is lumpy. Out of the sample adopters, around 70 percent invest in a single year

only, and the peak year of investment accounts on average for 90.5 percent of total

firm robot expenditures. Adopting firms purchase robot machinery for an average

of around 600,000 US dollars. This discrete nature of robot adoption motivates the

choice in Section 3 to model robot adoption as a discrete choice problem.

Table 1: Firm Robot Investments

Share of adopters with investments in one year only (percent) 70.4
Share of investments in max year (percent) 90.5
Robot machinery expenditures ($1000) 597.3

Notes: This table shows summary statistics for the robot adoptions (HS 847950) identified from customs records
in Appendix OA1.3. Robot machinery expenditures are total expenditures in the HS1992 code in the data period.

Fact 2. Larger Firms Select into Robot Adoption

Table 2 shows outcomes of the robot adopters in the year before adoption. The

key feature that sets robot adopters apart is that they are substantially larger. The

model in Section 3 rationalizes the selection into robot adoption by combining firm

heterogeneity with fixed costs of adoption, such that it is the firms with the largest

expected efficiency gains from robots that will choose to adopt the technology.

Once I match on firm sales and line worker wage bill shares (Column 3), the

adopters look similar to the match firms on employment, wages, and wage bill

shares across occupations. Table OA2 shows that the firms pay similar wages to

each of the different occupations. The fact that adopters and match firms are bal-

anced on these non-targeted outcomes provides supportive evidence for a model

assumption in Section 3 that robot adoption is driven by an adoption cost shock
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once selection based on observable firm heterogeneity is taken into account.

Table 2: Firm Outcomes in the Year Before Robot Adoption

Adopters Industry Matches P-value
(A-M)

log Sales 9.54 7.61 9.45 0.37
(0.07) (0.07) (0.07)

log Wage Bill 8.19 6.41 8.15 0.66
(0.07) (0.07) (0.07)

log Employment 4.06 2.40 4.02 0.66
(0.06) (0.06) (0.06)

Wage bill shares (percent)
– Managers 12.54 9.12 10.97 0.02

(0.49) (0.49) (0.44)
– Tech 16.00 6.89 14.30 0.14

(0.86) (0.86) (0.78)
– Sales 12.21 10.51 12.50 0.64

(0.42) (0.42) (0.47)
– Support 7.53 4.86 7.79 0.69

(0.41) (0.41) (0.52)
– Transportation/warehousing 5.89 3.62 6.76 0.23

(0.49) (0.49) (0.55)
– Line workers (mostly production) 39.92 47.03 40.68 0.61

(1.07) (1.07) (1.04)
Joint orthogonality (F test) 0.14
Observations 454 454 454 908

Notes: “Joint orthogonality” represents a test of the joint hypothesis that all coefficients equal zero when the adopter indicator
is regressed on the nine outcome variables in Table 2. Column 1 (Adopters) shows mean outcomes for robot adopters in the
year before adoption. Column 2 (Industry) shows averages for randomly chosen non-adopters within the same industry-
year cell as the adopters (one-to-one). Column 3 (Matches) shows averages for match firms within the same industry-year
cell. These matches each have the minimum distance to an adopter with respect to log sales and line worker wage bill
share (levels and two-year changes); see Appendix OA1.5.1 for details. Column 4 (P-value A-M) shows p-values for the null
hypotheses that Adopters (column 1) and Matches (column 3) have the same population mean.

3 A Model of Firm Robot Adoption

In this section, I develop a partial-equilibrium model of a manufacturing firm’s de-

cision to adopt industrial robots. A firm in the model faces a dynamic choice of

whether to adopt the robot technology and a sequence of static decisions to hire

workers and use intermediate inputs for production. The optimal adoption deci-
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sion trades off a sunk cost of robot adoption with gains in future profits from being

able to operate the robot technology.

In Sections 3.1 and 3.2, I characterize the firm’s static production problem taking

the robot technology choice as given. In Section 3.3, I then characterize the firm’s

dynamic problem of adopting robot technology. The firm problem is linked to the

worker’s problem in general equilibrium but only through the path of wages. This

separable structure allows me to study and estimate the firm model in isolation by

conditioning on the observed path of wages, and postpone the specification of the

worker’s problem to Section 5.

3.1 Production Technology

A manufacturing firm j uses workers of different occupations L ∈ R
|O|
+ and inter-

mediate inputs M ∈ R+ according to the CES production function

Yjt = F(Mjt, Ljt|Rjt, ϕjt) = zHjt

{
M

σ−1
σ

jt + ∑
o∈O

z
1
σ
ojtL

σ−1
σ

ojt

} σ
σ−1

with (1)

zHjt = exp(ϕHjt + γHRjt) (2)

zojt = exp(ϕojt + γoRjt) (3)

Firms are heterogeneous with respect to a vector of exogenous baseline produc-

tivities ϕ ∈ RO+1 and an endogenous robot technology state R ∈ {0, 1}. The

parameter γH captures the effect of robot technology on firm Hicks-neutral pro-

ductivity zH, and the parameters γo govern how robot technology changes the rel-

ative productivities of worker occupations in production zo (measured relative to

intermediate inputs M).1

In modeling robot adoption as a technology choice, I follow a growing literature

arguing for task-based models to study automation (Acemoglu and Autor, 2011;

Acemoglu and Restrepo, 2018). In Humlum (2019), I derive the specification in

1Intermediate inputs M include all non-labor inputs including materials and conventional cap-
ital equipment. I measure payments to these intermediate inputs as the part of firm sales that are
not paid to labor or profits. As Section 3.3 will make clear, industrial robots are different from other
non-labor inputs in that their adoption involves a change of production technology that is subject
to a sunk robot adoption cost.
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Equation (1) from a micro-founded model in which robots substitute for production

tasks performed by workers. I model robot technology as a binary state R ∈ {0, 1}
to reflect the fact that most robot users invest in robots in a single year only (Fact 1

from Section 2.1).

3.2 Demand and Flow Profits

The firm faces an iso-elastic demand curve

Yjt = YMt × (Pjt/PMt)
−ε, (4)

where YMt is the aggregate manufacturing demand and PMt is the manufacturing

price index. The firm takes the vector of factor prices wt as given, such that the flow

profit function reads

πt(R, ϕ) = max
X

{
PMtY

1
ε
MtF(X|R, ϕ)1−1/ε − wT

t X
}

= ΩtCt(R, ϕ)1−ε, (5)

where Ct denotes the unit cost function, Ωt is a common profit shifter, and the static

inputs are stacked into the vector X = (M, L).2 By lowering production costs Ct,

the robot technology allows firms to scale up output and increase flow profits.

The key assumption in Equation (1) is that the production function admits a

static factor demand system (satisfying Equation (5)) that is invertible in firm pro-

ductivities. Invertibility allows me to control for unobserved firm productivities

by matching on observed factor choices, similar to the proxy variable approach to

production function estimation (Ackerberg et al., 2015; Levinsohn and Petrin, 2003;

Olley and Pakes, 1996). Berry et al. (2013) show that a demand system is invert-

ible if and only if it satisfies a “connected substitutes” condition. The set of such

production functions includes CES as in Equation (1), non-homothetic CES, nested

CES, mixed CES, and translog. Appendix OA2.2.3 relaxes the robot technology ef-

2The unit cost function and profit shifter are given by the CES expressions

Ct(R, ϕ) =
1

zH(R, ϕ)

{
∑

x∈X
zx(R, ϕ)w1−σ

xt

} 1
1−σ

, Ωjt = Pε
MtYMt(ε− 1)(ε−1)ε−ε. (6)
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fects in Equation (2)-(3) to a distributed lag model to account for any adjustment

dynamics in the transition of firms to robot production. The demand curve in Equa-

tion (4) can be relaxed to an arbitrary downward-sloping function as considered in

Doraszelski and Jaumandreu (2018). In Humlum (2019), I derive an extension of

the model where firms face upward-sloping labor supply curves and thus do not

take wages as given in Equation (5).

3.3 Adoption of Robot Technology

The firm faces a dynamic decision about whether and when to adopt the robot tech-

nology R. The optimal adoption decision trades off a sunk cost of robot adoption

with gains in future profits from being able to operate robot technology. The sunk

adoption cost includes a common time-varying component cR
t and an idiosyncratic

component εR
jt. The adoption decision is essentially an optimal stopping problem

that is reminiscent of the seminal work on bus engine replacement by Rust (1987).

The value of a firm is represented by the Bellman equation

Vt(0, ϕ) = max
R∈{0,1}

πt(0, ϕ)− (cR
t + εR

jt)× R + βEtVt+1(R, ϕ′) (7)

Vt(1, ϕ) =
∞

∑
τ=0

βτπt+τ(1, ϕt+τ). (8)

Robot technology does not depreciate in the baseline specification of the model.3

Firm baseline productivities evolve according to the Markov process

ϕjt+1 = gt(ϕjt, ..., ϕjt−k) + ξ jt+1, ξ jt+1 ⊥⊥ (ϕjt, ..., ϕjt−k), (ε
R
jt, ..., εR

jt−l). (9)

The idiosyncratic adoption cost shocks εR
jt are drawn i.i.d. from a cumulative

distribution function F such that the probability that a firm adopts robot technology

is

Pt(∆Rjt+1 = 1) = F
(

β
(
EtVt+1(1, ϕjt+1)−EtVt+1(0, ϕjt+1)

)
− cR

t

)
(10)

3Appendix OA2.7 specifies and estimates a model extension in which robots deteriorate at a
fixed rate.
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The multiplicative productivity effects of robots in Equations (2) and (3) imply that

firms that operate on a larger scale will be better able to reap the benefits of robot

technology. Combined with the fixed component of robot adoption costs cR
t , this

allows the model to rationalize the observed size premium in robot adoption (Fact

2 from Section 2.1). It is, however, worth noting that the model also allows for

variable costs of robot adoption through the γo parameters. Robot production will,

for example, require more tech workers if γT is positive. The adoption model also

implies that larger firms will spend more on robots when they adopt because these

firms will be willing to pay a higher idiosyncratic adoption cost εR
jt.

The robot adoption model features two key simplifying assumptions about robot

investment behavior. First, robot adoption is treated as a one-off decision. This as-

sumption is motivated by the observed lumpiness (Fact 1 in Section 2.1) whereby

most robot users invest entirely in a single year. Appendix OA2.7 estimates a model

extension in which robots deteriorate at a fixed rate, thereby leaving scope for re-

placement investments. Second, firms cannot receive larger relative robot produc-

tion effects γ by spending more on robots.

Equation (7) entails a key timing assumption that robot adoption is decided

one year in advance. Combined with the Markovian structure on the productivity

process in Equation (9), this timing assumption will be key to separating out the

causal impact of robot adoption on firm productivities in Section 4.4

4 Structural Estimation of Firm Robot Adoption

In this section, I estimate the robot adoption model presented in Section 3. The

structure of the model allows me to estimate its parameters in sequence. In Sec-

tions 4.1 to 4.3, I estimate the parameters of firm production technologies without

having to specify other parameters of the adoption model, including robot adop-

tion costs. In Section 4.4, I then estimate the cost parameters of robot adoption. I set

the elasticity of demand and the time discount factor to conventional values from

4The timing assumption on investment decisions (a one-year time-to-build) combined with a
Markov process for firm productivities is a common assumption in the production function estima-
tion literature, including Olley and Pakes (1996) and Doraszelski and Jaumandreu (2013).
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the literature (ε = 4, β = 0.96).5

4.1 Elasticity of Substitution Between Production Tasks

In this section, I estimate the elasticity of substitution between production tasks, σ.

I distinguish between labor tasks of production workers, tech workers, and other

workers.6 To preview, I use the model structure to derive an instrumental variables

strategy, and I estimate that tasks are complements in firm production.

The first-order conditions for cost minimization in Equation (5) imply that firm

factor demands satisfy the following relationship

log(Lo′ jt)− log(Lojt) = −σ(log(wo′ jt)− log(wojt)) + log(zo′ jt)− log(zojt) (11)

The challenge in using Equation (11) to estimate σ is the classic simultaneity prob-

lem (Marschak and Andrews, 1944) that wages wjt may be correlated with firm

productivities zjt, which constitute the regression error term in Equation (11). In

Humlum (2019), I derive a model extension in which firms face upward-sloping

labor supply curves, thus creating an explicit link between firm productivities and

wages.

I use the structure of the model in Section 3 to derive a rational expectations

generalized method of moments (GMM) estimator that explicitly solves this simul-

taneity problem. The identification strategy builds on the insight of Doraszelski

and Jaumandreu (2018) that the Markovian structure on firm productivities im-

plies that past factor choices Xjt−1 and prices wjt−1 must be uncorrelated with the

current productivity innovations ξ jt from Equation (9). This restriction allows me

to estimate σ from the moment condition

E
[

Aoo′(Qjt−1)(ξojt − ξo′ jt)
]
= 0, (12)

5I follow Bloom (2009) and Asker et al. (2014), who calibrate the elasticity of demand ε to 4 to
reflect a markup on output prices of 1/3 and calibrate the annual discount rate β to the data reported
in King and Rebelo (1999).

6The classification of worker tasks builds on the occupational grouping of Bernard et al. (2017);
see Appendix OA1.1 for details.
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where Aoo′ is a vector function of the instruments Qjt−1, including log(Xjt−1) and

log(wjt−1). The derivation of this moment condition closely follows Doraszel-

ski and Jaumandreu (2018), and I therefore relegate the derivations to Appendix

OA2.1. The key idea is to, first, break the productivity error term zjt in Equation

(11) into the predictable component gjt and the innovation ξ jt. Since firms behave

with rational expectations, the unforeseeable innovations ξ jt must be uncorrelated

with past decisions and prices of firms. To the extent that lagged factor prices and

decisions correlate with current factor prices, they thus constitute valid and rele-

vant instruments for estimating the substitution elasiticity σ.

I estimate the moment conditions using a two-step GMM procedure with Ap-

pendix OA2.1 providing additional details on the estimation problem. The GMM

estimate of the elasticity of task substitution σ is 0.49, which implies that tasks are

complements in firm production. This estimate is based on the Danish matched

employer-employee data from 1995 to 2015.

To place this estimate in the literature, Doraszelski and Jaumandreu (2018) es-

timate that the elasticity of substitution between labor and materials lies between

0.4 and 0.8, while Raval (2019) estimates that the elasticity of capital-labor substi-

tution to falls between 0.3 and 0.5. There is, to my knowledge, no estimate in the

existing literature of the micro elasticity of substitution between worker tasks, and

one contribution of this section is to provide such an estimate.7

4.2 Robot Technology

In this section, I estimate the parameters of robot technology γ, a key input for eval-

uating the distributional impact of industrial robots. In Section 4.2.1, I first use the

model in Section 3 to derive an identification strategy that is based on event studies

of firm robot adoption. In Section 4.2.2, I then present the estimation results, which

show that industrial robots increase production efficiency but cause a substantial

bias in technology away from production workers and toward tech workers and

intermediate inputs.

7An important reason for the absence of such an estimate is the lack of micro data on the labor
tasks employed in firms. The detailed occupational codes in the Danish data are unusually rich in
this regard.
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4.2.1 Identification of Robot Technology

The challenge in identifying the robot technology is that firms endogenously select

into robot adoption based on their baseline productivities. To see this explicitly,

we can recover productivities by inverting the first-order conditions to the factor

demand system in Equation (5)

zojt = lojt −mjt + σ(log wojt − log wMjt) (13)

zHjt =
1

ε− 1
mjt +

σ

ε− 1
log wMjt +

(σ− ε)

(σ− 1)(ε− 1)
log{w1−σ

Mjt + ∑
o

zojtw1−σ
ojt }

(14)

where lower-case factor choices denote log transforms. With these productivities

recovered, it is now tempting to use Equations (2)-(3) to run the regression

log(zjt) = γRjt + ϕjt (15)

The issue with using Equation (15) as an estimating equation is that firms adopt

robots Rjt based on their expected baseline productivities ϕjt (see Equation (17)),

which exactly is the error term in Equation (15), thus creating selection bias. For

example, simply comparing robot adopters to non-adopters in the cross-section

will create bias because high baseline productivity firms are better able to overcome

the fixed cost of robot adoption. Similarly, simply comparing a firm before and

after robot adoption will be biased because firms tend to adopt robots when their

baseline productivity is high or when they expect to face high demand for their

products. Indeed, Fact 2 of Section 2.1 showed that robot adopters tend to be larger.

As I show formally in Appendix OA2.2.1, the dynamic adoption model of Sec-

tion 3 gives me a way to confront this selection problem. The key idea is to match

on observed firm factor choices leading up to adoption to control for selection into

robot adoption based on heterogeneity in firm productivities. The reason why ob-

servably similar firms make different decisions about robot adoption is then due

to heterogeneity in the sunk costs of robot adoption εR
jt, which satisfies the exclu-

sion restriction for identification in the model. The key identifying assumption is
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that observed factor choices are sufficient to control for firm productivities, and

that there is no selection on unobservables that directly affect firm outcomes. The

matching-based event study identification strategy reads as follows.

Identification Strategy (Parameters of Robot Technology γ).

1. Take two firms with similar output and wage bills in some initial k years

2. In the following year, one of the firms adopts robots

3. The differential paths of output and wage bills identify the robot technology γ

Appendix OA2.2.1 derives the identification argument formally.

4.2.2 Estimation Results

The identification strategy presented above suggests matching robot adopters to

comparison firms with a similar path of factor choices leading up to the adoption

event. The match firms found in column 3 of Table 2 in Section 2.1 satisfy these

criteria. To recap, I found these firms by matching each robot adopter to a non-

adopter firm that operated in the same two-digit industry and had a similar trajec-

tory of firm sales and line worker wage bill shares in the three years that led up to

adoption.8 I then showed that these firms were similar to the robot adopters on the

full vector of factor choices as required by the identification strategy above.

Once I have matched firms based on their factor choices leading up to robot

adoption, the model in Section 3 implies that the act of adoption is driven by the

idiosyncratic cost shock εR
jt that is independent of all other drivers of firm outcomes.

The fact that the adopter and match firms are similar on several non-targeted out-

comes in Tables 2 and OA2 provides evidence in support of this identifying as-

sumption. The fact that the firms pay similar wages, in particular, provides an

overidentification check of the model assumption that robot adopters do not pay

wage premiums.

To ease the exposition, I presented the adoption model in Section 3 assuming

that the productivity effects of robotization γ manifest fully within the first year

8I use an Exact-Mahalabonis matching procedure described in Appendix OA1.5.1. The three-
year match window allows for firm productivities in Equation (9) to follow an arbitrary Markov
chain of length three.
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of adoption; see Equations (2)-(3). When taking the model to the data, I allow for

the possibility that firms take a longer time to fully adjust to robot production. In

practice, I track firm outcomes for four years after robot adoption. This, however,

opens the possibility that some of the control firms may have also adopted robots

in the post-event time window. Appendix Figure OA1 shows that around 10 per-

cent of control firms adopted robots four years after the event year, which works

against finding an effect of robot adoption in the reduced form of the event stud-

ies. I take this change in treatment status into account when estimating the model

parameters.9

Figures 1 and 2 show the main results from the estimation of robot technology.

The figures display the differential paths of firm size and factor choices around

robot adoption as prescribed by the identification strategy above. The blue lines

represent raw data and the dashed orange lines show the model fit.10 As I show

in Appendix OA2.2.1, these reduced-form effects exactly identify the parameters of

robot technology γ.

I estimate the parameters of robot technology to match the reduced-form mo-

ments four years after robot adoption. I choose the four-year horizon to account for

the smoother transition path to robot production found in the data. This transition

path likely reflects complementary investments that occur post adoption but that

the model assumes are incurred immediately upon adoption. Appendix OA2.2.3

generalizes the model in Section 3 to account for these dynamic adjustments to

robot production by allowing the productivity effects of robot adoption in Equa-

tions (2)-(3) to follow a distributed lag model. The appendix section estimates

the full dynamic path of robot productivity effects. This generalization adds to

the computational complexity of the model by requiring me to keep track of the

years since robot adoption when solving the firm’s dynamic programming prob-

lem. With the aim of keeping the firm’s state space tractable when solving the

general equilibrium model in Section 6, I abstract from these dynamic adjustment

9The model-implied correction is the Wald estimator used in the treatment effects literature to
convert intention-to-treat (ITT) effects into treatment-on-the-treated (TOT) estimates; see Angrist
and Pischke (2008).

10Appendix OA2.2.2 describes the econometric specification that generates the point estimates
and confidence intervals plotted in Figures 1 and 2.
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processes and instead match directly on the reduced-form effects four years after

robot adoption.

The figures show that the model-simulated diff-in-diffs tend to drift back to-

ward zero in the years following adoption. This post-event drift toward zero re-

flects the control firms that adopt robots in the post-event time window.

Figure 1(a) shows that the average firm’s sales increase 20 percent around robot

adoption. Through the lens of the structural model, this sales effect implies that

robot technology increases firm production efficiency by around 7 percent, given

the calibrated elasticity of firm demand ε. Figure 1(b) shows that the wage bill

increases by 8 percent around robot adoption. The wage bill increase is less than

the 20 percent sales effect in Panel (a), and implies that the substitution effects of

robot adoption on labor γo on average are negative.

Figure 1: Firm Outcomes Around Robot Adoption (Matching Diff-in-Diff)

(a) Sales
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(b) Wage Bill
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Notes: Outcomes are measured in percent of pre-event medians. Vertical dashed lines represent 90% confidence bands.

Figure 2 decomposes the wage bill effects in Figure 1(b) by occupations. Produc-

tion workers include tasks from welding to assembly, while tech workers include

engineers, researchers, and skilled technicians. Panel (a) of Figure 2 shows that the

demand for production workers falls by around 20 percent around robot adoption,

while Panel (b) shows that the demand for tech workers simultaneously increases

by around 30 percent. This shift of labor demand away from the production line

and toward the tech department implies that robot adoption lowers the relative
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productivity of production workers (γ̂P = −0.486) but increases the relative pro-

ductivity of tech workers (γ̂T = 0.030).

Figure 2: Firm Wage Bills Around Robot Adoption (Matching Diff-in-Diff)

(a) Production Workers
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(b) Tech Workers
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Notes: Outcomes are measured in percent of pre-event medians. Vertical dashed lines represent 90% confidence bands. I
allow for zeros in occupational wage bills of firms by calculating the relative changes as (wojt/wjpre)/(wopre/wpre), where
wjt denotes the wage bill of firm j in year t.

Table 3 summarizes the estimated parameters of robot technology.

Table 3: Estimated Parameters of Robot Technology

Parameter Description Estimated Value

γP Production worker augmenting robot productivity −0.486
γT Tech worker augmenting robot productivity 0.030
γO Other worker augmenting robot productivity −0.105
γH Hicks-neutral robot productivity (normalized) 0.068

Notes: The augmenting productivity effects γo are measured relative to intermediate inputs. The parameter γH is normalized
such that a zero sales effect of robot adoption would imply a value γH of zero.

The reduced-form effects in Figure 1 align well with Koch et al. (2021), who find

that robot adoption increases output 20-25 percent and lowers labor costs per unit

produced among Spanish manufacturing firms. It is worth keeping in mind that the

reduced-form effects in Figures 1 and 2 only identify the partial effects of one firm
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adopting industrial robots, and that any general equilibrium effects of robotization

are differenced out in the figures. The general equilibrium model in Section 6 will

fit these partial effects but also take into account general equilibrium interactions in

product and labor markets to be able to quantify what happens when many firms

in the economy adopt industrial robots.

4.3 Baseline Technology

Baseline productivities ϕjt are structural residuals that capture changes in firm pro-

duction technology that are not due to robot adoption. I can now recover these

baseline productivities by inverting the model equations. To be precise, with the

robot technology parameters γ estimated in Section 4.2.2 and firm productivities zjt

recovered from Equations (13) and (14), I can use Equations (2) and (3) to retrieve

baseline productivities ϕjt.

To solve their forward-looking problem of robot adoption, firms must form ex-

pectations about their future productivities. To estimate this robot adoption prob-

lem, I specify that firm productivities (Equation (9)) follow a first-order vector au-

toregression VAR(1) with Gaussian innovations.

ϕjt = µt + Πϕjt−1 + ξ jt with ξ jt
iid∼ N (0, Σ). (16)

The unknown parameters (µt, Π, Σ) in Equation (16) can readily be estimated using

either maximum likelihood or three-stage least squares.

The general equilibrium model in Section 6 restricts the labor-augmenting part

of baseline productivities to a common time-varying parameter vector ϕot. This

simplification is done to keep the firm’s state space tractable and to home in on the

key size dimension that sets robot adopters apart from non-adopters (Fact 2 of Sec-

tion 2.1).11 Appendix OA2.5 calibrates the path of common labor-augmenting pro-

ductivities to match the path of manufacturing factor shares taking into account the

diffusion of industrial robots. Appendix OA2.3.1 reports the results from estimat-

11The size premium in robot adoption is rationalized by the Hicks-neutral component of firm het-
erogeneity ϕHjt which is left unrestricted. To be clear, the homogeneity restriction on firm baseline
labor-augmenting productivities ϕot is imposed solely for computational tractability: it does not al-
ter the preceding analysis and can be relaxed without causing any conceptual or data complications.
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ing the productivity process in Equation (16). When solving the dynamic program-

ming problem of robot adoption, I discretize the estimated baseline productivity

process using the Tauchen (1986) method.

4.4 Robot Adoption Costs

In this section, I estimate the costs of robot adoption. I first parameterize the path

of common costs cR
t and the distribution of idiosyncratic costs F, and then estimate

their parameters to match the empirical robot diffusion curve and the observed

firm size premium in robot adoption. To preview, I find that the model is able to

generate the empirical S-shape in robot diffusion over time as well as the observed

size premium of robot adopters, and that the estimated adoption costs align well

with external cost measures.

I specify the idiosyncratic adoption cost shocks εR
jt to be drawn from a logistic

distribution F ∼ Logistic(0, ν) such that the probability that a firm adopts robot

technology (Equation (10)) takes the form

Pt(∆Rjt+1 = 1) =
exp( 1

ν (−cR
t + βEtVt+1(1, ϕjt+1)))

exp( 1
ν (−cR

t + βEtVt+1(1, ϕjt+1))) + exp( 1
ν βEtVt+1(0, ϕjt+1))

(17)

To develop intuition for the estimation strategy that I adopt here, note that

Equation (17) implies a linear relationship between the log odds ratio of robot adop-

tion and the expected gain in future profits from operating industrial robots.

log
Pt(∆Rjt+1 = 1)

1− Pt(∆Rjt+1 = 1)
= − cR

t
ν
+

1
ν
×
(

βEVt+1(1, ϕjt+1)− βEtVt+1(0, ϕjt+1)
)

(18)

Equation (18) shows that the common cost cR
t governs the rate of robot diffusion,

while the sensitivity of robot adoption to future profit gains is inversely linked to

the dispersion parameter ν.12 Since larger firms are the ones that can better scale

up production to reap the benefits of robot technology, and thus enjoy larger profit

12By inverting continuation values from choice probabilities as in Arcidiacono and Miller (2011),
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gains when adopting robots, it follows that the size premium in robot adoption is

also inversely tied to ν. Following on this intuition, I develop a simulation-based

estimator that entails searching for the adoption cost parameters, cR
t and ν, that

bring the model as close as possible to the observed robot diffusion curve and size

premium in robot adoption.

I structure the exposition in two steps. In Section 4.4.1, I estimate the path of

common adoption costs cR
t to match the empirical robot diffusion curve, condi-

tional on an estimate of ν. In Section 4.4.2, I then estimate the dispersion parameter

ν to match the observed size premium in robot adoption. The final estimation pro-

cedure stacks the moments and estimates the parameters simultaneously using the

method of simulated moments (MSM). Appendix OA2.4 provides details on the

MSM estimation procedure.

4.4.1 Common Adoption Costs

I estimate the path of common adoption costs {cR
t }T

t=0 to bring the model as close

as possible to the observed robot diffusion curve. In particular, I parameterize the

adoption cost schedule to be log-linear in time,

cR
t = exp(cR

0 + cR
1 × t), (20)

and then search over a grid of intercepts cR
0 and slopes cR

1 to minimize the distance

between the simulated and empirical diffusion curve. That is, for each pair of in-

tercept and slope (cR
0 , cR

1 ), I solve the dynamic programming problem of the firm,

simulate the economy, and calculate the in-sample deviation to the empirical diffu-

sion curve. The MSM estimator is the intercept-slope pair that brings the simulated

diffusion curve the closest to the data. Appendix OA4.1 describes formally how to

solve the dynamic programming problem of the firm.13 Put briefly, I first set a time

I can rewrite Equation (18) as follows

β log Pt+1 − log
Pt

1− Pt
=

1
ν
(βcR

t+1 − cR
t )−

1
ν

β(πt+1(1, ϕ′)− πt+1(0, ϕ′)) (19)

Equation (19) clarifies that the acceleration in robot diffusion pins down the change in robot adop-
tion costs cR

t over time, while 1
ν measures the sensitivity of adoption to future profit flows.

13Code for solving the dynamic program is available at www.github.com/humlum/robot_ge.
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horizon T sufficiently far in the future, such that robots are fully diffused by then.

I then start at T, and solve the stationary, infinite-horizon dynamic programming

problem by iterating on the Bellman equation. I then solve for continuation values

in T − 1, T − 2, ..., back to the first period using backward induction. With the con-

tinuation values in hand, I can simulate firms forward using the adoption policy

functions, and verify that industrial robots have actually diffused fully by time T.

Figure 3(a) compares the fit of the estimated adoption curve, and Figure 3(b)

plots the MSM estimate for the path of adoption costs. The common component

of robot adoption costs amounts in 2018 to one times the annual sales of adopting

firms. These are the costs needed to rationalize the fact that, despite enjoying sub-

stantial sales gains upon robotization, only 31 percent of manufacturing firms have

adopted industrial robots almost 30 years after their arrival. These common costs

are, however, not the average sunk cost (cR
t + εR

jt) borne by adopters because firms

select into robot adoption based on their idiosyncratic adoption costs εR
jt. Condi-

tional on adoption, the average sunk cost declined from 117 percent of adopter

sales in 1990 to 10 percent of adopter sales in 2018.14

One notable feature of Figure 3 is that, despite the log-linear schedule for adop-

tion costs, the model (blue line in Panel (a)) is able to generate the S-shaped dif-

fusion curve commonly found in the literature on technology adoption (Griliches,

1957). This can be seen as an overidentification check of the estimated adoption

model. The model-simulated S-shape reflects the combination of a Bell-shaped

distribution for firm productivity and a model where robot adoption is driven

by threshold crossing in firm productivity. The Gaussian cumulative distribution

function for baseline Hicks-neutral productivity ϕH naturally gives rise to a tail of

technology leaders, a bigger mass of followers, and a tail of laggards, as implied by

an S-shaped diffusion curve.

14Following Dubin and McFadden (1984), the average idiosyncratic cost borne by adopting firms
R is given by

E(εR|R) = E(ϕ|R)

[
log(P(R|ϕ)) + (1− P(R|ϕ))

P(R|ϕ) log(1− P(R|ϕ))
]
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Figure 3: Estimating Adoption Costs on the Robot Diffusion Curve

(a) Robot Diffusion Curve
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(b) MSM Estimate of Adoption Costs
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Notes: Firm sales (the units in Panel (b)) are an average of adopter sales in the initial period.

The MSM adoption cost estimate is an inferred cost that not only includes the

monetary price of the robot machine but also expenditures for installation, the has-

sle of robot adoption and production reorganization, as well as changing accessibil-

ity of industrial robots. Still, we may ask how the inferred adoption costs compare

to external measures of the costs of robot investments. Table 1 showed that robot

adopters on average spend a total of around $600,000 on robot machinery. A rule

of thumb is that machinery expenditures account for a third of the total cost of a

robotic system that also includes expenditures for installation and integration (In-

ternational Federation of Robotics, 2018). Taken together, this suggests that the

monetary cost of robot adoption falls around $1.8 million, or 13 percent of the av-

erage firm sales reported in Table 2. This number is smaller than the inferred cost

for adopters (cR
t + εR

jt) of 25 percent of firm sales in 2015, the latest year covered by

Tables 1 and 2. Appendix OA2.6.1 further shows that the common component cR
t

has declined less rapidly than prices for robotic hardware. Taken together, these

comparisons suggest that non-machinery costs of robot adoption have hindered

the faster diffusion of industrial robots.

Importantly, the MSM estimation procedure also identifies the path of future

adoption costs that are consistent with the observed adoption behavior. This future
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path of adoption costs will be key to evaluating the effects of imposing a robot tax

in Section 6.3.

4.4.2 Variance of Idiosyncratic Adoption Costs

I estimate the dispersion in idiosyncratic adoption costs ν to match the observed

size premium in robot adoption. Robot adopters were on average 2.61 times larger

than non-adopter firms in 2018. The MSM procedure estimates ν to be 0.45, which

delivers a simulated size premium of 2.61 in 2018. Appendix Figure OA4 shows

how the adopter size premium moment pins down the parameter ν by plotting the

simulated size premium for varying values of ν.

To put this size premium into perspective, had selection into robot adoption

been unrelated to firm size (ν → ∞), the adopter premium would only have re-

flected the 20 percent sales effect estimated in Section 4.2. At the other extreme,

without heterogeneity in adoption costs (ν → 0), robot adopters would have been

around six times larger than non-adopters in 2018.

These estimates suggest that, while there is clear selection into robot adop-

tion based on firm size (Fact 2 of Section 2.1), there is still ample heterogeneity in

adoption costs εR
jt, leading observationally similar firms to make different decisions

about robot adoption.

5 The Labor Supply Block

This section presents the labor supply block of the general equilibrium model. I

incorporate this labor supply module into the general equilibrium model in Section

6 to allow for a labor supply response to industrial robots where workers move out

of adversely affected occupations. I use here a dynamic occupational choice model

that represents the state of the art for studying labor market dynamics in response

to trade liberalizations (Dix-Carneiro, 2014; McLaren, 2017; Traiberman, 2019).

A key property of the general equilibrium is that the worker and firm problems

are separable conditional on the path of wages. This block separable structure al-

lows me to study and estimate the labor supply model now without reconsidering

the firm’s problem from Section 3 by conditioning on the observed path of wages.
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The labor force consists of overlapping generations of heterogeneous workers

as in Lee and Wolpin (2006). Workers enter the labor market at age 25 with an

educational skill level s ∈ {Low, Mid, High} and retire at age 65. In each year be-

fore retirement, workers face a choice of which occupation o to work in. This labor

supply decision is dynamic in two ways. First, it is costly for workers to switch

occupations. Second, workers may accumulate occupation-specific human capital

on the job that is not transferable to other occupations. I allow labor markets to be

segmented by occupation (production, tech, and other) and sector of employment

(manufacturing and services). To ease the exposition, I let occupations o ∈ O refer

to occupation-sector pairs.

A worker i of age a in occupation o in year t earns the product of a competitive

occupational skill price wot and her human capital Hoit. Her occupational human

capital is given by

log Hoit = βo
ssit + βo

1ait + βo
2a2

it + βo
3tenoit + ςit (21)

where teno denotes tenure in occupation o, and ςit
iid∼ N (0, σ2

h) is an ex-post pro-

ductivity shock.

The worker’s choice of occupation is an investment decision that trades off a

sunk cost of switching occupations with future gains in wages and amenities of be-

ing employed in a new occupation. The occupational choice problem is represented

by the Bellman equation

vt(o, s, a, ten) = max
o′∈O

log(wotHo(s, a, ten)) + ηot − coo′(s, a) + εo′ (22)

+ 1{a<65}βEtvt+1

(
o′, s, a + 1, 1{o′=o} (ten + 1)

)
(23)

where ηot is a non-monetary amenity of working in occupation o, and εo
iid∼ GEV1(ρ)

is an idiosyncratic occupational preference shock. Income is implicitly assumed to

be fully consumed in each period, and workers receive logarithmic flow utility of

consumption. The occupational switching cost depends on the bilateral pair of cur-
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rent and prospective occupations, as well as the worker’s age and skill

coo′(s, a) = coo′ exp
{

αss + α1 × a + α2 × a2
}

(24)

I stack the worker state variables into the vector ω = (s, a, ten, o)′.

5.1 Estimation of Labor Supply

I structurally estimate the labor supply model in Equations (21)-(23) using admin-

istrative data on the career paths of Danish workers. To preview, the estimate show

that production workers face steep barriers to switching into tech occupations, that

it is easier for workers to switch sectors instead of occupations, that workers accu-

mulate specific human capital on the job that is not transferable to other occupa-

tions, and that older workers find it more costly to reallocate in the labor market.

5.1.1 Human Capital Function

I estimate the human capital function in Equation (21) using a Mincer regression of

log earnings on worker skill, age, and occupational tenure.

log(Earningsit) = log(wot) + βo
ssit + βo

1ait + βo
2a2

it + βo
3tenoit + ςit, (25)

where Earningsit denotes labor earnings of worker i in year t, and wot is an occupation-

time fixed effect. The key model assumption that enables me to identify the human

capital parameters β in this regression is that workers cannot select on the produc-

tivity shock ς when choosing occupation or education. Table A.1 reports the OLS

estimation results, which align with estimates from the existing literature (Ashour-

nia, 2017; Dix-Carneiro, 2014; Traiberman, 2019).

5.1.2 Occupational Switching Costs

I estimate the occupational switching costs coo′ on observed worker transition and

a conditional choice probability (CCP) estimator adapted from Traiberman (2019).

The estimator exploits the finite dependence in the labor supply model to difference
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out unobserved continuation values by comparing workers who start and end in

the same states (Arcidiacono and Miller, 2011).
The occupational choice model in Equation (22) implies that the difference in

the (discounted) probabilities of observing a worker in occupation o first switching
into occupation o′ and then transitioning into occupation o′′ compared to observing
the worker first staying in occupation o and then transitioning into occupation o′′

is

log
πt(oo′|ω)

πt(oo|ω)
+ β log

πt+1(o′o′′|ω′)
πt+1(oo′′|ω′′) = −1

ρ
coo′(ω)− β

ρ
(co′o′′(ω

′)− coo′′(ω
′′)) (26)

+
β

ρ

(
log(wo′t+1Ho′(ω

′))− log(wot+1Ho(ω
′′))
)

(27)

+
β

ρ
(ηo′ − ηo) + ζoo′o′′t (28)

where πt(oo′|ω) is the transition rate from occupation o to o′ of workers with char-

acteristics ω, Ho and wot are the human capital function and occupational skill

prices estimated in Equation (25), and ξ is a mean-zero expectational error that

is uncorrelated with the remaining RHS variables.

The occupational switching costs coo′ are identified off the excess likelihood of

observing a worker staying in his own occupation from one year to the other, once

his expected earnings differentials across occupations are controlled for. The occu-

pational preference shock variance ρ is estimated as the inverse elasticity of occu-

pational switching with respect to expected earnings differentials.

The key model assumption in Equations (26)-(28) is that occupational switch-

ing is a renewal action that clears past choices from a worker’s state. Combining

this assumption with the Hotz-Miller inversion of continuation values from choice

probabilities (Hotz and Miller, 1993) allows me to cancel out continuation values.15

Equations (26)-(28) constitute a system of non-linear regressions that identify

the switching cost function coo′ and the preference shock variance ρ. Appendix A.1

describes the computational implementation of the estimation procedure. Tables

A.2 and A.3 present the non-linear least squares (NLLS) estimation results. The

estimates show that production workers face steep barriers to switching into tech

15The derivation of Equations (26)-(28) closely follows Traiberman (2019), who estimates a richer
model of labor supply that also accounts for unobserved (to the econometrician) types of workers.
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occupations, that workers find it easier to switch sector within the same occupation,

and that older workers find it more costly to reallocate in the labor market. The

estimated switching cost magnitudes are in the range of those found in the existing

literature.

5.1.3 Occupational Amenities

I estimate the path of occupational amenities ηot to match the time series of em-

ployment shares across occupations. Appendix OA3.1 provides details on this es-

timation step.

6 Counterfactual Experiments

This section conducts counterfactual experiments to assess the general equilibrium

impacts of industrial robots. I first present a general equilibrium model that unites

the firm model from Section 3 with the worker model from Section 5. Section 6.1

defines the general equilibrium and develops a fixed-point algorithm for solving

the equilibrium that features two-sided heterogeneity and dynamics. Section 6.2

uses the general equilibrium model to quantify how the arrival of industrial robots

has affected the distribution of worker welfare. Section 6.3 evaluates the incidence

of imposing a robot tax.

6.1 Closing the General Equilibrium Model

The economy consists of a manufacturing sector and a service sector. The manu-

facturing sector consists of a mass µF
t (R, ϕ) of firms that are monopolistically com-

petitive in product markets, price-takers in factor markets, and otherwise operate

as specified in Section 3.16 Services are produced with a Cobb-Douglas technology

and supplied competitively

Yst = zstM
αs

M
st ∏

o∈O
Lαs

o
ost (29)

16The baseline mass of firms µF
t (·, ϕ) is taken as given but its distribution over the robot technol-

ogy state R evolves endogenously according to the equilibrium robot adoption model.
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The economy is populated by a mass µW
t (ω) of workers who supply labor as spec-

ified in Section 5, and consume the final output bundle

Yt = Yµ
MtY

1−µ
St with YMt =

[∫
Y(R, ϕ)

ε−1
ε dµF

t (R, ϕ)

] ε
ε−1

(30)

I model Denmark, a country of fewer than 6 million people located in the European

free trade zone, as a small open economy. Intermediate inputs M are imported at

world price wMt, which the Danish economy takes as given, and trade is balanced.

The robot adoption cost cR
t is determined on the world market for industrial robots

and is thus exogenous to local conditions in Denmark. The general equilibrium of

the economy is defined as follows.

Definition 1 (Dynamic General Equilibrium). A dynamic general equilibrium of

the economy is a path of factor prices {wt}t, distributions of firm and worker states

{µF
t (R, ϕ), µW

t (ω)}t, and policy functions {Rt(0, ϕ)}t, {o′t(ω)}t, such that taking the

schedule of adoption costs {cR
t }t and the price of intermediate inputs {wMt}t as

given

1. Firms adopt robots to maximize expected discounted profits (Equation (7)) and

demand static inputs to maximize profits period-by-period (Equation (5)).

2. Workers choose occupation and sector to maximize expected present values

(Equation (22)).

3. Labor markets clear (segmented by occupations and sectors)

∫
Lot(R, ϕ)dµF

t (R, ϕ) =
∫

ω
Ho(ω)dµW

t (ω|M, o) (31)

Lost =
∫

ω
Ho(ω)dµW

t (ω|S, o), (32)

where Lot(R, ϕ) is the static labor demand function satisfying Equation (5).

4. Firm output markets clear and trade is balanced

Yt = Ct + wM Mt (33)

where Mt =
∫

Mt(R, ϕ)dµF
t (R, ϕ) + Mst and Ct = ∑o wotLS

ot + Πt. Equation
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(33) states that expenditures on intermediate input imports equal revenues

from final goods exports.

5. The evolution of the distributions of firm and worker states {µF
t , µW

t }t is con-

sistent with the policy functions {Rt(0, ϕ), o′t(ω)}t.

A key property of the general equilibrium is that the firm and worker programs

are separable conditional on the path of wages. This block separability breaks the

curse of dimensionality where firm variables become states for the worker, and

worker variables become states for the firm. The myriad of individual decisions

taken by heterogeneous firms and workers is instead summarized into one aggre-

gate state vector – the path of wages – which agents have perfect foresight about,

up to unanticipated aggregate shocks to the economy. The block separable struc-

ture enables me to incorporate the rich firm and worker heterogeneity estimated in

Sections 4 and 5, and still be able to compute the dynamic general equilibrium.

I solve for the transitional dynamics of the economy where baseline productiv-

ities {ϕjt, zst}, amenities {ηot}, and robot adoption costs {cR
t } all have t-subscripts

and are the time-varying fundamentals driving the system over time. The baseline

estimated model perfectly matches the path of manufacturing factor bills (Figure

OA3) and occupational employment shares (Figure OA3) observed in Denmark

over time. I calibrate µ to match the manufacturing share in total output of the

Danish economy and αs to match the evolution of factor cost shares outside of

manufacturing. Appendix Table OA1 provides a summary of the parameters of

the general equilibrium model, as well as the moments used to estimate their val-

ues.

6.1.1 Solving the Dynamic General Equilibrium

The path of wages is the key endogenous variable that links the firm and worker

decisions in general equilibrium. I solve for the general equilibrium wage schedule

using a shooting algorithm adapted from Lee (2005). The procedure boils down to

guessing a path of wages and manufacturing price indices, solving the dynamic

programs related to the robot adoption decision of firms and the occupational

choice problem of workers, simulating the economy forward using the firm and
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worker policy functions, and then using the firm’s static labor demand functions

to find the vector of wages that clear labor markets period-by-period. This algo-

rithm iterates until convergence in the path of wages and the distributions of firm

and worker states. Appendix OA4.3 details each step of the equilibrium solution

algorithm.17

6.2 The Distributional Impact of Industrial Robots

This section turns to the key question posed in this paper by asking how the distri-

bution of worker earnings would have looked if industrial robots had not arrived.

To evaluate this counterfactual, I solve the general equilibrium under a path of

prohibitively high adoption costs (cR
t = ∞). I then compare the results to the equi-

librium under the baseline adoption cost schedule estimated in Section 4. The sim-

ulations assume that the arrival of industrial robot technology around 1990 came

as a surprise to agents in the economy, but that firms and workers from that point

on perfectly foresee the path of robot adoption costs. The robot diffusion curve in

Figure 4 shows that if robot adoption had been infinitely costly (“No Robots”), then

robot technology would not have diffused at all.

The equilibrium effects of industrial robots depend not only on the direct im-

pact of firm robot adoption estimated in Figures 1 and 2 but also on several indi-

rect effects that are not identified in micro-level diff-in-diff regressions. The indi-

rect effects include the extent to which the expansion of robot adopters crowds out

non-adopter firms in product and labor markets as well as the ability of workers

to reallocate across occupations in response to equilibrium wage pressures from

robot diffusion. The general equilibrium model captures these indirect effects by

combining the structurally estimated behavior of firms and workers with internal

consistency constraints imposed by equilibrium conditions on product and labor

markets.
17A Matlab package that implements the solution algorithm and replicates the results of Sections

6.2 and 6.3 is available at www.github.com/humlum/robot_ge.
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Figure 4: Share of Robot Adopters in Manufacturing
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Figure 5 shows the impact of industrial robots on real wages in different oc-

cupations. Industrial robots have increased average real wages by 0.8 percent in

Denmark but with substantial distributional consequences. Production workers

employed in manufacturing are the big losers from industrial robots, as their real

wages are 5.4 percent lower today due to robots. Tech workers employed in man-

ufacturing earn 3.3 percent higher real wages today due to industrial robots, while

the remaining occupations have gained between 0.4 and 1.3 percent from robots.

While the real wage loss for production workers in manufacturing is substantial, it

is important to keep in mind that the occupation only constitutes around 3 percent

of total employment in Denmark.
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Figure 5: Real Wage Effects of Industrial Robots

(Weighted Average in 2019: +0.82 percent)
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Notes: This figure shows the difference in equilibrium real wages in the “Baseline” and “No Robots” simulations.

To understand the general equilibrium forces driving the real wage outcomes,

Figure 6 decomposes the real wage effect for manufacturing production workers

into labor demand effects from robot adoption, consumer price effects from pass-

through of lower robot production costs, and labor supply effects from occupational

reallocation of workers changing the relative scarcity of labor across occupations.

As the decomposition shows, the real wage loss of manufacturing production

workers would have been several times larger than the estimated effect if work-

ers could not reallocate across occupations in response to robots. Appendix Figure

OA2 confirms this finding by evaluating the impact of industrial robots with ex-

ogenous labor supply, thus shutting off the occupational choice block estimated in

Section 5.1. Real wages of production workers employed in manufacturing would

in that world have been about 40 percent lower today due to industrial robots.
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Figure 6: Decomposition of the Real Wage Effect for Production
Workers in Manufacturing
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Notes: Labor demand effects are measured relative to the “Other” occupation in the services sector.

Still, the labor supply and consumer price effects combined are not enough to

overturn the negative labor demand effects of robot adoption from depressing real

wages of production workers employed in manufacturing. The displacement ef-

fects identified in Figure 2(a) are in general equilibrium reinforced by two addi-

tional labor demand forces. First, the expansion of robot adopters crowds out ac-

tivity in non-adopter firms through the stealing of output markets. Second, the

complementarity between occupations in manufacturing production (estimated in

Section 4.1) means that firms spend a smaller fraction of their wage bill on produc-

tion workers when they become less expensive.

Interestingly, among workers in the service sector, Figure 5 shows that produc-

tion workers have experienced the largest real wage gain from robot adoption. This

differential wage gain is a compensating differential for their excess risk of transi-

tioning into production work in the manufacturing sector. In terms of expected

lifetime earnings, production workers are the group of service workers with the

lowest gain from industrial robots.

Finally, Figure 6 shows that more than half of the total consumer price gains

from industrial robots have been realized already, even though only 30 percent of
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manufacturing firms have adopted robots. This finding reflects that the estimated

model captures the fact that firms with larger efficiency gains from robot adoption

(that is, firms that can better scale up production to take advantage of industrial

robots) are the ones that adopt robots first.

Due to the possibility that workers can reallocate across occupations, the real

wage effects in Figure 5 do not necessarily convert one-to-one into welfare effects

for individual workers. The occupational reallocation margin opens an option value

of being able to switch into occupations whose premiums rise as robots diffuse in

the economy. As emphasized by Artuç et al. (2010), this option value source of

worker welfare is not identified from static wage comparisons but is only captured

once we factor in the dynamic occupational switching behavior observed over an

individual’s working life.

Figure 7 shows the impact of industrial robots on the welfare of workers in

2019.18 Panel (a) shows that about 95 percent of workers have gained between 0.7

and 1.1 percent of lifetime earnings from the arrival of industrial robots. Yet, Panel

(b) shows that the – considerably smaller – group of production workers employed

in manufacturing has lost between 0 and 6 percent of lifetime earnings from robots.

Figure 7: Welfare Effects for Workers in 2019
(Average: +0.85 percent)
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18Welfare effects are calculated as compensating variations; see Appendix OA5.1.1 for details.
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Figure 8 shows that the welfare losses from robots are concentrated on older

workers. Younger production workers, with less specific skills and a long career

ahead of them, are less affected by the arrival of industrial robots, as wage losses

in their current occupation are offset by gains in the option value of switching into

occupations whose premiums rise as robots diffuse in the economy.

Figure 8: Welfare Effects for Manufacturing Production Workers in 2019
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Notes: This figure decomposes the effects of robots on the welfare of production workers employed in manufacturing
in 2019 (“Welfare”) into lifetime earnings effects if the workers were stuck in their occupation (“Production Wages”)
and option values of switching occupations (“Option Value”).

The flip side of the labor supply responses found in Figure 6 is that industrial

robots have contributed to employment polarization as documented in Autor and

Dorn (2013) and Goos et al. (2014). Figure 9 shows that industrial robots can ac-

count for 26 percent of the fall in the employment share of manufacturing produc-

tion workers and 8 percent of the rise in the employment share of tech workers in

manufacturing since 1990.
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Figure 9: The Effect of Industrial Robots on Employment Shares
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(a) Production Workers in Manufacturing
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(b) Tech Workers in Manufacturing

To recapitulate, the estimates presented in this section are based on a general

equilibrium model that has been validated on event studies of firm robot adoption,

the observed diffusion of industrial robots, and worker transitions across occupa-

tions. I take the estimates presented in this section as complementary to existing

reduced-form studies of industrial robots by highlighting the quantitative impor-

tance of general equilibrium effects that are not easily identified by reduced-form

empirical strategies. In particular, I show the quantitative relevance of an occupa-

tional switching feedback mechanism that has been emphasized in the literature on

international trade and labor market dynamics (Dix-Carneiro, 2014; McLaren, 2017;

Traiberman, 2019). Although the labor supply responses are not strong enough to

overturn the negative labor demand effects from depressing the real wages of man-

ufacturing production workers, I find that the wage losses would have been eight

times larger if workers could not reallocate across occupations. A speculative hy-

pothesis is that the generous retraining subsidies offered in the Danish system of

active labor market policies could be an underlying driver of the quantitative im-

portance of the estimated occupational reallocation feedback response.
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6.3 Policy Counterfactuals: The Incidence of Robot Taxes

As a final counterfactual experiment, I now turn to evaluate the impact of a robot

tax. The European Parliament voted in 2017 on a proposal to tax the use of robotics.

The robot tax was motivated as a way to slow down the speed of robot adoption to

give the economy more time to adjust to the new technology.19

I tax the schedule of robot adoption costs cR
t to inform this policy counterfac-

tual. To be clear, the undistorted equilibrium of the model is efficient (except for

markups in product markets), but the robot tax could be motivated by distribu-

tional concerns.20 In particular, Section 6.2 identified a group of production work-

ers employed in manufacturing who have lost from the use of industrial robots. A

key policy question is how costly it is, in terms of lost economic efficiency, to insu-

late these production workers by taxing the further adoption of industrial robots.

The answer to this question depends on several behavioral elasticities estimated

from the micro data, including the sensitivity of firm robot adoption with respect

to adoption costs (Section 4.4.2) as well as the ability of workers to switch occupa-

tions in response to robots (Section 5.1). I use the estimated general equilibrium

model to quantify the distributional implications of a robot tax and to evaluate its

impact on aggregate economic activity.

To map out the potential policies, I evaluate both a temporary and a permanent

tax, each of 30 percent. The policies are announced and implemented in 2019, and

the temporary tax is put in place for 10 years. Figure 10(a) shows the path of robot

adoption costs under the tax policies. I assume that a robot tax in Denmark does

not alter the pre-tax price for robots which is determined on world markets.

Panel (b) of Figure 10 shows the first key result from the robot tax counterfactu-

als: The temporary tax is more effective in slowing down the diffusion of industrial

robots while it is put in place. With the temporary tax, only 50 percent of manu-

19The proposal was ultimately voted down by the European Parliament but the idea of taxing
robots to mitigate labor market polarization remains popular among public figures from Bill Gates
(Quartz, 2017) to congresswoman Alexandria Ocasio-Cortez (Market Watch, 2019).

20The production efficiency result of Diamond and Mirrlees (1971) establishes that it is always opti-
mal to maintain production efficiency insofar as linear commodity taxes are available. Costinot and
Werning (2020) derive sufficient-statistic formulas for optimal technology taxes when a non-linear
income tax schedule is the only alternative policy instrument.
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facturers will have adopted robots by 2029, compared to 53 percent with the per-

manent tax, and 58 percent in the baseline scenario. The larger short-term effects

of the temporary tax reflect the forward-looking nature of adoption, where firms

foresee that the robot tax will expire and postpone adoption until then. The flip

side of these delays is that the adoption of robots accelerates beyond its baseline

speed after the temporary tax expires in 2030.

Figure 10: Robot Tax Counterfactuals
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(a) Robot Adoption Costs
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(b) Robot Diffusion Curve

Table 4 shows how the burden of the robot taxes falls on workers and firms in

the economy. Measured in presented discounted terms, the robot taxes redistribute

a total of 0.01 to 0.02 percent of GDP to production workers currently employed

in manufacturing at the expense of a total welfare loss for workers of around 0.9

percent of GDP. These welfare losses reflect foregone efficiency gains from underin-

vestment in robot technology. Put differently, for the robot taxes to enhance social

welfare amongst workers, one needs to value production workers in manufactur-

ing 50 to 100 times higher than the average worker.

The temporary robot tax creates welfare losses per dollar of tax revenue col-

lected that are considerably larger than those of the permanent robot tax. These

larger relative efficiency losses of the temporary tax are a direct consequence of the

investment delays observed in Panel (b) of Figure 10: The intertemporal shifting of

robot adoption out of the temporary policy window creates misallocation without

raising tax revenues. In particular, if firm adoption behavior did not respond to the
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robot tax (“Mechanical Effect” in Table 4), the temporary robot tax would generate

63 percent more revenues, while revenues from the permanent tax would be only

11 percent higher.
The robot taxes do, however, generate substantial amounts of tax revenue, whose

burdens are primarily borne by manufacturing firms. As Table 4 shows, the tax rev-
enues are sufficient to make all workers better off from the robot taxes, insofar as
the revenues can be rebated appropriately and the planner does not care about firm
profits. One should be cautious about drawing such conclusions, however, as I do
not model firms’ entry decisions. If the robot taxes would cause some manufac-
turing firms to go out of business, these profit losses would be passed on to lower
worker welfare.

Table 4: Robot Tax Incidence (Percent of GDP in 2019)

Temporary Tax Permanent Tax

Workers -0.88 -0.93
Workers in 2019 -0.47 -0.35

– Manufacturing Production 0.02 0.01
Future Workers -0.40 -0.58

Tax Revenues 10.30 29.50
Mechanical Effect 16.74 32.66
Behavioral Effect -6.44 -3.16

Profits (excl. predatory externalities) -13.64 -31.09

Notes: Present discounted values. Workers represent compensating variations; see Appendix OA5.1.1
for details. Profits (excl. predatory externalities) represent the effect on manufacturing firm values
(Equations (7)-(8)) in 2019, excluding predatory investment externalities; see Appendix OA5.2.1 for
details. Mechanical Effect is the tax revenues collected if robot adoption did not respond to the tax.

In calculating the effects on firm profits in Table 4, I exclude predatory invest-

ment externalities, whereby robot adopters do not internalize that parts of the profit

gain from robots come from stealing markets shares of competitor firms.21 By in-

ternalizing this pecuniary externality, a robot tax has the possibility to increase the

aggregate profits of firms. To focus on the key equity-efficiency trade-off for work-

ers, I hold the predatory externalities out of the baseline incidence calculations, and

instead relegate their analysis to Appendix OA5.2.1.
21Predatory investment behavior has been studied extensively in the theoretical industrial orga-

nization literature, including Dixit (1980) and Spence (1986).
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To sum up, even though the temporary tax achieves the goal of delaying the

diffusion of industrial robots, this analysis shows that the policy is an ineffective

and relatively costly way to redistribute income to production workers employed

in manufacturing.

7 Conclusion

This paper makes two methodological contributions in order to study the distri-

butional impact of industrial robots. First, I develop a dynamic firm model that

can rationalize the selection into and reduced-form responses to robot adoption.

Second, I model both firm and worker dynamics in general equilibrium. I use ad-

ministrative data that link workers, firms, and robots in Denmark to structurally

estimate a dynamic general equilibrium model that can account for event stud-

ies of firm robot adoption, the observed diffusion of industrial robots, and worker

transitions in the labor market. The model fits the labor demand responses to robot

adoption but also takes into account how production efficiency gains from robots

are passed through to lower consumer prices as well as the ability of workers to

reallocate between occupations in response to industrial robots.

Having validated the model using overidentification checks, I use it to estimate

the distributional impacts of industrial robots. I find that industrial robots have in-

creased average real wages by 0.8 percent but with substantial distributional conse-

quences. At the ends of the spectrum, I find that production workers employed in

manufacturing have lost 5.4 percent in real wages while tech workers have gained

3.3 percent.

I believe that the quantitative framework developed in this paper can be applied

to studying the labor market impacts of other pressing technologies. For example,

what will be the consequences when 1.3 million US truck drivers are expected to

compete with self-driving vehicle technology by 2026 (Council of Economic Ad-

visers, 2016)? The quantitative experiments conducted in this paper highlight that

the ability of workers to switch occupations is crucial for how new technology can

affect the distribution of earnings. These findings may help policymakers navigate

in an era of rapid technological change.
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A Estimation of Labor Supply

Table A.1: Human Capital Function

Tech
(services)

Tech
(manuf)

Production
(services)

Production
(manuf)

Other
(services)

Other
(manuf)

Age βo
1 0.0285 0.0265 0.0096 0.0055 0.0124 0.0139

(0.0010) (0.0005) (0.0006) (0.0006) (0.0007) (0.0010)
Age-Squared βo

2 -0.0590 -0.0543 -0.0236 -0.0171 -0.0266 -0.0301
(0.0016) (0.0013) (0.0011) (0.0014) (0.0014) (0.0023)

Tenure βo
3 0.0300 0.0153 0.0277 0.0234 0.0537 0.0307

(0.0018) (0.0010) (0.0012) (0.0016) (0.0030) (0.0012)
Mid Skill βo

M -0.0428 0.0028 0.1025 0.1168 0.0537 0.1165
(0.0015) (0.0028) (0.0015) (0.0025) (0.0012) (0.0018)

High Skill βo
H 0.1671 0.2958 0.0997 0.1629 0.2502 0.5108

(0.0016) (0.0022) (0.0103) (0.0061) (0.0037) (0.0053)
Observations 2147314 602741 1029836 681133 17176380 2780515

Notes: SD of income shock: Tech (services): .118, Tech (manufacturing): .077, Production (services): .096, Production (man-
ufacturing): .077 Others (services): .148, Others (services): .133. Standard errors are clustered at the occupation-year level.
Coefficient on Age Squared is presented ×102.

A.1 Occupational Switching Costs

I estimate occupational switching costs using the Conditional Choice Probability

(CCP) derived in Section 5.1.2. In particular, I minimize deviations from Equations

(26)-(28) using non-linear least squares (NLLS).

Table A.2 presents the estimated bilateral occupational switching costs, and

Table A.3 presents the remaining switching cost estimates. The NLLS procedure

tightly estimates all the occupational choice parameters, except for the preference

shock variance ρ. In the current setup, the estimate of ρ greatly exceeds estimates

in the existing literature. Since the labor supply responses to industrial robots are

inversely related to this dispersion parameter, I instead use a central estimate in the

literature of ρ equal to 2. This value falls in between the estimates in Dix-Carneiro

(2014), Ashournia (2017), Artuç et al. (2010), Caliendo et al. (2019), and Traiberman

(2019).
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Table A.2: Bilateral Switching Costs coo′/ρ

Tech Tech Production Production Other Other
(serv) (manuf) (serv) (manuf) (serv) (manuf)

Tech (services) 0 5.55 3.77 9.38 3.63 6.18

Tech (manufacturing) 0.23 0 4.53 4.06 3.79 1.13

Production (services) 4.09 9.65 0 5.13 4.12 5.82

Production (manufacturing) 4.53 4.9 0 0 3.9 1.39

Other (services) 1.12 6.64 1.22 6.05 0 2.21

Other (manufacturing) 4.45 4.74 3.42 3.94 2.71 0

Table A.3: Switching Cost Parameters

Parameter Description Estimate

α1 Semi-elasticity of switching costs with respect to age (linear term)‡ 20.87

α2 Semi-elasticity of switching costs with respect to age (quadratic term)‡ -0.36

αM Semi-elasticity of switching cost with respect to mid skill 0.00

αH Semi-elasticity of switching cost with respect to high skill -0.02

ρ Occupational preference shock variance† 2.00

Notes: ‡ Coefficients of age polynomial are presented ×102. †Parameter value used in Section 6.
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Online Appendix

OA1 Data

OA1.1 Matched Worker-Firm Data

The firm data come from the Firm Statistics (FirmStat) Register, which covers the

universe of private-sector firms from 1995 to 2015. FirmStat associates each firm

with a unique identifier, and provides annual data on many of the firm’s activities,

such as sales, number of full-time employees, and industry affiliation.22

The data on workers and establishments come from the Integrated Database for

Labor Market Research (IDA), which covers the entire Danish population. IDA as-

sociates each person with her unique identifier, and provides annual data on many

individual characteristics such as income, hours, hourly wage, detailed occupation,

education, and other sociodemographics.23 To match the firm and worker data, I

draw on the Firm-Integrated Database for Labor Market Research (FIDA), which

links every firm in FirmStat with every worker in IDA who is employed by that

firm in week 48 of each year.

In the main analysis, I focus on the three occupations that are most relevant

to industrial robots: tech workers, production workers, and other workers. Tech

workers are the second category of the Bernard et al. (2017) classification, and in-

cludes skilled technicians, engineers, and researchers. Production workers is the

intersection of the sixth category of Bernard et al. (2017) (line workers, mostly pro-

duction) and the one-digit ISCO88 code “7 Craft and Related Trades Workers.” Pro-

duction workers consist of manual production tasks from welding to assembly.

To measure the worker transitions that I use to estimate the labor supply model

Section in 5.1, I follow the procedures of Traiberman (2019); please refer to his Ap-

pendices B.5 and D for details.

22Industries are classified according to the NACE nomenclature. The classification was updated
in 2003 (from Rev. 1 to Rev. 1.1) and 2007 (to Rev. 2). I provide crosswalks between the revisions at
www.andershumlum.com/codes.

23Occupations are classified according to the ISCO nomenclature. The classification was up-
dated in 2010 from ISCO88 to ISCO08. I provide crosswalks between the nomenclatures at
www.andershumlum.com/codes.
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OA1.2 Robot Adoption Firm Survey

Statistics Denmark conducts annually a technology adoption survey of firms in

Denmark (IT usage in Danish firms, VITA). The survey is prepared in collaboration

with the Danish Business Authority as a supplement to Eurostat’s technology sur-

vey. In 2018, the survey included a question on the use of industrial robots. The

survey sampled 3,954 firms from the population of 16,465 private non-agricultural,

non-financial firms with more than 10 employees. The response rate was 97 per-

cent. Figure OA1 shows the questionnaire on industrial robot usage. Out of the

survey respondents, a total of 473 firms answered ’yes’ to using industrial robots

in production.

Figure OA1: Questionnaire on Robot Adoption

OA1.3 Firm Customs Records

The firm customs records are organized in the Foreign Trade Statistics Register

(UHDI) at Statistics Denmark. For each firm in each year 1993-2015, I have im-

ports disaggregated 6-digit Harmonized System product codes, where one of these

codes identifies “847950 Industrial Robots”. Industrial robots are heavily imported

goods, making customs records a valuable source of information on the adoption

of industrial robots. The main challenge in using the customs records is that a sub-

stantial share of machinery is imported through domestic distributors. Table OA1
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develops a procedure for identifying robot imports done by final adopters.24 Start-

ing from the population of robot imports, I

1. Pre-data coverage: Restrict the sample to firms who are active three years before

the import event. This condition is necessary for conducting the adoption

event studies.

2. Exclude wholesalers: Exclude the one-digit industry code “Commerce”.

3. Exclude integrators: Exclude six-digit industry codes contained in a compre-

hensive list of robot integrators in 2018.25

4. Survey-validated adoptions: Validate that import adopters also report to use

robots in the adoption survey (Appendix OA1.2). Restrict the sample to six-

digit industries with a validation share in the robot adoption survey of at least

50 percent.26

5. Single production establishment: Restrict the sample to firms that only have a

single establishment employing more than three workers in the year prior to

robot adoption. This condition avoids dilution of the robot adoption effect

in multi-plant firms (robot adoption happens at the plant level, but customs

forms are filled out at the firm level).
24I thank several industry experts for helpful inputs into developing this sample selection proce-

dure, including Søren Peter Johansen (Technology Manager at the Danish Technological Institute,
Robot Technology), Bo Hanfgarn Eriksen (Region Syddanmark), Per Rasmussen (BILA Robotics),
and Martin Jespersen (Odense Robotics).

25The list of robot integrators was developed by RoboCluster and Odense Robotics for the report
Region Syddanmark (2017). I thank Bo Hanfgarn Eriksen for providing the list.

26The validation share is defined as the fraction of robot importers that in the robot adoption
survey report that they use industrial robots.
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Table OA1: Identifying Robot Adoptions in Customs Records

Sample at End of Step

Step Imports Import events
(million USD) (firm-year)

Raw imports 2916.6 11773

1. Pre-data coverage 1457.7 5935

2. Exclude wholesalers 826.5 2016

3. Exclude integrators 535.0 1375

4. Survey-validated industries 247.6 776

5. Single production establishment 91.1 454

The sample selection criteria exclude many of the robot import observations. For

the sake of sustaining power in the statistical analysis, I use the HS1992 code that

includes industrial robots (847989), as also done in Acemoglu and Restrepo (2021).

OA1.4 Measuring Domestically Sourced Robot Adoptions

The customs records allow me to directly study what happens when firms adopt

robots. However, when quantifying the aggregate effects of robots and for parts

of the structural estimation, I also want to include the adoptions done through

domestic distributors.

To include robot adoption done through domestic distributors, I first use the

representative robot adoption firm survey; see Appendix OA1.2 for details. The

survey provides a snapshot of which firms use industrial robots in 2018, regardless

of whether the firms have imported their robots directly or have relied on a domes-

tic distributor. From the adoption survey, I can directly calculate that 31 percent of

manufacturing firms have adopted robots (last data point in Figure 3(a)) and that

these adopters represent 54 percent of manufacturing sales (Figure OA4). For the

time series of robot adoption, I use the International Federation of Robotics (IFR)

statistics on the stock of industrial robots in Danish manufacturing over time. As-

suming that the robot stock per adopter firm is constant over time, I can use the
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IFR time series to extend the number of robot adopters observed in 2018 back in

time (Figure 3(a)). As a robustness check, I verify that the robot imports and the

IFR data imply the same evolution in total robot adoption over time.

OA1.5 Stylized Facts on Firm Robot Adoption

OA1.5.1 Matching Procedure

This section describes the matching algorithm used in Column 3 of Table 2.27 For

each adopter firm f , I find a non-adopter firm that

1. matches f exactly on Xe

2. has minimal Mahalanobis distance to f in Xd

Match f = arg min
g∈{Xe( f )∩na}

(Xdg − Xd f )
′Σ−1(Xdg − Xd f ),

where Σ is the sample covariance matrix of Xd.

In my application, I match exactly (Xe) on industry (two-digit) in event year −1,

and I distance match (Xd) on log sales and production line wage bill shares (levels

at event year −1 and changes from event year −3).

27Software for implementing the matching procedure is available at www.github.com/
humlum/MatchExactDist.
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OA1.5.2 Balance Tables

Table OA2: Firm Outcomes in the Year Before Robot Adoption

Adopters Matches P-value
(A-M)

Wages 65,265 65,228 0.98
(1,009) (994)

– Managers 128,935 131,555 0.55
(2,942) (3,191)

– Tech 75,836 77,389 0.47
(1,794) (1,202)

– Sales 58,748 57,826 0.53
(1,073) (990)

– Support 73,221 75,413 0.35
(1,522) (1,747)

– Transportation/warehousing 54,369 54,489 0.94
(1,143) (1,112)

– Line workers (mostly production) 55,836 55,352 0.66
(795) (776)

Joint orthogonality (F test) 0.24

Notes: “Joint orthogonality” represents a test of the joint hypothesis that all coefficients equal zero when
the adopter indicator is regressed on the outcome variables in Table OA2. Column 1 (Adopters) shows
mean outcomes for robot adopters in the year before adoption. Column 2 (Matches) shows averages
for match firms within the same industry-year cell. These matches each have the minimum distance to
an adopter with respect to log sales and line worker wage bill share (levels and two-year changes); see
Appendix OA1.5.1 for details. Column 3 (P-value A-M) shows p-values for the null hypotheses that
Adopters (column 1) and Matches (column 2) have the same population mean.

OA2 Structural Estimation of Firm Robot Adoption

OA2.1 Elasticity of Substitution Between Production Tasks

This section uses the model presented in Section 3 to derive the moment condition

that I use to estimate the elasticity of substitution between production tasks σ in

Section 4.1. The derivations follow closely those in Doraszelski and Jaumandreu

(2018).
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To derive the moment conditions, first insert Equation (13) into Equation (9)
to express the deterministic component of firm productivities in terms of a non-
parametric function of observables

ϕojt = got(ϕojt−1, ..., ϕojt−k) + ξojt (34)

= got
(
lojt−1 −mjt−1 + σ(wojt−1 − wMjt−1)− γoRjt−1, ... (35)

lojt−k −mjt−k + σ(wojt−k − wMjt−k)− γoRjt−k

)
+ ξojt (36)

= hot(lojt−1 −mjt−1, wojt−1 − wMjt−1, Rjt−1, .., lojt−k −mjt−k, wojt−k − wMjt−k, Rjt−k) + ξojt

(37)

where lower-case letters denote log-transforms. Insert this function into Equation

(11) to obtain

lo′ jt − lojt = −σ(wo′ jt − wojt) + (ho′ jt − hojt) + (ξo′ jt − ξojt) (38)

The Markovian structure on firm productivities, combined with rational expecta-

tions of firms, implies that past factor choices ljt and prices wjt have to be uncorre-

lated with the current productivity innovations ξ jt that constitute the error term in

Equation (38). I can thus form a population moment condition that identifies σ, my

parameter of interest

Et

[
Aoo′(Qjt−1)

(
lo′ jt − lojt + σ(wo′ jt − wojt)− (ho′ jt − hojt)

)]
= 0, (39)

where Aoo′ is a vector function of the instruments Qjt−1, including quadratic func-

tions of ljt−k−mjt−k and wt−k−wMt−k for k = 1, 2, 3, as well as quadratic functions

of wjt−1 and ljt−1 (the excluded instruments). I set “Production Workers” and “Tech

Workers” as o and o′, respectively, and I use “Other Workers” as the benchmark

factor in production (M in the derivations above). I estimate (39) using a two-step

GMM procedure.

Table OA1: Estimating the Elasticity of Substitution between Tasks in Production

Elasticity of task substitution, σ
0.493
(0.092)
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OA2.2 Robot Technology

OA2.2.1 Identification of Robot Technology

The firm model in Section 3 falls into a general class of potential outcomes models

for robot adoption. In these potential outcomes models, the assumptions for non-

parametric identification of average treatment effects are well-understood (Imbens

and Wooldridge, 2007). I first remind the reader of these general requirements for

identification, and then show that they are satisfied in my adoption model. Finally,

I show that the average treatment effects estimated by the event studies identify

the robot technology model parameters of interest.

Note first that, since payments to intermediate inputs M are defined as the part

of firm sales that is not paid to labor or profits (a constant markup on firm sales),

matching on firm sales and occupational wage bills is equivalent in the model to

matching on the full vector of firm factor choices, X = (M, L). I let lower cases

denote log transforms, xjt := log Xjt.

In the model, a firm’s factor choices can take two potential values, (xjt(0), xjt(1)),

according to whether or not the firm has adopted robot technology. In the language

of Rubin (1990), the two identifying assumptions are unconfoundedness

{
∆Rjt ⊥⊥

(
xjt(1), xjt(0)

)}
|
(
xjt−1(0), .., xjt−k(0)

)
(A1)

and overlap in robot adoption

0 < P
(
∆Rjt = 1 | xjt−1(0), .., xjt−k(0)

)
< 1 (A2)

Assumption (A1) requires that, once I condition on the path of factor choices that

lead a firm to adopt robots in year t, the act of adoption must be independent of the

firm’s potential factor choice outcomes going forward. On top of this, Assumption

(A2) requires that I can find another firm that experienced the same initial sequence

of factor choices but did not adopt robots in year t. Under Assumptions (A1) and

(A2), the difference in sample means between adopter and match firms identifies
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the average treatment effect of robot adoption (Imbens and Wooldridge, 2007),

x̄T
t − x̄C

t
p→ E

[
xjt(1)− xjt(0) | j ∈ T

]
(40)

where x̄T and x̄C denote the sample means for adopter and match firms, respec-

tively.

Let us now see how the general identifying assumptions (A1) and (A2) de-

rive from the adoption model in Section 3. First, by the invertibility of the fac-

tor demand system, I am implicitly conditioning on (ϕjt−1, ..., ϕjt−k) when I match

on firm factor choices in the k years that lead up to robot adoption (see Equa-

tions (13) and (14)).28 Once I condition on (ϕjt−1, ..., ϕjt−k), firm factor outcomes

(xjt(0), xjt(1)) are driven solely by the productivity innovations ξt in Equation (9).

Since these productivity innovations are unforeseeable when firms choose to adopt

robots in year t − 1, the adoption model satisfies the unconfoundedness condition

(A1) by assumption.

Second, the probability of robot adoption in the model is given by

Pt(∆Rjt = 1|ϕjt−1, ..., ϕjt−k) = F
(

β
(
EVt(1, ϕjt)−EVt(0, ϕjt)

)
− cR

t−1

)
(41)

which lies strictly within the unit interval as long as the distribution of idiosyn-

cratic adoption costs F has full support. The adoption model thus also satisfies the

overlap condition (A2). Put into words, the identification strategy relies here on firm

heterogeneity in the costs of robot adoption εR
jt driving otherwise similar firms to

make different decisions about robot adoption.
Finally, from the model equations (2), (3), (13) and (14), we see that the treatment

28If wages are firm-specific, the identification strategy also requires me to match on wages. In the
analysis, I match on factor choices in Table 2, and then show in Table OA2 that the firms also match
on wages. The non-targeted match on wages provides an overidentification check of the model
assumption that robot adopters do not pay wage premiums.
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effects in Equation (40) identify the parameters of the robot technology

γo = zojt(1)− zojt(0) =
(
lojt(1)− lojt(0)

)
−
(
mjt(1)−mjt(0)

)
(42)

γH = zHjt(1)− zHjt(0) (43)

=
1

ε− 1
(
mjt(1)−mjt(0)

)
+

(σ− ε)

(σ− 1)(ε− 1)
log

{
w1−σ

Mjt + ∑o zojt(1)w1−σ
ojt

w1−σ
Mjt + ∑o zojt(0)w1−σ

ojt

}
(44)

The identification of γH requires the values of the factor augmenting productivities

zojt, which we can readily recover from Equation (13).

Figure OA1: Firm Robot Adoption Around the Event Year
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Notes: The figure shows separately the shares of firms in the treatment and control
groups that have adopted robots around the event year.

OA2.2.2 Econometric Specification of the Event Studies

In this section, I describe the econometric specification that generates the matching-

based event study estimates plotted in Figures 1 and 2. The estimates are differences-

in-differences of outcomes yjt for robot adopters versus match firms measured rel-

ative to the year prior to adoption.29 Figures 1 and 2 plot OLS estimates of βk from

29The match firms are found using an Exact-Mahalanobis matching procedure described in Ap-
pendix OA1.5.1. I provide code for the matching procedure and the event study regression model
at www.github.com/humlum/MatchExactDist.
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the following specification

yjt = α×Rje + ∑
k∈K

αk × 1{t=e+k} ×Mje + ∑
k∈K\{−1}

βk × 1{t=e+k} ×Rje + ujt

(45)

where e denotes event year, Rje indicates that firm j adopted robots in year e, Mje

indicates the match group, and 1{t=e+k} is an indicator that switches on iff event

year e occurred k years ago. The event study window is denoted K = [−4, 4].

Standard errors are clustered at the firm level.

OA2.2.3 Distributed Lag Model for Robot Technology

This section generalizes the robot technology equations (2)-(3) to account for the

dynamic adjustments to robot production observed in Figures 1 and 2. I let robot

technology follow a distributed lag model

log(zjt) = ϕjt +
4

∑
τ=0

γτRjt−τ (46)

Following the identification argument in Section OA2.2.1, the adoption event study

moments in Figures 1 and 2 exactly identify the dynamic robot technology param-

eters γτ. Figure OA2 shows the model fit for firm sales and wage bills.

Figure OA2: Distributed Lag Model for Robot Productivities
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(b) Wage Bill
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OA2.3 Baseline Technology

OA2.3.1 Hicks-Neutral Baseline Productivities

With the homogeneity restriction imposed on firm baseline labor-augmenting pro-

ductivities, the productivity process in Equation (16) boils down to an AR(1) pro-

cess for the Hicks-neutral term

ϕHjt = µHt + ρH ϕHjt−1 + σHξHjt, (47)

where ρH is the persistence parameter for baseline productivity, and µHt is a time

fixed effect.

Table OA2: Baseline Productivity Parameters

Parameter Description Estimated Value

ρ̂H Persistence of firm productivity 0.93

σ̂H Standard deviation of productivity innovations 0.28

OA2.4 Robot Adoption Costs

OA2.4.1 Method of Simulated Moments (MSM) Estimator

In this section, I describe the method of simulated moments (MSM) estimation pro-

cedure adopted in Section 4.4. Table OA3 reports the MSM parameter estimates.

1. Parameterize robot adoption costs to be log-linear in time: cR
t = exp(cR

0 + cR
1 × t)

2. Stack the robot adoption cost parameters into the parameter vector θ = (cR
0 , cR

1 , ν)′

3. Stack the robot diffusion curve and the adopter size premium into the moment

vector π ∈ RN with N = 2018− 1990 + 2

4. Define a grid on the parameter space Θ. For each point on the grid θ(j) ∈ Θ,

(a) Solve for continuation values given cR
t = exp(c(j)

0 + c(j)
1 × t) and ν = ν(j).

The solution algorithm is specified in Section OA4.1.
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(b) Simulate firms forward using the policy function for robot adoption.

(c) Calculate the in-sample squared deviations between the simulated and ob-

served moment vectors

(πS(θ
(j))− πD)

′W(πS(θ
(j))− πD) (48)

where W is a weighting matrix.

5. The MSM estimator, θ̂, attains the minimum in (48).

Table OA3: Robot Adoption Cost Parameters (MSM)

Parameter Description Estimate

exp(cR
0 ) Intercept of the common adoption cost schedule over time 2.813

cR
1 Slope of the common adoption cost schedule over time −0.035

ν Dispersion in idiosyncratic adoption costs 0.446

Notes: Rows 1 and 3 are normalized by average of adopter sales in 1990. Row 2 measures the rate of change.

OA2.5 Labor-Augmenting Baseline Productivities

I calibrate the path of labor-augmenting baseline productivities γot to match the

aggregate factor shares in manufacturing taking into account the diffusion of robot

technology. Figure OA3 shows data (dots) and model simulations (line) from 1990

to 2018 together with out-of-sample forecasts from 2019 to 2049.
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Figure OA3: Aggregate Factor Shares in Manufacturing
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Notes: The labor share is the wage bill relative to sales.

The data have been HP-filtered to focus on medium-run movements (smooth-

ing parameter of 100 following Backus et al. (1992)). The forecasts extrapolate the

growth rate from 2011 to 2018, assuming a linear reduction in rates of growth to

zero by 2049.

OA2.6 Robot Adoption Costs
Figure OA4: Size Premium of Robot Adopters and the Dispersion of Adoption
Costs
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Notes: This figure plots the simulated size premium of robot adopters in 2018 for different
values of the dispersion parameter for idiosyncratic adoption costs ν.
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OA2.6.1 Comparison of Robot Adoption Cost Estimates

Table OA4 compares the estimated rate of change in robot adoption costs cR
t to ex-

ternal measures of the price of robot machinery. In Column 2, I report the annual

change in robot expenditures as reported on the customs forms of adopting firms.

Column 3 reports the average annual change in the Producer Price Index (PPI) for

industrial robots collected by the International Federation of Robotics (2006).30 As

the table shows, the MSM estimate of the decline in robot costs is smaller than the

external cost measures for robot machinery prices. The differences indicate that

other robot-related expenses, such as costs of installation or the hassle of produc-

tion reorganization, have not fallen in tandem with the prices of robotic hardware.

Table OA4: Rate of Change in Robot Adoption Costs

MSM Estimate (ĉR
1 ) Customs Expenditures Robot PPI

(1) (2) (3)
−0.035 −0.075 −0.064

(0.032)

Note: Column 1 is the slope parameter estimated in Table OA3. Column 2 is the OLS
estimate of β1 in log(Rjt) = β0 + β1t + β2 log(Sjt), where Rjt is robot expenditures of
firm j, Sjt is revenues of the firm, and t is the year of adoption. Nominal variables
are deflated with the consumer price index. Column 3 is the producer price index of
robot manufacturers reported in Table III.4 (Column 4) of International Federation of
Robotics (2006).

OA2.7 Depreciation of Robot Technology

This section derives a model extension in which robot technology deteriorates with

a probability θ. The Bellman equation for robot adoption now reads

Vt(0, ϕ) = max
R∈{0,1}

πt(0, ϕ)− (cR
t + εR

jt)× R + βEtVt+1(R, ϕ′) (49)

Vt(1, ϕ) = πt(1, ϕ) + (1− θ)βEtVt+1(1, ϕ′) + θβEtVt+1(0, ϕ′) (50)

Equations (49)-(50) collapse to the main specification in Equations (7)-(8) if θ = 0.

30The PPI is based on list prices of robots with a specific uniform configuration, sold in a specific
quantity, as reported by industrial robot manufacturers to the International Federation of Robotics.
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Figure OA5 shows the simulated robot diffusion curve and real wage effects

on industrial robots when robots depreciate at an annual rate of 10 percent, the

depreciation rate used in Graetz and Michaels (2018). Compared to the baseline

Figures 3a and 5, the model extension to robot depreciation does not affect the in-

sample estimate of the real wage effects of industrial robots as the extended model

is estimated to match the same observed robot diffusion curve. The model ex-

tension does alter the long-run predictions, however, as the robot diffusion curve

asymptotes to a long-run steady-state level (dashed line in Figure OA5a) below full

adoption when robots depreciate.

Figure OA5: Effect of Industrial Robots with Depreciation of Robot Technology
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(b) Real Wage Effects
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OA3 Estimation of Labor Supply

OA3.1 Occupational Amenities

I estimate the path of occupational amenities ηot to match the employment shares

across occupations. Figure OA1 shows data (dots) and model simulations (line)

for the share of employment across two example occupations from 1990 to 2018,

together with out-of-sample forecasts from 2019 to 2049 using the extrapolation

method from Figure OA3.
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Figure OA1: Employment Shares Across Occupations (Manufacturing)
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OA4 Solution Algorithms

This section provides details on the solution algorithms used in Sections 4, 5, and 6.

A Matlab package that implements these algorithms is available at www.github.

com/humlum/robot_ge.

OA4.1 Solving the Firm’s Problem

This section details the algorithm for solving the firm’s dynamic programming

problem of robot adoption.

1. Set a time horizon, T, sufficiently far in the future such that robots are fully

diffused and robot adoption costs are stationary by then. I set T = 2050 in

practice.

2. Start at T. Solve the stationary, infinite-horizon dynamic programming problem
by iterating on the expected value functions until convergence.

EV(j+1)
T (1, ϕ) = πT(1, ϕ) + β ∑

ϕ′
p(ϕ′|ϕ)EV(j)

T (1, ϕ′) (51)

EV(j+1)
T (0, ϕ) = πT(0, ϕ) + β ∑

ϕ′
p(ϕ′|ϕ)ν log

{
exp(

1
ν
(−cR

T + βEV(j)
T (1, ϕ′))) + exp(

1
ν

βEV(j)
T (0, ϕ′)))

}
(52)
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where I use the log-sum expression for the expected maximum (EMAX) func-

tion.31 Convergence of Equation (52) in the unique fixed point EVT(R, ϕ) is en-

sured from Blackwell’s sufficient conditions for contraction mappings (Stokey

and Lucas, 1989, Theorem 4.6).

3. Solve for {EVt(R, ϕ)}T−1
t=t0

using backward recursion from T − 1 to the initial
period t0.

EVt(1, ϕ) = πt(1, ϕ) + β ∑
ϕ′

p(ϕ′|ϕ)Vt+1(1, ϕ′) (53)

EVt(0, ϕ) = πt(0, ϕ) + β ∑
ϕ′

p(ϕ′|ϕ)ν log
{

exp(
1
ν
(−cR

t + βEVt+1(1, ϕ′))) + exp(
1
ν

βEVt+1(0, ϕ′)))

}
(54)

4. From the initial year t0, use policy functions to simulate firms forward. Verify

that robots have fully diffused by time T.

In solving Steps 3 and 4, I assume that firms have perfect foresight of the path

wages and manufacturing price index up to unanticipated aggregate shocks.

OA4.2 Solving the Worker’s Problem

This section details the algorithm for solving the worker’s dynamic occupational

choice problem.

1. Set a time horizon, T, sufficiently far in the future such that robots are fully

diffused by then. I set T = 2050 in practice.

2. Start at T. Solve the stationary worker value functions:

(a) Start at the age of retirement. The value function is

Eε,ζvT(o, 65, ω) = log(woT HoT(65, ω)) + ηoT. (55)

31The specification with a logit shock for adoption (Equation (17)) is isomorphic to the setup in
Rust (1987) with Gumbel shocks for both adoption and non-adoption (up to a recentering for the
mean of a Gumbel). This is due to the well-known result that the difference between two Gumbels
is logistically distributed.
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(b) Solve the value function for ages a = 64, .., 25 by backward recursion

Eε,ζ vT(o, a, ω) = log(woT HoT(a, ω)) + ηoT + ρ

[
γ + log

{
∑
o′

exp(
1
ρ
(−coo′ (ω) + βEε,ζ vT(o′, a + 1, ω′)))

}]
(56)

where γ = 0.577 is Euler’s constant.

3. Compute the value functions for t = T − 1, ..., t0 by backward recursion

Eε,ζ vt(o, 65, ω, ζ) = log(wot Hot(65, ω)) + ηot (57)

Eε,ζ vt(o, a, ω, ζ) = log(wot Hot(a, ω)) + ηot + ρ

[
γ + log

{
∑
o′

exp(
1
ρ
(−coo′ (ω) + βEε,ζ vt+1(o′, a + 1, ω′)))

}]
(58)

In solving this dynamic program, I assume that workers have perfect foresight of

the path of wages up to unanticipated aggregate shocks.

OA4.3 Solving the Dynamic General Equilibrium

This section describes the algorithm for solving the dynamic general equilibrium

defined in Section 6.1. A key property of the general equilibrium model is that,

despite the rich worker and firm heterogeneity, the only aggregate state variables

that agents need to keep track of to solve their dynamic programming problem are

the path of wages and the manufacturing price index.32 I use a fixed-point shooting

algorithm that solves for the wage path that clears labor markets given the optimal

policy functions of workers and firms.

1. Guess a path of wages w(0)
t and manufacturing price index P(0)

Mt .

2. Solve for firm and worker continuation values (Sections OA4.1 and OA4.2).

3. Simulate firm and worker states forward using the policy functions from Step 2.

4. Find wages, w(e)
t , that clear labor markets for each occupation period by period,

using the firms’ static labor demand conditions from Equation (5). Calculate the

implied manufacturing price index P(e)
Mt.

32The path of wages is sufficient to solve the worker’s problem. Manufacturing firms also need
to keep track of the manufacturing output price index as it summarizes the competitive pressures
from robot adoption.
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5. Update wages and manufacturing price index

w(j+1)
t = λw(j)

t + (1− λ)w(e)
t (59)

P(j+1)
Mt = λP(j)

Mt + (1− λ)P(e)
Mt (60)

where λ ∈ [0.8, 0.95] is the relaxation parameter in the Gauss-Seidel update.

6. Iterate until convergence in {wt, PMt}t.

OA5 Counterfactual Experiments

Table OA1: Parameters of the General Equilibrium Model

Description Related Moments Time
varying

Manufacturing Firms
cR

t Common robot adoption costs Robot diffusion curve (Figure 3) X
ν Variance of idiosyncratic adoption costs Size premium in robot adoption (Figure OA4)
γo Labor-augmenting robot productivity Robot adoption event studies (Figures 1-2)
γH Hicks-neutral robot productivity Robot adoption event studies (Figures 1-2)
σ Elasticity of task substitution Rational expectations GMM (Table OA1)
µH Mean of Hicks-neutral baseline productivity Real wage index X
ρH Persistence of Hicks-Neutral productivity Firm sales dynamics (Table OA2)
σH Standard deviation of Hicks-Neutral innovations Firm sales dynamics (Table OA2)
ϕot Baseline labor-augmenting producitivites Labor shares in manufacturing sales (Figure OA3) X
Workers
β Human capital parameters Mincer regression (Table A.1)
coo′ Occupational switching costs Occupational transition rates (Table A.2)
ca Switching costs in age Occupational transition rates (Table A.3)
cs Switching costs in skill Occupational transition rates (Table A.3)
ηot Occupational amenities Employment shares across occupations and sectors

(Figure OA1)
X

Services Production
αs Cobb Douglas shares in services production Wage bill shares in sales excl. manufacturing
zst Hicks-Neutral productivity in services Real wage index X
Common Parameters
β Discount factor Interest rate of 4%
µ Cobb-Douglas shares in final output Share of manufacturing in total output
ε Elasticity of manufacturing demand Markup of 1/3 (Bloom, 2009)
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OA5.1 The Distributional Impact of Industrial Robots

Figure OA1: The Effect of Industrial Robots on the Labor Share in Manufacturing
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Figure OA2: Real Wage Effects of Industrial Robots with Exogenous Labor Supply
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Notes: This figure shows the real wage effects of robots if occupational choices did not respond to
the arrival of robots. In particular, I evaluate the “No Robots” counterfactual keeping labor supplies
fixed on their observed paths (“Baseline”).
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OA5.1.1 Compensating Variations

To measure welfare effects for workers, I follow Caliendo et al. (2019) and calculate

the percentage annual wage change δ needed to compensate a worker of charac-

teristics ω and age a for a given change in policy. Let v0 and v1 denote the worker

value functions in two policy scenarios whose welfare implications we would like

to compare. Due to the logarithmic flow utility of workers in Equation (22), the

compensating variations δ are given by

v1
t (ω, a) = v0

t (ω, a) +
Ā−a

∑
τ=0

βτδt(ω, a) ⇐⇒ (61)

δt(ω, a) = (v1
t (ω, a)− v0

t (ω, a))
(1− β)

(1− βĀ−a+1)
(62)

OA5.2 Policy Counterfactual: The Incidence of Robot Taxes

OA5.2.1 Predatory Investment Externalities

This section incorporates predatory investment effects into the robot tax incidence

analysis. Predatory investment effects refer to the pecuniary externality where

parts of the profit gains from robot adoption come from crowding out competi-

tors in output markets. If demand is sufficiently elastic, firms would be willing

to undertake costly fixed robot investments to obtain just an infinitesimal variable

cost advantage over their competitors.

To analyze the effects of such predations, realize first that firm values in Equa-

tions (7)-(8) are driven by changes in flow profits πt and robot adoption costs cR
t .

Flow profits depend in turn on firm unit costs Ct, manufacturing demand YMt, and

the manufacturing price PMt; see Equations (5) and (6). The predatory investment

externality works through the price index PMt. When tabulating the effects on firm

values in Table 4, I hold this externality fixed by calculating

ṼT
t −VB

t = V({cRT
τ , CT

τ , YT
Mτ, PB

Mτ}∞
τ=t)−V({cRB

τ , CB
τ , YB

Mτ, PB
Mτ}∞

τ=t), (63)

where superscripts T and B denote the robot tax counterfactual and baseline equi-
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librium, respectively.

Table OA2 now incorporates the predatory investment externalities by calculat-

ing

VT
t −VB

t = V({cRT
τ , CT

τ , YT
Mτ, PT

Mτ}∞
τ=t)−V({cRB

τ , CB
τ , YB

Mτ, PB
Mτ}∞

τ=t) (64)

Table OA2 reveals a stark finding: For baseline values of model parameters, the

predatory externalities are large enough to make total tax revenues exceed total

profit losses from the robot taxes. Put differently, if tax revenues can be rebated to

firms appropriately, a robot tax has the potential to increase firm values by inter-

nalizing the predatory externalities of robot adoption.

Table OA2: Robot Tax Incidence with Predatory Externalities

Temporary Tax Permanent Tax

Profits -0.38 -0.96

Predatory Investment Externalities 13.26 30.13

Tax Revenues 10.30 29.50

Notes: Sum of Present Discounted Values in Percent of GDP in 2019.

I hold these predatory externalities on firm profits out of the baseline analysis

to focus on the key equity-efficiency trade-off for workers. That said, the analysis

in this section suggests that studying predatory implications of recent automation

technologies may be a fruitful avenue of future research.
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