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Abstract

Adverse selection harms workers, but benefits firms able to identify talent. An informed

intermediary expropriates its agents’ ability by threatening to fire and expose them to

undervaluation of their skill. An agent’s track record gradually reduces the intermediary’s

information advantage. We show that in response, the intermediary starts churning

well-performing agents she knows to be less skilled. Despite leading to an accelerated

reduction in information advantage, such selectivity boosts profits as retained agents

accept below-reservation wages to build a reputation faster. Agents prefer starting their

careers working for an intermediary, as benefits from building reputation faster more

than offsets expropriation costs. We derive implications of this mechanism for pay-for-

performance sensitivity, bonuses, and turnover. Our analysis applies to professions where

talent is essential, and performance is publicly observable, such as asset management,

legal partnerships, and accounting firms.

Keywords: dynamic signaling, dynamic adverse selection, compensation, career con-

cerns, real options.

1 Introduction

Productive ability is the cornerstone of a successful enterprise. Investors allocate assets to a

mutual fund if they believe the asset manager has skill. Corporations retain legal firms for

the perceived wits of their lawyers. Businesses choose reputable accounting firms to perform

audits and bookkeeping. These professions share a common theme – a significant subset of

workers are employed by intermediaries who, in turn, sell workers’ services to clients. The

∗This paper was previous titled ”Family Knows Best: Fund Advisors as Talent Rating Agencies”. We thank
Andrzej Skrzypacz, David Musto, Pavel Zryumov, Narayana Kocherlakota, Dean Corbae, Felipe Varas, Brian
Waters, Marek Weretka, Michael Sockin, and participants of the UBC summer conference, Colorado Winter
Finance Summit, Duke-UNC Corporate Finance Conference, Stanford SITE, SFS Cavalcade, and seminar
participants at Rochester Simon School of Business, Rochester Department of Economics, Wisconsin School
of Business, Wisconsin Department of Economics, Queen’s Smith School of Business, City University of Hong
Kong International Finance Conference, Case Western Reserve, Fanhai International School of Finance, and
Haskayne School of Business for insightful comments.
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asset manager oversees investors’ capital but is employed by a fund family, such as Fidelity.

Legal associates serve clients but report to partners in their firm. It is surprising that many

workers possessing such general industry skills do not contract directly with clients to sell

their services, especially in professions where agents’ performance is observable. Economists

have, however, long understood that asymmetric information prevents skilled workers from

charging the actual value of their services and enables informed intermediaries to step into

the market and contract with clients on the agent’s behalf. In this paper, we analyze the

dynamic profitability of such intermediation and show how compensation and turnover are

jointly shaped by asymmetric information and performance over the life cycle of an agent’s

career. We do so in a setting where both the agent’s outside option while working for

the intermediary and the value of the intermediary firm are endogenously determined in

equilibrium.

Our analysis reveals an intriguing dynamic interplay between performance, turnover pattern,

and evolving compensation. The equilibrium consists of quiet periods with limited depar-

tures of agents from the intermediary and limited wage dispersion, followed by periods with

increased turnover and differentiated compensation. The intermediary is a monopsonist for

the agent’s labor when the information asymmetry is high. She screens the agents at the

hiring stage but then retains them as long as they generate good performance, regardless of

their ability to generate good performance in the future. Importantly, the quiet period is

not induced by the intermediary’s desire to learn about the agent, but instead the desire to

maintain high information asymmetry. Over time, the agent’s public track record reduces

this information advantage, and the intermediary starts churning lower-skilled agents. While

this reduces the intermediary’s information advantage, her profitability increases in these

periods as higher-skilled agents pay to build their reputation with clients and separate from

lower-skilled agents. In equilibrium, the intermediary serves as a reputation building conduit

for the hired agents, making it optimal for them to start their careers with the intermediary.

While most models of labor market signaling assume exogenous costs of attending school, our

model points to rich compensation dynamics arising endogenously when the agent is already

employed, but still trying to signal his skill to the market.

In our model, the intermediary owns a long-term business and employs a sequence of agents

to operate it. Each agent can work for the intermediary, but can, at any point, quit and

open an independent firm to contract directly with clients.1 The agent is privately informed

about his skill relative to clients. The intermediary acquires this information at the time the

1We assume the agent faces no dead-weight costs of opening the firm, but our findings can easily incor-
porate such friction. Moreover, the agent’s positive reservation value from leaving the industry results in an
opportunity cost of him opening his firm even in our current setting.
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agent is hired, while the clients remain uninformed.2 We assume this private information is

imperfect and that all parties further learn about the agent’s skill from his publicly-observed

performance. In every period, the intermediary either pays the agent enough to retain him

or the agent separates from the intermediary, and the intermediary hires a new one at a cost.

The decision to replace an agent depends on the intermediary’s profitability relative to the

benefit of hiring a new agent. The intermediary’s revenue is determined by the clients’ belief

about the quality of the agent’s services, i.e., by the belief about the ability of the retained

agents.3 The intermediary’s cost is the compensation necessary to retain the agent and is

unobserved by clients, as consistent with practice. The agent’s compensation depends on

the private information of the intermediary-agent pair as well as the clients’ perception of

the agents who are let go by the intermediary. The difference in skill between agents who

are retained and those who quit allows the intermediary to pay the agent only a fraction of

the revenues collected from clients. Private information makes the intermediary a transient

monopsonist for the agent’s labor, making it optimal for him to start his career working for

the intermediary.

The intermediary favors employing higher-skilled agents for two reasons. First, even though

the immediate revenue is determined by the clients’ belief and is not sensitive to the residual

private information, a better agent has higher performance prospects, resulting in improved

revenues in the future. Second, the intermediary can bargain more effectively with a higher

skilled agent, as being fired and pooled with lower-skilled agents presents a more severe

punishment for a higher-skilled agent, who is more sensitive to clients’ beliefs about him as

he expects to stay in the industry longer. Consequently, the intermediary’s threat of early

termination is more effective when negotiating the compensation with a better agent, leading

to greater profitability of employing him.

When information asymmetry is high, the intermediary retains all agents, as long as they

perform sufficiently well. The intuition is that the revenues are pinned down by clients’

belief about the retained agents, while compensation costs are determined by the worst

remaining agent. Even an intermediary employing the worst agent can collect substantial

revenues from pooling with higher-skilled agents before letting go of the agent and paying

the resampling cost. We term this as the quiet period of the employment relationship. It is

characterized by low turnover and a lack of wage dispersion. The agent’s performance track-

2Consistent with survey evidence in Behrenz (2001), who shows that most of the private information of
the firm accrues at the interview stage.

3It is common that the client is the residual claimant of the quality of the provided service. In the context
of mutual funds, investors pay a percentage fee of assets under management to the fund family but are the
residual claimants of the manager’s performance. The fund family rarely invests its capital into its funds.
In the context of legal services, it is common for a client to retain a law firm for a fee. The law firm then
represents the client, but does not bear residual claim to the outcome of the trial or negotiation.
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record gradually reduces information asymmetry, making retention of the lower-skilled agent

expensive, eroding the intermediary’s profitability of retaining all agents, and eventually

ending the quiet period.

When the information asymmetry is low, the intermediary cannot profitably retain all agents.

Dropping lower-skilled agents improves the pool of retained workers, leading to an increase

in revenues from clients, but also a further reduction in information asymmetry. The inter-

mediary can affect the rate of this decline by strategically setting her retention policy. One

might naturally conjecture that she would refrain as much as possible from letting go of lower-

skilled agents in order to maintain a steady profit wedge. We show that, on the contrary,

she accelerates reduction in information asymmetry by churning low-skilled agents at a faster

rate, and highlight that the higher churning rate increases the intermediary’s profits. The

key to understanding this is to keep in mind that being retained by the intermediary conveys

a positive signal about the agent’s ability to clients and improves his future career prospects.

A higher skilled agent is willing to be under-compensated to the extent that he accepts even

less than the compensation of the separating low-skilled agent in order to capture the deferred

benefit of such reputation building. Such willingness allows the intermediary to differentially

underpay higher-skilled agents during churning periods, boosting her profits despite dimin-

ishing information asymmetry. Such dynamics lead her net profits to be non-monotone in

elapsed time and performance – they decline while in a quiet region, but then increase as

the intermediary starts churning lower-skilled agents. Churning periods are associated with

more wage dispersion, as higher-skilled agents differentially pay for reputation – a result that

highlights the importance of private compensation contracts, contrary to prior literature. In

equilibrium, better agents are retained for longer but are more underpaid while working for

the intermediary. These results hold regardless of whether the intermediary can commit to

long-term contracts with the agent.

We show that the pay-for-reputation mechanism is robust to a number of extensions of

the model. First, we allow the agent to move laterally across different, but symmetrically-

informed intermediaries. Such a possibility gives the agent bargaining power and reduces

the intermediary’s profits, but does not alter the equilibrium structure. Second, we allow

the agent to signal his ability to clients by selling his services at a persistent discount when

he opens his own firm. We show that, as long as the agent’s performance is reasonably

informative, the agent prefers to build a reputation by working for the intermediary, and

does not rely on independent signaling. The intuition is that, while a higher-skilled agent

benefits more from a better reputation, he also suffers a greater dead-weight cost of signaling

his ability independently. Third, we contrast the role of reputation building and general

training. We show that the intermediary has an interest in training the agent only when
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the information asymmetry is high, and she can capture part of the incremental surplus.

As the information asymmetry declines due to publicly-observable performance signals, the

intermediary substitutes training with profitable turnover, in which higher skilled agents pay

for building a reputation.

To illustrate the economic mechanism, we first express it in a parsimonious model where per-

formance signals stem from a perfectly informative negative Poisson process.4 This sharpens

the economic intuition but, because elapsed time is the only state variable, makes it difficult

to separate the effects of performance and residual uncertainty about the agent in determin-

ing compensation and turnover. To remedy this, we develop a novel learning model that

combines a general distribution of private information and conditionally normal Brownian

performance signals.5 We are then able to characterize the equilibrium of this more general

model as a solution to a multi-dimensional real-option problem, demonstrate that the equi-

librium structure is very similar to the case of the Poisson model, and also derive a number

of additional distinguishing results highlighting the effect of past performance on the agent’s

compensation and turnover.

In the Brownian model, the intermediary’s profitability endogenously increases if the agent

performs well, as clients’ more dispersed beliefs about the retained agent lead them to put

more weight on performance signals relative to their conditional belief about the worst re-

maining agent. The intermediary’s revenue thus increases more with good performance than

does the agent’s reservation wage, leading to her profit wedge to be increasing with the agent’s

performance, absent any churning. This observation implies an intuitive equilibrium struc-

ture - the intermediary lets go of lower-skilled agents when their performance drops below a

certain threshold. This churning threshold and the corresponding retention decisions depend

on the residual uncertainty about the agent and belief about the worst remaining agent.

We characterize equilibrium dynamics given three dynamic states: elapsed time, cumulative

performance, and the worst agent retained by the intermediary.

In equilibrium, the agent’s compensation is increasing in performance. When it drops below

the churning threshold, however, and in contrast to the Poisson version of the model, com-

pensation of all retained agents suffers a discontinuous downward drop as the intermediary

churns lower-skilled agents at a strictly positive rate, and all retained agents pay for reputa-

tion. The intuition is that an agent is retained at a discount during downsizing but benefits

from a better reputation going forward if he survives with the current intermediary. Interest-

ingly, as residual uncertainty about the agent declines over time, the intermediary increases

4The tractability of this approach has been emphasized in Hörner and Skrzypacz (2018).
5The model is a natural analog of Brownian performance signals in the setting of Fuchs and Skrzypacz

(2010), and continuous types in the setting of Daley and Green (2012).
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the churning threshold and corresponding turnover rate, as the option value of retaining a

lower-skilled agent in the hope he performs well declines, leading to all agents being let go in

finite time.

Our analysis applies to professions in which the agent’s talent is essential, his performance

is observable with reasonable frequency, and the agent can contract directly with clients. In

this environment, an intermediary able to identify ability can enter the market and sell the

agent’s services to clients. The prospect of generating a track record attracts the worker

to the intermediary, while the intermediary’s private information allows her to bargain with

the worker profitably. Some of the occupations we have in mind are a mutual fund manager

employed by a fund family to run one of its funds, a non-partner lawyer in a law firm,

a non-partner physician or architect, an accountant working for one of the big accounting

firms.

1.1 Related Literature

Our model contributes to a couple of strands of the literature: dynamic signaling and adverse

selection, compensation and turnover in the presence of dynamic performance signals, and

delegation through intermediation.

In our model, the intermediary is able to extract rents from the agent by being informed about

his ability, similar to early works on asymmetric information in the labor markets, such as

Greenwald (1986) and Gibbons and Katz (1991). Greenwald (1986) shows, in a three-period

model, that in equilibrium, lower-skilled workers separate from the firm first; in the period

they separate, their wages are higher than the wage of retained workers who more than make

up the gap in subsequent period wages. A key contribution of our framework is that, in

addition to retention decisions, we incorporate dynamic and publicly observable performance

signals generated by the agent. The interplay between the dynamic evolution of asymmetric

information, impacted by both performance signals and retention decisions, and reputation

considerations is a key driver of our results. This leads to novel turnover dynamics including

an interplay between quiet periods where all retained agents earn the same wage, and the

intermediary does not strategically let agents go, and churning periods that emerge when

asymmetric information is low in which retained agents’ compensation is tightly linked to

their skill level. This is in contrast to prior work where all retained agents receive the same

wage.

Higher skilled agents may signal their ability to prospective employers by becoming educated,

as shown by the seminal work of Spence (1973). We show that the incentive of higher-

skilled agents to signal their ability to the market shape their compensation and turnover
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dynamics even if they are already employed. Waldman (1984) and Bernhardt (1995) study

the role of promotions in determining worker compensation. These papers assume that worker

compensation is publicly observed, leading to higher-skilled agents being promoted first. We

show that, when compensation is unobserved by the outside, the employer can charge the

agent for building a reputation. There is significant literature studying equilibrium selection

in dynamic signaling games. Cho and Sobel (1990) show in a static setting, that, as long

as the players’ preferences satisfy certain monotonicity conditions, the divinity criterion is

equivalent to the independence from never weak-best responses of Kohlberg and Mertens

(1986) and leads to a unique signaling equilibrium. Noldeke and Van Damme (1990) show in

a dynamic game with two types that divinity6 leads to the Riley outcome of the Spence (1973)

signaling model. Introducing such refinements directly in a continuous-time model presents

a significant challenge. We identify the unique equilibrium in which the clients positively

update about the ability of the agent while he is employed, similar to the motivation of the

divinity criterion in Cho and Sobel (1990).

Farber and Gibbons (1996) consider a model of the public learning about the agent’s ability,

but abstract away from asymmetric information. The resulting wage of the agent is equal

to his expected marginal product. We show that adverse selection alters wage dynamics

in two fundamental ways. First, during quiet periods, clients learn about skill only from

performance signals, and all agents are paid the marginal product of the worst retained type.

Second, during periods of churning, clients infer the agent’s skill based on both performance

and retention; consequently, higher-skilled agents pay for reputation.

Quiet periods also arise in Kremer and Skrzypacz (2007), Daley and Green (2012), and

Zryumov (2018), where the possibility of a pooling offer in the future discourages early trade.

The economics behind the quiet period is, however, different in our paper – delays occur

because an intermediary employing a lower-skilled agent can collect revenues corresponding

to the average remaining agent, resulting in a transient pooling period, before the agent

leaves and accepts a separating offer from clients. These quiet periods resemble probation

stages when the employer keeps turnover at a minimum, and there is little wage dispersion.

However, the key driver is not the objective of the intermediary to learn about the agent’s

ability from his performance, but, instead, that pooling is optimal as long as information

asymmetry is sufficiently high. Once information asymmetry is low, the intermediary both

starts churning agents and wages of retained agents become inversely related to their private

skill level.

Reputation contributes to the revenues an agent generates and can be regarded as a form

6They use the Independence of Never Weak Best Responses, which is equivalent in the setting.
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of general human capital. Prior work has shown that when labor markets are imperfect,

firm-sponsored general skills training can emerge in equilibrium; see Acemoglu and Pischke

(1999) for a survey. Specifically, Acemoglu and Pischke (1998) show this occurs when there is

asymmetric information between current and potential employers about workers’ skill since

the current employer can capture part of the incremental surplus. We confirm the interme-

diary has an interest in training the agent when information asymmetry is high. However,

our analysis reveals that as information asymmetry declines, due to all parties observing

performance signals, the intermediary substitutes training with profitable turnover, in which

higher skilled agents pay for building a reputation. Higher turnover is detrimental to train-

ing incentives, as shown in Acemoglu and Pischke (1998), but is beneficial for accumulating

reputation as we show in this paper.

Identifying talent is essential in the asset management industry. Berk and Green (2004)

appeal to it to explain the relationship between fund size and performance. Moreover, Berk,

Van Binsbergen, and Liu (2017) identify private information a fund family has about the skill

of the managers it employs. While there has been extensive theoretical work on delegation

contracts between investors and asset management entities, a centerpiece that has been mostly

ignored is that investors sign contracts with the intermediary, for example, a mutual fund

family, and not directly with the asset manager. In this paper, we focus on contracting

implications for this important and under-researched second layer. An exception in the

literature is the work of Gervais, Lynch, and Musto (2005), who show that a fund family

can add value by committing to fire a fixed percentage of the managers it perceives to be

the worst. We show that a fund family does not need to commit to long term contracts

and termination policies as lower-skilled agents become too expensive to retain anyway. Our

findings are also consistent with the observed behavior of mutual fund managers who, at

times, are allowed to open a separate hedge fund to run on the side.7

Our work also relates to the literature on dynamic certification. In that literature the certifier,

for example, a rating agency, issues a formal stamp of approval, where typically two types

of certifiers are assumed: a type committed to being honest and an opportunistic type; see

for example Mathis, McAndrews, and Rochet (2009).8 In contrast, in our setting retention

serves as an indirect stamp of approval, and the intermediary acts optimally.

Similar to Fuchs and Skrzypacz (2010), Kremer and Skrzypacz (2007), and Bonatti and

Hörner (2017), in our base model we take advantage of the tractability benefits of modeling

performance as a perfectly informative Poisson arrival process.9 However, a limitation of this

7See Nohel, Wang, and Zheng (2010) and Deuskar, Pollet, Wang, and Zheng (2011) for details.
8For a survey see Dranov and Zhe Jin (2010).
9For a discussion of the tractability benefits see Hörner and Skrzypacz (2018) for a survey of the experi-
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structure is that it co-mingles the effects of residual uncertainty about an agent’s skill and his

performance in his retention and compensation. We are able to disentangle these two forces

in a Brownian model of performance while showing that the equilibrium structure remains

unchanged.

Our method to solving the Brownian model provides methodological contributions on struc-

turing and numerically solving dynamic adverse selection models with learning about a con-

tinuum of types.10 First, we obtain the intermediary’s churning strategy by solving a set of

parallel, but independent, non-stationary optimal stopping problems. Second, we note the

tractability benefit of combining a truncated normal distribution of private information about

the agent type with dynamic Brownian signals of the type. The benefit stems from the class

of truncated normal distributions being a conjugate of itself with respect to the Gaussian

likelihood function. Finally, we perform a Girsanov change of measure and integrate out the

latent information conditional on a public history. We are then able to obtain the intermedi-

ary’s equilibrium expected value as a solution to a single dynamic program. This reduces the

required number of calculations dramatically as we have integrated out private information -

so much so that it enables solving problems that otherwise would just take too long even with

significant computation resources. This is a novel dynamic framework that can be applied to

study the implications of dynamics asymmetric information in other economic settings.

The rest of the paper is organized as follows. Section 2 introduces the baseline model. We de-

rive the equilibrium and characterize its properties in Section 3. Section 4 considers imperfect

competition among intermediaries, the possibility of the agent independently signaling abil-

ity, and the differences between reputation building and training. We consider the model of

Brownian performance in Section 5. Section 6 concludes. Formal proofs and additional anal-

yses are in Online Appendix A and Online Appendix B provides theoretical steps necessary

for the numerical evaluation of the Brownian model.

2 Setup

Our setting stems from four building blocks. First, the employee provides clients a service

with publicly observable outcomes, which we denote by Xt; for example, the success or failure

of a trial lawyer in court. Second, the public attributes a significant part of the performance

to that individual’s skill, which we denote by θ. For example, the performance of a mutual

fund is attributed to a large extent to the skill of the fund manager and not the family the

mentation literature.
10To our knowledge, Daley and Green (2012) and Daley and Green (2014) are the only models exploring

Brownian performance signals, yet they focus on the binary nature of asymmetric information.
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fund belongs to. Third, while the employing firm knows more about the skill of the employee

than the public, this information asymmetry eventually declines as a result of all parties

learning from performance. Finally, it is not prohibitively costly for the agent to cut out the

intermediary and provide his services directly to clients by opening his own firm. In what

follows, we refer to the worker as the agent and the firm as the intermediary. We cast the

game in continuous time in favor of tractability in analyzing games of asymmetric information

and as well as real option problems.

Service Technology. An agent has unknown skill θ ∈ {0, 1}, that is not directly observable

by any of the players, and affects the cumulative performance of his services sold to clients,

given by a publicly observable process

Xt = µt−N θ
t . (1)

Process N θ = (N θ
t )t≥0 is Poisson with a constant arrival intensity λ(1−θ). 11 A skilled, θ = 1,

agent never performs a bad service, generating a flow payoff of µ to clients. An unskilled,

θ = 0, agent exposes clients to a possibility of a bad service, such as bad investment returns

or legal penalties, generating an expected flow payoff of µ− λ to clients. The expected value

of the agent’s service at time t is µ+ λ(Et [θ]− 1) which is increasing in the agent’s expected

skill. If the agent performed poorly prior to time t, i.e., Xt < µt (which is equivalent to

N θ
t > 0), then all players correctly identify him as unskilled.

Clients. The clients are willing to pay A(Et [θ]) for services rendered by the agent in period

t if his perceived skill is Et [θ], where A(·) is increasing in θ. For expositional simplicity, we

assume this willingness-to-pay is the same whether the agent works for the intermediary, or

contracts directly with clients.12 While we model the clients’ demand for services in reduced

form to fit a broad set of applications, we assume the clients rationally update their beliefs

about the agent’s skill-based both on performance and retention outcomes.

In equilibrium, the agent leaves the intermediary at a, possibly infinite, time τ observable

by all players. We denote by qt the clients’ equilibrium belief about the skill of the agent

retained by the intermediary up to time t

qt
def
= E [ θ | (Xs)s≤t, t < τ ] = E [ θ |Xt, t < τ ] . (2)

Belief qt determines the revenue A(qt) obtained by the intermediary in period t.

11We show in Section 5 that the results hold in a Brownian model of performance.
12We allow the agent to sell services at a discount in Section 4.2. Our results and methods are directly

extendable to settings in which the demand for agent’s services is different if he contracts with clients directly.
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The time at which the agent separates from the intermediary is, potentially, informative

about his skill. We denote by kt the clients’ equilibrium belief about the agent who leaves

the intermediary at time t. If he leaves the intermediary with good performance Xt = µt,

then

kt
def
= E [ θ |Xt = µt, τ = t] . (3)

If the agent separates from the intermediary after bad performance, then all players identify

him as unskilled, resulting in kt = 0. Belief kt determines the starting revenue A(kt) obtained

by the agent were he to open his own firm and, thus, influences his career prospects were he

to separate from the intermediary. We term kt as the agent’s (outside) reputation.

Agent. The intermediary-agent pair is endowed with an initial private signal about θ. We

identify this signal with their private posterior p̃0 ∼ F (·) at t = 0,13 and require F (·) to be

continuously distributed with full support on [p, p]. If the agent performs well up to time t,

the intermediary-agent pair update their private posterior belief about his skill to

p̃t = π(p̃0, t)
def
= P

(
θ = 1

∣∣Xt = µt, p̃0

)
=

p̃0

p̃0 + (1− p̃0) · e−λt
. (4)

If the agent performed a bad service before time t, i.e., Xt < µt, then p̃t = 0. We refer to p̃t

as the agent’s private type at time t, or, simply, as the agent’s type when it is unambiguous.

Suppose the agent leaves the intermediary after good performance up to time t and opens his

firm.14 Once he does so, subsequent learning about θ is driven solely by public performance

signals Xt,
15 meaning that after a history of good performance between t and s, the clients’

posterior belief becomes π(kt, s− t). The agent is risk-neutral and discounts cash flows at a

rate ρ. His expected value from separating from the intermediary at time t given (outside)

reputation kt and private type p̃t is the expected discounted sum of revenues

U(p̃t, kt)
def
= max

η̂
Ep̃t

[∫ η̂

t
e−ρ(s−t)A

(
π(kt, s− t)

)
ds+ e−ρ(η̂−t) · L

]
. (5)

We denote by η the stopping time maximizing (5), which denotes the time when the agent

chooses to leave the industry altogether. When η > t, the agent opens his own firm upon

quitting the intermediary and when η = t he leaves the industry immediately upon being

let go. His reservation value L ≥ A(0)/ρ captures the agent’s prospects outside of the

industry.16 Reputation kt determines the agent’s expected value from opening his firm at

13If s̃ is the signal privately observed by the intermediary-agent pair, then p̃0 = E [ θ | s̃].
14We assume that opening the firm is costless, but our results are unaffected if such a cost is present. We

show in Section 4.1 that the results are unchanged if the agent can switch laterally between intermediaries.
15We show in Section 4.2 that the results are unchanged if the agent can independently signal his ability.
16Mathematically, such normalization is without loss of generality. Economically, it states that it is more

efficient for unskilled agents to leave the industry and is similar to the favorable selection argument in Jovanovic
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time t, providing an outside option when negotiating compensation with the intermediary.

Process (kt)t≥0 governs the endogenous dynamics of this outside option.

Intermediary. The intermediary’s revenue at time t is given by A(qt) which is determined

by the clients’ belief about the agent in her employment. The profit of the intermediary,

however, is the revenue net of the cost of retaining the agent. We denote by w̃t the wage

paid by the intermediary to the agent and note that it may depend on the private type

p̃t. Consistent with all of our applications, wage w̃t is unobservable by clients, allowing the

intermediary to condition it on her private information. The agent of type p̃ = (p̃t)t≥0 accepts

a ”sequence” of wages w̃ = (w̃t)t∈[0,τ ] if staying with the intermediary until time τ is weakly

better than leaving immediately given prevailing reputation kt

Ep̃t

[∫ τ

t
e−ρ(s−t)w̃s ds+ e−ρ(τ−t) · U (p̃τ , kτ )

]
≥ U(p̃t, kt) (6)

for all t ∈ [0, τ ] and the expectations is taken with respect to future performance, conditional

on the agent’s type p̃t.

The intermediary sets wages strategically, understanding the adverse-selection frictions faced

by the agent, manifested by the difference between his true type p̃t and his (outside) reputa-

tion kt, were he to leave. We assume the intermediary cannot commit to long-term contracts

to illustrate how the agent’s reputation kt alone can act as a commitment device for deferred

compensation.17 The intermediary is risk-neutral, and discounts the future at rate r ≤ ρ,

resulting in an expected profit

Ep̃0

[∫ τ

0
e−rt(A(qt)− w̃t) dt+ e−rτ · V

]
,

where V is the endogenous continuation value of the intermediary when she lets go of the agent

and, potentially, hires a new agent. In most applications, the intermediary runs a long-term

business and can replace the outgoing agent with a new one, at a cost. The intermediary’s

continuation value V is pinned down as a solution to the fixed point equation

V = max

[
e−r∆ · E

[∫ τ

0
e−rt

(
A(qt)− w̃t

)
dt+ e−rτ · V

]
− I, 0

]
(7)

where I is the fixed cost and ∆ is the delay to replace the agent.18

Application to Money-Management. Consider a mutual fund family offering a fund to

its investors. It charges investors a percentage fee f on its assets under management, while

(1982).
17Our findings are robust to giving commitment power to the intermediary as we show in Lemma A.2.
18If I or ∆ is very large, the intermediary may choose to not to hire a new agent, leading to V = 0. By

setting ∆ = +∞ and I < 0, such specification captures the case of an exogenous outside option.
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privately compensating the manager it employs. Investors know the name of the manager who

oversees their wealth but do not know his investment skill and learn about it from observing

the returns he generates. Moreover, the fund family is likely to know more about its manager

than the clients, as shown by Berk, Van Binsbergen, and Liu (2017). The realized per-dollar

return is identified with dXt − g(St) dt, where St represents assets under management and

function g(·) captures decreasing returns to scale due to increased market impact, as modeled

by the seminal work of Berk and Green (2004). Investors provide capital competitively, and

invest in the fund until its expected return equates their opportunity cost rI

Et [dXt − g(St) dt] =
(
µ− λ (1− qt)− g(St)− f

)
dt

(i)
= rI dt.

The resulting revenue A(·) of the intermediary (fund family in this case) is given by

A(qt) = f · St = f · g−1 (λqt + µ− λ− f − rI) .

The manager’s outside option is to open his own fund by attracting investment capital. He

can attract more capital and, thus, collect more fees, if he has a better reputation in the

money-management industry.19

Equilibrium definition. Our solution concept is a Perfect Bayesian Equilibrium adapted

to our continuous-time setting with frequent actions and asymmetric information.

Definition 1. A (monotone) Perfect Bayesian Equilibrium is a public termination time τ ,

a collection of private wage processes w̃ = (w̃t)t≥0 for each agent type (p̃)t≥0, and the clients’

belief processes (qt)t≥0 and (kt)t≥0 such that

(i) Stopping time τ and wage process w̃ = (w̃t)t≥0 solve the intermediary’s retention prob-

lem given the clients’ beliefs

{
τ, w̃

}
∈ arg max

{τ̂ , ŵ}
Ep̃0

[∫ τ̂

0
e−rt (A(qt)− ŵt) dt+ e−rτ̂ · V

]
,

subject to the retention constraint (6) being satisfied with equality for every t ∈ [0, τ)

and the expected firm value V satisfying (7).

(ii) Belief kt is monotone in initial types: π(kt,−t) is weakly increasing in t along the path

of good performance.

– On-path beliefs: kt = E [p̃t|Xt, τ = t] and qt = E [ p̃t |Xt, τ > t] if t ∈ support(τ).

– Off-path beliefs: kt ∈ support(p̃t|τ > t) if t /∈ support(τ) and P(τ > t) 6= 0. If

P(τ > t) = 0, then kt = qt = π(p̄, t).
19If the manager opens a hedge fund, his revenues may be different from those obtained in a mutual fund,

but our setting is robust to such extension.
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The intermediary chooses when to let the agent go while satisfying the agent’s retention con-

straint (6). In a subgame perfect equilibrium, the intermediary pays the agent just enough

for him to stay in the next period, implying that (6) must be satisfied with equality along

the path of play. While it is difficult to introduce subgame-perfection in a game with fre-

quent observable actions directly in continuous time,20 requiring that the retention constraint

(6) is binding captures the subgame-perfect wage-setting by the intermediary. Equilibrium

wages w̃ are a function of performance, private information, as well as public beliefs, and

the intermediary solves the optimal retention problem for the agent of every skill level p̃

separately.

We require that the clients’ beliefs are consistent with the intermediary’s strategy so that,

along the equilibrium path, belief processes (qt)t≥0 and (kt)t≥0 satisfy (2) and 3 respectively.

In addition, we require that the agent does not get penalized for working for the intermediary,

which corresponds to the outside reputation kt increasing weakly faster along the path of good

performance than just stemming from public news.21 We also require that once all agents

leave the intermediary, the clients’ belief is that the remaining agent is the highest possible

type, following the intuition underlying the D1 criterion that the deviating type must be

the one obtaining the greatest gains from a deviation. This is identical to the equilibrium

refinement used in the dynamic signaling game of Noldeke and Van Damme (1990), but

applied directly to a signaling game featuring a continuum of types, dynamic performance

signals, and cast directly in continuous time.

3 Equilibrium Analysis

To characterize the equilibrium, we proceed in three steps. First, we characterize the agent’s

endogenous dynamic outside option U(p̃t, kt) if he leaves the intermediary at time t given

clients’ belief kt. This determines the agent’s reservation wage when working for the interme-

diary. Second, we characterize the intermediary’s decision of retaining the agent as a function

of his skill level p̃t and the intermediary’s continuation value V . Finally, we complete the

characterization by pinning down V .

20See Simon and Stinchcombe (1989) for pathological cases that may arise in continuous time games with
frequent actions. In our model, the binding constraint (6) can be derived from considering a limit of equilibria
in which the intermediary sets a fixed wage for a small, but discrete time interval.

21A weaker assumption, which is also sufficient for our purposes, is that the support of types remaining
employed by the intermediary is convex. While this does not rule out higher skilled agents from leaving the
intermediary first, the intermediary would not be able to retain other agents, implying an atom of exits.
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3.1 Agent’s Dynamic Outside Option

The agent’s outside option comprises of either starting his own firm or leaving the industry.

The decision to start his own firm at time t depends on starting revenues A(kt) and their

expected growth rate, which is determined by the agent’s private type p̃t. As higher skill

implies a higher likelihood of continued good performance, it also leads to greater expected

revenues in the future.

Define by uθ(k) to be the expected value to an agent of opening a firm conditional on θ ∈ {0, 1}
given reputation k and operating it as long as he performs well. If θ = 1, then the agent

never performs poorly and

u1(k)
def
=

∫ ∞
0

e−ρ t ·A (π(k, t)) dt (8)

is the discounted sum of revenues in perpetuity. If, however, θ = 0 then at an exponentially

distributed random time he performs poorly, is revealed to be unskilled, and consequently

leaves the industry. His conditional expected value

u0(k)
def
=

∫ ∞
0

e−(ρ+λ)t ·A (π(k, t)) dt+
λ

ρ+ λ
· L, (9)

is the expected discounted sum of revenues until he performs poorly and the payoff L from

leaving the industry.

Since good performance increases posterior beliefs of both the clients and the agent, if it is

optimal for the agent to open his own firm, then it is best to operate it along the path of

good performance. The agent, then, leaves the industry only once he performs poorly.

Lemma 1. The agent’s expected value of leaving the intermediary given his own belief p̃ and

the clients’ belief k is given by

U(p̃, k) = max
[
p̃ · u1(k) + (1− p̃) · u0(k), L

]
. (10)

It is weakly increasing in his skill p̃ and client’s belief k about his ability.

Equation (10) provides a tractable solution for the agent’s dynamic reservation value and

allows us to establish an important property of the agent’s outside option.

Proposition 1. Agent’s value function U(p̃, k) satisfies single crossing: a higher skilled agent

is more sensitive to changes in clients’ beliefs than a lower skilled agent

∂

∂k
U
(
p̃′, k

)
>

∂

∂k
U (p̃, k) for any p̃′ > p̃. (11)

The result of Proposition 1 can be obtained by differentiating (10) with respect to p̃ and,

15



then, differentiating (8) and (9) with respect to k under the sign of the integral

∂2

∂p̃∂k
U(p̃, k) = u′1(k)− u′0(k) =

∫ ∞
0

(
e−ρt − e−(ρ+λ)t

)
︸ ︷︷ ︸

>0

·
(
A′
(
π(k, t)

)
· ∂1π(k, t)

)
︸ ︷︷ ︸

≥0

dt ≥ 0.

A higher-skilled agent expects to remain in the industry in the future with a higher probability,

making him, effectively, more patient. Thus, he is more sensitive to changes in his current

reputation, since it entails a longer-term impact on his revenues. An important consequence

of Proposition 1 is that a higher-skilled agent would be willing to sacrifice more short term

revenues in favor of building a reputation.

We denote by wR(p̃, k) to be the reservation wage of the agent as the flow utility he receives

if he pursues his outside option. Since he is risk-neutral and discounts cash flows at rate ρ,

we can think about him receiving ρL in perpetuity when he leaves the industry. The agent’s

reservation wage can be expressed as

wR(p̃, k) =

 ρL if U(p̃, k) = L,

A(k) if U(p̃, k) > L.
(12)

The agent’s reservation wage depends on his skill p̃ (i.e., his belief about his ability θ) only

via the public decision to start his firm. The agent values future revenue growth, and as

such may decide to open his own firm, instead of leaving the industry, with initial revenues

below ρL in order to obtain higher revenues in the future. Moreover, as shown in the proof of

Proposition 1, a higher-skilled agent values this growth option more than a low-skilled agent.

As a result, reservation wage wR(p̃, k) is weakly decreasing in p̃.

3.2 Equilibrium Turnover and Compensation

The intermediary’s profits stems from the fact that clients are at an information disadvantage

and she retains an agent of a given skill only if it is more profitable than to replace him. The

difference between revenues A(qt) and reservation wage wR(p̃t, kt) is weakly increasing in the

agent’s skill p̃t, implying that lower skilled agents are the first to be let go. Such ordering,

intuitively, implies that agents of types p̃t ≥ kt are still employed by the intermediary at time

t and we refer to p̃t = kt as the cutoff agent.22 The average type of the agent retained by the

intermediary is then given by qt = E [p̃t | p̃t ≥ kt]. In order for the agent’s posterior type p̃t

at time t to weakly exceed kt, it must be that his initial type p̃0 is such that π(p̃0, t) > kt or,

equivalently, p̃0 ≥ π(kt,−t).23 The average type of the agent retained by the intermediary

22This is an informal argument. In what follows, we first construct an equilibrium satisfying this property
and then establish its uniqueness.

23The domain of π(x, t) can be extended on R × [0, 1] using the algebraic definition in (4). Then
π(π(p,−t), t) ≡ p for any p.
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given good performance is then obtained by Law of Iterated Expectation

qt = Q(kt, t)
def
= E

[
θ
∣∣ p̃0 ≥ π(kt,−t), Xt = µt

]
= π

(
E
[
p̃0

∣∣ p̃0 ≥ π(kt,−t)
]
, t
)
.

If the difference A(qt)−wR(kt, kt) is sufficiently large, then the intermediary optimally retains

all agents and beliefs change only as a result of observing performance signals X. If, however,

A(qt)−wR(kt, kt), is low, then the intermediary finds lower-skilled agents unprofitable, relative

to replacing them, and lets them go. Churning the cutoff agent at time t, despite his history

of good performance that is indistinguishable from other well-performing agents, increases

the expected skill of the worst agent employed next period, kt, as well as the clients’ belief

about the average agent still employed, qt, but may further reduce the information advantage

qt − kt. At first glance, such erosion of the information advantage, which is the source of the

intermediary’s profit, seems to be detrimental to her. However, churning lower-skilled agents

generates a positive signal about agents who are retained by the intermediary. Consequently,

in periods when the intermediary churns lower-skilled agents, higher-skilled agents are willing

to pay for reputation building. Consequently, they are willing to work for the intermediary at

below their reservation wage, thus increasing the intermediary’s profits. Figure 1a illustrates

that, along the path of good performance, the belief about the cutoff type kt exceeds the

posterior belief π(k0, t) about the worst type initially hired, due to selective retention by the

intermediary.

Proposition 2. The equilibrium is characterized by a churning set T ⊆ R+ comprised of a

finite union of intervals.

(i) The intermediary lets the agent go either after bad performance, or if he is the cutoff

type p̃t = kt during the churning period t ∈ T.

(ii) If the agent is not identified as unskilled, i.e., kt > 0, his reputation grows faster during

churning periods

dkt = λkt(1− kt) dt+ kt
(
dXt − µdt

)︸ ︷︷ ︸
learning from performance

+

0 if t /∈ T,

γ(kt, t) dt if t ∈ T,︸ ︷︷ ︸
learning from churning

(13)

Incremental growth rate γ(kt, t) is determined by the ratio of the profitability of the

cutoff agent and his marginal value of reputation24

γ(kt, t)
def
=

[
rV −

(
A
(
Q(kt, t)

)
− wR(kt, kt)

)]+

∂2U(kt, kt)
≥ 0. (14)

(iii) Agents pay for reputation building by accepting lower compensation

24For notational convenience ∂2U(p̃, k) ≡ ∂
∂k
U(p̃, k). In particular, ∂2U(p̃, k) ≡ ∂

∂k
U(k, k)

∣∣
p̃=k

.
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w(p̃t, kt) = wR(p̃t, kt)−

0 if t /∈ T,

γ(kt, t) · ∂2U(p̃t, kt) if t ∈ T.︸ ︷︷ ︸
pay for reputation

(15)

(iv) If A′(p)p(1 − p) is decreasing in p ≥ p, then T = [t∗,∞) where t∗ is the first time

γ(kt, t) > 0.

t

kt, qt

1

t∗ t̄

π(k0, t
)

k t

qt π(q0, t)

(a) Belief about cutoff type kt (solid) exceeds
belief based solely on performance π(k0, t)
(dotted), due to churning of lower skilled
agents.

t

k̇t

0
t∗ t̄

γ
(k
t,
t)

λkt(1− kt)

∂2π(k0 , t)

(b) Belief about the cutoff agent is the sum of
learning from performance λkt(1− kt) (solid)
and learning from churning γt (dashed).

Figure 1: Equilibrium learning dynamics if T = [t∗, t̄]. For t ∈ [0, t∗] there is no
churning and clients only learn from performance. For t ∈ [t∗, t̄] the intermediary
gradually churns lower skilled agents resulting in faster learning.

To illustrate the economic mechanism, suppose, for simplicity, that L is sufficiently low so that

for all agents p̃0 > p the option of starting their own firm dominates leaving the industry.25

Define by γt the incremental reputation the agent gets if he stays with the intermediary

between t and t+ dt instead of opening his own firm, along the path of good performance

γt
def
= k̇t − λkt(1− kt).

Without churning, reputation change is driven purely by the observable performance and

γt = 0. When the intermediary churns lower-skilled agents, the incremental reputation

change γt is strictly positive. The agent values this reputation growth as it increases his

expected revenues of starting a firm in the future. His private value of gaining γt dt units

of reputation is, by definition, equal to γt · ∂2U(p̃, k) dt. It is optimal for him to stay with

the intermediary in period t if the combined value of his compensation w̃t = w(p̃t, kt) and

25In this case the reservation wage wR(p̃t, kt) is simply equal to A(kt).
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reputation building exceeds his reservation wage

w(p̃t, kt) + γt · ∂2U(p̃t, kt) ≥ wR(p̃t, kt). (16)

Inequality (16) is binding in equilibrium because the intermediary chooses the lowest possible

wage to retain the agent in each period. We see that the agent is willing to forgo short-term

compensation only if γt > 0 since working for the intermediary facilitates building reputation

and acts as a deferred compensation device. The intermediary can pay higher skilled agents

less as long as she can commit to selective retention γt > 0 since higher skilled agents value

reputation more as shown in Proposition 1.

Churning rate γt affects the compensation of all agents but is determined by the incentives

of the intermediary to retain the cutoff agent p̃t = kt in period t. The intermediary’s revenue

A(qt) is public and is pinned down by clients’ belief about the agent’s ability qt = Q(kt, t).

The intermediary’s flow profit of employing the cutoff agent p̃t = kt is equal to

A(Q(kt, t))− w(kt, kt) = A(Q(kt, t))− wR(kt, kt) + γt · ∂2U(kt, kt).

Turnover comes either as a result of the agent generating bad performance, and being fired,

or as a result of his retention wage w(kt, kt) being so high that the intermediary would rather

replace him. In the latter case, the optimal churning time τ makes the intermediary exactly

indifferent between retaining the cutoff agent and replacing him in that instance

net profit︷ ︸︸ ︷
A
(
Q(kτ , τ)

)
− wR(kτ , kτ ) =

opportunity
cost︷︸︸︷
rV (17)

⇒ γ(kτ , τ) =
rV −

(
A
(
Q(kτ , τ)

)
− wR(kτ , kτ )

)
∂2U(kτ , kτ )

.

If it were the case that A(Q(kτ , τ))−wR(kτ , kτ ) > rV , then the intermediary would profit by

retaining the cutoff agent for a bit longer. By similar logic, if A(Q(kτ , τ))−wR(kτ , kτ ) < rV ,

then the intermediary would have profited by letting go of the agent p̃t = kt strictly before

time τ . Equation (17) characterizes the reputation growth γ(kt, t) at every time t in which

there is churning after good performance. By definition, γ(kt, t) = 0 in all other periods.

While (17) is a necessary first-order condition for churning time τ to be optimal, and we still

need to identify the set T constituting the support of churning times when the intermediary

lets go of the cutoff agent given good performance.

To identify the stopping set T we consider the intermediary’s ”autarky” problem of retain-

ing the cutoff agent kt = p̃t absent reputation building dynamics, i.e., if kt = p̃t evolves

solely based on performance (4), and the intermediary must pay the agent reservation wage

wR(p̃t, p̃t) to retain him
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sup
τ̂

Ep̃t

[∫ τ̂

t
e−r(s−t)

[
A
(
Q(p̃s, s)

)
− wR

(
p̃s, p̃s)

)]
ds+ e−r(τ̂−t) · V

]
. (18)

Surprisingly, the equilibrium decision to churn a p̃′t < kt agent at time t is determined by the

incentive to fire the agent in (18) and is unaffected by the pay-for-reputation dynamics. The

heuristic argument is that reputation building rate γ(kτ , τ) makes the intermediary employing

cutoff agent p̃τ = kτ exactly indifferent between keeping and firing her agent, as can be seen

in (17), and is strictly insufficient for any p̃′t < kt agent to be retained going forward.

3.2.1 Churning Set T

First consider the case where the profit wedge of the intermediary declines as performance

signals are observed. Specifically, suppose that for each belief q about the retained agent and

type k of the cutoff agent, the difference A(π(q, t))−A(π(k, t)) is declining in t. A sufficient

condition for it is A′(p)p(1− p) be decreasing for p ≥ p.26 Define t∗ to be the first time when

the initial cutoff agent p̃0 = k0 becomes unprofitable for the intermediary

t∗
def
= inf

{
t ≥ 0 : A(π(q0, t))−A(π(k0, t)) < rV

}
. (19)

The profit wedge is decreasing with performance signals and, once an agent becomes unprof-

itable, he remains unprofitable in the future.27 Figure 2 illustrates the equilibrium wage and

profitability dynamics.

t

$

t∗

A(pτ )

τ

A(k t
)

w(p̃t
, kt

) = A(kt
)

w(p̃t, kt)
< A(kt)

rV

rV

A(qt)

(a) Equilibrium wage w(p̃t, kt) (solid line) and
reservation wage wR(p̃t, kt) = A(kt) (dotted
line). The difference wR(p̃t, kt) − w(p̃t, kt)
(filled area) is the agent paying for reputation.

t

$

t∗ τ
w(p̃t

, kt
) = A(kt

)
w(p̃t, kt)

< A(kt)

rV

rV

A(qt)

(b) The intermediary’s contemporaneous
profit is the difference between her revenues
A(qt) (dashed line) and the agent’s compen-
sation w(p̃t, t) (solid line). Profit wedge equals
rV at t∗ and t̄ .

Figure 2: Wage and revenue dynamics if A(p) = p and F (·) ∼ U
[

1
3 , 1
]
.

For t < t∗ the profit wedge A(qt)−A(kt) is sufficiently high so that the intermediary retains

26A′(p)p(1 − p) is decreasing for p > p for all continuously differentiable functions A(·) such that A′(·) ∈
[0,+∞) as long as p is close enough to 1. For example, if A(·) is linear, then p ≥ 1

2
is sufficient.

27We show in Lemma 2 that wR(kt, kt) in Equation (14) can be replaced by A(kt).
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all well performing agents and only lets go of agents who have generated bad performance.

We refer to this as the ”quiet” period. The intermediary’s profit wedge decreases as clients

learn from performance and departures of agents who perform poorly and reveal themselves

as unskilled. At t = t∗ the profit from retaining the lowest skilled agent is exactly equal to

the intermediary’s opportunity cost, i.e., A(qt∗)− A(kt∗) = rV . For t > t∗ the intermediary

gradually churns lower-skilled agents by letting them go at an increasing rate γ(kt, t) (See

Figure 1b), even though they have generated good performance up to time t, until all types

are let go at a finite time t. The resulting churning set is given by T = [t∗, t]. Churning is

based on the intermediary’s private information and is indicative of the agent’s skill, further

reducing the profit wedge A(qt)−A(kt). Yet, the intermediary can profit from this as better

agents are willing to accept lower pay to build reputation, as can be seen in Figure 2a. For

t ∈ [t∗, t̄] the intermediary lets go of the lowest skilled agents at an increasing rate γ(kt, t).

Corollary 1. For a general churning set T the equilibrium dynamics exhibit four robust

properties

(i) higher-skilled agents, as measured by their private information, have longer careers with

the intermediary;

(ii) intermediary’s flow profit decreases before the start of the churning period and increases

after;

(iii) higher-skilled agents pay for building a reputation in periods when the intermediary

churns lower-skilled agents, i.e., t ∈ T;

(iv) if the agent is churned, then he quits the intermediary after good performance and

obtains a positive jump in compensation at the time of opening his own firm. The

compensation increase is higher if the agent leaves when information asymmetry qτ−kτ
is lower.

Results (i) − (iii) of Corollary 1 follow from our previous arguments. Reputation building

dynamics are critical for these results – absent it, the agent would be bound to his reservation

wage before and after he leaves the intermediary. Figure 2 illustrates these properties. They

are robust to the shape of the revenue function A(·) and the distribution of private informa-

tion F (·). Result (iv) stems from the fact that if the asymmetry is low, the intermediary is

churning agents at a higher rate and, hence, they pay more for reputation just before quitting,

leading to a bigger increase in compensation right after as illustrated in Figure 2a. An addi-

tional empirical implication of our analysis is that wage dispersion within the intermediary

is higher in periods of churning, as in quite periods, agents’ wage does not depend on their

skill level, whereas in churning periods wage is tightly linked to the agent’s skill.
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Non-monotone profit wedge. If A′(p)p(1 − p) is not decreasing in p, the profit wedge

A(qt) − A(kt) may (locally) increase in response to good performance signals28. Identifying

the churning set T requires a more subtle understanding of the optimal turnover decision of

the intermediary: when dynamically determining the optimal retention decision (i.e., when

solving (18)) churning time τ still satisfies (17), however, the prospect of a greater profit

wedge in the future implies that it may be sub-optimal to churn the agent the first time the

local indifference condition (17) is met. In other words, the intermediary may strategically

lose money on the agent in the short-run in the hope that his good performance leads to

high profits in the future. The intermediary switches between (positive length) periods in

which all agents are retained and periods in which lower-skilled agents are gradually churned,

pinning down the life-cycle of an agent’s career. Eventually, even the highest skilled agents

leave the intermediary to contract directly with clients. Thus, the churning set T is a natural

generalization of the simple case of [t∗, t̄]. Our key insights and the economic mechanism

driving them do not depend on the specific shape of the distribution of asymmetric informa-

tion F (·) or the shape of the revenue function A(·). The solution approach and equilibrium

structure also naturally extend to a Brownian model of performance, as shown in Section 5.

Initial k0. It may not be profitable for the intermediary to hire all agents initially. p may be

very low so that the worst agents would not value staying in the industry. Their reservation

wage ρL may, as a result, be high relative to the revenues A(Q(p, t)) were they to be hired.

The intermediary is, thus, selective at t = 0, and agents who are not hired at t = 0 leave the

industry.

Lemma 2. The intermediary hires all agents who prefer to stay in the industry under full

information, i.e., all p̃0 such that U(p̃0, p̃0) > L. However, she hires weakly fewer agents than

would have opened their firm in the absence of the intermediary. Higher skilled agents may

obtain strictly positive rents from going to work for the intermediary.

Lemma 2 is important in understanding the role of the intermediary in modulating entry

into the industry. The agents willing to open their firm under full information are willing

to pay the intermediary for reputation, and, as a result, she is interested in hiring them

even if it is only to extract this value from them. In the absence of the intermediary, lower-

skilled agents can pool with higher skilled agents until their performance reveals their skill.

They have a greater incentive to enter into the industry than the intermediary has in hiring

them, as she faces an additional opportunity cost rV of hiring a new agent. This leads to

the intermediary’s incentive to hire a lower-skilled agent lower than the incentive of that

28This may occur due to the nonlinear nature of binary learning π(p, t), or due to potential convexity of
the revenue function A(·)
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agent to pool with higher skilled agents until bad performance is realized. The intermediary,

thus, serves an additional purpose of initial selection. The agents who are not hired by the

intermediary are locked out of the market and leave the industry. Higher skilled agents find

the initial certification valuable and may find it strictly optimal to start their careers with

the intermediary.

Uniqueness given V . For a given expected continuation value V > 0 of the intermediary,

the equilibrium dynamics are uniquely pinned down, and we show that there exists a unique

equilibrium limit to a sequence of games in which V converges to 0.

Lemma 3. Proposition 2 specifies the unique pure-strategy equilibrium if V > 0. Moreover,

it specifies the limiting equilibrium corresponding to V = 0.

We first establish that there cannot be an atom of agents leaving the intermediary at a given

time t along the equilibrium path. If this were the case, then the monotonicity of process k

requires that it is lower-skilled agents that are being let go. If a positive mass of lower-skilled

agents leave the intermediary, then the skill of the worst remaining agent increases discretely

and belief consistency (on- and off-path) implies that kt experiences a positive jump at t.29

If kt experiences a positive jump at time t, i.e., kt+ − kt > 0, then it is sub-optimal to let

go of the agent at this time, as the intermediary would like to charge the agent for building

reputation in that period, leading to a contradiction that there can be an atom of quits at

any time. We, thus, focus on continuous belief process (kt)t≥0 with the requirement that for

an off-equilibrium path t > τ the clients’ beliefs satisfy kt = qt = π(p̄, t). Together with the

monotonicity and consistency requirements, this leads to a unique process (kt)t≥0 derived in

above.

Equilibrium value V . In most applications our model is intended to capture, the interme-

diary can replace the agent, justifying the endogenous determination of V via (7). Explicit

characterization of the equilibrium value V , however, is challenging due to the dependency

of the revenue and wage processes A(qt) and w(p̃t, kt) on V , especially for a general revenue

function A(·) and distribution of private information F (·).30

Lemma 4. Assume the intermediary has an outside option of 0 and denote by Vn to be her

expected value if she can sequentially hire at most n agents. Then

29In the event that P(τ < t) = 1, the independence of never weak best-responses, as in Noldeke and
Van Damme (1990), puts off-path beliefs on types who gain most from the deviation, which are the best
ones, i.e., π(p̄, t). If V = 0, then the independence of never weak best-responses has no effect, and we focus
on the unique limiting equilibrium. Monotonicity in initial types is sufficient but not necessary - our results
hold if we were to restrict attention to the best or worst agents leaving the intermediary at any point in time.

30It is useful to note that (7) does not specify a contraction operator for the expected value V .
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(i) there exists a unique limit V = lim
n→∞

Vn and, if ∆ > 0, then V is a solution to (7);

(ii) if the replacement costs I or ∆ are relatively large, then V is the unique solution to (7);

(iii) When both I and ∆ are small, there may be other equilibria, corresponding to the

multiple solutions to (7).

An equilibrium value V can be obtained as the unique limit to the intermediary’s equilibrium

payoff in games in which she can sequentially employ a finite number of agents. By continuity,

V must satisfy (7). If costs I or ∆ are very large, then the intermediary would rather not look

for a new agent at all, implying that V = 0. In this special case the intermediary never churns

lower-skilled agents since A(qt) − A(kt) > 0 = rV . If the intermediary’s value V is positive

but small, the quiet period [0, t∗],31 over which the intermediary’s revenues are independent

of V , is large. It implies that the intermediary’s continuation payoff on the right-hand side

of (7) is less sensitive to V , implying a single root of the fixed point equation (7). If costs

I or ∆ are sufficiently large, then V is small enough to guarantee this unique solution. We

observe numerically that (7) admits a unique solution for a broad range of replacement costs

I and ∆. Finally, if replacement costs are low, there may be multiple equilibria, ranked by

the intermediary’s expected payoff V . These equilibria correspond to multiple solutions to

(7), which we illustrate in Figure A.1 in Online Appendix A. The intuition is that a higher

equilibrium value V can be self-enforcing as it acts as a commitment device to churn agents at

a high rate, leading to more pay-for-reputation dynamics and, in turn, justifying the higher

expected value.

3.3 Intermediary’s Profitability

Adverse selection is bad for workers but is beneficial for employers who can identify talent.

The intermediary’s cost of compensating an agent is driven by the worst remaining agent,

while her revenues are pinned down by the average agent employed.

Lemma 5. Suppose replacement costs I, or ∆ are reasonably large. The intermediary’s

expected value V is weakly

(i) decreasing in the cutoff agent’s expected skill p and outside option L;

(ii) increasing in the average quality of the agent’s average skill E [p̃];

(iii) decreasing in the informativeness λ of performance signals for a sufficiently low r or a

sufficiently high λ.

31The definition of t∗ in (19) extends to a general churning set T as t∗
def
= inf{t : t ∈ T}.
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The dependence of V on the support of beliefs and performance informativeness are illustrated

by solid lines in Figures 3b and 4b respectively. Value V not only captures the overall

profitability of the intermediary, but also the continuation value she obtains if she were to

replace the current agent. Such a feedback effect has profound implications on the dynamics

of the agent’s career in response to changes in the information environment.
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Figure 3: Comparative statics with respect to information asymmetry E [p̃]− p.
For the parameters considered, the intermediary hires all initial types, i.e., p = k0,
and the churning set is given by T = [t∗, t̄].

Figure 3a plots the churning interval T = [t∗, t̄] as a function of the initial information

asymmetry, measured by E [p̃]−p. As depicted in the figure, the intermediary starts churning

agents earlier (lower t∗) and for longer (larger interval t̄ − t∗) for intermediate levels of

asymmetry. If asymmetry is low then, as can be seen in Figure 3b, the value V of hiring

a new agent is low, implying the agent is retained for longer (larger t∗). If asymmetry is

large, then V is greater, but belief about the worst agent p is also quite low. Consequently, it

takes a long performance track-record to improve the reputation of the worst agent enough

to induce churning by the intermediary. The intermediary, thus, retains agents for a long

time, as long as they generate good performance.32

For every t ∈ T, higher-skilled agents pay the intermediary in order to build their reputation

faster. Total profits of the intermediary obtained through this channel are also maximized

for intermediate levels of asymmetry. Define V %
pr to be the fraction of the intermediary’s

expected profits arising from the agents paying to build reputation

V %
pr

def
=

E
[∫ τ

0 e
−rt(wR(p̃t, kt)− w(p̃t, kt)) dt

]
E
[∫ τ

0 e
−rt(A(qt)− w(p̃t, kt)) dt

] .

32This argument holds exactly if L = A(0)/ρ, but the same forces are in play if L strictly exceeds it.
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We see in Figure 3b that V %
pr (dashed line) exhibits an inverse U-shape. For extreme levels of

asymmetry there is very little churning and, thus, V %
pr is close to 0. For intermediate levels of

asymmetry the churning set T starts sooner and lasts for longer, implying that V %
pr is higher.

Both panels of Figure 3 highlight the importance of the intermediary’s value V being de-

termined in equilibrium, embedding the inter-temporal spillover effects across the sequence

of employed agents. We plot the start of the churning time t∗ex and the pay-for-reputation

percentage V %
ex if V were taken as exogenous in Figures 3a and 3b respectively. The differ-

ences are stark: t∗ex is increasing in the initial asymmetry, while V %
ex is decreasing, leading to

misleading predictions when the information asymmetry is low.

Corollary 2. The fraction of the intermediary’s profits V %
pr obtained from the agents paying

for reputation is greatest for intermediate levels of the initial information asymmetry E [p̃]−p.
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Figure 4: Comparative statics with respect to information persistence 1/λ.

Similar forces are in play when we consider implications of informativeness λ of performance

on the value V of the intermediary. We plot the comparative statics in Figure 4 as a function

of the information persistence 1/λ in order for the x-axis to increase in the measure of

information asymmetry and making it economically comparable to Figure 3.

For low information persistence, the profitability of the new agent is so low that the interme-

diary would rather not churn a currently employed agent. For high information persistence,

beliefs about the current agent are slow to change, implying little benefit of replacing a given

agent. The churning set T is U-shaped in persistence, and the percent of profits due stemming

from pay-for-reputation V %
pr is maximized for interior levels of persistence. The contrast to

how results would look if the intermediary’s continuation value V were exogenous is telling

and highlights the importance of accounting for V being determined in equilibrium; with an
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exogenous V , both the churning start time and the fraction of present value of profits are

monotone.

Corollary 3. The fraction of the intermediary’s profits V %
pr obtained from the agents paying

for reputation is greatest for intermediate levels of information persistence 1/λ.

4 Competition, Signaling, and Training

We show that the pay-for-reputation mechanism applies even if the agent has bargaining

power, stemming from either imperfect competition among informed intermediaries, or from

the possibility of independently signaling his ability to clients. Moreover, we highlight the

interactions and differences between training and reputation building, showing the former

is concentrated in quiet periods when the information asymmetry is large, while the latter

occurs during churning periods when information asymmetry is small.

4.1 Competition for Agents

The intermediary can underpay the agent since his outside option is to either open a firm, but

be perceived as a lower type, or leave the industry altogether. Suppose, if the agent leaves

the current intermediary, he can finds one new intermediary to work for with probability

ζ1, and finds two or more intermediaries to work for with probability ζ2.33 For tractability,

we assume the intermediary at the new firm has the same information p̃ about the agent’s

ability. The possibility of finding multiple intermediaries is beneficial to the agent as they

compete for his services by offering a signing bonus.34 With probability 1− ζ1− ζ2, the agent

does not find a new intermediary and either starts his own firm or leaves the industry. The

risk of not finding a new intermediary and having to start his firm prematurely is still costly

for the agent if he chooses to leave the incumbent intermediary.35

Lemma 6. For a given intermediary’s expected value V , the equilibrium churning set T and

belief processes (kt, qt)t≥0 are unchanged. The agent’s compensation is determined by his

endogenous bargaining power ζ = ζ2/(ζ1 + ζ2). Moreover, if the intermediary and the agent

are equally patient, r = ρ, then

wζ(p̃t, t) = (1− ζ)wR(p̃t, kt) + ζ
(
A(Q(kt, t))− rV

)︸ ︷︷ ︸
reservation wage with bargaining power ζ

− (1− ζ)γ(kt, t)1 {t ∈ T} ∂2U(p̃t, kt)︸ ︷︷ ︸
pay for reputation

.

33If the agent approached only one intermediary at a time, the intermediary would retain all of the bar-
gaining power, economic behavior known as the Diamond paradox and shown in Diamond (1971).

34In the absence of commitment to long-term contracts multiple intermediaries compete a-la Bertrand by
offering an up-front payment to the agent, but, subsequently, keeping the agent at his outside option.

35The main model corresponds to the case of ζ2 = ζ1 = 0.
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The intermediary’s equilibrium value V is weakly decreasing in ζ.

For a given expected value of V , the churning set T is derived in Proposition 2. The agent’s

bargaining power, however, increases the wages he obtains from the intermediary and lowers

her equilibrium value V . Thus, in equilibrium, the intermediary churns agents less, even

though they require greater compensation.

4.2 Signaling Mechanisms

We show that the agent values building reputation by working for the intermediary even

if he is able to signal his ability to clients at a cost. While such a possibility limits the

intermediary’s ability to underpay the agent, the pay-for-reputation dynamics still hold.

Moreover, higher-skilled agents are now willing to pay the intermediary for the possibility to

generate a track record of performance before contracting with clients directly. In equilibrium,

agents pay more for generating performance signals, but pay less for building reputation,

relative to if they had no opportunity to signal independently.

Suppose, when opening his firm, the agent can offer services at a percentage discount β,

resulting in revenue β · A(·). For tractability, we assume that β is chosen once and does

not change, although the argument applies to any setting in which repricing of services is

sufficiently costly.36

Lemma 7. Suppose the cutoff agent’s type is kt. A higher skilled agent p̃t > kt can signal

his ability to clients by offering a discount β(p̃t, kt) on his services given by

β(p̃t, kt) = exp

(
−
∫ p̃t

kt

∂2U(x, x)

U(x, x)− λL(1−x)
ρ+λ

dx

)
. (20)

Discount β(p̃t, kt) is a function of both the agent’s private type p̃t, as well as the past history,

summarized by the cutoff type kt in that period. The agent’s expected value if he can signal

his ability is then given by

Uβ(p̃, k)
def
= p̃ · β(p̃, k) · u1(p̃) + (1− p̃) ·

[
β(p̃, k) · u0(p̃) + (1− β(p̃, k)) · λL

ρ+ λ

]
.

The possibility to signal the agent’s skill improves his dynamic outside option, but it comes

at a cost which increases in his skill, as can be seen from (20). Higher skilled agents suffer

this discount to revenues for longer, implying greater overall cost of signaling for higher

skilled agents. This increased cost implies that higher skilled agents preserves the single-

crossing property of the modified outside option Uβ(p̃, k). Proposition 3 establishes that, in

36In the context of asset management, management fees are specified as a percentage of assets under
management, justifying a percentage discount in pricing. These contracts are signed with a large number of
investors and are costly to renegotiate.
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equilibrium, the agent does not signal his ability independently to clients, yet this possibility

affects his compensation and tenure dynamics.

Proposition 3. Higher-skilled agents value reputation more even if they are able to signal

their ability to clients

∂2Uβ(p̃′, k) > ∂2Uβ(p̃, k) for any p̃′ > p̃.

If λ/ρ is sufficiently large,37 then the agent starts by working for the intermediary, opens his

firm when clients correctly assesses his skill, i.e., p̃τ = kτ , and does not offer a discount when

opening his firm on equilibrium path. The intermediary’s payoff is lower than if the agent

were unable to signal his ability, and, consequently, churning starts later.

A higher skilled agent suffers a greater dead-weight cost of signaling his skill to clients. Work-

ing for the intermediary provides two advantages. First, the agent generates a track-record

of performance. Second, due to the intermediary’s churning, the agent can build a reputa-

tion relatively quickly. When the agent is sufficiently patient, or performance is sufficiently

informative, the agent does not signal his skill with fees but instead builds reputation only by

working for the intermediary. The option of independent signaling, however, has an overall

increase in the agent’s payoff and reduces the intermediary’s expected profits.

For tractability, we have assumed that the agent chooses β(p̃, k) once at the time of opening

his firm. If the agent were able to change it subsequently, then a high-skilled agent can

credibly signal his skill by starting with a high discount, i.e., a low β, and then reduce the

discount once his performance is sufficiently good. Such dynamic contracts are preferable by

the high-skilled agents as it allows them to condition profits on their good performance and

separate efficiently from lower-skilled agents.38 Formally, if βt can take values in [β, 1], then

the most efficient signaling contract is to offer βt = β until the first time when p̃t = kt, and

set βt = 1 subsequently. Whether reputation-building is more efficient independently or via

the intermediary depends on the ranking of

(1− β) ·A(kt)

∂2U(kt, kt)︸ ︷︷ ︸
independent

reputation building

versus

[
rV −A(qt) +A(kt)

]+
∂2U(kt, kt)︸ ︷︷ ︸
intermediated

reputation building

. (21)

If β is not too low or the intermediary’s expected value V is sufficiently high, the right hand

side of (21) may be higher than the left, implying that intermediated reputation building

may be more efficient even if the agent can change the discount rate frequently. Importantly,

37The precise sufficient condition is A′(p) ≥ A(1)−A(p)
1−p · (ρ/λ+1)ρ/λ

ρ/λ+p
for every p ≥ p.

38See Laffont and Martimort (2009), Chapter 3.
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allowing a low β implies the agent must have substantial capital of his own to sustain himself

for an extended period of time, which may not be the case in many economic settings.

The intermediary does not have an incentive to signal the agent’s ability to clients – any

such signaling would benefit the agent at her expense. This preference for opacity may help

rationalize the low variation in fees among mutual funds and hedge funds in the finance

industry.

4.3 Paying for Reputation versus Paying for Training

Agents are willing to accept below reservation wages to establish a reputation with clients.

Reputation does not affect worker productivity but can be thought of as a ”quality” of

a worker, enabling him to generate greater revenues. We show, however, that building a

reputation is distinct from training and occurs at different times of an agent’s career.

Suppose skill is subject to depreciation at rate δ, such that a skilled, θ = 1, agent becomes an

unskilled, θ = 0, agent with intensity δ. Assume the intermediary can spend a private convex

flow cost c(a) to reduce this depreciation intensity by a. Furthermore, assume training also

benefits an unskilled, θ = 0, agent by making him skilled with intensity a. To avoid corner

solutions, we assume c′(δ) = +∞, so that a ≤ δ. Under such specification the belief process

follows

dp̃t = λp̃t(1− p̃t) dt+ p̃t(dXt − µdt)︸ ︷︷ ︸
learning from performance

− (δ − ãt)p̃t dt︸ ︷︷ ︸
skill depreciation

+ ãt(1− p̃t) dt.︸ ︷︷ ︸
skill accumulation

(22)

where ãt is the training provided to type p̃t agent, given the cutoff type equal to kt. The

depreciation of skill makes agents value training regardless of their ability p̃t and provides

a tractable setting to contrast pay-for-reputation with pay-for-training.39 Denote by ãt =

a(p̃t, kt) to be the training offered by the intermediary to an agent with skill p̃t, given clients’

belief kt about the cutoff agent. The equilibrium wage of the agent is then given by

wT (p̃t, kt) = wR(p̃t, kt)− a(p̃t, kt) · ∂1U(p̃t, kt)︸ ︷︷ ︸
pay for training

−
(
γ(t, kt) + a(kt, kt)

)
· ∂2U(p̃t, kt)︸ ︷︷ ︸

pay for reputation

.

Agents value being skilled as it increases their chances of staying in the industry. They are

willing to be underpaid for an increase in their ability, consistent with the logic of Becker

(1962) and Acemoglu and Pischke (1999). That increase, however, is not directly observed by

clients, who have to conjecture the amount of training received by the workers. This affects

39Acemoglu and Pischke (1998) provide a model in which higher-skilled agents value training more than
lower-skilled agents, which creates an additional reason for wage compression, which can be easily embedded
in (22). In our model, however, wage compression is present even if skill and training are substitutes, as long
as the intermediary’s cost of training is sufficiently large.
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the agent’s reputation in equilibrium, as clients infer that the ability of the worst remaining

agent increases not only due to the turnover, but also due to training. As a result, training

not only improves the agent’s ability, but also facilitates reputation building.

The intermediary’s incentive to invest in general training, as pointed out by Acemoglu and

Pischke (1999), is determined by the frictions in the agent’s labor market. Denote by V (p̃t, kt)

the continuation value of the intermediary from employing an agent p̃t given market beliefs

kt. The agent observes the training provided to him and is willing to be under-compensated

in exchange. The amount of training is, then, pinned down by equating the marginal cost of

training to the marginal value of skill to both the agent and the intermediary

c′
(
a(p̃t, kt)

)
= ∂1U(p̃t, kt)︸ ︷︷ ︸

(i)

+ ∂1V (p̃t, kt)︸ ︷︷ ︸
(ii)

. (23)

Term (i) in (23) captures the agent’s incentive to increase his ability and, thus, pay for his

training. Because of the difference between p̃t and kt, the agent does not capture all of the

surplus generated by his training. Term (ii) in (23) captures the intermediary’s marginal

value of employing a higher skilled agent. The intermediary values higher-skilled agents

more since they are more likely to generate good performance, and are willing to pay more

for reputation building. As the information advantage of the intermediary declines, however,

her incentive to train the worker also declines.

Lemma 8. The intermediary’s incentive to train the agent declines as he approaches termi-

nation, i.e., ∂1V (kt, kt) = 0 for t ∈ T.

The intermediary has no interest in training the agent when he is close to being let go,

while this is precisely the time when the agent builds reputation, as can be seen from the

increase in reputation growth in Figure 1b. Churning occurs when information asymmetry

is low, training, in contrast, occurs exactly when information asymmetry is high and reputa-

tion growth γ(kt, t) is low. In addition, Acemoglu and Pischke (1998) show that there may

multiple equilibria characterized by different turnover rates, with greater turnover leading

to less training. Multiple equilibria also arise in our model, as shown in Lemma 4, with

turnover being beneficial for reputation building: greater turnover improves intermediary’s

profitability, increases her selectivity at the hiring stage, and speeds up reputation building

by higher-skilled agents.

4.4 Further robustness

Long-term commitment. We conduct our analysis assuming the intermediary cannot

commit to long-term contracts. This way, the agent’s incentives to forgo short-term compen-

sation are solely driven by his reputation building motives and not deferred compensation
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promised by the intermediary. We show in Lemma A.1 of the Online Appendix that, under

the optimal long-term contract chosen by the intermediary, the agent’s continuation value

is pinned down by the binding retention constraint (6), implying equivalent reputation and

compensation dynamics.

Limited liability. We do not impose limited liability in the baseline formulation of the

model. This is justified by the fact that the agent pays for reputation out of his strictly

positive reservation wage wR(p̃t, kt), implying that equilibrium wages w(p̃t, kt) are positive if

V is not very big. If V is big, then the rate of churning may be quite high, and limited liability

may bind when the agent pays for reputation building. In this case, the agent gets a strictly

positive benefit during the reputation building stage. Foreseeing this, the intermediary can

underpay the agent even during the quiet period, extracting the expected gain obtained by

the agent during the churning period.

Positive Poisson performance signals. We model performance signals as a perfectly

informative negative Poisson process. The tractability of using a perfectly informative Poisson

learning technology is well described in the survey of the experimentation literature of Hörner

and Skrzypacz (2018). In the professions we have in mind, it is easy to reveal a lack of skill,

but it likely requires a long track record to convince clients of true ability. As a result, highly

skilled agents cannot rely on outstanding performance to convince clients of their ability,

increasing their reliance on reputation. If the performance signals stemmed from a positive

Poisson process, then our economic argument would still hold as long as the agent’s skill

when working for the intermediary is imperfectly correlated with his skill when he opens his

own firm. The intuition is similar to Holmström (1999), in which residual public uncertainty

is essential to making agents care about their reputation via performance.

5 Brownian Model of Performance

While the Poisson structure for performance signals is highly tractable, the resulting model

co-mingles the effects of residual uncertainty about an agent’s skill and his performance in his

retention and compensation. Our objective in this section is to disentangle the two. We do so

by introducing Brownian performance signals. We show that good performance endogenously

increases information asymmetry, leading the intermediary to retain well-performing agents

for longer. Importantly, the equilibrium structure remains similar, exhibiting a combination

of quiet periods with periods in which the intermediary churns agents to entice higher-skilled

agents to pay for reputation.
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Introducing Brownian performance signals is a nontrivial task both in setting up and analyz-

ing the model. If we were to, simply, replace the Poisson process N θ in (1) with a Brownian

motion while keeping θ̃ binary, we would inherit the restrictive property of binary learning

linking posterior belief about the agent’s ability with the residual uncertainty about it. In

particular, after a history of good performance, the clients’ belief becomes less and less sen-

sitive to performance, making a well-performing agent, potentially, care less about his future

performance. We view this as an artifact of the binary learning technology, and contrary to

the economic intuition that agents with a better reputation care more to protect it, as shown

in Section 3.1. To remedy this problem, we consider a model in which θ takes a continuum of

values, and the players learn about it by observing Brownian performance signals. This leads

to a rich learning environment, allowing us to distinguish between the effects of the agent’s

past performance and residual uncertainty about his ability on compensation and turnover

outcomes.

5.1 Brownian Model Information Structure

The agent’s skill θ̃ follows a normal distribution N (p̃0, σ
2
θ), conditional on a random variable

p̃0 ∼ F (·). Both the agent and the intermediary privately observe p̃0, while the clients do

not. Similar to the Poisson model, we assume F (·) is continuous and has full support over

[p, p], with p > −∞ so that the severity of the initial adverse selection problem is bounded.40

For expositional convenience, we assume F (·) has a log-concave density function f(·).41 All

parties observe performance process Xt given by

Xt = θt+ σBt, (24)

where process B = (Bt)t≥0 is a standard Brownian motion independent of θ. It is convenient

to define the informativeness of the performance signal as

φ
def
= σ2

θ/σ
2.

The private posterior of the intermediary-agent pair after observing a performance path

(Xs)s≤t is given by a combination of performance signals and their private information

p̃t = Π(p̃0, t,Xt)
def
= E

[
θ
∣∣Xt, p̃0

]
=

φ

φt+ 1
·Xt +

1

φt+ 1
· p̃0. (25)

40This would arise endogenously in our model anyway as agents of very low skill would exit the industry.
The necessary methodological step is to obtain a tractable model of Brownian learning about a truncated
distribution of private information.

41Most commonly used distributions, such as uniform, normal, and exponential satisfy this property. See
Burdett (1996) for the properties of log-concave distributions.
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Function Π(p̃0, t,Xt) is the analogue of π(p̃0, t), but distinguishes the effects of elapsed time

t and realized performance Xt on the posterior belief of the intermediary-agent pair. Denote

by kt the clients’ belief about the agent who separates from the intermediary and starts his

firm at time t:

kt
def
= E

[
θ
∣∣Xt, τ = t

]
= E

[
p̃t
∣∣Xt, τ = t

]
.

Similarly, denote by qt the clients’ belief about the agent retained by the intermediary. The

intermediary retains higher skilled agents for longer, implying that qt is the average belief

about the agents who are more skilled than the cutoff agent42

qt = E
[
θ
∣∣ (Xs)s≤t, t < τ

]
= E

[
θ
∣∣Xt, t < τ

]
= E

[
p̃t
∣∣Xt, p̃t > kt

]
.

The equilibrium definition is the same as the one used in Section 2 with the additional

requirement that the clients correctly identify the agent’s type when he opens his own firm.

In the Poisson setting, the unique equilibrium is separating, and similar arguments can be

applied to this Brownian model. The incremental difficulty of ruling out other equilibria in

the Brownian model stems from characterizing the agent’s subgame if an atom of agents of

different types were to leave the intermediary. This leads to a dynamic signaling subgame,

very similar to the one we already analyzed in Section A.4 of the Online Appendix and one

that we could, potentially, tackle.43

5.2 Agent’s Dynamic Outside Option given Brownian Signals

In a separating equilibrium the agent quits the intermediary when clients correctly identify

his skill, i.e., p̃τ = kτ . Subsequently, both the agent and the clients update their beliefs for

s > t based on subsequent performance, resulting in a posterior belief process about θ given

by

kt,s = E [ θ |Xs −Xt, kt] = (φt+ 1) ·
(

φ

φs+ 1
· (Xs −Xt) +

1

φs+ 1
· kt
)
. (26)

The clients’ belief increases in response to the agent’s good performance and he obtains

greater profits. If the agent performs poorly, the belief about him declines, and he may find

staying in the industry unprofitable, relative to his outside option L.

As we’ve seen in Sections 3 and 4, the agent’s compensation while working for the intermediary

is determined by his outside option of opening his own firm. Suppose the agent was to refuse

the compensation offered by the intermediary and open his firm when his type p̃t exceeds

42We show in Lemma A.25 that cumulative performance Xt is a sufficient statistic for (Xs)s≤t for a general
distribution of private information F (·). This drastically simplifies our filtering problem and permits us to
derive the equilibrium structure for a general distribution F (·).

43In it we show that even after the agent opens his own firm, a more skilled agent can credibly convey his
private information to clients by keeping his firm open after poor performance.
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the cutoff type kt. Consequently, he is relatively more optimistic about future performance

since, from his perspective, future performance Xt has better prospects, increasing his value

of staying in the industry. In this case, he finds it optimal to stay in the industry longer

than an agent with a lower private belief. For the sake of concision, since p̃t > kt occurs

off-equilibrium path, we assume that the clients continue to update their beliefs according

to (26) and do not make additional positive inferences about the agent when they observe

him staying in the industry after bad performance. We also formulate and solve the subgame

equilibrium if the clients update positively if the agent remains in the industry following

bad performance in Section A.4 of the Online Appendix A. This requires extra care and

notation in defining the clients’ inferences, but the implications for the agent’s compensation

and turnover are qualitatively unchanged.44 To economize on space, we focus on the simpler

subgame equilibrium specification in the main text.

The expected value to the agent who leaves the intermediary is given by

U(p̃t, kt, t)
def
= sup

η̂
Ep̃t

[∫ η̂

t
e−ρ(s−t)A (kt,s) ds+ e−ρ(η̂−t) · L

]
. (27)

It depends on time t explicitly as the latter governs the reduction in the posterior variance

V ar(θ | p̃t) about the agent’s skill.

Lemma 9. There exists a subgame-perfect equilibrium in which clients’ belief follows (26)

and the agent leaves the industry the first time his belief p̃s falls below a stopping boundary

b(kt,s, s), i.e.,

η = inf {s : p̃s ≤ b(kt,s, s)} .

Moreover, if A(·) is weakly convex, then higher skilled agents value reputation more than

lower skilled agents: ∂2U(p̃′, k, t) > ∂2U(p̃, k, t), for any p̃′ > p̃.

Lemma 9 establishes that higher-skilled agents value reputation more under the sufficient

condition that A(·) is weakly convex. First, higher-skilled agents stay longer in the industry,

as clearly seen from the optimality condition p̃t ≥ b(kt,s, s). This is the same economic

mechanism as the one behind Proposition 1 of the Poisson model. Second, a higher-skilled

agent is more likely to generate good performance and have a high reputation. Weak convexity

of A(·) ensures that revenues remain sensitive to the clients’ perceptions even when the agent’s

reputation takes high values. While weak convexity is sufficient to ensure the agent’s single-

crossing holds, it is not necessary, as the first channel implies our results even if A(·) is linear.

44This analysis requires additional expositional space in order to formulate the equilibrium definition for
the agent’s dynamic subgame in which clients’ positively interpret the agent’s deviations. We focus on the
more concise version in the main text in order to have more space to explore the Brownian model.
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The agent’s reservation wage wR(p̃t, kt, t) is given by

wR(p̃t, kt, t)
def
=

 ρL if U(p̃t, kt, t) > L,

A(kt) if U(p̃t, kt, t) = L.

This is the direct analogue of the agent’s reservation value in (12). We are now ready to

characterize the agent’s compensation and employment while working for the intermediary.

5.3 Equilibrium given Brownian Signals

The agent’s performance Xt affects the intermediary’s profitability and, therefore, her in-

centive to retain him. The clients’ posterior belief about the retained agent working for the

intermediary is given by

qt = Q(kt, t,Xt)
def
=

φ

φt+ 1
·Xt︸ ︷︷ ︸

(i)

+
1

φt+ 1
· E
[
p̃t
∣∣Xt, p̃t > kt

]
︸ ︷︷ ︸

(ii)

. (28)

Belief about the average type qt depends on past performance in two ways. First, conditional

on the realization of p̃0, the incremental performance dXt changes the posterior belief by
φ

φt+1 · dXt, implying that term (i) in (28) is the same as the first term in the right-hand-side

of (25). A second, and more subtle, inference is that better performance Xt is more likely

to come from a better private type p̃t of the retained agent, implying that term (ii) in (28)

is also increasing in Xt. This second channel implies that the posterior belief about the

average agent {p̃t ≥ kt} is more sensitive to performance signals than the posterior belief

about a given agent p̃t. Informally stated, clients put more weight on performance signals

than the intermediary-agent pair, because they have a more dispersed belief about θ, making

the performance process X relatively more informative.45 The economic implication of this

differential learning is that the intermediary’s revenues are more sensitive to performance

than the agent’s reservation wage. Good performance, leading up to time t, increases the

intermediary’s profit wedge, before accounting for reputation dynamics.

Retention real option. Similar to the Poisson model, consider a retention problem of the

intermediary who employs the cutoff agent p̃t = kt and chooses when to let him go. This

cutoff agent has no room to build reputation, implying that the intermediary needs to pay him

the reservation wage wR(p̃t, p̃t, t). Since this agent is being pooled with better agents while he

works for the intermediary, she may keep him employed if the profit wedge A(qt)−wR(p̃t, p̃t, t)

is high enough for qt = Q(p̃t, t,Xt). As explained earlier, this is true if past performance Xt

45This is easy to see if, for instance, σθ = 0. Then the intermediary and the agent know his skill perfectly
and do not need to update on performance signals, while the latter still influence the clients’ beliefs.

36



has been relatively good. The intermediary’s expected value of employing the cutoff agent is

sup
τ̂

Ep̃

[∫ τ̂

0
e−rt

[
A
(
Q (p̃t, t,Xt)

)
− wR

(
p̃t, p̃t, t

)]
dt+ e−rτ̂ · V

]
. (29)

Lemma 10. There exists a stopping surface B(p̃, t) such that the intermediary optimally lets

go of the cutoff agent when performance Xt falls below B(p̃t, t), i.e.,

τ = inf
{
t ≥ 0 : Xt < B(p̃t, t)

}
. (30)

Moreover, the stopping surface B(p̃, t) satisfies two properties:

(i) ∂1B(p̃, t) < φt+ 1 for every p̃ and t, implying that the difference Xt−B
(
Π(p̃0, t,Xt), t

)
is increasing in performance Xt.

(ii) If V > 0, then B(p̃, t)→∞ as t→∞ for every p̃, leading to all agents being let go in

finite time.

Lemma 10 characterizes the intermediary’s decision to let go of the cutoff agent absent any

reputation considerations. The profit wedge of the intermediary in (29) depends on perfor-

mance Xt and private type p̃t, which is equal to Π(p̃0, t,Xt) and also depends on Xt. The

intermediary’s decision to let go of the agent in (29) thus depends on dynamic states t and

Xt, as well as the initial type p̃0 of the cutoff agent at t = 0. Because the intermediary’s

profit wedge is increasing in performance Xt, then, for each initial p̃0, there exists a bound-

ary B̂(p̃0, t) such that the optimal time to fire the agent is when performance Xt falls below

it. By solving (29) for each initial type p̃0 ∈ [p, p] we construct the entire stopping surface

B(p̃0, t) and pin down the intermediary’s decision to let go of the cutoff agent. While such

construction is mathematically convenient, it requires us to appeal to the space of initial

types p̃0, even if the decision is made at time t, complicating the narrative. If F (·) has a

log-concave density, as we have assumed, then the intermediary’s turnover decision can be

expressed via a stopping surface B(p̃t, t) defined as

B(p̃t, t)
def
= sup

{
x : x ≤ B̂

[
(φt+ 1) · p̃t − φ · x, t

]}
.

The intermediary lets go of the agent if Xt ≤ B(p̃t, t), where B(p̃t, t) differs from B̂(p̃0, t)

in that it depends on the agent’s posterior type p̃t at time t, rather than his initial type

p̃0. In the Brownian setting, process Xt introduces an independent performance dimension,

splitting the three-dimensional state space (k, t,X) into the quiet region {X > B(k, t)} and

the churning region {X ≤ B(k, t)}. The key step, which we establish in the formal proof of

Proposition 4, is that the intermediary employing the cutoff agent does not benefit from the

future reputation dynamics leading to her expected value being exactly equal to (29). This
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allows us to characterize the equilibrium by solving for B(k, t) separately and, then, construct

the cutoff type dynamics (kt)t≥0 forward using the on-path churning threshold B(kt, t).

Churning rate. The equilibrium churning rate is pinned down by the intermediary em-

ploying the cutoff agent kt. If Xt is large, then there is no churning. If, however, Xt declines

and reaches B(kt, t), the intermediary lets go of the cutoff agent p̃t = kt. Once in the churn-

ing region, the intermediary gradually lets go of the cutoff agents if they find reputation

building valuable, i.e., if kt ≥ b(kt, t). The equilibrium churning rate γ(kt, t) is such that

the intermediary is marginally indifferent between retaining and firing the agent once in the

churning region. The equilibrium churning rate γ(kt, t) is pinned down by the intermediary’s

local indifference condition to retain the cutoff type given this history

A(Q(kt, t,Xt))− wR(kt, kt, t) + γ(kt, t) · ∂2U(kt, kt, t) = rV. (31)

This is the Brownian equivalent to the optimal stopping condition (17) of the Poisson model,

and only applies once the intermediary finds herself in the churning region Xt ≤ B(kt, t) and

the cutoff agent finds reputation building valuable, i.e., kt ≥ b(kt, t). If kt < b(kt, t), then the

cutoff agent does not value reputation at all as he plans to leave the industry upon being let

go. In this case, the intermediary cannot elicit pay-for-reputation dynamics and needs to fire

a discrete set of agents δ(kt, t,Xt) to either exit the churning region, or increase the cutoff

type by enough so that they begin to value reputation themselves.

Proposition 4. The equilibrium is characterized by the churning boundary B(kt, t), which

depends on the cutoff type kt and elapsed time t.

(i) The intermediary lets go of agent kt when performance Xt drops below B(kt, t).

(ii) The agent’s reputation grows faster during churning periods

dkt =
φ

φt+ 1

(
dXt − kt−dt

)
︸ ︷︷ ︸
learning from performance

+


0 if Xt ≥ B(kt−, t),

γ(kt, t,Xt)dt if Xt < B(kt−, t), kt− ≥ b(kt−, t),

δ(kt−, t,Xt) if Xt < B(kt−, t), kt− < b(kt−, t),︸ ︷︷ ︸
learning from churning

(32)

where γ(kt, t,Xt) is determined by the profitability of the cutoff agent

γ(kt, t,Xt)
def
=

[
rV −

(
A
(
Q(kt, t,Xt)

)
− wR(kt, kt, t)

)]+

∂2U(kt, kt, t)
≥ 0. (33)

and δ(kt, t,Xt) is the minimal jump necessary to either exit the churning region or
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increase the cutoff type to a point where he stays in the industry where he to be let go

δ(kt, t,Xt)
def
= inf

{
δ > 0 : Xt ≥ B

(
kt + δ, t

)
or k + δ = b

(
kt + δ, t

)}
. (34)

(iii) Agents pay for reputation building by accepting lower compensation. The cumulative

compensation process of the agent of skill p̃t is given by

dW̃t = wR
(
p̃t, kt, t

)
dt −


0 if Xt ≥ B(kt, t),

γ(kt, t,Xt)∂2U(p̃t, kt, t)dt if Xt < B(kt, t), kt− > b(kt−, t),

U(p̃t, kt, t)− U(p̃t, kt−, t) if Xt < B(kt, t), kt− ≤ b(kt−, t).︸ ︷︷ ︸
pay for reputation

Xt

w̃t

wR(p̃t, kt
, t)

w(p̃t,
kt, t

)

w(p̃
′
t
, kt
, t)

A(Q(kt,
t))

B(kt, t)

(a) Compensation as a function of perfor-
mance Xt. We assume the cutoff type is the
same, i.e., kt = Π(l, t,Xt), implying that the
churning threshold B(kt, t) ≡ B̂(l, t) for every
Xt.

t

w̃t

wR
(p̃t
, kt
, t)

w(p̃ ′
t , k

t , t)

w(p̃
t , k

t , t)

t∗

A(Q(kt,
t))

τ τ ′

(b) Compensation as a function of elapsed
time t, along a constant performance path
Xt = µt. Time t∗ is the first time in the churn-
ing region and the cutoff type kt is increasing.

Figure 5: Effects of past performance Xt and tenure t on compensation. To
track the same agent across the state space (kt, t,Xt), we keep the initial types
constant: p̃′t = Π(p̃′0, t,Xt) and p̃t = Π(p̃0, t,Xt) for fixed initial p̃′0 > p̃0. A(·) is
assumed to be linear.

Proposition 4 is the counterpart of Proposition 2; the similarities in the equilibrium structure

are evident. Implications of the equilibrium in Proposition 4 on agent’s compensation are

illustrated in Figure 5. In order to track the same agent across the state-space, we fix initial

types p̃′0 > p̃0 and consider posteriors influenced by time and performance, given by (25).

Figure 5a considers the agent’s compensation as performance Xt changes “quickly”. For

simplicity, we assume that kt ≥ b(kt, t) and the reputation building in (32) occurs gradually,

allowing us to keep the cutoff type constant, implying that kt is also given by (25) for a fixed

initial p̃0. In this case, the agent collects his reservation wage when performance exceeds

the churning threshold B(kt, t) = B̂(p̃0, t). When performance declines, however, the inter-
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mediary churns lower-skilled agents at a strictly positive rate, as manifested by γ(kt, t,Xt)

being bounded away from 0.46 The agent, thus, pays a positive amount for reputation the

moment he enters the churning region, leading to a discontinuity in his flow compensation.

The fact that the intermediary cuts wages of all retained agents discontinuously as she enters

the churning region in which some employees are let go is distinct from the model based on

the Poisson information process. The stark difference stems from the fact that in the current

setting, there is an embedded option value to the intermediary of retaining the agent even

if the profit flow is currently below the intermediary’s flow opportunity cost rV . The same

does not hold for the Poisson model, where the future profit path from retaining an agent of

a given skill conditional on that agent not being revealed as low-skilled is known in advance.

Once an agent is revealed as low ability, separation from the intermediary is immediate.

Figure 5b depicts the agent’s compensation along a (simple) performance path Xt = µt, where

we assume that µ > p. Initially, the information asymmetry is high, and the intermediary can

retain all agents paying them their reservation wage. Since µ > p, the beliefs about the cutoff

agent increase over time, resulting in greater compensation and eroding the intermediary’s

profitability. Eventually, the intermediary starts churning lower-skilled agents whom she finds

unprofitable to employ, resulting in a decrease in compensation, as illustrated in Figure 5b.

In order to avoid entering the churning region, the agent must perform increasingly well,

which is unsustainable in the long-run. The intermediary, eventually, churns all agents.

As we see in Figure 5, the agent’s compensation increases in performance, but, eventually,

decreases in time. The Poisson model bundles these two channels - Figure 2a is unable

to distinguish between effects of performance and time, which are decoupled in Figures 5a

and 5b. Corollary 4 summarizes the equilibrium properties under Brownian performance

signals. If however, kt > b(kt, t), then the churned agent stays in the industry, and the rate

of reputation building exhibits smooth behavior.47

Corollary 4. The equilibrium dynamics exhibit five properties

(i) higher-skilled agents, as measured by their private information, have longer employment

spells with the intermediary;

(ii) intermediary’s flow profit decreases as Xt approaches B(kt, t) from above, but then

increases as Xt declines further as higher-skilled agents pay to build a reputation.

(iii) higher-skilled agents pay for building a reputation in periods when the intermediary

churns lower-skilled agents, i.e., Xt < B(kt, t);

46This stems from the optimality in (29) of letting go of the cutoff agent when his profitability is strictly
below the opportunity cost rV .

47Similar behavior also occurs in the Poisson model when, at t = 0, the intermediary lets go of some agents,
manifested by the, potentially positive, difference k0 − p.
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(iv) if the agent leaves the intermediary and chooses to open his own firm, he obtains a

positive jump in compensation.

(v) agents with a better performance history have longer employment spells with the in-

termediary; their compensation is increasing in performance outside of the churning

region but suffers a discontinuous downward drop once the intermediary starts churn-

ing lower-skilled agents.

Results (i)−(iv) are direct analogs of Corollary 1. Point (ii) highlights that the intermediary’s

profits increase in performance when outside of the churning region. Once in the churning

region, however, the intermediary’s flow profit may increase if the agent performs poorly, as

a higher high-skilled agent pays to build a reputation. Point (v) shows that past performance

can be a substitute for skill in determining the agent’s retention by the intermediary. As

illustrated in Figure 5, the agent is paid discretely less when in the churning region. This can

be thought of as the intermediary cutting bonuses during periods of downsizing. Moreover,

almost all agents pay for reputation just before leaving the intermediary and, thus, obtain a

positive jump in compensation after opening their own firm.

We also note that similar to the Poisson setting, the model suggests that wage dispersion

within the intermediary should be higher in churning periods. Since in the current model

churning periods are associated with times where returns have recently been low, we further

predict that wage dispersion should be higher in such times.

The expected value of the intermediary is pinned down by the fixed-point condition

V = max

[
e−r∆ · E

[∫ τ

0
e−rt

(
A
(
Q(kt, t,Xt)

)
− w(p̃t, kt, t)

)
dt+ e−rτ · V

]
− I, 0

]
. (35)

The equilibrium is unique for relatively large I or ∆, but, similar to the Poisson model, there

may exist multiple equilibria for intermediate resampling costs.

5.4 Comparative Statics given Brownian Signals

We derive the equilibrium under mild assumptions on the revenue function A(·) and private

information F (·). Such generality ensures the robustness of the economic mechanism but

makes it challenging to derive comparative statics. For our numerical calculations, we assume

the private information p̃0 follows a normal distribution, truncated at p > −∞ from below

and at p from above. The tractability benefit stems from the class of truncated normal

distribution being a conjugate of itself with respect to the Gaussian likelihood function,

arising from the conditionally normal performance process (Xt)t≥0. Such specification allows

for a semi-analytic expression for Q(kt, t,Xt). To simplify calculations further, we assume
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revenues are exponential, i.e., A(x) = eαx, for α > 0, and the agent always stays in the

industry, i.e., L = 0. This allows to derive the agent’s dynamic outside option U(p̃t, kt, t) in

semi-closed form and focus on the intermediary’s churning region.

For a given intermediary value V , the stopping surface B(k, t) specifies the forward dynamics

of the cutoff process (kt)t≥0 via Proposition 4. This permits simulation of the equilibrium

paths (kt, t,Xt) forward, but does not lend itself to an easy evaluation of (35). The difficulty

stems from simultaneously evaluating the expected value over three independent sources of

uncertainty: private information p̃0, residual uncertainty of θ given p̃0, and the Brownian mo-

tion (Bt)t≥0. The simulations necessary to evaluate the intermediary’s expected value in (35)

with a satisfactory precision are in the trillions. It turns out that we can significantly sim-

plify the problem by utilizing the fact that the equilibrium dynamics of process (kt, t,Xt)t≥0

are pinned down by the stopping surface B(kt, t) via (32). We perform a Girsanov change

of measure with respect to the drift of the performance process X to isolate the intermedi-

ary’s private information p̃0 and latent skill θ. We then compute the expected values of the

Girsanov densities with respect to θ conditional on the three-dimensional state (kt, t,Xt).
48

This leaves only the Brownian motion (Bt)t≥0 as the source of dynamic uncertainty. We can

evaluate (35) via a dynamic program in three state variables (kt, t,Xt), in which Xt follows a

standard Brownian motion, and kt is described in Proposition 4. Evaluating the right-hand

side of (35) for a given V can be performed on a personal computer in a few hours. We

identify the fixed points of (35) and perform comparative statics, depicted in Figure 6 by

utilizing parallel calculations on a university computer cluster. The technical details of the

method are provided in Appendix B.

Figure 6 depicts the intermediary’s expected value V and the fraction V %
pr of the intermedi-

ary’s profits stemming from the agent paying for reputation. The pay-for-reputation percent

V %
pr as a function of the initial magnitude and persistence of asymmetric information. Sim-

ilar to the Poisson model, the intermediary’s expected value increases in the support of the

private information and decreases in the informativeness φ of the performance signal, as can

be seen in Figures 6a and 6b respectively. Moreover, similar to the Poisson model, V %
pr is

maximized for interior levels of information asymmetry and persistence.

6 Conclusion

Markets for services are plagued by uncertainty about agents’ underlying skill. Our analysis

highlights the reputation-building role of informed intermediaries, and how clients dynamical

48The strategic considerations pertaining to θ affecting the drift of the performance process (Xt)t≥0 are
present via the churning surface B(kt, t).
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reputation as a function of the support of
asymmetric information.

0.1 0.2 0.3 0.4 0.5
0

0.5

$ %

informativeness φ

0%

5%

V ($)

V %
pr (%)

(b) Equilibrium value V and percentage
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pr obtained from pay-for-
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φ of the performance signal.

Figure 6: Value and pay-for-reputation comparative statics under Brownian sig-
nals.

observation of the agent’s performance shapes turnover dynamics and the interplay between

turnover and compensation dynamics. Our focus is on professions with three important

characteristics: agents’ talent is essential, their performance is observable by clients with

reasonable frequency, and they are able to contract directly with clients to provide their

services. A few of examples of such professions are fund managers employed by a fund family,

non-partner lawyers in a law firm, and accountants working in one of the big accounting firms.

Our investigation provides profound implications for turnover and compensation dynamics,

providing a novel rationale for the observed practice of low wage dispersion accompanied

by low turnover frequency at the initial phase of employment by an intermediary for such

workers. Importantly, the channel we highlight is distinct from the intermediary’s desire

to evaluate the skills of the employee, but instead is driven by the desire to maintain the

information advantage she has relative to clients. Since clients dynamically observe agent’s

performance, information advantage dissipates over time and, when it shrinks sufficiently,

the intermediary starts churning low skilled agents, consequently expediting depreciation of

her information advantage: a key insight is that strategic churning enables the intermediary

to retain high-skilled agents below market costs, and increases profits relative to the period

preceding churning. Churning periods are associated with increased wage dispersion of agents

retained by the intermediary. We also endogenize the market value of the intermediary, a

feature absent from common dynamic adverse selection models and signaling models. In-

terestingly, with endogenous intermediary value, the length of quiet and churning intervals

becomes non-monotone in the level of initial asymmetric information and informativeness of

43



public performance signals. An important next step is to augment moral hazard considera-

tions, in conjunction with allowing for performance-sensitive compensation contracts, as well

as to understand how our mechanism interacts with other rationals for the existence of an

intermediary firm such as economies of scale and benefits of working in teams.
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A.1 Equilibrium Fixed Point V

Define the incremental value of a new agent at the start of his employment to the intermediary as

G(V )
def
= E

[∫ τ

0
e−rτ (A(qt)− w(p̃t, kt)) dt+ e−rτV

]
− V (A.1)

= E

[∫ τ

0
e−rτ (A(qt)− w(p̃t, kt)− rV ) dt

]
Fixed point equation (7) can then be rewritten for V > 0 as

V = e−r∆ · E
[∫ τ

0
e−rt(A(qt)− w̃t) dt+ e−rτ · V

]
− I

Ier∆ + V
(
er∆ − 1

)
= E

[∫ τ

0
e−rt(A(qt)− w̃t) dt+ e−rτ · V

]
− V
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Ier∆ + V
(
er∆ − 1

)
= G(V ). (A.2)

The intuition behind (A.2) is that the expected gains from employing a given agent must equal to the

fixed costs of replacing him.

0 V

G(∞)

I2

er∆1I1

er
∆1 I1 +

(
er

∆1 − 1
)
V

Figure 7: Graphical representation for the fixed point equation (A.2) for V .
Function G(V ) is depicted in solid. Replacement cost parameters are I2 >
I1, and ∆2 = 0 < ∆1. Ex-ante private information p̃0 is distributed uni-
formly on

[
1
3 , 1
]

and revenues A(p) = p. The asymptotic value is G(∞) =
E
[
U(p̃0, p̃0)− U(p̃0, p)

]
.

Figure 7 plots G(V ) as a solid line. It is decreasing for low values of V as the profitability of each agent is

offset by a greater opportunity cost in periods when there is no churning. A higher value of V , however,

leads the intermediary to churn lower skilled agents at a higher rate, as can be seen from (13). This

allows the intermediary to charge higher skilled agents more for building reputation, which increases the

gain to the intermediary. The slope of the overall employment gain of the intermediary balances the two

economic forces and is, in part, determined by the relative value of employing the agent in times when

there is and isn’t churning.

Lemma 4 first shows that there exists a unique equilibrium limit as the number of agents the intermediary

can consequently employ increases. If the search costs are sufficiently large, the equilibrium corresponds

to the unique root of (A.2). On the other hand, if the replacement cost is small, then a large fraction of

the intermediary’s profits comes from the agents paying for reputation building. It is a surprising result

that in this case there may arise additional equilibrium values of V corresponding to either low or high

profitability of the intermediary. As a result, the intermediary’s reputation to be selective with its agents

can be self-enforcing and result in multiple equilibria with different expected values V . This is a novel

and surprising feature in both the dynamic employment and adverse selection literature. It arises from

endogenizing the gains from trade by imposing the employment capacity constraint, and is natural in our

context since the intermediary is able to hire a new agent. The intuition is similar to a market for goods

under adverse selection: higher gains from trade increase market liquidity, which lead to goods being
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produced at a higher rate, feeding back into higher gains from trade. A good example is a of a contractor

building houses and having inventory constraints, for instance due to credit availability. A more liquid

market increases the rate at which houses are built and sold and increases his equilibrium continuation

value.

A.2 Implications of firm-specific skill, team production, and rival services

Firm specific skill. The agent’s skill may be specific to the firm. This may not be a first-order force

in settings such as accounting or money management as they rely on general human capital, but may

be more relevant in other contexts. If the intermediary finds an agent who has good synergies with the

firm, then she may not wish to churn him. As a result, clients identify agents who are churned by the

intermediary by their expected skill but also the fact that they do not have synergies with the current

employer.

Team production. In the context of money management, funds within the family can be overseen by

teams of two to five money managers. Naturally, this introduces a problem for the markets to infer which

of the team members is truly skilled. The analysis in this paper can be applied to the team as a whole

where the entire team can leave the family and start a fund on their own. It also, potentially, introduces

the possibility of a staggered exit in which the first party that leaves the team is less skilled. As such,

the longer the team member stays with the fund, the higher his perceived level of skill is. While this

paper focuses on the case when a single manager governs the fund, the same mechanism applies to team

production.

Rival services. Suppose an outgoing agent may compete with the intermediary after starting his firm.49

The economic idea of letting go of a well-established agent because he becomes too expensive is still at

play, but it comes at the cost of competing with him in the future. If the intermediary does not let go

of him after a long time, however, her profit wedge collapses to 0 due to learning from either good or

bad performance. This implies that, as long as the agent is unable to capture the entire market, the

intermediary is, eventually, better of replacing him with a new agent. Our solution approach extends to

this setting. We would first solve backward for the intermediary’s non-stationary expected value from

employing the next agent and factor it into the optimal stopping problem determining set T.

A.3 Robustness to Dynamic Contracts

Lemma A.1. Suppose the intermediary can commit to a long-term contract. Then, if ρ > r then under

the optimal contract, the agent’s continuation value is given by U(p̃t, kt). If ρ = r, then the contract

49Such dynamic has been studied in Glode, Green, and Lowery (2012) in the context of the financial service
industry.
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in which the agent’s continuation value is equal to U(p̃t, kt) up until termination is one of the optimal

contracts.

Proof. Suppose the intermediary can commit to a cumulative compensation process (C̃t)t≥0. The agent’s

continuation value from staying with the intermediary is given by

Ŵt = Ep̃t

[∫ τ∧η

t
e−ρ(s−t) dĈs + e−ρ(τ∧η−t) · U

(
p̃τ , kτ

)]
.

On the other hand, define wage w̃t satisfying

U(p̃t, kt) = Ep̃t

[∫ τ∧η

t
e−ρ(s−t) dCs + e−ρ(τ∧η−t) · U

(
p̃τ , kτ

)]
.

Due to the agent’s risk-neutrality, it is without loss that he is let go after generating poor performance

and gets paid nothing in that event. The agent is retained by the intermediary as long as W̃t ≥ U(p̃t, kt)

and at time τ when the agent is let go, W̃τ = U(p̃τ , kτ ).

Suppose there exists a t such that Ŵt > U(p̃t, kt). Consider an alternative contract in which the in-

termediary follows contract (Ĉs)s≤t, makes the agent a fixed payment Ŵt − U(p̃t, kt) and, subsequently,

compensate the agent according to process (Cs)s∈[t,τ ]. The net continuation benefit to the intermediary

of the new contract relative to the original contract is

E

[∫ τ

t
e−r(s−t) dĈs

]
− Ŵt + U(p̃t, kt)− E

[∫ τ

t
e−r(s−t) dCs

]
=E

[∫ τ

t
e−r(s−t) dĈs

]
− E

[∫ τ

t
e−ρ(s−t) dĈs

]
+ E

[∫ τ

t
e−ρ(s−t) dCs

]
− E

[∫ τ

t
e−r(s−t) dCs

]
=E

[∫ τ

t

(
e−ρ(s−t) − e−r(s−t)

)
·
(
dCs − dĈs

)]
=E

[∫ τ

t

(
1− e(ρ−r)(s−t)

)
· e−ρ(s−t)

(
dCs − dĈs

)]
=E

[∫ τ

t

(
1− e(ρ−r)(s−t)

)
·
(
−dU

(
p̃s, ks

)
+ dŴs

)]
=E

[(
1− e(ρ−r)(s−t)

)(
Ŵs − U

(
p̃s, ks

))∣∣∣s=τ
s=t
−
∫ τ

t

(
Ŵs − U

(
p̃s, ks

))
d
(

1− e(ρ−r)(s−t)
)]

=E

[∫ τ

t

(
Ŵs − U

(
p̃s, ks

))
de(ρ−r)(s−t)

]
=E

[
(ρ− r) ·

∫ τ

t
e(ρ−r)(s−t)

(
Ŵs − U

(
p̃s, ks

))
ds

]
(i)

≥ 0,

where inequality (i) is strict unless Ŵs = U(p̃s, ks) P-a.s. This implies that under the optimal contract

it must be the case that W̃t = U(p̃t, kt).

Lemma A.2. The equilibrium dynamics are unaffected if the intermediary can commit to a long-term

contract with the agent.
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Proof. Under the optimal dynamic contract, the intermediary keeps the agent exactly at his outside

option for any equilibrium process of beliefs. As a result, commitment does not expand the set of feasible

contracts offered to the agent implying equivalent dynamics to the setting where the intermediary cannot

commit.

A.4 Alternative Specification of Agent’s Outside Option given Brownian Signals.

With Brownian signals, defining and deriving the equilibrium of the agent’s subgame is a nontrivial task.

Because the agent’s off-equilibrium outside option determines his bargaining power with the intermediary

via the retention constraint (6), we characterize the agent’s expected value of opening a firm if he is let go

off the equilibrium path. The main result of this section is that similar to before, in equilibrium, higher-

skilled agents value reputation more than lower-skilled agents since they stay in the industry longer,

under the sufficient condition that revenue A(·) is weakly convex.

Clients assign belief kt to the agent who opens his firm at time t. They subsequently update their beliefs

based on his performance

E [θ |Xs, kt] =
φ

φs+ 1
· (Xs −Xt) +

φt+ 1

φs+ 1
· kt. (A.3)

If the agent performs well, clients’ belief increases and the agent obtains greater profits. If, however, he

performs poorly, clients’ belief declines, and he may find staying in the industry unprofitable, relative to

his outside option L. The agent decides when to exit the industry given the clients’ belief process and

solves

U(kt, kt, t)
def
= max

η̂
E

[∫ η̂

0
e−ρ(s−t)A

(
φ(Xs −Xt) + (φt+ 1)kt

φs+ 1

)
ds+ e−ρη̂L

∣∣∣∣Xt, kt

]
(A.4)

This decision depends on past performance Xt as well as elapsed time t, which governs the residual

uncertainty about his ability

Σt
def
= Var(θ |Xt) =

σ2
θσ

2

σ2
θt+ σ2

,

If Σt is very low, then the estimate of the agent’s ability is so precise that the optimal exit rule can be

obtained by, essentially, comparing the current flow profit and the reservation utility ρL. If Σt is high,

however, then the agent values additional learning about his ability and is willing to stay in the industry

even if current profits are low.

Lemma A.3. Suppose when the agent opens his own firm he shares the same belief as clients, i.e.,

p̃t = kt. Then he optimally leaves the industry when his belief p̃s drops below a deterministic boundary

b(s). Boundary b(s)→ ρL as s→∞.

Proof. Follows the steps to constructing boundary b(k, t) in Lemma 9.

The agent’s compensation while working for the intermediary is determined by his outside option captured
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by opening the firm in that instance. Suppose he opens his firm at time t when his belief is given by p̃t

exceeds that of clients, i.e., kt. Consequently, he is relatively more optimistic about future performance

since, from his perspective, Xt has a higher drift, increasing his value of staying in the industry. In this

case, he finds it optimal to stay in the industry longer than an agent with a lower private belief. In

particular, the agent with p̃t > kt does not leave the industry if Xs reaches b(s). This poses a conundrum

for clients as it violates the incentive compatibility about the agent they expect to be dealing with.50

The clients need to interpret this deviation. On the one hand, they may assume that the agent delayed

his exit from the industry by mistake, in which case beliefs should continue to follow (A.3). On the other

hand, they may think that the agent started his firm with a higher belief than expected, and his delayed

exit from the industry is informative about his ability. In both cases, higher-skilled agents p̃t > kt stay

in the industry longer, leading to very similar wage dynamics in the employment relationship. We find

it more natural that the agent opens his firm early due to a disagreement with the intermediary over

compensation, and the clients assign the lowest belief about the agent consistent with him staying in the

industry given that history. Such assumption on off-equilibrium beliefs makes our analysis more difficult,

but comes very close to nesting the case in which investors do not update on the exit times.51

Definition 2. A Perfect Bayesian Equilibrium of the agent’s subgame starting at time t is a belief process

(kt,s)s≥0 and a collection of exit times (ηt(p̂))p̂≥kt adapted process (Xs −Xt)s≥t such that

(i) ηt(p̂) maximizes the agent’s time of leaving the industry given clients’ belief

ηt(p̂) = arg max
η̂

E

[∫ η̂

t
e−ρ(s−t)A (kt,s) ds+ e−ρ(η̂−t) · L

∣∣∣ p̃t = p̂

]
.

(ii) the clients’ belief process kt,s follows Bayes rule as long as s < ηt(kt). If they expect an agent’s exit

but do not observe it, then they revise their beliefs to the lowest skilled agent for whom such behavior

is incentive compatible

kt,s =
φ

φs+ 1
· (Xs −Xt) +

φt+ 1

φs+ 1
·max

[
kt, η

−1
t (s)

]
.

The equilibrium expected value to the agent if he leaves the intermediary is given by

U(p̃t, kt, t)
def
= E

[∫ ηt(p̃t)

t
e−ρ(s−t)A (kt,s) ds+ e−ρ(ηt(p̃t)−t) · L

∣∣∣ p̃t] .
For p̃t = kt the agent leaves the industry along the equilibrium path and the above expression coincides

with one shown earlier for p̃t = kt. This results in higher skilled agents leaving the industry later, and

leads them to put more value on reputation.

50In the Poisson model of Section 2 and 3 this did not arise as the agent either generated good performance
and stayed in the industry, or received a negative shock, which revealed him to be unskilled. This resulted in
clients not needing to update based on off-equilibrium behavior by the agent.

51This does not change the equilibrium dynamics even though this gives the agent a tool to signal his
ability. We have characterized both cases and they lead to very similar results. At the cost of notation, we
present the more difficult case here.
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Proposition 5. There exists a Perfect Bayesian Equilibrium characterized by the on-path stopping bound-

ary b(s).

(i) The agent optimally leaves the industry when his private belief drops below b(s):

ηt(p̂) = inf

{
s ≥ t :

[
φ

φs+ 1
· (Xs −Xt) +

φt+ 1

φs+ 1
· p̂
]
< b(s)

}
. (A.5)

(ii) The clients’ belief equals the posterior belief of the lowest skilled agent for whom it is incentive

compatible to stay in the industry given the past performance history

kt,s =
φ(Xs −Xt)

φs+ 1
+
φt+ 1

φs+ 1
·max

[
kt,

infs′∈[t,s]

{
φ(Xs′ −Xt)− (φs′ + 1)b(s′)

}
φt+ 1

]
.

Moreover, if A(·) is weakly convex, then higher skilled agents value reputation more than lower skilled

agents: ∂2U(p̃′, k, t) > ∂2U(p̃, k, t), for any p̃′ > p̃.

Proof. It is without loss to set t = 0 and show that ∂12U(p̃, k, 0) > 0. Then

k0,t =
φ

φt+ 1
·Xt +

1

φt+ 1
·max[k0, η

−1
0 (t)].

Since k0,t Define l0,t = max[k0, η
−1
0 (t)] to be the initial type. Moreover, we can express the agent’s private

information as

Xt = p̃0t+ ξt+ σBt,

where θ = p̃0 + ξ for ξ ∼ N (0, σ2
θ) independent from other model variables. The expected payoff of the

agent can be written as

U(p̃0, l0, 0) = E

[∫ τ

0
e−ρtA

(
φ

φt+ 1
·Xt +

1

φt+ 1
· l0,t

)
dt+ e−ρτ · L

]
.

Suppose that p̃0 > l̂0 = l0 + ε. Define

τ = inf

{
φ

φt+ 1
·Xt +

1

φt+ 1
· l0 = b(t)

}
,

τ̂ = inf{t : l̂0,t = l̂0}.

Due to the dynamics specified for process l0,t and l̂0,t it follows that dl̂0,t > 0 only if l0,t = l̂0,t Then

U(p̃0, l̂0, 0)− U(p̃0, l0, 0) = E

[∫ τ̂

0
e−ρtA

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l̂0
)
dt+ e−ρτ̂ · L

]
− E

[∫ τ̂

0
e−ρtA

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0,t

)
dt+ e−ρτ̂ · L

]
= E

[∫ τ

0
e−ρtA

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l̂0
)
dt

]
− E

[∫ τ

0
e−ρtA

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0
)
dt

]
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+ E

[∫ τ̂

τ
e−ρtA

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l̂0
)
dt

]
− E

[∫ τ̂

τ
e−ρtA

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0,t

)
dt

]
(i)
= E

[∫ τ

0
e−ρtA′

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0
)

ε

φt+ 1
dt

]
+O(ε2)

+ E

[∫ τ̂

τ
e−ρtA′

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0
)

ε

φt+ 1
dt

]
+O(ε2)

(ii)
= εE

[∫ τ

0
e−ρtA′

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0
)

1

φt+ 1
dt

]
+ o(ε) +O(ε2),

where (i) holds by Taylor expansion and (ii) holds since limε→0(τ̂ − τ) = 0. By this argument (not the

same as the Envelope theorem) we can express the partial derivative of the agent’s continuation payoff

in, almost, closed form

∂

∂l0
U(p̃0, l0, 0) = E

[∫ τ

0
e−ρtA′

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0
)

1

φt+ 1
dt

]
.

Taking the cross-partial we obtain

∂2

∂p̃0∂l0
U(p̃0, l0, 0) = E

[∫ τ

0
e−ρtA′

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0
)

1

φt+ 1
dt

]
= E

[∫ τ

0
e−ρtA′′

(
φ

φt+ 1
·
(
p̃0t+ ξt+ σBt

)
+

1

φt+ 1
· l0
)

φt

φt+ 1
· 1

φt+ 1
dt

]
+ E

[
e−ρτA′

(
φ

φτ + 1
·
(
p̃0τ + ξτ + σBτ

)
+

1

φτ + 1
· l0
)

1

φτ + 1

∂τ

∂p̃0

]
≥ 0,

since A′′(·) ≥ 0 and τ is, by definition, increasing (strictly) in p̃0. This concludes the proof.

Proposition 5 establishes that higher-skilled agents value reputation more under the sufficient condition

that A(·) is weakly convex. First, higher-skilled agents stay longer in the industry, as manifested by

ηt(p̂) being an increasing function of p̂ as can be seen from (A.5). This is the same economic mechanism

derived in Proposition 1. Second, higher-skilled agents are more likely to generate good performance

and to have a high reputation. Weak convexity of A(·) ensures that the revenues remain sensitive to

clients’ perceptions even when reputation is high. While weak convexity is sufficient to ensure the agent’s

single-crossing, it is not necessary, as the first channel is present and ensures our results arise if A(·) is

linear. It is also worthwhile to note that the agent leaves the industry when his private belief p̃s coincides

with the clients’ belief kt,s even when the subgame is started off equilibrium path, p̃t > kt,t. The agent’s

reservation wage in this case requires an adjustment since, whenever kt < b(t), beliefs experience a jump.
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The agent’s cumulative reservation wage is given by

dW̃t =


ρLdt if U(p̃t, kt, t) = L,

wR(p̃t, kt, t)dt if U(p̃t, kt, t) > L and kt > b(t),

U(p̃t, b(t), t)− U(p̃t, kt, t) if U(p̃t, b(t), t) > 0 and kt < b(t).

(A.6)

which features an adjustment stemming from the fact that, were he to leave, he would be able to inde-

pendently signal his ability to clients. If the agent’s reservation value L is low, then b(t) is also low, and

this adjustment to the reservation wage does not alter the equilibrium behavior of the main model.

A.5 Main Text Proofs

Proof of Lemma 1 (agent’s outside option)

If the agent leaves with reputation k, his continuation utility is given by

uθ(k) = Eθ

[∫ η

0
e−ρsA(π(k, s)) ds+ e−ρη · L

]
(A.7)

where η
def
= inf

{
t : N θ

t > 0
}

. The realized value to the agent of type θ at time t can be expressed as

Zt
def
=

∫ η∧t

0
e−ρsA(π(k, s)) ds+ e−ρt · U(θ, π(k, s)) · 1 {t < η}+ e−ρη · L · 1 {η ≤ t} . (A.8)

By Ito’s lemma

dZt =e−ρtA(π(k, t)) dt− re−ρtuθ(π(k, t)) dt

+e−ρtλπ(k, t)(1− π(k, t)) · ∂2uθ(π(k, t)) dt+ e−ρt(L− uθ(π(k, t)) · dN θ
t .

(A.9)

Process (Zt)t≥0 is a Levy martingale with respect to filtration of type θ agent, implying that the expected

drift of process (Zt)t≥0 is 0. Multiplying both sides of (A.9) by eρt obtain

ρuθ(π(k, t)) = A(π(k, t)) + λπ(k, t)(1− π(k, t)) · u′θ(π(k, t)) + (L− uθ(π(k, t))) · λ(1− θ).

Define x = π(k, t). Then

ρuθ(x) = A(x) + λx(1− x) · uθ(x) + (L− uθ(x)) · λ(1− θ). (A.10)

The above is a linear differential equation. The general solution at t = 1 is defined as the solution to the

first order linear differential equation

(ρ+ λ(1− θ)) · uGθ (x) = λx(1− x) · ∂2U
G
θ (x).

It is given by

uGθ (x) =

(
x

1− x

) ρ
λ

+1−θ
.
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Function uθ(k) is well defined as integral (A.7). Thus, the bounded solution to (A.10) exists. The fact

that uGθ (1) =∞ implies that this solution is unique. The unique bounded solution satisfies

uθ(1) =
A(1)

ρ+ λ(1− θ)
+

λ(1− θ)L
ρ+ λ(1− θ)

.

The agent’s value function U(p̃, k) is defined in (5), which we reiterate here

U(p̃t, kt)
def
= max

η̂
Ep̃t

[∫ η̂

t
e−ρ(s−t)A

(
π(kt, s− t)

)
ds+ e−ρ(η̂−t) · L

]
.

Lemma A.4. U(p̃, k) is increasing in p.

Proof. The optimal time for the agent to leave the industry is

ηp = arg max
η̂

E

[
p̃

∫ η̂

0
e−ρt

(
A(π(k, t))− ρL

)
dt+ (1− p̃)

∫ η̂

0
e−(ρ+λ)t

(
A(π(k, t)− ρL

)
dt+ L

]
.

Subtract the value of stopping L. Taking expectations and applying the Envelope theorem with respect

to p̃ obtain ∫ η

0
e−ρt

(
A(π(k, t))− ρL

)
dt−

∫ η

0
e−(ρ+λ)t

(
A(π(k, t))− ρL

)
dt. (A.11)

Suppose (A.11) is negative. Then

max
η̂

E

[
p̃

∫ η̂

0
e−ρt

(
A(π(k, t)− ρL

)
dt+ (1− p̃)

∫ η̂

0
e−(λ+ρ)t

(
A(π(k, t))− ρL

)
dt

]
= max

η̂
E

[∫ η̂

0

(
p̃e−ρt + (1− p̃)e−(ρ+λ)t

)(
A(π(k, t)− ρL

)
dt

]
<max

η̂
E

[∫ η̂

0
e−(λ+ρ)t

(
A(π(k, t)− ρL

)
dt

]
= E

[∫ η0

0
e−(λ+ρ)t

(
A(π(k, t)− ρL

)
dt

]

=E

[∫ ∞
0

e−ρt · e−λt · P
(
η0 > t |Xt = µt

) (
A(π(k, t)− ρL

)
dt

]
For a given p, there exists a ”mixed-strategy” stopping time η̂p given by the conditional probability

distribution

P(η̂p > t |Xt = µt) = e−λt · P
(
η0 > t |Xt = µt

)
.

This stopping time is feasible for a given p and generates the same exact same payoff under p > 0 as it

does for p = 0. It implies that the ex-post distribution that can be achieved for p = 0 can be achieved

for any p > 0.

Lemma A.5. Agent’s outside option U(p̃, k) is weakly increasing in k.

Proof. Subtracting L from (5) and differentiating with respect to k, obtain

∂

∂k

[
U(p, k)− L

]
=

∂

∂k
Ep̃t

[∫ η̂

t
e−ρ(s−t)

[
A
(
π(kt, s− t)

)
− ρL

]
ds

]
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= E

[∫ ηp

0
e−ρtA′(π(k, t))∂1π(k, t) dt

]
(i)

≥ 0,

where inequality (i) is strictly positive whenever ηp > 0 with positive probability and k ∈ (0, 1).

If the agent finds it optimal to stay in the industry for a given k, then he finds it optimal to stay in the

industry for any k′ > k. The dynamic counterpart to the argument is that he finds it optimal to remain

in the industry until the arrival of the Poisson shock if he chose to remain in the industry when clients’

belief was k. The expected payoff from staying in the industry until the arrival of the Poisson shock is,

simply, given by pu1(k) + (1− p)u0(k). As a result, (10) holds.

Lemma A.6. The agent’s reservation wage wR(p̃, k) is given by (12) and is weakly decreasing in p̃.

Proof. Suppose A(k) > ρL. Then the reservation wage of all agents is equal to A(k), since they can

collect the revenues until the arrival of the Poisson shock. If A(k) < ρL, then, due to higher skilled

agents being more likely to stay in the industry, they are willing to accept it, due to higher profits from

surviving long enough. As a result, the willingness of the agent to accept A(k) < ρL is increasing in

p̃.

Proof of Proposition 1 (agent’s single-crossing)

Self-contained in the main text.

Proof of Proposition 2 (equilibrium verification)

The argument is comprised of several small lemmas, but is conceptually very simple. First, we show

that absent any pay-for-reputation dynamics, the intermediary prefers to retain higher skilled agents for

longer. In the churning region the cutoff type pays the intermediary just enough to make her indifferent

between keeping him and letting him go. This implies that all agents below the cutoff type are strictly

unprofitable to the intermediary while all agents above the cutoff type are strictly profitable, due to the

single-crossing condition of the agent.

For formal proofs, it is convenient to work with the initial agent types. I.e., for every type p̃t at time t

we identify type p̃0 such that p̃t = π(p̃0, t). This is equivalent to p̃0 = π(p̃t,−t). Similarly, denote by lt

the initial cutoff type

lt
def
= π(kt,−t). (A.12)

It is more convenient to work in the space of initial types lt, rather than posterior types kt, as to separate

the learning stemming from churning versus performance. Define

Q(l)
def
= E [p̃0 | p̃0 > l] =

1

1− F (l)
·
∫ 1

l
x dF (x).
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to be the average initial type above l. Similarly, define

Q̂(l, t)
def
= π(Q(l), t).

Define by η to be the first time of arrival of process N θ

η
def
= inf{t : Xt < µt}.

For each initial p0 define T (p̃0, l) ∈ R to be the set of subgame-perfect times at which it is optimal to let

go of the agent p̃0 if the clients belief the cutoff agent is of type l if the intermediary has to pay the agent

exactly his reservation wage

T (p̃0, l)
def
=
⋃
t≥0

{
arg max
T≥t

Ep0

[∫ T∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds+ V

]}
(A.13)

where we used the identity∫ T∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)]
ds+ e−rτ̂∧η · V

≡
∫ T∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds+ V.

Lemma A.7. Stopping set T (p̃0, l) is weakly decreasing in p̃0, i.e.,

T (p̃0, l) ⊆ T
(
p̃′0, l

)
∀p̃′0 ≤ p̃0.

Proof. For any stopping time τ̂

Ep̃0

[∫ T∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds

]
+ V (A.14)

=E

[∫ T∧η

t
e−r(s−t)

[
p̃0 + (1− p̃0)e−λ(s−t)

]
·
[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds

]
+ V.

Since w(p̃, k) is weakly decreasing in p̃, applying the Envelope theorem obtain

∂

∂p̃0

[
Ep0

[∫ T∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds

]
+ V

]
≤E

[∫ T∧η

t
e−r(s−t)

(
1− e−λ(s−t)

) [
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds

]
. (A.15)

Suppose (A.15) is negative. Then, the expected payoff (A.14) for a given T satisfies

Ep̃0

[∫ T∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds

]
+ V

(i)
<Ep̃0=0

[∫ T∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds

]
+ V. (A.16)
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Inequality (i) cannot be strict, however, since the intermediary can replicate the payoff by employing a

mixed-stopping rule, similar to the argument used in the proof of Lemma 1. Thus, the intermediary’s

expected optimal stopping payoff is weakly increasing in p0, which implies the ranking of the stopping

sets.

Denote by V (p̃0, l, t) the intermediary’s expected continuation value from time t onwards from employing

the agent of initial skill p̃0 while clients believe the cutoff type is l and absent any reputation-building

considerations

V (p̃0, l, t)
def
= sup

τ̂
Ep̃0

[∫ τ̂∧η

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
ds

]
+ V. (A.17)

Using Ito’s Lemma for t /∈ T (p̃0, l), function V (p̃0, l, t) satisfies

rV (p̃0, l, t) = A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
+
∂

∂t
V (p̃0, l, t) + λ

(
1− π(p̃0, t)

)(
V − V (p̃0, l, t)

)
.

For t ∈ T (p̃0, l) function V (p̃0, l, t) = V . We can combine the two cases by writing

rV (p̃0, l, t) =
∂

∂t
V (p̃0, l, t) + λ

(
1− π(p̃0, t)

)(
V − V (p̃0, l, t)

)

+

A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
if t /∈ T (p̃0, l) ,

rV if t ∈ T (p̃0, l) .︸ ︷︷ ︸
flow payoff

(A.18)

First, we show that if the agent is initially hired by the intermediary, then the churning occurs only in

the region where he opens his own firm upon being churned.

Lemma A.8. Define by t∗(p̃0, l) the first time when the intermediary is willing to let go of the agent p̃0

given clients’ belief l

t∗(p̃0, l)
def
= inf

{
t ≥ 0 : t ∈ T (p̃0, l)

}
.

If t∗(p̃0, l) > 0, then U
(
π(p̃0, t), π(l, t)

)
> L for every t ∈ T (p̃0, l), i.e., the agent opens his firm when he

leaves the intermediary.

Proof. Suppose, from the contrary, that U
(
π(p̃0, t), π(l, t)

)
= L for some t̂ ∈ T(p̃0, l). Due to Lemma A.5

wR

(
π(p̃0, t), π(l, t)

)
= ρL ∀t ∈ [0, t̂].

This implies that for every t ≤ t̂

A
(
Q̂(l, t)

)
− wR

(
π(p̃0, t), π(l, t)

)
− rV = A

(
Q̂(l, t)

)
− ρL− rV ≤ A

(
Q̂(l, t̂)

)
− ρL− rV (i)

= 0,

where (i) stems from the necessary optimality condition (17) for stopping at time t̂. By definition of
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t∗(p̃0, l) it holds that t̂ ≥ t∗(p̃0, l) implying that

V (p̃0, l, 0) = Ep̃0

[∫ t∗(p̃0,l)

0
e−rt

[
A
(
Q̂(l, t̂)

)
− wR

(
π(p̃0, t), π(l, t)

)
− rV

]
dt+ V

]

= Ep̃0

[∫ t∗(p̃0,l)

0
e−rt

[
A
(
Q̂(l, t̂)

)
− ρL− rV

]
dt+ V

]
(ii)

≤ V,

where inequality (ii) is strict whenever t∗(p̃0, l) > 0. This implies that, if t∗(p̃0, l) > 0, then the interme-

diary is strictly better of replacing the agent at t = 0, posing a contradiction with the optimality of the

intermediary stopping at t∗(p̃0, l) > 0.

Lemma A.9. Suppose process (lt)t≥0 is weakly increasing subject to dlt > 0 only for t ∈ T (p̃0, lt).
52

Then, the intermediary does not benefit from the increase in process (lt)t≥0 and value function V (p̃0, lt, t)

can be written as

V (p̃0, lt, t) = Ep̃0

[∫ ∞
t

e−r(s−t)
[
A
(
Q̂(ls, s)

)
− wR

(
π(p̃0, s), π(ls, s)

)
− rV

]
1 {s ∈ T (p̃0, ls)} ds

]
+ V.

(A.19)

Proof. Without loss, we prove (A.19) for t = 0. The same approach holds for any t > 0. Define the

stochastic process Z = (Zt)t≥0 as

Zt
def
=

∫ t

0
e−rs

[
A
(
Q̂(ls, s)

)
− wR

(
π(p̃0, s), π(l, s)

)
− rV

]
1 {s /∈ T (p̃0, ls)} ds+ e−rt

[
V (p̃0, lt, t)− V

]
.

Suppose t /∈ T (p̃0, lt). Then

dZt = e−rt
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(l, t)

)
− rV

]
dt− re−rt

[
V (p̃0, lt, t)− V

]
dt+ e−rtdV (p̃0, lt, t)

= e−rt
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(l, t)

)
− rV

]
dt− re−rt

[
V (p̃0, lt, t)− V

]
dt

+ e−rt
∂

∂t
V (p̃0, lt, t) dt+ e−rt

[
V − V (p̃0, lt, t)

]
dN θ

t

= e−rt
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(l, t)

)]
dt− re−rtV (p̃0, lt, t) dt

+ e−rt
∂

∂t
V (p̃0, lt, t) dt+ e−rt

[
V − V (p̃0, lt, t)

]
dN θ

t

= e−rt·
[
V − V (p̃0, lt, t)

]
·
[
dN θ

t − λ
(

1− π(p̃0, t)
)
dt
]
. (A.20)

For t ∈ T (p̃0, lt) we have V (p̃0, lt, t) ≡ V , implying that Zt ≡ 0 regardless of the value of lt. Thus, in

addition to (A.20) that process (Zt)t≥0 is an L1 martingale. This implies that

V (p̃0, l0, 0)− V = Z0 = E [Z∞]

= Ep̃0

[∫ ∞
0

e−rt
[
A
(
Q̂(l, t)

)
− wR

(
π(p̃0, t), π(l, t)

)
− rV

]
1 {t ∈ T (p̃0, lt)} dt

]
52In the case of lt − lt− > 0 this requires that t ∈ ∩l∈[lt−,lt]T (p̃0, l).
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which implies (A.19) for t = 0. The extension to t > 0 is identical to the analysis above.

Lemma A.10 (Retention Wage). Consider an increasing process l = (lt)t≥0. The cumulative compensa-

tion necessary to retain the agent of initial skill p̃0, i.e., posterior skill (π(p̃0, t))t≥0, denoted by (C̃ p̃0
t )t≥0

is given by

dC̃ p̃0
t = wR

(
π(p̃0, t), π(lt, t)

)
dt− ∂2U

(
π(p̃0, t), π(lt, t)

)
∂1π(lt, t) · 1 {lt − lt− = 0} dlt

−
[
U
(
π(p̃0, t), π(lt, t)

)
− U

(
π(p̃0, t), π(lt−, t)

)]
.

(A.21)

Moreover, if process (lt)t≥0 is weakly increasing, then C̃ p̃0
t ≥ C̃

p̃′0
t for p̃0 ≤ p̃′0.

Proof. Without loss, we prove the result for t = 0. The same approach holds for any t > 0. Define

process (Zt)t≥0 as

Zt
def
=

∫ t

0
e−ρs dC̃s + e−ρt · U

(
π(p̃0, t), π(lt, t)

)
.

Applying Ito’s lemma obtain

dZt = e−ρt dC̃t − ρe−ρtU
(
π(p̃0, t), π(lt, t)

)
dt+ e−ρtdU

(
π(p̃0, t), π(lt, t)

)
= e−ρt dC̃t − ρe−ρtU

(
π(p̃0, t), π(lt, t)

)
dt+ e−ρt∂1U

(
π(p̃0, t), π(lt, t)

)
∂2π(p̃0, t) dt

+ e−ρt∂2U
(
π(p̃0, t), π(lt, t)

)[
∂1π(lt, t) · 1 {lt − lt− = 0} dlt + ∂2π(lt, t) dt

]
+ e−ρt

[
U
(
π(p̃0, t), π(lt, t)

)
− U

(
π(p̃0, t), π(lt−, t)

)]
+ e−ρt

[
L− U

(
π(p̃0, t), π(lt, t)

)]
dN θ

t

= e−ρt
[
L− U

(
π(p̃0, t), π(lt, t)

)]
·
[
dN θ

t − λ(1− π(p̃0, t)) dt
]
.

Using the definition of C̃ and U(p̃, k), it is easy to see that E [dZt] = 0. Due to the bounded flow payoffs,

it implies that (Zt)t≥0 is a martingale. This implies that

U(p̃0, l0) = Z0 = E [Zτ̂ ] = Ep̃0

[∫ η

0
e−ρt dC̃t + e−ρηL

]
.

The agent is, thus, indifferent at t = 0 between obtaining his reservation wage and compensation C̃t up

to any time t̂. The monotonicity C̃ p̃0
t < C̃

p̃′0
t for p̃0 < p̃′0 stems directly from the agent’s outside option

U(p̃, k) satisfying single-crossing, i.e., ∂2

∂p∂kU(p̃, k) ≥ 0.

Rewriting the dynamics for process (kt)t≥0 from (13), the conjectured equilibrium dynamics for process

(lt)t≥0 are given by

l̇t =


0 if t /∈ T (lt, lt) ,

rV + wR

(
π(p̃0, t), π(lt, t)

)
−A

(
Q̂(lt, t)

)
∂1π(lt, t) · ∂2U(π(lt, t), π(lt, t))

if t ∈ T (lt, lt) .

(A.22)
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subject to the initial condition l0 = k0.

Lemma A.11 (Verification). Given dynamics (lt)t≥0 given by (A.22), it is incentive compatible for the

intermediary who employing agent lt = π(kt,−t) to let go of the agent when t ∈ T = {t : t ∈ T (lt, lt)}.

Proof. The minimum retention wage necessary to retain the agent if dlt > 0 is

ŵ
(
π(p̃0, t), π(lt, t)

)
= wR

(
π(p̃0, t), π(lt, t)

)
−
[
rV+wR

(
π(p̃0, t), π(lt, t)

)
−A
(
Q̂(lt, t)

)]∂2U
(
π(p̃0, t), π(lt, t)

)
∂2U

(
π(lt, t), π(lt, t)

) .
An important observation is

∂2U(π(p̃0, t), π(lt, t))

∂2U(π(lt, t), π(lt, t))
> 1 ⇔ p̃0 > lt.

First, we show that it is sub-optimal for the intermediary to retain the agent of initial skill p̃0 if p̃0 < lt.

The intermediary’s flow payoff is

A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

−
[
rV + wR

(
π(p̃0, t), π(lt, t)

)
−A

(
Q̂(lt, t)

)]
·
∂2U

(
π(p̃0, t), π(lt, t)

)
∂2U

(
π(lt, t), π(lt, t)

) · 1 {t ∈ T (lt, lt)}

≤A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV −

[
rV + wR

(
π(p̃0, t), π(lt, t)

)
−A

(
Q̂(lt, t)

)]
· 1 {t ∈ T(lt, lt)}

=
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

]
· 1 {t /∈ T(lt, lt)}

=
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

]
· 1 {t /∈ T(p̃0, lt)}

+
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

]
· 1 {t ∈ T(p̃0, lt) \ T(lt, lt)}

≤
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

]
· 1 {t /∈ T(p̃0, lt)} ,

since for every t ∈ T(p̃0, lt) \ T(lt, lt) we have

A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV ≤ 0.

This implies that for p̃0 ≤ lt it follows that for every t ∈ T(p̃0, lt)

V = sup
τ

[
Ep̃0

[∫ τ

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(ls, s)

)
− rV

]
· 1 {s ∈ T(p̃0, ls)} ds

]
+ V

]
≥ sup

τ

[
Ep̃0

[∫ τ

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− w

(
π(p̃0, s), π(l, s)

)
− rV

]
1 {s ∈ T(p̃0, ls)} ds

]
+ V

]
.

This implies that for p0 < lt it is weakly optimal for the intermediary to replace the agent the first time

when t ∈ T(p̃0, lt).

Suppose, now, that p̃0 > lt. We reverse the previous argument by, similarly, ranking flow payoffs of the
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intermediary

A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

−
[
rV + wR

(
π(p̃0, t), π(lt, t)

)
−A

(
Q̂(lt, t)

)]
·
∂2U

(
π(p̃0, t), π(lt, t)

)
∂2U

(
π(lt, t), π(lt, t)

) · 1 {t ∈ T(lt, lt)}

≥A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV −

[
rV + wR

(
π(p̃0, t), π(lt, t)

)
−A

(
Q̂(lt, t)

)]
· 1 {t ∈ T(lt, lt)}

=
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

]
· 1 {t /∈ T(lt, lt)}

=
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

]
· 1 {t /∈ T(p̃0, lt)}

≥
[
A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV

]
· 1 {t /∈ T(p̃0, lt)}

since for every t ∈ T(p̃0, lt) \ T(lt, lt) we have

A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
− rV ≤ 0.

This implies that for p̃0 ≥ lt it follows that for every t ∈ T (p̃0, lt), which coincides with the first when

p̃0 = lt.

V = sup
τ

[
Ep̃0

[∫ τ

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− wR

(
π(p̃0, s), π(ls, s)

)
− rV

]
1 {s ∈ T (p̃0, ls)} ds

]
+ V

]
≤ sup

τ

[
Ep̃0

[∫ τ

t
e−r(s−t)

[
A
(
Q̂(l, s)

)
− w

(
π(p̃0, s), π(l, s)

)
− rV

]
1 {s ∈ T (p̃0, ls)} ds

]
+ V

]
.

This implies that for p̃0 > lt it is weakly optimal for the intermediary to retain the agent.

Proof of Lemma 2 (determination of k0)

Lemma A.12. Given V there exists a unique k0 such that the intermediary retains all agents such that

p̃0 > k0.

Proof. Define τ(p̃0) to be the solution to

τ(p̃0)
def
= arg max

τ̂
Ep̃0

[∫ τ̂

0
e−rt

[
A
(
Q̂(p̃0, t)

)
− wR

(
π(p̃0, t), π(p̃0, t)

)
− rV

]
dt

]
.

Define k0
def
= sup{p̃0 : τ(p̃0) = 0}. Consider k̂0 < k0. Define

ε =
1

λ

[
log

(
k0

1− k0

)
− log

(
k̂0

1− k̂0

)]
.

Then

Ek̂0

[∫ τ̂

0
e−rt

[
A
(
Q̂(k̂0, t)

)
− wR

(
π(k̂0, t), π(k̂0, t)

)
− rV

]
dt

]
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=Ek̂0

[∫ ε∧τ̂

0
e−rt

[
A
(
Q̂(k̂0, t)

)
− wR

(
π(k̂0, t), π(k̂0, t)

)
− rV

]
dt

]
+Ek̂0

[∫ τ̂

ε∧τ̂
e−rt

[
A
(
Q̂(k̂0, t)

)
− wR

(
π(k̂0, t), π(k̂0, t)

)
− rV

]
dt

]
< V

≤ k̂0

k0
· Ek0

[∫ τ+ε

ε
e−rt

[
A
(
Q̂(k̂0, t)

)
− wR

(
π(k̂0, t), π(k̂0, t)

)
− rV

]
dt

]
<Ek0

[∫ τ

0
e−rt

[
A
(
Q̂(k̂0, t)

)
− wR

(
π(k̂0, t), π(k̂0, t)

)
− rV

]
dt

]
= V.

This implies that for any p̃0 < k0 the intermediary does not find it profitable to hire the agent.

Proof of Lemma 3 (equilibrium uniqueness)

Lemma A.13. Suppose that V > 0 and p > 0. Then, in any equilibrium, there exists time T̄ ∈ R+ such

that P
(
τ ≤ T̄

)
= 1.

Proof. Along the path of good performance there exists a finite threshold T such that for any initial type

p̃0 the profit of the intermediary is

A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
≤ A

(
Q̂(1, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
≤ A

(
Q̂(1, t)

)
− wR

(
π(1, t), π(lt, t)

)
< rV

for every t ≥ T̄ and lt ∈ [p, 1] since beliefs about the any agent in the support converge to 1 for a

sufficiently long track record of good performance. This implies that the intermediary prefers to replace

every agent by time T̄ .

Suppose there exists a different equilibrium and (kt)t≥0 is the clients’ belief process about the type of

the agent that may leave the intermediary at time t. As before, process lt = π(kt,−t) denotes the initial

type of the departing agent. As we focus on pure-strategy equilibria, it is without loss to identify the

intermediary’s strategy by the deterministic time she fires the agent along the path of good performance.

Lemma A.14. Suppose the intermediary finds it strictly optimal to fire the agent of skill p̃0 at time

T ≤ T̄ . Then the intermediary also strictly prefers to fire every agent p̃0 < p̃′0 by time T .

Proof. Strict optimality of the intermediary’s stopping decision implies that for every stopping time τ̂ > 0

V > Ep̃0

[∫ τ̂

t
e−r(s−t)

[
A
(
Q̂(ls, s)

)
ds− dC̃ p̃0

s − rV
]

+ V

]
(i)

≥ Ep̃0

[∫ τ̂

t
e−r(s−t)

[
A
(
Q̂(ls, s)

)
ds− dC̃ p̃

′
0
s − rV

]
+ V

]
(ii)

≥ Ep̃′0

[∫ τ̂

t
e−r(s−t)

[
A
(
Q̂(ls, s)

)
ds− dC̃ p̃

′
0
s − rV

]
+ V

]
,
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where (i) holds due to Lemma A.10 and (ii) holds as the intermediary’s expected payoff is weakly

increasing in p̃0 given identical cash flows due to the possibility of randomized termination.

Lemma A.15. Suppose the intermediary is indifferent between letting the agent of skill p̃0 go at time T

and time T ′ > T . Then,

– either the intermediary strictly prefers to let go of all agents p̃′0 < p̃0 time T ;

– or the type of the cutoff agent does not change between T and T ′, i.e., lT = lT ′, the profit wedge of

the intermediary is constant for t ∈ [T, T ′]

A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
= rV

and, as a result, the intermediary is indifferent between letting the agent of skill p̃′0 go at time T and

at time T ′ > T .

Proof. Follows from the uniform ranking of compensation processes if lt increases between T and T ′.

Denote by zt the lowest skilled agent still employed by the intermediary at time t. This is known as the

cutoff type. While we’ve characterized the equilibrium using the cutoff type, it is not necessarily the case

that zt = lt.

Lemma A.16. Denote by T (p̃0) the equilibrium time when the agent of ex-ante skill p̃0 leaves the inter-

mediary. Then, in equilibrium, it must be the case that T (p̃0) is weakly increasing in p̃0.

Proof. Define

T = inf
p̃0

T (p̃0).

Suppose the contrary and for p̃0 > lc0 it is the case that T = T (p̃0) < T (lc0). Define

T̄1 = sup
p̂0∈[lc0,p̃0]

T (p̂0).

Lemma A.15 implies that it is only weakly optimal for the intermediary employing agent p̃0 to let him

go until T̄1. It implies that

lt = lT (p̃0) and A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
= rV

for t ∈ [T (p̃0), T̄1]. For t > T̄ no type of agent [lc0, p̃0] remains with the intermediary. If P(τ > T ) = 0,

then the independence of never a weak best response implies that lT = 1. If P(τ > T ) > 0, then belief

consistency requirement implies that lT̄ ≥ p̃0. Lemma A.15 implies that lt ≥ p̃0 for every t ∈ [T (p̃0), T̄ ].

Define l̄(T ) = sup{p0 : T (p̃0) ≤ T}. Then, define

T̄2 = sup
p̂0∈[lc0,l̄(T̄1)]

T (p̂0).
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By construction, T̄2 ≥ T̄1. Continuing this construction by induction define T̄ = limn→∞ T̄n. Then for

t ∈ [T (p̃0), T̄ ] it must be the case that

lt = lT (p̃0) and A
(
Q̂(lt, t)

)
− wR

(
π(p̃0, t), π(lt, t)

)
= rV

Moreover, belief consistency requires that lT̄ > l̄(T̄ ) ≥ p̃0. Suppose that l̄(T̄ ) = p̃0. Then this is a

violation of belief consistency of clients. If l̄(T̄ ) > p̃0, then it implies that there is a positive belief jump

occurring at time T̄ . The global indifference of the intermediary implies that p̃0 type is better of waiting

until T̄ and separating then.

Lemma A.16 implies that there exists a weakly increasing process zt ∈ [p, p] such that the set of types

retained by time t are given by {p̃0 ≥ zt}.
Lemma A.17. [Uniqueness] Suppose V > 0. Then process (kt)t≥0, and the corresponding k0, pin down

the unique pure-strategy equilibrium.

Proof. The equilibrium monotonicity requirement implies that (lt)t≥0 is weakly increasing in t. A mono-

tone process can be decomposed into the unique sum of an absolutely continuous (lct ), a discrete (ldt , and

a continuous singular (lst ) weakly increasing processes

lt = lct + lst + ldt . (A.23)

The optimal termination time of the intermediary solves

sup
τ̂

Ep0

[∫ τ̂

0
e−rt

[
A
(
Q̂(lt, t)

)
dt− rV dt− dC̃t

]]
. (A.24)

On-path dynamics. The necessary optimality condition to let go of the agent of initial skill p0 is given

by

A
(
Q̂(lt, t)

)
dt− rV dt− dC̃t ≤ 0 ∀t ∈ support(τ). (A.25)

Substituting dC̃t from (A.21) into (A.25) it is easy to see that if process lt has a jump at time t, i.e.,

dldt > 0, then it is sub-optimal to let go of the agent in some neighborhood (t− ε, t). Similarly, if dlst > 0,

then (A.25) is not satisfied at time t, implying that it is sub-optimal to let go of the agent then. This

disciplines process (lt)t≥0 at times t ∈ support(τ).

Off-path dynamics. Lemma A.16 shows that the equilibrium features cutoff strategies. Denoting by

(zt)t≥0 to be the cutoff type, it implies that if agents of skill zt is let go, then all agents with skill p0 < zt is

let go as well by time t. As process zt is determined on- and off-path, if zt increases discontinuously, then

it implies that there is a positive mass of agents leaving the intermediary. Belief consistency implies that

lt− < lt, implying an on-path jump in process lt, leading to a contradiction with the optimal stopping
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condition (A.24). This implies that process zt cannot have jumps in equilibrium, leading to a continuous

process of beliefs (lt)t≥0.

If process (zt)t≥0 does not have jumps, it implies that the equilibrium is separating. Moreover, it implies

that along the equilibrium path zt = lt for every t ∈ support(τ), or, in other words, p̃τ = kτ . The fact

that the equilibrium is separating and that process (lt)t≥0 is continuous implies that p̃τ = kτ = π(lτ , τ).

The total mass of ex-ante types that separate from the intermediary is given by∫ ∞
0

1 {t ∈ τ} dF (lt) =

∫ ∞
0

∫
t ∈ τdF (lct + lst )

=

∫ ∞
0

1 {t ∈ τ} f(lct + lst ) dl
c
t +

∫ ∞
0

1 {t ∈ τ} f(lct + lst ) dl
s
t

=

∫ ∞
0

1 {t ∈ τ} f(lct + lst ) dl
c
t ≤

∫ ∞
0

f(lct + lst ) dl
c
t

(i)

≤
∫ ∞

0
f(lct + lst ) d(lct + lst ) = 1.

where inequality (i) is strict if dlst > 0 for any t such that f(lt) > 0. Intuitively, since no separation

occurs when dlst > 0 stemming from the optimality of the stopping condition, and implies that in the

separating equilibrium there is a positive mass of types that do not leave the intermediary, leading to a

contradiction.

Proof of Lemma 4 (equilibrium value V )

The intermediary’s equilibrium expected value satisfies

V = max

[
e−r∆ · E

[∫ τ

0
e−rt

(
A(Q(kt, t))− w(p̃t, kt)− rV

)
dt+ V

]
− I, 0

]
. (A.26)

Similar to earlier, denote by G(V ) the incremental value of the intermediary of retaining the current

agent

G(V )
def
= E

[∫ τ

0
e−rt

(
A(Q(kt, t))− w(p̃t, kt)− rV

)
dt

]
> 0,

where equilibrium processes k and q, as well as the stopping time τ depend on V .

Lemma A.18. The intermediary’s expected payoff G(V ) + V is weakly increasing in V .

Proof. Hold V fixed. Then kVt is increasing in V point-wise. Can prove this by contradiction. Need to

derive it from the general nature of the stopping rule. Hence qVt is increasing in V pointwise.

Rewrite (A.26) as

V = max
[
e−r∆ · (G(V ) + V )− I, 0

]
.
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The value of the continuation is  Vn = e−r∆ · (G(Vn−1) + Vn−1)− I,

Vn+1 = e−r∆ · (G(Vn) + Vn)− I.
(A.27)

The difference is

Vn+1 − Vn = e−r∆ · (G(Vn) + Vn −G(Vn−1)− Vn−1) ≥ 0.

This implies the sequence (Vn)n∈N is increasing in n and there exists a unique limit

V ∗ = lim
n→∞

Vn.

Taking limits of both sides of (A.27) and noting that G(V ) is a bounded, continuous function of V we

obtain

V ∗ = e−r∆ ·G(V ∗) + e−r∆ · V ∗ − I.

Lemma A.19. Employment gain G(V ) satisfies G′(0) = −
[
q0 + (1− q0) r

r+λ

]
.

Proof. For V = 0 the optimal stopping time τ = inf{Xt < µt}. By Envelope theorem with respect to

stopping time τ around V = 0 we have

G′(0) =
d

dV
E

[∫ τ

0
e−rt

(
A(qt)− w(p̃t, kt)− rV

)
dt

]∣∣∣∣
V=0

= −
∫ ∞

0

(
q0e
−rt + (1− q0)e−(r+λ)t

)
r dt = −r + λq0

r + λ
< 0.

Proof of Lemma 5 (comparative statics)

First, we show that if I or ∆ are sufficiently large, then V is increasing the initial quality of the average

agent E [p̃0] and decreasing in the skill of the worst agent initially employed p. The fixed point equation

is given by

V = max

[
e−r∆ · E

[∫ τ

0
e−rt

[
A(Q(kt, t))− w(p̃t, kt)− rV

]
dt+ V

]
− I, 0

]
.

If we have a corner solution, then the continuation value of the intermediary is 0. This implies her

expected profit is to employ the agent until he generates a bad return leading to

E

[∫ ∞
0

[
A
(
Q̂(p̃0, t)

)
− wR

(
π(p̃0, t), π(k0, t)

)]
dt

]
.

This expression is increasing in E [p̃0] and weakly decreasing in p as the intermediary decides which types

to let go.
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Suppose that V > 0. Then the fixed point equation (A.26) rewritten above can be expressed as

Ier∆ +
(
er∆ − 1

)
V = E

[∫ τ

0
e−rt

[
A
(
Q(kt, t)

)
− w

(
p̃t, kt

)
− rV

]
dt

]
(A.28)

= E

[∫ τ

0
e−rt

[
A
(
Q(kt, t)

)
− w

(
p̃t, kt

)
− rV

]
· 1 {t /∈ T} dt

]
+ E

[∫ τ

0
e−rt

[
rV + w

(
p̃t, kt

)
−A

(
Q(kt, t)

)]∂2U(p̃t, kt)− ∂2U(kt, kt)

∂2U(kt, kt)
1 {t ∈ T} dt

]
= E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]

+ E

[∫ τ

t∗∧η
e−rt

[
A
(
Q(kt, t)

)
− w

(
p̃t, kt

)
− rV

]
· 1 {t /∈ T} dt

]
+ E

[∫ τ

t∗∧η
e−rt

[
rV + w

(
p̃t, kt

)
−A

(
Q(kt, t)

)]∂2U(p̃t, kt)− ∂2U(kt, kt)

∂2U(kt, kt)
1 {t ∈ T} dt

]
First, we show that the right hand side of (A.28) is negative if V is small

− rE

[∫ t∗∧η

0
e−rt dt

]
+ E

[∫ t∗∧η

0
e−rt dt

] [
∂1A

(
(π(q0, t)

)
∂1π(q0, t)− w

(
p̃t, π(k0, t)

)
− rV

]
+ E

[∫ τ

t∗∧η
e−rt

[
∂1A

(
Q(kt, t)

)
∂1Q(kt, t)∂V kt − ∂2w

(
p̃t, kt

)
∂V kt − r

]
· 1 {t /∈ T} dt

]
+ E

[∫ τ

t∗∧η
e−rt

[
r + ∂2w

(
p̃t, kt

)
∂V kt − ∂1A

(
Q(kt, t)

)
∂1Q(kt, t)∂V kt

]∂2U(p̃t, kt)− ∂2U(kt, kt)

∂2U(kt, kt)
1 {t ∈ T} dt

]
+ E

[∫ τ

t∗∧η
e−rt

[
rV + w

(
p̃t, kt

)
−A

(
Q(kt, t)

)]
· ∂V

[
∂2U(p̃t, kt)− ∂2U(kt, kt)

∂2U(kt, kt)

]
· 1 {t ∈ T} dt

]
Note that if V is sufficiently small, then t∗ is very large. In this case the only term is −r

∫ t∗∧η
0 e−rt dt

of higher order than o(V ). This implies that for V sufficiently low, the derivative of the right hand side

of (A.28) is negative, while the derivative of the left hand side is clearly positive. This implies that the

objective is decreasing in V .

Consider a Fréchét derivative as the distribution of private information F → F̂ such that k0 = k̂0 and

q0 < q̂0. Such a change affects all of the endogenous belief process dynamics. Then, by the similar

argument as before,53

E

[∫ τ

0
e−rt

[
A
(
Q(kt, t)

)
− w

(
p̃t, kt

)
− rV

]
dt

]
−E

[∫ τ

0
e−rt

[
A
(
Q(kt, t)

)
− w

(
p̃t, kt

)
− rV

]
dt

]
≈E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]
53All ≈ signs in the proof stand in for an equality with a lower order o(V ) term in V.
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−E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]

=E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q̂0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]

−E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]

=E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q̂0, t)
)
−A

(
(π(q0, t)

)]
dt

]
> 0.

This implies that if the Fréchét derivative in the direction of F̂ is positive. This implies that the right

hand side of (A.28) is increasing in the mean of E [p̃0], implying that a greater V is necessary to satisfy

(A.28). Similar argument carries over for a decrease in k0.

Note that

π(p̃0, t) =
p̃0

p̃0 + (1− p̃0)e−λt

∂2π(p̃0, t) =
λp̃0(1− p̃0)e−λt

p̃0 + (1− p̃0)e−λt

∂

∂λ
π(p̃0, t) =

tp̃0(1− p̃0)e−λt

p̃0 + (1− p̃0)e−λt
=
t

λ
∂2(p̃0, t).

If t∗ is sufficiently high, then the derivative of the right hand side of (A.28) with respect to λ is approxi-

mately

∂

∂λ
E

[∫ τ

0
e−rt

[
A
(
Q(kt, t)

)
− w

(
p̃t, kt

)
− rV

]
dt

]
≈ ∂

∂λ
E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]

=E

[∫ t∗∧η

0
e−rt

∂

∂λ

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]
0

=E

[∫ t∗∧η

0
e−rt

t

λ

∂

∂t

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
dt

]

=E

[∫ t∗∧η

0
e−rt

t

λ
d
[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]]

≈− E

[∫ t∗∧η

0

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
d

(
e−rt

t

λ

)]

=
1

λ
E

[∫ t∗∧η

0
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
(rt− 1) dt

]
. (A.29)
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=
1

λ
E

[∫ t∗∧1/r∧η

0
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
(rt− 1) dt

]
︸ ︷︷ ︸

(i)

+
1

λ
E

[∫ t∗∧η

t∗∧1/r∧η
e−rt

[
A
(

(π(q0, t)
)
− w

(
p̃t, π(k0, t)

)
− rV

]
(rt− 1) dt

]
︸ ︷︷ ︸

(ii)

.

If r is sufficiently low of λ is sufficiently high, then (A.29) is negative as the negative term in (i) is

significantly greater than the negative term in (ii) as in that case the profit wedge of the intermediary is

substantively lower.

Proof of Lemma 6 (imperfect competition among intermediaries)

As before, denote the intermediary’s expected value of employing type p̃ while the belief is k as

V (p̃, k) = Ep̃

[∫ τ

0
e−rt(A(qt)− w(p̃t, kt)) dt+ e−rτ · V

]
. (A.30)

Then upon finding multiple potential employers, the agent obtains his equilibrium value U(p̃, k), but also

extracts the value added from the family, V (p̃, k) − V , in the form of the sign-on bonus. This implies

that, in equilibrium, the agent’s expected value in each period must satisfy

U ζ(p̃t, kt) = ζ0 · U(p̃t, kt) + ζ1 · U ζ(p̃t, kt) + ζ2 ·
(
U ζ(p̃t, kt) + V (p̃t, kt)− V

)
. (A.31)

since the current employer makes take-it-or-leave-it offers to match the agent’s outside option. As before,

denote ζ = ζ2
1−ζ1 to be the probability of the agent meeting multiple firms conditional on not meeting just

one. We can rewrite the relation between the agent’s and the intermediary’s equilibrium expected values

as

(1− ζ1) · U ζ(p̃t, kt)− ζ0 · U(p̃t, kt) = ζ2 ·
(
U ζ(p̃t, kt) + V (p̃t, kt)− V

)
,

(1− ζ) ·
(
U ζ(p̃t, kt)− U(p̃t, kt)

)
= ζ ·

(
V (p̃t, kt)− V

)
. (A.32)

Lemma A.20. The necessary retention wage for the agent is

w̃ζ(p̃t, kt)
def
= ζ

(
(ρ− r)V (p̃t, kt) +A(Q(kt, t))− ρV

)
+ (1− ζ)

(
wR(p̃t, kt)− γ(kt, t)∂2U(p̃t, kt)

)
. (A.33)

Proof. Given belief processes (kt, qt)t≥0 the value of the intermediary from employing the agent of skill

p̃t is

rV (p̃t, kt) = A(Q(kt, t))− w̃ζt +
(
λkt(1− kt) + γ(kt, t)

)
· ∂2V (p̃t, kt)

+λp̃t(1− p̃t) · ∂1V (p̃t, kt) + λ(1− p̃t)
(
V − V (p̃t, kt)

)
.

(A.34)
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Given wage process w̃t the equilibrium payoff of the agent is given by U1(p̃t, kt)

ρU ζ(p̃t, kt) = w̃ζt +
(
λkt(1− kt) + γt

)
· ∂2U

ζ(p̃t, kt)

+ λp̃t(1− p̃t) · ∂1U
ζ(p̃t, kt) + λ(1− p̃t)

(
L− U ζ(p̃t, kt)

)
.

(A.35)

The payoff to the agent from opening his own firm is given by U(p̃t, kt) and is described by Lemma 1.

Together with (A.35) this implies

ρ
(
U ζ(p̃t, kt)− U(p̃t, kt)

)
= w̃ζt − wR(p̃t, kt) +

(
λkt(1− kt) + γ(kt, t)

)(
∂2U

ζ(p̃t, kt)− ∂2U(p̃t, kt)
)

+ γ(kt, t)∂2U(p̃t, kt) + λp̃t(1− p̃t)
(
∂1U

ζ(p̃t, kt)− ∂1U(p̃t, kt)
)

− λ(1− p̃t)
(
U ζ(p̃t, kt)− U(p̃t, kt)

)
.

Substituting (A.32) into the equation above obtain

ζ

1− ζ
· ρ
(
V (p̃t, kt)− V

)
= w̃ζt − wR(p̃t, kt) +

ζ

1− ζ
(
λkt(1− kt) + γ(kt, t)

)
· ∂2V (p̃t, kt)

+ γ(kt, t) · ∂2U(p̃t, kt) +
ζ

1− ζ
λp̃t(1− p̃t) · ∂1V (p̃t, kt)

+
ζ

1− ζ
λ(1− p̃t)

(
V − V (p̃t, kt)

)
.

(A.36)

Multiply (A.34) by ζ
1−ζ and subtract from (A.36)

ζ

1− ζ
·
(
ρ
(
V (p̃t, kt)− V

)
− rV (p̃t, kt)

)
= w̃ζt − wR(p̃t, kt) + γ(kt, t) · ∂2U(p̃t, kt)

− ζ

1− ζ

(
A(Q(kt, t))− w̃ζt

)
.

Simplifying terms obtain

ζ

1− ζ

(
(ρ− r)V (p̃t, kt)− ρV

)
=

1

1− ζ
w̃ζt − wR(p̃t, kt) + γ(kt, t) · ∂2U(p̃t, kt)−

ζ

1− ζ
A(Q(kt, t))

ζ
(

(ρ− r)V (p̃t, kt)− ρV
)

= w̃ζt − (1− ζ)
(
wR(p̃t, kt) + γ(kt, t) · ∂2U(p̃t, kt)

)
− ζA(Q(kt, t)).

This results in

w̃ζt = ζ ·
(

(ρ− r)V (p̃t, kt) +A(Q(kt, t))− ρV
)

+ (1− ζ) ·
(
wR(p̃t, kt)− γ(kt, t) · ∂2U(p̃t, kt)

)
. (A.37)

The wage is the convex combination of the profit flow of the family and the opportunity cost of the agent

in staying with the mutual fund.

The intermediary’s profit wedge is equal to her opportunity cost when she lets go of the agent at time τ .

This implies

A(Q(kτ , τ))− wζ(kτ , kτ ) = rV, (A.38)

A(Q(kτ , τ))− ζ
(
A(Q(kτ , τ))− rV

)
− (1− ζ)

(
wR(p̃t, kt)− γ(kt, t)∂2U(p̃t, kt)

)
= rV,
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A(Q(kτ , τ))− rV − wR(p̃τ , kτ ) + γ(kt, t)∂2U(p̃τ , kτ ) = 0.

The equilibrium churning rate γ(kt, t) is, then, given by

γ(kt, t) =
rV + wR(kt, kt)−A(Q(kt, t))

∂2U(p̃t, kt)

for t ∈ T. For a given equilibrium value of V , coincides with the rate of separation obtained in (17).

Belief process k = (kt)t≥0 does not depend on the agent’s bargaining power α given the intermediary’s

expected value V . Can express

U ζ (p̃0, k0) = Ep̃0

[∫ τ

0
e−ρtw̃ζt dt+ e−ρτ · U(kτ , kτ )

]
,

U (p̃0, k0) = Ep̃0

[∫ τ

0
e−ρtw̃0

t dt+ e−ρτ · U(kτ , kτ )

]
.

Subtracting the two obtain

U ζ (p̃0, k0)− U (p̃0, k0) = Ep̃0

[∫ τ

0
e−ρt

(
w̃ζt − w̃0

t

)
dt

]
.

Suppose that ρ = r. Substituting the above and (A.30) into (A.32) obtain

(1− ζ) · Ep̃0

[∫ τ

0
e−ρt

(
w̃ζt − w̃0

t

)
dt

]
= ζ · Ep̃0

[∫ τ

0
e−rt

(
A(Q(kt, t))− w̃ζt − rV

)
dt

]
,

Ep̃0

[∫ τ

0
e−ρt

(
w̃ζt − w̃0

t

)
dt

]
= ζ · Ep̃0

[∫ τ

0
e−rt

(
A(Q(kt, t))− w̃0

t − rV
)
dt

]
, (A.39)

The intermediary’s expected value is pinned down by

V = e−r∆E

[∫ τ

0
e−rt

(
A(Q(kt, t))− rV − w̃ζt

)
dt

]
+ e−r∆V − I

V = e−r∆ · (1− ζ) · E
[∫ τ

0
e−rt

(
A(Q(kt, t))− rV − w̃0

t

)
dt

]
+ e−r∆V − I

Rewrite the above expression as

1

1− ζ
·
(
er∆ · I +

(
er∆ − 1

)
· V ζ

)
= E

[∫ τ

0
e−rt

(
A(Q(kt, t)− rV ζ − w̃0

t

)
dt

]
. (A.40)

As we see, ζ magnifies the replacement cost faced by the intermediary.

Proof of Lemma 7 (signaling outside option Uβ(p, k))

Define β(p, k) the fee chosen by the agent of type p, given that the lowest agent in the support of the

distribution is of type k. Denote by U(p, p̂, β) the expected value to the agent who has expected skill p

but is perceived as skill p̂

U(p, p̂, β) = Ep

[∫ η

0
e−ρtβA(π(p̂, t)) dt+ e−ρη · L

]
= βU(p, p̂) +

λ

ρ+ λ
(1− β)(1− p)L.
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Denote by p̂(β, k) the inference made by clients about the agent’s ability when they observe discount β

and conjecture that the lowest type is k. Because higher skilled agents value reputation more, they may

be willing to accept a lower fee in exchange for higher reputation:

β(p, k) ∈ arg max
β̂

U
(
p, p̂(β̂, k), β̂

)
= arg max

β̂

[
β̂ · U

(
p, p̂(β̂, k)

)
+

λ

ρ+ λ
(1− β̂)(1− p)L

]
.

(A.41)

Taking the first order condition of (A.41) it must be the case that β(p, k) must satisfy

U(p, p̂(β(p, k), k))− λ

r + λ
(1− p)L+ β(p, k) · ∂2U (p, p̂(β(p, k), k)) · ∂1p̂(β(p, k), k) = 0. (A.42)

In a separating equilibrium belief consistency requires that p̂(β(p, k), k) = p. Differentiating this identify

with respect to p obtain ∂1p̂(β(p, k), k)) · ∂1β(p, k) = 1. Substituting into (A.43), obtain a first order

differential equation characterizing the equilibrium discount

∂1β(p, k) ·
(
U(p, p)− λ

ρ+ λ
(1− p)L

)
+ β(p, k) · ∂2U(p, p) = 0, (A.43)

∂1β(p, k)

β(p, k)
= − ∂2U(p, p)

U(p, p)− λ
ρ+λ(1− p)L

.

The lowest type p = k maximizes revenues, implying that β(k, k) = 1, for every k. Solving (A.43) for

β(p, k) obtain the result of Lemma 7 given by

β(p, k) = exp

[
−
∫ p

k

∂2U(x, x)

U(x, x)− λ
ρ+λ(1− p)L

dx

]
.

Proof of Lemma 8 (training incentives)

By direct computation obtain

∂

∂p

(
p̃t

π(p̃s, s− t)

)
=

∂

∂p

 p̃
p̃

p̃+(1−p̃)e−λ(s−t)


=

∂

∂p

(
p̃+ (1− p̃)e−λ(s−t)

)
= 1− e−λ(s−t).

Applying Envelope theorem with respect to stopping time τ ,

∂

∂p̃t
V (p̃t, kt) =

∂

∂p
Ep̃

[∫ τ

t
e−r(s−t) ·

[
A(qs)− wR(p̃s, ks)− rV

]
ds

]
=

∂

∂p
Ep=1

[∫ τ

t
e−r(s−t) ·

[
A(qs)− wR(p̃s, ks)− rV

] p̃t
p̃s
ds

]
=

∂

∂p
Ep=1

[∫ τ

t
e−r(s−t) ·

[
A(qs)− wR(p̃s, ks)− rV

] p̃t
p̃s
ds

]
= Ep=1

[∫ τ

t
e−r(s−t) ·

[
A(qs)− wR(p̃s, ks)− rV

](
1− e−λ(s−t)

)
ds

]

A.28



This implies that ∂
∂p̃t
V (kt, kt) = 0 since the τ = t.

Proof of Proposition 3 (equilibrium given signaling)

The agent’s expected value can be written as

Û(p, k) = β(p, k) · Û(p, p) +
λ

ρ+ λ
(1− β(p, k))(1− p)L.

Define the wage necessary for the agent to delay signaling w(p, k) as

ρÛ(p, k) = wS(p, k) + λp(1− p) · ∂1Û(p, k) + λ(1− p)(L− Û(p, k)) + (λk(1− k) + γ) · ∂2Û(p, k).

Rearranging terms obtain

wS(p, k) = ρÛ(p, k)− λp(1− p)∂1Û(p, k) + λ(1− p)(Û(p, k)− L)− (λk(1− k) + γ)∂2Û(p, k)

= ρ

(
β(p, k)U(p, p) +

λ

ρ+ λ
(1− β(p, k))(1− p)L

)
− λp(1− p)

(
β(p, k)∂1U(p, p)− λ

ρ+ λ
(1− β(p, k))L

)
+ λ(1− p)

(
β(p, k)U(p, p) +

λ

ρ+ λ
(1− β(p, k))(1− p)L− L

)
− (λk(1− k) + γ)∂2β(p, k)

(
U(p, p)− λ

ρ+ λ
(1− p)L

)
.

Note that

∂2β(p, k) = β(p, k) · ∂2U(k, k)

U(k, k)− λ
ρ+λ(1− k)L

.

Simplifying terms obtain

wS(p, k) = ρ

(
β(p, k)U(p, p) +

λ

ρ+ λ
(1− β(p, k))(1− p)L

)
− λp(1− p)

(
β(p, k)∂1U(p, p)− λ

ρ+ λ
(1− β(p, k))L

)
+ λ(1− p)

(
β(p, k)U(p, p) +

λ

ρ+ λ
(1− β(p, k))(1− p)L− L

)
− (λk(1− k) + γ)β(p, k)

(
U(p, p)− λ

ρ+ λ
(1− p)L

)
∂2U(k, k)

U(k, k)− λ
ρ+λ(1− k)L

Rearranging terms obtain

wS(p, k) = (ρ+ λ(1− p))
(
β(p, k)U(p, p) +

λ

ρ+ λ
(1− β(p, k))(1− p)L

)
− λp(1− p)

(
β(p, k)∂1U(p, p)− λ

ρ+ λ
(1− β(p, k))L

)
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− (λk(1− k) + γ)

(
β(p, k)U(p, p) + (1− β(p, k))

λ

ρ+ λ
(1− p)L

)
∂2U(k, k)

U(k, k)− λ
ρ+λ(1− k)L

− λ(1− p)L+ (λk(1− k) + γ) · λ

ρ+ λ
(1− p)L · ∂2U(k, k)

U(k, k)− λ
ρ+λ(1− k)L

Define

û1(p)
def
= u1(p), û0(p)

def
= u0(p)− λ

ρ+ λ
L.

Then can rewrite

wS(p, k) = (ρ+ λ(1− p))
(
β(p, k)

(
pû1(p) + (1− p)û0(p)

)
+

λ

ρ+ λ
(1− p)L

)
− λp(1− p)

(
β(p, k)

(
û1(p)− û0(p)

)
− λ

ρ+ λ
L

)
− (λk(1− k) + γ)β(p, k)

(
pû1(p) + (1− p)û0(p)

)kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

− λ(1− p)L

The terms containing L add up to

(ρ+ λ(1− p))(1− p)λL
ρ+ λ

+ λp(1− p) λL

ρ+ λ
− λ(1− p)L = 0.

This implies

wS(p, k) = (ρ+ λ(1− p))β(p, k)
(
pû1(p) + (1− p)û0(p)

)
− λp(1− p)β(p, k)

(
û1(p)− û0(p)

)
− (λk(1− k) + γ)β(p, k)

(
pû1(p) + (1− p)û0(p)

)kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Simplifying terms obtain

wS(p, k) = ρβ(p, k)
(
pû1(p) + (1− p)û0(p)

)
+ λ
(
p(1− p)− p(1− p)

)
β(p, k)û1(p) + λ

(
(1− p)2 + p(1− p)

)
β(p, k)û0(p)

− (λk(1− k) + γ)β(p, k)
(
pû1(p) + (1− p)û0(p)

)kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Simplifying terms obtain

wS(p, k) = ρβ(p, k)
(
pû1(p) + (1− p)û0(p)

)
+ λ(1− p)β(p, k)û0(p)

− (λk(1− k) + γ)β(p, k)
(
pû1(p) + (1− p)û0(p)

) ∂2U(k, k)

kû1(k) + (1− k)û0(k)

Lemma A.21. Suppose for every p ∈ [p, 1]

A′(p) ≥ A(1)−A(p)

1− p
·
ρ
λ

( ρ
λ + 1

)
ρ
λ + p

. (A.44)
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This condition satisfied if λ
ρ is sufficiently large. Then, the signaling reservation wage wS(p, k) is decreas-

ing in p.

Proof. Under the new notation can write

β(p, k) = exp

(
−
∫ p

k

pû′1(p) + (1− p)û′0(p)

pû1(p) + (1− p)û0(p)

)
.

By the envelope theorem

∂

∂p

[
β(p, k)(pû1(p) + (1− p)û0(p))

]
= β(p, k)(û′1(p)− û′0(p))

implying

∂1β(p, k) = −β(p, k)
pû′1(p) + (1− p)û′0(p)

pû1(p) + (1− p)û0(p)
.

Then

∂1wS(p, k) = ρβ(p, k)(û1(p)− û0(p))

+ λ(1− p)∂1β(p, k)û0(p) + λ(1− p)β(p, k)û′0(p)− λβ(p, k)û0(p)

− (λk(1− k) + γ)β(p, k)(û1(p)− û0(p))
∂2U(k, k)

kû1(k) + (1− k)û0(k)

Dividing both sides by β(p, k) obtain

∂1wS(p, k)

β(p, k)
= ρ(û1(p)− û0(p))

− λ(1− p)β(p, k)
pû′1(p) + (1− p)û′0(p)

pû1(p) + (1− p)û0(p)
û0(p) + λ(1− p)û′0(p)− λû0(p)

− (λk(1− k) + γ)(û1(p)− û0(p))
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Simplifying terms obtain

∂1wS(p, k)

β(p, k)
= ρû1(p)− (ρ+ λ)û0(p)

− λ(1− p)pû
′
1(p) + (1− p)û′0(p)

pû1(p) + (1− p)û0(p)
û0(p) + λ(1− p)û′0(p)

− (λk(1− k) + γ)(û1(p)− û0(p))
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Simplifying terms obtain

∂1wS(p, k)

β(p, k)
= ρû1(p)− (ρ+ λ)û0(p) + λp(1− p) û1(p)û′0(p)− û′1(p)û0(p)

pû1(p) + (1− p)û0(p)

− (λk(1− k) + γ)(û1(p)− û0(p))
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

(A.45)
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It is useful to express

ρû1(p) = A(p) + û′1(p)λp(1− p)

(ρ+ λ)û0(p) = A(p) + û′0(p)λp(1− p)
(A.46)

Substituting (A.46) into (A.45) obtain

∂1wS(p, k)

β(p, k)
= ρû1(p)− (ρ+ λ)û0(p) +

û1(p)
(

(ρ+ λ)û0(p)−A(p)
)
−
(
ρû1(p)−A(p)

)
û0(p)

pû1(p) + (1− p)û0(p)

− (λk(1− k) + γ)(û1(p)− û0(p))
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Rearranging terms obtain

∂1wS(p, k)

β(p, k)
= ρû1(p)− (ρ+ λ)û0(p) +

û1(p)(λû0(p)−A(p)) +A(p)û0(p)

pû1(p) + (1− p)û0(p)

− (λk(1− k) + γ)(û1(p)− û0(p))
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Simplifying terms

∂1wS(p, k)

β(p, k)
= ρ(û1(p)− û0(p))− λû0(p) +

λû1(p)û0(p)−A(p)(û1(p)− û0(p))

pû1(p) + (1− p)û0(p)

− (λk(1− k) + γ)(û1(p)− û0(p))
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Simplifying terms

∂1wS(p, k)

β(p, k)
= ρ(û1(p)− û0(p)) +

λ(1− p)û0(p)(û1(p)− û0(p))−A(p)(û1(p)− û0(p))

pû1(p) + (1− p)û0(p)

− (λk(1− k) + γ)(û1(p)− û0(p))
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Dividing both sides by û1(p)− û0(p) > 0 obtain

∂1wS(p, k)

β(p, k)(û1(p)− û0(p))
= ρ+

λ(1− p)û0(p)−A(p)

pû1(p) + (1− p)û0(p)
− (λk(1− k) + γ)

kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Simplifying terms obtain

∂1wS(p, k)

β(p, k)(û1(p)− û0(p))
=
pρû1(p) + (1− p)(ρ+ λ)û0(p)−A(p)

pû1(p) + (1− p)û0(p)

− (λk(1− k) + γ)
kû′1(k) + (1− k)û′0(k)

kû1(k) + (1− k)û0(k)

Set γ = 0. Then use a similar calculation as before to obtain

∂1wS(p, k)

β(p, k)(û1(p)− û0(p))
≤ p · ρû1(p) + (1− p) · (ρ+ λ)û0(p)−A(p)

pû1(p) + (1− p)û0(p)

− k · ρû1(k) + (1− k) · (ρ+ λ)û0(k)−A(k)

kû1(k) + (1− k)û0(k)
.
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Define an auxiliary function

g(p)
def
=

p · ρû1(p) + (1− p) · (ρ+ λ)û0(p)−A(p)

pû1(p) + (1− p)û0(p)
. (A.47)

The goal is to show that g′(p) ≤ 0. Then

g′(p) =
ρû1(p) + pρû′1(p)− (ρ+ λ)û0(p) + (ρ+ λ)(1− p)û′0(p)−A′(p)

pû1(p) + (1− p)û0(p)

−

(
p · ρû1(p) + (1− p) · (ρ+ λ)û0(p)−A(p)

)(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
(pû1(p) + (1− p)û0(p))2

.

Multiplying by the common denominator(
ρû1(p) + pρû′1(p)− (ρ+ λ)û0(p) + (ρ+ λ)(1− p)û′0(p)−A′(p)

)(
pû1(p) + (1− p)û0(p)

)
−
(
pρû1(p) + (1− p)(ρ+ λ)û0(p)−A(p)

)(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
=
(
ρû1(p) + pρû′1(p)− (ρ+ λ)û0(p) + (ρ+ λ)(1− p)û′0(p)−A′(p)

)(
pû1(p) + (1− p)û0(p)

)
−ρ
(
pû1(p) + (1− p)û0(p)

)(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
−
(

(1− p)λû0(p)−A(p)
)(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
=
(
−λû0(p) + λ(1− p)û′0(p)−A′(p)

)(
pû1(p) + (1− p)û0(p)

)
−
(
λ(1− p)û0(p)−A(p)

)(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
Splitting terms obtain (

−λû0(p) + λ(1− p)û′0(p)−A′(p)
)
pû1(p)

+
(
−λû0(p) + λ(1− p)û′0(p)−A′(p)

)
(1− p)û0(p)

−λ(1− p)û0(p)
(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
+A(p)

(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
Simplifying terms obtain(

−λû0(p) + λ(1− p)û′0(p)−A′(p)
)
pû1(p)−A′(p)(1− p)û0(p)

−λ(1− p)û0(p)
(
û1(p) + pû′1(p)

)
+A(p)

(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
Simplifying terms further obtain

− λû1(p)û0(p)−A′(p)
(
pû1(p) + (1− p)û0(p)

)
+ λp(1− p)

(
û1(p)û′0(p)− û′1(p)û0(p)

)
+A(p)

(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
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Substituting (A.46) into the above equation obtain

− λû1(p)û0(p)−A′(p)
(
pû1(p) + (1− p)û0(p)

)
+ û1(p)

(
(ρ+ λ)û0(p)−A(p)

)
−
(
ρû1(p)−A(p)

)
û0(p)

+A(p)
(
û1(p)− û0(p) + pû′1(p) + (1− p)û′0(p)

)
Simplifying terms obtain

−A′(p)
(
pû1(p) + (1− p)û0(p)

)
+A(p)

(
pû′1(p) + (1− p)û′0(p)

)
=p
(
A(p)û′1(p)−A′(p)û1(p)

)
+ (1− p)

(
A(p)û′0(p)−A′(p)û0(p)

)
Using (A.46), can write

A(p)û′1(p)−A′(p)û1(p) = A(p)
ρû1(p)−A(p)

λp(1− p)
−A′(p)û1(p) ≤ A(p)

A(1)−A(p)

λp(1− p)
−A′(p)A(p)

ρ

A(p)û′0(p)−A′(p)û0(p) = A(p)
(ρ+ λ)û0(p)−A(p)

λp(1− p)
−A′(p)û0(p) ≤ A(p)

A(1)−A(p)

λp(1− p)
−A′(p) A(p)

ρ+ λ

This implies

p
(
A(p)û′1(p)−A′(p)û1(p)

)
+ (1− p)

(
A(p)û′0(p)−A′(p)û0(p)

)
≤A(p)p

(
A(1)−A(p)

λp(1− p)
− A′(p)

ρ

)
+A(p)(1− p)

(
A(1)−A(p)

λp(1− p)
− A′(p)

ρ+ λ

)
=
A(1)−A(p)

λp(1− p)
−A′(p) ρ+ λp

ρ(ρ+ λ)

The sufficient condition for this to be negative is

A′(p) ≥ A(1)−A(p)

1− p
· ρ(ρ+ λ)

λ(ρ+ λp)
=
A(1)−A(p)

1− p
·
ρ
λ

( ρ
λ + 1

)
ρ
λ + p

.

Remark 1. Note that wS(p, k) is decreasing in p. This implies that, even though there is no churning,

higher skilled agents are paid less than lower skilled agents. Specifically, it implies that wS(p, k) < wR(p, k)

for t /∈ T. This may seem like a contradiction with the fact that additional bargaining power increases

the equilibrium value of the agent. What occurs is that the higher skilled agent is willing to pay more for

information from the performance process X, before signaling his ability, but less for reputation building

γ. The net effect makes the agent better of in equilibrium.
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Proof of Lemma 9 (agent’s outside option under Brownian signals)

Suppose the leaves the family and investors assume that µ = kt. Based on (A.51), the posterior of

investors for s ≥ t is given by (26) rewritten here as

kt,s = E [ θ |Xs −Xt, kt] = (φt+ 1)

(
φ

φs+ 1
· (Xs −Xt) +

1

φs+ 1
· kt
)
.

Suppose the agent leaves the intermediary at time t. Suppose the agent’s private belief is pt at the time

he leaves. We can write the agent’s expected utility at time t as

U(p̃t, kt, t) = sup
η̂

Ep̃t

[∫ η̂

t
e−ρ(s−t)A

(
φ(φt+ 1)

φs+ 1
· (Xs −Xt) +

φt+ 1

φs+ 1
· kt
)
ds+ e−ρ(η̂−t)L

]
(A.48)

where η̂ is the time when he leaves the industry. Denote by η∗ the optimal stopping time of the agent.

The agent’s continuation value at time s is a function of states (p̃s, kt,s, s). Also, note that the value of t

does not matter as the forward dynamics of kt,s do not depend on the initial t and are given by

dkt,s =
φ(φt+ 1)

φs+ 1
(dXs − kt,s ds).

The agent’s continuation value increases in p̃s, holding other variables constant. It implies that there

exists a boundary b(kt,s, s) such that

η∗ = inf{s ≥ 0 : p̃s ≤ b(kt,s, s)}.

Moreover, since the agent’s expected value is increasing in kt,s, then b(k, s) is decreasing in k for a given

s. By envelope theorem, the derivative (A.48) with respect to kt is

∂

∂kt
U(p̃t, kt, t) = Ep̃t

[∫ η∗

t
e−ρ(s−t) · φt+ 1

φs+ 1
·A′

(
φ(φt+ 1)

φs+ 1
· (Xs −Xt) +

φt+ 1

φs+ 1
· kt
)
ds

]
.

For p̂t > p̃t it is the case that η̂∗ > η∗ since Xt takes higher values with higher probability for p̂ > p̃. This

implies

∂

∂kt
U(p̂t, kt, t)−

∂

∂kt
U(p̃t, kt, t) = Ep̃t

[∫ η̂∗

η∗
e−ρ(s−t) φt+ 1

φs+ 1
A′
(
φ(φt+ 1)

φs+ 1
(Xs −Xt) +

φt+ 1

φs+ 1
kt

)
ds

]
> 0.

Proof of Lemma 10 (boundary B(p, t))

Consider the following optimal stopping problem of the intermediary

sup
τ̂

Ep̃0

[∫ τ̂

0
e−rt

(
A
(
Q (p̃t, t,Xt)

)
− wR

(
p̃t, p̃t, t

)
− rV

)
dt+ V

]
.
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It is convenient to rewrite the above optimal stopping problem using explicit dependency on past perfor-

mance

sup
τ̂

Ep̃0

[∫ τ̂

0
e−rt

[
A
(
Q̂(p̃0, t,Xt)

)
− wR

(
Π(p̃0, t,Xt),Π(p̃0, t,Xt), t

)]
dt+ e−rτ̂ · V

]
.

Holding p̃0 fixed, this is an optimal stopping problem with (Xt, t) being the relevant state variables. It is

not immediately clear that an optimal stopping time τ exists and, if it does, how it is characterized.

Lemma A.22. The optimal stopping rule is given by a boundary B̂(p̃0, s) such that

τ = inf{s : Xs ≤ B̂(p̃0, s)}.

Proof. Fix p̃0. Define T (T, n) take values in
{

1
n ,

2
n , . . . ,

T ·n
n

}
. Consider the finite horizon problem

V T
n (p̃0, 0, X0) = sup

τ̂
Eµ

[∫ τ̂

0
e−rt

[
A
(
Q
(

Π(p̃0, t,Xt), t,Xt

))
− wR

(
Π(p̃0, t,Xt),Π(p̃0, t,Xt), t

)]
dt+ e−rτ̂V

]
This is a discrete time problem and, by backward induction, there exists τTn such that

V T
n (p̃0, 0, X0) = E

[∫ τTn

0
e−rt

[
A
(
Q
(

Π(p̃0, t,Xt), t,Xt

))
− wR

(
Π(p̃0, t,Xt),Π(p̃0, t,Xt), t

)]
dt+ e−rτ

T
n V

]
.

Stopping rule τTn is Markov in (Xt, t). Moreover, it is monotone in Xt, i.e., there exists boundary B̂T
n (p̃0, t)

such that

τTn = inf
{
t : Xt ≤ B̂T

n (p̃0, t)
}
.

The sequence V T
2n(p̃0, 0, X0) is increasing in n. This implies that there exists a limit

B̂T
2n(p̃0, t)

n→∞
↘ B̂T (p̃0, t).

Boundary B̂T (p̃0, t) and the corresponding stopping time τT satisfy

V T (p̃0, 0, X0)
def
= sup

τ̂≤T
Eµ

[∫ τ̂

0
e−rt

[
A
(
Q
(

Π(p̃0, t,Xt), t,Xt

))
− wR

(
Π(p̃0, t,Xt),Π(p̃0, t,Xt), t

)]
dt+ e−rτ̂V

]
= E

[∫ τT

0
e−rt

[
A
(
Q
(

Π(p̃0, t,Xt), t,Xt

))
− wR

(
Π(p̃0, t,Xt),Π(p̃0, t,Xt), t

)]
dt+ e−rτ

T
V

]
.

Functions V T (p̃0, t, k) are increasing in T . This implies there exists a limit

B̂T (p̃0, t)
T→∞
↘ B̂(p̃0, t).

The stopping time τ corresponding to B̂(p̃0, t) satisfies

V (p̃0, 0, X)
def
= sup

τ̂
Ep̃0

[∫ τ̂

0
e−rt

[
A
(
Q̂(p̃0, t,Xt)

)
− wR

(
Π(p̃0, t,Xt),Π(p̃0, t,Xt), t

)]
dt+ e−rτ̂V

]
= Ep̃0

[∫ τ

0
e−rt

[
A
(
Q̂(p̃0, t,Xt)

)
− wR

(
Π(p̃0, t,Xt),Π(p̃0, t,Xt), t

)]
dt+ e−rτV

]
.
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Lemma A.23. Suppose F (·) has a log-concave density function f(·). Then there exists a boundary

B(kt, t) such that

Xt < B̂(p̃0, t) ⇔ Xt < B(Π(p̃0, t,Xt), t). (A.49)

Proof. By definition, Π(p̃0, t,Xt) = φ
φt+1Xt + 1

φt+1 p̃0. Inverting this mapping,

p̃0 = (φt+ 1)Π(p̃0, t,Xt)− φXt.

Then need to show that

Xt < B̂
(

(φt+ 1)Π(p̃0, t,Xt)− φXt, t
)
.

In order to establish (A.49), it is sufficient to prove that ∂1B̂(p̃0, t) ≥ − 1
φ . Consider ε > 0. Log-concavity

of f(·) ensures that
∂

∂k0

[
E [p̃0|p̃0 − k0]− k0

]
< 0.

Moreover, this property is preserved conditional on learning from the Brownian performance process Xt.

It, further, implies that

Q

(
Π

(
p̃0 + ε, t,Xt −

ε

φ

)
, t,Xt −

ε

φ

)
= E

[
θ | p̃0 > p̃0 + ε,Xt −

ε

φ

]
=

φ

φt+ 1

(
Xt −

ε

φ

)
+

1

φt+ 1
E [p̃0|p̃0 > p̃0 + ε]

=
φ

φt+ 1
Xt +

1

φt+ 1

(
E [p̃0|p̃0 > p̃0 + ε]− ε

)
< Q (Π (p̃0, t,Xt) , t,Xt) .

If we rewrite it via Q̂(l, t,Xt)
def
= Q(Π(l, t,Xt), t,Xt) then

Q̂(p̃0 + ε, t,Xt − ε/φ) < Q̂(p̃0, t,Xt). (A.50)

This implies that

V

(
p̃0+ε,0,X0−

ε

φ

)
=sup

τ̂
Ep̃0

[∫ τ̂

0
e−rt

[
A

(
Q̂

(
p̃0+ε,t,Xt−

ε

φ

))
−wR

(
Π

(
p̃0+ε,t,Xt−

ε

φ

)
,Π

(
p̃0+ε,t,Xt−

ε

φ

)
,t

)]
dt+e−rτ̂V

]

=sup
τ̂

Ep̃0

[∫ τ̂

0
e−rt

[
A

(
Q̂

(
p̃0+ε,t,Xt−

ε

φ

))
−wR

(
Π(p̃0,t,Xt),Π(p̃0,t,Xt),t

)]
dt+e−rτ̂V

]
≤sup

τ̂
Ep̃0

[∫ τ̂

0
e−rt

[
A
(
Q̂(p̃0,t,Xt)

)
−wR

(
Π(p̃0,t,Xt),Π(p̃0,t,Xt),t

)]
dt+e−rτ̂V

]
≤V (p̃0,0,X0).
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This implies that V (p̃0, 0, X0) ≥ V (p̃0 + ε, 0, X0 − ε/φ). It implies that

B̂(p̃0 + ε, 0) > B̂(p̃0, 0)− ε

φ
,

B̂(p̃0 + ε, 0)− B̂(p̃0, 0)

ε
> − 1

φ
⇒ ∂1B̂(p̃0, 0) > − 1

φ
.

The same logic follows through unchanged for t > 0. This implies that function x − B̂((φt + 1)y − x, t)
is an increasing function in x. Thus, there exists a root B(y, t) to the equation

B(y, t) = B̂
(
(φt+ 1)y −B(y, t), t

)
⇒

{
x ≤ B̂

(
(φt+ 1)y − x, t

)}
=
{
x ≤ B(y, t)

}
.

This concludes the proof.

Lemma A.24. The posterior belief conditional on µ = µ0 and the performance history (Xs)s≤t is given

by

p̃t = Et [θ | (Xs)s≤t, p̃0] =
φ

φt+ 1
·Xt +

1

φt+ 1
· p̃0. (A.51)

The posterior variance is given by

Σt = Et

[
(θ − p̃t)2

]
=

σ2
θσ

2

σ2
θt+ σ2

=
σ2φ

φt+ 1
. (A.52)

Proof. The proof if an application of the Kalman filter

Et [θ | (Xs)s≤t, p̃0] = Et [p̃0 + θ − p̃0 | (Xs)s≤t] = Et [p̃0 + θ − p̃0 |Xt]

= p̃0 +
cov(p̃0 + θ − p̃0, Xt)

var(Xt)
· (Xt − p̃0t) = p̃0 +

σ2
θ · t

σθt2 + σ2t
· (Xt − p̃0t)

= p̃0 +
φ

φt+ 1
· (Xt − p̃0t) =

1

φt+ 1
· p̃0 +

φ

φt+ 1
·Xt.

Rewrite (A.52) as

E
[
(θ − p̃t)2

]
= E

[(
θ − φ

φt+ 1

(
p̃0t+ (θ − p̃0)t+ σBt

)
− 1

φt+ 1
p̃0

)2
]

= E

[(
θ − p̃0 −

φ

φt+ 1

(
(θ − p̃0)t+ σBt

))2
]

= E

[(
1

φt+ 1
(θ − p̃0)− φ

φt+ 1
σBt

)2
]

=
φσ2

(φt+ 1)2
+

φ2tσ2

(φt+ 1)2
=

σ2φ

φt+ 1
.

Lemma A.25. The posterior average conditional on p̃0 > l after a performance history (Xs)s≤t is given
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by a function Q̂(l, t,Xt)

Q̂(l, t,Xt)
def
= Et [θ | (Xs)s≤t, µ ≥ k] = Et [θ |Xt, p̃0 ≥ l]

=
φ

φt+ 1
Xt +

1

φt+ 1
Et [p̃0 |Xt, p̃0 ≥ l]

(A.53)

Moreover, ∂
∂xQ̂(l, t, x) > φ

φt+1 .

Proof. The sufficient condition result is given by

E
[
θ
∣∣∣ (Xs)s≤t, p̃0 ≥ l

]
= E

[
E
[
θ
∣∣∣ (Xs)s≤t, p̃0

] ∣∣∣ (Xs)s≤t, p̃0 ≥ l
]

= E
[

E
[
µ+ ξ

∣∣∣ (Xs)s≤t, p̃0

] ∣∣∣ (Xs)s≤t, p̃0 ≥ l
]

= E
[

E
[
p̃0 + θ − p̃0

∣∣∣Xt, p̃0

] ∣∣∣ (Xs)s≤t, p̃0 ≥ l
]

= E

[
1

φt+ 1
p̃0 +

φ

φt+ 1
Xt

∣∣∣∣ (Xs)s≤t, p̃0 ≥ l
]

=
φ

φt+ 1
Xt +

1

φt+ 1
· E
[
p̃0

∣∣∣ (Xs)s≤t, p̃0 ≥ l
]

=
φ

φt+ 1
Xt +

1

φt+ 1
E

[
p̃0

∣∣∣Xt,
(
Xs −

s

t
Xt

)
s≤t

, p̃0 ≥ l
]

=
φ

φt+ 1
Xt +

1

φt+ 1
E

[
p̃0

∣∣∣Xt,
(
Bs −

s

t
Bt

)
s≤t

, p̃0 ≥ l
]

(i)
=

φ

φt+ 1
Xt +

1

φt+ 1
E
[
p̃0

∣∣∣Xt, p̃0 ≥ l
]

where (i) follows from Xt being independent from Bs − s
t ·Bt. This holds because

– Conditional on µ, Xt is uncorrelated with Bs − s
t ·Bt

cov
[
Xt, Bs −

s

t
Bt

∣∣∣p̃0

]
= E

[
σBt

(
Bs −

s

t
Bt

)]
= σs− σs

t
t = 0.

– Both Xt and Bs − s
tBt are normal, conditional on p̃0. This implies that Xt and Bs − s

tBt are

independent, conditional on p̃0.

– Since p̃0 is independent from (Bs)s≤t we can write

P
(
Xt ≤ x1, Bs −

s

t
Bt ≤ x2

)
= E

[
P
(
Xt ≤ x1, Bs −

s

t
Bt ≤ x2

∣∣∣µ)]
= E

[
P(Xt ≤ x1 |µ) · P

(
Bs −

s

t
Bt ≤ x2

∣∣∣µ)]
= E

[
P(Xt ≤ x1 |µ) · P

(
Bs −

s

t
Bt ≤ x2

)]
= E [P(Xt ≤ x1 |µ)] · P

(
Bs −

s

t
Bt ≤ x2

)
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= P(Xt ≤ x1) · P
(
Bs −

s

t
Bt ≤ x2

)
.

This proves that Xt is a sufficient statistic of returns. Following the definition of q(l, t,Xt), we have

q(l, t,Xt) =
φ

φt+ 1
Xt +

1

φt+ 1
E
[
p̃0

∣∣Xt, p̃0 ≥ l
]
.

The second part of the Lemma is to show that E
[
p̃0

∣∣∣Xt = x, p̃0 ≥ l
]

is increasing in x for fixed t and k.

The conditional density of p̃0 is given by

P(p̃0 = y |Xt = x, p̃0 ≥ l) =
P(p̃0 = y,Xt = x, p̃0 ≥ l)

P(Xt = x, p̃0 ≥ l)
=

P(p̃0 = y, σBt = (x− yt))∫∞
l P(p̃0 = z, σBt = (x− zt)) dz

=

1√
2πt
e−

(x−yt)2
2t · P(µ = y)∫∞

l
1√
2πt
e−

(x−yt)2
2t · f(z) dz

=
e

2xyt−(yt)2

2σ2t · f(y)∫∞
l e

2xzt−(zt)2

2σ2t · f(z) dz

.

The cumulative distribution of p̃0, conditional on Xt = x and p̃0 > l is given by

P(p̃0 ≤ y |Xt = x, p̃0 ≥ l) =

∫ y
l e

2xzt−(yt)2

2σ2t · f(z) dz∫∞
l e

2xzt−(zt)2

2σ2t · f(z) dz

.

The derivative with respect to x is given by

∂

∂x
P
(
p̃0≤y

∣∣∣Xt=x,p̃0≥ l
)

=

∫ y
k
z1
σ2 e

2xz1t−(yt)2

2σ2t f(z1)dz1∫∞
k e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

−

(∫ y
k e

2xz1t−(yt)2

2σ2t f(z1)dz1

)(∫∞
k

z2
σ2 e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)
(∫∞

k e
2xz2t−(z2t)

2

2σ2t f(z2)dz2

)2 =

(∫ y
k
z1
σ2 e

2xz1t−(yt)2

2σ2t f(z1)dz1

)(∫∞
k e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)
−
(∫ y

k e
2xz1t−(yt)2

2σ2t f(z1)dz1

)(∫∞
k

z2
σ2 e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)
(∫∞

k e
2xz2t−(z2t)

2

2σ2t f(z2)dz2

)2 =

(∫∞
k e

2xz1t−(yt)2

2σ2t f(z1)dz1

)(∫ y
k
z2
σ2 e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)
−
(∫ y

k e
2xz1t−(yt)2

2σ2t f(z1)dz1

)(∫∞
k

z2
σ2 e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)
(∫∞

k e
2xz2t−(z2t)

2

2σ2t f(z2)dz2

)2 =

(∫∞
y e

2xz1t−(yt)2

2σ2t f(z1)dz1

)(∫ y
k
z2
σ2 e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)
−
(∫ y

k e
2xz1t−(yt)2

2σ2t f(z1)dz1

)(∫∞
y

z2
σ2 e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)
(∫∞

k e
2xz2t−(z2t)

2

2σ2t f(z2)dz2

)2 =

∫∞
y

∫ y
k
z2−z1

2 e
2xz1t−(yt)2

2σ2t e
2xz2t−(yt)2

2σ2t f(z1)f(z2)dz1dz2(∫∞
k e

2xz2t−(z2t)
2

2σ2t f(z2)dz2

)2 <0
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where the last inequality holds since z2 ≤ y ≤ z1. This implies

Law(p̃0 |Xt = x1, p̃0 ≥ l)
FOSD
< Law(p̃0 |Xt = x2, p̃0 ≥ l)

for any x1 < x2. This implies that

∂

∂x
Et [p̃0 |Xt = x, p̃0 ≥ l] > 0

and it follows that
∂

∂x
Q̂(l, t, x) >

φ

φt+ 1
.

Proof of Proposition 4 (equilibrium verification given Brownian signals)

Define by T(p̃0, l, t) to be the boundary at which the intermediary lets go of agent p0 given the market

perception of l. Formally, it is the optimal non-stationary boundary of the optimal stopping problem

V (p̃0, l, t,Xt) = sup
τ̂

Ep̃0

[∫ τ̂−t

t
e−r(s−t)

[
A
(
Q̂ (l, s,Xs)

)
− wR

(
Π(p̃0, s,Xs),Π(l, s,Xs), s

)
− rV

]
ds+ V

]
Lemma A.26. Boundary T(p̃0, l, t) is weakly decreasing in p0 and T(l, l, t) ≡ B̂(l, t).

Proof. Application of the Envelope theorem with respect to p0 shows that V (p̃0, l, t,Xt) is weakly in-

creasing in p0 leading to the optimal stopping boundary T(p̃0, l, t) to be weakly decreasing.

Lemma A.27. Suppose that process (lt)t≥0 is a weakly increasing. Moreover, suppose that dlt > 0 if and

only if Xt ≤ T (p̃0, lt, t)
54 Then

V (p̃0,lt,t,Xt)=Ep̃0

[∫ ∞
t
e−r(s−t)

[
A
(
Q̂(ls,s,Xs)

)
−wR

(
Π(p̃0,s,Xs),Π(ls,s,Xs),s

)
−rV

]
1{Xs≥T(p̃0,ls,s)}ds+V

]
Proof. Using Ito’s lemma for Xt > T (p̃0, lt, t) since dlt = 0 we have

rV (p̃0, lt, t,Xt) = A
(
Q̂
(
lt, t,Xt

))
− wR

(
Π(p̃0, t,Xt),Π(lt, t,Xt), t

)
+
∂

∂t
V (p̃0, lt, t,Xt) + Π(p̃0, t,Xt) ·

∂

∂x
V (p̃0, lt, t,Xt) +

σ2

2

∂2

∂x2
V (p̃0, lt, t,Xt).

For Xt ≤ T (p̃0, lt, t) we have V (p̃0, lt, t,Xt) = V , which can also be written (in differential form in case

dlt is non-differentiable due to a discrete or singular component)

rV (p̃0, lt, t,Xt) dt = rV dt+
∂

∂t
V (p̃0, lt, t,Xt) dt+ Π(p̃0, lt, t,Xt) ·

∂

∂x
V (p̃0, lt, t,Xt) dt

+
σ2

2

∂2

∂x2
V (p̃0, lt, t,Xt)dt+

∂

∂l
V (p̃0, lt, t,Xt) dlt.

54In particular, it implies that Xt ≤ T (p̃0, l, t) for any l ∈ [lt−, lt].
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where it does not matter if dlt has a discrete jump or not as long as it is self-contained in the churning

set. It is without loss to prove the result for t = 0. Define process (Zt)t≥0 as

Zt
def
=

∫ t

0
e−rs

[
A
(
Q̂
(
ls, s,Xs

))
− wR

(
Π(p̃0, s,Xs),Π(ls, s,Xs), s

)]
1 {Xs ≥ T (p̃0, ls, s)} ds

+

∫ t

0
e−rsrV · 1 {Xs < T (p̃0, ls, s)} ds+ e−rtV (p̃0, lt, t,Xt).

Using the Ito decomposition for V (p̃0, lt, t,Xt) obtained earlier, we see that process (Zt)t≥0 is a martingale.

Thus

V (p̃0, l0, 0, X0) = Z0 = E [Z∞] ,

which proves that the intermediary is indifferent between stopping and continuing in her stopping region

as long as she obtains her opportunity cost rV in that region. This argument follows through almost

unchanged for every starting value t > 0.

Lemma A.27 establishes that the intermediary is willing to retain the agent of skill p0 in period t given

performance Xt as long as the stream of revenues weakly exceeds

s(p̃0, lt, t,Xt)
def
=

A
(
Q̂(lt, t,Xt)

)
− wR

(
Π(p̃0, t,Xt),Π(lt, t,Xt), t

)
if Xt ≥ T(p̃0, lt, t),

rV if Xt < T(p̃0, lt, t).
(A.54)

Lemma A.28. Denote by St to be the flow profit of the intermediary employing agent p0. Suppose there

exists a time τ such that

St −
∫ s

0
s(p̃0, ls, s,Xs) ds

is weakly increasing for t ≤ τ and weakly decreasing for t > τ . Then the intermediary (weakly) prefers to

let go of the agent and collect her outside option at time τ .

Proof. It is without loss to prove the result for t = 0. Define process (V̂t)t≥0 as

Zt =

∫ t

0
e−rs

[
A
(
Q̂
(
ls, s,Xs

))
− wR

(
Π(p̃0, s,Xs),Π(ls, s,Xs), s

)]
1 {Xs ≥ T(p̃0, ls, s)} ds

+

∫ t

0
e−rsrV · 1 {Xs < B(p̃0, ls, s)} ds+ e−rtV (lt, p̃0, t,Xt).

Given a stopping time τ , both t ∨ τ and t ∧ τ are also well-defined stopping times. By Ito’s lemma it

implies that for any stopping time τ̂

- process Z(t∨τ)∧τ̂ is a super-martingale;

- process Zt∧τ∧τ̂ is a sub-martingale.

This implies

E [Zτ̂ ] = E [Zτ̂ · 1 {τ̂ ≥ τ}+ Zτ̂ · 1 {τ̂ < τ}]
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= E
[(
Zτ̂ · 1 {τ̂ ≥ τ}+ Zτ1 {τ̂ < τ}

)
+
(
Zτ̂ · 1 {τ̂ < τ}+ Zτ1 {τ̂ ≥ τ}

)
− Zτ

]
= E [Zτ̂∨τ + Zτ̂∧τ − Zτ ] = E [Eτ [Zτ̂∨τ ] + Zτ̂∧τ − Zτ ]

(i)

≤ E [Zτ + Zτ̂∧τ − Zτ ] = E [Zτ̂∧τ ]
(ii)

≤ E [Zτ ] .

where (i) holds because process Z(t∨τ)∧τ̂ is a super-martingale and (ii) holds because process Zt∧τ∧τ̂ is a

sub-martingale. The intermediary, thus, finds it strictly optimal to take her outside option at time τ .

Lemma A.29. Consider an increasing continuous process l = (lt)t≥0. The cumulative compensation

necessary to retain the agent of skill (π(p̃0, t))t≥0 denoted by (C̃ p̃0
t )t≥0 is given by

dC̃ p̃0
t = wR

(
Π(p̃0, t,Xt),Π(lt, t,Xt)

)
dt− ∂2U

(
Π(p̃0, t,Xt),Π(lt, t,Xt)

)
∂1Π(lt, t,Xt) dlt1 {lt − lt− = 0}

−
[
∂2U

(
Π(p̃0, t,Xt),Π(lt, t,Xt)

)
− ∂2U

(
Π(p̃0, t,Xt),Π(lt−, t,Xt)

)]
.

(A.55)

Proof. Proof is identical to Lemma A.10 of the Poisson case and relies on the Martingale property of

the resulting payoff to the agent if he accepts current compensation and then collects his outside option.

Because we focus on equilibria which are separating at the time the agent leaves the industry, it implies

that (lt)t≥0 is continuous for t > 0.

Lemma A.30. Consider process (kt)t≥0 defined in (32). Then it is optimal for the intermediary to retain

the agent for p̃t > kt and let go of the agent the first time when p̃t < kt.

Proof. Given process kt, define the corresponding initial cutoff of the agent given by lt given by the unique

solution to

kt = Π(lt, t,Xt) ⇒ lt = (φt+ 1)kt − φXt.

The dynamics for process (lt)t≥0 are implied by the dynamics of process (kt)t≥0 given by (32)

dlt = φkt + (φt+ 1)dkt − φdXt

= φkt + (φt+ 1)
φ

φt+ 1
(dXt − kt dt)− φdXt + (φt+ 1)γ(kt, t,Xt) · 1 {Xt < B(kt, t)} dt

= φkt + φ(dXt − kt dt)− φdXt + (φt+ 1)γ(kt, t,Xt) · 1 {Xt < B(kt, t)} dt

= (φt+ 1)γ(kt, t,Xt) · 1 {Xt < B(kt, t)} dt

= (φt+ 1)γ(Π(lt, t,Xt), t,Xt) · 1
{
Xt < B̂(lt, t)

}
dt.

Denote by St the cumulative profit flow accruing to the intermediary from retaining the agent. We show

that for

dSt ≥ s(lt, p̃0, t,Xt) dt ⇔ p̃0 ≥ lt. (A.56)
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The retention compensation needed to retain the agent is given by (A.55) leading to a compensation flow

given by

w̃(p̃t, kt, t,Xt) = w̃
(
Π(p̃0, t,Xt),Π(lt, t,Xt)

)
= wR

(
p̃t, kt, t

)
− ∂2U

(
p̃t, kt, t

)
γ(kt, t,Xt)1 {Xt < B(kt, t)}

= wR
(
p̃t, kt, t

)
−
∂2U

(
p̃t, kt, t

)
∂2U(kt, kt, t)

·
[
rV −A(Q(kt, t,Xt)) + wR(p̃t, kt, Xt)

]
· 1 {Xt < B(kt, t)}

Note that due to the agent’s single-crossing condition ∂2

∂p∂kU(p̃, k, t) > 0 we have

∂2U
(
p̃t, kt, t

)
∂2U(kt, kt, t)

≥ 1 ⇔ p̃t ≥ kt.

Suppose p̃t ≤ kt or, equivalently, p̃0 ≤ lt, the flow profit of the intermediary satisfies

A(Q(kt, t,Xt))− w̃(p̃t, kt, t,Xt)

=A(Q(kt, t,Xt))−A(kt) +
∂2U

(
p̃t, kt, t

)
∂2U(kt, kt, t)

[
rV −A(Q(kt, t,Xt)) + wR(p̃t, kt, Xt)

]
1 {Xt < B(kt, t)}

≤A(Q(kt, t,Xt))−A(kt) +
∂2U

(
kt, kt, t

)
∂2U(kt, kt, t)

[
rV −A(Q(kt, t,Xt)) + wR(p̃t, kt, Xt)

]
1 {Xt < B(kt, t)}

=A(Q(kt, t,Xt))−A(kt) +
[
rV −A(Q(kt, t,Xt)) + wR(p̃t, kt, t)

]
1 {Xt < B(kt, t)}

=
[
A(Q(kt, t,Xt))−A(kt)

]
· 1 {Xt ≥ B(kt, t)}+ rV · 1 {Xt < B(kt, t)}

=
[
A
(
Q̂(lt, t,Xt)

)
−A

(
Π(lt, t,Xt)

)]
· 1
{
Xt ≥ B̂(lt, t)

}
+ rV · 1

{
Xt < B̂(lt, t)

}
(i)

≤
[
A
(
Q̂(lt, t,Xt)

)
−A

(
Π(lt, t,Xt)

)]
· 1 {Xt ≥ T (p̃0, lt, t)}+ rV · 1 {Xt < T (p̃0, lt, t)}

where inequality (i) follows from T (lt, lt, t) < T (p̃0, lt, t) and

A
(
Q̂(lt, t,Xt)

)
−A

(
Π(lt, t,Xt)

)
< rV ∀ Xt ∈ [T (lt, lt, t) ,T (p̃0, lt, t)] if p̃0 < lt.

Similarly, for p̃t > kt or, equivalently, p̃0 > lt, the flow profit of the intermediary satisfies

A(Q(kt, t,Xt))− w̃(p̃t, kt, t,Xt)

=A(Q(kt, t,Xt))−A(kt) +
∂2U

(
p̃t, kt, t

)
∂2U(kt, kt, t)

[
rV −A(Q(kt, t,Xt)) + wR(p̃t, kt, Xt)

]
1 {Xt < B(kt, t)}

≥A(Q(kt, t,Xt))−A(kt) +
∂2U

(
kt, kt, t

)
∂2U(kt, kt, t)

[
rV −A(Q(kt, t,Xt)) + wR(p̃t, kt, Xt)

]
1 {Xt < B(kt, t)}

=A(Q(kt, t,Xt))−A(kt) +
[
rV −A(Q(kt, t,Xt)) + wR(p̃t, kt, t)

]
1 {Xt < B(kt, t)}

=
[
A(Q(kt, t,Xt))−A(kt)

]
· 1 {Xt ≥ B(kt, t)}+ rV · 1 {Xt < B(kt, t)}

=
[
A
(
Q̂(lt, t,Xt)

)
−A

(
Π(lt, t,Xt)

)]
· 1
{
Xt ≥ B̂(lt, t)

}
+ rV · 1

{
Xt < B̂(lt, t)

}
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(ii)

≥
[
A
(
Q̂(lt, t,Xt)

)
−A

(
Π(lt, t,Xt)

)]
· 1 {Xt ≥ T (p̃0, lt, t)}+ rV · 1 {Xt < T (p̃0, lt, t)}

where inequality (ii) follows from T (lt, lt, t) > T (p̃0, lt, t)

A
(
Q̂(lt, t,Xt)

)
−A

(
Π(lt, t,Xt)

)
< rV ∀ Xt ∈ [T (p̃0, lt, t) ,T (lt, lt, t)] if p̃0 > lt.

This proves (A.56) and, by Lemma A.28 it follows that it is optimal to stop the first time when p̃0 = lt

or, equivalently, p̃t = kt.

Now, suppose that kt < b(kt, t). Then for p0 < lt the cutoff agent does not value reputation implying

that the flow profit of the intermediary is

A(Q(kt, t,Xt))− w̃(p̃t, kt, t,Xt)

=A(Q(kt, t,Xt))− w̃(p̃t, kt, t,Xt) + ∂2U
(
p̃t, kt, t

)
γ(kt, t,Xt)1 {Xt < B(kt, t)}

=A(Q(kt, t,Xt))− w̃(p̃t, kt, t,Xt)

=A
(
Q̂(lt, t,Xt)

)
− w̃(p̃t, kt, t,Xt)

(i′)
≤
[
A
(
Q̂(lt, t,Xt)

)
− w̃(p̃t, kt, t,Xt)

]
· 1 {Xt ≥ T (p̃0, lt, t)}+ rV · 1 {Xt < T (p̃0, lt, t)} .

Similarly, if p0 > lt then the cumulative compensation is given by

dSt = A(Q(kt, t,Xt)) dt− wR(p̃t, kt, t) dt+ ∂2U
(
p̃t, kt, t

)
γ(kt, t,Xt)1 {Xt < B(kt, t), kt > b(kt, t)} dt

+
(
U(p̃t, kt, t)− U(p̃t, kt−, t)

)
· ε(kt−, t,Xt) · 1 {Xt < B(kt, t), kt ≤ b(kt, t)}

≥ A(Q(kt, t,Xt)) dt− wR(p̃t, kt, t) dt+ ∂2U
(
p̃t, kt, t

)
γ(kt, t,Xt)1 {Xt < B(kt, t), kt > b(kt, t)} dt

(ii′)
≤
[
A
(
Q̂(lt, t,Xt)

)
− w̃(p̃t, kt, t,Xt)

]
· 1 {Xt ≥ T (p̃0, lt, t)}+ rV · 1 {Xt < T (p̃0, lt, t)} .

Thus, dSt exceeds the necessary payment flow the intermediary would agree to to delay letting go of the

agent. This proves that it is optimal to retain the agent as long as p̃t > kt and let him go the moment

p̃t < kt.
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We can use a Girsanov change of measure, normalizing the drift of process Xt to be 0, while introducing

the Girsanov density term

G(V ) =E

[∫ τ

0
e−rt

(
A
(
Q(kt, t,Xt)

)
− w(p̃t, kt, t)− rV

)
dt

]
=E

[∫ τ

0
e−rt · eσBt−

θ2σ2

2
t ·
[
A
(
Q̂(lt, t, σBt

)
− w

(
Π(lt, t, σBt),Π(lt, t, σBt), t

)
− rV

]
dt

]
When then use the Law of Iterated Expectation to compute the expected value of the Girsanov density

conditional on the public state (lt, t,Xt) as

E

[∫ τ

0
e−rt · eσBt−

θ2σ2

2
t ·
[
A
(
Q̂(lt, t, σBt

)
− w

(
Π(lt, t, σBt),Π(lt, t, σBt), t

)
− rV

]
dt

]
=E

[∫ τ

0
e−rtEt

[
eσBt−

θ2σ2

2
t
∣∣∣ p̃0 ≥ lt, Xt

] [
A
(
Q̂(lt, t, σBt

)
− w

(
Π(lt, t, σBt),Π(lt, t, σBt), t

)
− rV

]
dt

]
=E

[∫ τ

0
e−rtG(lt, t, σBt) ·

[
A
(
Q̂(lt, t, σBt

)
− w

(
Π(lt, t, σBt),Π(lt, t, σBt), t

)
− rV

]
dt

]
. (B.1)

If the distribution of private information follows a truncated normal distribution, we are able to express

G(lt, t,Xt) in closed form via (B.16). We can then evaluate G(V ), for a given V , via a dynamic program

in three state variables (lt, t, σBt), where the cutoff process (lt)t≥0 depends on the stopping surface B̂(lt, t)

and the realized path of the Brownian motion. Such a dynamic program requires several hours to solve

on a personal machine. Identifying the fixed point (35), as well as obtaining comparative statics, then

requires solving for a range of V ’s, for each set of parameters. We utilize the parallel computational tools

at the University of Wisconsin High Throughput Computing to obtain both the fixed point, as well as

comparative statics within a day. We are happy to share our code upon request.

B.1 Truncated Normal Distributions

Lemma B.1. Suppose that p ∼ N (p0, σ
2
p, p, p). Then the posterior distribution is given by

Law(p̃0|Xt) = N

(
σ2
θt+ σ2

(σ2
p + σ2

θ) · t+ σ2
· p̃0 +

σ2
p

(σ2
p + σ2

θ) · t+ σ2
·Xt,

σ2
p(σ

2
θt+ σ2)

(σ2
p + σ2

θ)t+ σ2
, [p, p]

)
.

Proof. Note that process X is given by

Xt = p̃0t+ (θ − p̃0)t+ σBt.

Absent truncation the normal distribution stays a normal distribution. This implies

E [θ|Xt] = p̃0 +
cov(p̃0, Xt)

var(Xt)
· (Xt − p̃0t)

= p̃0 +
σ2
p · t

(σ2
p + σ2

θ) · t2 + σ2 · t
· (Xt − p̃0t)

B.1



= p̃0 +
σ2
p

(σ2
p + σ2

θ) · t+ σ2
· (Xt − p̃0t)

=
σ2
θ · t+ σ2

(σ2
p + σ2

θ) · t+ σ2
· p̃0 +

σ2
p

(σ2
p + σ2

θ) · t+ σ2
·Xt

Then

E

(θ − σ2
θ · t+ σ2

(σ2
p + σ2

θ) · t+ σ2
· p̃0 +

σ2
p

(σ2
p + σ2

θ) · t+ σ2
·Xt

)2


=E

(θ − σ2
θ · t+ σ2

(σ2
p + σ2

θ) · t+ σ2
· p̃0 +

σ2
p

(σ2
p + σ2

θ) · t+ σ2
· (θt+ θt+ σBt)

)2


=E

( σ2
θ · t+ σ2

(σ2
p + σ2

θ) · t+ σ2
· (θ − p̃0) +

σ2
p

(σ2
p + σ2

θ) · t+ σ2
· (θt+ σBt)

)2


=

(
σ2
θ · t+ σ2

(σ2
p + σ2

θ) · t+ σ2

)2

σ2
p +

(
σ2
p

(σ2
p + σ2

θ) · t+ σ2

)2 (
σ2
θt

2 + σ2t
)

=
σ2
p(σ

2
θ · t+ σ2)

(σ2
p + σ2

θ) · t+ σ2

(
σ2
θ · t+ σ2

(σ2
p + σ2

θ) · t+ σ2
+

σ2
p · t

(σ2
p + σ2

θ) · t+ σ2

)

=
σ2
p(σ

2
θt+ σ2)

(σ2
p + σ2

θ)t+ σ2
.

Lemma B.2. The expected value of a truncated normal distribution p ∼ N (p0, σ
2, [p, p]) is given by

E
[
p̃
∣∣ p̃ ∈ [p, p]] = p0 + σ ·

φ
(
p−p0

σ

)
− φ

(
p−p0

σ

)
Φ
(
p−p0

σ

)
− Φ

(
p−p0

σ

)
Proof. Integration by parts.

B.1.1 Agent’s Subgame if A(p) = eαp and L = 0

Suppose the agent leaves at time t. The posterior variance about θ is given by

Σt
def
=

σ2
θσ

2

σ2
θt+ σ2

(B.2)

At time t the agent’s posterior belief about θ is given by N (p̃t,Σt), and we can write

θ = p̃t + ξt.

The investors’ posterior belief about θ is given by N (k,Σt).
55

55Note that the equilibrium is separating so there is no uncertainty in p here.
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Investors’ posterior beliefs at time s > t are given by

kt,s =
Σt

Σt(s− t) + σ2
· (Xs −Xt) +

σ2

Σt(s− t) + σ2
· kt

(i)
=

Σt

Σt(s− t) + σ2
· (σ(Bs −Bt) + kt(s− t) + ξt(s− t)) +

σ2

Σt(s− t) + σ2
· kt.

=
Σt

Σt(s− t) + σ2
· (σ(Bs −Bt) + ξt(s− t)) + kt

where (i) holds along the equilibrium path, i.e., from the perspective of investors, and θ̃t ∼ N (0,Σt).

From the perspective of the agent

Xs −Xt = σ(Bs −Bt) + p̃t(s− t) + ξt(s− t).

Hence belief process evolves according to

kt,s
(ii)
=

Σt

Σt(s− t) + σ2
· (σ(Bs −Bt) + p̃t(s− t) + ξt(s− t)) +

σ2

Σt(s− t) + σ2
· kt

=
Σt

Σt(s− t) + σ2
· (σ(Bs −Bt) + ξt(s− t)) +

Σt(t− s)
Σt(s− t) + σ2

· p̃t +
σ2

Σt(s− t) + σ2
· kt.

From the perspective of the agent, beliefs have an upward drift since p ≥ k. In this normalization,

θ̃t ∼ N (0,Σt) from the perspective of both the agent and the market.

Suppose L = 0 and g(x) = log
(
x
α

)
. Then A(x) = eαx. Moreover, the agent never finds it profitable to

exit the industry. It implies that his value function is given by

U(p, k, t) = E

[∫ ∞
t

e−r(s−t) · eαks ds
]

= E

[∫ ∞
t

e−r(s−t) · eα
(

Σt
Σt(s−t)+σ2 ·(σ(Bs−Bt)+θ̃t(s−t))+ Σt(s−t)

Σt(s−t)+σ2 p+
σ2

Σt(s−t)+σ2 k
)
ds

]
=

∫ ∞
t

e−r(s−t)E

[
e
α
(

Σt
Σt(s−t)+σ2 ·(σ(Bs−Bt)+θ̃t(s−t))+ Σt(s−t)

Σt(s−t)+σ2 p+
σ2

Σt(s−t)+σ2 k
)]

ds

=

∫ ∞
t

e−r(s−t) · eα
(

Σt(s−t)
Σt(s−t)+σ2 p+

σ2

Σt(s−t)+σ2 k
)
E

[
e
α
(

Σt
Σt(s−t)+σ2 ·(σ(Bs−Bt)+θ̃t(s−t))

)]
ds

=

∫ ∞
t

e−r(s−t) · eα
(

Σt(s−t)
Σt(s−t)+σ2 p+

σ2

Σt(s−t)+σ2 k
)
· e

α2

2

(
Σt

Σt(s−t)+σ2

)2
·(σ2(s−t)+Σt(s−t)2)

ds

=

∫ ∞
t

e−r(s−t) · eα
(

Σt(s−t)
Σt(s−t)+σ2 p+

σ2

Σt(s−t)+σ2 k
)
· e

α2

2

Σ2
t (s−t)

Σt(s−t)+σ2 ds (B.3)

At t = 0 we have Σ0 = σ2
θ and (B.3) as

U(p, k, 0) =

∫ ∞
0

e−rs · e
α

(
σ2
θs

σ2
θ
s+σ2 p+

σ2

σ2
θ
s+σ2 k

)
· e

α2

2

σ4
θs

σ2
θ
s+σ2

ds
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We can simplify (B.3) by showing that

Σ2
t (s− t)

Σt(s− t) + σ2
= Σt(s− t)

Σt

Σt(s− t) + σ2

=
σ2
θσ

2(s− t)
σ2
θt+ σ2

σ2
θσ

2

σ2
θt+σ

2

σ2
θσ

2

σ2
θt+σ

2 (s− t) + σ2

=
σ2
θσ

2(s− t)
σ2
θt+ σ2

σ2
θ

σ2
θs+ σ2

=
σ4
θσ

2(s− t)
(σ2
θt+ σ2)(σ2

θs+ σ2)

=
σ2
θσ

2(σ2
θs+ σ2 − σ2

θt− σ2)

(σ2
θt+ σ2)(σ2

θs+ σ2)

=
σ2
θσ

2

σ2
θt+ σ2

−
σ2
θσ

2

σ2
θs+ σ2

= Σt − Σs.

This implies that we can rewrite (B.3) as

U(p, k, t) =

∫ ∞
t

e−r(s−t) · eα
(

Σt(s−t)
Σt(s−t)+σ2 p+

σ2

Σt(s−t)+σ2 k
)
· e

α2

2
(Σt−Σs) ds.

Along the equilibrium path p = k and we can simplify the second exponent in the integral

U(k, k, t) =

∫ ∞
t

e−r(s−t) · eα
(

Σt(s−t)
Σt(s−t)+σ2 p+

σ2

Σt(s−t)+σ2 k
)
· e

α2

2
(Σt−Σs) ds

= eαk ·
∫ ∞
t

e−r(s−t) · e
α2

2
(Σt−Σs) ds.

Define

û1(t)
def
= ert+

α2

2
Σt ·

∫ ∞
t

e−rs−
α2

2
Σs ds. (B.4)

Then

U(k, k, t) = eαk · û1(t). (B.5)

The expected payoff if perceived correctly is given by

E [U(p, p, 0)] = E [eαp] · û1(0).

To characterize the forward dynamics we must consider the partial derivative of the agent. It is given by

∂

∂k
U(p, k, t) =

∫ ∞
t

e−r(s−t) · ασ2

Σt(s− t) + σ2
· eα

(
Σt(s−t)

Σt(s−t)+σ2 p+
σ2

Σt(s−t)+σ2 k
)
· e

α2

2
(Σt−Σs) ds.

This is difficult to evaluate off-path, but we only need to compute it for p = k. This, again, allows us to

B.4



separate k out and write

∂U

∂k
(k, k, t) =

∫ ∞
t

e−r(s−t) · ασ2

Σt(s− t) + σ2
· eα

(
Σt(s−t)

Σt(s−t)+σ2 k+ σ2

Σt(s−t)+σ2 k
)
· e

α2

2
(Σt−Σs) ds

=

∫ ∞
t

e−r(s−t) · ασ2

Σt(s− t) + σ2
· eαk · e

α2

2
(Σt−Σs) ds

= αeαk ·
∫ ∞
t

e−r(s−t) · σ2

σ2
θσ

2

σ2
θt+σ

2 (s− t) + σ2
· e

α2

2
(Σt−Σs) ds

= αeαk ·
∫ ∞
t

e−r(s−t) ·
σ2
θt+ σ2

σ2
θs+ σ2

· e
α2

2
(Σt−Σs) ds

= αeαk ·
∫ ∞
t

e−r(s−t) · Σs

Σt
· e

α2

2
(Σt−Σs) ds

= eαk · α · e
rt+α2

2
Σt

Σt
·
∫ ∞
t

e−rs−
α2

2
Σs · Σs ds

Define function û2(t) as

û2(t)
def
= α · e

rt+α2

2
Σt

Σt
·
∫ ∞
t

e−rs−
α2

2
Σs · Σs ds. (B.6)

Then
∂

∂k
U(k, k, t) = eαtû2(t). (B.7)

Agent’s Reservation Utility. The intermediary must compensate the agent for his ex-ante reservation

utility. The expected value of the agent perceived as the lowesst type at t = 0 is given by

U(p, p, 0) =

∫ ∞
0

e−rs · e
α

(
σ2
θs

σ2
θ
s+σ2 p+

σ2

σ2
θ
s+σ2 p

)
· e

α2

2
(Σ0−Σs) ds

=

∫ ∞
0

e−rs · e
α

(
σ2
θs

σ2
θ
s+σ2 p+

σ2

σ2
θ
s+σ2 p

)
· e

α2

2

σ4
θs

σ2
θ
s+σ2

ds.

Considering the ”expected” reservation value of the agent, we must take the expected value with respect

to p. It is given by

E
[
U(p, p, 0)

]
= E

[∫ ∞
0

e−rs · e
α

(
σ2
θs

σ2
θ
s+σ2 p+

σ2

σ2
θ
s+σ2 p

)
· e

α2

2

σ4
θs

σ2
θ
s+σ2

ds

]

=

∫ ∞
0

e−rs · E

[
e

ασ2
θs

σ2
θ
s+σ2 p

]
· e

ασ2

σ2
θ
s+σ2 p+

α2

2
· σ4

θs

σ2
θ
s+σ2

ds.

Define b(s)
def
=

ασ2
θs

σ2
θs+σ

2 . Define the moment generating function of the truncated normal distribution as

MGFTR(b)
def
= E

[
ebp
]
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=
1

Φ
(
p̄−p0

σp

)
− Φ

(
p−p0

σp

) · 1√
2πσ2

p

·
∫ p

p
ebze

− (z−p0)2

2σ2
p dz

Then have[
Φ

(
p̄− p0

σp

)
− Φ

(
p− p0

σp

)]
MGFTR(b) =

1√
2πσ2

p

·
∫ p

p
e
bz− (z−p0)2

2σ2
p dz

=
1√

2πσ2
p

·
∫ p

p
e
− 1

2

(
z
σp
−bσp− p0σp

)2
+ 1

2

(
bσp+

p0
σp

)2
− 1

2

p20
σ2
p dz

=
1√

2πσ2
p

·
∫ p

p
e
− 1

2

(
z
σp
−bσp− p0σp

)2
+
b2σ2

p
2

+bp0 dz

=
1√

2πσ2
p

· e
b2σ2

p
2

+bp0 ·
∫ p

p
e
− 1

2

(
z
σp
−bσp− p0σp

)2

dz

= e
b2σ2

p
2

+bp0 · 1√
2π

∫ p
σp
−bσp− p0σp

p

σp
−bσp− p0σp

e−
y2

2 dy

= e
b2σ2

p
2

+bp0 ·
[
Φ

(
p− p0

σp
− bσp

)
− Φ

(
p− p0

σp
− bσp

)]
.

This implies that the moment generating function of the truncated normal distribution is equal to

MGFTR(b) = e
b2σ2

p
2

+bp0 ·
Φ
(
p−p0

σp
− bσp

)
− Φ

(
p−p0

σp
− bσp

)
Φ
(
p̄−p0

σp

)
− Φ

(
p−p0

σp

) .

Substitute the value of b(s) =
ασ2

θs

σ2
θs+σ

2 to obtain

E
[
U
(
p̃, p, 0

)]
=

∫ ∞
0

e−rs · e
ασ2p

σ2
θ
s+σ2 +α2

2

σ4
θs

σ2
θ
s+σ2 ·MGFTR

(
ασ2

θs

σ2
θs+ σ2

)
ds. (B.8)

This can be computed once and is independent of the fixed point calculation of M .

Agent’s first-best payoff. We have

E [U (p̃, p̃, 0)] = E [eαp] · û1(0) = MGFTR(α) · û1(0). (B.9)

B.1.2 Evaluating Expected Payoff under Girsanov Change of Measure

Suppose Xt is the path of returns and lt is the corresponding cutoff agent type process. The realized

expected payoff to the intermediary is∫ τ

0
e−rtA

(
Q(Π(lt, t,Xt), t,Xt)

)
dt+ e−rτ

[
U
(

Π(lτ , τ,Xτ ),Π(lτ , τ,Xτ ), τ
)

+ V
]
− U(p̃, p, 0).

B.6



Define

V1
def
= E

[∫ τ

0
e−rtA

(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
, (B.10)

V2
def
= E

[
e−rτ

(
U
(

Π(lτ , τ,Xτ ),Π(lτ , τ,Xτ ), τ
)

+ V
)]
. (B.11)

The agent’s reservation utility is already computed in (B.8).

Integrating flow profits. Process Xt is given by

Xt = σBt + θt.

Then

EP

[∫ τ

0
e−rtA

(
Q(Π(lt,t,Xt),t,Xt)

)
dt

]
=EP̂

[
e
θ
σ
B̂T−T2 ( θσ )

2
∫ τ

0
e−rtA

(
Q(Π(lt,t,σB̂t),t,Xt)

)
dt

]
(B.12)

where (B̂t)t≥0 is a standard Brownian motion under the risk-neutral measure P̂ . This is true since,

under the change of measure density

e
θ
σ
B̂T−T2 ( θσ )

2

,

Brownian motion B̂t has a drift θ
σ under the initial measure. This implies

V1 = E

[
e
θ
σ
Bτ− τ2 ( θσ )

2

·
∫ τ

0
e−rtA

(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
(i)
= E

[∫ τ

0
e−rt · e

θ
σ
Bt− t2( θσ )

2

·A
(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
where (i) holds by the law of iterated expectation. Note that path by path Xt = σBt, which has drift

(p+ θ)t under the new change of measure. Thus, we can write

V1 = E

[∫ τ

0
e−rt · e

θ
σ2Xt−

t
2( θσ )

2

·A
(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
.

Define the Girsanov density

G(t, x, p, θ)
def
= e

θ
σ2Xt−

t
2( θσ )

2

(B.13)

Then

V1 = E

[∫ τ

0
e−rt ·G(t,Xt, p, θ) ·A(Q(t,Xt, lt)) dt

]
.

Note that Xt is independent of θ since we perform the change of measure conditional on θ.56 We can

compute the expected value of G(t, x, p, θ) with respect to θ as

G(p, t, x)
def
= EXt,p [G(t, x, θ) | p̃0 = p] = EXt,p

[
e
θ
σ2Xt−

t
2( θσ )

2
]

56This can be verified by direct integration.
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=
1√
2π

∫ ∞
−∞

e
p+σθz

σ2 Xt− t2
(
p+σθz

σ

)2

e−
z2

2 dz

=
1√
2π
e
p

σ2Xt−
t
2( pσ )

2

·
∫ ∞
−∞

e
σθ
σ2Xtz−

(tσ2
θ+σ2)z2+2pσθz

2σ2 dz

=
1√
2π
e
p

σ2Xt−
t
2( pσ )

2

·
∫ ∞
−∞

e

(
σθ
σ2Xt−p

σθ
σ2 t
)
z− (σ2

θt+σ
2)·z2

2σ2 dz

z=

√
σ2

σ2
θ
t+σ2 ẑ

=
σ√

2π(σ2
θt+ σ2)

e
p

σ2Xt−
t
2( pσ )

2
∫ ∞
−∞

e

σθ
σ

Xt−pt√
σ2
θ
t+σ2

ẑ− ẑ
2

2

dẑ

=
σ√

σ2
θt+ σ2

· e
p

σ2Xt−
t
2( pσ )

2
+ 1

2

σ2
θ(Xt−pt)

2

σ2(σ2
θ
t+σ2)

=
σ√

σ2
θt+ σ2

· e
p

σ2Xt−
1
2
p2t

σ2 + 1
2

σ2
θ(X2

t −2pXtt+p
2t2)

σ2(σ2
θ
t+σ2)

=
σ√

σ2
θt+ σ2

· e
p

σ2Xt−
1
2

p2t(σ2
θt+σ

2)

σ2(σ2
θ
t+σ2)

+ 1
2

σ2
θ(X2

t −2pXtt+p
2t2)

σ2(σ2
θ
t+σ2)

=
σ√

σ2
θt+ σ2

· e
p

σ2Xt−
1
2

p2t

σ2
θ
t+σ2 + 1

2

σ2
θ(X2

t −2pXtt)

σ2(σ2
θ
t+σ2)

=
σ√

σ2
θt+ σ2

· e
pXt

σ2
θ
t+σ2−

1
2

p2t

σ2
θ
t+σ2 + 1

2

σ2
θX

2
t

σ2(σ2
θ
t+σ2) (B.14)

Using Law of Iterated Expectation, we can write

V1 = E

[∫ τ

0
e−rt ·G(p, t,Xt, θ) ·A

(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
= E

[∫ τ

0
e−rt · E [G(p, t,Xt, θ) | t,Xt, p] ·A

(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
= E

[∫ τ

0
e−rt ·G(p, t,Xt) ·A

(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
. (B.15)

The next step is to compute

Ḡ(l, t,Xt)
def
= E [G(p̃, t,Xt) · 1 {p̃0 > l}]

= E

 σ√
σ2
θt+ σ2

· e
pXt

σ2
θ
t+σ2−

1
2

p2t

σ2
θ
t+σ2 + 1

2

σ2
θX

2
t

σ2(σ2
θ
t+σ2) · 1 {p̃0 > l}

 .
Denote b = 1

σ2
θt+σ

2 . Then∫ p̄

l
eb(Xty−

t
2
y2)dΦ(y, p0, σp)
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=
1√

2πσp

∫ p̄

l
eb(Xty−

t
2
y2)e

− (y−p0)2

2σ2
p dy

y=σpŷ+p0
=

1√
2π

∫ p̄−p0
σp

l−p0
σp

eb(Xt(σpŷ+p0)− t
2

(σpŷ+p0)2)e−
ŷ2

2 dŷ

=
1√
2π
ebXtp0− t2 bp

2
0

∫ p̄−p0
σp

l−p0
σp

ebσp(Xt−tp0)ŷ− 1
2(bσ2

pt+1)ŷ2
dŷ

ŷ= 1√
bσ2
pt+1

y′

=
1√

2π(bσ2
pt+ 1)

ebXtp0− t2 bp
2
0

∫ p̄−p0
σp

√
bσ2
pt+1

l−p0
σp

√
bσ2
pt+1

e

bσp(Xt−tp0)√
bσ2
pt+1

y′− 1
2

(y′)2

dy′

=
1√

2π(bσ2
pt+ 1)

e
bXtp0− t2 bp

2
0+ 1

2

b2σ2
p(Xt−p0t)

2

bσ2
pt+1

∫ p̄−p0
σp

√
bσ2
pt+1− bσp(Xt−tp0)√

bσ2
pt+1

l−p0
σp

√
bσ2
pt+1− bσp(Xt−tp0)√

bσ2
pt+1

e−
1
2

(y′)2

dy′

=
1√

bσ2
pt+ 1

e
bXtp0− t2 bp

2
0+ 1

2

b2σ2
p(Xt−p0t)

2

bσ2
pt+1

×

Φ

 p̄− p0

σp

√
bσ2
pt+ 1− bσp (Xt − tp0)√

bσ2
pt+ 1

− Φ

 l − p0

σp

√
bσ2
pt+ 1− bσp (Xt − tp0)√

bσ2
pt+ 1


We can now write

Ḡ(l, t, x) =
σ
√
b√

bσ2
pt+ 1

e
bXtp0− t2 bp

2
0+ 1

2

b2σ2
p(Xt−p0t)

2

bσ2
pt+1

+ 1
2

bσ2
θX

2
t

σ2

×
Φ

(
p̄−p0

σp

√
bσ2
pt+ 1− bσp(Xt−tp0)√

bσ2
pt+1

)
− Φ

(
l−p0

σp

√
bσ2
pt+ 1− bσp(Xt−tp0)√

bσ2
pt+1

)
Φ
(
p̄−p0

σp

)
− Φ

(
p−p0

σp

)
(B.16)

For computational reasons, we can define c = bσ2
pt+ 1. Then we have57

Ḡ(l, t, x) =
σ
√
b√
c
· ebXtp0− t2 bp

2
0+ 1

2

b2σ2
p(Xt−p0t)

2

c
+ 1

2

bσ2
θX

2
t

σ2

×
Φ
(
p̄−p0

σp

√
c− bσp(Xt−tp0)√

c

)
− Φ

(
l−p0

σp

√
c− bσp(Xt−tp0)√

c

)
Φ
(
p̄−p0

σp

)
− Φ

(
p−p0

σp

) .

We can now express

V1(p, 0, 0)
def
= E

[∫ τ

0
e−rt · Ḡ(t,Xt, lt) ·A

(
Q(Π(lt, t,Xt), t,Xt)

)
dt

]
. (B.17)

We can, thus, write

V1(lt, t,Xt)
def
= E

[∫ τ

t
e−r(s−t)Ḡ(s,Xs, ls)A

(
Q(Π(ls, s,Xs), s,Xs)

)
ds

]
. (B.18)

57This expression has been checked numerically.

B.9



Note that V1(l, t, x) is not a continuation value of the intermediary since we are not conditioning the

change of measure. However, V1 = V1(p, 0, 0) since at t = 0 no such conditioning needs to be done. We

can solve for V1(p, 0, 0) via a dynamic program by solving the ”fictitious” value function V1(l, t, x)

rV1(l, t, x) = Ḡ(l, t, x) · eαQ(t,x,l) +
∂

∂t
V1(l, t, x) +

σ2

2
· ∂

2

∂x2
V1(l, t, x) + γ(t, x, l) · ∂

∂l
V1(l, t, x), (B.19)

where policy function γ(t, x, l) is pinned down by the optimal stopping problem of the intermediary given

by

γ(Π(l, t, x), t, x) =
rV +A(Q(l, t, x))−A(Π(l, t, x))

σ2

σ2
θt+σ

2∂kU(Π(l, t, x),Π(l, t, x), t)
· 1 {x < hatB(l, t)} (B.20)

=
σ2
θt+ σ2

σ2
· rV +A(Q̂(l, t, x))−A(Π(l, t, x))

∂kU(Π(l, t, x),Π(l, t, x), t)
· 1
{
x < B̂(l, t)

}
(B.21)

=
σ2
θt+ σ2

σ2
· rV +A(Q̂(l, t, x))−A(Π(l, t, x))

eαΠ(l,t,x) · û2(t)
· 1
{
x < B̂(l, t)

}
. (B.22)

We can see here that over time there needs to be more turnover to compensate for the fact that information

becomes more stale over time. Note that γ(t, x, l) is written in terms of ex-ante types, not ex-post types

as in the Poisson model. This helps with tractability significantly.

Integrating sale profits. We can write

V2
def
= E

[
e−rτ

(
U(P (lτ , τ,Xτ ),Π(lτ , τ,Xτ ), τ) + V

)]
(B.23)

= E

[
eθXτ−

σ2θ2τ
2 e−rτ

(
U(Π(p, τ,Xτ ),Π(p, τ,Xτ ), τ) + V

)]
(B.24)

= E
[
G(p, τ,Xτ )e−rτ

(
U(Π(p, τ,Xτ ),Π(p, τ,Xτ ), τ) + V

)]
(B.25)

= E
[
e−rτ ·G(p, τ,Xτ ) ·

(
eαΠ(p,τ,Xτ ) · û1(τ) + V

)]
(B.26)

=
E
[∫∞

0 e−rtG(lt, t,Xt)
(
eαΠ(lt,t,Xt)û1(t) + V

)
dΦ
(
lt−p0

σp

)]
Φ
(
p−p
σp

)
− Φ

(
p−p
σp

) (B.27)

=

E

[
1√

2πσ2
p

∫∞
0 e−rtG(lt, t,Xt)

(
eαΠ(lt,t,Xt)û1(t) + V

)
e
− 1

2

(
lt−p
σp

)2

· γt dt
]

Φ
(
p−E[p̃0]
σp

)
− Φ

(
p−E[p̃0]

σp

) . (B.28)

where γt is given by (B.22). We can write

V2(lt, t,Xt)
def
=

E

[
1√

2πσ2
p

∫∞
t e−r(s−t) ·G(ls, s,Xs) ·

(
eαΠ(ls,s,Xs) · û1(s) + V

)
· e−

1
2

(
ls−E[p̃0]

σp

)2

· γs ds
]

Φ
(
p−E[p̃0]
σp

)
− Φ

(
p−E[p̃0]

σp

)
(B.29)
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We can then apply a dynamic programming approach

rV2(l, t, x) =
1√

2πσ2
p

·
G(t, x, l) ·

(
eαP(()l,t,x) · û1(t) + V

)
· e−

1
2

(
l−E[p̃0]
σp

)2

· γ(t, x, l)

Φ
(
p−E[p̃0]
σp

)
− Φ

(
p−E[p̃0]

σp

)
+
∂

∂t
V2(l, t, x) +

σ2

2
· ∂

2

∂x2
V2(l, t, x) + γ(t, x, l) · ∂

∂l
V2(l, t, x),

(B.30)

where γ(Π(l, t, x), t, x) is obtained from the intermediary’s churning surface B̂(x, t). Note that, since

V1(l, t, x, l) and V2(l, t, x) are both integrals of the state variables, can compute the backward induction

for the sum

V (l, t, x) = V1(l, t, x) + V2(l, t, x). (B.31)

Can solve for V (l, t, x) as a dynamic program in three state variables (l, t, x). In our computations, we

assumed the time step was 0.05, the size of the performance jumps (modeled via a binomial tree) is 0.05,

and l takes 30 values on [p, p]. Including the computation of the stopping frontier, the expected payoff

can be evaluated in about 5 hours for a given V . We then rely on parallel computation to obtain the

fixed point V , as well as the comparative statics presented in the paper.
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