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The Decline in the US Labor Share
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Two broad explanations:

• Technology: substitution of capital for
labor in widening range of tasks as
automation advances and capital
becomes cheaper.
(Karabarbounis– Neiman 2014; Edden–Gagl 2018;
Hubmer 2020; Acemoglu–Restrepo, 2018)

• Concentration: rising competition
reallocates economic activity to high
markup firms
(Barkai 2020; De Loecker–Eeckhout–Unger 2020;
Autor–Dorn–Katz–Patterson–V.Reenen 2020)
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The Role of Firms in the Decline of the Labor Share
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• Decline not uniform across firms, and not
visible for median firm (Autor et al. 2020;
Kehrig–Vincent, 2020)

• Challenges technology view:

• rules out simple story where all firms
face same factor prices and have
access to same technologies
• suggests key role for reallocation

rather than capital-labor substitution
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This Paper

1. Develop firm dynamics model with costly capital–labor substitution within tasks:
matches firm-level labor and market share dynamics as capital prices falling
• typical firm: no change in task allocation ⇒ K and L complements ⇒ LS rises
• top firms: more tasks automated ⇒ K and L substitutes ⇒ LS declines

2. Extend to non-CES demand system to account for rising competition and reallocation to
more productive firms: K–L substitution remains important
• 90% of the decline in labor share in manufacturing
• 40% of the decline in labor share in retail; rising competition more important

3. “Model-free” accounting of contribution of markups/reallocation to LS decline
• important to allow for differences in technology across firms (cf. DeLoecker, Eeckhout,

Unger 2020)
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Outline

1. Model with CES demand to show implications of capital–labor substitution across firms

2. Model with non-CES demand to compare effects of competition and capital–labor
substitution

3. Model-free bounds on effect of reallocation and changes in markups on labor share
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Model: Overview

• Standard firm dynamics model with task level substitution and costly automation.

• Firms differ in productivity z (exog) and capital share parameter α (endog).
• To raise α, firms have to pay a (constant) fixed cost for each automated task.
• Matches studies on adoption of new capital-intensive techs ( Lashkari et al. 2019;

Acemoglu et al. 2020; US Census 2020) details

• New technologies diffuse in the economy through imitation by entrants.
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Model: Production Function
• Production requires a continuum of tasks

y = z ·
(∫ 1

0
Y(x)

η−1
η dx

) η
η−1

• Tasks ∈ [0, α] are automated and can be produced by capital:

Y(x) =
{
ψk(x)k(x) + ψℓ(x)ℓ(x) if x ≤ α
ψℓ(x)ℓ(x) if x > α

ψℓ(x)
ψk(x)

increasing in x

• Unit cost of production (if all tasks in [0, α] produced by capital)

c(z, α) = 1
z

[
Ψk(α)

(
R
q

)1−η
+Ψℓ(α)W1−η

] 1
1−η

,

share parameters: Ψk(α) =
∫ α

0 ψk(x)η−1dx and Ψℓ(α) =
∫ 1
α ψℓ(x)η−1dx
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Model: Value Functions for Entrants and Incumbents

• Value function of incumbent with technology (z, α):

V(z, α) =π(z, α)+∫
max

{
0,−cf + max

α′∈[α,1]

{
−ca · (α′ − α) + βE [V(z′, α′)|z]

}}
dG(cf)

• Value function of (potential) entrants with productivity signal z:

Ve(z, α0) =

∫
max

{
0,−cf + max

α′∈[α0,1]

{
−ca · (α′ − α0) + βE [V(z′, α′)|z]

}}
dG(cf)

• Diffusion of automation through imitation α0 = ᾱ

• Exogenous process for productivity log z′ = ρz log z + ϵ′, with ϵ′ ∼ N(µz, σz)
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Model: Equilibrium

• Final goods and the supply of capital and labor

• final good combines output of all firms in CES aggregator with σ > 1
• capital produced from final good at constant rate q
• labor fixed at L and mobile across firms

• We start economy in steady state and consider perfect foresight transitions

• Transitional dynamics following uniform increase in q (investment-specific technical
change)
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Equilibrium: Optimal Automation

• Let α∗t denote the α that minimizes production costs:

Wt
ψℓ(α

∗
t )

=
R

qt · ψk(α∗t )

• Optimal automation choice is an increasing function of z: αt+1 = max{αt, α̂t(zt)}.

• For low enough z, no automation: α̂t(zt) = 0.
• In the limit, firms that grow enough automate fully: limzt→∞ α̂t(zt) = α∗t+1.

• Automation episodes as α̂t(zt) crosses current αt for growing and large firms.
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Equilibrium: Two Key Elasticities

Labor share of cost is given by:

εℓ(α) =
Ψℓ(α)W1−η

Ψk(α)
(

R
q

)1−η
+Ψℓ(α)W1−η

• Short-run K− L elasticity (fixed α) equals the task substitution elasticity η.
⇒ maps to firm-level short-run K− L elasticity

• Long-run K− L elasticity (adjusting α to α∗) equals

ηLR = η +
∂ lnΨk(α)/Ψℓ(α)

∂ lnα

/∂ lnψℓ(α)/ψk(α)

∂ lnα
> η

• As firms grow and α̂t+1(z)→ α∗t+1, elasticity goes from η to ηLR
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Model: Calibration

• Standard firm dynamics parametrization to match entry, exit, firm size, markup details

• Set technology parameters to match key facts on manufacturing labor share:

• task-substitution elasticity η = 0.4: match short-run K-L elasticity (Oberfield-Raval
2020).

• specify ψℓ(x) =
(

x
1−η−γ
γ − 1

) 1
1−η−γ and ψk(x) = 1. η + γ gives long-run aggregate

K− L elasticity: target 1.35 (Hubmer, 2020; Karabarbounis & Neiman, 2014).

• d ln q = 1.39 to match observed decline in aggregate mf. labor share 1982–2012
(−17.8pp)

• choose automation cost ca to target change in median labor share (+3pp).
automation cost
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Model: Aggregate Labor Share Dynamics

• Economy starts in steady state in 1982
→ all firms have same labor share.

• In terms of aggregate factor shares,
fast transition.

• In terms of average firm, slow
transition.
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Model: Firm-level Labor Share Dynamics

• In 1982 st. state, uniform technology.
• Note: Labor share is proportional

to elasticity εℓ(α).

• As capital becomes cheaper and wages
rise, labor shares of small
non-automating firms increase.

• Firms that become large reaching top
sales percentiles are the ones reducing
their labor shares.
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Decomposition of Labor Share in Manufacturing 1982–2012

• The labor share in an industry is

λ :=
∑

i
sy
i × λi

λi =labor share firm i,
sy
i =share firm i in value added

• Melitz–Polanec decomposition in
Autor et al. (2020)

∆λ = ∆λ̄ (unw. mean)
+ ∆cov(λi, sy

i ) (covariance)
+ entry + exit

Data CES Model
∆ Unweighted
survivors’ mean -0.2 3.0

∆ Covariance -18.7 -20.9

Entry 5.9 0.6

Exit -5.5 -0.3

∆ Aggregate -18.5 -17.6

Data: Autor et al (2020), manufacturing,
compensation share of value added. In p.p.
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Unpacking the Changing Covariance Between Size and Labor Share

• Covariance can be further decomposed

∆cov(λi, sy
i )

= cov(λi,∆sy
i ) (market share

dynamics)
+ cov(∆λi, sy

i ) (labor share
dynamics

+ cov(∆λi,∆sy
i ) (cross dynamics).

• Uncertainty about exact contribution
of these terms in data...

• Kehrig and Vincent (2020): cross
dynamics important in manufacturing

Data CES Model
(in p.p.) (in p.p.)

Market share
dynamics 4.7 0.0

Labor share
dynamics∗ -4.3 -4.1

Cross dynamics -23.1 -13.7

Note: Kehrig and Vincent (2020) data from balanced
panel of manufacturing establishments. (∗) The labor
share dynamics term includes the unweighted mean for
survivors.
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Productivity dispersion

• endogenous automation choice →
endogenous (temporary) increase in
productivity dispersion

• broadly in line with data: Decker,
Haltiwanger, Jarmin, Miranda (2020) find
5 log points increase 1980s to 2000s
(TFP, U.S. manufacturing)
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Sales concentration

• endogenous (temporary) increase in
productivity dispersion → endogenous
(temporary) increase in sales
concentration

• broadly in line with data:
Data CES Model

∆ CR4 0.060 0.038
∆ CR20 0.052 0.063

Autor et al (2020) data, manufacturing,
1982–2012. In p.p. 1990 2000 2010 2020 2030 2040 2050

0.395

0.4

0.405

0.41

0.415
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0.435

0.44
top 1% sales share
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Summarizing Findings from CES Model

Simple firm dynamics model with endogenous automation:

1. matches aggregate and firm labor share dynamics

2. generates increasing concentration of sales and dispersion of productivity

Now: incorporate differences in markups to separate role of reallocation to large firms due to
tighter competition from K− L substitution.
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Outline

1. Model with CES demand to show implications of capital-labor substitution across firms

2. Model with non-CES demand to compare effects of competition and capital–labor
substitution

3. Model-free bounds on effect of reallocation and changes in markups on labor share
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Size-dependent Markups and Rising Competition

• Non-CES demand system: Kimball aggregator H(·) implicitly defines aggregate output
Y; λ is (exogenous) proxy for “market size”∫

θ

λ · H
(

y(θ)
λ · Y

)
m(θ)dθ = 1, θ = (z, α)

• Normalizing price of final good to 1 yields demand function

y(θ) = Y · λ · D
(

p(θ)
ρ

)
, ρ = comp. price index ̸= 1, (H′ = D−1)

• Key assumptions: Marshall’s second laws:

−
D′(x)
D(x) x greater than 1 and increasing in x; x + D(x)

D′(x) positive and log-concave

(markups higher for prod firms) (passthroughs lower for prod firms)
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Steady State Markups, Pricing and Sales
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Steady State Effects of Rising Competition, λ ↑

• λ ↑ increases market size, pushing firms towards elastic section of their demand curve
• reallocates economic activity towards top firms; but also lowers markups for all firms
• net increase in the aggregate markup if z has a log-convex distribution
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Calibrating the Non-CES Demand system: Manufacturing 1982–2012
• H(·) : Klenow-Willis aggregator ⇒ demand elasticity := σ · rel. quantity−

ν
σ

• σ = 6.1: matches aggregate markup of 15%
• ν/σ = 0.22: matches difference between median and aggregate labor share in 1982

• Productivity process given by

z = exp
(

F−1
Weibull(ζ,k)(Φ(z̃))

)
, z̃′ = ρzz̃ + ϵ′z

which ensures that

ln z ∼Weibull(ζ, n)⇒ P(ln z ≥ x) = exp

(
−
(

x
ζ

)n)
• n = 0.78, ζ = 0.086 to match top sales shares (CR4 and CR20)
• more log convex than Pareto (n = 1); but not too much! details
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Transitional Dynamics: Manufacturing 1982–2012

Automation and rise in
comp. calibrated to match

• decline in labor share

• observed rise in
concentration

Inferred shocks

• d ln q = 1.40

• d lnλ = 0.04

Model

Data Full q-shock λ-shock

∆ aggregate LSa −17.8 −17.3 −16.3 −0.2

∆ median LSa 3.0 2.6 1.4 0.2

∆ CR4b 6.0 6.0 3.8 1.9

∆ ln agg. markup . 1.1 1.0 0.1
In percentage points. [a] Kehrig–Vincent (2020). [b] Autor et al
(2020): Average manuf. industry sales concentration.

24



Calibrating the Non-CES Demand system: Retail 1982–2012
• H(x) : Klenow-Willis aggregator ⇒ demand elasticity := σ · rel. quantity−

ν
σ

• σ = 6.1→ σ = 9.0
• ν/σ = 0.22→ ν/σ = 0.20

• Productivity process given by

z = exp
(

F−1
Weibull(ζ,n)(Φ(z̃))

)
, z̃′ = ρzz̃ + ϵ′z

which ensures that

ln z ∼Weibull(ζ, n)⇒ P(ln z ≥ x) = exp

(
−
(

x
ζ

)n)
• n = 0.78, ζ = 0.086→ n = 0.54, ζ = 0.023
• more log convex than in manufacturing details
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Transitional Dynamics: Retail 1982–2012

Automation and rise in
comp. calibrated to match

• decline in labor share

• observed rise in
concentration

Inferred shocks

• d ln q = 0.75 (1.40 in
manuf)

• d lnλ = 0.41 (0.04 in
manuf)

Model

Data Full q-shock λ-shock

∆ aggregate LSa −10.2 −10.3 −4.2 −2.0

∆ uw. mean LSb 4.4 4.2 −2.3 1.4

∆ CR4b 14.0 11.5 0.1 10.8

∆ CR20b 16.3 20.4 0.3 18.8

∆ ln agg. markup . 3.3 0.1 2.9
In percentage points. [a] BEA Multifactor Productivity Tables. [b]
Autor et al (2020).
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Model-based decomposition of sectoral labor share changes
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Figure: Data: Kehrig & Vincent for manufacturing, BLS MFP Tables for all other sectors.
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Outline

1. Model with CES demand to show implications of capital-labor substitution across firms

2. Model with non-CES demand to compare effects of competition and capital–labor
substitution

3. Model-free bounds on effect of reallocation and changes in markups on labor share
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Model-free Bounds on Markup Changes and Reallocation

• So far, only accounted for size-dependent component of markups.

• In the data, much more markup variation.

• Now allow for more general markup variation and reallocation (Baqaee–Farhi, 2020).

• Greater generality comes at cost of requiring firm-level markup estimates.
• Strong assumptions are inevitable (Compustat; prices). details

• We follow the literature (DeLoecker–Eeckhout–Unger, 2020) in using the production
function approach to recover output elasticities εv,f,t ⇒ markup µf,t =

εv,f,t
sv,f,t

.

• We allow technology (εv,f,t) to vary by time period, industry, and firm size.
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Finding: Clockwise Rotation in Elasticities

1960-1979
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2000-2016
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Output elasticity wrt variable inputs,
estimated for manufacturing firms in Compustat

As in model, clockwise rotation in εv,f,t ⇒ top firms switching to cap-intensive techs.
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Finding: Aggregate Markup

• Common technology, sales weighting
(DLEU headline): replicate strong
increase in aggregate markup

• Common technology, cost-weighting
(Edmond, Midrigan, Xu, 2018; BF): mild
increase

• Our estimate with heterogenous
technology and cost-weighting: no trend

Our estimates

Common technology

Common technology and
sales weighted

1.
1

1.
2

1.
3

1.
4

1.
5

1960 1970 1980 1990 2000 2010
year

Markups,
estimated for firms in Compustat
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Contribution to Labor Share Decline

• We can write the labor share of an industry i as

sℓt :=
εℓt
µt
,

• Holding fixed common technology εℓ,t (model and data pre-1980), compute
counterfactual labor share that reflects only changes in markups:

d ln scf
ℓt := −d lnµt where 1

µt
:=

∑
f
ωf,t

1
µf,t

.

• We further want to distinguish changes in this counterfactual labor share due to within
firm and reallocation component of markups.
• Expect that at firm level, markups fall → positive within component.
• ... and reallocation to high-markup firms → negative reallocation component.
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Finding: Contribution to Labor Share Decline
-.1

-.0
5

0
.0

5
.1

1980 1990 2000 2010

Manufacturing,
size-dependent technology
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Contribution
Within firm
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Other sectors,
size-dependent technology

Reallocation explains one fifth to one half of LS decline (within component weakens effect).
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Concluding Remarks

• Model of K–L substitution with a fixed cost per task matches firm-level facts on the
decline of labor share

• When accounting for rising competition and reallocation to more productive firms, K–L
substitution retains an important role

• explains 90% of the decline in labor share in manufacturing
• explains 50% of the decline in labor share in retail

• Model-free bounds on role of competition and concentration support these findings

• highlights importance of allowing for differences in technology across firms
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Appendix Slides
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Skewed Adoption of Capital Intensive Technologies
Acemoglu–Lelarge–Restrepo 2020: Industrial robots in France return
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Skewed Adoption of Capital Intensive Technologies
Lashkari–Bauer–Boussard 2019: IT in France return
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Skewed Adoption of Capital Intensive Technologies
US Census 2020: Advanced Business Techs in the US return
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Model: Incumbents

Incumbents begin period t with productivity z and automation level α.

1. Collect static profits (assume simple CES demand w/ elast. σ > 1 ⇒ constant markup):

π(z, α) = σ−σ(σ − 1)σ−1 · Y · c(z, α)1−σ.

2. Draw stochastic fixed operating cost cf and decide whether to continue.

3. If continue, decide whether and how much (α′ ≥ α) to automate at cost ca · (α′ − α).

4. Draw next period’s productivity level:

log(z′) = ρz log(z) + σzϵ
′
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Model: Entrants

Every period t, mass Me of potential entrants decides whether to enter:

1. A potential entrants receives a productivity signal ze from some distribution.

2. Potential entrants start with α = α0, which we set to equal the mean α of incumbents.

3. Decide whether to enter at stochastic fixed entry cost cf.

4. If enter, decide whether and how much (α′ > α0) to automate at cost ca · (α′ − α0).

5. Draw next period’s productivity level (production starts in t + 1):

log(z′) = ρz log(ze) + σzϵ
′
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Table: Calibration of the CES-demand model for manufacturing

Parameter Moment Data Model

I. Parameters governing steady state in 1982

ln q0 Inverse capital price −5.35 Manufacturing labor share from
Kehrig and Vincent (2020) 60.1% 60.2%

σ Demand elasticity 11.0 Aggregate markup from Barkai
(2020) 1.10 1.10

σz
Std. dev. of ln z
innovations 0.095 Top 4 firms’ sales share in 1982 from

Autor et al. (2020) 40.0% 40.0%

II. Parameters governing firm dynamics

cf Minimum fixed cost 6.0 · 10−6 Entry (=exit) rate from Lee and
Mukoyama (2015) 0.062 0.063

ξ Dispersion fixed cost 0.330 Size of exiters from Lee and
Mukoyama (2015) 0.490 0.485

µe Entrant productivity 0.935 Size of entrants from Lee and
Mukoyama (2015) 0.600 0.598

III. Parameters related to the elasticity of substitution

η
Task substitution
elasticity 0.4 Short-run K–L elasticity from

Oberfield and Raval (2014) 0.40 0.40

γ
Comparative
advantage 0.95 Long-run K–L elasticity from

Hubmer (2020) 1.35 1.35

return
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The Automation Cost ca

On average, in the relevant range, how much does it cost to increase α by an amount that
decreases the labor share by one percentage point?
⇒ The equivalent of just 0.6%–1.2% of average annual firm sales (across all firms, not just
automating ones)

return
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Model: Time series of shock (investment-specific technical change q)

1990 2000 2010 2020 2030 2040 2050

year
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Model: Aggregate Variables
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Model: History of One Particular Firm

return 45



Table: Steady state calibration of the non-CES demand model: Manufacturing

Parameter Moment Data Model

I. Parameters governing steady state in 1982
ln q0 Inverse capital price −6.55 Aggregate labor share 60.1% 60.2%
σ Demand elasticity 6.10 Aggregate markup 1.150 1.150
ν/σ Demand supra-elasticity 0.22 Median labor share ratio 1.169 1.101
ζ Weibull scale 0.086 Top 20 firms’ sales share 69.7% 69.7%
n Weibull shape 0.78 Top 4 firms’ sales share 40.0% 40.0%

II. Parameters governing firm dynamics
cf Minimum fixed cost 4.6 ·10−6 Entry (=exit) rate 0.062 0.063
ξ Dispersion fixed cost 0.310 Size of exiters 0.490 0.488
µe Entrant productivity 0.876 Size of entrants 0.600 0.601

Notes: Aggregate and median LS correspond time averages in manufacturing sector 1967–1982 (Kehrig and Vincent,
2020); median displayed as ratio over aggregate. Aggregate markup from Barkai (2020). Concentration measures are
from Autor et al. (2020): manufacturing sector in 1982. Model equivalents refer to top 1.1% and top 5.5% of firms
ranked by sales (on average 364 firms per 4-digit manufacturing industry). Data moments in Panel II follow the model
with CES demand. All eight parameters jointly calibrated to match the eight corresponding moments.
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Table: Steady state calibration of the non-CES demand model: Retail

Parameter Moment Data Model

I. Parameters governing steady state in 1982
ln q0 Inverse capital price −7.35 Aggregate labor share 70.4% 70.5%
σ Demand elasticity 9.0 Aggregate markup 1.150 1.150
ν/σ Demand supra-elasticity 0.20 Median labor share ratio 1.169 1.106
ζ Weibull scale 0.023 Top 20 firms’ sales share 29.9% 29.9%
n Weibull shape 0.54 Top 4 firms’ sales share 15.1% 15.1%

II. Parameters governing firm dynamics
cf Minimum fixed cost 5.2 ·10−7 Entry (=exit) rate 0.062 0.062
ξ Dispersion fixed cost 0.250 Size of exiters 0.490 0.488
µe Entrant productivity 0.868 Size of entrants 0.600 0.599

Notes: Aggregate LS corresponds to the BLS MFP estimate for the retail sector. The ratio median-to-aggregate is
from Kehrig and Vincent (2020); refers to manufacturing, since in retail the data does not allow to compute the labor
share of value added. Aggregate markup from Barkai (2020). Two concentration measures are from Autor et al. (2020),
correspond to retail in 1982. Model equivalents refer to top 0.023% and 0.116% of firms ranked by sales (on average
17,259 firms per 4-digit retail industry). All eight parameters jointly calibrated to match eight corresponding moments.
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Markup estimation: Assumptions return

A1 differences in the price of variable inputs reflect quality,

A2 revenue is given by a revenue production function of the form
ln yft = zft + ε

R
vc(f)t · ln vft + ε

R
kc(f)t · ln kft + ϵft,

where c(f) denotes groups of firms with a common technology and same process for
their revenue productivity, and ϵft is an i.i.d ex-post shock orthogonal to kft and vft

A3 unobserved productivity zft evolves according to a Markov process of the form
zf, t = g(zft−1) + ζft,

where ζft is orthogonal to kft and vft−1, and

A4 the gross output PF exhibits CRTS in capital and variable input ⇒ quantity elasticities

εvft = εR
vc(f)t

/(
εR

vc(f)t + ε
R
kc(f)t

)
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Markup estimation: Method

1. First-stage regression to purge measurement error:

ln ỹft = E[ln yft| ln xft, ln kft, ln vft, t, c(f)] = h(ln xft, ln kft, ln vft; θc(f)t).

2. Second stage: Given any pair of revenue elasticities εR
vc(f)t and εR

vc(f)t compute

z̃ft = ln ỹft − εR
vc(f)t · ln vft − εR

kc(f)t · ln kft,

estimate the flexible model

z̃ft = g(z̃ft−1; θc(f)t) + ζ̃ft,

and form the following moment conditions that identify the revenue elasticities:

E
[
ζ̃ft ⊗ (ln kft, ln vft−1)

]
= 0.
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