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1 Introduction

Balancing economic growth with the negative side effects of industrialization—such as pollution—

is a central problem of governments in emerging economies. Nowhere is this problem more

important or consequential than in China. As Figure 1 shows, energy regulation is of national

and global importance given that the industrial energy use of China overshadowed that of other

leading economies in the early years of the 21st century.

This paper studies the effects of a large program aimed at curbing the energy use of Chinese

industrial firms. The regulation that we study—the “Top 1,000” program—targeted the largest

energy-consuming firms in the most energy-intensive industries. The regulation was designed

following examples of “voluntary agreement” programs in developed countries that relied on the

belief that firms could significantly reduce their energy use by improving their energy efficiency.

The implementation of the program was adjusted to local institutions and constraints, with

the result that in practice, lowering energy consumption became the main regulatory objective.

Understanding the effects of this regulation is central to broader questions of energy regulation

in China. This is both because the firms regulated by this program accounted for 47% of total

industrial energy use in China in 2004 and because the perceived success of the regulation led

the government to significantly expand the program in later years.

This paper asks three questions that characterize the effectiveness of the Top 1,000 program.

Importantly, these questions account for the fact that industrial firms in China are often part of

much larger business networks. First, do regulated firms comply with the program by improving

energy efficiency, by reducing economic activity, or by shifting production to non-regulated firms

that are part of the same conglomerate? Second, how does the ability of conglomerates to

(partially) escape the regulation impact the shadow cost of regulatory programs? Finally, can

governments use information on conglomerate networks to improve energy regulation?

We combine difference-in-differences research designs with a quantitative model to study

the effectiveness of the Top 1,000 program. First, using a difference-in-differences strategy, we

estimate that regulated firms reduced their energy use by 13%–16%. Regulated firms achieved

these reductions by lowering output; we find no impact on their energy efficiency. Second, we use

detailed data on business networks to study how conglomerates reallocated production across

related firms. Using a second difference-in-differences design, we find that unregulated firms in

the same conglomerate as regulated firms increased both output and energy use. This result

uncovers an important margin of adjustment that allowed Chinese conglomerates to shift 40%

of the output decline in regulated firms to unregulated affiliates. Third, we specify and estimate

a model of conglomerate production that matches our setting and the estimated impacts of the

policy. We quantify that the ability of conglomerates to shift production lowered the shadow

cost of the regulation from 11.2% of energy costs to 8.1%. Finally, we show that the government
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can use public information on conglomerate networks to design a conglomerate-level regulation

that would achieve the same energy-use reduction at a shadow cost of 5.4% of energy costs.

Overall, we find that while the regulation reduced the energy consumption of large firms,

the promise of achieving these savings through improved energy efficiency failed to materialize.

Instead, regulated firms reduced their energy use by decreasing their output and by reallocat-

ing part of the lost economic activity across business networks, which significantly lowered the

policy’s impact on energy reduction. While the ability to shift production lowered the shadow

cost for regulated conglomerates, the Top 1,000 program forced firms to shift production to less

productive affiliates. Our results also show that the government can significantly improve the

design of energy regulation by using publicly available data on business networks.

We develop these results in three steps. First, we implement a difference-in-differences strat-

egy using firms in similar industries that were regulated in later years as controls. We use an

event-study specification to show that Top 1,000 firms had similar trends to unregulated firms

prior to the regulation. We estimate that regulated firms reduced their energy use by about

13%–16%. These estimates are robust to inclusion of industry-by-year and province-by-year

fixed effects and controls for firm characteristics. Since the regulated firms consumed 670 million

tons of coal equivalent in 2004, the direct reduction in energy use amounted to close to 100 mil-

lion tons of coal equivalent. However, we also document that these firms saw a decline in output

of between 11% and 23%, and we do not find meaningful or statistically significant changes in

energy efficiency. The lack of gains in energy efficiency suggest two hypotheses. The first is that

firms had limited potential to increase energy efficiency from a technological perspective—i.e.,

there was no “low-hanging fruit” (e.g., Allcott and Greenstone, 2012). A second hypothesis is

that firms were able to escape the regulatory burden by shifting production to related parties.

Our second set of analyses leverages detailed business registration data to map the conglom-

erate networks of regulated firms. If regulated firms were able to escape the regulation by shifting

production to related parties, we would expect to see an increase in both the output and en-

ergy use of firms linked to regulated firms through ownership networks. We test this hypothesis

using a difference-in-differences strategy that compares non-regulated but related firms to non-

regulated and non-related firms. To ensure that these two groups of firms are similar, we use

a matching procedure based on pre-regulation characteristics to find a suitable set of control

firms. These analyses show that after the reform, regulated conglomerates shifted production

to unregulated firms. Specifically, we find an increase in firm output of 13% as well as similar

increases in other measures, such as profits, sales, assets, and employment. Importantly, we only

find increases in the economic activity of related firms when their line of business coincides with

the narrowly defined (4-digit) industry classification of the regulated firm. As a placebo test, we

show that firms in other industries did not see an increase in economic activity. Because related
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firms are smaller than regulated firms, we calculate that conglomerates were able to shift 40%

of the output decline in regulated firms to related parties. Thus, while firms were able to escape

a significant fraction of the regulatory burden, the incomplete shifting of output and the null

effects on the energy efficiency of regulated firms suggest that firms still faced significant costs

of improving their energy efficiency. Finally, we show that following the regulation, related firms

also increased their energy use.

Our last set of analyses use a model of conglomerate production to quantify the economic

mechanisms underlying our reduced-form results. The model matches key facts of conglomerate

production as well as the reduced-form effects of the regulation. Using the model, we show

that size-based regulations such as the Top 1,000 program distort the allocation of production

across related firms. The model clarifies that conglomerate-level spillovers are a distinct force

from market spillovers and that ignoring this mechanism would lead to over-estimation of the

impact of the policy on regulated firms and on industry-level outcomes. Our estimated model

quantifies the shadow cost of the Top 1,000 program at 8.1% of energy costs. The ability of

conglomerates to shift activity across related firms decreased the shadow cost from over 11.2%

to 8.1% of energy costs, relative to those in a hypothetical case where regulators successfully

prevented conglomerates from shifting production to related firms. Supposing instead that the

government regulated the total energy use of the conglomerate would further reduce the shadow

cost of the regulation by 34%. Finally, we also show that an input tax of 5.5% would yield a

similar reduction in energy use and that such a policy would not distort the within-conglomerate

allocation of production.

This paper contributes to our understanding of whether energy regulations and interventions

aimed at improving energy efficiency are effective in developing countries (e.g., Duflo et al., 2013,

2018; Greenstone and Jack, 2015; Ryan, 2018; Ito and Zhang, 2020). In the Chinese context,

the government’s use of high-powered incentives that tie environmental performance to cadre

promotion has been shown to provide a strong mechanism to enforce environmental policies

(Kahn et al., 2015; He et al., 2020). In their discussion of recent efforts to curb energy use in

China, Auffhammer and Gong (2015) note that the Top 1,000 program along with its expanded

version in later years are the “most significant national programs” focusing on energy efficiency

and energy conservation. Using industry-level data, Ke et al. (2012) argue that the Top 1,000

program led to significant declines in the energy intensity of regulated sectors. By using detailed

firm-level data and by tracing the effects of the regulation along business ownership networks,

our results provide a fundamental reassessment of the effectiveness of the Top 1,000 program.

The result that the Top 1,000 program impacted economic activity at regulated and non-

regulated firms contributes to the literature studying the economic costs of regulations. In the

US, researchers have documented significant effects of environmental regulations on economic
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activity (e.g., Greenstone, 2002; Greenstone et al., 2012; Walker, 2013; Curtis, 2018). He et

al. (2020) show that Chinese firms that face more stringent regulations experience significant

decreases in productivity. Our paper contributes to our understanding of the economics cost of

energy regulation in China, which consumes the lion’s share of global industrial energy.

Researchers have also documented that regulations can lead to spillover effects along firm

networks. For instance, Hanna (2010) finds that multinational firms respond to environmental

regulation by increasing investment in foreign countries and Gibson (2019) and Soliman (2020)

find that firms may also shift economic activity to unregulated plants in counties that are subject

to less stringent regulations. Conglomerate spillovers are particularly important in our setting

since the Top 1,000 program targeted very large firms with extensive ownership networks. Our

detailed business registration data therefore provide an unique view into how this regulation

affected the production decisions of large Chinese conglomerates and how conglomerates impacted

the effectiveness of the regulation. Our model leverages these spillovers to quantify the marginal

cost of the regulation using the fact that conglomerates incur a loss in productivity when they

shift production to related firms (see, e.g., Anderson and Sallee, 2011).

Our paper also takes into account the role of market competition in environmental regulation.

We abstract from strategic interactions between firms in a setting with monopolistic competition

since we study manufacturing industries with a large number of firms that compete in national

markets.1 Accounting for market effects remains important in this setting since the regulated

firms combined are responsible for a large share of industrial output. Our paper shows that

conglomerate spillovers are distinct from market competition and play a quantitatively important

role in the context of China.

This paper is organized as follows. Section 2 describes the policy context and the data that

we use to measure firm responses to the regulation as well as the ownership networks of regulated

firms. Section 3 estimates direct effects of the Top 1,000 program on regulated firms, and Section

4 estimates indirect effects on unregulated firms that belong to the business networks of regulated

firms. Section 5 describes our model of conglomerate regulation, and Section 6 estimates the

model parameters. Section 7 uses the model to quantify the shadow cost of the policy and to

analyze distributional and aggregate effects of the regulation. Section 8 concludes.

2 Policy Background and Data

This section describes the Top 1,000 energy savings program. We also describe the different

datasets that we use to measure economic activity and energy use as well as our strategy to map

the ownership networks of Chinese conglomerates.

1Studies of energy regulation with strategic interaction often focus on concentrated industries (see, e.g.,
Mansur, 2007; Fowlie, 2009; Ryan, 2012; Fowlie et al., 2016).

4



2.1 The Top 1,000 Program

To save energy and reduce related pollution, the Chinese government’s 11th Five-Year Plan

(11FYP) set an ambitious goal of reducing the country’s energy intensity—defined as energy

consumption per unit of GDP—by 20% between 2006 and 2011 (Price et al., 2010). Since

the industrial sector accounts for 70% of total energy consumption, the government designed

policies that focused on nine energy-intensive industries, which accounted for 80% of the country’s

industrial energy use. One of these key initiatives was the Top 1,000 Energy Saving Program,

which targeted the firms with the highest energy consumption in the most energy-intensive

industries.

The Top 1,000 program was first announced by the National Development and Reform Com-

mission in April 2006, and the corresponding monitoring and assessment measures were released

in 2007. The name Top 1,000 refers to the 1, 008 industrial firms in the nine energy-intensive

industries with energy consumption above 180 thousand tons of coal equivalent in 2004. The

total energy consumption of these 1,008 “super-firms” was 670 million tons of coal equivalent

in 2004, accounting for 47% of China’s industrial energy consumption and 33% of China’s total

energy consumption. Importantly, since the policy was announced in 2006 and selected firms

based on their retrospective 2004 energy consumption, it was not possible to manipulate the list

of participants in the program. Moreover, the list of firms regulated by the program did not

change during the five-year period. Table 1 reports the number of firms and their share of energy

consumption in each of the regulated industries. Among Top 1,000 firms, firms in the iron and

steel, chemical, and electric power industries accounted for around 63% of the firms and 68% of

the regulated energy consumption in 2005.

The Top 1,000 program was designed based on the belief that Chinese industries could signif-

icantly increase energy efficiency at a low cost (e.g., McKinsey & Co., 2009). The program was

influenced by voluntary agreement programs in developed countries and had two stated goals: to

significantly increase the energy efficiency of these super-firms and to reduce energy consumption

by a total of 100 million tons of coal equivalent by 2011. Given the quick implementation of

the program, many aspects of voluntary agreement programs (such as providing technological

expertise or financing energy efficiency improvements) played a relatively minor role (Price et al.,

2010). In practice, firms were regulated based on energy use only and not on energy efficiency.

To implement the policy, the central government assigned a target reduction in energy use

to each provincial government. In turn, local officials negotiated individual quotas with each

of the Top 1,000 firms. Leaders of provincial governments and state-owned enterprises were

then evaluated on whether these energy saving targets were met. As a result, local government

officials monitored and enforced the energy saving targets of the Top 1,000 firms very closely.2

2Under the “one-vote veto” criteria, officials would not be considered for promotions or awards if the province
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This strict supervision is evident in Table A.11, where we report the results of the government’s

annual assessment. This table shows that the compliance rate is very high. In fact, the total

energy saving target was achieved in 2008, two years ahead of schedule. At the end of the 11FYP,

the government estimated energy savings of 165.49 million tons of coal equivalent, far beyond the

original target of 100 million tons. Among the regulated firms that successfully achieved their

reported energy saving targets, the average completion rate was over 250%.

Due to the successful experience during the 11FYP, the Top 1,000 program was expanded into

the “Top 10,000” Energy Savings Program during the 12th Five-Year Plan (12FYP) in 2012. In

this case, the Top 10,000 refers to 16,076 energy-intensive firms with energy consumption above

10 thousand tons of coal equivalent in 2010. These firms account for 60% of China’s total energy

consumption. As in the Top 1,000 program, firms among the Top 10,000 were required to improve

their energy efficiency with a goal of saving a total of 250 million tons of coal equivalent during

the 12FYP. Our primary analysis focuses on the Top 1,000 firms between 2001 and 2011. Since

the industrial firms in the Top 10,000 (but not in the Top 1,000) were also energy intensive but

were not regulated during the 11FYP, they serve as useful controls in our empirical analysis.

2.2 Firm Data

Our empirical analyses combine several rich data sources. The first dataset that we use is the

Annual Survey of Industrial Firms (ASIF) from the National Bureau of Statistics (2001–2009

and 2011).3 This dataset provides detailed information on a firm’s industry, address, ownership,

output, and financial information and covers all industrial firms with annual revenue above 5

million RMB (approximately 800,000 USD).

We merge these data with the lists of regulated firms using both firm name and a unique legal

identifier. These lists are published by the National Development and Reform Commission. The

lists of Top 1,000 and Top 10,000 firms include information on the evaluations of each regulated

firm, the firm-level energy saving target, and the annual compliance rate.

We complement these data with two additional datasets. First, we collect detailed information

on firm energy consumption from 2001 to 2010 from China’s Environmental Statistics Database

(CESD) provided by China’s Ministry of Environmental Protection. Second, to fill in missing

data on firm investment and assets in the ASIF, we also merge data from the Annual Tax Survey

(ATS) for 2009 and 2010.4

or any of the local Top 1,000 firms did not achieve their targets. Similarly, the leaders of state-owned enterprises
that did not meet the target did not receive annual bonuses. In this way, the Chinese setting contrasts with other
developing country settings where the design of incentives for energy auditors plays a key role (e.g., Duflo et al.,
2013, 2018).

3As is well known in the literature, data for the 2010 ASIF display a number of irregularities and are often
excluded from statistical analyses.

4To ensure a high-quality merge, we eliminate firms where differences in investment and assets between the

6



Panel A of Table 2 shows the results of our data construction. Since the Top 1,000 and Top

10,000 firms are all large firms, the match rate with the ASIF is very high. We match over 99%

of the Top 1,000 firms and over 97% of the Top 10,000 firms. We also have a fairly good match

rate with the CESD, where we match over 80% of Top 1,000 and over 65% of Top 10,000 firms.

Overall, our combined datasets capture the majority of the economic activity in the Top 1,000

and Top 10,000 firms.

Panel A of Table 2 reports summary statistics for the Top 1,000 and Top 10,000 firms in our

sample. Our sample includes about 8,700 observations for Top 1,000 firms and 87,000 obser-

vations for Top 10,000 firms over a period of 10 years. Because the CESD only reports energy

consumption from primary sources (e.g., coal, oil, gas), our analyses of energy use and energy

efficiency exclude firms in industries that mainly rely on electricity.5 For this reason, the sample

of firms with energy consumption data is smaller.

As we show in Panel A of Table 2, Top 1,000 firms are larger, older, more likely to be state

owned, and more export oriented than Top 10,000 firms. This table also shows that Top 1,000

firms are slightly less energy efficient (defined as the ratio of energy use to output) than Top

10,000 firms. However, this difference is driven mostly by industry differences, since Top 1,000

firms are more likely to be in energy-intensive heavy industries.

2.3 Mapping Conglomerate Networks

To study how conglomerates responded to the regulation, we first need to identify firms’ own-

ership networks. Our ownership data come from China’s Administrative Registration Database

(CARD). These data are collected by the State Administration of Industry and Commerce and

include the registration information of all firms in China starting in 1980, including firm name,

registration number, date of establishment, address, ownership, registered capital and related

legal persons. Importantly, the data provide detailed shareholder information, which allows us

to construct firm ownership networks at multiple levels.

We construct ownership networks using the four types of linkages displayed in Figure 3. First,

we include wholly owned affiliates of regulated firms as related parties. Second, we also include

firms that are at least partially owned by regulated firms. Our data allow us to identify firms

that are related through multiple levels of investment. We consider firms to be related if they

are owned by a regulated firm by up to two levels of investment relations. Although in practice

most related firms are fully owned, we require that the regulated firm owns at least 25% of the

related firm at each level of investment. Third, we include shareholders of regulated firms, and we

allow up to two levels of shareholder links. Finally, we also include firms that are fully or partly

ASIF and the ATS exceed 25%.
5In practice, we exclude industries where electricity consumption accounts for more than 30% of the total

energy consumption.
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owned by the shareholders of a regulated firm. We also allow for two levels of investment, and

we require ownership to be at least 25% at each level.6 Since the government has no incentives

to help firms shift production, we exclude all related firms that are only connected to regulated

firms through government entities.

Panel B of Table 2 reports the results of matching our registration data with our data on

firm outcomes. Under our baseline definition, we can identify 80,341 related parties of Top 1,000

firms in the CARD. Since most of these firms are small, we match 10,944 firms in the ASIF. In

our baseline regressions, we require related firms to be in the same 4-digit industry as a related

Top 1,000 firm.7 Since a large number of related parties are service firms or small firms that

are not recorded in the ASIF, our main sample of related firms includes 2,500 industrial firms.8

A potential concern with CARD data is that some of the related firms may not be engaged in

production and may, in fact, be holding companies. One advantage of merging the CARD data

with the ASIF and the CESD is that this ensures that our results are driven by real economic

activity in industrial firms. Since it is likely very hard to shift production to firms in other

narrowly defined industries, we analyze firms in the same 2-digit industry but outside of 4-digit

industries in a placebo test.

Panel B of Table 2 also examines the robustness of our network definitions to alternative

assumptions. Allowing for up to six levels of relations does not have a large effect on our sample

of related firms in the same 4-digit industry. Decreasing the ownership requirements to 20% has

a small effect on the number of related firms, and the number of related parties is even somewhat

stable when we increase the ownership ratio to 51%. These results suggest that within narrowly

defined industries, firm ownership networks are very compact.

The merged CARD and ASIF data reveal some interesting patterns of firms that operate in

the same 4-digit industry. First, we find that Top 1,000 firms have an average of 2.48 related

parties in narrowly defined industries. Second, since Top 1,000 firms are, in most cases, the

largest firms in each industry, their related parties are smaller. On average, the output of related

firms is 18.9% of the output of regulated firms. These facts imply that conglomerates may have

significant scope to substitute production with similar technology across related firms.9

However, it is also unlikely that related parties can fully make up for production declines in

Top 1,000 firms. Third, firms within conglomerates have an interesting relative size distribution.

To produce Panel A of Figure 2, we compute each firm’s size relative to the largest firm in the

6Figure A.11 depicts all the possible links that we consider.
7A related party of multiple Top 1,000 firms is classified as a same-industry related party as long as it is in

the same industry as one of its related Top 1,000 firms.
8Omitting firms in unrelated industries is unlikely to affect our results since super-firms like Top 1,000 firms

would not be able to shift production to service firms or to very small firms.
9In Chen et al. (2021), we show that most related parties of regulated firms are located in the same province

as the regulated firm. For this reason, we do not expect that substitution of production across related parties
will significantly affect the geographic distribution of energy use or related pollution.
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group; we then plot the average relative size by firm rank. A striking fact of this graph is that

the average relative size within a conglomerate declines sharply with firm rank: the second-

largest firm in a conglomerate is only 28% as large as the largest firm, on average. Interestingly,

the decline in relative firm size follows an almost geometric decline, a fact that we use in our

structural model. Finally, Panel B of Figure 2 shows the relation between the output of the

largest firm and the number of firms in a conglomerate. The fact that conglomerates with more

firms also have larger leading firms suggests that the number of firms in a conglomerate might

depend on technological efficiencies that are shared by all firms in a conglomerate.

3 Effects of the Policy on Regulated Firms

As detailed in Section 2, the Top 1,000 program set energy saving targets for each regulated

firm. To study the effects of the policy, we compare the effect on these firms relative to the

performance of other large firms that also operate in energy-intensive industries. Specifically, we

use firms that are regulated after 2011 as part of the Top 10,000 program. Because firms in the

same conglomerate as a regulated Top 1,000 firm may be indirectly affected by the policy, we

remove these firms from the set of control firms.

The identifying assumption of this difference-in-differences analysis is that absent the Top

1,000 regulation, the energy use and output of Top 10,000 firms would have trended similarly

to that of Top 1,000 firms. To provide evidence that these firms had similar trends prior to the

implementation of this regulation, we use firm data from the CESD to estimate an event-study

analysis of the form:

Yijkt =
2010∑

τ=2002

βτ × Treati × Y earτ + αi + ηjt + δkt + εijkt, (1)

where Yijkt is a dependent variable for firm i in industry j, province k and year t. Treati is

an indicator for the treatment group, which equals 1 for Top 1,000 firms and 0 for Top 10,000

firms. The coefficients βτ from this specification represent differences in the dependent variable

between Top 1,000 and Top 10,000 firms in each year. Given that the policy evaluation began in

2007, we identify the effects of the policy relative to performance in 2006. We include firm-level

fixed effects αi in all regressions, and we also allow for (4-digit) industry-by-year fixed effects ηjt

as well as province-by-year fixed effects δkt. We cluster standard errors at the firm level.

Figure 4 presents a visual implementation of our difference-in-differences estimation strategy.

Panel A in Figure 4 displays the βτ coefficients when the outcome variable is firm-level energy use

(total coal consumption equivalent). This figure shows that prior to the implementation of the

regulation, our treatment and control firms had similar trends. Additionally, this figure makes

clear that the policy did indeed succeed at lowering the energy use of regulated firms relative to
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that of non-regulated firms.10 Panel B of this figure compares these year-by-year effects to the

overall trend in energy consumption.11 As this figure shows, the program successfully arrested

the explosive growth in the energy use of regulated firms.

To quantify the overall effects of the policy, we estimate difference-in-differences specifications

of the form:

Yijkt = βTreati × Postt +X ′itγ + αi + ηjt + δkt + εijkt, (2)

where Postt is an indicator that equals one after 2006. In addition to different fixed effects, some

specifications control for firm characteristics Xit, which include indicators for state-owned firms

and exporting firms, measures of profitability (e.g., return on assets), and firm age. Panel A of

Table 3 shows that on average, the total energy consumption of regulated firms decreased by

13%–16%. These estimates are stable across specifications that include different levels of fixed

effects and firm controls. To understand the magnitude of this effect, recall that regulated firms

consumed 670 million tons of coal equivalent in 2004. The coefficients in Table 3 therefore imply

annual reductions in energy use of close to 100 million tons of coal equivalent, or about 20% of

the total industrial energy use of the European Union.

To discern whether this reduction in energy use is driven by changes in economic activity or

in energy efficiency, we now estimate the effects of the program on firm output (i.e., revenue).

Panels C–D of Figure 4 show that after the reform, firm output in regulated firms also decreased

significantly. Indeed, Panel B of Table 3 reports declines in output between 11% and 23%, de-

pending on the specification.12 Accounting for the declines in output implies that the policy had

limited impacts on energy efficiency. Panels E–F of Figure 4 show that we cannot reject the null

hypothesis that the policy had no impact on energy efficiency. Based on the specification with

both industry- and province-by-year fixed effects of Panel C of Table 3, the 95% confidence inter-

val rules out that the policy increased energy efficiency by more than 4%, which is significantly

below the government’s goal of improving energy efficiency by 20%.13

The effects of the policy on regulated firms paint a mixed picture of its success. On one

hand, the regulation succeeded at achieving a meaningful reduction in the energy use of energy-

10One potential concern is that our results may be contaminated by mean reversion. Because firms were
regulated based on their 2004 energy use, one possibility is that regulated firms had idiosyncratically large levels
of energy use in 2004 that reverted to lower levels in later years. As this and other similar graphs show, the
outcomes for 2004 are not significantly different from those for 2001–2003, and we also do not see large differences
with the outcomes for 2005–2006.

11For visual clarity, Panels B, D, and F of Figure 4 follow Ohrn (2018) by plotting trends for the control group
that has the same average in the pre-period as the treated group.

12In Table A.15 and Figure A.12 we also show that regulated firms experience a decline in the probability of
investing after the regulation was enacted. Additionally, we test the Porter and van der Linde (1995) hypothesis
by examining whether firms became more innovative after the regulation. Figure A.17 shows that we do not see
an increase in the filing of patents related to energy efficiency in regulated firms.

13As we discuss in Section 2, these analyses exclude industries that primarily rely on electricity. Table A.16
shows that our results are robust to excluding more or fewer industries based on their electricity use.
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intensive firms. However, this reduction did not come about through a significant increase in

energy efficiency, which—while not directly targeted—was one of the underlying intents of the

policy.

One concern with these results is that our difference-in-differences specifications may be

contaminated by spillover effects. Indeed, as we show below, non-regulated firms that operate

in more tightly regulated industries saw increases in output following the implementation of

the regulation. Our results above temper the importance of this concern in two ways. First,

Figure 4 shows that control firms did not grow at faster rates after the regulation was put in

place. Second, our results are robust to inclusion of industry-by-year fixed effects, which may

partial out some of the market-level spillover effects. In Section 6, we use our model to clarify

the importance of market-level spillovers. While our model is consistent with the existence of

spillovers, the estimated effects of the policy are mostly due to declines in the energy use and

output of regulated firms.

The next section studies whether conglomerates avoided the burden of the regulation by shift-

ing economic activity to related parties. While the existing literature recognizes the importance

of accounting for market-level spillovers, we show that spillovers that are transmitted through

ownership networks constitute a distinct margin through which conglomerates adjust to energy

regulations.

4 Spillover Effects of the Policy through Ownership

Networks

Regulated firms have strong incentives to shift production to related parties. By shifting pro-

duction, conglomerates can partially offset the declines in economic activity in regulated firms

and prevent competitors from increasing their market share. Moreover, shifting profits to re-

lated parties allows conglomerates to comply with the letter of the regulation—if not with its

intent—without having to invest in potentially costly improvements in energy efficiency.

To measure the empirical importance of conglomerate spillovers, we use CARD data on the

ownership networks of regulated firms to identify firms that may have indirectly expanded as a

consequence of the Top 1,000 regulation. We then use matching methods to identify controls

firms that were (1) not part of the Top 1,000 program, (2) not related to a regulated firm, and (3)

in the same industry and of similar size (measured in output) in the years prior to the regulation.

Using these firms as controls, we then conduct event-study and difference-in-differences analyses

using specifications similar to those in Equations (1) and (2). In this setting, however, the Treati

variable is now an indicator of whether a firm is related to a Top 1,000 firm. As we discuss in

Section 2, we focus our study of spillovers on firms in the same 4-digit industry as the regulated
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firm. This restriction follows from the logic that only firms selling similar products to those of

the regulated firms may be able to make up for the decline in production of Top 1,000 firms.

Figure 5 plots the results of these event-study analyses using ASIF data. Panel A shows that

prior to the regulation, related firms had similar trends in output to those of unrelated firms.

After the regulation, however, firms related to Top 1,000 firms saw significant increases in output

that persisted for several years. Panel A of Table 4 shows that after the regulation, related firms

expanded by 13%, on average. This table also shows that we obtain very similar results across

specifications with different levels of fixed effects as well as firm-level controls.

To gauge the magnitude of these spillover effects, it is important to account for the number

of related parties of each regulated firm as well as for their relative size. On average, Top 1,000

firms have 2.48 related parties. However, since the average related firm is only 18.9% as large

as its regulated counterpart, we calculate that conglomerates shifted close to 41% (≈ 2.48 ×
18.9%× 13.3%/15.2%) of the output decline in regulated firms.14 This result is informative for a

couple of reasons. First, this result shows that conglomerates were not able to fully circumvent

the regulation. Second, combined with the null effect of the program on the energy efficiency

of regulated firms, this result shows that firms were unable or unwilling to increase the energy

efficiency of their production processes even if it meant losing profits to competitors.

While the average spillover effect allows us to gauge the magnitude of the overall spillovers,

we also document interesting differences in spillovers across related firms. Panel B of Table

4 shows that related firms in higher terciles of the size distribution display larger increases in

output. This result suggests that larger firms were more able to expand or, alternatively, that

larger firms had excess production capacity. We also find that related firms that are more likely

to be controlled by regulated firms show larger increases in output. Specifically, affiliates and

firms in which regulated firms have an investment stake show larger output increases than firms

related through shareholders or shareholders’ investments (see Figure A.13).

The result that related firms display an increase in economic activity is robust to a number

of checks. First, we show that we obtain similar results when we use one-to-one matching, three-

to-one matching, or entropy balancing to find controls for related firms (see Panel A of Figure

A.14 and Figure A.15). Second, Panel C of Table 4 shows that we find positive spillovers to other

measures of economic activity including sales, profits, assets, fixed assets, and employment (see

Figure A.14 for corresponding event studies). Third, these results are robust to dropping firms

in power generation (see Table A.17 and Figure A.16). Fourth, we show that only those related

14Note that we obtain a smaller estimate of 30% when we instead rely on the estimate of the effect on the
output of regulated firms of 21% (i.e., 30% ≈ 2.48 × 18.9% × 13.3%/21%). We can also gauge the sensitivity
of this estimate to the measurement of business networks. Supposing that regulated firms had an average of 3
related firms (a 20% increase in the number of relations), spillovers would account for 50% of the output decline
in regulated firms (i.e., 50% ≈ 3× 18.9%× 13.3%/15.2%).
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firms that operate in the regulated firms’ own narrowly defined industries—and that could thus

possibly produce substitute output—show an increase in economic activity. Indeed, Panel B of

Figure 5 and Panel A of Table 5 show that we find no impact on the output of related firms that

operate outside the 4-digit industry of the regulated firm (but that are still in the same 2-digit

industry). This placebo test is important, as it rules out the possibility that firms related to

large conglomerates saw increases in economic activity after 2007, say, in response to the financial

crisis or other shocks or trends.

Having established that conglomerates shifted output across related parties, we now explore

whether these firms also saw changes in energy use and energy efficiency. Panels C and D of

Figure 5 report these results using data from the CESD. Panel C shows that related firms saw an

increase in energy use after the regulation. Panel B of Table 5 shows that energy use in related

firms increased by 34%–38% after the regulation. However, since related firms are smaller than

regulated firms, they are less likely to be included in the CESD. While the available data include

firms across all affected industries, the number of observations in this panel is smaller than that

in Panel A of Table 4. For this reason, caution is warranted in ascribing these increases in energy

use to all related firms. Panel D of Figure 5 and Panel C of Table 5 shows that these firms did

not experience statistically significant changes in energy efficiency.

Overall, we find robust evidence that conglomerates shifted production across related parties.

On average, this shifting behavior allowed conglomerates to recover 41% of the output reduction

in regulated firms. Our structural model in the next section uses these results to quantify how the

ability to shift production between related firms lowered the shadow costs of the regulation. We

find larger spillover effects for larger related parties as well as firms more likely to be controlled by

regulated firms. Finally, we also find suggestive evidence that related parties also increased their

energy use. While we do not find significant changes in the energy efficiency of related firms, the

fact that these firms are smaller suggests that they are—on average—less energy efficient than

regulated firms. Therefore, it is likely that the overall spillover effect on energy use was larger

than the overall output spillover, leading to compositional losses in energy efficiency.

Market-Level Spillovers

Since related parties could not make up the entire output loss of Top 1,000 firms, other firms

in regulated industries may have been indirectly affected by the energy saving program due to

reduced competition. To examine this indirect effect of the regulation, we estimate the following

difference-in-differences specification:

Yijt = βspilloverj × Postt +X ′itγ + αi + τt + εijt, (3)
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where spilloverj is the proportion of the total energy saving targets of Top 1,000 firms for industry

j relative to the total energy consumption of industry j in 2006. To interpret the coefficient β as

the average spillover effect, we normalize the spilloverj variable by the average exposure across

all industries. Since the variation in the independent variable is at the industry-year level, we do

not include industry-by-year fixed effects in this regression but instead use firm fixed effects and

year fixed effects only.15 Finally, to ensure that market-level spillovers are not contaminated by

ownership-network spillovers, we exclude firms related to Top 1,000 firms from this specification.

As shown in Table 6, unregulated firms in industries with stricter regulation increased their

output significantly after the policy was implemented. Across all industries, we find that the

average market-level spillover led to a 7%–10% increase in the output of non-regulated firms.

Note that the regressions in the first two columns of this table include both regulated and

unregulated industries. We find larger increases (8%–14%) when we include firms in regulated

industries only. Note that in this case, the identifying variation is driven solely by differences in

regulation intensity across industries.

These results yield a couple of insights. First, these findings further confirm our previous

estimates that related parties were not able to make up for the full output loss of Top 1,000

firms. Second, a full accounting of the spillover effects of the regulation needs to include both

within-conglomerate spillovers as well as market-level spillovers. To study the distribution and

aggregate impacts of the Top 1,000 program, the next section develops a model of conglomerate

production where regulations impact regulated firms, non-regulated firms that are part of the

conglomerate, and unrelated competitors.

5 A Model of Conglomerates with Regulation

This section presents an industry equilibrium model of conglomerates that is consistent with

cross-sectional data patterns and reduced-form responses to the policy of energy regulation. We

use the model to interpret our difference-in-differences estimates, to compute the shadow cost

of the regulation at the conglomerate level, and to quantitatively evaluate the aggregate and

distributional impacts of the regulation.

5.1 Demand and Technology

Our industry equilibrium model draws the structure of product differentiation and monopolistic

competition from Melitz (2003). We consider an individual sector with an exogenous aggregate

expenditure R. The representative consumer has CES preferences over a continuum of varieties

15Note also that the variation in spilloverj is absorbed in our previous specifications that include industry-by-
year fixed effects.
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ω ∈ Ω:

U =

[∫
ω∈Ω

q(ω)ρdω

]1/ρ

,

where q(Ω) represents the consumption level of variety ω and σ = 1/(1 − ρ) > 1 denotes the

elasticity of substitution between varieties. Utility maximization by the representative consumer

yields the following residual demand curve for each variety ω:

q(ω) = RP σ−1p(ω)−σ,

where P = [
∫
ω∈Ω

p(ω)1−σdω]
1

1−σ is the aggregate price index.

We define a conglomerate in our model by the presence of a variety ω that can be manu-

factured by multiple affiliates. Each conglomerate starts with a central producer—the model

counterpart of a Top 1,000 firm. Conglomerates have heterogeneous production efficiencies φ,

which are drawn from the distribution G(φ) with density g(φ).

Production at each affiliate i requires capital ki, energy ei, and variable inputs li. Energy and

variable inputs are combined using Leontief technology l̃i = min{li, eiνi}, where νi is the affiliate’s

energy efficiency. The assumption that energy and variable inputs are perfect complements

follows recent work in this area (e.g., van Biesebroeck, 2003; Fabrizio et al., 2007; Gao and

Van Biesebroeck, 2014; Ryan, 2018).16 Production at affiliate i is then qi = φil̃
αl
i k

αk
i , which is

subject to decreasing returns to scale, i.e., α = αk + αl < 1. The decreasing-returns-to-scale

assumption is consistent with the literature on span of control. Intuitively, conglomerates may

operate more firms as a way to escape decreasing returns to scale and as a way to share production

knowledge φ across firms. However, as we show in Panel A of Figure 2, conglomerates are not

able to replicate the same scale across related firms. To match this fact, we assume that the

productivity of the ith affiliated firm is δi−1φ. This assumption can be interpreted as either a

limit on the span of managerial control or as a measure of imperfect knowledge-sharing across

firms. Finally, each manufacturing establishment incurs a fixed outlay of capital denoted by f .

This assumption is motivated by the fact that conglomerates have a finite number of affiliates.

We consider the conglomerate’s problem in two stages. Prior to the regulation, conglomerates

observe their productivity φ, optimally choose the number of affiliated firms n, and the amount of

capital {ki}ni=1 and variable inputs {li}ni=1 for each affiliate.17 After the regulation, since capital is

quasi-fixed, the conglomerate adjusts its variable inputs to maximize profits. We initially assume

energy efficiency is fixed (i.e., νi = 1 for all firms) and allow for costly investments to improve

energy efficiency in an extension of the model.

16Fabrizio et al. (2007); Gao and Van Biesebroeck (2014) adopt this assumption from van Biesebroeck (2003)
in the context of energy generation. Gao and Van Biesebroeck (2014) study the case of China. Ryan (2018)
estimates a production function with energy using data from India and finds that energy and unskilled labor are
close to being perfect complements.

17Conglomerates can choose n = 0, which we interpret as an exit decision.
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5.2 Profit Maximization

The conglomerate takes the prices of energy pe, capital r, and the variable input bundle w as

given. Given the Leontief technology, the conglomerate sets li = ei so the cost of intermediate

inputs is w + pe. Holding the number of affiliates n constant, the conglomerate maximizes

π(φ, n) = max
{li}ni=1,{ki}ni=1

{
R1−ρP ρ

[
n∑
i=1

φδi−1kαki lαli

]ρ
− (w + pe)

n∑
i=1

li − r
n∑
i=1

ki

}
. (4)

For a firm i, the first order conditions for li and ki imply that li = αl
αk

r
(w+pe)

ki. Substituting this

expression and comparing the first order conditions for k1 and ki, we obtain the following result.

Proposition 1 (Within-Conglomerate Distribution). Absent regulation, the inputs and the out-

put of producers in a conglomerate follow a decreasing geometric sequence given by:

qi
q1

=
ki
k1

=
li
l1

= δ
i−1
1−α . (5)

The within-conglomerate distribution described in Proposition 1 is broadly consistent with

the empirical pattern in Panel A of Figure 2, where the average output of the second-largest

affiliate in a conglomerate is less than 30 percent of that of the largest one and where the out-

put of other affiliated producers in the conglomerate decreases exponentially with their rank i.

Equation 5 links this distribution to two model parameters. First, the size gap among affiliates

is larger if within-group knowledge depreciation is more severe (lower δ). Second, if firms are

closer to having constant-returns-to-scale production (α closer to one), the conglomerate concen-

trates more activity in its top producer, which increases the dispersion of the within-group size

distribution.

To consider the choice of total capital Kn =
∑n

i ki, define the conglomerate’s total produc-

tivity φ∆n = φ[
∑n

i=1(δi−1)
1

1−α ]1−α and the constant Cπ = (1−αρ)
[(

ραl
w+pe

)αlρ (ραk
r

)αkρ] 1
1−αρ

. We

reformulate Equation 4 using the results of Proposition 1 so the optimal choice of capital Kn

solves:

π(φ, n) = max
Kn

{
R1−ρP ρC1−αρ

π

(1− αρ)1−αρ

(ραk
r

)−αρ
(φ∆n)ρKαρ

n − r
(
α

αk

)
Kn

}
.

The optimal capital Kn as well as the firm profits for a conglomerate of size n are then:

Kn =
R

1−ρ
1−αρP

ρ
1−αρCπ

(1− αρ)

ραk
r

(φ∆n)
ρ

1−αρ and π(φ, n) = R
1−ρ
1−αρP

ρ
1−αρCπ (φ∆n)

ρ
1−αρ .

Consider now the optimal number of affiliates. The conglomerate adds an affiliate if:

π(φ, n+ 1)− π(φ, n) = R
1−ρ
1−αρP

ρ
1−αρCπ ×

[
(φ∆n+1)

ρ
1−αρ − (φ∆n)

ρ
1−αρ

]
− fr > 0. (6)
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Adding a new affiliate can improve the conglomerate’s revenue and profit by lowering its overall

marginal cost curve. On the other hand, the conglomerate incurs a fixed cost of fr when adding

a new affiliate. While the marginal benefit of adding a new affiliate is increasing in φ, it is also

decreasing in the number of existing affiliates n. Since the fixed cost is the same for all affiliates,

Equation 6 guarantees the existence of a cutoff value φn, where conglomerates with efficiency

φ > φn operate at least n affiliated producers.

Proposition 2 (Optimal Conglomerate Size). Without regulation, the optimal number of firms

in a conglomerate n is non-decreasing in its fundamental efficiency φ. For n > 1, a conglomerate

chooses to have n affiliated producers when φn ≤ φ < φn+1, where

φn+1 =
(fr)

1−ρα
ρ

R
1−ρ
ρ PC

1−ρα
ρ

π

(
∆

ρ
1−ρα
n+1 −∆

ρ
1−ρα
n

) 1−ρα
ρ

. (7)

Let π(φ) = maxn π(φ, n)− nfr be the profit for a firm of efficiency φ at the optimal number

of affiliates. The prediction from Proposition 2 is consistent with the observation in Panel B of

Figure 2 that conglomerates with higher efficiency have, on average, a larger number of affiliated

firms.

5.3 Equilibrium

The unique equilibrium of the model is characterized by the zero profit condition and the free

entry condition. Conglomerates operate whenever:

π(φ) ≥ 0 ⇒ φ ≥ φ1 =
(fr)

1−ρα
ρ

C
1−ρα
ρ

π

. (8)

Equation 8 shows that only firms with φ > φ1 choose to participate in the market.18 With M

denoting the mass of active firms, the aggregate price index is given by:

P =

[∫ ∞
φ1

p(φ)1−σ g(φ)M

1−G(φ1)
dφ

] 1
1−σ

. (9)

To enter the market, an entrepreneur pays an entry cost fe. Upon entry, the efficiency of

the conglomerate φ is realized. Since the conglomerate operates only if φ > φ1, the free entry

condition is given by: ∫ ∞
φ1

π(φ)g(φ)dφ− fe = 0. (10)

An equilibrium is given by the exit threshold φ1 and the mass of active conglomerates M, such

that (1) conglomerates make optimal allocation and size decisions, (2) the product market clears,

and (3) the zero profit and free entry conditions (Equations 8–10) are satisfied.

18φ1 is the minimum efficiency for a single-firm conglomerate, so that π(φ1) = 0.
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5.4 Effects of the Top 1,000 Program

Since the Top 1,000 program targeted very large firms, we assume that only conglomerates with

φ above an efficiency level φ̃ are subject to the regulation. For each conglomerate, the regulation

sets a proportional input quota for its largest firm, which is the model counterpart of a Top 1,000

firm. Specifically, the energy use of regulated firms cannot exceed ē1(φ) = ξe∗1(φ), where ξ < 1

and e∗1 is the unregulated optimal energy use. At the time of the regulation, the conglomerate’s

capital allocations {k∗i }ni=1 are quasi-fixed but it can respond by adjusting its use of inputs {li}ni=1.

To study the impact of the regulation on conglomerate production, we first substitute the

result from Proposition 1 into Equation 4. We also define φ∗ = φ(k∗1)αk and let λ be the Lagrange

multiplier associated with the regulatory constraint.19 The conglomerate’s first-order conditions

for li (1 ≤ i ≤ n) are then:

∂π

∂li
= R1−ρP ρ︸ ︷︷ ︸

Market Demand

ρ

[
φ∗

n∑
i=1

δ
(i−1)(1−αl)

1−α lαli

]ρ−1

︸ ︷︷ ︸
Residual Revenue

φ∗δ
(i−1)(1−αl)

1−α αl(li)
αl−1︸ ︷︷ ︸

Marginal Product

= w + pe + λ(φ)I[i = 1]︸ ︷︷ ︸
Shadow Cost

of Regulation

. (11)

An important insight of this expression is that conglomerates internalize the marginal product of

inputs across firms through the residual revenue term, which is common to all firms in the con-

glomerate. The impact of energy regulations on the residual revenue term is key to understanding

the difference between within-conglomerate and market-level spillovers.

This equation shows that the regulation distorts the allocation of inputs within a conglomerate

by adding a shadow cost λ(φ) to the input of the regulated firm. The following proposition shows

that the regulation leads conglomerates to allocate more inputs to the unregulated firms than in

the case without the regulation.

Proposition 3 (Within-Conglomerate Distribution under Regulation). Under the Top 1,000

regulation, the inputs and the output of producers follow the sequences given by:

lj
l2

=
qj
q2

= δ
j−2
1−α for j > 2,

li
l1

= δ
i−1
1−α ×

[
1 +

λ(φ)

w + pe

] 1
1−αl

and
qi
q1

= δ
i−1
1−α ×

[
1 +

λ(φ)

w + pe

] αl
1−αl

for i > 1.

Even though conglomerates substitute production across firms, the regulation leads to an

overall reduction in the conglomerate’s output. The regulation also distorts input use across

conglomerates. Since only conglomerates with φ > φ̃ are part of the Top 1,000 program, the

regulation increases the overall input cost of regulated conglomerates relative to unregulated con-

glomerates. Additionally, because conglomerates with more affiliates can shift more production

19Note that k∗1 = K∗n(∆n)
−1
1−α .
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to related parties, conditional on being regulated, more efficient conglomerates (higher φ) are

subject to a smaller shadow cost λ(φ).

Endogenous Energy Efficiency

The analysis so far assumes that energy efficiency is fixed. Following the intent of the Top

1,000 program, we now allow for the regulation to stimulate investment in energy efficiency. We

assume that the conglomerate can improve energy efficiency at firm i, νi, by spending lic(νi),

where c′(νi) > 0 and c′′(νi) ≥ 0. The conglomerate’s problem is then:

π(φ, n) = max
{li}ni=1,{νi}ni=1

{
R1−ρP ρ

[
φ∗

n∑
i=1

δ
(i−1)(1−αl)

1−α lαli

]ρ
−

n∑
i=1

li

(
w +

pe
νi

+ c(νi)

)}
,

where we omit the cost of fixed capital. Absent the regulation, the conglomerate sets c′(ν∗)ν∗2 =

pe for all firms. This implies that the effective price of energy inclusive of investments in energy

efficiency is pe
ν∗

+ c(ν∗) = c′(ν∗)ν∗+ c(ν∗). To simplify the exposition, we assume that c(ν) = νγ

1+γ
,

where γ ≥ 1, so the effective price of energy is (ν∗)γ. Additionally, note that the Top 1,000

regulation does not impact the choice of νi for non-regulated firms. Using these results and the

fact that νi = li
ei
, we can restate the conglomerate problem as:

π(φ, n) = max
{li}ni=1

{
R1−ρP ρ

[
φ∗

n∑
i=1

δ
(i−1)(1−αl)

1−α lαli

]ρ
− (w + (ν∗)γ)

n∑
i=1

li −l1
[

1

1 + γ

(
l1
ξe∗1

)γ
− (ν∗)γ

]}
,

where we substituted the regulatory constraint into the cost of energy efficiency and where we

abstract away from the cost of the regulated energy.

The conglomerate’s first-order conditions for li (1 ≤ i ≤ n), i.e., ∂π
∂li

, are then:

R1−ρP ρ︸ ︷︷ ︸
Market Demand

ρ

[
φ∗

n∑
i=1

δ
(i−1)(1−αl)

1−α lαli

]ρ−1

︸ ︷︷ ︸
Residual Revenue

φ∗δ
(i−1)(1−αl)

1−α αl(li)
αl−1︸ ︷︷ ︸

Marginal Product

= w + (ν∗)γ +

[(
l1
ξe∗1

)γ
1

ξe∗1
− (ν∗)γ

]
︸ ︷︷ ︸

Shadow Cost

of Regulation

I[i = 1].

Interestingly, this extension of the model yields very similar results to those in Equation 11 and

Proposition 3. For the case of non-regulated firms (i.e, li for i > 1), we simply substitute pe with

the effective price of energy: (ν∗)γ. Similarly, the first order condition for the regulated firm

implies that the shadow cost of the regulation is given by:

λ(φ) =

(
l1
ξe∗1

)γ
1

ξe∗1
− (ν∗)γ,

which is the incremental cost of improving energy efficiency in the regulated firm.20 Finally, note

that these results reveal a close link between the percentage change in the marginal product of

20The functional form assumption for c(ν) only simplifies the derivation. Absent this assumption, one can
replace pe in Equation 11 with the effective cost of energy ν∗c′(ν∗) + c(ν∗). Similarly the shadow cost would be:
λ(φ) = [ν1c

′(ν1) + c(ν1)] 1
ξe∗1
− (ν∗c′(ν∗) + c(ν∗)).
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inputs in the regulated firm and the change in energy efficiency:

∆MPl1 = se

[
(1 + ∆ν)γ

ξe∗1
− 1

]
,

where se = (ν∗)γ

w+(ν∗)γ
is the share of effective energy costs relative to the cost of flexible inputs.

This equation shows that we can provide bounds on the parameter γ, which measures the cost

of improving energy efficiency, by combining estimates of the regulation on energy efficiency and

production.

This model extension yields two valuable insights. First, allowing for investment in energy

efficiency does not necessarily reduce the regulation’s distortion on the use of inputs across firms.

Second, at the margin the conglomerate is indifferent between the cost of investing to improve

energy efficiency at the regulated firm and the loss in marginal product associated with shifting

production to related parties. Indeed, we can interpret the shadow cost of the regulation as an

expression of the cost of improving energy efficiency to comply with the regulation.

5.5 Connecting the Model to the Empirical Results

One advantage of our model is that it allows us to quantify how conglomerate and market

spillovers may impact our empirical estimates. To see how the regulation in our model connects

to our difference-in-differences analysis, note that we can write conglomerate j’s revenue from

affiliate i as follows:

ln Revenueij = ln(Production Shareij)︸ ︷︷ ︸
Allocation Effect

+ ρ ln

(∑
i∈j

qij

)
︸ ︷︷ ︸
Residual Revenue

+ ln(R1−ρP ρ)︸ ︷︷ ︸
Market Demand

, (12)

where Production Shareij = qij/
∑
i∈j
qij.

21 Equation 12 clarifies the three ways in which the Top

1,000 program impacts the revenue of regulated firms. First, as we discuss above, when firm

i is regulated, the conglomerate is forced to reallocate inputs to other firms, which lowers the

production share in regulated firms. Second, since the marginal cost goes up at the conglomerate

level, the market share of its variety decreases, which lowers the group’s residual revenue as well

as the revenue of the regulated firm. Finally, since all regulated firms in the industry contract,

the Top 1,000 program has an equilibrium impact on the industry-level price index P, which, in

turn, has a countervailing effect on the revenue of the regulated firm.

We can also use Equation 12 to characterize the impact of the regulation on the control

firms in our difference-in-differences analyses in Section 3. Since these firms are not regulated or

related to Top 1,000 firms, the regulation does not impact the within-conglomerate allocation of

21Equation 12 follows by multiplying conglomerate j’s inverse residual demand by affiliate i’s production.
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production. Control firms see an increase in their residual and firm-level revenue as the market

reallocates demand. As in the case of the regulated firms, non-regulated firms also benefit from

the equilibrium impact on market demand.

This discussion clarifies the interpretation of our estimates of the impacts of the regulation

on the output of Top 1,000 firms. One benefit of our difference-in-differences approach is that

the common market demand effect cancels out.22 Our estimates then capture three effects: (1) a

negative allocation effect on regulated affiliates, (2) a negative residual revenue effect on regulated

conglomerates, and (3) a positive residual revenue effect on control firms. To the extent that the

third channel is quantitatively important, the difference-in-differences approach may overstate

the negative effect of the regulation on the output of regulated firms.

A similar discussion allows us to interpret our estimates of the spillover effects of the regulation

through ownership networks. First, note that the control firms have the same impact as in

our estimates of the direct effects of the regulation. Second, firms related to Top 1,000 firms

share the residual revenue and market demand with the regulated firms but the allocation effect

increases the revenue of related parties. Since the market demand effect also cancels out in these

estimations, our difference-in-differences estimates of spillover effects capture the following three

mechanisms: (1) a positive allocation effect on related affiliates, (2) a negative residual revenue

effect on regulated conglomerates, and (3) a positive residual revenue effect on control firms.

In this case, the third channel may lead the difference-in-differences approach to understate the

spillover effect on related firms.

In addition to clarifying the interpretation of the reduced-form estimates, our empirical model

allows us to measure the degree to which the effects on control firms are quantitatively important.

Similarly, we can use the model to produce estimates of the regulation that isolate the effects of

the regulation on Top 1,000 firms as well as on non-regulated firms in the same conglomerate.

These issues arise because the regulation impacts the residual revenue terms for the control

groups in our difference-in-differences analyses. Equation 12 also suggests a within-conglomerate

difference-in-differences approach that avoids these issues. Specifically, the difference between

the output in the Top 1,000 firm and all other related firms is such that:

ln RevenueTop1000,jt − ln RevenueRelated,jt = ln (qTop1000,j)− ln

( ∑
i 6=Top1000,j

qij

)

= − αl
1− αl

ln

[
1 +

λ(φ)

w + pe

]
− ln

(
∆

1
1−α
n − 1

)
.

The first line follows from Equation 12 and the second is implied by Proposition 3. By definition,

λ(φ) = 0 prior to the regulation and ∆n is constant over time. Taking a time difference of this

22Even in the cases where the equilibrium response is industry or location specific, the market demand effect
would be absorbed by industry-by-year and province-by-year fixed effects.
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expression then shows that a within-conglomerate difference-in-differences approach identifies

− αl
1−αl

ln
[
1 + λ(φ)

w+pe

]
as the allocation effect.

Figure 7 implements this within-conglomerate difference-in-differences approach. This fig-

ure plots results from an event-study specification similar to Equation 1, but where the con-

trol firms are non-regulated firms in the same conglomerate and where we additionally include

conglomerate-by-year fixed effects. Consistent with our previous results, we find a significant

decline in the output of the Top 1,000 firms relative to other firms in their same conglomerates.

One drawback of this approach is that it captures a partial impact of the regulation that ab-

stracts away from the market demand and the residual revenue terms. However, the expression

above shows that the effects in Figure 7 are closely related to λ(φ). We use this result in our

quantitative model to inform our estimate of the shadow cost of the regulation.

These insights highlight the importance of interpreting quasi-random estimates through the

lens of a model that accounts for within- and across-conglomerate reallocation of production

as well as equilibrium impacts on industry-level prices. In Section 6, we estimate the model

parameters to fit distributional features of the data. The predictions of the estimated model

match the estimated effects of the regulation on the output of regulated, related, and unrelated

firms from Sections 3–4. We then use the model to decompose the importance of the different

mechanisms behind our difference-in-differences estimates. Section 7 simulates the aggregate

effects of the regulation and measures the shadow cost of the regulation.

6 Model Estimation

This section estimates the key parameters of the model to quantitatively match the data patterns

for the period prior to the regulation. We then show that the model can match the observed

firm-level effects of the regulation in a simulated counterpart of the Top 1,000 program.

6.1 Parameterization and Estimation

We briefly describe the set of structural parameters of the model and how they are identified

by the data. We start by setting the values of two parameters based on previous estimates.

We follow the literature by calibrating the elasticity of substitution σ = 4 (Melitz and Redding,

2015). We use the estimate of returns to scale of α = 0.9 from Burnside et al. (1995), who

use energy data to proxy for utilized capital, and set αl = 0.8 to match the cost share of

variable inputs in the data.23 We then parameterize the conglomerate efficiency distribution

G(φ) with a log-normal distribution with mean zero and standard deviation σm. The model

is characterized by the three parameters we estimate: (δ, fe, σm) , which include the within-

23Conventional estimates of returns to scale range from 0.85 to 0.95, depending on aggregation and time period.
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conglomerate size depreciation δ, the conglomerate-level entry cost fe, and the dispersion of the

efficiency distribution σm. Conditional on these parameters, the firm fixed cost f is uniquely

pinned down by the equilibrium conditions (Equations 8–10) and the average sales-per-firm in

the data.

We estimate the parameters θ = (δ, fe, σm) using the method of moments. For a candidate

value of θ, we solve the model and compute the following moments: (1) the share of firms in three

bins of firm revenue: 5-20 million RMB, 20-100 million RMB, and greater than 100 million; (2)

the share of firm output in the same three bins; and (3) the average relative output of the second,

third, and fourth largest affiliates relative to the top firm in the conglomerate. Our estimate of

θ is given by:

θ̂ = arg min
θ∈Θ

[md −m(θ)]′W [md −m(θ)],

where md are the data moments, m(θ) are the moments generated by the model, and W is the

identity matrix.24

We estimate that δ = 0.908, which means that the productivity of the second-largest firm

in the conglomerate is close to 91% of that in the largest firm. Recall that Equation 5 shows

that the output of affiliates depreciates in rank by the factor δ
1

1−α . This relation implies that the

output of the second-largest firm is close to 38% of the largest firm (c.f, 29% in the data) and

that of the third-largest is close to 15% (c.f., 20% in the data), which matches the pattern in

Panel A of Figure 2. We also estimate that σm = 1.23 and that fe = 11 million RMB (or about

1.7 million USD), which is reasonably commensurate with the average profit in the economy.

Figure 8 shows that our model does a good job of fitting both the observed firm-size distribution

and the concentration of output prior to the regulation.

6.2 Model Response to the Top 1,000 Program

We need two additional parameters to implement the Top 1,000 program in our model. As

discussed in Section 5, our version of the regulation targets conglomerates with efficiency level φ

above φ̃. We choose the threshold φ̃ to match the share of total energy consumed by regulated

firms within energy-intensive industries. Given our estimated parameters, the model implies a

value of φ̃ = 6.31, which reproduces the fact that regulated firms account for 56% of the total

energy consumption in energy-intensive industries. Finally, we take the policy intensity ξ from

the 11th Five-Year Plan, which targeted an energy reduction of 20%. For this reason we set

ξ = 0.8. Panel A of Table 8 collects the model parameters.

We can then use our model to simulate the effects of the Top 1,000 program. As in Section

24We use the identity matrix since the sample size for the moments describing the size and output distribution
is much larger than the sample size for the moments describing the relative size of firms within conglomerates. We
calculate standard errors using a bootstrap covariance matrix of the moments that incorporates this information.
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5.4, we assume conglomerates take the number of affiliates and capital allocation as given. We

solve a new industry equilibrium by ensuring that (1) regulated conglomerates allocate variable

inputs optimally (as in Equation 11), (2) unregulated firms increase output to respond to the

increase in market prices, and (3) the product market clears (as in Equation 9).

Panel B of Table 8 compares our difference-in-differences estimates to simulated model ana-

logues. This table shows that the model does a remarkable job of matching the estimated effects

on firm output. This is true for regulated firms, related firms, market-level spillovers, and the

within-conglomerate difference-in-differences estimate. The model prediction for the change in

input use of regulated firms is just outside the 95% confidence interval of our empirical estimate

but the model has a hard time fitting the effect on the energy use of related firms. This may

reflect the fact that, as we discuss in Section 4, this estimate is based on a much smaller sample

and may not be representative of the overall response. Overall, these results show that our model

can reproduce the effects of the regulation on the output of regulated, related, and unrelated

firms. Remarkably, these are all out-of-sample predictions of the model.

We now use our model to connect the difference-in-differences estimates to the overall level

effects of the program. To do so, Table 9 uses Equation 12 to decompose the total effects of the

program. There are two conceptual distinctions between our estimates and the total effects of

the policy. First, as we discuss in Section 5.5, our difference-in-differences estimates capture a

combination of effects on regulated firms and on control firms. The second row of Panel A shows

that the output of control firms increases by 3.1% due to the residual revenue effect. Second, as

in any difference-in-differences estimate, market-level effects are also partialed-out. The fourth

column shows that the equilibrium increase in prices would have a countervailing effect on the

revenue of regulated firms of 2.1%. Undoing these effects shows that the total impact on the

output of regulated firms was actually -18.4% instead of -23.6%.

Panel B conducts a similar analysis for the effects on related firms. In this case, both the

residual revenue and the lack of a market effect understate the estimated effect on related firms.

Accounting for these effects implies that the total effect on related firms is 17.3% instead of

12.1%. Finally, Panel C shows that the within-conglomerate difference-in-differences estimate

is not contaminated by residual and market effects. However, this estimate only measures the

relative allocation effect between regulated and non-regulated firms in the same conglomerate.

These calculations showcase the importance of interpreting the difference-in-differences estimates

through the lens of an equilibrium model.
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7 Policy Simulations

This section uses our estimated model to conduct two exercises. First, we use our model to

compute the aggregate effects of the policy. Second, we quantify the shadow cost of the regula-

tion and ask whether the government can use information on business networks to improve the

regulation of energy.

7.1 Aggregate Effects of the Policy

We now use the model to inspect and quantify the importance of accounting for conglomerate

spillovers. Table 10 reports the effects of computing the Top 1,000 program under different

assumptions. Panel A reports the impact of the policy on regulated conglomerates. The first

column shows that the output of regulated conglomerates would decrease by 10.2% if the con-

glomerate was not able to reallocate production across related firms and absent equilibrium

effects. The second column assumes that conglomerates can shift production to related affiliates

holding market prices fixed. In this case, the regulation forces conglomerates to shift production

to less productive affiliates. However, decreasing returns to scale and knowledge depreciation

limit the degree to which it is profitable for conglomerates to make up the reduction in the out-

put of regulated firms. Allowing conglomerates to reallocate activity would result in a smaller

decline of 7.2%.

Column 3 isolates the role of market spillovers. In this case, regulated conglomerates are not

able to shift production to related firms but we allow for industry prices to adjust. Competing

firms face an increase in residual demand, but their output is imperfectly substitutable with that

of regulated conglomerates. Allowing for prices to adjust leads to a decrease in the output of

regulated conglomerates of -6.7%.

The fourth column shows the importance of accounting for both market- and conglomerate-

level spillovers. Allowing for both mechanisms leads to a decrease in the output of regulated

conglomerates of -4.8%. This result shows that conglomerate spillovers are not subsumed by

market price adjustments. Ignoring this important margin of adjustment would overstate the

predicted effects of the policy by 40%
(
≈ 6.7−4.8

4.8

)
. Based on our model, we find that the within-

conglomerate substitution accounts for 60% of the overall adjustment between the no-spillover

case and the case with both spillovers (with the market adjustment accounting for the remaining

40%).

Panel B of Table 10 computes the aggregate impacts of the policy. The model implies smaller

reductions on aggregate, as non-regulated conglomerates expand in response to the regulation.

This table continues to show the importance of separately accounting for conglomerate- and

market-level spillovers. Note that since this table considers the output of unregulated firms, the
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market-level spillovers are relatively more important than in Panel A.25

7.2 Shadow Cost of the Policy

We now use the model to quantify the shadow cost of the policy. This exercise allows us to

measure the extent of conglomerate-specific distortions and to benchmark the cost of the program

relative to that of alternative regulations.

We compute the shadow cost of the policy using Equation 11. Recall that in this equation,

the shadow cost only enters the first-order condition for the regulated firm. However, the shadow

cost impacts production at all related firms through the residual revenue term. In our model,

firms face a lower shadow cost if they are able to substitute production away from the regulated

firm. Firms that have higher efficiency φ and a larger number of affiliates therefore face a lower

shadow cost. Additionally, the size of the shadow cost depends on our model parameters, which

capture the importance of variable inputs αl, the degree of returns to scale α, and the extent of

knowledge depreciation δ.

Panel A of Figure 9 plots the implied shadow cost as a function of efficiency φ. The black

line plots the shadow cost of our simulated Top 1,000 program. This shadow cost is zero for

firms with φ < φ̃ and jumps to close to an average of 8.1% for regulated firms.26 Since the

shadow cost has the same scale as the cost of variable inputs, we can interpret this value as an

equivalent tax on variable inputs. While 8.1% might seem like a small number, recall that that

inputs constitute a much larger tax base, especially relative to profits.27

Our model allows us to consider how different model mechanisms impact the shadow cost of

the program. The brown line shows that shutting down the market and conglomerate spillovers

would increase the shadow cost to 15.8%. Allowing for conglomerate spillovers but holding prices

fixed (green line) lowers the shadow cost to 12.33%.

The model also allows us to quantify how the ability of conglomerates to shift production

to related firms lowered the shadow cost of the regulation. The pink line in Panel A of Figure

9 plots the shadow cost under the assumption that market prices adjusted but that regulated

firms were not able to shift production to related parties. In this case, the shadow cost of the

regulation would have been 11.2% of input costs, which is 40% larger than in the baseline case.

Finally, the model allows us to consider alternative forms of energy regulation. To make the

25To match the short-run nature of our empirical analysis, we have focused our discussion on the short-run
effects of the policy, ignoring the entry of new conglomerates. Later changes to regulations and the overall
environment would also complicate simulation of long run impacts.

26As we discuss in Section 5.5, the shadow cost is closely related to the within-conglomerate difference-in-
differences estimate. Our model estimate of the shadow cost is then validated by the fact that we obtain a similar

estimate when multiplying the within-conglomerate difference-in-differences estimate by the factor −(1−αl)αl
.

27Indeed, in models with constant marginal cost and with a similar value of σ, inputs are (σ − 1) = 3−times
as large as profits. An equivalent profit tax would then be 24.3%.
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regulations comparable, we ensure that they result in a similar energy reduction as the simulated

Top 1,000 regulation. Suppose that instead of targeting the energy use of large firms, the gov-

ernment used information on the business networks of energy-intensive firms—which is publicly

available—to design the regulation at the conglomerate level. The blue line in Panel A of Figure

9 shows that this conglomerate-level regulation would lower the shadow cost of the regulation by

34% to 5.4%. Intuitively, the Top 1,000 regulation limited output at the most productive firms.

A conglomerate-level regulation is less distortionary since it allows conglomerates to equalize the

marginal product of inputs across firms while reducing their overall input use.

Panel B of Figure 9 provides more detail into how this shadow cost varies by φ. The blue

line shows that conglomerates with a higher φ face a lower shadow cost of the regulation and

that λ(φ) drops discontinuously at the threshold values φn where conglomerates add additional

affiliates. However, the magnitude of these differences pales in comparison to the difference in

the shadow cost between regulated and non-regulated firms. Finally, this graph also plots a size-

dependent energy tax that would result in the same energy reduction as the Top 1,000 program.

The red dotted line shows that instead of monitoring large firms, the government could have

reduced energy use by the same amount with an input tax of 5.4%. Since energy costs are close

to 15% of variable input costs for Top 1,000 firms, the equivalent energy tax would be closer to

36%(≈ 5.4%
15%

).

8 Conclusion

This paper studies the effects of a prominent energy conservation program in China. We combine

detailed data on energy use and business networks to study the effects of the regulation on both

regulated firms and on firms that were not regulated but that are part of the same conglomerate.

While the program led regulated firms to decrease energy use, this decrease was driven by a

decline in production output and not by an increase in energy efficiency. We show that the

program led to large increases in the output and energy use of unregulated firms that are part of

the same conglomerate. By shifting production to related firms, regulated conglomerates escaped

close to 40% of the regulation-driven output reduction. The facts that regulated conglomerates

were unable to fully shift lost output to related firms and that we find no impacts on the energy

efficiency of regulated firms imply that regulated firms found it costly to increase their energy

efficiency.

We calculate the shadow cost of the regulation using a model of conglomerate production

that matches our setting and the reduced-form effects of the regulation. The model shows that

even with the ability to shift some production to related firms, the regulation increased the cost

of conglomerate production by 8.1%. We show that this cost could be lowered by targeting the
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regulation at the conglomerate level or by imposing an energy use tax.

Overall, this paper shows that the economic effects and the efficacy of policies that target

large firms are modulated by substitution along ownership networks. Since ownership networks

are public information, the results of our paper reveal a potential avenue of improvement for

existing energy regulations.
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Figures

Figure 1: Cross-Country Differences in Industrial Energy Use

China

EU

USA

India

0
25

0
50

0
10

00
15

00
En

er
gy

 C
on

su
m

pt
io

n 
(M

TC
E)

1990 1995 2000 2005 2010 2015 2020
Year

32



Figure 2: Conglomerate Size and Production Allocation

A. Relative Firm Size

B. Output and Conglomerate Size
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Figure 3: Examples of Firm Relations

A. Affiliates B. Investment

C. Shareholders D. Shareholders’ Investment
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Figure 4: Effects of the Program on Regulated Firms

A. Energy Use: Coefficients B. Energy Use: Event Study

C. Output: Coefficients D. Output: Event Study

E. Energy Efficiency: Coefficients F. Energy Efficiency: Event Study

35



Figure 5: Spillover Effects on Related Firms

A. Output B. Placebo

C. Energy Use D. Energy Efficiency
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Figure 6: Industry-Level Spillovers

Figure 7: Within-Conglomerate Difference-in-Differences
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Figure 8: Distributional Moments and Structural Model Fit

A. Firm Size Distribution

B. Output Distribution
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Figure 9: Model-Based Estimates of the Shadow Costs of Regulation

A. Shadow Costs of Alternative Regulations

B. Size Distortions and Equivalent Energy Tax
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Tables

Table 1: Energy Consumption of Top 1,000 Firms in Different Industries

Industry
Energy Consumption Proportion Firm Number
10, 000 ton coal equiv. (%)

Iron and Steel 22528.63 30.72 249
Electric Power 16249.64 22.16 144
Chemical 10909.29 14.88 238
Petroleum and Petrochemical 10581.76 14.43 98
Mining 5278.77 7.20 60
Nonferrous 2993.08 4.08 70
Construction Materials 2913.19 3.97 93
Pulp and Paper 961.36 1.31 24
Textile 917.57 1.25 22
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Table 2: Summary Statistics

A. Firm-Level Data

Source Variables
Top 1,000 Top 10,000 (Exclude Top 1,000)

Obs. Mean SD Obs. Mean SD

ln(Output) 8,745 14.15 1.58 87,247 12.24 1.61

ASIF

Size 8,725 14.44 1.54 87,338 12.18 1.74
Soe 8,789 0.31 0.46 87,597 0.11 0.31
Roa 8,557 0.05 0.10 85,402 0.08 0.16
Age 8,775 23.04 20.32 87,449 12.63 13.82

Export 8,789 0.34 0.47 87,597 0.25 0.43
Variety 8,746 2.06 0.88 87,425 1.64 0.84

CESD

ln(Energy) 4,211 12.24 1.61 27,472 9.79 1.69
ln(Coal) 3,904 12.33 1.55 25,607 9.89 1.69

ln(Efficiency) 4,167 8.49 1.71 27,282 8.55 1.84

ASIF&ATS Investment 4,276 0.80 0.40 47,243 0.82 0.39

B. Conglomerate Networks: Related Parties

Datasets
Six Levels Two Levels

20% 20% 25% 51%

CARD 80,341 52,562 47,555 30,737
CARD&ASIF 10,944 8,447 7,811 5,358
CARD&ASIF (same 2-digit industry) 4,887 4,311 4,139 3,055
CARD&ASIF (same 4-digit industry) 2,776 2,561 2,500 2,024
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Table 3: Effects of the Policy on Regulated Firms: Difference-in-Differences Results

A. Firm Energy Use

Variables ln(Firm Energy Use)

Treat×Post -0.136*** -0.164*** -0.163*** -0.134***
(0.042) (0.045) (0.045) (0.047)

Observations 25,295 25,290 24,818 22,060
R2 0.886 0.888 0.890 0.896
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

B. Output

Variables ln(Output)

Treat×Post -0.108*** -0.231*** -0.210*** -0.152***
(0.040) (0.040) (0.041) (0.042)

Observations 25,113 25,108 24,648 21,930
R2 0.879 0.884 0.886 0.891
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

C. Energy Efficiency

Variables ln(Firm Energy Efficiency)

Treat×Post 0.031 -0.066 -0.048 -0.019

(0.041) (0.044) (0.045) (0.046)

Observations 25,113 25,108 24,648 21,930

R2 0.835 0.838 0.840 0.846

Firm FE Y Y Y Y

Year FE Y Y Y Y

Industry×Year FE Y Y Y

Province×Year FE Y Y

Firm Control Y
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Table 4: Spillover Effects on the Output of Related Firms

A. Output

Variables ln(Output)

Related×Post 0.138*** 0.133*** 0.123*** 0.133***
(0.037) (0.036) (0.035) (0.034)

Observations 19,228 19,226 19,226 18,668
R2 0.893 0.900 0.906 0.914
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

B. Heterogeneous Effects on Output by Firm Size

Variables ln(Output)

Related×Post(0%-30%) 0.103* 0.104* 0.049 0.076
(0.056) (0.054) (0.054) (0.052)

Related×Post(30%-70%) 0.142*** 0.139*** 0.116*** 0.136***
(0.044) (0.042) (0.042) (0.039)

Related×Post(70%-100%) 0.163*** 0.151*** 0.168*** 0.164***
(0.052) (0.051) (0.049) (0.047)

Observations 18,174 18,174 18,174 17,666
R2 0.896 0.903 0.909 0.917
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

C. Additional Firm Outcomes

Variables ln(Sale) ln(Profit) ln(Asset) ln(Fixed Asset) ln(Employment)

Related×Post 0.120*** 0.209*** 0.071** 0.110*** 0.037*
(0.030) (0.065) (0.029) (0.035) (0.021)

Observations 18,200 13,787 18,444 18,308 16,511
R2 0.929 0.779 0.944 0.932 0.928
Firm FE Y Y Y Y Y
Year FE Y Y Y Y Y
Industry×Year FE Y Y Y Y Y
Province×Year FE Y Y Y Y Y
Firm Control Y Y Y Y Y
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Table 5: Spillover Effects on Related Firms: Placebo Test, Energy Use, and Energy
Efficiency

A. Placebo Test on Output

Variables ln(Output)

Related×Post -0.010 -0.009 -0.006 0.004
(0.041) (0.040) (0.040) (0.039)

Observations 9,391 9,389 9,379 9,169
R2 0.894 0.899 0.907 0.916
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

B. Energy Use

Variables ln(Energy)

Related×Post 0.356*** 0.355*** 0.343*** 0.379***
(0.075) (0.074) (0.076) (0.094)

Observations 3,906 3,906 3,852 2,886
R2 0.912 0.914 0.933 0.921
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

C. Energy Efficiency

Variables ln(Energy Efficiency)

Related×Post -0.031 -0.030 -0.042 -0.008
(0.079) (0.078) (0.080) (0.099)

Observations 3,836 3,836 3,794 2,829
R2 0.842 0.848 0.861 0.856
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y
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Table 6: Industry-Level Spillovers

Variables ln(Output)
All Sample Energy-Intensive Industries

Spillover 0.100*** 0.067*** 0.140*** 0.082***
(0.036) (0.015) (0.051) (0.019)

Observations 2,026,061 1,979,314 680,826 663,995
R2 0.837 0.856 0.846 0.865
Firm FE Y Y Y Y
Year FE Y Y Y Y
Firm Control Y Y

Table 7: Within-Conglomerate Difference-in-Differences

Variables ln(Output)

Top1000×Post -0.328*** -0.335*** -0.358*** -0.283***
(0.069) (0.070) (0.072) (0.070)

Observations 14,935 14,909 14,905 14,493
R2 0.543 0.548 0.595 0.634
Conglomerate×Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y
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Table 8: Model Parameters and Fit

A. Model Parameters

Parameter Value Target

1. Fixed Values
Elasticity of substitution σ = 1

1−ρ 4.00 Melitz and Redding (2015)

Return to scale α 0.90 Burnside et al. (1995)
Return to scale (Labor Share) αl 0.80 Cost share of variable inputs
2. Simulated Model

Efficiency depreciation δ
1

1−α 0.38
Dispersion of ln-ability φ σm 1.23 Firm size distribution
Entry cost fe 1.17× 107(Yuan)
Fixed energy cost f 3.18× 104(Yuan)
4. Match Policy

Policy threshold φ̃ 6.31 Energy share of Top1000 firms
Input quota 1− ξ 0.20 11th Five Year Plan

B. Model Fit

Model Prediction Empirical Result 95% CI

Output Response
Regulated-Other -23.6% -21.0% (-29.1%,-12.9%)
Related-Other 12.1% 12.3% (5.4%,19.3%)
Other 5.2% 6.7% (3.7%,9.7%)
Regulated-Related -35.7% -35.8% (-50.2%,-21.4% )

Input Response
Regulated-Other -27.5% -16.3% (-25.2%,-7.4%)
Related-Other 11.4% 34.3% (19.3%,49.3%)
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Table 9: Model Decomposition of Difference-in-Differences Estimates

Allocation Residual Revenue Market Total
Effect Effect Effect Effect

A. Effect on Regulated Firms
Top 1,000 Firms -0.150 -0.055 0.021 -0.184
Control Firms 0 0.031 0.021 0.052
Difference-in-Differences -0.150 -0.086 0 -0.236

B. Effect on Related Firms
Related Firms 0.207 -0.055 0.021 0.173
Control Firms 0 0.031 0.021 0.052
Difference-in-Differences 0.207 -0.086 0 0.121

C. Within-Conglomerate Effect
Difference-in-Differences -0.357 0 0 -0.357

Table 10: Effects of Simulated Counterfactuals

A. Regulated Conglomerate Response

No Conglomerate Market Conglomerate & Market
Spillover Spillover Spillover Spillover

Input -12.41% -8.71% -8.02% -5.61%

Output -10.18% -7.24% -6.69% -4.81%

B. Aggregate Impact

No Conglomerate Market Conglomerate & Market
Spillover Spillover Spillover Spillover

Input -11.6% -8.12% -6.73% -4.87%

Output -9.51% -6.75% -5.70% -2.74%
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Online Appendix: Not For Publication

This appendix contains multiple additional analyses.

Appendix Figures

Figure A.10: Map of Top 1,000 Firms
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Figure A.11: Types of Related Parties

Figure A.12: Effects of Policy on the Investment of Regulated Firms

A. Event Study B. Coefficients
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Figure A.13: Spillover Effects on Output by Firm Relation
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Figure A.14: Additional Spillover Effects of the Program

A. Output (Robustness to 3:1 Matching) B. Sales

C. Profit D. Assets

E. Fixed Assets F. Employment
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Figure A.15: Robustness for Related Spillover: Entropy Matching 2004-2006

Notes: This figure shows spillover effects for 4-digit industry related firms using entropy
matching on 2004-2006 firm output (3 years before policy) and 4-digit industry.

Figure A.16: Robustness to Dropping Electric Power Generation and Supply

Notes: This figure shows spillover effects (output dynamics) for 4-digit industry related firms of
Top1000 in industries other than electric power.
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Figure A.17: Innovation of Top 1,000 Firms: Energy-Saving Patent Applications
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Appendix Tables

Table A.11: Policy Compliance

Type Orig.list Evaluation

Year 2007 2008 2009 2010
Firm number 1008 953 922 901 881
Non-compliant firms - 74 36 28 15
Non-compliant rate - 7.76% 3.90% 3.11% 1.70%

Table A.12: Dataset Matching

Datasets
Top 1,000 Top 10,000

Number Ratio Number Ratio

List 1008 - 14639 -
ASIF 1001 99.31% 14300 97.68%
CESD 818 81.15% 10723 73.25%
ASIF & CESD 809 80.26% 9482 64.77%
ASIF & ATS 447 44.35% 6623 45.24%
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Table A.13: Determinants of Overfulfillment

Variables Overfulfill
All Top 1,000 Firms Completion Rate < 200%

ln(related num.) 0.0467*** 0.0635*** 0.0732*** 0.0909***
(0.0148) (0.0178) (0.0215) (0.0258)

ln(complement num.) -0.0307* -0.0354
(0.0180) (0.0287)

Observations 512 512 318 318
R2 0.167 0.172 0.228 0.232
Firm Control Y Y Y Y
Industry FE Y Y Y Y
Province FE Y Y Y Y

Table A.14: Conglomerate Groups

Number of Top 1,000 Firms in Group Number of Groups
1 341
2 44
3 26
4 5
5 3
6 4
7 2
9 1
10 1
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Table A.15: Effects of Policy on the Investment of Regulated Firms

Variables If Firm Invests

Treat×Post -0.057*** -0.071*** -0.072*** -0.071***
(0.013) (0.014) (0.014) (0.014)

Observations 50,987 50,967 50,967 49,346
R2 0.191 0.200 0.208 0.212
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

Table A.16: Robustness to Dropping Electricity-Intensive Industries

ln(Energy) ln(Coal) ln(Output) ln(Efficiency)
Electricity<15% -0.135*** -0.149*** -0.217*** -0.080*

(0.048) (0.048) (0.045) (0.047)
Electricity<20% -0.142*** -0.149*** -0.187*** -0.044

(0.049) (0.050) (0.044) (0.049)
Electricity<25% -0.154*** -0.163*** -0.202*** -0.047

(0.047) (0.047) (0.042) (0.046)
Electricity<30% -0.163*** -0.169*** -0.210*** -0.048

(0.045) (0.046) (0.041) (0.045)
Electricity<35% -0.173*** -0.180*** -0.207*** -0.036

(0.045) (0.045) (0.040) (0.044)
Electricity<40% -0.171*** -0.178*** -0.204*** -0.034

(0.044) (0.045) (0.040) (0.044)
Electricity<45% -0.172*** -0.180*** -0.205*** -0.035

(0.044) (0.045) (0.040) (0.044)
Electricity<50% -0.177*** -0.183*** -0.241*** -0.065

(0.042) (0.043) (0.041) (0.044)
Firm Fixed Effects Yes Yes Yes Yes
Industry × Year Fixed Effects Yes Yes Yes Yes
Province × Year Fixed Effects Yes Yes Yes Yes

Notes: This table shows the robustness result of our baseline regression to dropping
electricity-intensive industries. Our data cleaning process for CESD includes: (1) drop
electricity-intensive industries (30% in our baseline regression), (2) drop firm sample that do
not report coal consumption data yearly, (3) drop firm sample in fire power industry (CESD
doesn’t have records for fire power firms after 2006). And this table shows that relax or tighten
the first condition will not change our belief in the baseline results.
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Table A.17: Robustness to Dropping Electric Power Generation and Supply

Variables ln(Output)

Related×Post 0.172*** 0.164*** 0.166*** 0.173***
(0.040) (0.038) (0.037) (0.035)

Observations 11,652 11,650 11,642 11,377
R2 0.881 0.891 0.899 0.909
Firm FE Y Y Y Y
Year FE Y Y Y Y
Industry×Year FE Y Y Y
Province×Year FE Y Y
Firm Control Y

Notes: This table shows spillover effects for 4-digit industry related firms of Top1000 in
industries other than electric power. It suggests that the spillover effects of Top1000 firms in
other industries is larger than that in electric power generation and supply industry. This is
quite intuitive as Top1000 firms in electric power generation and supply industry have much
more related firms than in other industries, thus the average spillover effects should be smaller.
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