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Abstract. Two axiomatic characterizations are provided of belief updating. A class of

updating processes, termed quasi-Bayesian updating, is characterized by four axioms. These

include the divisibility property: that the update does not alter if a composite signal is

broken into several parts and several updates. Bayesian updating itself is also characterized

using further axioms. Quasi-Bayes updating is applied to a model of sequential sampling.

In this model updating that overreacts to new information leads to increased information

acquisition.

1. Introduction

In this paper we consider the process of updating beliefs in the light of statistical evidence.

We treat an updating process as a deterministic map from a prior belief and an information

structure (a statistical experiment with a finite number of signals) to a profile of updated

beliefs (one for each possible signal in the experiment). We show that an updating process

satisfies four axioms if and only if it is a simple generalization of Bayesian updating. Bayesian

updating is also characterized: Updating Bayesian if and only if, the above four axioms hold,

the updating is continuous, preserves certainty, and the initial belief is required to lie in the

convex hull of the updates.

The axiomatic approach to updating taken here is inspired by the axiomatic models of the

value of information. In Shannon and Weaver (1949) entropy is derived as the unique measure

of information that satisfies certain properties.1 Our aim is to approach belief revision from

a similar normative standpoint, that is, to provide a set of criteria that an agent’s belief

revision might satisfy if they take “sufficient trouble” to investigate it by some process of

introspection.2 Then, for a given set of criteria, to characterize the class of updating processes

that satisfy these conditions. The criteria studied here are not claimed to be definitive, the
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aim is just to begin to understand the properties of the many models of updating and belief

formation that are present in the literature. None of the criteria we consider below are novel.

The one we emphasize is a commutative property that we call divisibility. We also study the

properties of Bayesian plausibility, which requires that belief updating is an unconditional

martingale.3

Consider an agent who receives two pieces of information. There are several ways that she

can use these two signals to update her beliefs about the world. One is to consider the joint

distribution of the two signals and to do just one update. An alternative (which is natural

when the signals arrive sequentially) is for her to update her beliefs twice. That is, for her to

update her beliefs once using the first signal and then to update her intermediate beliefs using

the second signal and its conditional distribution. If these two different procedures generate

the same final profile of updated beliefs, we will say that the updating is divisible. Features

of this example are made more precise in our definition of divisibility, but the idea at its core

is that breaking down composite signals and doing many updates does not affect the eventual

updated beliefs.

The main result of this paper shows that updating satisfies four Axioms, if and only if, it

is characterized by the process shown in Figure 1, where F is an arbitrary bijection. The

four axioms are: First, that uninformative experiments do not result in changes in beliefs.

Second, that the names of the signals do not affect the updating just their probability content.

Third, that all updated beliefs are possible given the right information structure. And fourth,

the divisibility property described above. The updating procedures that satisfy these four

properties follow the steps that are illustrated in the figure below. The initial beliefs are

mapped to a “Shadow Prior” using a bijection F . Then, these shadow priors are updated

in the standard Bayesian fashion using the statistical information that is observed to create

a Shadow Posterior. Finally, the shadow posterior is mapped back to the space of original

beliefs using the inverse bijection F−1.

Beliefs Updated BeliefsyF xF−1

Shadow Prior
Bayes Updating−−−−−−−−−−−−−−−−−−−−→ Shadow Posterior

Figure 1. Quasi-Bayesian Updating, or Updating that Satisfies Axioms 1–4.

Bayesian updating is clearly an element of this class of updating processes (F is the identity).

The geometric probability weighting model of updating of Angrisani, Guarino, Jehiel, and

Kitagawa (2017) and Bohren and Hauser (2017) is also in this class. Specific properties of the

bijection F will determine different properties of the belief revision. We will show that drift in

3See Kamenica and Gentzkow (2011) for example.
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the updating, overreaction and under-reaction to signals can all be generated by appropriate

choices of F .

Many of the useful properties of Bayesian updating also carry over to the class of quasi-

Bayesian updating processes described by Figure 1. Under Bayesian updating the beliefs are

a martingale, they converge, and they are consistent (in correctly specified models). Although

the actual beliefs described in Figure 1 are not a martingale, the shadow beliefs are. Thus, if

the function F is continuous and maps the extreme points of the belief simplex to themselves,

then consistency will hold for this larger class of updating processes. The relative ease with

which consistency is established in this class of updating processes contrasts with other models

of non-Bayesian updating, for example Rabin and Schrag (1999), Bohren and Hauser (2017)

and Epstein, Noor, and Sandroni (2010) where it is much harder to establish.

The simple nature of quasi-Bayesian updating also allows it to be applied to a large class of

learning problems. In an extended example, we apply quasi-Bayesian updating to the classic

sequential sampling problem of Wald (1945). The value of acquiring a signal is intimately

related to the way an agent processes this signal in their updating. Thus the dynamic cost

of information will be sensitive to changes in the mode of updating. In this example, agents

with updating that is responsive to signals learn more and are willing to buy more signals.

Conversely, agents whose updating is unresponsive to signals choose to acquire fewer sig-

nals. They do not compensate for their slow learning by acquiring more signals. Thus the

responsiveness of the updating and the acquisition of signals are complements.

A natural question to ask is: what normative properties characterize Bayesian updating? We

will show the updating is Bayesian if and only if it satisfies: the above four axioms, continuity,

F maps the extreme points of the belief simplex to themselves, and one further condition. This

condition is that the original belief is contained in the convex hull of the set of updated beliefs.

When there are more than two states, we show that these conditions characterize Bayesian

updating. Clearly, if the original belief equals the expected value of the updated belief then

our condition on the convex hull is also satisfied. Thus, the martingale property, unbiased

learning, or Bayes plausibility are all sufficient to ensure that the updating characterized by

our four axioms is Bayesian. We also investigate the role that Bayes plausibility plays in

discipling the updating when no other axioms are imposed. We show that updating with

this property is equivalent to that of a Bayesian who has misspecified probabilities of signals.

Thus, one can interpret this kind of updating as the behavior of someone who is a Bayesian

but has incorrect knowledge of the process generating the signals.

Why emphasize the divisibility of updating rather than some other property it may have?

Our first motivation for the divisibility property is best understood by way of an example.

Consider an agent with an arbitrary updating process who independently samples the signals

s ∈ {−1, 0,+1}. This agent has chosen her updating to have the property that an unin-

formative signal (one with the same probability in each state) does not change her beliefs,
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because she thinks this is a sensible property for her updating to have. However, she has not

chosen her updating to be divisible. In state θ the signals, s, are sampled with probabilities

(p, 1
2 ,

1
2 − p) and in state θ′ the order of the probabilities are reversed to (1

2 − p,
1
2 , p), where

p < 1
4 . Clearly, if she samples s = 0 her updated beliefs will not change, because this signal

is uninformative. What if she samples two signals and observes the pair (−1, 1)? She might

process this information iteratively: first updating using the s = −1 signal and then updating

again using the s = +1 signal. The first update could lead her belief in the state θ′ to increase

as 1
2 −p > p. And the second update might lead her belief in θ′ to fall back. There is no prop-

erty of the updating that speaks to the relative size of these two effects, so the agent might

end this process with higher, or lower, belief in θ. However, the pair (−1, 1) is uninformative

and occurs with probability p(1
2 − p) in both states. Moreover, her updating was required to

be unaffected by such uninformative signals. Thus this way of processing information violates

a property that she intended her updating to have. If she had done one update on this pair,

then her beliefs would not have changed. There is an infinite set of uninformative signals she

can see—any collection of signals with an equal number of +1’s and −1’s. If she processes the

information in these signals iteratively, then she risks treating such signals as being informa-

tive. Indeed if sufficiently long vectors of signals occur, it is possible that an uninformative

signal will be treated by this agent as arbitrarily informative. The original property that she

wanted her updating to satisfy (uninformative signals result in no change in belief) can be

entirely voided if the updating is not divisible. Imposing the additional requirement of divis-

ible updating ensures that all uninformative signals, no matter how they are processed, are

recognized to be uninformative. In summary, if an agent believes that their updating ought

to satisfy a property such as non-responsiveness to uninformative signals, then divisibility is

a method of ensuring the updating consistently obeys this property. Without divisibility it is

not clear what any property placed on the updating actually achieves.4

In response to the above example, one might argue that the fault is with the agent for

choosing to update iteratively rather than in one round. However, there are many reasons

updating might proceed iteratively: The signal may arrive in pieces at different points of

time. The signal may come from several distinct sources. It may reduce the cognitive load if

a signal is processed in several steps because the signal is so complex. Plott (1973) termed

this a “divide and conquer strategy”.5 He argued that path independence was a weaker but

necessary property of rational social choice. One normative argument he gave in favor of

path independence was based on the idea that, “The status quo, or history, should play no

dominant role in the determination of choice” (Plott, 1973, p.1087). A similar claim is made

here for belief updating. Belief formation ought to be independent of the order that the

evidence is processed, because if it was not independent then the status quo (or initial belief)

4The example focusses on the uninformative signals, other properties (such as monotonicity) can be voided

if divisibility is not required. In Section 5.2 we, further, show that a sophisticated agent can exploit any

non-divisibility to maximize what they learn from their signals.
5My thanks to a referee for bringing this paper to my attention.
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plays a special role in the determination of updated beliefs.6 To see this, consider an agent

who has: the prior belief µ, seen a signal s, and has formed the updated beliefs µ′. She might

be concerned that her updating was forcing her initial beliefs, µ, to play a special role in the

determination of µ′. One way for her to verify that this is not the case would be to suppose

that µ had itself been generated by some previous evidence s′′ at the previous beliefs µ′′. If

she circumvented the belief µ and just saw s′′ and s at µ′′ would she still have the final beliefs

µ′ ? This test of the initial beliefs is obviously identical to the divisibility property. It also

ascertains that the initial belief is not being treated in a special way, because it is the initial

belief. Importantly, this test does not require the agent to weight equally her initial belief and

the signal when performing an update. For example, one of the many models of updating that

passes the above test is complete dogmatism, that is, for her never to alter her belief whatever

evidence she sees. The test described above instead requires that initial beliefs interact in a

consistent way with the updating.

The argument presented in the previous paragraph says nothing about preferences. There is

considerable evidence from psychology that individuals do have preferences about the order

in which signals arrive and are processed, see Legg and Sweeny (2014) for example.7 These

preferences are also studied in the economics literature, Ely, Frankel, and Kamenica (2015)

for example. These literatures focus on how the order of signals affects preferences. They do

not say that order of signals necessarily effects agents’ ultimate beliefs in any way. Divisibility

is the claim that the order of signals does not affect their ultimate beliefs.

Another motivation for divisibility comes from outside Economics. In the forward of Ramsey

(1926), the theory of probability is described as, “. . . a branch of logic, the logic of partial belief

and inconclusive argument”. There is a literature on the logic of partial belief in theories. In

particular on how this belief should be revised or updated in the light of new evidence. This

literature has considered many forms of belief revision based on the axioms of probability

or logic.8 In most logics, the connective “and” is commutative, that is, exactly the same

propositions can be deduced from A ∧ B or B ∧ A. Divisibility extends this property to the

domain of partial belief. If belief formation was not divisible, then the beliefs after A then B

could differ from the beliefs after learning B then A. Hence, divisibility under another name

has been proposed to a necessary property of belief revision in this literature.9

This paper is organized as follows. In Section 2 our lead examples of divisible and non-

divisible updating are discussed and there is brief description of the literature. Section 3

provides the formal model of updating and describes the axioms we impose on it. The main

result, the characterization of divisible updating, is given in Section 4. Section 5 then returns

6The analogy made here between choice with reference points and updating is not new. It has been noted

by Rubinstein and Zhou (1999) among others.
7There is also genre of humor based around getting good and bad news in various orders.
8See Howson and Urbach (2006) and Lewis (1976) and may others.
9Perea (2009) applies a version of divisibility to the “imaging” model of updating due to Lewis (1976) .
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to our examples of divisible and non-divisible updating and shows how these models can be ap-

plied in a sequential sampling model. In Section 6 some basic properties of divisible updating

are described. In Section 7 a characterization of Bayesian updating is provided.

2. Examples and the Literature

2.1. Examples of Divisible and Non-Divisible Updating

In this section we consider a simple learning problem and give a brief discussion of our

principal examples of divisible and non-divisible updating. A more detailed investigation of

these two examples is delayed until Section 5, although some of the results in that section are

described here. The example of non-divisible updating is due to Epstein, Noor, and Sandroni

(2010). The example of divisible updating is the geometric weighting scheme used by many

including Angrisani, Guarino, Jehiel, and Kitagawa (2017).

Consider an agent who is waiting for a bus, but who does not know the arrival process of

buses. There are two states for the arrival process: In the good state a bus will arrive in

period t = 0, 1, . . . with probability (1−α)αt (α ∈ (0, 1)) while in the bad state a bus arrives

in period t with probability (1− β)βt where α < β. She has initial beliefs µ0 ∈ (0, 1) that the

state is good. If no bus arrives in period t = 0, then a Bayesian would revise her beliefs in

the good state downward to αµ0

(1−µ0)β+µ0α
. If no bus arrives after t periods of waiting then her

beliefs in the good state (at the start of period t) fall to αtµ0

(1−µ0)βt+µ0αt
.

Epstein, Noor, and Sandroni (2010) consider a model of non-Bayesian learning where, if a

bus does not arrive, the agent revises her beliefs to a weighted average of her prior and the

Bayesian posterior:

(1) µ1 = (1− λ)µ0 + λ
αµ0

(1− µ0)β + µ0α
, λ ≥ 0.

This is a particularly elegant model of updating as the linear combination of prior and pos-

terior preserves the martingale property of Bayesian updating when λ < 1. Choosing λ < 1

also allows the agent to be conservative in her updating, Hagmann and Loewenstein (2017).

Conversely, λ > 1 allows her to overemphasize the new information she has received.

This updating is non-divisible, so there are many possible values the agent’s beliefs could

take after t periods waiting for a bus. Iterating (1) for each of the t periods she has been

waiting, gives the updated belief

µτ = (1− λ)µτ−1 + λ
αµτ−1

(1− µτ−1)β + µα
, τ = 0, 1, . . . , t.
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An alternative application of (1) would be to do one update of her prior, µ0, using all the

information accumulated by time t . This would give an updated belief:

µ̂t := (1− λ)µ0 + λ
αtµ0

(1− µ0)βt + µ0αt
.

In Lemma 3 we will compare µ̂t and µt. We show that µ̂t < µt when λ > 1 and µ0 is

small. If the agent believes the bad state is likely and overweights new information, then she

becomes pessimistic faster if she does one update rather than updating iteratively. This effect

is reversed when µ0 is high, however. A sophisticated agent could achieve the most rapid

learning about the state by first updating iteratively when beliefs are high and then doing

one further update when her beliefs hit a threshold.

Our main example of divisible updating is a simple generalization of Bayes rule, where the

probabilities in the updating are weighted by raising them to a power

µτ =
α

1
aµτ−1

µτ−1α
1
a + (1− µτ−1)β

1
a

, a ≥ 0; τ = 1, . . . , t.

We call this geometric probability weighting. This divisible generalization of Bayesian updat-

ing appears in Grether (1980), Hanany and Klibanoff (2009), and Angrisani, Guarino, Jehiel,

and Kitagawa (2017) for example. In Section 4.1 we show that this model can be interpreted

as a geometric average of the prior and Bayesian posterior. Also, that it is the only divisible

updating process that reweights probabilities. Other examples of divisible updating are given

Sections 4.2, 4.3 below.

2.2. Related Literature

There is a large and growing literature, both experimental and theoretic, investigating the

consequences of a non-Bayesian updating of beliefs, see for example: Rabin and Schrag (1999),

Ortoleva (2012), Levy and Razin (2017) among many others. Much of this literature combines

issues of updating and decision taking. This is not what the current paper does—it focusses

solely on the revision of beliefs and the properties one might want to place on this revision. One

theme of this literature has been to investigate the consequences of a particular assumption

about the updating. The aim here is somewhat different, that is to try to understand what

updating procedures are consistent with a given property. One exception to the focus on

decision taking is Epstein, Noor, and Sandroni (2010) who provide a model of updating that

captures the under and overreaction to new information. Their model of updating is distinct

from the class we consider in several respects and will be considered at length below.

In Gilboa and Schmeidler (1993) the notion of divisibility (termed there commutativity) is

introduced and is argued to be an important feature of belief updating particularly in the
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context of updating ambiguous beliefs. Hanany and Klibanoff (2009), describe a model of up-

dating that has perhaps the closest connection with the one described here. They show that

there is a unique “reweighted Bayesian update” that generates a given set of dynamically

consistent preferences. They moreover show that this rule satisfies commutativity. These

reweighted Bayesian updates are a subset of the class of updating rules that are described in

Proposition 1. In Zhao (2016) a set of weaker axioms are shown to characterize an updating

rule that does not satisfy divisibility, but does satisfy an order independence property, how-

ever, this property is required to hold only for independent events. Similarly, Frankel and

Kamenica (2019) consider and order-independence property but here it is required to hold for

an expectation rather than for the entire profile of updated beliefs.

There are other characterizations of Bayesian updating in the literature. Majumdar (2004)

imposes more regularity (such as monotonicity) and structure on the updating than is re-

quired here. Chauvin (2019) considers belief revision in a more abstract setting, without

the machinery of statistical experiments. Instead agents observe arguments that map their

state to a revised state. Furthermore, neither of the above characterize divisible updating

directly.

Several of the updating models described above take the usual formula for Bayesian updating

but re-scale the probabilities that appear in it. In contrast, Figure 1 can be viewed as

describing updating where the beliefs that appear in Bayesian updating are rescaled, not

the probabilities. It is this belief rescaling that distinguishes the generalization of Bayesian

updating considered here from much of the literature. We also provide a result, Lemma 2,

that describes when these two approaches are equivalent.

3. A Model of Belief Updating and the Axioms

In this section we define the updating process U and the axioms that are imposed on it.

There is an unknown state θ that can take finitely many values θ ∈ {1, 2, . . . , |Θ|} := Θ. An

agent has the full-support beliefs µ = (µ1, . . . , µ|Θ|) ∈ ∆o(Θ) about this state.10 The agent

also has access to a statistical/Blackwell experiment, E , that provides information about θ.

The experiment consists of a finite set of signals s ∈ {1, 2, . . . , n} = Sn and state-dependent

full-support probability distributions for the signals pθ = (pθ1, . . . , p
θ
n) ∈ ∆o(Sn). The number

of signals in the experiment is an arbitrary finite number, thus E ∈ ∪∞n=2∆o(Sn)|Θ| := E. We

write En to represent an experiment that has n signals.

An updating process, U , takes every belief–experiment pair, (µ, En) ∈ ∆o(Θ)×E, and maps

them to a profile of updated beliefs, (µ1, . . . , µn) ∈ ∆o(Θ)n. This profile specifies an updated

10∆(Θ) denotes the set of probability distributions on the finite set Θ and ∆o(Θ) denotes the interior of

∆(S).
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belief for each of the n signals in the experiment. Thus U is described by a sequence of

functions U := (Un)∞n=2 where

Un : ∆o(Θ)×∆o(Sn)|Θ| → ∆o(Θ)n, for n = 2, 3, . . . .

We write the elements of this profile as (U1
n, . . . ,Unn ) = Un(µ, (pθ)θ∈Θ) = Un(µ, En).11

We now state some axioms for the updating process U := (Un)∞n=2. The first axiom says that

if an experiment is uninformative, then there is no updating. An experiment En = (pθ)θ∈Θ is

uninformative if the signals occur with the same probability in each state, that is, pθ = pθ
′

for all θ, θ′ ∈ Θ. The axiom says that if this is the case, then the elements of the profile of

updated beliefs are all equal to the initial beliefs.

Axiom 1 (Uninformativeness). For all n, Un(µ, En) = (µ, . . . , µ) if En = (pθ)θ∈Θ and pθ = pθ
′

for all θ, θ′ ∈ Θ.

The second axiom says that the names of the signals are unimportant for how the beliefs

are revised. It is only the probabilities of the signals in the experiment that determine how

the beliefs are updated. Thus permuting the order of the signals just permutes the elements

of the array of updated probabilities.

Axiom 2 (Symmetry). For any n, any permutation ω : {1, 2, . . . , n} → {1, 2, . . . , n}, any µ,

and any En = (pθ)θ∈Θ ∈ E,

Un(µ, (ω(pθ))θ∈Θ)) =
(
Uω(1)
n (µ, En), . . . ,Uω(n)

n (µ, En)
)
,

where ω(pθ) := (pθω(1), . . . , p
θ
ω(n)) and Un(.) =: (U1

n(.), . . . ,Unn (.)).

At this stage it is useful to introduce a further piece of notation to describe the experiment

En = (pθ)θ∈Θ ∈ E. We will define the vector ps := (pθs)θ∈Θ ∈ (0, 1)|Θ|. This describes the

probability of the signal s in each state. The vectors pθ are the rows of a Markov matrix while

the vectors ps are its columns. In experiments with only two signals (a binary experiment),

the probability of the first signal determines pθ completely, so we can write the elements of

the array of updated beliefs as follows

U2(µ, E2) ≡
(
U1

2 (µ, p1,1− p1),U2
2 (µ,1− p2, p2)

)
, p1, p2 ∈ (0, 1)|Θ|.

If p1 is the vector of state-dependent probabilities for the signal s = 1, then 1− p1 are these

probabilities for s = 2.12

11In this model the updated beliefs are a deterministic function of the signal and experiment. This is

not consistent with all models of updating. For example in Rabin and Schrag (1999) the updated beliefs are

randomly determined by a bias that is realized after the signal is observed. To capture this model of updating

it would be necessary for the function Un to take values in ∆(∆(Θ))n.
12We use 1 to denote the vector (1, 1, . . . , 1) of appropriate length.
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Axiom 3 defines divisibility. It is intended to capture the property that an update is in-

dependent of whether information is processed in an iterative way or as one-off process.

Consider two possible ways of learning the signal s ∈ Sn. The first is a one-step process

where the signal s is generated according to the experiment En = (pθ)θ∈Θ and then revealed

to the agent. Another way of learning s is a two-step process where: First, with probabilities

(pθ1, 1 − pθ1)θ∈Θ = (p1,1 − p1) the signal s = 1 or the signal s 6= 1 is revealed to the agent in

a binary experiment. Then, in the case where the outcome s 6= 1 was obtained in the first

experiment, a signal from the set {2, . . . , n} is generated from a second experiment with the

objective conditional probabilities (pθ−1(1 − pθ1)−1)θ∈Θ. (As usual, pθ−s is the vector pθ with

the sth element omitted). In what follows we will use En−1 := (pθ−1(1 − pθ1)−1)θ∈Θ to denote

the experiment that occurs conditional on s 6= 1.13

Axiom 3 says that these two different processes for observing the signal s have no effect on

the agent’s ultimate profile of beliefs for all the signals s ∈ Sn. This assertion has two distinct

claims: First it says that learning the signal is s = 1 when there are n − 1 other signals has

the same effect on the updated beliefs as learning the signal is s = 1 when there is a binary

experiment. The relative probabilities of the signals that were not observed (s = 2, . . . , n)

have no role in determining how beliefs will be updated when s = 1 is observed. This is part

(a) of the Axiom.

The second part of Axiom 3 says that the agent’s updated beliefs when they see the signal

s′ 6= 1 in an experiment, that is Us′n (µ, En), are the same as the updated beliefs they have at

the end of the two-step process. In this two-step process they first learn the signal was not

s = 1 and update their beliefs to U2
2 (µ, p1,1 − p1). Then they learn that the signal was s′

from the experiment En−1 and engage in a further update to Us′−1
n−1

(
U2

2 (µ, p1,1− p1), En−1

)
.14

This is what part (b) of the Axiom says.

Axiom 3 (Divisibility). For all n ≥ 3, En ∈ E, and µ ∈ ∆o(Θ):

(a) U1
n(µ, En) ≡ U1

2 (µ, p1,1−p1); (b) Us′n (µ, En) ≡ Us′−1
n−1

(
U2

2 (µ, p1,1− p1), En−1

)
, ∀s′ > 1.

Where En−1 := (pθ−1(1− pθ1)−1)θ∈Θ.

Iterating the two-step process used in the axiom allows us to consider learning the signal

over n − 1 rounds of updating. (In the kth round the agent observes an experiment with an

outcome s = k or s > k.) Divisibility asserts that this iterated process for learning the signal

has no effect on the ultimate beliefs. The symmetry property also implies that the order that

the signals are revealed has no effect on the eventual profile of updated beliefs. Hence, these

axioms imply that the updating of beliefs is independent of the order that information arrives.

That is, reversing the order in which two pieces of information arrive has no effect on the

13Recall that pθ ∈ ∆o(Θ) and so 1 > pθ1.
14The notation here requires an explanation. The updated beliefs after the signal s′ is the s′−1th component

of the profile Un−1 when the first signal is not present. Hence the change in the superscript on Un−1.
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ultimate profile of beliefs. The axiom is also implied by an order-reversal property. The two

ways of learning the signal s in the axiom amount to either: First observing the true value

of s and then observing (the uninformative experiment) that indicates whether s 6= 1. Or, to

first observing whether s 6= 1 and then observing the true value of s. Hence when there is

symmetry, Axiom 3 is equivalent to an assertion that the updated beliefs are independent of

the order that information arrives.15

The final axiom considers the updating in a binary experiment. It says that for at least one

initial belief µo all updated beliefs are possible after the signal s = 1. Furthermore, there is

a unique binary experiment (up to homogeneity) that achieves this updated belief.16

Axiom 4 (Non-Dogmatic). There exists µo ∈ ∆o(Θ) such that for every µ ∈ ∆o(Θ) the

equation U2
1 (µo, p1,1− p1) = µ has a unique solution p1 ∈ ∆o(Θ).

Updating satisfying this axiom is “non-dogmatic” as it describes an agent whose belief can

take any value, provided they see the right evidence. This axiom would fail if there is a

set µ’s for which this equation cannot be solved by any binary experiment. Such a failure

has significant consequences when the updating satisfies divisibility. Divisibility implies that

the updated belief after one complex (but finite) history of experiments and signals can be

collapsed to a one-step binary experiment where the signal s = 1 or s 6= 1 is revealed. Thus,

if the updating satisfies divisibility, there can be no finite sequence of experiments with finite

signals where the ultimate belief is in this set—it is a taboo set of beliefs. An example of

divisible updating that violates of this axiom, would be completely dogmatic updating where

no evidence ever leads to a change in beliefs, U2
1 (µo, p1,1− p1) := µ for all (µ, ps). The taboo

set here is very large.17

The axiom, also, requires a degree of sensitivity to evidence as different evidence cannot

generate the same posterior. This sensitivity to evidence can be extreme as there is no

requirement that the updating is continuous. The axiom would fail if there were two different

binary experiments p1, p
′
1 ∈ ∆o(Θ) that generated the same updated beliefs at µ0. We will

show (see footnote 19 below) that if this were the case, and the updating is divisible, then

there are many experiments that are treated as uninformative. Thus if divisible updating

violates this axiom, there is a large scale lack of sensitivity to certain kinds of information.18

15This equivalence argument is formalized in the online appendix.
16Usually p1 ∈ (0, 1)|Θ|, but U2

1 will be shown to be homogeneous degree zero, so we require a unique

solution p1 ∈ ∆o(Θ) ⊂ (0, 1)|Θ|.
17A less extreme example of quasi-Bayesian updating where some beliefs cannot be reached was suggested

by a referee. There are: two states θ and θ′, initial beliefs (µ, 1 − µ), and signal probabilities pθs, p
θ′
s ∈ [0, 1].

Define the updated beliefs to be µ′ =
µpθs

2µpθs+(1−2µ)pθ
′
s

if µ ≤ 1
2

and µ′ =
(2µ−1)pθs+(1−µ)pθ

′
s

(2µ−1)pθs+2(1−µ)pθ
′
s

if µ > 1
2
. Beliefs

never leave the interval [0, 1
2
] if they start in this interval, no matter how much information is observed.

18In the online appendix we examine divisible updating models where this property fails. In these models

the dimension of the space of updated beliefs can be smaller than the dimension of the belief space.
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This axiom also excludes models of updating where there are fixed costs of contemplation or

of belief revision. In such models (Ortoleva (2012), for example) there are sets of experiments

for which it is simply not worth revising beliefs, hence there would be many experiments with

the update equal to the prior.

4. Characterization of Quasi-Bayesian Updating

In this section a proposition is proved that gives a characterization of updating procedures

U that satisfy Axioms 1–4. We will show that any such updating is characterized by a (not

necessarily continuous) bijection F that maps beliefs to a shadow prior. Then, this shadow

prior is updated by Bayes rule to create a shadow posterior. Finally the shadow posterior

is mapped back by F−1 to form the agent’s updated beliefs. As was illustrated in Figure

1.

The updating in a binary experiment plays an important role in Proposition 1, so we will

define a function u : ∆o(Θ)× (0, 1)|Θ| → ∆(Θ) to represent it:

(2) U2(µ, E2) ≡
(
U1

2 (µ, p1,1− p1),U2
2 (µ,1− p2, p2)

)
≡ (u(µ, p1), u(µ, p2)) .

The function u(µ, p1) gives the updated value of beliefs in a binary experiment where s = 1

occurs with the probabilities p1 ∈ (0, 1)|Θ|. Symmetry allows us to write the profile of updated

beliefs for binary experiments, (2), in terms of the one function u. Lemma 1 shows that the

entries of the updating function for any number of signals s are all made up of this function

evaluated at the different signal probabilities ps. It also shows that u satisfies a functional

equation and is homogeneous degree zero in ps.

Before stating Lemma 1 we introduce some notation that is used throughout this paper. If

x, y are vectors of m strictly positive elements, then x◦y is used to denote Hadamard (element

wise) product of the two vectors and x ◦ y−1 denotes Hadamard division:

x ◦ y := (x1y1, . . . , xmym), x ◦ y−1 := (x1/y1, . . . xm/ym).

Using this notation, we can write the Bayesian updated belief, µB, given the priors µ and the

vector of signal probabilities ps as

µB =
µ ◦ ps
µT ps

. (Bayes Rule)

This expression, suitably adjusted, appears in Propositions 1, 5, and 6 below.

Lemma 1. Suppose the updating U satisfies Axioms 1, 2, and 3, then:

(i) Un(µ, En) ≡ (u(µ, p1), . . . , u(µ, pn)) , for all n.

(ii) u(µ, ps) is homogeneous degree zero in ps.

(iii) u(µ, ps) ≡ u
(
u (µ, x) , ps ◦ x−1

)
for all x ∈ Rn with ps ≤ x < 1.
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All proofs are in the Appendix. An intuition for the Lemma is as follows. For part (i),

observe that Axiom 3(a) requires that the update after signal s = 1 is independent of the

probabilities of the other signals. Symmetry implies that this property must hold for all

signals, not just the signal s = 1. Part (ii) of the Lemma says that the updated belief after

the signal s, is homogeneous degree zero in ps, the vector of probabilities for the signals s.

Suppose that there are three possible signals S = {1, 2, 3} and that one signal, say s = 1, is

equally likely under all states. Recall that Axiom 3(b) considers two cases: One where s is

determined in a one-off experiment. The second where s is determined in a two-step process—

first an experiment with binary outcomes s = 1 and s 6= 1 and then s ∈ {2, 3} is determined.

Here observing s = 1 is uninformative, so by Axiom 1 the first stage of the two-step process

leads to no updating of the priors. But in the second-stage experiment, there is increased the

relative probabilities of the signals {2, 3}. The updates after these signals are equal to the

updates after the one-step experiment (with low relative probabilities for {2, 3}). Thus the

scaling up of the probabilities had no effect on the updating of beliefs and the updating is

homogeneous. The final part of the Lemma (iii) rewrites the divisibility condition in terms of

the function u.

In Proposition 1 we show that we know a great deal about the form of u(.), because it

satisfies:

(3) u(µ, ps) ≡ u
(
u (µ, x) , ps ◦ x−1

)
, ∀ ps ≤ x < 1;

from Lemma 1(iii). This functional equation captures the fact that final beliefs are indepen-

dent of the order information arrives. To find all updating rules that satisfy Axioms 1–4, it

suffices to find all functions u(.) that satisfy (3). In solving functional equations, it is usual

to impose some further mathematical regularity on the class of functions one is willing to

entertain as solutions. This is the role of Axiom 4. As we have explained above, it ensures

the solutions we find are global, so the updating does not have taboo sets of beliefs. It also

ensures the full dimensionality of the set of updates.19 To solve functional equations it is not

necessary to assume differentiability or continuity. The proposition below transforms (3) into

a well-known functional equation that is called the translation equation.20 This was solved in

its multidimensional form by, Aczél and Hosszú (1956). We use their solution to find (4) the

set of functions u that satisfy (3). If (4) is compared with the formula for Bayes updating

above, it is clear that Bayes updating is being performed on the beliefs F (µ) with the signal

probabilities ps. The outcome of this is then mapped back by F−1.

19Axiom 4 requires that u(µ, .) = µ̂ has a unique solution in ∆o(Θ). If there were two solutions u(µ, d) = µ̂

and u(µ, d̂) = µ̂, then (3) would imply that u(µ̂, d ◦ d̂−1) = u(u(µ, d̂), d ◦ d̂−1) = u(µ, d) = µ̂ . Iterating this

u(µ̂, (d ◦ d̂−1)k) = µ̂ for all integers k. Thus, the experiment with probabilities (d ◦ d̂−1)k is uninformative at

µ̂ for all k. This can lead to a manifold of experiments that are all uninformative and the dimension of the set

of updated beliefs being less than the original space of beliefs. Updating with this property is investigated in

the online appendix.
20A previous application of the translation equation to economics can be found in Sokolov (2011).
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Proposition 1. The updating U satisfies the Axioms 1–4, if and only if there exists a bijection

F : ∆o(Θ)→ ∆o(Θ) such that

(4)

Un(µ, En) ≡ (u(µ, p1), . . . , u(µ, pn)) , for all n, where u(µ, ps) ≡ F−1

(
F (µ) ◦ ps
F (µ)T ps

)
.

We now give a brief sketch of the proof of this result. The transformations we impose on

(3) reduce the dimension of the variables (µ, x, ps), and u, by dividing by the last entry.

Then we take logarithms of these ratios. This writes the variables and function in terms of

log-likelihood ratios as (φ, z, z + y) and ṽ. With this (3) becomes

ṽ(φ, z + y) ≡ ṽ (ṽ(φ, z), y) , ∀φ, y, z ∈ R|Θ|−1.

This is the translation equation. One simple solution to this functional equation is to add

the arguments together: that is ṽ(φ, x) = φ + x. Transforming this equation back from log-

likelihoods into probabilities gives Bayesian updating. In general this functional equation tells

us about the contours of ṽ(.). This is because if y + z are constant but z and y vary, then

the left of this equation stays constant but the arguments of ṽ on the right vary. It is then

relatively simple to see that each such contour of the function ṽ(.) is a translation of the

other. Thus once the form of one contour has been determined all other contours are just

translations of it. Choosing one arbitrary function to determine the shape of a contour and

a second to determine the value taken by each contour is sufficient to determine v. It will be

convenient to have a name for the updating characterized by Proposition 1. We will call it

quasi-Bayesian updating.

Definition 1. The updating U is said to be quasi-Bayesian if it satisfies Axioms 1–4.

Proposition 1 permits U to be discontinuous. If U is continuous on ∆(Θ) × ∆(S)|Θ| (the

interior and the boundary), then we can restrict the bijection to be a homeomorphism and

extend its domain to ∆(Θ). This is summarized in the following corollary.

Corollary 1. The updating U satisfies Axioms 1–4 and is continuous then there exists a

homeomorphism F : ∆(Θ)→ ∆(Θ) such that

Un(µ, En) ≡ (u(µ, p1), . . . , u(µ, pn)) , for all n, where u(µ, ps) ≡ F−1

(
F (µ) ◦ ps
F (µ)T ps

)
.

We now give four examples of updating rules in the class characterized by Proposition 1.

These show how one important model of non-Bayesian updating falls in this class and describe

other discontinuous and non-monotonic models of updating.
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4.1. Geometric Probability Weighting

In this example the quasi-Bayesian updating is generated by the homeomorphism

F a(µ) :=

(
µa1∑
θ µ

a
θ

, . . . ,
µa|Θ|∑
θ µ

a
θ

)
; a > 0.

We first show how an explicit formula for the updating can be derived from this. First, we

rewrite the condition (4) as F a(u (µ, ps)) = (F a(µ) ◦ ps)/F a(µ)T ps. This implies

(5)
F aθ (u (µ, ps))

F aθ′(u (µ, ps))
=
pθs
pθ′s

F aθ (µ)

F aθ′(µ)
.

This is particularly useful as it allows us to derive a property for ratios of the updated beliefs

without requiring an explicit expression for inverse of the homeomorphism F a.

uθ(µ, ps)

uθ′(µ, ps)
=

(
pθs
pθ′s

)1/a
µθ
µθ′

, and so u (µ, ps) ≡
µ ◦ (ps)

1/a

µT (ps)1/a
;

where (ps)
1/a :=

(
(p1
s)

1/a, . . . , (p
|Θ|
s )1/a

)
. This explicit form for an updating rule is well known

and used in Angrisani, Guarino, Jehiel, and Kitagawa (2017) and Bohren and Hauser (2017),

for example. Although it appears that the characterization of quasi-Bayesian updating (4)

worked by transforming the priors that enter the Bayesian formula, in this case the updating

reweights the probabilities in the Bayesian formula not the priors.

The updating generated by F a can also be interpreted as a geometric weighted-average of

the prior and the Bayes update, that is,

µ ◦ (ps)
1/a

µT (ps)1/a
= K (µ)1− 1

a︸ ︷︷ ︸
prior

◦
(
µ ◦ ps
µT ps

) 1
a

︸ ︷︷ ︸
Bayes Rule

.

K is a normalizing constant chosen to ensure the RHS is in ∆(Θ). Hence if a < 1, the agent

overreacts to new information and over weights the Bayesian update. Conversely if a > 1,

therefore, the agent under-reacts to new information—they place too much weight on their

prior and do not adjust their beliefs as much as a Bayesian would.

Geometric probability weighting is a member of the class of updating rules where the prob-

abilities that enter into Bayes rule are rescaled in some way:

uj(µ, ps) :=
µ ◦ J(ps)

µTJ(ps)
, J(ps) :=

(
j1(p1

s), . . . , j|Θ|(p
|Θ|
s )
)
.

(Where: jθ(0) = 0 and jθ(.) is increasing, for all θ.) Geometric probability weighting is the

only updating rule consistent with Proposition 1 that is of this form.

Lemma 2. uj(µ, ps) ≡ F−1
(
F (µ)◦ps
F (µ)T ps

)
for some homeomorphism F iff uj(µ, ps) ≡ µ◦(ps)a

µT (ps)a
.
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The class of updating rules in Proposition 1 generalize Bayes by rescaling beliefs. Probability

weighting rules generalize Bayes by rescaling probabilities. Geometric probability weighting

is the class of updating rules where these two generalizations of Bayes intersect.

4.2. Exponential Weighting

The second homeomorphism we consider, F b, generates a divisible updating process that is

similar to multinomial logit.

F b(µ) :=

 e
− b
µ1∑

θ e
− b
µθ

, . . . ,
e
− b
µ|Θ|∑

θ e
− b
µθ


The calculation of (5), the ratio of the updated beliefs, for this homeomorphism gives

1

uθ′(µ, ps)
− 1

uθ(µ, ps)
=

1

µθ′
− 1

µθ
+

1

b
ln
pθs
pθ′s
.

This updating gives a linear shift in the inverse probabilities of each state that is determined

by the log likelihood of the signal probabilities. The constant b determines how responsive

the update is to the information in the signal. For example, when there are only two states

with initial probabilities (µ, 1− µ) the formula for the updated beliefs (µ̂, 1− µ̂) is

2µ̂− 1

µ̂(1− µ̂)
=

2µ− 1

µ(1− µ)
+

1

b
ln
pθs
pθ′s
.

The function 2µ−1
µ(1−µ) is increasing so when pθs > pθ

′
s updated beliefs move upwards. For large

values of b this updating exhibits under-reaction to signals, that is, it overweights the prior

(see Section 6.3).

4.3. Two Counter Examples

Now two quasi-Bayesian updating rules are described for Θ = {θ, θ′} that have strange

or undesirable properties. The first we call bad Bayesian updating. This is updating that

concludes the state is θ when there is a signal that only happens in state θ′. Consider the

bijection that exchanges the probabilities of the states F : (µθ, µθ′) 7→ (µθ′ , µθ). In this case

the updated beliefs are

uθ(µ, ps) =
µθp

θ′
s

µθpθ
′
s + µθ′pθs

.

This updating applies Bayes rule incorrectly—it uses the signal probabilities associated with

the state θ′ to weight the state θ. An agent who updates in this way will increase their belief

in the state θ when they see a signal that is more likely in state θ′. In particular, if pθ
′
s > 0

and pθs → 0, then the update above gives probability one to the state θ although the signal s

only arises in state θ′.
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A second oddity is generated by the discontinuous non-monotonic bijection

F d(µθ, µθ′) :=


(1

2 − µθ,
3
2 − µθ′) if µθ ∈ (0, 1

2),

(1
2 ,

1
2) if µθ = 1

2 ,

(3
2 − µθ,

1
2 − µθ′) if µθ ∈ (1

2 , 1).

F d is its own inverse, so an explicit expression for the updated beliefs exists. The updated

belief is given below in the case where pθs < pθ
′
s and µθ <

1
2 .

uθ(µ, ps) =
1

2
−

(1
2 − µθ)p

θ
s

(1
2 − µθ)pθs + (3

2 − µθ′)pθ
′
s

> µθ.

This example will be useful when we discuss the role of continuity in proving the consistency

of divisible updating.

5. Divisible Updating and The Wald Problem

In this section it is shown that the class of quasi-Bayesian updating rules in Proposition 1

can be readily applied to a classic model of sampling (Wald (1945)). The Wald sequential

sampling model is the most important dynamic model of costly information acquisition.21

It is obvious that updating affects agents’ information acquisition decisions, here we show

that quasi-Bayesian updating is a natural way of studying this relationship. We show, in an

example, that the amount of sampling increases as the updating used becomes more responsive

to current signals. Agents who overweight their signals tend to collect more information and,

as a result, become better informed. They, also, value information more highly and pay higher

sampling costs. Thus information acquisition decisions have a simple relationship with the

properties of the updating. Sequential sampling with non-divisible updating is also considered.

There is no simple application of this model of updating to sequential sampling. For example,

we show how the agent can, then, benefit from committing to ignoring their signals for a

predetermined time interval and describe their sampling behavior in this case.

The model of signals in this section is different from the one above, as we use a continuous-

time model of sampling. It is a continuous-time version of the lead example in DeGroot

(1970), Chapter 12.22 There are two states θ ∈ {1,−1}. At time t ≥ 0 the agent can pay a

flow cost c dt to observe a state-dependent signal process for a time interval dt: In state θ = 1,

a Poisson process generates the signal st = 1 with the arrival rate αdt. In state θ = −1, a

Poisson process generates the signal st = −1 with the arrival rate β dt < αdt. The arrival

of a non-zero signal reveals the state. If there is no arrival we define the signal to be s = 0

21It is used, by Fudenberg, Strack, and Strzalecki (2018) Morris and Strack (2017), for example, to model

how agents form beliefs and act.
22More complex models of Poisson sampling are studied by Nikandrova and Pancs (2018) and Che and

Mierendorff (2019), for example.
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over the interval dt. This zero signal is also informative, because the arrival rate of signals is

highest in state θ = 1.23

The agent’s decision problem is to decide how much data to sample before irrevocably

choosing an action ξ ∈ {−1, 1}. They incur flow costs from their sampling of c dt and they

incur a lump-sum loss normalized to 1 if their irrevocable action does not match the state

(and a loss of 0 otherwise). If they have beliefs µ that θ = 1, then their expected loss from

the optimal immediate action is min{µ, 1− µ}.

5.1. Divisible Updating

We consider an agent with quasi-Bayesian updating who faces this sequential sampling prob-

lem. First, we show that their value function for optimal sampling is a simple transformation

of that of a Bayesian. Then, a complete solution to the optimal sampling problem for the

geometric weighting version of quasi-Bayesian updating is given. In this solution we find that

responsiveness to information and signals are complementary, that is, as the agent’s updating

becomes more responsive to their current signal the amount of sampling they choose to do

increases.

Let us begin by describing Bayesian updating. At t = 0 the agent has the belief µ0 that θ = 1.

If she sampled signals over the time interval [0, t], then with probability e−αt (respectively

e−βt) there is no arrival in state θ = 1 (respectively θ = −1) and she would form the Bayesian

update

µt =


1 if sτ = 1 for some τ ≤ t;

µ0e−αt

µ0e−αt+(1−µ0)e−βt
if sτ = 0 for all τ ≤ t;

0 if sτ = −1 for some, τ ≤ t.
It is simple to describe the beliefs of an agent with quasi-Bayesian updating. Let f : [0, 1]→
[0, 1] be the increasing homeomorphism that maps (µ, 1−µ) to her “shadow beliefs” (f(µ), 1−
f(µ)). Define νt := f(µt) to be the value of these shadow beliefs. By Proposition 1, νt is

updated using Bayes rule:

(6) µt = f−1(νt), where νt =


1 if sτ = 1 for some τ ≤ t;

f(µ0)e−αt

f(µ0)e−αt+(1−f(µ0))e−βt
if sτ = 0 for all τ ≤ t;

0 if sτ = −1 for some, τ ≤ t.

Actual beliefs satisfy µt ≡ g(νt) where g := f−1, so we will treat νt as the state variable in

the sequential sampling problem. For example, g(νt) is the probability θ = 1 at the state νt

and the expected loss from immediate action is min{g(νt), 1− g(νt)}.

23This is also a continuous time version of the model of the arrival of buses in Section 2.1. The only

difference is that here when a bus arrives the agent learns the state for certain.
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The agent’s beliefs g(νt) decrease if she only observes the zero signal in her sampling (f(.)

is assumed to be increasing). Hence, she must decide how long she should continue with

her sampling before acting. Her decision problem is, therefore, described by a stopping time

τ ≥ 0. If she prefers to act immediately without sampling, then τ = 0. Or if τ > 0, she prefers

to sample for τ periods with no non-zero signal before choosing an optimal action.

We now describe the agent’s optimal sampling problem, her value function, and her HJB

equation. At time t the agent believes a non-zero signal arrives with probability αg(νt)dt +

β(1−g(νt))dt. Hence, she attaches probability Pt := g(ν0)e−
∫ t
0 αg(νs)ds+(1−g(ν0))e−

∫ t
0 β(1−g(νs))ds

to the event that there are t periods of sampling with only the zero signal. Her expected payoff

from following an optimal sampling policy at state ν0 is

L(ν0) := min
τ≥0

∫ τ

0
cPt dt+ Pτ min {g(ντ ), 1− g(ντ )} .

As τ is a deterministic threshold, this minimization problem can be solved by using simple

calculus. However, treating the shadow beliefs as the state variable, we can also write the

HJB equation for this minimization

L(ν) = min {min{g(ν), 1− g(ν)} , c dt+ [1− αg(ν)dt− β(1− g(ν))dt]L(ν + dν) } .

The second term in the minimum sums the agent’s expected loss from sampling dt more

periods and her continuation value. When a signal arrives (with probability αg(ν)dt+ β(1−
g(ν))dt) the state is revealed, losses are zero, and no more sampling is required. If not, the

shadow beliefs are updated to ν + dν and there is a new continuation value L(ν + dν). The

usual formula for the Bayesian updating of Poisson processes applies to ν, that is, dν =

(β − α)ν(1 − ν) dt. If it is optimal to continue sampling (the minimum is attained by the

second expression in the braces), the loss function therefore, satisfies the ODE

(7) L′(ν) +
g(ν) + y

ν(1− ν)
L(ν) =

x

ν(1− ν)
, y :=

β

α− β
, x :=

c

α− β
.

When g is the identity, the loss function L(ν) describes a standard optimal sampling problem

with Bayesian updating. If 2c < β, the solution to the optimal sampling problem with

Bayesian updating is described by two thresholds µ < 1/2 < µ̄. For µ ≥ µ̄ the immediate

action ξ = +1 is optimal and for µ ≤ µ the action ξ = −1 is optimal. For µ in the interval

(µ, µ̄) the agent samples and, if no revealing signal arrives, the beliefs drift down.

These properties of the Bayesian solution extend to settings where the agent is not Bayesian

but does update divisibly. Proposition 2 describes the optimal policy and value function of an

agent who uses geometric probability weighting: µ = g(ν) = ν1/a

ν1/a+(1−ν)1/a . The proposition

also gives a solution for the cutoff µ
a
, where the sampling stops. The value function and cutoffs

are illustrated in Figure 2 where: the blue lines describe the losses from immediate action, the

red lines the expected losses from optimal sampling, and the cutoffs (µ
a
, µ̄a) = (g(νa), g(ν̄a))

are where they intersect.
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Proposition 2. If: α > β > 2c, the agent has quasi-Bayesian updating with µ = g(ν) =
ν1/a

ν1/a+(1−ν)1/a , and a > 0. Then, there exists νa ∈ (0, 1
2) and ν̄a ∈ (1

2 , 1) such that the optimal

sampling policy to sample iff g−1(µ) = ν ∈ (νa, ν̄a). For ν ∈ (νa, ν̄a):

(8) L(ν) =
x
∫ r
ra
ρy−1(1 + ρ1/a)a dρ+Ka

ry(1 + r1/a)a
, r :=

ν

1− ν
, ra :=

νa
1− νa

.

And: L(ν) = g(ν) for ν < νa, L(ν) = 1− g(ν) for ν > ν̄a. The cutoff νa is the unique root in

(0, 1) of

(9)

(
1

a
− 1

)
g(νa)

2 −
(

1

a
+ y

)
g(νa) + x = 0,

ν̄a is the unique solution to L(ν̄a) = 1− g(ν̄a), and Ka is determined by L(νa) = g(νa).

(Note: The integral in (8), can be evaluated for all values of a using the hypergeometric

function. For particular values of a simple evaluations can be obtained, for example when

a = y or when a is an integer.)

1 > a

q
0

L(ν)

1ν̄ag−1(µ
a
) = νa

1 < a

ν
0

L(ν)

1ν̄aνa

Figure 2. min{g(ν), 1− g(ν)} (blue), the solution to the ODE (red), and the cutoffs

The cutoff µ
a

= g(νa), where sampling stops, can be evaluated for all values of a using (9).

For example, Bayesian updating, a = 1, generates the cutoff:

µ
1

= g(ν1) =
x

1 + y
=
c

α
.

We can compare this Bayesian cutoff with the cutoff from general geometric updating. The

cutoff belief, g(νa), increases monotonically with a and converges to zero as a → 0.24 As a

decreases, the geometric updating places increased weight on the new data that is sampled.

From the agent’s perspective the rate at which information arrives increases, although their

costs of sampling are unchanged. Hence, they stop sampling only when their beliefs become

more extreme. Conversely, agents who are less sensitive to new data stop sampling at less

extreme beliefs.

24Implicit differentiation of (9) shows dg(νa)/da−1 = −g(1− g)/(y + 2g + a−1(1− 2g)) < 0.
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Although, the agents with responsive updating stop sampling at extreme beliefs, they can

achieve these extreme beliefs by collecting the same size sample as a Bayesian—it is not

necessary for them to sample more. Nevertheless, agents who have responsive beliefs do

actually sample more data than a Bayesian. To justify this, it is sufficient show that νa, the

shadow cutoff, increases with a.25 Thus a Bayesian observer of the agent’s sampling behavior

would have more extreme terminal beliefs as a decreases.

5.2. Sequential Sampling with Non-Divisible Updating

Now we consider the same sequential sampling model, but with non-divisible updating.

First, it is shown that if the agent updates continuously then the non-divisible updating is

equivalent to divisible updating. Then it is shown that continuous updating may not be

optimal, because the agent may learn more quickly if they commit to ignoring their signals

for a predetermined time period. We end by discussing the optimal sampling when the agent

can choose how frequently to update. We show that optimal sampling of a sophisticated agent

generates some novel behavior.

The model of non-divisible updating in this section is a linear weighting of the prior and

posterior similar to Epstein, Noor, and Sandroni (2010). It is not the same, because the

weighting is not applied when a non-zero signal arrives.26 To be precise, suppose the agent

samples for ∆ > 0 periods and only then updates her beliefs. If her initial belief was µ0, then

her updated beliefs are defined to be

(10) µ∆ =


1 if sτ = 1 for some τ ≤ ∆;

(1− λ)µ0 + λ µ0e−α∆

µ0e−α∆+(1−µ0)e−β∆ if sτ = 0 for all τ ≤ t;

0 if sτ = −1 for some, τ ≤ ∆.

The agent facing the sequential sampling problem with this non-divisible updating, potentially,

has two choices to make at the belief µ0: First, as before, whether to cease sampling or not.

Second, how large a sample should she collect before deciding whether to update—how large

should ∆ be?

We begin by considering an agent who finds it impossible to control ∆ and, as time is

continuous, she uses (10) to continuously update her beliefs.27 In this case her sampling

behavior is identical to that of an agent with divisible updating. In fact, her optimal policy

25 Substitute g(ν) = ν1/a

ν1/a+(1−ν)1/a
into (9), change variables to r1/a := ( ν

1−ν )1/a, and then differentiate.
26We choose the updating (10), as it simplifies the solution to the sequential sampling problem. If beliefs

jumped to (1 − λ)p0 not to zero, for example, it could be the case that the agent would choose to continue

sampling after such a jump.
27An alternative explanation of this behavior is that the agent is unsophisticated and does not realize that

her choice of ∆ affects the updating.
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and payoff is as described in Proposition 2 with λ = 1/a. Suppose that ∆ = dt in (10), then

the continuously updated belief process satisfies

µ+ dµ = (1− λ)µ+ λ
µ(1− αdt)

µ(1− αdt) + (1− µ)(1− β dt)
.

Thus dµ = λ(β − α)µ(1− µ) dt, or

µt =
µ0e
−λαt

µ0e−λαt + (1− µ0)e−λβt
.

This is identical to (6), when f−1(µ) ≡ g(µ) = µλ/(µλ + (1 − µ)λ). Hence, the optimal

sampling behavior when these non-divisible beliefs are continuously updated is identical to

that described in Proposition 2 when 1/a = λ: the agent samples for all g−1(µ) ∈ (ν1/λ, ν̄1/λ)

as defined in (9).28

What if the agent can choose, ∆, the period that she commits to ignore her signals without

updating? Increasing ∆ and committing to delay the updating can benefit her, because her

beliefs change quicker. Lemma 3 compares µ2∆ (beliefs updated twice (11)), with µ̂2∆ (the

beliefs from one aggregate update (12)). The results, displayed in the figure below, show that

there are regions where beliefs fall more quickly after only one aggregate update. But, there

is no simple comparison between the beliefs from these two updating procedures. One might

conjecture that when λ < 1 beliefs decline more rapidly if there are two updates rather than

an aggregate update. This is not the case.

λ < 1

µ0
0

µ2∆

µ̂2∆

µ2∆

1µ̂

λ > 1

µ0
0

µ2∆

µ2∆

µ̂2∆

1µ̂

Figure 3. Speed of Learning: one update, µ̂2∆ (blue), versus two µ2∆ (red).

28The equivalence here between divisible updating and continuously applied non-divisible updating in not

unexpected. Once an updating procedure has been determined for the finest partition of time with this sort

of signal structure. A divisible updating rule can be created from the continuously updated belief process by

defining the updating over larger intervals to be the aggregation of the continuous updating. Here an agent

who updates continuously (but non-divisibly) can be treated, as if, they were updating divisibly.
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Before stating the Lemma we define µ̂2∆ and µ2∆. First, the beliefs with two updates and

only the zero signal

(11) µ2∆ := (1− λ)µ∆ + λ
µ∆

µ∆ + (1− µ∆)ζ
, µ∆ := (1− λ)µ0 + λ

µ0

µ0 + (1− µ0)ζ
;

where ζ := e(α−β)∆. Then, the beliefs with one aggregate update:

(12) µ̂2∆ := (1− λ)µ0 + λ
µ0

µ0 + (1− µ0)ζ2
.

Lemma 3. For each ∆, λ there exists a unique µ̂ ∈ (0, 1) such that:

(i) If λ < 1, then: µ2∆ > µ̂2∆ for µ0 < µ̂; and µ2∆ < µ̂2∆ for µ0 > µ̂.

(ii) If λ > 1, then: µ2∆ < µ̂2∆ for µ0 < µ̂; and µ2∆ > µ̂2∆ for µ0 > µ̂.

(iii) µ̂→ 1
2 as ∆→ 0.

Figure 3 suggests the optimal value of ∆ will vary considerably. For example, when λ > 1

and µ0 > µ̂ the agent’s learning will be fastest if she continuously updates. But as her beliefs

fall, there may come a point where she prefers to stop continuous updating. At that point

she prefers to commit to update at discrete times (some details on this are given in Lemma

4). Thus her beliefs will decline smoothly for a while and then proceed downwards in one or

more jumps. When λ < 1 the reverse is true. The agent will first prefer to update the beliefs

discretely and then switch to continuous belief revision for low values of µ.

In the Lemma 4 we describe part of the optimal sampling policy when λ > 1. It shows

that when µ0 is low, the optimal policy for the agent is to commit to not updating her beliefs

for a predetermined period. This period will be so large that her eventual updated beliefs

lie strictly inside the stopping region. The optimal policy is not a simple cutoff rule. First,

it is shown that at the beliefs below the cutoff µ0 ≤ µ (defined by (9) with a−1 = λ) no

update of any size is optimal: once µ ≤ µ her updating ceases. However, there is an interval

µ0 ∈ (µ, µ†) where the optimal policy is to commit to sample for a strictly positive time period

before updating. The sampling period, ∆∗(µ0), is so large that should no (non-zero) signal

arrive, her updated beliefs jump from µ0 > µ to strictly below µ. This is the final inequality

of the Lemma.

Lemma 4. If: the updating is given by (10), λ > 3(1 + y), α > β > 2c, and µ is the unique

solution to

(13) (λ− 1)µ2 − (y + λ)µ+ x = 0

in (0, 1
2). If µ0 ≤ µ then no sampling is optimal. If µ0 ∈ (µ, µ†), for some µ† > µ, then it is

optimal to commit to sampling for a strictly positive time interval, ∆∗(µ0) > 0, satisfying:

(1− λ)µ0 + λ
µ0e
−α∆∗(µ0)

µ0e−α∆∗(µ0) + (1− µ0)e−β∆∗(µ0)
< µ.
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6. Properties of Quasi-Bayesian Updating

In this section we will give conditions for the updating of Proposition 1 to be consistent and

describe conditions on the bijection F that generates desirable features.

6.1. The Consistency of Quasi-Bayesian Updating

In a stationary environment there is a property that might be desirable in a model of

updating: the agent knows that their updated beliefs converge to the truth if they see enough

data. This property is termed consistency when it holds in the Bayesian case, see Diaconis

and Freedman (1986) for example. The result below shows that this property is also satisfied

by quasi-Bayesian learning provided: the updater’s model includes the true data generating

process, the updating is continuous, and one weak further property. The consistency of this

divisible updating contrasts with other examples of non-Bayesian updating in the literature

that do not satisfy consistency.29

It is necessary to have a model where the agent repeatedly and independently samples from

the same experiment En for a fixed state. Let an experiment En = (pθ)θ∈Θ and a state

θ̃ ∈ Θ be given. We use this to define three different stochastic processes. First, define the

stochastic process {st}∞t=0 ∈ S∞n to be the independent and identically distributed signals

that are sampled from the distribution pθ̃. Let Pθ̃ to denote the probability measure on S∞n
induced by this process. Second, define {µt}∞t=0 ∈ ∆(Θ)∞ to be the beliefs of an agent who

observes the sequence of signals {st}∞t=0 ∈ S∞ and who updates according to Proposition 1.

These are defined recursively, so that µt+1 is the updated value of µt when the signal st is

observed, that is,

(14) µ0 ∈ ∆o(Θ), µt+1 := u
(
µt, pst

)
, t = 0, 1, . . . .

Finally we define the stochastic process followed by the shadow beliefs {F (µt)}∞t=0. By Propo-

sition 1 this process is updated using Bayes rule, so

F (µt+1) =
F (µt) ◦ pst
F (µt)T pst

, t = 0, 1, . . . .

When the shadow prior gives positive probability to the true state (F (µ0) ∈ ∆o(Θ)) and

the signals can identify the state (pθ̃ 6= pθ for all θ 6= θ̃), the usual proof of the consistency

of Bayesian updating (see for example DeGroot (1970)) applies to the shadow belief process.

An immediate application of this tells us that F (µt)→ eθ̃, P
θ̃ almost surely.30

29See Rabin and Schrag (1999) and Epstein, Noor, and Sandroni (2010) for examples of inconsistent up-

dating. In Lehrer and Teper (2015) a notion of consistency is used as an axiom to characterize Bayesian

updating.
30Here eθ̃ is the basis vector with unity in the θ̃ entry and zeros elsewhere.
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In order to show that quasi-Bayesian belief updating is consistent, therefore, we need to

show that beliefs converge to the truth when the shadow beliefs converge to the truth. That

is, we need to show that F−1(F (µt))→ eθ̃ when F (µt)→ eθ̃. This is clearly going to require

continuity of F−1 at the boundary. If F−1 were not continuous there is no reason a limiting

property continues to hold when F−1 is applied to a convergent sequence. To ensure this

we require F to be continuous on its entire domain.31 A second property of F will also be

necessary. The example of Bad Bayesian updating, of Section 4.3, is continuous. But in this

case, F−1(eθ̃) 6= eθ̃, so learning converges to a belief in the wrong state. To ensure quasi-

Bayesian updating converges to the belief in the true state, we require that revealing signals

are treated appropriately by the updating. To this end we will require that an agent who saw

a signal that occurs with positive probability in state θ and with zero probability in all other

states θ′ 6= θ correctly deduces the state:

(15) u(µ, eθ) = eθ, ∀ θ ∈ Θ, µ ∈ ∆o(Θ). (Respects Certainty)

We will say that updating which satisfies (15) respects certainty. Equipped with these addi-

tional restrictions quasi-Bayesian updating will be consistent. This discussion is summarized

in the result below.

Result 1. Assume the updating U satisfies the Axioms 1–4, respects certainty and is contin-

uous on ∆(Θ)×∆(S)|Θ|. If pθ̃ 6= pθ for all θ 6= θ̃, then µt → eθ̃, P
θ̃ almost surely.

6.2. Learning and Quasi-Bayesian Updating

In this section we are interested in whether the expected value of the updated belief in θ (the

true state) is greater than the original belief µθ. That is, we study whether updated beliefs

on average move towards or away from the true value of θ. We define two properties:

µθ ≤ Eθ(uθ(µ, ps)) , positive learning;

µθ ≥ Eθ(uθ(µ, ps)) , negative learning.

Positive learning says that an agent, with beliefs µθ expects to have an increased belief in

θ when they observe the outcome of an experiment generated by θ. This holds globally

for a Bayesian updater; it is the conditional submartingale property for Bayesian posteriors.

Negative learning says that the belief in θ is expected to decrease when θ is true. This may

happen as the agent is slow to move their belief in θ upwards in response to positive evidence,

but quick to move beliefs down when evidence in favor of an alternative θ′ is observed. It could

be interpreted as a reluctance to move to extreme beliefs or a skeptical attitude to evidence.

We will show that if the divisible updating satisfies the conditions of Proposition 1, then this

negative learning cannot hold at all priors: it must be a local not a global property.

31Consider the example of discontinuous updating in Section 4.3 as µ → 0 so F−1(µ) → 0.5. Thus F−1 is

discontinuous on the boundary because F has an interior discontinuity.
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Here we provide sufficient conditions for positive or negative learning in dichotomies, that is,

experiments with two possible states Θ = {θ, θ′}.32 In dichotomies, such as the learning model

of Section 5, the bijection F : (µθ, µθ′) 7→ (µ′θ, µ
′
θ′) can be described by its effect on its first

element: F (µ) ≡ (f(µθ), 1−f(µθ)), where f : [0, 1]→ [0, 1] is a bijection. The quasi-Bayesian

updating conditional on the signal s can then be written explicitly as

(16) uθ(µ, ps) = f−1

(
f(µθ)p

θ
s

f(µθ)pθs + (1− f(µθ))pθ
′
s

)
.

Proposition 3 gives local conditions for positive or negative learning, so we define an ap-

propriate neighborhood of the original belief µθ. Define the interval Rf (µθ) ⊂ (0, 1) so that

it includes all possible realizations of the updated beliefs in θ when the prior is µθ.
33 The

first of these conditions is that f is increasing on Rf (µθ). This ensures that evidence in fa-

vor of the state θ is interpreted as such and excludes the Bad Bayesian updating of Section

4.3. The second condition is convexity or concavity—this allows the mean preserving spread

of the Bayesian updating of shadow beliefs to be translated by F a more or less dispersed

distribution of updated beliefs.

Proposition 3. Suppose the quasi-Bayesian updating in a dichotomy is described by (16).

Then,

(i) If f(.) is increasing and 1
f(.) convex on Rf (µθ), then µθ ≤ Eθ(uθ(µ, ps)).

(ii) If f(.) is increasing and 1
f(.) concave on Rf (µθ), then µθ ≥ Eθ(uθ(µ, ps)).

If f(0) = 0 then 1
f(.) is not concave on any interval of the form (0, x).

For Bayesian updating f(µ) = µ and 1
µ is convex, so Proposition 3 confirms that Bayesian

updating is a conditional submartingale. As another example, consider the geometric weight-

ing of Section 4.1. For dichotomies this is described by the bijection f(µ) = µa

µa+(1−µ)a . When

a ≥ 1, 1
f(.) is convex so the learning is a conditional submartingale like Bayesian updat-

ing. However, when a < 1 there is negative learning when µ > 1
2(1 + a) as 1

f(.) is concave

here. In this case, as µ approaches unity the agent’s updated belief is expected to decrease.

Nevertheless, the Result 1 shows that µ→ 1 almost surely.

6.3. Sufficient Conditions for Under and Overreaction to Information

In this section we give sufficient conditions for a quasi-Bayesian updating rule to overreact

or under-react to new information. Overreaction has many meanings in the literature on

updating. Here it is defined to hold if the log likelihood of the updated beliefs has a variance

32It is far from clear whether any result of this kind can be established when there are many states.
33Convex Hull{µθ, (uθ(µ, ps))s∈S} ⊂ Rf (µθ) .
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that is greater than the variance of the log likelihood of a Bayesian’s updated beliefs. The

log-likelihood ratio of a Bayesian updater follows a homogeneous random walk. Thus its

variance is a prior-independent measure of the variability of Bayesian updating. This can be

seen from the simple calculation

Var

[
ln

µ̂θ
1− µ̂θ

]
= Var

[
ln

µθ
1− µθ

+ ln
pθs
pθ′s

]
= Var

[
ln
pθ

pθ′

]
.

(Where µ̂θ := µθp
θ
s/µ

T ps is the Bayesian update and the variance is taken unconditionally of

the state value.) Thus Var
[
ln pθ

pθ′

]
will be our benchmark and we will define under-reaction

and overreaction relative to this as follows:

Var

[
ln

uθ(µ,ps)

1− uθ(µ,ps)

]
> Var

[
ln

pθ

pθ′

]
, ∀µ; (overreaction)

Var

[
ln

uθ(µ,ps)

1− uθ(µ,ps)

]
< Var

[
ln

pθ

pθ′

]
, ∀µ. (under-reaction)

There is a simple intuition for the sufficient conditions for overreaction given in Proposition

4. If the inverse homeomorphism F−1 moves points apart, then when the shadow posteriors

and prior are mapped back to the belief space they are even further apart. The response

to the signals has become more exaggerated and overreaction is present. Similarly, if the

function F−1 is a contraction, then the learning that occurred in the shadow Bayesian world

gets reduced when it is mapped back to the belief space by F−1. As a result the Bayesian

learning in the shadow space is understated and there is under-reaction to new information.

In the one-dimensional case this means that the slope of the function f(.) will play a role in

characterizing under- or overreaction.

Proposition 4. Suppose that the divisible updating in a dichotomy, uθ(µ, ps), is described

by the function f(.), as in (16), and that f is continuously differentiable.

If f ′(µ) > f(µ)(1−f(µ))
µ(1−µ) for all µ ∈ (0, 1), then the updating exhibits under-reaction.

If f ′(µ) < f(µ)(1−f(µ))
µ(1−µ) for all µ ∈ (0, 1), then the updating exhibits overreaction.

As an example, we can apply this result to the geometric and exponential weighting above.

Their associated bijections for dichotomies are: fa(µ) := µa

µa+(1−µ)a and f b(µ) := e−b/µ

e−b/µ+e−b/(1−µ) .

(fa)′(µ) = a
fa(µ)(1− fa(µ))

µ(1− µ)
, (f b)′(µ) = f b(µ)(1− f b(µ))

(
b

µ2
+

b

(1− µ)2

)
.

Thus geometric weighting exhibits under-reaction if a > 1 and overreaction if a < 1. Expo-

nential weighting exhibits under-reaction if b > 1/2.
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7. Characterization of Bayesian Updating

In this section we study updating that is unbiased (or a martingale, or satisfies Bayes

plausibility). Two results are given: First we show that unbiased updating (with no further

restrictions) is equivalent to Bayesian updating where the experiment is misspecified. Second,

we characterize Bayesian updating when |Θ| > 2. Updating is Bayesian if and only if it

satisfies all of the conditions of Result 1 and one further condition that we call “no learning

without evidence”.

We begin by motivating and defining the two main properties that are imposed on the

updating in this section. Given an experiment En, the updating Un specifies a profile of n

updated beliefs (Usn)s∈Sn . We place restrictions on the relationship between these n updates

and the original belief µ. The first restriction is that the initial belief, µ, equals a particular

weighted average of the n updates. The weight on update Usn in this average is the ex-ante

probability of the signal s. Thus the unconditional expectation of the agent’s updated beliefs

equals the original beliefs. This martingale property is satisfied by Bayesian updating and is

also called Bayes plausibility.

Axiom 5 (Unbiased). For any µ ∈ ∆o(Θ), n > 1, and En = (pθ)θ∈Θ ∈ E the updating

function Un(µ, En) ≡ (Usn)s∈Sn satisfies µ ≡
∑

s∈Sn(µT ps)Usn.

The second property we consider is much weaker. It considers the convex hull of the n points

(Usn)s∈Sn and requires that this set contains the original belief µ.

Axiom 6 (No Learning without Evidence). For any µ ∈ ∆o(Θ), n > 1, and En = (pθ)θ∈Θ ∈ E

the updating function Un(µ, En) ≡ (Usn)s∈Sn satisfies µ ∈ Convex Hull
{
U1
n, . . . ,Unn

}
.

When this restriction is not satisfied the agent forming the updated beliefs knows for certain

that, whatever signal/evidence they see, their beliefs, µ, will move in a similar direction.34

Hence, we say there is learning without evidence when Axiom 6 fails. An alternative inter-

pretation of this failure is that there is some exogenous bias in the updating, so the beliefs

move in a certain direction independently of the signal.

Now we show that any updating U satisfying Axiom 5 for the experiment En can be inter-

preted as application of Bayes rule to an alternative experiment Ẽn. Unbiased updating can,

therefore, be interpreted as Bayesian updating with a misspecified model. The experiment Ẽn,

in Proposition 5, has the same unconditional signal probabilities as En. Thus the two experi-

ments, En and Ẽn, will agree on the empirical probabilities that signals occur. Furthermore,

if U satisfies Axiom 5 it gives the same profile of updated beliefs as the Bayesian update for

the experiment Ẽn.

34The separating hyperplane theorem defines the direction that beliefs must move as they are updated from

µ to the disjoint convex set of updates .
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Proposition 5. The updating U satisfies Axiom 5, if and only if, for all n > 1, µ ∈ ∆o(Θ)

and En = (ps)s∈Sn ∈ E there exists Ẽn = (p̃s)s∈Sn ∈ E satisfying µT p̃s = µT ps for all s ∈ Sn,

such that Un(µ, En) = UBn (µ, Ẽn). Where

UBn (µ, Ẽn) :=
(
uB(µ, p̃1), . . . , uB(µ, p̃n)

)
, uB(µ, p̃s) :=

µ ◦ p̃s
µT p̃s

.

We now consider what further properties need to be placed on quasi-Bayesian updating

to ensure that it is Bayesian. One might view Proposition 1 as saying that divisibility up-

dating is “almost” enough for Bayesian updating. As a consequence, there might be weak

additional restrictions that, when added to Axioms 1–4, give Bayes updating. Axiom 6 is

such restriction—it only requires that the initial beliefs are in the convex hull of the updates.

Provided there are at least three different states, we show that this axiom has enough power

to restrict divisible updating to be Bayesian. To be precise, when |Θ| ≥ 3 we show that

updating satisfies Axioms 1–4 & 6, is continuous, and respects certainty, if and only if, the

updating is Bayesian. The proof of Proposition 6 is built on considering experiments with

only two signals. In this case Axiom 6 has greatest power, because it requires the initial belief

to lie on a line that joins two updated beliefs (one for each signal). When the dimension of

the belief space is large this imposes a significant restriction on the belief updates that can

arise. Of course when the dimension of the belief space is also a line |Θ| = 2 this Axiom has

little effect.

Proposition 6. Suppose that |Θ| > 2. U is continuous, satisfies (15), Axioms 1–4 and 6, if

and only if,

Un(µ, E) =
(
uB(µ, p1), . . . , uB(µ, pn)

)
, uB(µ, ps) :=

µ ◦ ps
µT ps

.

The proof of this result is long. The key step is to consider a binary experiment that reveals

the state θ or not. By (15), the updated beliefs from such an experiment must include eθ

and one other point. The initial beliefs lie on the line joining these two points, by Axiom 6.

We use this to argue that the homeomorphism F maps line segments to line segments. And

then that the ratios Fθ′(µ)/Fθ′′(µ) depend only on µθ′ and µθ′′ . Finally we solve a functional

equation and show that F is of the geometric weighting form with the weight a = 1.

8. Conclusion

We have introduced and characterized quasi-Bayesian updating a class of models of updating

generated by the divisibility property. This updating satisfies desirable normative properties

and generalizes Bayesian updating. This model of updating can be readily applied to dynamic

models of costly information acquisition, such as sequential sampling. Using the character-

ization of quasi-Bayesian updating, we also provide an axiomatic foundation for Bayesian

updating.
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Appendix

Proof of Lemma 1

Proof. Axiom 3(a) says U1
n(µ, En) ≡ U1

2 (µ, p1,1 − p1) := u(µ, p1). Symmetry, then, implies
Usn(µ, En) ≡ u(µ, ps) for all s and part (i) of the Lemma is established.

To establish part (iii) of this lemma rewrite the identity in Axiom 3(b) using (i). That is,

u(µ, ps) ≡u
(
u (µ,1− p1) , ps ◦ (1− p1)−1

)
∀ 0 < ps ≤ 1− p1.(17)

Defining x = 1− p1 proves (iii).

To establish part (ii) take part(iii) and suppose that x = 1λ−1 for λ ∈ (1,minθ(p
θ
s)
−1].

Axiom 1 applied to a binary experiment implies that the function u(.) satisfies

(18) u(µ, p1) = µ, ∀µ ∈ ∆(Θ), p ∈ (0, 1).

This implies u (µ, x) ≡ µ. Writing part (iii) of the Lemma for this value of x therefore gives

u(µ, ps) ≡ u (µ, λps) , ∀λ ∈ [1,min
θ

(pθs)
−1].

Hence the function u(µ, p) is homogeneous degree zero in p. �

Proof of Proposition 1

Proof. By Lemma 1(i) we know that Un(µ, En) ≡ (u(µ, p1), . . . , u(µ, pn)). We begin by trans-

forming the variables in the function u(µ, ps). Define w : ∆o(Θ)→ R|Θ|−1
++ as follows

w(µ1, . . . , µ|Θ|) :=

(
µ1

µ|Θ|
, . . . ,

µ|Θ|−1

µ|Θ|

)
;

(where R++ := {x ∈ R : x > 0}). The function w is a bijection, from ∆o(Θ) to R|Θ|−1
++ and it

has the inverse

w−1(x1, . . . , x|Θ|−1) =

(
x1

1 +
∑|Θ|−1

i=1 xi
, . . . ,

x|Θ|−1

1 +
∑|Θ|−1

i=1 xi
,

1

1 +
∑|Θ|−1

i=1 xi

)
.

Redefine the variables of the function u as: φ := w(µ), π := w(ps) and v(φ, π) ≡ w(u(µ, ps)).

(The fact u(µ, ps) that is homogeneous degree zero in ps ∈ (0, 1)|Θ| (Lemma 1(ii)) implies there

is no loss in this transformation.) The function v : R|Θ|−1
++ × R|Θ|−1

++ → R|Θ|−1
++ satisfies (17),

that is

v(φ, π) ≡ v(v(φ, ρ), π ◦ ρ−1), v : R|Θ|−1
++ × R|Θ|−1

++ → R|Θ|−1
++ ;

where: ρ := w(1− p1), π := w(ps).

Now we do another transformation of the functional equation by taking logarithms,35 that
is, define φ̃ := lnφ, π̃ := lnπ, ρ̃ = ln ρ, and ṽ(φ̃, π̃) ≡ ln v(φ, π). A rewriting of (17) with this

35lnx where x = (x1, . . . , xn) denotes (lnx1, . . . , lnxn).
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notation gives

ṽ(φ̃, π̃) ≡ ṽ(ṽ(φ̃, ρ̃), π̃ − ρ̃), ṽ : R|Θ|−1 × R|Θ|−1 → R|Θ|−1.

If we define ỹ = π̃ − ρ̃ and z̃ = ρ̃ this then becomes the functional equation

(19) ṽ(φ̃, ỹ + z̃) ≡ ṽ
(
ṽ(φ̃, z̃), ỹ

)
, ∀φ̃, ỹ, z̃ ∈ R|Θ|−1.

The functional equation (19) is called the translation equation. It was originally solved in its
multivariate form by Aczél and Hosszú (1956). Given Axioms 4 and 2, their Theorem 2b (p.
331) applies here. Under the conditions assumed in the Proposition, ṽ solves (19) if and only

if there exists a bijection g : R|Θ|−1 → R|Θ|−1 such that

(20) ṽ(φ̃, π̃) = g−1[g(φ̃) + π̃].

Now we will reverse the transformations of the variables used to derive (20). Substituting

for the definitions of ṽ, φ̃, and π̃ gives

ln v(φ, π) = g−1[g(lnφ) + lnπ].

Hence we have g(ln v(φ, π)) = g(lnφ) + lnπ. Now introduce the function h(x) := g(lnx) =
(h1(x), . . . , h|Θ|−1(x)) to simplify this expression.

h( v(φ, π) ) = h(φ) + lnπ

eh(v(φ,π)) =
(
eh1(φ)π1, . . . , e

h|Θ|−1(φ)π|Θ|−1

)
We define J(x) ≡ eh(x), which allows the expression above to be rewritten as J(v(φ, π)) =(
J1(φ)π1, . . . , J|Θ|−1(φ)π|Θ|−1

)
. Now substitute v(.) = w(u(.)) and π = w(ps) to get

(21) J (w (u(µ, ps))) =

(
J1(w(µ))

p1
s

p
|Θ|
s

, . . . , J|Θ|−1(w(µ))
p
|Θ|−1
s

p
|Θ|
s

)
.

We will now define the function F : ∆o(Θ)→ ∆o(Θ) so that the following diagram commutes,
that is, J(w(.)) ≡ w(F (.)). This is possible as w is invertible and J(.) = exp(g(ln(.))) is a
bijection.

∆o(Θ)
F−−−−→ ∆o(Θ)yw yw

R|Θ|−1
++

J−−−−→ R|Θ|−1
++

F is also bijection on ∆o(Θ). Using J(w(.)) = w(F (.)) we can rewrite (21) as

w (F (u(µ, ps))) =

(
w1(F (µ))

p1
s

p
|Θ|
s

, . . . , w|Θ|−1(F (µ))
p
|Θ|−1
s

p
|Θ|
s

)
,

=

(
F1(µ)p1

s

F|Θ|(µ)p
|Θ|
s

, . . . ,
F|Θ|−1(µ)p

|Θ|−1
s

F|Θ|(µ)p
|Θ|
s

)
.

Now applying w−1 to both sides gives

(22) F (u (µ, ps)) ≡

(
F1(µ)p1

s

F (µ)T ps
, . . . ,

F|Θ|(µ)p
|Θ|
s

F (µ)T ps

)
.
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Applying F−1 to both sides of this gives (4). The other displayed equation in the proposition
follows from a Lemma 1.

The above completes one direction of the proof. Now suppose that

Un(µ, E) ≡ (u(µ, p1), . . . , u(µ, pn)) , where u(µ, ps) ≡ F−1

(
F (µ) ◦ ps
F (µ)T ps

)
;

for some bijection F : ∆o(Θ)→ ∆o(Θ). We must show that this updating satisfies our axioms.
If the experiment is uninformative then ps = ks1 for some constant ks, so

u(µ, ps) ≡ F−1

(
ksF (µ)

ks

)
= µ.

Thus Axiom 1 is satisfied. Suppose the signal names are permuted then

Un(µ, (ω(pθ))θ∈Θ)) =
(
u(µ, pω(1)), . . . , u(µ, pω(n))

)
=
(
Uω(1)
n (µ, En), . . . ,Uω(n)

n (µ, En)
)

and Axiom 2 is satisfied. To verify that Axiom 3 is satisfied it is sufficient to verify that
u(µ, ps) ≡ u

(
u (µ, x) , ps ◦ x−1

)
. This follows from the following calculation

u
(
u (µ, x) , ps ◦ x−1

)
= F−1

(
F (u (µ, x)) ◦ ps ◦ x−1

F (u (µ, x))T (ps ◦ x−1)

)

= F−1

 F (µ)◦x
F (µ)T x

◦ ps ◦ x−1(
F (µ)◦x
F (µ)T x

)T
(ps ◦ x−1)


= F−1

(
F (µ) ◦ ps

(F (µ))T ps

)
≡ u(µ, ps)

We finally need to show that for some µo the equation u(µo, .) = µ has a unique solution
p ∈ ∆o(Θ). This is to verify that Axiom 4 is satisfied. As F is a bijection we can choose µo

so that F (µo) = |Θ|−1
1, thus (as 1T p = 1)

u(µo, p) = F−1

(
F (µo) ◦ p
F (µo)T p

)
= F−1(p).

As F and F−1 are both bijections, the equation F−1(.) = µ has a unique solution for all
µ. �

Proof of Lemma 2

Proof. The “if’ part of the proof has already been verified. So, suppose that

uj(µ, ps) =
µ ◦ J(ps)

µTJ(ps)
≡ F−1

(
F (µ) ◦ ps
F (µ)T ps

)
for some homeomorphism F . Choose ps = 1x for some x > 0. In this case, the above can be
re-written as (

µ1j1(x), . . . , µ|Θ|j|Θ|(x)
)
≡ (µTJ(1x))µ.
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This implies jθ(x) = jθ′(x) for all θ, θ′ ∈ Θ and all x. Thus the functions in the weighting are
all identical and henceforth will be written as j(.). As F is a homeomorphism there exists µ̂
so that F (µ̂) = 1(|Θ|)−1. Substitute this value into the above identity

µ̂ ◦ J(ps)

µ̂TJ(ps)
≡ F−1

(
ps
1T ps

)
.

Now take the ratio of two entries in the vectors on each side of this expression

µ̂θj(p
θ
s)

µ̂θ′j(pθ
′
s )
≡
F−1
θ

(
ps

1T ps

)
F−1
θ′

(
ps

1T ps

)
If the vector ps is multiplied by the scalar z RHS of the above is unaltered, thus the ratio on

the left is homogeneous degree zero, so µ̂θj(p
θ
s)

µ̂θ′j(p
θ′
s )
≡ µ̂θj(zp

θ
s)

µ̂θ′j(zp
θ′
s )

. Rewriting this gives

j(zpθ
′
s )

j(pθ′s )
≡ j(zpθs)

j(pθs)
.

Letting φ := ln j x := ln pθ
′
s x+ y := ln pθs and w = ln z this becomes

φ(x+ w)− φ(x) = φ(x+ y + w)− φ(x+ y)

Or for a fixed value of x

k(w)︷ ︸︸ ︷
φ(w + x)− φ(x) +

k(y)︷ ︸︸ ︷
φ(y + x)− φ(x) =

k(w+y)︷ ︸︸ ︷
φ(y + w + x)− φ(x) .

This is Cauchy’s functional equation and has the solution k(w) = Cw for some constant C.
Thus φ(w) = Cw + D for constants C and D, or ln j(z) = C ln z + D. This finally gives
us jθ(z) = j(z) = Kza where a = C for all θ. Substituting this into the expression for the
updating gives

uj(µ, ps) =
µ ◦ J(ps)

µTJ(ps)
=
µ ◦ (ps)

a

µT (ps)a
,

which proves the claim. �

Proof of Proposition 2

Proof. We begin by describing a candidate solution to the HJB equation. Then we show
that this is a viscosity solution to the HJB and appeal to Bardi and Capuzzo-Dolcetta (2008)
Theorem III.4.11 to verify that this is the value function.

First, it is shown that it is optimal to sample when ν = 1
2 for all a > 0, hence νa <

1
2 < ν̄a.

At ν ≤ 1
2 the loss from immediate stopping is g(ν). The loss from dt periods more sampling

at ν is on the right below. Thus, it is optimal to do at least dt periods more sampling if

g(ν) > cdt+ g(ν + dν)[1− αg(ν)dt− β(1− g(ν))dt].

Dividing by dt and recalling the above expression for dν this inequality becomes

g′(ν)ν(1− ν) > x− g(ν)[y + g(ν)], y =
β

α− β
, x =

c

α− β
.
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As g(ν) = ν
1
a /(ν

1
a + (1− ν)

1
a ) and g′(ν)ν(1− ν) = 1

ag(ν)(1− g(ν)), this is equivalent to

0 >

(
1

a
− 1

)
g(ν)2 −

(
y +

1

a

)
g(ν) + x.

When g(1
2) = 1

2 and α > β > 2c, the inequality above holds for all a > 0. This shows it is

optimal to sample when ν = 1
2 , which implies νa < 1/2 and the loss is g(νa) when sampling

stops.

Rewriting (7) using the variables r := ν
1−ν and L(r) ≡ L(ν) gives:

rL′(r) +

(
g

(
r

1 + r

)
+ y

)
L(r) = x.

Substituting the specific form of g gives the ODE

L′(r) +

(
r

1
a
−1

1 + r
1
a

+
y

r

)
L(r) =

x

r
.

After multiplying through by the factor ry(1 + r
1
a )a, both sides of this can be integrated in

the usual way. A rearranging, then, gives

(23) L(r) =
x
∫
ry−1(1 + r1/a)a dr +K

ry(1 + r1/a)a
.

We now find a solution to (23) that “smooth pastes” to g(ν) at νa: L
∗(νa) = g(νa) and

L∗(νa) = g′(νa) where L∗(ν) ≡ L( ν
1−ν ) = L(r). This ensures the agent is indifferent between

immediate stopping and dt periods more sampling. If these two conditions are substituted
into (7) evaluated at νa and a further substitution of g′(νa)νa(1− νa) = 1

ag(νa)(1− g(νa)) is
performed we get the condition (9) that defines νa. (α > β > 2c ensures (9) has one solution
in (0, 1

2).) Thus we choose the solution to the ODE

(24) L(r) =
x
∫ r
ra
ρy−1(1 + ρ1/a)a dρ+Ka

ry(1 + r1/a)a
.

Ka is chosen so that L∗(νa) = L(
νa

1−νa
) = g(νa), when ra :=

νa
1−νa

.

We now show that for ν ∈ [νa, 1] the function L( ν
1−ν ), in (24) has a unique intersection with

min{g(ν), 1 − g(ν)} from below. We first show that L( ν
1−ν ) does not intersect g(ν) at any

ν > νa. A sufficient condition for g(ν) ≥ L( ν
1−ν ) is

r1/ary(1 + r1/a)a−1 − x
∫ r

ra

ρy−1(1 + ρ1/a)a dρ−Ka ≥ 0, ∀r ≥ ra.

The derivative of this is

ry−1(1 + r1/a)a−2
{
r2/a(1 + y − x) + r1/a(y − 2x+ a−1)− x

}
.

The term in braces is zero at νa and increases thereafter. Hence the above difference is positive
for all ν > νa. Now we show that for ν ∈ [νa, 1] the function L∗(ν) = L( ν

1−ν ) is increasing

and hence has a unique intersection with the decreasing function 1 − g(ν). Rearranging (7)
gives

(α− β)−1ν(1− ν)L′(ν) = L(ν)(y + g)− x.
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Thus a sufficient condition for L to be increasing is L( ν
1−ν )(y + g) − x > 0. As L( ν

1−ν ) ≥
L(

νa
1−νa

) and g is increasing

L(
ν

1− ν
)(y + g)− x ≥ L(νa)(y + g(νa))− x = g(νa)(y + g(νa))− x =

g2(νa) + g(νa)

a
> 0.

(The first equality substitutes L(νa) = g and the second substitutes from (9) the condition
defining νa.) Hence the sufficient condition holds, L is increasing, and there is a unique ν̄a
where

L

(
ν̄a

1− ν̄a

)
= 1− g

(
ν̄a

1− ν̄a

)
.

We can now define our candidate solution to the HJB equation as L∗(ν) := L( ν
1−ν ) where

(25) L(r) =


g
(

r
1+r

)
r

1+r ≤ νa;
x
∫ r
ra
ρy−1(1+ρ1/a)a dρ+Ka

ry(1+r1/a)a
νa <

r
1+r < ν̄a;

1− g
(

r
1+r

)
r

1+r ≥ ν̄a.

By Bardi and Capuzzo-Dolcetta (2008) Theorem III.4.11 (suitably adapted to allow state
dependent discounting) the value function L(ν) is the unique viscosity solution to the HJB.
Thus we need to show that L∗(ν) is a viscosity solution to the HJB to verify that it is the
value function. When it is differentiable L∗(ν) was constructed to be a solution to the HJB.
It is not differentiable at one point, ν̄a where it has an upward kink. So, we must show that
L∗(ν) is a viscosity subsolution to the HJB equation at ν̄a. That is,

0 ≥ w(α− β)ν̄a(1− ν̄a)− c+ L∗(ν̄a)[αg(ν̄a) + β(1− g(ν̄a))]

for all superdifferentials w of L∗. This is an upwards intersection, so an upper bound on the
superdifferential is given by the slope of the function below ν̄a that is

w ≤ lim
ν→ν̄−a

(L∗)′(ν̄a) =
x

ν̄a(1− ν̄a)
− g(ν̄a) + y

ν̄a(1− ν̄a)
L∗(ν̄a)

a substitution of this upper bound verifies the subsolution condition and we can therefore
deduce that L∗(ν) is the value function. This is exactly the function denoted L(ν) in the
Proposition. �

Proof of Lemma 3

Proof. We will decompose the difference µ2∆− µ̂2∆ into three terms (µ2∆−µ∆)+(µ∆−µ0)−
(µ̂2∆ − µ0). The last two terms in this decomposition equal

µ∆ − µ0 − (µ̂2∆ − µ0)

λ
=
µ0(1− µ0)(1− ζ)

µ0 + (1− µ0)ζ
− µ0(1− µ0)(1− ζ2)

µ0 + (1− µ0)ζ2

=
−µ0(1− µ0)(1− ζ)ζ

AC
.

Where A := µ0 + (1− µ0)ζ and C = µ0 + (1− µ0)ζ2. Now adding the first term

µ2∆ − µ̂2∆

λ(1− ζ)
=
µ∆(1− µ∆)

B
− µ0(1− µ0)ζ

AC
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where B := µ∆ + (1− µ∆)ζ. This can be rewritten as

µ2∆ − µ̂2∆

λ(1− ζ)
=

µ2
0

ABC

(
(1− µ∆)µ∆

AC

µ2
0

− 1− µ0

µ0
ζB

)
.

Writing the expression in brackets in terms of odds ratios permits a further factorization.

µ2∆ − µ̂2∆

λ(1− ζ)
=
µ2

0µ
2
∆

ABC

(
1− µ∆

µ∆
− ζ 1− µ0

µ0

)(
1− 1− µ0

µ0

1− µ∆

µ∆
ζ2

)
Now a substitution for µ∆ in the parentheses gives

µ2∆ − µ̂2∆

λ(1− ζ)2
=

(1− λ)(1− µ0)µ0µ
2
∆

(λ+ (1− λ)A)BC

(
1− ζ2

(
1− µ0

µ0

)2(
1 +

λ(ζ − 1)

λ+ (1− λ)A

))
.

Define µ̂ as the solution to the equation

1 = ζ2

(
1− µ̂
µ̂

)2(
1 +

λ(ζ − 1)

λ+ (1− λ)(µ̂+ (1− µ̂)ζ)

)
.

(The right is decreasing in µ̂ for all ζ > 0, so µ̂ is uniquely defined and µ̂ = 1
2 when ζ = 1.)

It is clear from the final equality that the sign of µ2∆ − µ̂2∆ is determined by whether λ > 1
and whether µ > µ̂ as is claimed in the Lemma. �

Proof of Lemma 4

Proof. Consider an agent committing to ∆ periods of sampling before updating their beliefs.
We will suppose that they irrevocably cease experimentation should no revealing signal appear
and consequently experience the loss µ∆. This is the minimization problem

min
∆≥0

c∆ + (µe−α∆ + (1− µ)e−β∆)µ∆,

where µ∆ is given by (10). Making this substitution

(26) min
∆≥0

c∆ + µe−α∆ + (1− λ)µ(1− µ)(e−β∆ − e−α∆).

The slope of this function divided by (α− β)e−α∆ > 0 is

(27)
{

(λ− 1)µ2 − (λ+ y)µ+ x
}︸ ︷︷ ︸

(13)

+
[
x(eα∆ − 1) + (λ− 1)µ(1− µ)y(e(α−β)∆ − 1)

]
︸ ︷︷ ︸

≥0

.

Consider the two parts of (27). The first part is independent of ∆. The final part is positive
and increases in ∆. So as ∆ increases, the slope is either always positive or first negative and
then positive. The first part of (27) is (13), so if µ = µ it is zero. For µ < µ, the first term is
strictly positive. Hence, (27) is strictly positive for all ∆ and ∆ = 0 solves the minimization.
For µ = µ, the first term is zero. In this case ∆ = 0 is a stationary point and solves the
minimization. In summary, for initial beliefs µ ≤ µ no further experimentation is optimal.

If µ > µ, the first term in (27) is negative and there is a unique strictly positive stationary
point, ∆∗(µ), that is a global minimum. We now show that ∆∗(µ) strictly increases in µ; thus
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higher initial beliefs give rise to a larger optimal update. For µ > µ, ∆∗(µ) makes (27) equal
zero, so implicit differentiation then gives

d∆∗(µ)

dµ
=

(y + 1)(1 + (λ− 1)(1− 2µ))− (λ− 1)(1− 2µ)ye(α−β)∆

xαeα∆ + β(λ− 1)µ(1− µ)e(α−β)∆
.

Substituting for e(α−β)∆ from (27) equated to zero, this can be rewritten as

(28)
d∆∗(µ)

dµ
=

(y + 1) µ
1−µ + 1−2µ

µ(1−µ)xe
α∆

βxeα∆ + αµ+ α(λ− 1)µ(1− µ)
> 0.

When the agent has completed ∆∗(µ) periods of sampling and no signal has arrived, she
will update her beliefs to µ∆∗(µ), as defined by (10). We now show that for µ sufficiently
close to µ, these updated beliefs are strictly below µ, that is, the agent chooses ∆∗(µ) so their
updated beliefs jump into the region µ < µ. First, we calculate how the updated beliefs vary
with µ. Differentiating µ∆∗(µ) in (10) with respect to µ gives

dµ∆∗(µ)

dµ
= 1− λ+ λ

µb(1− µb)
µ(1− µ)

(
1− (α− β)µ(1− µ)

d∆∗(µ)

dµ

)
,

where µb = (1+ 1−µ
µ e(α−β)∆)−1 is the Bayesian update. Substituting from (28) and evaluating

this at µ where ∆∗(µ) = 0 we get

dµ∆∗(µ)

dµ

∣∣∣∣
µ=µ

= 1− λ
αµ2 + (1− 2µ)c

βx+ λαµ− α(λ− 1)µ2
.

As µ = µ∆∗(µ), if this derivative is negative then µ > µ∆∗(µ) for an interval of µ > µ and the

updated beliefs fall below this threshold.

This derivative is negative if α(2λ − 1)µ2 − λ(α + 2c)µ + c(λ − y) > 0. Re-arranging this
inequality and writing the definition of µ in a similar way gives:

A+Bµ :=
c(λ− y) + µ(α(λ− 1)− 2cλ)

α(2λ− 1)
> µ(1− µ),

C +Dµ :=
x− (y + 1)µ

λ− 1
= µ(1− µ).

We now provide sufficient conditions for A > C and B > D (when λ > 1), so the inequality
holds for all positive µ. First, note that A > C iff 0 < λ2 − 3λ(1 + y) + 1 + 2y; a sufficient
condition this is our assumption that λ > 3(1 +y). Second, note that B > 0 > D if λ > α

α−2c ,

this is true if λ > 3(1 + y) and β > 2c. �

Proof of Proposition 3

Proof. We begin by establishing part (i) of the result. Re-arranging (16) we get a relation for
uθ(µ, p

s), the updated belief in the state θ conditional on the signal s,

f(uθ(µ, p
s)) =

f(µθ)p
θ
s

f(µθ)pθs + (1− f(µθ))pθ
′
s

.
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This is the shadow posterior on θ. Now we calculate the shadow posterior odds ratio. Then
take its expectation conditional on the state θ, that is

Eθ
(

1− f(uθ(µ, p
s))

f(uθ(µ, ps))

)
=
∑
s

pθs
(1− f(µθ))p

θ′
s

f(µθ)pθs
=

1− f(µθ)

f(µθ)
.

Adding unity to the extremes of this equality gives

Eθ
(

1

f(uθ(µ, ps))

)
=

1

f(µθ)
.

The function 1
f(.) is assumed to be convex on an interval of values containing the points

{uθ(µ, ps) : s ∈ S}. Therefore, by Jensen’s inequality

1

f (Eθ(uθ(µ, ps)))
≤ Eθ

(
1

f(uθ(µ, ps))

)
=

1

f(µθ)
.

When f(.) is increasing the extremes of this inequality imply that µθ ≤ Eθ(uθ(µ, p
s)). This

establishes the first part of the result. Part (ii) is established by observing that the final
inequality is reversed when concavity replaces convexity.

Finally, we must show that 1
f(.) cannot be concave on the open interval (0, x), for any x > 0.

Suppose it were concave on such an interval for some x ∈ (0, 1) . Then for ε < x and any
λ ∈ [0, 1]

1

f(λε+ (1− λ)x)
≥ λ 1

f(ε)
+ (1− λ)

1

f(x)
,

But as ε→ 0 the RHS of the first of these inequalities converges to infinity (as f(ε)→ 0). Thus
f((1−λ)x) = 0 for all λ ∈ (0, 1) which contradicts the fact that f(.) is strictly increasing. �

Proof of Proposition 4

Proof. A differentiable, strictly increasing map f : [0, 1]→ [0, 1] determines the quasi-Bayesian
updating uθ(µ, p

s) as in (16). We define the (differentiable and strictly increasing) function
ψ : R→ R as

ψ(λ) = ln f

(
eλ

1 + eλ

)
− ln

[
1− f

(
eλ

1 + eλ

)]
, λ ∈ R.

Also, note for later that

(29) ψ′(λ) = f ′(x)
x

f(x)

1− x
1− f(x)

, where x :=
eλ

1 + eλ
.

If we define λ′s := ln uθ(µ,ps)
1−uθ(µ,ps)

and λ := ln µθ
1−µθ , then (16) implies that

ψ(λ′s) = ψ(λ) + ln
pθs
pθ′s
.

The function ψ is invertible, so this allows us to write

(30) λ′s = ln
uθ(µ, ps)

1− uθ(µ, ps)
= ψ−1

(
ψ(λ) + ln

pθs
pθ′s

)
.
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Now we calculate the variance of the updated beliefs log likelihood ratio. This is

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
=

1

2

∑
s,s′∈S

πsπs′

(
ln

uθ(µ, ps)

1− uθ(µ, ps)
− ln

uθ(µ,ps′)

1− uθ(µ,ps′)

)2

.

Here πs =
∑

θ µ
θpθs is defined to be the unconditional probability of the signal s in the

experiment E . A substitution from (30) then gives

Var

[
ln

uθ(µ,ps)

1− uθ(µ, ps)

]
=

1

2

∑
s,s′∈S

πsπs′

(
ψ−1

(
ψ(λ) + ln

pθs
pθ′s

)
− ψ−1

(
ψ(λ) + ln

pθs′

pθ
′
s′

))2

.

As we have assumed the function f is continuously differentiable, we can apply the interme-
diate value theorem to the function ψ−1. Hence,

ψ−1

(
ψ(λ) + ln

pθs
pθ′s

)
− ψ−1

(
ψ(λ) + ln

pθs′

pθ
′
s′

)
=
dψ−1(λ̃)

dλ

(
ln pθs

pθ′s
− ln

pθ
s′

pθ
′
s′

)
for some λ̃ satisfying mins ln pθs

pθ′s
≤ λ̃ − ψ(λ) ≤ maxs ln pθs

pθ′s
. Let B denote this interval of

potential values of λ̃. If this calculation is substituted into the expression for the variance we
can then get a lower bound on the variance

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
≥ min

λ̃∈B

[
dψ−1(λ̃)

dλ

]2
1

2

∑
s,s′∈S

πsπs′

(
ln
pθs
pθ′s
− ln

pθs′

pθ
′
s′

)2

= min
λ̃∈B

[
dψ−1(λ̃)

dλ

]2

Var

[
ln

pθ

pθ′

]
.

An upper bound can be obtained in a similar way

Var

[
ln

uθ(µ, ps)

1− uθ(µ, ps)

]
≤ max

λ̃∈B

[
dψ−1(λ̃)

dλ

]2

Var

[
ln

pθ

pθ′

]
.

These inequalities imply that bounding the derivatives of ψ−1 will generate over and under
reaction. As ψ and its inverse are strictly increasing functions with positive derivatives. The
above inequalities imply that a sufficient condition for the updating to satisfy the condition
for overreaction is dψ−1(λ̃)/dλ > 1 for all λ̃ and a sufficient condition for under-reaction is

dψ−1(λ̃)/dλ < 1. The calculation of the derivative dψ/dλ in (29) then implies the sufficient
conditions given in the Proposition. �

Proof of Proposition 5

Proof. We begin by redescribing the updating using matrix notation: The experiment En is
denoted by a non-negative n×|Θ| matrix P with columns pθ ∈ ∆(Sn) (the signal distributions
for the states θ). The prior µ ∈ ∆(Θ) is a column vector. The vector of (unconditional) signal
probabilities in the experiment equals Pµ ∈ ∆(Sn). The updating function, Un(µ, E), is
denoted by the |Θ| × n matrix U = U(µ, P ), with columns (µ̂s)s∈Sn that are the updated
beliefs after the signal s. The updating function is unbiased iff:

(31) µ ≡ U(µ, P )Pµ; for all µ ∈ ∆(Θ), P ∈ ∆(Θ)n.
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Note that 1TU(µ, P ) = 1
T for all µ, P .

We now describe Bayesian updating using this notation. Let D(x) denote the m×m matrix
with the vector x ∈ Rm on its diagonal and zeros elsewhere. Given the experiment (µ, P ),
the |Θ| × n matrix D(µ)P

T is the joint distribution of signals and states. (Its θth row is the
unconditional probability of signal s and state θ.) As the unconditional probability of the
signals is Pµ, the Bayesian update given prior µ and experiment P is given by the function

(32) UB(µ, P ) := D(µ)P
TD−1

(Pµ).

We now can begin the proof with the “only if” direction. Let us suppose that U(µ, P ) =

UB(µ,Q) for some Q ∈ ∆(Sn)|Θ| satisfying Pµ = Qµ. To show that U is unbiased, that is it
satisfies (31), a substitution from (32) gives

U(µ, P )Pµ = UB(µ,Q)Pµ = D(µ)Q
TD−1

(Qµ)Pµ.

As Pµ = Qµ this then can be written as

U(µ, P )Pµ = D(µ)Q
TD−1

(Qµ)Qµ = D(µ)Q
T
1 = D(µ)1 = µ.

Hence we have established U(µ, P )Pµ = µ and the updating is unbiased.

We now do the “if” direction. Suppose that U(µ, P ) is unbiased and satisfies (31). We will
derive from it a new experiment Q with the same unconditional signal probabilities.

µ = U(µ, P )Pµ

D−1
(µ)µ = D−1

(µ)U(µ, P )Pµ

1 = D−1
(µ)U(µ, P )D(Pµ)D

−1
(Pµ)Pµ

1 = D−1
(µ)U(µ, P )D(Pµ)︸ ︷︷ ︸

=:QT

1

The final equality above says that Q is a n× |Θ| matrix with columns that are probabilities
on S. Thus it is a feasible experiment. The unconditional signal probabilities in Q are the
same as P , because

Qµ = D(Pµ)U(µ, P )TD−1
(µ)µ = D(Pµ)U(µ, P )T1 = D(Pµ)1 = Pµ.

Furthermore, the Bayesian update with the experiment Q and initial beliefs µ equals U(µ, P )
because

UB(µ,Q) = D(µ)Q
TD−1

(Qµ) = D(µ)[D
−1
(µ)U(µ, P )D(Pµ)]D

−1
(Pµ) = U(µ, P ).

(The second equality substitutes for QT and Pµ = Qµ.) Thus Bayesian updating with the
experiment Q gives the same update as the arbitrary updating with experiment P . �

Proof of Proposition 6

Proof. The “if” part of the proof is trivial. It is well known that Bayesian updating satisfies
all the claimed properties.
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The “only if” part proceeds in several stages. In Part 1 Axiom 6 is applied to a particular
binary experiment. To show that the homeomorphism maps rays from eθ to other rays from
from eθ. Then (in Part 2), we show that Fθ′(µ)/Fθ′′(µ) ≡ ψθ′(µθ)/ψθ′′(µθ′′) and these ratios
are homogeneous degree zero. This holds as the ratio Fθ′(µ)/Fθ′′(µ) is constant along these
rays. This allows us to show (in Part 3) that F is the homeomorphism that generates geometric
probability weighting. Finally, (Part 4) we use a linear dependence argument to show that the
only geometric probability weighting updating that satisfies Axiom 6 is Bayesian updating.

Part 1. By Proposition 1, the updating is described by (4) and a homeomorphism F . We
begin by deriving the property (33) that F satisfies if Axiom 6 holds. Let eθ denote the
vector with unity in the θ element and zeros elsewhere. When the agent observes a binary
experiment with the vectors of signal probabilities p1 = zeθ and p2 = 1 − zeθ, z ∈ (0, 1),
Axiom 6 implies that

µ ∈ Convex Hull

{
F−1(eθ), F

−1

(
F (µ) ◦ (1− zeθ)
F (µ)T (1− zeθ)

)}
.

But, F (eθ) = eθ by (15) and a substitution into (4). So, for all z ∈ (0, 1) and µ 6= eθ there
exists an ω ∈ [0, 1) such that

F−1

(
F (µ) ◦ (1− zeθ)
F (µ)T (1− zeθ)

)
=
µ− ωeθ
1− ω

.

Now apply F to both sides of the above and substitute F (µ)T (1 − zeθ) = 1 − zFθ(µ). This
gives the equivalent condition that for all z ∈ (0, 1) there exists an ω ∈ [0, 1) such that

(33)
F (µ) ◦ (1− zeθ)

1− zFθ(µ)
= F

(
µ− ωeθ
1− ω

)
:= F (µ̃).

(33) says that F maps line segments in ∆(Θ) to line segments in ∆(Θ). The point µ̃ lies
on the line segment joining µ to (0,

µ−θ
1Tµ−θ

). By increasing µθ while holding
µ−θ

1Tµ−θ
constant,

µ̃ can be any convex combination of eθ and (0,
µ−θ

1Tµ−θ
). This is a ray from eθ. This ray is

mapped by F to the ray with the extreme points eθ = F (eθ) (when µ → eθ) and
(0,F−θ(µ))
1−Fθ(µ)

(z → 1),36 as

F (µ) ◦ (1− zeθ)
1− zFθ(µ)

= δeθ + (1− δ)(0, F−θ(µ))

1− Fθ(µ)
,

where δ = (1 − z)Fθ(µ)(1 − zFθ(µ))−1 ∈ [0, 1]. F is a homeomorphism, so it is also a
homeomorphism when it is restricted to these rays. Thus F maps eθ to eθ and (0,

µ−θ
1Tµ−θ

) to
(0,F−θ(µ))
1−Fθ(µ) . Furthermore, as (0,

µ−θ
1Tµ−θ

) ∈ ∆(Θ) varies these rays range over all µ̃ in ∆(Θ).

Part 2. We now show that Fθ′(µ)/Fθ′′(µ) ≡ Aθ′,θ′′(µθ′ , µθ′′) where Aθ′,θ′′(.) is homogeneous
degree zero. That is, this ratio only depends on the variables µθ′ and µθ′′ . For any θ′, θ′′ 6= θ
a substitution from (33) gives

Fθ′(µ̃)

Fθ′′(µ̃)
=

Fθ′ (µ)
1−zFθ(µ)

Fθ′′ (µ)
1−zFθ(µ)

=
Fθ′(µ)

Fθ′′(µ)
, ∀z, ω.

36F−θ(µ) denotes F (µ) with its θ entry missing.
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Thus the ratio Fθ′(µ̃)/Fθ′′(µ̃) is constant for all µ̃ = (µ− ωeθ)(1− ω)−1 and for all θ 6= θ′, θ′′.
This is because the RHS of the above is independent of ω or z. Let µ̂, µ̆ ∈ ∆o(Θ) have θ′ and
θ′′ entries that are collinear: (µ̂θ′ , µ̂θ′′) = κ(µ̆θ′ , µ̆θ′′). We need to show that

(34)
Fθ′(µ̂)

Fθ′′(µ̂)
=
Fθ′(µ̆)

Fθ′′(µ̆)
.

We choose µ̄ ∈ ∆o(Θ) such that (µ̄θ′ , µ̄θ′′) = κ̄(µ̆θ′ , µ̆θ′′) and µ̄θ/µ̄θ′ > max{µ̃θ/µ̃θ′ , µ̆θ/µ̆θ′}
for all θ 6= θ′, θ′′. This is possible as κ̄ ≥ µ̄θ′ can be chosen to be arbitrarily small. Now notice
that:

µ̂ =
µ̄−

∑
θ 6=θ′,θ′′ ω̂θeθ

1−
∑

θ 6=θ′,θ′′ ω̂θ
, µ̆ =

µ̄−
∑

θ 6=θ′,θ′′ ω̆θeθ

1−
∑

θ 6=θ′,θ′′ ω̆θ
;

where ω̂θ := µ̄θ − µ̂θ(µ̄θ′/µ̂θ′) and ω̆θ := µ̄θ − µ̆θ(µ̄θ′/µ̆θ′). The assumptions on µ̄ ensure that
ω̂θ, ω̆θ > 0 for all θ 6= θ′, θ′′ and that the denominators above are positive. Thus both of µ̂ and
µ̆ can be derived from µ̄ by a sequence of linear transformations of the form (µ−ωeθ)/(1−ω);
one for each θ 6= θ′, θ′′. These transformations do not alter the ratio Fθ′(µ)/Fθ′′(µ) hence (34)
is established.

Now it is shown that Aθ′,θ′′(µθ′ , µθ′′) = ψθ′(µθ′)/ψθ′′(µθ′′) for all θ′, θ′′ ∈ Θ. The proposition
asserts that there exists at least three different values θ, θ′, θ′′ ∈ Θ. Thus we can find functions
Aθ,θ′ , Aθ′,θ′ , and Aθ,θ′′ such that

Fθ(µ)

Fθ′(µ)

Fθ′(µ)

Fθ′′(µ)
≡ Fθ(µ)

Fθ′′(µ)
, or Aθ,θ′(µθ, µθ′)Aθ′,θ′′(µθ′ , µθ′′) ≡ Aθ,θ′′(µθ, µθ′′).

Dividing by Aθ′,θ′′(µθ′ , µθ′′) gives

Aθ,θ′(µθ, µθ′) ≡
Aθ,θ′′(µθ, µθ′′)

Aθ′,θ′′(µθ′ , µθ′′)
.

The left above does not depend on µθ′′ so neither does the right. Fixing the value of µθ′′ = t
and defining ψθ(µθ) := Aθ,θ′′(µθ, t) and ψθ′(µθ′) := Aθ′,θ′′(µθ′ , t) we get that

Aθ,θ′(µθ, µθ′) ≡
ψθ(µθ)

ψθ′(µθ′)
.

As θ and θ′ are entirely arbitrary we have established the claim, that is,

(35)
Fθ(µ)

Fθ′(µ)
= Aθ,θ′(µθ, µθ′) =

ψθ(µθ)

ψθ′(µθ′)
∀θ, θ′ ∈ Θ.

Part 3. We now derive and solve functional (Pexider) equations that the ψθ satisfy. This will
tell us the form of ψθ. The homogeneity degree zero of (34) says that

ψθ(µθ)

ψθ′(µθ′)
=

ψθ(ρµθ)

ψθ′(ρµθ′)
, or

ψθ′(ρµθ′)

ψθ′(µθ′)
=
ψθ(ρµθ)

ψθ(µθ)
.

for all ρ ∈ (0, 1). If we define gθ := lnψθ, mθ := lnµθ, and ` := ln ρ, then this can be rewritten
as

gθ′(e
`+mθ′ )− gθ′(emθ′ ) = gθ(e

`+mθ)− gθ(emθ).
Another change of variable, letting fθ(x) := gθ(e

x), and another rewriting gives

fθ′(`+mθ′)− fθ′(mθ′) = fθ(`+mθ)− fθ(mθ).
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This Pexider equation, in fθ and fθ′ , can be solved in the following way. Choose mθ = mθ′

and x = `+mθ then f(x) := fθ(x) = fθ′(x) + cθ′ where cθ′ is a constant. Rewriting the above
using f , setting mθ′ = −` and re-arranging a little gives

f(mθ)− f(0) = f(`+mθ)− f(0) + f(−`)− f(0).

Thus the function f(mθ)−f(0) satisfies Cauchy’s functional equation and the only continuous
solution to this is f(mθ) − f(0) = amθ for some constant a.37 This implies that fθ(mθ) =
amθ + cθ for all θ. Then, reversing all the previous transformations gives

ψθ(µθ) = Kθµ
a
θ ;

for some Kθ and all θ. Finally, as ψθ/ψθ′ = Fθ/Fθ′ and 1TF (µ) = 1 we get

(36) F (µ) =

(
K1µ

a
1, . . . ,K|Θ|µ

a
|Θ|

)
∑

θKθµ
a
θ

.

This homeomorphism generates the geometric probability weighting updating with the weight
a. The formula for the updating F generates is given in Section 4.1.

Part 4. The final step in the proof is to show that a = 1. Suppose that: F has the form
(36), the agent has the initial belief µ, and she observes the binary experiment with signal

probabilities p1 ∈ (0, 1)|Θ| and 1 − p1. If we apply the updating formula of Section 4.1 to
Axiom 6 in this case we get the condition

µ ∈ Convex Hull

{
µ ◦ (p1)

1
a

µT (p1)
1
a

,
µ ◦ (1− p1)

1
a

µT (1− p1)
1
a

}
,

where (p1)
1
a = ((p1

1)1/a, . . . , (p
|Θ|
1 )1/a). This implies that there exists w1, w2 ∈ R such that

0 = µ− w1
µ ◦ (p1)

1
a

µT (p1)
1
a

− w2
µ ◦ (1− p1)

1
a

µT (1− p1)
1
a

or that

0 = µ ◦

(
1− (p1)

1
a

w1

µT (p1)
1
a

− (1− p1)
1
a

w2

µT (1− p1)
1
a

)
.

Thus the vectors 1, (p1)
1
a , and (1 − p1)

1
a are linearly dependent for any p1 ∈ (0, 1)|Θ|. If

|Θ| > 2, this implies a = 1. If a = 1 the agent is updating as a Bayesian and the result is
established. �

37The updating is assumed to be continuous.
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