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Abstract

I introduce a model of belief updating—Coarse Bayesian updating—where,

upon receipt of new information, an agent applies subjective criteria to select

among competing theories of the world. The agent is characterized by a par-

tition of the probability simplex and a representative distribution for each cell

of the partition. When information arrives, the agent determines which cell

contains the Bayesian posterior and adopts its representative as posterior be-

lief. I characterize this procedure, analyze how it relates to existing models

and evidence on non-Bayesian updating, and apply it to a standard setting of

decision under risk.

1 Introduction

Bayesian updating plays a central role in economic theory. A wide body of evidence,

however, suggests that actual behavior cannot be reconciled with Bayes’ rule in a

variety of settings. For example, individuals often display conservatism bias : they

under-react to new evidence, possibly ignoring it altogether. Others overreact to

information by falsely extrapolating or, more generally, engaging in pattern-seeking

behavior. Combinations of these forces may lead individuals to under-weight some

signals while over-weighting others. In this paper, I introduce and analyze a sim-

ple generalization of Bayesian updating—Coarse Bayesian updating—accommodating

these, and other, behavioral tendencies.
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Figure 1: Coarse Bayesian Updating. In this example, the agent entertains three
distributions (solid dots). The point µe is the prior. After observing a signal s, the
agent determines which cell of the partition contains the Bayesian posterior µ̂, then
adopts the representative of that cell (in this case, µ′) as his new belief.

At its core, Coarse Bayesian updating is a model of bounded rationality stemming

from a single key assumption: agents simplify the world by considering only a subset

of the probability space. Members of this set represent competing theories or beliefs,

and agents apply subjective criteria to select among them. More precisely, a Coarse

Bayesian agent is characterized by a partition of the set of all probability distributions

over a state space, together with a representative distribution for each cell of the

partition. One of the distributions is the prior. After observing a signal, the agent

determines which cell contains the Bayesian posterior and adopts the representative

of that cell as his posterior belief (see Figure 1). Since realized posteriors typically

differ from their Bayesian counterparts, Coarse Bayesians may exhibit overreaction,

under-reaction, or other biases depending on the realized signal, the shape of the

partition, and the positions of representative distributions within their cells.

The model can be interpreted in different ways. First, as indicated above, one

might view the representative distributions as competing theories of the world and

the partition as the agent’s criteria, or standard of proof, for selecting among them.

In this interpretation, agents correctly assess the informational content of signals and

decide which, if any, competing theory ought to replace their prior. Given that the

agent entertains a restricted set of theories, the updating procedure is a minimal

deviation from Bayes’ rule: the agent must have some criteria for choosing among

feasible theories, and will adopt a given theory if it coincides with the Bayesian

posterior.

Second, one can interpret Coarse Bayesian behavior as the result of signal dis-
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tortion. Rather than actively weighing competing theories against the evidence, the

agent mentally transforms the observed signal before applying Bayes’ rule to the mod-

ified signal. Thus, in this interpretation, violations of Bayes’ rule are the result of

imperfect perception or attention.

Finally, Coarse Bayesian updating can be interpreted as a form of categorical

thinking. Here, each cell of the partition represents a category of beliefs, and the rep-

resentative of a cell an “archetype” of that category. Thus, the agent uses information

to select a category, then adopts the archetype of that category. This interpretation

can also be applied at the level of signals: the agent groups signals into categories,

and updates beliefs based on the category of the realized signal.

In all cases, the parameters of the model are subjective characteristics of the

individual: two Coarse Bayesians may differ in their sets of feasible beliefs, their

partitions, or both. In contrast to the canonical framework of Savage (1972), then,

Coarse Bayesians exhibit subjectivity not only in their prior beliefs, but also in their

criteria for revising those beliefs. Some agents may tend to disregard evidence while

others falsely extrapolate from it; some might be biased in favor of a particular theory,

while others seek to discredit it. Even with a common prior, compelling evidence in

the eyes of one agent may be completely unpersuasive for another, or result in radically

different posterior beliefs. In general, Coarse Bayesians may disagree on the strength

of evidence required to adopt a particular belief, or on the set of admissible beliefs

to begin with, so that a given piece of evidence may yield (or magnify) disagreement

among individuals.

Section 2 provides a simple characterization of Coarse Bayesian updating. I take

as primitive a finite, exogenous state space and an updating rule specifying an individ-

ual’s probabilistic beliefs at every possible signal. In my framework, signals represent

messages that can be generated by stochastic information structures. Thus, a signal

consists of a profile of numbers indicating the likelihood of the associated message

being generated in different states. By employing such primitives, the model is readily

adaptable to any standard economic or game-theoretic setting.

The characterization involves three testable assumptions on the updating rule.

The first, Homogeneity, states that beliefs are invariant to scalar transformations of

signals. Thus, like Bayes’ rule, Coarse Bayesian updating rules only depend on the

likelihood ratios of the observed signal. Second, Cognizance states that if two signals

result in the same belief, then so does a “garbled” signal indicating that one of those
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signals was generated. A natural interpretation of this assumption is that the agent

understands, or is cognizant of, his own updating procedure: if he is uncertain about

which of two signals was generated, but recognizes that each would lead to the same

posterior belief, then he adopts that belief. Finally, Confirmation states that if a

signal exactly supports (or confirms) some feasible belief, then the updating rule as-

sociates that belief to the given signal. Theorem 1 establishes that an updating rule

has a Coarse Bayesian representation if and only if it is Homogeneous, Cognizant,

and Confirmatory. Moreover, the associated partition, representative elements, and

prior are unique. Theorem 2 establishes that an updating rule has a Coarse Bayesian

representation if and only if it has a Signal Distortion representation satisfying three

analogous properties, thereby formalizing the second interpretation of the model de-

scribed above.

Section 3 explores the main implications of Coarse Bayesian updating and exam-

ines connections to related models and evidence. In section 3.1, I discuss evidence

on biased belief updating and demonstrate how Coarse Bayesian models can accom-

modate such behavior. In addition to under- and over-reaction, I show how Coarse

Bayesians may exhibit “motivated” belief updating, limited perception, extreme-belief

aversion, or susceptibility to logical fallacies. Section 3.2 examines the relationship to

“paradigm shifts,” including the Hypothesis-Testing model of Ortoleva (2012). I show

that Coarse Bayesian updating can accommodate similar behavior and, motivated by

this fact, examine whether Coarse Bayesians can be represented as Bayesians with

second-order priors. I show that such models, dubbed Maximum-Likelihood updating

rules, intersect the class of Coarse Bayesian rules but that neither class subsumes

the other—unless there are exactly two states, in which case every Coarse Bayesian

rule can be expressed as a Maximum-Likelihood rule. Finally, section 3.3 explores

some basic properties of Coarse Bayesian updating in dynamic settings. I show that

most Coarse Bayesians (other than standard Bayesians) are sensitive to the way his-

tories of signals are pooled and ordered. However, this depends on how the updating

rule is represented: if one employs a Signal Distortion rule, rather than its associ-

ated partitional representation in probability space, then signals can be reordered

without affecting terminal beliefs. Thus, the equivalence between Coarse Bayesian

(partitional) representations and their associated Signal Distortion representations

only holds in static settings.

Section 4 applies the model to a standard setting of decision under risk. In particu-
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lar, I analyze how Coarse Bayesians value information (Blackwell experiments) when

faced with menus of actions with state-dependent payoffs. I show that a Coarse

Bayesian’s ex-ante value of information can be expressed in a familiar posterior-

separable form, making the model amenable to the well-known Bayesian Persua-

sion framework (Kamenica and Gentzkow, 2011). Then, I establish that standard

Bayesians have a higher value of information than Coarse Bayesians and that, un-

like Bayesians, Coarse Bayesians typically exhibit violations of the Blackwell (1951)

information ordering—they need not assign higher ex-ante value to more informa-

tive experiments. Finally, I examine how a Coarse Bayesian’s value of information

changes as he becomes more sophisticated, or “more Bayesian,” in that the set of

feasible beliefs expands and the associated partition becomes finer. I characterize

the sophistication ordering by showing that more sophisticated agents exhibit more

responsiveness to information, as captured by ex-ante value of information. More-

over, greater sophistication increases both the value of information and the degree of

adherence to the Blackwell ordering in settings where it results in more “agreement”

with Bayesian decision makers.1

1.1 Related Literature

Economists and psychologists have developed a large body of research documenting

systematic violations of Bayesian updating; early contributions include Kahneman

and Tversky (1972), Tversky and Kahneman (1974), and Grether (1980). As seen in

the surveys of Camerer (1995), Rabin (1998), and Benjamin (2019), there is substan-

tial variation in both the patterns of behavior displayed by subjects and the settings

in which experiments are carried out. For example, studies differ in whether subjects

observe individual pieces of information or larger samples (or sequences) of evidence;

whether prior beliefs are objectively induced or subjectively formed by participants;

whether choices are incentivized with monetary rewards; and how problems and in-

formation are framed.

Motivated by this evidence, several authors have developed models to better un-

derstand the mechanisms behind, and consequences of, non-Bayesian updating. Mod-

1In an experimental setting, Ambuehl and Li (2018) find that subjects tend to undervalue im-
provements to instrumentally valuable information, and argue that this is due to non-Bayesian belief
updating. In addition, subjects differ in their responsiveness to information. Coarse Bayesian up-
dating, which permits different agents to employ different updating rules, yields similar predictions.
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els focusing on implications of biased updating are typically cast in simplified frame-

works (eg, two states of the world; particular protocols or functional form assump-

tions), or involve non-standard elements like ambiguous signals or framing effects.

See, among others, Barberis et al. (1998), Fryer et al. (2019), Gennaioli and Shleifer

(2010), Rabin and Schrag (1999), and Mullainathan et al. (2008).

Decision theorists have developed axiomatic approaches to non-Bayesian updat-

ing. Kovach (2020), for example, develops a model of conservative updating. Epstein

(2006) provides a model of non-Bayesian updating accommodating under-reaction,

overreaction, and other biases; Epstein et al. (2008) extend this model to an infinite-

horizon setting. Zhao (2016) axiomatizes a particular updating rule for signals indi-

cating that one event is more likely than another.

Three studies are especially relevant to Coarse Bayesian updating. First, the hy-

pothesis testing model introduced and axiomatized by Ortoleva (2012) posits that

agents apply standard Bayesian updating except when news is sufficiently “surpris-

ing,” in which case posterior beliefs are selected by applying a maximum-likelihood

criterion to a second-order prior. In particular, an agent applies Bayes’ rule if the

prior probability of the observed signal weakly exceeds a threshold ε ≥ 0; otherwise,

the agent updates a second-order prior via Bayes’ rule and selects a belief of maximal

probability under the new second-order beliefs. In section 3.2, I show that Coarse

Bayesian updating can accommodate similar behavior, and compare Coarse Bayesian

updating rules to a general class of Maximum-Likelihood updating rules. Importantly,

Maximum-Likelihood rules may violate the Confirmation property—perfect evidence

for a candidate belief does not guarantee that that belief is adopted.

Second, Wilson (2014) studies optimal updating rules for a boundedly rational

agent facing a binary decision problem and a stochastic sequence of signals. There

are two states, and the agent has limited memory: only K memory states are avail-

able. In an optimal protocol, each memory state is associated with a convex set of

posterior beliefs and a representative distribution for that set; if an interim Bayesian

posterior belongs to some cell, then the representative of that cell is adopted as the

agent’s belief. Thus, the optimal protocol emerging from Wilson’s model is a Coarse

Bayesian updating procedure. Naturally, the parameters of this representation (cells

and their representative points) depend on features of the environment such as the

signal structure and the bound K. Coarse Bayesian updating procedures—like stan-

dard Bayesian updating—do not depend on any factors other than the informational
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content of realized signals. In particular, I do not require Coarse Bayesian repre-

sentations to be optimal in any sense, nor do I impose cognitive bounds such as a

restriction on the number of cells. One could endogenize Coarse Bayesian updating

rules in various ways. For example, by introducing costs (or bounds) on the number

of cells and fixing both an information structure and subsequent decision problem,

one could focus on representations that maximize ex-ante expected utility subject to

those constraints (see also footnote 6 in section 3.1 for a slightly different direction).

Third, a working paper, Mullainathan (2002), develops a model of categorical

thinking. Agents in this model follow a procedure similar to Coarse Bayesian up-

dating where feasible posteriors represent categories and the mapping from Bayesian

posteriors to categories is determined by a partition of the simplex. A key difference is

that the partition is derived from the set of feasible posteriors: given a set of feasible

posteriors, an optimality condition similar in spirit to maximization of a likelihood

function is used to select a posterior. The resulting partition has convex cells, as

in a Coarse Bayesian representation, but cells need not contain their representative

elements. In other words, behavior in this model need not satisfy Confirmation—see

appendix B for an explicit example.

2 Model

I consider a single agent who updates beliefs after observing a noisy signal. Let Ω

denote a finite set of N ≥ 2 states and ∆ the set of probability distributions over Ω.

A distribution µ̂ ∈ ∆ assigns probability µ̂ω to state ω ∈ Ω.

An experiment is a matrix σ with entries in [0, 1] and N rows where each row

is a probability distribution and each column has at least one nonzero entry. Each

column represents a message that might be generated, and each row represents a

state-contingent probability distribution over messages. Let E denote the set of all

experiments.

As in Jakobsen (2020), a signal is a profile s = (sω)ω∈Ω ∈ [0, 1]Ω such that sω 6= 0

for at least one state ω. Let S denote the set of all signals. Intuitively, a signal rep-

resents a column (message) of some experiment, and its entries sω are the likelihoods

of the message being generated in different states of the world. The notation s ∈ σ
indicates that s is a column of σ. I reserve e to denote the uninformative signal;

that is, e ∈ S and eω = 1 for all ω ∈ Ω. Note that e qualifies as an experiment.
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Figure 2: Three representations of an experiment σ = [r, s, t].

Using the notation of signals, any experiment can be viewed as a collection (matrix)

of signals, as a series of state-contingent distributions over signals, or as a collection

of points in S; see Figure 2.

For two profiles v = (vω)ω∈Ω and w = (wω)ω∈Ω of real numbers, let vw :=

(vωwω)ω∈Ω denote the profile formed by multiplying v and w component-wise. Simi-

larly, if wω > 0 for all ω, let v/w := (vω/wω)ω∈Ω. The dot product of v and w is given

by v · w :=
∑

ω∈Ω vωwω. The notation v ≈ w indicates that v = λw for some λ > 0,

where λw := (λwω)ω∈Ω is the scalar product of λ with w. The standard Euclidean

norm of v is denoted ‖v‖. Clearly, if µ, µ′ ∈ ∆, then µ = µ′ if and only if µ ≈ µ′.

If µ̂ ∈ ∆ and s ∈ S such that sµ̂ 6= 0, then B(µ̂|s) := sµ̂
s·µ̂ ∈ ∆ denotes the

Bayesian posterior of µ̂ at signal s. Note that B(µ̂|s) is the unique µ′ ∈ ∆ such

that µ′ ≈ sµ̂.

Finally, an updating rule is a function µ : S → ∆ assigning probability distri-

butions µs ∈ ∆ to signals s ∈ S. For each s ∈ S, µs is the agent’s posterior belief

conditional on observing signal s. I assume µe, the prior, has full support. Updating

rules will often be written as profiles: µ = (µs)s∈S.2

2.1 Coarse Bayesian Representations

Let µ : S → ∆ be an updating rule such that µe has full support. I impose three

testable assumptions on µ.

Assumption 1 (Homogeneity). If s ≈ t, then µs = µt.

2Note that updating rules condition beliefs on signal realizations s but not on experiments σ.
In practice, a signal must be generated by an experiment, in which case one may wish to denote
posterior beliefs by µ(σ,s) where s is a column of σ. Like standard Bayesian updating, however,
Coarse Bayesian updating depends on s but not the other columns of σ. To minimize notation, I
have omitted the underlying experiment(s) σ.
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Homogeneity requires the agent’s analysis of a signal to depend only on the like-

lihood ratios sω/sω′ . This is a key feature of standard Bayesian updating: B(µe|s)
coincides with B(µe|λs), provided λ > 0 and λs ∈ S. An implication of this as-

sumption is that the agent is not susceptible to certain types of framing effects. For

example, whether information is stated in terms of frequencies or likelihoods has no

effect on the agent’s cognitive process.

By Homogeneity, the notation µs can be extended to all non-zero profiles s̃ such

that s̃ω ≥ 0 for all ω because such profiles can be scaled by a factor λ > 0 to yield a

signal λs̃ ∈ S. This will be convenient for expressing the remaining assumptions.

Assumption 2 (Cognizance). If µs = µt, then µs+t = µs.

Cognizance states that if signals s and t result in the same posterior belief, then

the agent adopts that belief if he knows that either s or t was generated. This holds

because s+ t represents a “garbled” signal indicating that either s or t has realized.

Thus, an interpretation of Cognizance is that the agent understands his own updat-

ing rule: if he knows that one of two signals was generated and realizes that either

one would lead him to the same posterior belief—that is, if he is cognizant of his

own updating procedure—then he ought to adopt that belief. Although Cognizance

is mainly motivated by normative considerations, it is also potentially important in

applications. For example, section 4 studies how Coarse Bayesians value informa-

tion. This involves ex-ante rankings of information structures that rely on correct

forecasts about updating behavior. For such exercises to make sense, an assumption

like Cognizance is required.

Assumption 3 (Confirmation). For all s, µµ
s/µe = µs.

To understand Confirmation, observe that for any s, µs is a feasible posterior

because it is in the range of the updating rule. Moreover, any signal t ≈ µs/µe

satisfies B(µe|t) = µs. Thus, Confirmation states that if a signal t exactly supports

(or confirms) a feasible posterior, then the agent adopts that posterior after observing

t. Although quite intuitive and normatively appealing, this property is not always

satisfied by some closely-related models—see section 3.2 and appendix B.

Theorem 1. An updating rule µ is Homogeneous, Cognizant, and Confirmatory if

and only if there is a partition P of ∆ and a profile µP = (µP )P∈P of distributions
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such that

(i) each cell P ∈ P is convex,

(ii) for all P ∈ P, µP ∈ P , and

(iii) for all s ∈ S, B(µe|s) ∈ P implies µs = µP .

Such a pair 〈P , µP〉 is a Coarse Bayesian Representation of µ. If 〈Q, µQ〉 is

another Coarse Bayesian Representation of µ, then P = Q and (µP )P∈P = (µQ)Q∈Q.

Proof. First, observe that if α, β ≥ 0 and s, t, αs+ βt ∈ S, then

B(µe|αs+ βt) =
(αs+ βt)µe

(αs+ βt) · µe

=
αs · µe

(αs+ βt) · µe
sµe

s · µe
+

βt · µe

(αs+ βt) · µe
tµe

t · µe

=
αs · µe

(αs+ βt) · µe
B(µe|s) +

βt · µe

(αs+ βt) · µe
B(µe|t). (1)

Thus, B(µe|αs+ βt) is a convex combination of B(µe|s) and B(µe|t); the weight at-

tached to B(µe|s) is the prior probability of signal αs given that either αs or βt is

generated. It is now straightforward to verify that if µ has a Coarse Bayesian Rep-

resentation, then Assumptions 1–3 are satisfied (Assumption 2 follows from equation

(1) and convexity of cells P ∈ P).

For the converse, we construct a Coarse Bayesian Representation as follows. First,

note that Homogeneity and Cognizance imply µ is Convex: if µs = µt and α ∈ [0, 1],

then µαs+(1−α)t = µs. It follows that µ is measurable with respect to a partition of S

into convex cones. That is, there is a partition C of S such that (i) µs = µt if and

only if there exists C ∈ C such that s, t ∈ C, and (ii) every C ∈ C is a convex cone:

if s, t ∈ C and α, β ≥ 0 such that αs + βt ∈ S, then αs + βt ∈ C. Every C ∈ C
can be identified with a subset of ∆ by letting PC := {B(µe|s) : s ∈ C}. Each set

PC is convex by (1) and the fact that sets C ∈ C are convex cones. In addition,

P := {PC : C ∈ C} is a partition of ∆ because B(µe|s) = B(µe|t) if and only if

s ≈ t, forcing s and t to belong to the same cone C ∈ C. Cognizance implies µs ∈ P
whenever B(µe|s) ∈ P ∈ P .

Theorem 1 formalizes the concept of a Coarse Bayesian Representation and estab-

lishes that an updating rule has such a representation if and only if it is Homogeneous,
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Cognizant, and Confirmatory. Each of these testable assumptions expresses some el-

ement of “rational” information processing—indeed, each assumption is satisfied by

a standard Bayesian. Nonetheless, the class of Coarse Bayesian Representations ac-

commodates a large variety of behavioral biases and other violations of Bayes’ rule.

As we shall see, the three assumptions also help make meaningful comparisons to

related models.

As described in the introduction, Coarse Bayesian updating captures the behavior

of an agent who partitions the probability simplex, assigns a representative distribu-

tion to each cell, and adopts the representative of a cell as posterior if the Bayesian

posterior belongs to that cell. This enables the following interpretations.

1. Competing Theories. Here, representative points constitute competing theories

of the world, while the partition summarizes the agent’s standard of proof for

selecting among them. Such agents do not necessarily compute Bayesian posteriors

of signals: they only need to know which cell contains the Bayesian posterior, so

fully computing that posterior may not be necessary. Thus, agents do not deviate

from Bayes’ rule due to the “difficulty” of computing Bayesian posteriors; rather,

they simplify the world by considering a restricted set of feasible theories, and

analyze signals to the extent necessary to determine whether they should adopt a

different theory.

2. Signal Distortions. Alternatively, one can interpret the procedure as the result of

signal distortion: rather than selecting among feasible theories, agents mentally

transform signals before applying Bayes’ rule to update their prior. Thus, apparent

deviations from Bayes’ rule are the result of imperfect perception or attention. In

the next section, I formalize such procedures and show that they are equivalent to

Coarse Bayesian updating rules.

3. Categorical Thinking. In this interpretation, the agent reasons about categories of

beliefs, each represented by a cell of the partition. The representative µP of cell P

is an “archetype” of that category. When information arrives, the agent determines

which category applies and adopts its archetype as posterior. Again, such agents

need not fully compute Bayesian posteriors—they only glean enough information

from a signal to figure out which category contains the Bayesian posterior. Signal

distortion rules can also be interpreted as a form of categorical thinking: agents

classify signals into categories, and update based on archetypes of those categories.
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Although Coarse Bayesian updating accommodates many documented departures

from Bayesian updating (see section 3), the model is not without its limitations. First,

like Bayes’ rule, the procedure requires an agent’s posterior belief to depend only on

the realized signal s. More precisely, only the ratios of entries in s can affect posterior

beliefs. This eliminates behavior where agents are sensitive to the way information is

framed, and rules out the possibility that agents might be affected by other signals

that could have been generated by the underlying experiment σ.

Coarse Bayesian updating procedures are also not sensitive to “stakes.” Like

Bayesians, Coarse Bayesians update beliefs without regard to whatever decision prob-

lem they may be facing; their analysis of information is completely separated from

whatever gains or losses they may incur as a result of that analysis.3

A more technical matter is that Coarse Bayesian updating rules are typically

discontinuous in s. If continuity is an essential conceptual feature of some pattern

of behavior—rather than a convenient technical assumption—then Coarse Bayesian

updating procedures will, at most, provide an approximation to that behavior.

Finally, requiring cells of the partition to be convex might seem limiting. This

convexity is driven by Cognizance and can be discarded by dropping that assumption.

However, as explained above, Cognizance is potentially important in applications

because it means agents correctly forecast their own updating behavior.

2.2 Signal Distortions

In this section, I provide an alternative representation of Coarse Bayesian updating

rules. The idea, formalized by the next definition, is that non-Bayesian reactions are

due to errors or biases in the agent’s perception of information.

Definition 1. An updating rule µ has a Signal Distortion Representation if

there is a function d : S → S (a signal distortion) such that µs = B(µe|d(s)) for

all s ∈ S.

In a Signal Distortion Representation, an agent who observes signal s updates

beliefs by applying Bayes’ rule with a modified signal d(s). Thus, the function d is

a behavioral parameter capturing the agent’s tendency to distort information. Such

3See Balzer and Young (2020) for a model of updating where, at an interim stage, an agent weighs
costs of additional reasoning against benefits in a subsequent decision problem.
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distortions could be due to imperfections in the agent’s perception or, in some ap-

plications, may reflect the agent’s beliefs about the accuracy or reliability of the

information source.4

Note that if µ has a Signal Distortion Representation, then d(e) ≈ e. This is the

only substantive property of d implied by such a representation. Therefore, without

additional restrictions, the concept of signal distortion can explain almost any updat-

ing behavior. The next definition provides three restrictions on d that are needed to

establish an equivalence between Signal Distortion and Coarse Bayesian Representa-

tions.

Definition 2. A signal distortion d is

(i) Homogeneous if d(s) ≈ d(t) whenever s ≈ t.

(ii) Convex if d(s) ≈ d(t) implies d(λs+ (1− λ)t) ≈ d(s) for all λ ∈ [0, 1].

(iii) Idempotent if d(d(s)) = d(s) for all s.

Homogeneity states that two distorted signals have common likelihood ratios if the

original signals have common likelihood ratios. Convexity states that if two signals

have common distorted likelihood ratios, then those ratios also come about from

distorting mixtures of those signals. Idempotency requires the distortion process to

be stable: the distortion of d(s) is d(s).

As illustrated by Figure 3, signal distortions d that are Homogeneous, Convex,

and Idempotent effectively categorize signals and assign common distorted likelihood

ratios to signals in the same category. In particular, d gives rise to a partition of S

into convex cones, along with a representative ray for each cell. Signals in a given

cell get distorted to points along the representative ray, ensuring common likelihood

ratios.

Theorem 2. An updating rule has a Coarse Bayesian Representation if and only if

it has a Homogeneous, Convex, Idempotent Signal Distortion Representation. If d

and d′ are two such representations of a given updating rule, then d(s) ≈ d′(s) for all

s ∈ S.

4See also Aydogan et al. (2017), who propose a model of signal distortion similar in spirit to that
of Rabin and Schrag (1999).
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Figure 3: A Signal Distortion Representation on S for two states.

Proof. First, suppose µ has a Coarse Bayesian Representation. Note that for every

s ∈ S the signal µs/µe

‖µs/µe‖ is well-defined because µe has full support. Define d : S → S

by

d(s) =

s if µs = B(µe|s)
µs/µe

‖µs/µe‖ otherwise
.

It is straightforward to verify that µs = B(µe|d(s)) for all s and that d is Homoge-

neous, Convex, and Idempotent.

Conversely, suppose µ has a Signal Distortion Representation with Homogeneous,

Convex, and Idempotent d. Define a binary relation ∼ on S by s ∼ t if and only

if d(s) ≈ d(t). Clearly, ∼ is an equivalence relation; thus, its equivalence classes

partition S. Homogeneity and Convexity of d ensure each equivalence class is a

convex cone. Thus, as in the proof of Theorem 1, each equivalence class is associated

with a convex subset of ∆, and these subsets form a partition P of ∆. For each cell

P ∈ P , let µP := B(µe|d(s)) such that s belongs to the equivalence class associated

with P . By Idempotency, µP ∈ P .

Theorem 2 establishes the sought-after equivalence between Coarse Bayesian and

Signal Distortion Representations. Thus, any updating rule satisfying Homogeneity,

Convexity, and Confirmation has such a Signal Distortion Representation, and the

distortion d is unique up to scalar transformation.
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3 Models, Evidence, and Implications

Coarse Bayesian updating is related to a number of other theories of non-Bayesian

updating, and accommodates a variety of experimental findings. In this section, I

examine these relationships and explore some of the main implications of Coarse

Bayesian updating.

3.1 Bias, Asymmetry, and Perception

1. Asymmetric Updating. Conservative updating, or under-reaction to information,

is a well-documented behavior violating Bayes’ rule.5 On the other hand, many in-

dividuals also overreact to information in various settings. For example, the concept

of base-rate neglect introduced and identified by Kahneman and Tversky (1973) ex-

hibits a form of overreaction where individuals over-weight information relative to

their priors. Rather than always under-reacting or always overreacting, individuals

may respond asymmetrically to information. Eil and Rao (2011), for example, find

that when information concerns personal attributes such as attractiveness, individu-

als under-react to negative signals but are approximately Bayesian when processing

positive signals.

For a Coarse Bayesian, responsiveness to information depends on the set of feasible

beliefs, their positions within their cells, and the “strength” of the observed signal.

Thus, although under- and over-reaction are rather opposite phenomena, a Coarse

Bayesian typically exhibits both behaviors: he under-reacts to some signals, but over-

reacts to others. If, for example, the cell P containing the prior µe is not a singleton,

then the agent will not update his beliefs for signals that yield Bayesian posteriors

in P—an under-reaction to new information. However, signals that do result in

belief revision typically yield posterior beliefs that do not coincide with the Bayesian

posterior, often resulting in over-reaction.

Naturally, the concepts of over- and under-reaction make the most intuitive sense

in two-state settings, where the probability simplex ∆ can be represented by the unit

interval. Figures 4a and 4b illustrate under- and over-reaction in such a setting. In

4a, the agent never over-reacts but typically under-reacts: his posterior belief is as

5See Phillips and Edwards (1966) and Edwards (1968) for early experiments on conservative
updating.
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µe

(a) Under-reaction

µe

(b) Overreaction

µe

(c) Upward Bias

µe

(d) A “Typical” Coarse Bayesian

Figure 4: Four Coarse Bayesian Representations on ∆ = [0, 1].

close as possible to µe given the partition of ∆ into sub-intervals, resulting in con-

servative updating. In 4b, the agent never under-reacts but typically over-reacts: his

posterior is farthest away from µe given the partition, resulting in a form of base-rate

neglect. Figure 4c exhibits a biased agent who favors one state: posteriors typically

assign higher probability to state 1 compared to the Bayesian posterior, but never

less. Thus, it is relatively easy for this agent to revise his beliefs upward, but rel-

atively difficult to revise them downward. This captures, for example, “motivated”

reasoning where agents may place intrinsic value on their beliefs. Finally, Figure 4d

depicts a “typical” Coarse Bayesian: representative points do not necessarily sit on

the boundaries of cells, and therefore both over- and under-reaction occur.

2. Limited Perception and Extreme-Belief Aversion. Coarse Bayesian representations

can also capture an agent’s limited perception or attention. For example, consider

Figure 5a. In this representation, the agent retains his prior µe unless the Bayesian

posterior is sufficiently far away from µe, in which case he applies Bayes’ rule. This

captures the behavior of an agent who only notices signals that are sufficiently strong

or provocative to yield a large shift in the Bayesian posterior (the associated Signal

Distortion representation may be a more natural way of expressing and interpreting

such behavior).6

Figure 5b exhibits rather the opposite behavior: the agent is Bayesian unless pos-

terior beliefs are too “extreme”—that is, close to degenerate distributions representing

6The representation in Figure 5a need not be optimal in any sense, although one could endogenize
it fairly easily. For example, one could introduce costs to shrinking the radius around the prior. Then,
in a similar spirit to Brunnermeier and Parker (2005), such costs could be weighed against payoffs
in a subsequent decision problem to yield an optimal representation. This would provide a different
approach to rational inattention and/or costly information processing.
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µe

(a) Limited Perception

µe

(b) Extreme-Belief Aversion

Figure 5: Limited Perception and Extreme-Belief Aversion.

certainty about the state. Ducharme (1970) argues that such behavior may explain

some of the experimental evidence on under-reaction (see also Benjamin et al. (2016),

who introduce the term “extreme-belief aversion”). Indeed, a Coarse Bayesian em-

ploying the representation in Figure 5b would effectively under-react to signals that

strongly support a particular state.

3. Logical Fallacies. Coarse Bayesian updating can give rise to—or make agents

susceptible to—various logical or rhetorical fallacies that are common in real life.

First, agents who consider only a small set of competing theories may perceive false

dilemmas: they overlook plausible alternative explanations for the data, typically

narrowing the options down to two alternatives. Political polarization, for example,

is consistent with such behavior: in highly polarized environments, people may be

quick to sort others into a small number of categories (eg, party affiliation) based on

limited, noisy information about their views.

More generally, coarseness can lead to faulty generalizations: the partition rep-

resents the agent’s tendency to falsely extrapolate, resulting in posteriors that need

not be strongly supported by the evidence. This tendency to “jump to conclusions”

can make agents susceptible to slippery-slope arguments.

Finally, Coarse Bayesian agents may be susceptible to “straw man” arguments:

by providing evidence that refutes some particular theory, the agent may believe

other theories are refuted as well. For example, suppose an agent’s prior places high

probability on state 1, and that a signal strongly refutes state 2 but not state 1. If δ2

and µe are in the same cell, then the agent may end up rejecting his prior even though

the signal does not strongly conflict with state 1. By refuting the “straw man” theory

(δ2), the signal has caused the agent to abandon a theory that did not conflict with

17



the evidence.

3.2 Paradigm Shifts and Maximum-Likelihood Updating

For a Coarse Bayesian, the act of updating beliefs may resemble a “paradigm shift.” If,

for example, different feasible beliefs µP represent competing models or theories, then

the act of revising beliefs may involve a dramatic shift in how the agent understands

the world. In this interpretation, the partition P captures the agent’s tolerance for

conflicting evidence. Data that approximately support a theory µP do not cause

paradigm shifts—such data yield Bayesian posteriors in cell P and, as such, are

within the agent’s subjective “margin of error.” But data that strongly conflict with

µP cause the agent to abandon theory µP in favor of some other µP
′
.

Ortoleva (2012) proposes a Hypothesis-Testing (HT) model of belief updating.

Under HT, an agent holds a subjective prior and applies Bayes’ rule if the observed

evidence is sufficiently likely under the prior (that is, above some threshold ε > 0,

a subjective characteristic of the individual). For evidence that is “unexpected”

(likelihood less than ε), the agent updates beliefs by applying a maximum-likelihood

criterion to a second-order prior. In particular, the agent applies Bayes’ rule to the

second-order prior, then adopts as posterior a belief that has maximal probability

under the new second-order distribution.

Coarse Bayesian updating accommodates similar behavior. For example, consider

Figure 6. In this representation, the agent’s prior places relatively high probability

on a particular state. For signals that do not strongly conflict with that state, the

agent applies Bayes’ rule (each point in the shaded region is a cell of the partition).

For other signals, however, the agent reacts in a non-Bayesian way. Thus, unexpected

news yields non-Bayesian reactions, or paradigm shifts.7

As described above, Coarse Bayesian updating accommodates a fairly general

notion of paradigm shifts where agents employ subjective tolerances for switching

among competing theories. Under this interpretation, it is natural to wonder if the

updating procedure can be reformulated in terms of second-order beliefs. Can a

Coarse Bayesian agent be re-expressed as one who applies Bayes’ rule to a second-

order prior? To answer this question, I begin by extending the maximum-likelihood

7As Weinstein (2017) explains, the HT model allows essentially any updating to occur for unex-
pected news (ie, likelihood less than ε). As we shall see, extending maximum-likelihood updating
procedures to the domain of noisy signals does rule out some updating behavior.
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µe

Figure 6: An agent who is Bayesian provided the signal is not too “surprising.”

component of the HT model to the domain of noisy signals.

Definition 3. A Homogeneous, Convex updating rule µ has a Maximum-Likelihood

(ML) Representation if there exists a probability distribution Γ over ∆ (with den-

sity γ) such that

µs ∈ argmax
µ̂∈∆

γ(µ̂)µ̂ · s

for all s ∈ S. The function L : ∆ × S → R given by L(µ̂|s) = γ(µ̂)µ̂ · s is the

likelihood function.

In a Maximum-Likelihood Representation, the agent has a second-order prior Γ

that he updates (via Bayes’ rule) upon arrival of signal s. Then, he selects a belief that

has maximal probability under the new second-order distribution. This procedure

selects among beliefs µ̂ that maximize the likelihood function at s.8 Intuitively, ML

updating captures the behavior of an agent who assigns prior degrees of confidence

to competing theories, updates these values in a Bayesian fashion, and then selects

the most-likely theory given available information.9

Proposition 1.

(i) Not every Maximum-Likelihood rule can be expressed as a Coarse Bayesian rule.

(ii) Not every Coarse Bayesian rule can be expressed as a Maximum-Likelihood rule.

8Notice that L is homogeneous (of degree 0) and convex in s. The restriction to homogeneous,
convex updating rules, therefore, only takes effect when there are ties—multiple candidate beliefs
that maximize L.

9There are other ways of reducing a second-order belief to a first-order belief. For example, one
might use the second-order distribution to compute an average belief. However, such a procedure is
continuous in s while Coarse Bayesian updating, in general, exhibits discontinuities in s.
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(iii) If N = 2, then every Coarse Bayesian rule is a Maximum-Likelihood rule.

(iv) Bayesian updating is a special case of both Coarse Bayesian and Maximum-

Likelihood updating. To express Bayesian updating as a Maximum-Likelihood

rule, take

γ(µ̂) ∝
∥∥∥∥ µ̂√

µe

∥∥∥∥−1

(2)

where
√
µe := (

√
µeω)ω∈Ω.

Proposition 1 establishes that neither updating procedure subsumes the other—

there exist updating rules that have Coarse Bayesian Representations but not ML

Representations, and there exist updating rules that have ML Representations but

not Coarse Bayesian Representations. These claims are demonstrated by Examples

1 and 2 below. Part (iii) establishes an important special case: if there are only

two states, then every Coarse Bayesian rule can be expressed as a ML rule. Part

(iv) asserts that standard Bayesian updating is a special case of both models. It is

easy to see how Coarse Bayesian updating accommodates Bayesian updating—simply

make each point of ∆ a singleton cell. For proof that formula (2) generates Bayesian

updating in the associated ML Representation, see the appendix.

Example 1. Not every ML rule can be expressed as a Coarse Bayesian rule. Suppose

|Ω| = 2 and consider the distribution γ such that γ(µ1) = 3/4 and γ(µ2) = 1/4,

where µ1 = (1/3, 2/3) and µ2 = (3/4, 1/4). Observe that L(µ1|e) = γ(µ1)µ1 · e =

γ(µ1) > γ(µ2) = γ(µ2)µ2 · e = L(µ2|e); thus, µe = µ1. It is easy to verify that

B(µe|s) = µ2 if and only if s1/s2 = 6. Therefore, to be consistent with a Coarse

Bayesian updating rule, we must have L(µ2|s) ≥ L(µ1|s) whenever s1/s2 = 6. Take

s = (1, 1/6). Then L(µ2|s) = 19/96 < 19/72 = L(µ1|s), so that the ML rule selects

µ1 at s. This means the rule is not Confirmatory, and therefore is inconsistent with

Coarse Bayesian updating.

Example 2. Not every Coarse Bayesian rule can be expressed as a ML rule. Suppose

|Ω| = 3 and consider a Coarse Bayesian representation where P has two cells, P and

P ′, with µP = µe and µP
′

= µ′ 6= µe. The boundary between P and P ′ corresponds

to a hyperplane, H, in S. We will choose H (hence, P) in such a way that no

distribution γ on ∆ (with support {µe, µ′}) can generate the same updating behavior
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as 〈P , (µP )P∈P〉 under the ML procedure.

Observe that if γ generates the same updating behavior, then L(µe|s) = L(µ′|s)
for all s ∈ H. In particular, [γ(µe)µe − γ(µ′)µ′] · s = 0 for all s ∈ H. Thus, the line

{λ[µe + µ′] − µ′ : λ ≥ 0} is orthogonal to the hyperplane H. Since µe 6= µ′, we may

assume H strictly separates µe and µ′. Thus, we may perturb the hyperplane H to

ensure it is not orthogonal to the line. Consequently, the resulting Coarse Bayesian

Representation cannot be represented by any ML rule.

As demonstrated in Example 1 above, ML updating rules are not guaranteed to

satisfy the Confirmation property and, therefore, may be incompatible with Coarse

Bayesian updating. I show in appendix B that the categorical-thinking model of

Mullainathan (2002) also violates Confirmation in some cases, and for a similar rea-

son. Rather than employing a second-order prior γ to compute likelihoods and select

posteriors, Mullainathan’s model uses a particular formula to calculate “base rates”

for candidate beliefs. Thus, the categorical-thinking model is similar in spirit to a

ML procedure, and the particular functional form employed can produce violations

of Confirmation.

3.3 Dynamics

This section examines some basic dynamic properties of Coarse Bayesian updating.

Suppose an agent observes a sequence of signals ~s = (s1, . . . , sn), where st is the signal

generated in period t. How do properties of ~s affect the agent’s final belief?

For standard Bayesians, the answer is quite simple: signals can be pooled and or-

dered in any fashion without impacting final beliefs. For example, consider a sequence

~s = (s1, s2, s3). The terminal Bayesian belief is B(µe|s1s2s3) regardless of whether

the signals are arranged in a different order (eg. (s2, s1, s3)), pooled differently (eg.

(s1, s2s3)), or both.10

For Coarse Bayesians, the answer is more nuanced. For example, whether an agent

employs a Coarse Bayesian Representation 〈P , µP〉 or its associated Signal Distortion

Representation d(·) affects the types of history-dependence satisfied by the updating

procedure. In addition, the behavior of an agent who incorporates the full history of

signal realizations into current beliefs differs from one who performs signal-by-signal

10See Cripps (2018) for a general analysis of updating rules that are invariant to how an agent
partitions histories of signals.
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updating. For simplicity, I focus on “memoryless” agents who perform signal-by-

signal updating.

Some additional terminology and notation is needed to proceed. A signal s is

interior if sω > 0 for all ω ∈ Ω. A dynamic updating rule associates a belief

µ(s1,...,sn) to every finite history (s1, . . . , sn) of interior signals. Interpreting a signal

s as a history of length 1, a dynamic updating rule clearly gives rise to an updating

rule with prior µe (full support).

Definition 4. A dynamic updating rule µ is:

(i) A Dynamic Coarse Bayesian updating rule if there is a Coarse Bayesian

Representation 〈P , µP〉 for histories of length 1 such that, for every history

(s1, . . . , sn) of length n ≥ 2, µ(s1,...,sn) = µP where B(µ(s1,...,sn−1)|sn) ∈ P ∈ P .

(ii) A Dynamic Signal Distortion rule if there is a (Homogeneous, Convex, Idem-

potent) Signal Distortion Representation d(·) for histories of length 1 such that,

for every history (s1, . . . , sn) of length n ≥ 2, µ(s1,...,sn) = B(µ(s1,...,sn−1)|d(sn)).

(iii) A Dynamic Bayesian updating rule if, for all histories (s1, . . . , sn) of length

n ≥ 1, µ(s1,...,sn) = B(µe|s1s2 . . . sn).

A Dynamic Coarse Bayesian updating rule employs a fixed Coarse Bayesian Rep-

resentation to perform signal-by-signal updating. Starting with prior µe, the agent

applies 〈P , µP〉 to yield some posterior µs
1

after observing s1. Then, treating µs
1

as

the prior, the agent applies the same representation 〈P , µP〉 to reach posterior µ(s1,s2)

after observing s2, and so on. Thus, the agent applies the same Coarse Bayesian

Representation while processing signals one at a time, treating the current belief as

the prior. A Dynamic Signal Distortion rule follows a similar procedure, substituting

d(·) for 〈P , µP〉. Finally, a Dynamic Bayesian updating rule applies Bayes’ rule to

history (s1, . . . , sn) by updating prior µe with the pooled signal s1 . . . sn. As shown

in Proposition 2 below, this is equivalent to applying Bayes’ rule in a signal-by-signal

fashion.

Definition 5. A dynamic updating rule µ is:

(i) Invariant to signal ordering if µ~s = µπ(~s) for all histories ~s and permutations

π(~s) of ~s.
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(ii) Invariant to signal pooling if, for all histories ~s = (s1, . . . , sn) of length n ≥ 2

and all k < n, µ~s = µ(s1,...,sk−1,sksk+1,sk+2,...,sn).

Definition 5 formalizes two different notions of history independence. If a dynamic

updating rule is invariant to signal ordering, then any history ~s can be reordered

without affecting the final belief.11 Invariance to signal pooling, by contrast, requires

that any signal in a history can be pooled with its successor without affecting the

final belief. Clearly, invariance to signal pooling implies invariance to signal ordering.

However, as demonstrated by the next proposition, the converse implication does not

hold.

Proposition 2. Let µe have full support. Then:

(i) The Dynamic Bayesian updating rule is invariant to signal ordering and pooling.

(ii) Dynamic Signal Distortion updating rules are invariant to signal ordering but

not necessarily to signal pooling.

(iii) Dynamic Coarse Bayesian updating rules need not be invariant to signal ordering

nor to signal pooling.

Proof. First, consider a Dynamic Signal Distortion rule µ. Observe that for every

signal r, µr = B(µe|d(r)) ≈ d(r)µe. It follows immediately that µ(s,t) ≈ d(t)d(s)µe ≈
µ(t,s), so that µ is invariant to signal orderings. However, by the same logic, µst ≈
d(st)µe; as shown in Example 3 below, this allows for the possibility that some

Dynamic Signal Distortion rules need not be invariant to signal pooling. For (i),

note that the Dynamic Bayesian updating rule is a special case of a Dynamic Sig-

nal Distortion rule with distortion function dB given by dB(r) = r for all r. Thus,

dB(st) = dB(s)dB(t), so that the Dynamic Bayesian updating rule is invariant to

both signal orderings and signal merging. For (iii), see Example 4 and Proposition 3

below.

Proposition 2 summarizes the ways in which Dynamic Coarse Bayesian and Signal

Distortion rules may exhibit history (in)dependence. Notably, the dynamic setting

11Rabin and Schrag (1999) analyze a model of history-dependent updating where, at each time
period, information is distorted to support the agent’s current belief. Such a procedure would not
be invariant to signal ordering.

23



introduces a wedge between Coarse Bayesian and Signal Distortion rules: Signal

Distortion rules are always invariant to signal ordering, but Coarse Bayesian rules

typically are not. Both rules, however, are typically not invariant to signal pooling.

Example 3. Dynamic Signal Distortion rules need not be invariant to signal pooling.

For example, consider a model with two states and distortion function

d(s) =

(1/5, 4/5) if s2
s1
≥ 2

e else
.

It is easy to verify that d is Homogeneous, Convex, and Idempotent. Let s =

(1/5, 4/5) and t = (3/4, 1/4). Then st = (3/20, 4/20), d(st) = e, d(s) = (1/5, 4/5),

and d(t) = e; thus, d(s)d(t) = (1/5, 4/5) 6= e = d(st), so that µ(s,t) 6= µst.

Example 4. Some (non-Bayesian) Dynamic Coarse Bayesian updating rules are in-

variant to signal ordering. For example, if P consists of a single cell (namely, {∆}),
then µs = µe for all s ∈ S. Less trivially, suppose N = 2 (so that ∆ may be rep-

resented by the interval [0, 1]) and consider P = {[0, 1), {1}} with µ[0,1) = 1/2 and

µ{1} = 1. It is straightforward to verify that this representation induces invariance to

signal ordering.

Example 4 shows that there are cases where Dynamic Coarse Bayesian updating

rules are invariant to signal ordering. However, there are many scenarios where

they are not. The next proposition highlights a simple class of Coarse Bayesian

Representations that result in such path-dependence.

A Coarse Bayesian Representation 〈P , µP〉 is regular if, for every P ∈ P , there

is an open neighborhood O ⊆ ∆0 such that µP ∈ O ⊆ P .

Proposition 3. If 〈P , µP〉 is regular and P has at least two cells, then the associated

Dynamic Coarse Bayesian updating rule is not invariant to signal ordering.

Proof. Let P ∈ P be a cell containing δ1, where δ1 ∈ ∆ assigns probability one to

state ω1. Let r be any signal such that rµe ≈ µP . Choose any P ′ ∈ P such that

µP 6= µP
′
. By regularity, µP and µP

′
have full support. Thus, there is a signal s such

that sµP ≈ µP
′
. It follows that µr = µP and µ(r,s) = µP

′
. Let t be a signal such
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that t1 = 1 and tω = ε for all ω 6= 1. By regularity, and the fact that δ1 ∈ P , there

is an ε (sufficiently small) such that both B(µP |t) ∈ P and B(µP
′|t) ∈ P . Thus,

µ(r,s,t) = µP . However, µ(r,t,s) = µP
′

because µ(r,t) = µP and B(µP |s) = µP
′
. Thus,

the updating rule is not invariant to signal ordering.

4 Application: The Value of Information

Assessing the value of information is a fundamental part of decision making in many

economic models. The classic characterization of Blackwell (1951) develops an infor-

mativeness ordering where one information structure is more informative than another

if and only if it grants a Bayesian agent higher expected utility in all decision prob-

lems. In this section, I study the value of information for Coarse Bayesians, including

its relationship to the Bayesian value of information, the Blackwell ordering, and a

notion of cognitive sophistication.

Throughout this section, suppose µ is an updating rule with Coarse Bayesian

Representation 〈P , µP〉. Let A denote the set of all nonempty, compact subsets of

RΩ. Each A ∈ A is a menu, and elements x = (xω)ω∈Ω ∈ A represent feasible

actions the agent may take. An agent who chooses action x ∈ A attains payoff xω

in state ω. For each A ∈ A and s ∈ S, let cs(A) := argmaxx∈A x · µs; these are the

actions in A that maximize expected utility under beliefs µs.

Definition 6. Let A ∈ A.

(i) The value of information at A is given by the function V A : E → R where

V A(σ) := max
∑
ω

µeω
∑
s∈σ

sωx
s
ω subject to xs ∈ cs(A) (3)

for all σ ∈ E .

(ii) The Bayesian value of information at A is given by the function V
A

: E → R
where

V
A

(σ) := max
∑
ω

µeω
∑
s∈σ

sωx
s
ω subject to xs ∈ argmax

x∈A
x · sµ

e

s · µe
(4)

for all σ ∈ E .
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Equation (3) expresses ex-ante expected utility for a Coarse Bayesian agent. Faced

with a menu A and experiment σ, the agent calculates expected utility by apply-

ing weight µeω to the average payoff in state ω given that signals—and subsequent

choices—are generated by σ. Consistent with the Cognizance assumption, the agent

correctly forecasts his own signal-contingent beliefs and, hence, signal-contingent

choices. Equation (4) expresses a similar formula for an agent with the same prior µe

and who applies Bayes’ rule: signal-contingent choices maximize expected utility at

beliefs B(µe|s) instead of beliefs µs.

It will be convenient to express V A in a slightly different form. For any µ̂ ∈ ∆

and A ∈ A, let

cµ̂(A) := argmax
x∈A

x · µP subject to µ̂ ∈ P (5)

and

vA(µ̂) := max
x∈cµ̂(A)

x · µ̂. (6)

Intuitively, cµ̂(A) consists of the actions in A that maximize expected utility for the

Coarse Bayesian if the Bayesian posterior is µ̂ because the agent replaces µ̂ with µP

if µ̂ ∈ P . Similarly, vA(µ̂) represents expected utility conditional on the Bayesian

posterior being µ̂. These mappings are well-defined because P partitions ∆ and each

cell P ∈ P has a unique representative µP . For a standard Bayesian, analogous

mappings are given by

cµ̂(A) := argmax
x∈A

x · µ̂ and vA(µ̂) := max
x∈cµ̂(A)

x · µ̂.

If σ ∈ E and µ̂ ∈ ∆, let τσ(µ̂) :=
∑

s∈σ:B(µe|s)=µ̂ s · µe; this is the total probability

of generating Bayesian posterior µ̂ under information σ and prior µe. That is, given

µe, σ generates a distribution of Bayesian posteriors where τσ(µ̂) is the probability

of posterior µ̂.

Proposition 4. For all A ∈ A and σ ∈ E, V A(σ) =
∑

µ̂∈∆ τ
σ(µ̂)vA(µ̂).

Proof. First, observe that (3) can be rewritten as

V A(σ) = max
∑
s∈σ

(sµe) · xs subject to xs ∈ cs(A).
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It follows that

V A(σ) = max
∑
s∈σ

(s · µe) sµ
e

s · µe
· xs subject to xs ∈ cs(A)

= max
∑
s∈σ

(s · µe)B(µe|s) · xs subject to xs ∈ cs(A)

=
∑
µ̂∈∆

τσ(µ̂)vA(µ̂),

as desired.

Proposition 4 establishes that V A can be written in posterior-separable form. In

particular, it is as if the agent associates value vA(µ̂) to Bayesian posteriors µ̂, so that

the distribution of Bayesian posteriors can be used to calculate expected utility. An

immediate implication is that the techniques of Kamenica and Gentzkow (2011), for

example, can be applied with Coarse Bayesian agents.

Intuitively, Proposition 4 holds because a Coarse Bayesian updating rule is a

function of the Bayesian posterior: if one knows which Bayesian posterior has realized,

then one knows which belief the Coarse Bayesian adopts. This is the fundamental

assumption of de Clippel and Zhang (2019), who study persuasion with non-Bayesian

agents. A similar argument also appears in Galperti (2019).

Proposition 5. Coarse Bayesians have a lower value of information than Bayesians:

for every A ∈ A and σ ∈ E, V A(σ) ≤ V
A

(σ).

Proof. Observe that V
A

can be expressed in posterior-separable form by replacing vA

with vA. Moreover, vA(µ̂) ≥ vA(µ̂) for all A ∈ A and µ̂ ∈ ∆ because cµ̂(A) ⊆ A.

Thus, V
A

(σ) =
∑

µ̂∈∆ τ
σ(µ̂)vA(µ̂) ≥

∑
µ̂∈∆ τ

σ(µ̂)vA(µ̂) = V A(σ).

Proposition 5 states that, compared to Bayesians, Coarse Bayesians experience

lower ex-ante expected utility for all combinations of menu and experiment. Intu-

itively, this is driven by the fact that Coarse Bayesian agents tend to make sub-

optimal decisions conditional on available information. As illustrated in Figure 7,

this implies vA(µ̂) ≤ vA(µ̂) for all µ̂, making V A(σ) ≤ V
A

(σ) for all σ.

The next set of results examines whether and when Coarse Bayesians benefit from

improvements to information. For experiments σ, σ′, the relation σ w σ′ indicates that

σ is more informative than σ′ in the sense of Blackwell (1951). This is a partial order
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x · µ̂

y · µ̂

z · µ̂

µ̂

(a) vA(µ̂)

x · µ̂

y · µ̂

z · µ̂

µ̂
µP µP

′
µP
′′

(b) vA(µ̂)

Figure 7: Bayesian vs. Coarse Bayesian value of information for A = {x, y, z}.

on E . An experiment σ′ is a garbling of σ if there is a stochastic matrix M such

that σ′ = σM . As is well-known, σ w σ′ if and only if σ′ is a garbling of σ.

The function V A satisfies the Blackwell ordering if σ w σ′ implies V A(σ) ≥
V A(σ′); if there exists σ w σ′ such that V A(σ) < V A(σ′), then V A violates the

Blackwell ordering. An important part of Blackwell’s characterization is that a

Bayesian agent’s value of information (that is, V
A

) satisfies the Blackwell ordering in

all menus A—in fact, σ w σ′ if and only if V
A

(σ) ≥ V
A

(σ′) for all A ∈ A. For Coarse

Bayesians, this is not the case.

For every menu A and signal s, let bs(A) ⊆ A denote the Bayesian-optimal actions

in A conditional on s. That is, bs(A) := {x ∈ A : x · sµe
s·µe ≥ y · sµe

s·µe ∀y ∈ X}. Let

c(A) =
⋃
s∈S c

s(A) and b(A) =
⋃
s∈S b

s(A). Thus, c(A) is the set of actions in A that

are chosen by the Coarse Bayesian, while b(A) is the set of actions chosen by the

Bayesian. Observe that c(A) ⊆ b(A).

Let ∆0 denote the interior of ∆. For each P ∈ P , endow P with the subspace

topology of RΩ and let ∂P denote the boundary of P .12

Proposition 6. Let A ∈ A.

(i) If cs(A) ∩ bs(c(A)) 6= ∅ for all s, then V A satisfies the Blackwell ordering.

(ii) If there is a cell P ∈ P and a point µ∗ ∈ ∂P ∩∆0 such that µ∗ 6= µP , then V A

violates the Blackwell ordering.

12More precisely, endow RΩ with the standard Euclidean topology. A set Z ⊆ P is open in the
subspace topology on P if and only if there is an open set O ⊆ RΩ such that Z = O ∩ P .
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Part (i) of Proposition 6 provides a sufficient and almost-necessary condition for

the agent’s value of information at A to satisfy the Blackwell information ordering.

The condition states that, for every s, Coarse Bayesian choices overlap with Bayesian

choices from the restricted menu c(A) ⊆ A. In other words, the condition states

that if one restricts attention to actions in A that are chosen by the Coarse Bayesian

for at least one signal realization, then Coarse Bayesian choices must be Bayesian

optimal at all signal realizations. Statement (ii) provides a partial converse to (i).

The condition in (ii) is satisfied by most Coarse Bayesian representations that violate

(i). For example, any representation that is regular (as defined in section 3.3) but

violates (i) will satisfy (ii). In fact, every Coarse Bayesian representation depicted

in this paper satisfies (ii) for some A and, thus, would generate violations of the

Blackwell ordering.

The final results examine how an agent’s value of information vary with the fol-

lowing notion of cognitive sophistication:

Definition 7. Let µ and
•

µ be updating rules with full-support priors µe =
•

µe and

Coarse Bayesian Representations 〈P , µP〉 and 〈Q, •

µQ〉, respectively. Then
•

µ is more

sophisticated than µ if µP ⊆ •

µQ and every member of P is a union of members of

Q.

Definition 7 states that a Coarse Bayesian is more sophisticated if he employs both

a larger set of feasible beliefs and a finer partition. Such an agent is “more Bayesian”

because his updating rule better approximates the standard Bayesian updating rule.

Given a Coarse Bayesian representation 〈P , µP〉, a menu A is µP-decisive if cs(A)

is a singleton for all s ∈ S; that is, no µP makes the agent indifferent between two or

more options in A.

Proposition 7. Suppose 〈P , µP〉 and 〈Q, •

µQ〉 are regular Coarse Bayesian Represen-

tations of µ and
•

µ, respectively, and that µe =
•

µe. The following are equivalent:

(i) 〈Q, •

µQ〉 is more sophisticated than 〈P , µP〉.

(ii) If
•

V A(σ) =
•

V A(σ′) for all
•

µQ-decisive menus A, then V A(σ) = V A(σ′) for all
•

µQ-decisive menus A.

This result states that for regular Coarse Bayesians, greater sophistication means
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higher responsiveness to information: as sophistication increases, fewer pairs σ, σ′

yield identical ex-ante expected utility for (almost) all menus A. The proof of Propo-

sition 7 shows that the characterization holds even if one restricts attention to experi-

ments σ, σ′ that are Blackwell comparable. Thus, higher sophistication means greater

responsiveness to improvements to information.

Does a more sophisticated agent always benefit from more information, or enjoy

a higher value of information than a less sophisticated agent? In general, the answer

to each question is negative. Nonetheless, there are simple conditions under which

these intuitive relationships hold. For every A ∈ A and x ∈ A, let BA,x := {µ̂ ∈ ∆ :

x · µ̂ ≥ y · µ̂ ∀y ∈ A}; these are posterior beliefs that make x an optimal action in A.

Let BA := {BA,x : x ∈ A}.

Proposition 8. Suppose µ and
•

µ are updating rules with Coarse Bayesian Represen-

tations 〈P , µP〉 and 〈Q, •

µQ〉 and that
•

µ is more sophisticated than µ. Let A ∈ A.

(i) If for every
•

µQ ∈ •

µQ\µP there is a set B ∈ BA such that Q ⊆ B, then
•

V A(σ) ≥
V A(σ) for all σ ∈ E.

(ii) If V A satisfies the Blackwell ordering and c(A) = b(A), then
•

V A satisfies the

Blackwell ordering.

Proof. For (i), the the stated hypotheses imply
•

vA(µ̂) ≥ vA(µ̂) for all µ̂ because

there is a larger set of Bayesian posteriors where
•

cµ̂(A) is Bayesian optimal. For (ii),

the hypotheses imply vA = vA. Then, since Q is finer than P , we will also have
•

vA = vA.

Proposition 8 provides simple conditions under which greater sophistication leads

to better decision making (hence, higher ex-ante value of information) and greater

adherence to the Blackwell ordering. In general, a more sophisticated agent is not

guaranteed to have a higher value of information or to adhere to the Blackwell order-

ing whenever a less-sophisticated agent does. Intuitively, a finer partition improves

decisions at some signal realizations, but may worsen them at others. Whether this

occurs depends on the menu under consideration, and the condition in part (i) ensures

that the finer partition does not introduce any new points of “disagreement” with a

Bayesian decision maker, thus increasing the value of information. The condition in

(ii) ensures that a finer partition does not introduce any new choices from A. In
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particular, c(A) = b(A) implies that every Bayesian-optimal action in A is chosen by

the less-sophisticated Coarse Bayesian. This way, no new disagreement is generated

by introducing a finer partition.

5 Conclusion

In this paper, I have introduced a new model of non-Bayesian updating, Coarse

Bayesian updating, accommodating many documented types of behavior that are

incompatible with standard Bayesian updating. Three testable and normatively ap-

pealing assumptions—Homogeneity, Cognizance, and Confirmation—characterize the

updating procedure, the parameters of which are a partition of the probability simplex

and a representative belief for each cell of the partition. A Coarse Bayesian agent

can be interpreted as one who applies subjective criteria to select among compet-

ing theories, selectively distorts signals before applying Bayes’ rule, or who engages

in categorical thinking. I have analyzed how the model relates to existing models

and evidence on non-Bayesian updating, and examined its implications in dynamic

settings as well as in standard settings of decision under risk.

An advantage of my framework is that it employs standard primitives that fre-

quently appear in applications. The use of noisy signals over an exogenous state

space, for example, allows one to directly import Coarse Bayesian updating into fa-

miliar settings in economics and game theory. Exploring the implications of Coarse

Bayesian updating in such settings may be a fruitful avenue for future research.

A Omitted Proofs

A.1 Proof of Proposition 1

Proof of part (iii). If every cell of 〈P , µP〉 is a singleton, then the agent is Bayesian

and the ML representation is established independently by the proof of part (iv)

below. So, let P ∗ ∈ P be a non-singleton cell. Let I denote the set of all Coarse

Bayesian representations i = 〈Q(i),
•

µQ(i)〉 such that Q(i) is finite, P is finer than

Q(i),
•

µQ(i) ⊆ µP , and P ∗ ∈ Q(i). Define a partial order ≥I on I by i ≥I i′ if and only

if Q(i) is finer than Q(i′) and
•

µQ(i) ⊇ •

µQ(i′) (that is, i is more sophisticated than i′

in the sense of Definition 7). It is straightforward to verify that ≥I is a partial order
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and that for all i, i′ ∈ I, there exists i∗ ∈ I such that i∗ ≥I i and i∗ ≥I i′. Thus,

(I,≥I) is a directed set.

For each 〈Q, •

µQ〉 ∈ I, define a function γ : ∆→ [0,∞) as follows. SinceN = 2, the

(finite) set
•

µQ can be arranged in decreasing order of state 1:
•

µQ = { •

µQ1 , . . . ,
•

µQM},
where

•

µQ1

1 >
•

µQ2

1 > . . . >
•

µQM1 . Since P ∗ ∈ Q, there exists m∗ such that
•

µQm∗ = µP
∗
.

For 1 ≤ m < M , let
•

µm denote the (unique) belief belonging to ∂Qm ∩ ∂Qm+1 and

choose a signal sm such that B(µe|sm) =
•

µm. Now choose scalars αm > 0 such that,

for all 1 ≤ m < M , αmµ
Qm · sm = αm+1µ

Qm+1 · sm; taking αm∗ = 1 pins down the αm

uniquely. Now define γ by

γ(µ̂) =

αm if µ̂ = µQm

0 otherwise
.

By construction, µQm ∈ argmaxµ̂ γ(µ̂)µ̂ · s (that is, µQm maximizes the likelihood

function associated with γ) if and only if B(µe|s) ∈ Qm. Moreover, every point

γ(µ̂)µ̂, viewed as a point in R2, is contained in the half-space H bounded above

by the line with normal s∗ passing through µP
∗
, where s∗ is any signal such that

B(µe|s∗) = µP
∗
. Thus, there exists a scalar γ > 0 such that γ(µ̂) ∈ [0, γ] for all µ̂.

Observe that the bound γ is independent of i.

Having defined a function γi : ∆→ [0, γ] for every i ∈ I, the family {γi}i∈I forms

a net. Each γi is an element of the (compact) product set [0, γ]∆, so that {γi}i∈I
has a convergent subnet. This means there is a directed set (J,≥J) and a function

ι : J → I such that (a) j ≥J j′ implies ι(j) ≥I ι(j′), (b) for every i ∈ I, there exists

j ∈ J such that ι(j′) ≥I i for all j′ ≥J j, and (c) the net {γι(j)}j∈J converges to some

γ∗. Thus, for every µ̂ ∈ ∆, γι(j)(µ̂) converges to a point γ∗(µ̂).

Let P ∈ P . By definition of (I,≥I) and properties (a) and (b) of (J,≥J), there

exists jP ∈ J such that P ∈ Q(ι(j)) and µP ∈ •

µP(ι(j)) for all j ≥J jP . Suppose s

satisfies B(µe|s) ∈ P . By construction, µP maximizes the likelihood function associ-

ated with γι(j) at s if j ≥J jP : for every µ̂ ∈ ∆, γι(j)(µP )µP · s ≥ γι(j)(µ̂)µ̂ · s. Taking

the limit of both sides with respect to j gives γ∗(µP )µP · s ≥ γ∗(µ̂)µ̂ · s, so that µP

maximizes the likelihood function associated with γ∗ at s.

Proof of part (iv). Notice that B(µe|s) = µ′ if and only if s ≈ µ′/µe := (µ′ω/µ
e
ω)ω∈Ω.

Thus, it will suffice to verify that L(·|s) is maximized at µ′ for such signals s. This is
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done as follows. Let s ∈ S. Then, for any µ̂ ∈ ∆, we have

L(µ̂|s) = γ(µ̂)µ̂ · s

=
µ̂

‖µ̂/
√
µe‖
· s

=
µ̂/
√
µe

‖µ̂/
√
µe‖
· s
√
µe

=

∥∥∥∥ µ̂/
√
µe

‖µ̂/
√
µe‖

∥∥∥∥ ‖s√µe‖ cos θ

= ‖s
√
µe‖ cos θ

where θ is the angle (in radians) between µ̂/
√
µe and s

√
µe. Thus, L(·|s) is maximized

by choosing µ̂ such that µ̂/
√
µe ≈ s

√
µe (because then θ = 0), implying µ̂ ≈ sµe ≈

µ′

µe
µe = µ′.

A.2 Proofs for Section 4

A.2.1 Proof of Proposition 6

For part (i), observe that if cs(A)∩ bs(c(A)) 6= ∅ for all s, then every Coarse Bayesian

choice from A is Bayesian-optimal in the menu A′ = c(A). Since Coarse Bayesian

choices from A are identical to those from A′, it follows that V A(σ) = V A′(σ) =

V
A′

(σ) for all σ. That is, V A coincides with the Bayesian value of information in

some menu, and therefore satisfies the Blackwell ordering.

The remainder of this section proves part (ii). Let S0 := {s ∈ S : sω < 1 ∀ω ∈ Ω}.
For any signal s ∈ S0, let σs := [s, (1− s1)e1, . . . , (1− sN)eN ] ∈ E , where eω ∈ S such

that eωω = 1 and eωω′ = 0 for ω′ 6= ω.

Lemma 1. Let s, t ∈ S0 such that sω ≤ tω for all ω. Then σt is a garbling of σs.

Proof. Since sω ≤ tω for all ω, there exists a vector δ such that t = s+ δ and δω ≥ 0

for all ω. Let αω := δω
1−sω . Notice that αω ∈ [0, 1] because sω < 1 and sω+δω = tω < 1.
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Let

M =



1 0 0 · · · 0

α1 1− α1 0 · · · 0

α2 0 1− α2 · · · 0
...

...
...

. . .
...

αN 0 0 · · · 1− αN


.

Clearly, M is a stochastic matrix. Moreover,

σsM =

[
s+

∑
ω∈Ω

αω(1− sω)eω, (1− α1)(1− s1)e1, . . . , (1− αN)(1− sN)eN

]

=

[
s+

∑
ω∈Ω

δωe
ω, (1− s1 − δ1)e1, . . . , (1− sN − δN)eN

]
=
[
s+ δ, (1− t1)e1, . . . , (1− tN)eN

]
= σt.

Thus, σt is a garbling of σs.

To prove Proposition 6, suppose µ∗ ∈ ∂P ∩∆0 and µ∗ 6= µP . There are two cases.

Case 1: µ∗ /∈ P . There is a hyperplane that strictly separates µP and µ∗. Therefore

there is a menu A = {x, y} such that µP · (x − y) > 0 and µ′ · (y − x) < 0 for all

µ′ sufficiently close to µ∗. Therefore, there exists a sequence of signals sn → s∗ such

that such that B(µe|s∗) = µ∗, B(µe|sn) ∈ P for all n, and B(µe|sn) · (y − x) > 0

for all n. Since µ∗ ∈ ∆0, we have s∗ω > 0 for all ω. Combined with the fact that

B(µe|s̃) = B(µe|λs̃) for all λ > 0 such that λs̃ ∈ S, we may assume that snω ≤ s∗ω < 1

for all n and ω. Thus, there is a sequence of vectors δn → 0 such that s∗ = sn + δn

for all n. Let σn = [sn, λn1e
1, . . . , λnNe

N ] and σ∗ = [s∗, λ∗1e
1, . . . , λ∗Ne

N ] as in Lemma 1.

Then σ∗ is a garbling of σn. Since (snµe) · x→ (s∗µe) · x < (s∗µe) · y, it follows that

limn→∞ V
A(σn) < V A(σ∗). Thus, for large enough n, V A(σn) < V A(σ∗), which is a

reversal of the Blackwell ordering.

Case 2: µ∗ ∈ P . Choose a cell P ′ 6= P as follows. If there exists P ′′ 6= P such that µ∗

belongs to the closure of P ′′, take P ′ = P ′′. Otherwise, there exists P ′′ 6= µ∗ such that

every point on the line connecting µ∗ and µP
′′

is the representative of a (singleton)
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cell. Take P ′ to be any such P ′′. There is a hyperplane strictly separating µP and

L := co{µ∗, µP ′}. Thus, there is a menu A = {x, y} such that µP · (x − y) > 0 and

µ′ · (y − x) > 0 for all µ′ sufficiently close to µ∗, including all µ′ ∈ L. In a similar

fashion to the previous case, this means we can construct a sequence σn → σ∗ where

B(µe|sn) ∈ L, B(µe|s∗) = µ∗, and σn is a garbling of σ∗. The sequence satisfies

limn→∞ V
A(σn) > V A(σ∗), so that V A does not satisfy the Blackwell ordering.

A.2.2 Proof of Proposition 7

For any 〈P , µP〉 and P ∈ P , let SP := {s ∈ S : B(µe|s) ∈ P}. For any σ, let

sP,σ :=
∑

s∈σ∩SP s. Then σ and σ′ are P-equivalent if sP,σ = sP,σ
′

for all P ∈ P .

Lemma 2. Suppose 〈P , µP〉 is regular and let σ, σ′ ∈ E. Then σ and σ′ are P-

equivalent if and only if V A(σ) = V A(σ′) for every µP-decisive menu A.

Proof. Suppose σ and σ′ are P-equivalent. Observe that for every µP-decisive menu

A and experiment σ̂, V A(σ̂) =
∑

P∈P(µesP,σ̂) · cµP (A) because cµ
P

(A) is a singleton

for all P ∈ P . Thus, V A(σ) = V A(σ′) because sP,σ = sP,σ
′

for all P ∈ P .

For the converse, suppose σ and σ′ are not P-equivalent. We construct a µP-

decisive menu A such that V A(σ) 6= V A(σ′). For each P ∈ P , let δP := sP,σ − sP,σ′ .
Since experiments consist of finitely many signals, there are finitely many (but at least

two) cells P such that δP 6= 0. Let µδ := {µP : δP 6= 0} and let µP
∗

be an extreme

point of the convex hull of µδ. Since µδ is finite, µP
∗

can be strictly separated from

the convex hull of µδ\{µP ∗}; that is, there exists x such that x · µP ∗ > 0 > x · µP ′

for all µP
′ ∈ µδ\{µP ∗}. By regularity, we may assume that x is such that the menu

A = {x, 0} is µP-decisive. Then V A(σ)−V A(σ′) =
∑

P∈P(µsδP ) ·cµP (A) = (µeδP
∗
) ·x

because cµ
P

(A) = 0 for all µP ∈ µδ\{µP ∗}. Thus, V A(σ) 6= V A(σ′) provided (µeδP
∗
) ·

x 6= 0. Since the separation is strict (and 〈P , µP〉 is regular), we may perturb x if

necessary to ensure (µeδP
∗
) · x 6= 0.

Proof that (i) implies (ii). Suppose
•

V A(σ) =
•

V A(σ′) for all µQ-decisive A. By Lemma

2, σ and σ′ are Q-equivalent. Since Q is finer than P , it follows that σ and σ′ are

P-equivalent. Since µP ⊆ •

µQ, this implies V A(σ) = V A(σ′) for all
•

µQ-decisive A.

Proof that (ii) implies (i). Let Q ∈ Q and suppose s, t ∈ SQ. Let σ = [s, t, e− s− t]
(if necessary, scale s and t down by a factor λ > 0 to make σ well-defined), and let
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σ′ = [s+ t, e− s− t]. By Convexity, s+ t ∈ SQ and, thus, σ and σ′ are Q-equivalent.

By Lemma 2 and the hypothesis of (ii), this implies σ and σ′ are µP-equivalent. Thus,

there exists P ∈ P such that s, t ∈ SP (otherwise, there are distinct cells P ′, P ′′ ∈ P
such that s ∈ P ′ and t ∈ P ′′; but then σ and σ′ are not P-equivalent, as s+ t belongs

to a single cell). We have shown that any two signals belonging to a common SQ

(Q ∈ Q) belong to a common SP (P ∈ P). Thus, Q is finer than P .

We now verify that for every P ∈ P , there exists Q ∈ Q such that µP =
•

µQ.

Suppose toward a contradiction that µP 6= •

µQ for all Q ∈ Q. Let A = {x, 0} be a
•

µQ-decisive menu such that x · µP = 0 (that is, the agent is indifferent between x

and 0 at beliefs µP ). By regularity, and the fact that Q is finer than P , there exists

Q ∈ Q and s, t ∈ SQ ⊆ SP such that (sµe) · x > 0 > (tµe) · x. Let σ = [s, t, e− s− t]
and σ′ = [s + t, e − s − t] (again, scale s and t down if necessary). Then σ and

σ′ are Q-equivalent. By definition of V A, and by our choice of s and t, we have

V A(σ) = V A(s) + V A(t) + V A(e − s − t) > V A(s + t) + V A(e − s − t) = V A(σ′),

contradicting Q-equivalence of σ and σ′.

B Relationship to Mullainathan (2002)

In a working paper, Mullainathan (2002) develops a model of categorical thinking

sharing several features of Coarse Bayesian updating. In this appendix, I show that

the categorical thinking model (adapted to my framework of states and signals) sat-

isfies Homogeneity and Cognizance but not necessarily Confirmation.

Mullainathan works with a type space T and prior p where p(t) is the prior prob-

ability of type t ∈ T . The analogous components in my model are the state space

Ω and prior µe, where µeω is the prior probability of state ω ∈ Ω. Data d in Mul-

lainathan’s model can be expressed by conditional probabilities p(d|t) indicating the

probability of observing the data given type t; in my model, data corresponds to a

signal realization s, and sω (the probability of observing s in state ω) plays the role

of p(d|t).
A set C of probability distributions over T constitutes a set of “categories.” These

are feasible beliefs that the agent can hold in Mullainathan’s model. Thus, the set

C is analogous to the set {µP : P ∈ P} in my model. For a category c and data

d, p(d|c) is the probability of generating data d in category c; this is analogous to

s · µP , which is the probability of observing signal s if µP is the true probability law.
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Finally, Mullainathan defines p(c) :=
∫
t
p(t)c(t) to be the “base rate” of category c.13

In my model, the analogous rate is µe · µP .

Like Coarse Bayesians, agents in Mullainathan’s model partition the probability

simplex and assign posterior beliefs as a function of the cell containing the Bayesian

posterior. Any set of C of categories (feasible posteriors) is permitted; however,

the partition is pinned down by C and an optimality criterion resembling that of

Maximum-Likelihood rules in section 3.2. In particular, let c∗(d) ∈ C denote the

agent’s posterior after observing data d. Mullainathan requires that

c∗(d) ∈ argmax
c∈C

p(d|c)p(c). (7)

In my framework, the analogous condition is

µs ∈ argmax
µ̂∈Ĉ

(s · µ̂)(µe · µ̂), (8)

where Ĉ ⊆ ∆ is some set of feasible posteriors. This is very similar to maximization

of the likelihood function specified in section 3.2; the main difference is that my

likelihood functions use a second-order belief γ instead of the base rate p(c) proposed

by Mullainathan.

Thus, Mullainathan’s model works by specifying a set C of categories (feasible

posteriors) from which the criterion (7) selects posteriors after observing data d. Be-

cause of the functional forms employed, it is as if there is a partition of the probability

simplex such that the agent’s selected posterior only depends on the Bayesian poste-

rior.

Unlike Coarse Bayesians, categorical thinkers need not satisfy Confirmation be-

cause condition (7) does not guarantee that beliefs c∗(d) belong to the cell containing

the Bayesian posterior associated with data d.14 Below, I prove these claims in my

framework (in particular, employing condition (8)).

First, let Ĉ be a nonempty set of feasible posteriors. Suppose that some µ∗ ∈ Ĉ
is a solution to the maximization problem in (8) for both s and t. That is, µ∗ solves

13I have modified the notation slightly; Mullainathan writes qc(·) instead of c(·) to indicate the
probability distribution over T associated with category c ∈ C.

14Note that the partitions in Mullainathan’s model will typically have convex cells. Convexity only
fails if the maximization problem in (7) has more than one solution and the agent’s tie-breaking
criterion is not convex.
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both

max
µ̂∈Ĉ

(s · µ̂)(µe · µ̂) and max
µ̂∈Ĉ

(t · µ̂)(µe · µ̂).

Then, if α, β ≥ 0, it follows at µ∗ solves

max
µ̂∈Ĉ

((αs+ βt) · µ̂)(µe · µ̂).

It follows that the map s 7→ argmaxµ̂∈Ĉ(s · µ̂)(µe · µ̂) is measurable with respect to a

partition of S into convex cones. As demonstrated in the proof of Theorem 1, such

convex cones can be associated with convex subsets of ∆ by mapping signals s to

Bayesian posteriors B(µe|s).
Thus, any updating rule satisfying (8) satisfies Homogeneity and Cognizance if one

restricts attention to signals that yield unique solutions to the optimization problem.

For signals that involve ties, Homogeneity and/or Cognizance may be violated if the

agent’s tie-breaking selection is not Homogeneous or Convex.

A more substantive difference between Mullainathan’s model and Coarse Bayesian

updating is that condition (8) does not guarantee that the updating rule satisfies

Confirmation. To see this, suppose |Ω| = 2 and let µe = (1
3
, 2

3
). Suppose that µ̂, µ̂′ ∈ Ĉ

where µ̂ = (1
4
, 3

4
) and µ̂′ = (1

5
, 4

5
). Let s = (3

8
, 9

16
). It follows that B(µe|s) = µ̂; so,

Confirmation requires µ̂ to solve

max
µ̃∈Ĉ

(s · µ̃)(µe · µ̃).

However,

(s · µ̂)(µe · µ̂) =
77

256
<

63

200
= (s · µ̂′)(µe · µ̂′).

Thus, µ̂ is not selected at s, violating Confirmation.
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