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Abstract

Dynamic treatment regimes are treatment allocations tailored to heterogeneous in-

dividuals. The optimal dynamic treatment regime is a regime that maximizes counter-

factual welfare. We introduce a framework in which we can partially learn the optimal

dynamic regime from observational data, relaxing the sequential randomization as-

sumption commonly employed in the literature but instead using (binary) instrumental

variables. We propose the notion of sharp partial ordering of counterfactual welfares

with respect to dynamic regimes and establish mapping from data to partial ordering

via a set of linear programs. We then characterize the identified set of the optimal

regime as the set of maximal elements associated with the partial ordering. One main

contribution of this paper is that we develop simple analytical conditions to establish

the ordering, which bypass solving a large number of large-scale linear programs, and

thus facilitate estimation and inference. This paper’s analytical framework has broader

applicability beyond the current context, e.g., in establishing signs of various treatment

effects and rankings of policies across different counterfactual scenarios.
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1 Introduction

Dynamic (i.e., adaptive) treatment regimes are personalized treatment allocations tailored to

heterogenous individuals in order to improve welfare. Define a dynamic treatment regime δ(·)
as a sequence of binary rules δt(·) that map previous outcomes and treatments (and possibly

other covariates) onto current allocation decisions: δt(y1, ..., yt−1, d1, ..., dt−1) = dt ∈ {0, 1}
for t = 1, ..., T . Then the optimal dynamic treatment regime, which is this paper’s main

parameter of interest, is defined as a regime that maximizes certain counterfactual welfare:

δ∗(·) = arg max
δ(·)

Wδ. (1.1)

This paper investigates the possibility of identifiability of the optimal dynamic regime δ∗(·)
from data that are generated from randomized experiments in the presence of non-compliance

or more generally from observational studies in multi-period settings.

Optimal treatment regimes have been extensively studied in the biostatistics literature

(Murphy et al. (2001), Murphy (2003), and Robins (2004), among others). These stud-

ies typically rely on an ideal multi-stage experimental environment that satisfies sequential

randomization. Based on such experimental data, they identify optimal regimes that max-

imize welfare, defined as the average counterfactual outcome. However, non-compliance is

prevalent in experiments, and more generally, treatment endogeneity is a marked feature in

observational studies. This may be one reason the vast biostatistics literature has not yet

gained traction in economic analyses, despite the potentially fruitful applications of optimal

dynamic regimes in policy evaluation.

To illustrate the policy relevance of the optimal dynamic regime, consider the labor market

returns to types of high school and college. A policymaker may be interested in learning a

schedule of school allocation rules δ(·) = (δ1, δ2(·)) that maximizes the employment rate

Wδ = E[Y2(δ)], where δ1 ∈ {0, 1} assigns the high school type (vocational or academic),

δ2(y1, δ1) ∈ {0, 1} assigns the college type (two-year or four-year) based on δ1 and the high

school GPA y1 ∈ {0, 1} (low or high), and Y2(δ) indicates the counterfactual employment

status under regime δ(·). Suppose the optimal regime δ∗(·) is such that δ∗2(1, 1) = 1 and

δ∗2(0, 0) = 0; i.e., it turns out optimal to assign a four-year college to a student who was

assigned to an academic high school and achieved a high GPA, and to assign a two-year

college to a student with the opposite history. Even if assigning schools is mostly infeasible in

reality, one of the policy implications of such δ∗(·) is that the average job market performance

can be improved by a merit-based tuition subsidy for four-year college. This type of policy

questions is hard to answer from learning an optimal static regime where δt(·) is a constant
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Figure 1: An Example of Sharp Partial Ordering of Welfares

function.1 In learning δ∗(·) in this example, observational data may only be available where

the observed treatments (schooling decisions) are endogenous.

This paper proposes a nonparametric framework of partial identification, in which we can

partially learn the ranking of counterfactual welfares Wδ’s and hence the optimal dynamic

regime δ∗(·). Given the observed distribution of sequences of outcomes and endogenous treat-

ments and using the instrumental variable (IV) method, we establish sharp partial ordering

of welfares, and characterize the identified set of optimal regimes as a discrete subset of all

possible regimes. We define welfare as a linear functional of the joint distribution of coun-

terfactual outcomes across periods. Examples of welfare include the average counterfactual

terminal outcome commonly considered in the literature and as shown above. We assume

we are equipped with some IVs that are possibly binary. We show that it is helpful to have

a sequence of IVs generated from sequential experiments or quasi-experiments. Examples of

the former are increasingly common as forms of random assignments or encouragements in

medical trials, public health and educational interventions, and A/B testing on digital plat-

forms. Examples of the latter can be some combinations of traditional IVs and regression

discontinuity designs. Our framework also accommodates a single binary IV in the context of

dynamic treatments and outcomes (e.g., Cellini et al. (2010)). The identifying power in such

a case is investigated in simulation. The framework of this paper allows us to gain insight

into data requirements to achieve a certain level of informativeness.

The identification analysis is twofold. In the first part, we establish mapping from data to

sharp partial ordering of counterfactual welfares with respect to possible regimes, representing

the partial ordering as a directed acyclic graph (DAG).2 The point identification of δ∗(·) will

1In this case, the optimal regime will only reveal information about, e.g., dynamic complementarity (Cunha
and Heckman (2007), Almond and Mazumder (2013), Johnson and Jackson (2019)).

2The way directed graphs are used in this paper is completely unrelated to causal graphical models in the
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be achieved by establishing the total ordering of welfares, which is not generally possible

in this flexible nonparametric framework with limited exogenous variation. Figure 1 is an

example of partial ordering (interchangeably, a DAG) that we calculated by applying this

paper’s theory and using simulated data. Here, we consider a two-period case as in the

school-type example, which yields eight possible δ(·)’s and corresponding welfares, and “→”

corresponds to the relation “>”. To establish the partial ordering, we first characterize

bounds on the difference between two welfares as the set of optima of linear programs, and

we do so for all possible welfare pairs. The bounds on welfare gaps are informative about

whether welfares are comparable or not, and when they are, how to rank them. Then

we show that although the bounds are calculated from separate optimizations, the partial

ordering is consistent with common data-generating processes. The DAG obtained in this

way is shown to be sharp (in the sense that will become clear later). A novel feature of this

analysis is that we do not numerically solve the linear programming problems. Solving them

is computationally costly because each linear program is large-scale, and there are as many

linear programs as the number of possible welfare pairs, which is also large due to adaptivity.

Instead, we provide a simple analytical condition that identifies the signs of the optima of

each linear program, which are enough to establish the sharp DAG. Note that each welfare

gap measures the dynamic treatment effect. The DAG concisely (and tightly) summarizes

the identified signs of these treatment effects, and thus can be a parameter of independent

interest.

In the second part of the analysis, given the sharp partial ordering, we show that the

identified set can be characterized as the set of maximal elements associated with the partial

ordering, i.e., the set of regimes that are not inferior. For example, according to Figure 1, the

identified set consists of regimes 7 and 8. Given the DAG, we also calculate topological sorts,

which are total orderings that do not violate the underlying partial ordering. Theoretically,

topological sorts can be viewed as observationally equivalent total orderings, which insight

relates the partial ordering we consider with a more conventional notion of partial identifica-

tion. Practically, topological sorts can be served as a policy menu that a policymaker can be

equipped with. If desired, linear programming can be solved to calculate bounds on a small

number of sorted welfares (e.g., top-tier welfares).

Given the minimal structure we impose in the data-generating process, the size of the

identified set may be large in some cases. Such an identified set may still be useful in

eliminating suboptimal regimes or warning about the lack of informativeness of the data.

Often, however, researchers are willing to impose additional assumptions to gain identifying

power. We propose identifying assumptions, such as uniformity assumptions that generalize

literature.
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the monotonicity assumption in Imbens and Angrist (1994), an assumption about an agent’s

learning, Markovian structure, and stationarity. These assumptions tighten the identified set

by reducing the dimension of the simplex in the linear programming, thus producing a denser

DAG. We show that these assumptions are easy to impose in our framework.

This paper makes several contributions. To our best knowledge, this paper is first in

the literature that considers the identifiability of optimal dynamic regimes under treatment

endogeneity. Murphy (2003) and subsequent works consider point identification of optimal

dynamic regimes, but under the sequential randomization assumption. This paper brings

that literature to observational contexts. Recently, Han (forthcoming), Cui and Tchetgen

Tchetgen (2020) and Qiu et al. (2020) relax sequential randomization and establish iden-

tification of dynamic average treatment effects and/or optimal regimes using instrumental

variables. They consider a regime that is a mapping only from covariates, but not previous

outcomes and treatments, to an allocation. They focus on point identification by imposing

assumptions such as the existence of additional exogenous variables in a multi-period setup

(Han (forthcoming)) or the zero correlation between unmeasured confounders and compli-

ance types in a single-period setup (Cui and Tchetgen Tchetgen (2020); Qiu et al. (2020)).

Relatedly, the dynamic effects of treatment timing (i.e., irreversible treatments) have been

considered in Heckman and Navarro (2007) and Heckman et al. (2016) who utilize exclusion

restrictions and infinite support assumptions, and in Athey and Imbens (2018), Callaway and

Sant’Anna (2019), and Abraham and Sun (2020), who extend the difference-in-differences ap-

proach to dynamic settings. This paper complements these papers by considering treatment

scenarios of multiple dimensions with adaptivity as the key ingredient.

Second, the simple analytical procedure of establishing sharp ordering of counterfactual

welfares has broader applicability beyond the context of this paper. The linear programming

approach to partially identifying counterfactuals has early examples as Balke and Pearl (1997)

and Manski (2007), and appears recently in Torgovitsky (2019), Deb et al. (2017), Mogstad

et al. (2018), Kitamura and Stoye (2019), Machado et al. (2019), Tebaldi et al. (2019),

Kamat (2019), and Gunsilius (2019), to name a few. In the contexts of these studies, if one

is interested in the signs of the parameters (thus the signs of the optima in linear programs)

rather than the magnitude (thus the values of the optima), our analytical method can be

useful. The conditions to be checked depend only on the distribution of data and known

components of each linear program, and not on the solution of the program. As a result,

we show that the estimation and inference (where resampling methods are typically used)

are relatively straightforward and computationally light. The method can also be useful

in other settings where the goal is to identify signs of various treatment effects, to compare

welfares across multiple treatments and regimes—e.g., personalized treatment rules—or more

generally, to establish rankings of policies across different counterfactual scenarios and find
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the best ones.

The dynamic treatment regime considered in this paper is broadly related to the literature

on statistical treatment rules, e.g., Manski (2004), Hirano and Porter (2009), Bhattacharya

and Dupas (2012), Stoye (2012), Kitagawa and Tetenov (2018), Kasy (2016), and Athey

and Wager (2017). However, our setting, assumptions, and goals are different from those in

these papers. In a single-period setting, they consider allocation rules that map covariates to

decisions. They impose assumptions that ensure point identification, such as (conditional)

unconfoundedness, and focus on establishing the asymptotic optimality of the treatment

rules, with Kasy (2016) the exception.3 Kasy (2016) focuses on establishing partial ranking

by comparing a pair of treatment-allocating probabilities as policies. The notion of partial

identification of ranking is related to ours, but we introduce the notion of sharpness of a

partially ordered set with discrete policies and a linear programming approach to achieve

that. Finally, in order to focus on the challenge with endogeneity, we consider a simple

setup where the exploration and exploitation stages are separated, unlike in the literature on

bandit problems (Kock and Thyrsgaard (2017), Kasy and Sautmann (forthcoming), Athey

and Imbens (2019)). We believe the current setup is a good starting point.

In the next section, we introduce the dynamic regimes and related counterfactual out-

comes, which define the welfare and the optimal regime. Section 3 provides a motivating

example. Section 4 conducts the main identification analysis by constructing the DAG and

characterizing the identified set. Section 5 provides the analytical conditions for linear pro-

gramming. Sections 6–8 introduce topological sorts and additional identifying assumptions

and discuss cardinality reduction for the set of regimes. Section 9 illustrates the analysis

with numerical exercises, and Section 10 discusses estimation and inference. Most proofs are

collected in the Appendix.

In terms of notation, let W t ≡ (W1, ..,Wt) denote a vector that collects r.v.’s Wt across

time up to t, and let wt be its realization. Most of the time, we write W ≡ W T for

convenience. We abbreviate “with probability one” as “w.p.1” and “with respect to” as

“w.r.t.” The symbol “⊥” denotes statistical independence.

2 Dynamic Regimes and Counterfactual Welfares

2.1 Dynamic Regimes

Let t be the index for a period or stage. For each t = 1, ..., T with fixed T , define an adaptive

treatment rule δt : {0, 1}t−1 × {0, 1}t−1 → {0, 1} that maps the lags of the realized binary

3Athey and Wager (2017)’s framework allows observational data with endogenous treatments as a special
case, but the conditional homogeneity of treatment effects is assumed.
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Regime # δ1 δ2(1, δ1) δ2(0, δ1)

1 0 0 0
2 1 0 0
3 0 1 0
4 1 1 0
5 0 0 1
6 1 0 1
7 0 1 1
8 1 1 1

Table 1: Dynamic Regimes δ(·) When T = 2

outcomes and treatments yt−1 ≡ (y1, ..., yt−1) and dt−1 ≡ (d1, ..., dt−1) onto a deterministic

treatment allocation dt ∈ {0, 1}:

δt(y
t−1,dt−1) = dt. (2.1)

This adaptive rule also appears in, e.g., Murphy (2003). The rule can also be a function of

other discrete covariates, which we do not consider here for brevity. A special case of (2.1)

is a static rule where δt(·) is only a function of covariates but not (yt−1,dt−1) (Han (forth-

coming), Cui and Tchetgen Tchetgen (2020)) or a constant function.4 Binary outcomes

and treatments are prevalent, and they are helpful in analyzing, interpreting, and imple-

menting dynamic regimes (Zhang et al. (2015)). Still, extending the framework to allow for

multi-valued discrete variables is possible. Whether the rule is dynamic or static, we only

consider deterministic rules δt(·) ∈ {0, 1}. In Appendix A.1, we extend this to stochastic

rules δ̃t(·) ∈ [0, 1] and show why it is enough to consider deterministic rules in some cases.

Then, a dynamic regime up to period t is defined as a vector of all treatment rules:

δt(·) ≡ (δ1, δ2(·), ..., δt(·)) .

Let δ(·) ≡ δT (·) ∈ D where D is the set of all possible regimes.5 For T = 2, Table 1 lists all

possible dynamic regimes δ(·) ≡ (δ1, δ2(·)) as contingency plans.

2.2 Counterfactual Welfares and Optimal Regimes

To define welfare w.r.t. this dynamic regime, we first introduce a counterfactual outcome as

a function of a dynamic regime. Because of the adaptivity intrinsic in dynamic regimes, ex-

4This means that our term of “static regime” is narrowly defined than in the literature. In the literature,
a regime is sometimes called dynamic even if it is only a function of covariates.

5We can allow D to be a strict subset of the set of all possible regimes; see Section 8 for this relaxation.
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pressing counterfactual outcomes is more involved than that with static regimes dt, i.e., Yt(d
t)

with dt ≡ (d1, ..., dt). Let Y t(dt) ≡ (Y1(d1), Y2(d
2), ..., Yt(d

t)). We express a counterfactual

outcome with adaptive regime δt(·) as follows6:

Yt(δ
t(·)) ≡ Yt(d

t), (2.2)

where the “bridge variables” dt ≡ (d1, ..., dt) satisfy

d1 = δ1,

d2 = δ2(Y1(d1), d1),

d3 = δ3(Y
2(d2),d2), (2.3)

...

dt = δt(Y
t−1(dt−1),dt−1).

Suppose T = 2. Then, the two counterfactual outcomes are defined as Y1(δ1) = Y1(d1) and

Y2(δ
2(·)) = Y2(δ1, δ2(Y1(δ1), δ1)).

Let qδ(y) ≡ Pr[Y (δ(·)) = y] be the joint distribution of counterfactual outcome vec-

tor Y (δ(·)) ≡ (Y1(δ1), Y2(δ
2(·)), ..., YT (δ(·))). We define counterfactual welfare as a linear

functional of qδ(y):

Wδ ≡ f(qδ).

Examples of the functional include the average counterfactual terminal outcome E[YT (δ(·))] =

Pr[YT (δ(·)) = 1], our leading case and which is common in the literature, and the weighted

average of counterfactuals
∑T

t=1 ωtE[Yt(δ
t(·))]. Then, the optimal dynamic regime is a regime

that maximizes the welfare as defined in (1.1):7

δ∗(·) = arg max
δ(·)∈D

Wδ.

In the case of Wδ = E[YT (δ(·))], the solution δ∗(·) can be justified by backward induction in

finite-horizon dynamic programming. Moreover in this case, the regime with deterministic

rules δt(·) ∈ {0, 1} achieves the same optimal regime and optimized welfare as the regime

with stochastic rules δt(·) ∈ [0, 1]; see Theorem A.1 in Appendix A.1.

The identification analysis of the optimal regime is closely related to the identification of

6As the notation suggests, we implicitly assume the “no anticipation” condition.
7We assume that the optimal dynamic regime is unique by simply ruling out knife-edge cases in which

two regimes deliver the same welfare.
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welfare for each regime and welfare gaps, which also contain information for policy. Some

interesting special cases are the following: (i) the optimal welfare, Wδ∗ , which in turn

yields (ii) the regret from following individual decisions, Wδ∗ − WD, where WD is simply

f(Pr[Y (D) = ·]) = f(Pr[Y = ·]), and (iii) the gain from adaptivity, Wδ∗ − Wd∗ , where

Wd∗ = maxdWd is the optimum of the welfare with a static rule, Wd = f(Pr[Y (d) = ·]). If

the cost of treatments is not considered, the gain in (iii) is non-negative as the set of all d is

a subset of D.

3 Motivating Examples

For illustration, we continue discussing the example in the Introduction. This stylized ex-

ample in an observational setting is meant to motivate the policy relevance of the optimal

dynamic regime and the type of data that are useful for recovering it. Again, consider labor

market returns to the types of high schools and colleges. Let Di1 = 1 if student i enrolls in

an academic high school and Di1 = 0 if a vocational high school; let Yi1 = 1 if i achieves

an above-median GPA in high school and Yi1 = 0 if below-median. In addition, let Di2 = 1

if i enrolls in a four-year college and Di2 = 0 if a two-year college. Finally, let Yi2 = 1 if

i is employed at age 25 and Yi2 = 0 if not. Given the data, suppose we are interested in

recovering regimes that maximize the employment rate as welfare.

First, consider the optimal static regime d∗. This will be the schedule d = (d1, d2) ∈
{0, 1}2 of school allocations that maximizes the employment rate Wd = E[Y2(d)]. In con-

trast, the optimal regime with adaptivity δ∗(·) is the schedule δ(·) = (δ1, δ2(·)) ∈ D of school

allocation rules that maximizes the employment rate Wδ = E[Y2(δ)]. The schedule of al-

location rules would first assign either an academic or vocational high school (δ1 ∈ {0, 1})
and then assign either a four-year or two-year college (δ2(y1, δ1) ∈ {0, 1}) depending on the

high school type δ1 and performance y1. As argued in the Introduction, δ∗(·) provides policy

implications that d∗ cannot.

As D1 and D2 are endogenous, {Di1, Yi1, Di2, Yi2} above are not useful by themselves to

identify Wδ’s and δ∗(·). We employ the approach of using IVs, either a single IV (e.g., in the

initial period) or a sequence of IVs. For the latter, we propose a sequential version of the

fuzzy RD design. The sequence of high school and college entrance exams would generate

running variables, i.e., test scores, that define eligibility for admission. Let Zi1 = 1 if student

i lands slightly above the cutoff for the academic high school entrance exam and Zi1 = 0 if

slightly below; let Zi2 = 1 if i lands slightly above cutoff for the four-year college entrance

exam and Zi2 = 0 if slightly below. Then (Zi1, Zi2) can serve as the sequence of binary

instruments that satisfy the assumption for IVs below. Alternatively, the distance to (or the
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tuition cost of) these schools or some combination with the fuzzy RD above can serve as Z1

and Z2.

In experimental settings, examples of a sequence of IVs can be found in multi-stage

experiments, such as the Fast Track Prevention Program (Conduct Problems Prevention

Research Group (1992)), the Elderly Program randomized trial for the Systolic Hypertension

(The Systolic Hypertension in the Elderly Program (SHEP) Cooperative Research Group

(1988)), and Promotion of Breastfeeding Intervention Trial (Kramer et al. (2001)). It is also

possible to combine multiple experiments as in Johnson and Jackson (2019).

4 Partial Ordering and Partial Identification

4.1 Observables

We introduce observables based on which we want to identify the optimal regime and counter-

factual welfares. Assume that the time length of the observables is equal to T , the length of

the optimal regime to be identified.8 For each period or stage t = 1, ..., T , assume that we ob-

serve the binary instrument Zt, the binary endogenous treatment decision Dt, and the binary

outcome Yt =
∑
dt∈{0,1}t 1{Dt = dt}Yt(dt). These variables are motivated in the previous sec-

tion. As another example, Yt is a symptom indicator for a patient, Dt is the medical treatment

received, and Zt is generated by a multi-period medical trial. Importantly, the framework does

not preclude the case in which Zt exists only for some t but not all; see Section 9 for related

discussions. In this case, Zt for the other periods is understood to be degenerate. Let Dt(z
t)

be the counterfactual treatment given zt ≡ (z1, ..., zt) ∈ {0, 1}t. Then, Dt =
∑
zt∈Zt Dt(z

t).

Let Y (d) ≡ (Y1(d1), Y2(d
2), ..., YT (d)) and D(z) ≡ (D1(z1), D2(z

2), ..., DT (z)).

Assumption SX. Zt ⊥ (Y (d),D(z))|Zt−1.

Assumption SX assumes the strict exogeneity and exclusion restriction.9 A single IV with

full independence trivially satisfies this assumption. For a sequence of IVs, this assumption

is satisfied in typical sequential randomized experiments, as well as quasi-experiments as

discussed in Section 3. Let (Y ,D,Z) be the vector of observables (Yt, Dt, Zt) for the entire

T periods and let p be its distribution. We assume that (Y i,Di,Zi) is independent and

identically distributed and {(Y i,Di,Zi) : i = 1, ..., N} is a small T large N panel. We

mostly suppress the individual unit i throughout the paper. For empirical applications, the

data structure can be more general than a panel and the kinds of Yt, Dt and Zt are allowed

8In general, we may allow T̃ ≥ T where T̃ is the length of the observables.
9There may be other covariates available for the researcher, but we suppress them for brevity. All the

stated assumptions and the analyses of this paper can be followed conditional on the covariates. A sufficient
condition for Assumption SX is that Z ⊥ (Y (d),D(z)).
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(a) δ∗(·) is partially identified

W1
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(b) δ∗(·) is point identified

Figure 2: Partially Ordered Sets of Welfares

to be different across time; Section 3 contains such an example. For the population from

which the data are drawn, we are interested in learning the optimal regime.

4.2 Partial Ordering of Welfares

Given the distribution p of the data (Y ,D,Z) and under Assumption SX, we show how the

optimal dynamic regime and welfares can be partially recovered. The identified set of δ∗(·)
will be characterized as a subset of the discrete set D. As the first step, we establish partial

ordering of Wδ w.r.t. δ(·) ∈ D as a function of p. The partial ordering can be represented

by a directed acyclic graph (DAG). The DAG summarizes the identified signs of the dynamic

treatment effects, as will become clear later. Moreover, the DAG representation is fruitful

for introducing the notion of the sharpness of partial ordering and later to translate it into

the identified set of δ∗(·).
To facilitate this analysis, we enumerate all |D| = 22T−1 possible regimes. For index

k ∈ K ≡ {k : 1 ≤ k ≤ |D|} (and thus |K| = |D|), let δk(·) denote the k-th regime in D. For

T = 2, Table 1 indexes all possible dynamic regimes δ(·) ≡ (δ1, δ2(·)). Let Wk ≡ Wδk be the

corresponding welfare. Figure 2 illustrates examples of the partially ordered set of welfares

as DAGs where each edge “Wk → Wk′” indicates the relation “Wk > Wk′ .”

In general, the point identification of δ∗(·) is achieved by establishing the total ordering

of Wk, which is not possible with instruments of limited support. Instead, we only recover

a partial ordering. We want the partial ordering to be sharp in the sense that it cannot be

improved given the data and maintained assumptions. To formally state this, let G(K, E) be

a DAG where K is the set of welfare (or regime) indices and E is the set of edges.

Definition 4.1. Given the data distribution p, a partial ordering G(K, Ep) is sharp under

the maintained assumptions if there exists no partial ordering G(K, E ′p) such that E ′p ) Ep
without imposing additional assumptions.

Establishing sharp partial ordering amounts to determining whether we can tightly iden-

tify the sign of a counterfactual welfare gap Wk −Wk′ (i.e., the dynamic treatment effects)
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for k, k′ ∈ K, and if we can, what the sign is.

4.3 Data-Generating Framework

We introduce a simple data-generating framework and formally define the identified set. First,

we introduce latent state variables that generate (Y ,D). A latent state of the world will

determine specific maps (yt−1,dt) 7→ yt and (yt−1,dt−1, zt) 7→ dt for t = 1, ..., T under the

exclusion restriction in Assumption SX. We introduce the latent state variable S̃t whose real-

ization represents such a state. We define S̃t as follows. For given (yt−1,dt, zt), let Yt(y
t−1,dt)

and Dt(y
t−1,dt−1, zt) denote the extended counterfactual outcomes and treatments, respec-

tively, and let {Yt(yt−1,dt)} and {Dt(y
t−1,dt−1, zt)} and their sequences w.r.t. (yt−1,dt, zt).

Then, by concatenating the two sequences, define S̃t ≡ ({Yt(yt−1,dt)}, {Dt(y
t−1,dt−1, zt)}) ∈

{0, 1}22t−1 × {0, 1}23t−2
. For example, S̃1 = (Y1(0), Y1(1), D1(0), D1(1)) ∈ {0, 1}2 × {0, 1}2,

whose realization specifies particular maps d1 7→ y1 and z1 7→ d1. It is convenient to transform

S̃ ≡ (S̃1, ..., S̃T ) into a scalar (discrete) latent variable in N as S ≡ β(S̃) ∈ S ⊂ N, where

β(·) is a one-to-one map that transforms a binary sequence into a decimal value. Define

qs ≡ Pr[S = s],

and define the vector q of qs which represents the distribution of S, namely the true data-

generating process. The vector q resides in Q ≡ {q :
∑

s qs = 1 and qs ≥ 0 ∀s} of dimension

dq − 1 where dq ≡ dim(q). A useful fact is that the joint distribution of counterfactuals can

be written as a linear functional of q:

Pr[Y (d) = y,D(z) = d] = Pr[S ∈ S : Y (yT−1,d) = y,D(yT−1,dT−1, z) = d]

= Pr[S ∈ S : Yt(y
t−1,dt) = yt, Dt(y

t−1,dt−1, zt) = dt ∀t]

=
∑

s∈Sy,d|z

qs, (4.1)

where Sy,d|z is constructed by using the definition of S; its expression can be found in

Appendix A.2.

Based on (4.1), the counterfactual welfare can be written as a linear combination of qs’s.

That is, there exists 1× dq vector Ak of 1’s and 0’s such that

Wk = Akq. (4.2)

The formal derivation of Ak can be found in Appendix A.2, but the intuition is as follows.

Recall Wk ≡ f(qδk) where qδ(y) ≡ Pr[Y (δ(·)) = y]. The key observation in deriving
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the result (4.2) is that Pr[Y (δ(·)) = y] can be written as a linear functional of the joint

distributions of counterfactual outcomes with a static regime, i.e., Pr[Y (d) = y]’s, which in

turn is a linear functional of q. To illustrate with T = 2 and welfare Wδ = E[Y2(δ(·))], we

have

Pr[Y2(δ(·)) = 1] =
∑

y1∈{0,1}

Pr[Y2(δ1, δ2(Y1(δ1), δ1)) = 1|Y1(δ1) = y1] Pr[Y1(δ1) = y1]

by the law of iterated expectation. Then, for instance, Regime 8 in Table 1 yields

Pr[Y2(δ8(·)) = 1] = P [Y (1, 1) = (1, 1)] + P [Y (1, 1) = (0, 1)], (4.3)

where each Pr[Y (d1, d2) = (y1, y2)] is the counterfactual distribution with a static regime,

which in turn is a linear functional of (4.1).

The data impose restrictions on q ∈ Q. Define

py,d|z ≡ p(y,d|z) ≡ Pr[Y = y,D = d|Z = z],

and p as the vector of py,d|z’s except redundant elements. Let dp ≡ dim(p). Since Pr[Y =

y,D = d|Z = z] = Pr[Y (d) = y,D(z) = d] by Assumption SX, we can readily show by

(4.1) that there exists dp × dq matrix B such that

Bq = p, (4.4)

where each row of B is a vector of 1’s and 0’s; the formal derivation of B can be found in

Appendix A.2. It is worth noting that the linearity in (4.2) and (4.4) is not a restriction

but given by the discrete nature of the setting. We assume rank(B) = dp without loss of

generality, because redundant constraints do not play a role in restricting Q. We focus on

the non-trivial case of dp < dq. If dp ≥ dq, which is rare, we can solve for q = (B>B)−1B>p,

and can trivially point identify Wk = Akq and thus δ∗(·). Otherwise, we have a set of

observationally equivalent q’s, which is the source of partial identification and motivates the

following definition of the identified set.10

For a given q, let δ∗(·; q) ≡ arg maxδk(·)∈DWk = Akq be the optimal regime, explicitly

written as a function of the data-generating process.

Definition 4.2. Under Assumption SX, the identified set of δ∗(·) given the data distribution

10For simplicity, we use the same notation for the true q and its observational equivalence.
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p is

D∗p ≡ {δ∗(·; q) : Bq = p and q ∈ Q} ⊂ D, (4.5)

which is assumed to be empty when Bq 6= p.

4.4 Characterizing Partial Ordering and the Identified Set

Given p, we establish the partial ordering of Wk’s, i.e., generate the DAG, by determining

whether Wk > Wk′ , Wk < Wk′ , or Wk and Wk′ are not comparable (including Wk = Wk′),

denoted as Wk ∼ Wk′ , for k, k′ ∈ K. As described in the next theorem, this procedure can

be accomplished by determining the signs of the bounds on the welfare gap Wk −Wk′ for

k, k′ ∈ K and k > k′.11 Then the identified set can be characterized based on the resulting

partial ordering.

The nature of the data generation induces the linear system (4.2) and (4.4). This enables

us to characterize the bounds on Wk−Wk′ = (Ak−Ak′)q as the optima in linear programming.

Let Uk,k′ and Lk,k′ be the upper and lower bounds. Also let ∆k,k′ ≡ Ak − Ak′ for simplicity,

and thus the welfare gap is expressed as Wk −Wk′ = ∆k,k′q. Then, for k, k′ ∈ K, we have

the main linear programs:

Uk,k′ = maxq∈Q∆k,k′q,

Lk,k′ = minq∈Q∆k,k′q,
s.t. Bq = p. (4.6)

Assumption B. {q : Bq = p} ∩ Q 6= ∅.

Assumption B imposes that the model, Assumption SX in this case, is correctly specified.

Under misspecification, the identified set is empty by definition. The next theorem constructs

the sharp DAG and the identified set using Uk,k′ and Lk,k′ for k, k′ ∈ K and k > k′, or

equivalently, Lk,k′ for k, k′ ∈ K and k 6= k′.12

Theorem 4.1. Suppose Assumptions SX and B hold. Then, (i) G(K, Ep) with Ep ≡ {(k, k′) ∈
K : Lk,k′ > 0 and k 6= k′} is sharp; (ii) D∗p defined in (4.5) satisfies

D∗p = {δk′(·) : @k ∈ K such that Lk,k′ > 0 and k 6= k′}. (4.7)

= {δk′(·) : Lk,k′ ≤ 0 for all k ∈ K and k 6= k′} (4.8)

The proof of Theorem 4.1 is shown in the Appendix. The key insight of the proof is that

even though the bounds on the welfare gaps are calculated from separate optimizations, the

11Note that directly comparing sharp bounds on welfares themselves will not deliver sharp partial ordering.
12Notice that (Lk,k′ , Uk,k′) for k > k′ contain the same information as Lk,k′ for k 6= k′, since Uk,k′ = −Lk′,k.
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partial ordering is governed by common q’s (each of which generates all the welfares) that

are observationally equivalent; see Section 6.1 for related discussions.

Theorem 4.1(i) prescribes how to calculate the sharp DAG as a function of data.13 Ac-

cording to (4.7) in (ii), D∗p is characterized as the collection of δk(·) where k is in the set of

maximal elements of the partially ordered set G(K, Ep), i.e., the set of regimes that are not

inferior. In Figure 2, it is easy to see that the set of maximals is D∗p = {δ1(·), δ4(·)} in panel

(a) and D∗p = {δ1(·)} in panel (b).

The identified set D∗p characterizes the information content of the model. Given the

minimal structure we impose in the model, D∗p may be large in some cases. However, we

argue that an uninformative D∗p still has implications for policy: (i) such set recommends

the policymaker eliminate sub-optimal regimes from her options; (ii) in turn, it warns the

policymaker about her lack of information (e.g., even if she has access to the experimental

data); when D∗p = D as one extreme, “no recommendation” can be given as a non-trivial

policy suggestion of the need for better data. As shown in the numerical exercise, the size of

D∗p is related to the strength of Zt (i.e., the size of the complier group at t) and the strength

of the dynamic treatment effects. This is reminiscent of the findings in Machado et al. (2019)

for the average treatment effect in a static model. In Section 7, we list further identifying

assumptions that help shrink D∗p.

5 Analytical Conditions in Linear Programming

In practice, a näıve approach to compute the sharp DAG and the identified set in Theorem

4.1 is to directly compute Lk,k′ by solving its linear program in (4.6) for k, k′ ∈ K and

k 6= k′. This can be computationally very costly. Note that to generate the DAG, we need

to make at most “|K| = |D| = 22T−1 choose 2” pair-wise comparisons of the welfares.14 With

the näıve approach, this amounts to solving “22T−1 choose 2” linear programs of the form

(4.6), where (4.6) is a large-scale linear program. In this program, the dimension of q is dq =

|Q|+1 = |S| =
∏T

t=1 |St| where |St| = 222t−1×223t−2
, which can be immense; e.g., when T = 2,

dq = (22×22)×(216×28) = 268, 435, 456. In addition, the number of constraints is dp+dq +1

where dp = 23T − 2T . Obviously, the scale of the problem becomes even larger when the

regime is adaptive to other observed covariates. This computational complexity can possibly

be mitigated by imposing further identifying assumptions on the data-generating process as

13The DAG can be conveniently represented in terms of a |K| × |K| adjacency matrix Ω such that its
element Ωk,k′ = 1 if Wk ≥Wk′ and Ωk,k′ = 0 otherwise.

14This procedure is closely related to what is called the bubble sort. There are more efficient algorithms,
such as the quick sort, although they must be modified to incorporate the distinct feature of our problem: the
possible incomparability that stems from partial identification. Note that for comparable pairs, transitivity
can be applied and thus the total number of comparisons can be smaller.
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shown later. Nevertheless, the baseline case should still be calculated as a benchmark to

conduct the sensitivity analysis and understand the identifying power of those assumptions.

Moreover, the näıve approach poses non-trivial challenges in developing inference methods

for δ∗(·) and other parameters. Resampling methods are commonly used for inference in

partial identification, which then involve solving the set of linear programs as many times

as the number of resampling repetitions. To overcome these challenges, we propose a simple

analytical procedure to obtain the sharp DAG and the identified set.

This part contains general results beyond the context of optimal treatment regimes in

the previous section. Therefore, we simplify the notation and consider linear programs that

characterize the bounds [L,U ] on the parameter ∆q:

U = maxq∈Q∆q,

L = minq∈Q∆q,
s.t. Bq = p, (5.1)

where Q ≡ {q :
∑

s qs = 1 and qs ≥ 0 ∀s} ⊂ Rdq is a standard simplex of dimension dq − 1,

∆ is a 1× dq vector, and B is a dp × dq matrix with dp < dq. Without loss of generality, we

assume B = (B1
... O) for dp × dp full rank matrix B1 and dp × (dq − dp) zero matrix O.15

We first investigate how to detect the non-identification of the sign of ∆q, i.e., whether

L ≤ 0 ≤ U . For example, in the context of the previous section with Wk−Wk′ = ∆k,k′q = ∆q,

this problem is equivalent to detecting Wk ∼ Wk′ , the incomparability of Wk and Wk′ . Note

that L ≤ 0 ≤ U if and only if there exists q ∈ Q such that ∆q = 0 and Bq = p, or simply,

ker(∆) ∩ {q : Bq = p} ∩ Q 6= ∅, (5.2)

where ker(∆) denotes the kernel (i.e., the null space) of ∆. That is, we want to find conditions

under which the simplex Q, the hyperplanes {q : Bq = p}, and ker(∆) have a nonempty

intersection. Figure 3(a) depicts this intersection for the case of dq = 3.

Define partitions ∆ = (∆1 ... ∆0) and q = (q>1 , q
>
0 )> according to partition B = (B1

... O).

Then p = Bq = B1q1 or

q1 = B−11 p, (5.3)

because B1 has full rank. That is, we can solve for the subvector of the data-generating

15If this does not hold, then we can find an elementary column operating matrix M of order dq×dq such that

B̃ ≡ BM = (B1

... O). Then, using M we can redefine all the relevant quantities and proceed analogously:
Let Ãk ≡ AkM , Ãk′ ≡ Ak′M , and q̃ ≡M−1q as M is invertible. Then, it satisfies that Bq = BMM−1q = B̃q̃
and (Ak − Ak′)q = (Ak − Ak′)MM−1q = (Ãk − Ãk′)q̃. Note that Q̃ ≡ {M−1q : q ∈ Q} ⊂ Rdq is also a
standard simplex.
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1

Q0

{q0 : ∆0q0 = θ} ∩ Q0

(b) Simpler Problem with a Hyper-
plane and a Cone (with q0 = (q2, q3)

>)

Figure 3: Illustration of Conditions for L ≤ 0 ≤ U (with q = (q1, q2, q3)
>)

process as a function of the data distribution. By plugging in (5.3), ∆q = ∆1q1 + ∆0q0 = 0,

i.e., the welfare gap being zero, can be rewritten as

∆1B−11 p+ ∆0q0 = 0. (5.4)

For simplicity, let θ ≡ −∆1B−11 p, which is a scalar. Define Q0 ≡ {q0 : q ∈ Q} = {q0 :∑
s∈S0 qs ≤ 1 and qs ≥ 0 ∀s ∈ S0} where S0 ⊂ S is the set of indices that correspond to the

subvector q0. Then, by (5.2) and (5.4), L ≤ 0 ≤ U if and only if there exists nonzero vector

q0 ∈ Q0 such that ∆0q0 = θ,16 or

{q0 : ∆0q0 = θ} ∩ Q0\{0} 6= ∅. (5.5)

Since Q0 is a finitely generated cone and independent of the constraints, finding conditions

under which (5.5) holds is mathematically more tractable than directly analyzing (5.2); see

Figure 3(b). It essentially reduces to checking whether the hyperplane ∆0q0 = θ lies between

the vertices of the cone. The next theorem states these conditions under which the sign of

∆q is not identified (e.g., the incomparability Wk ∼ Wk′).

Theorem 5.1 (Non-Identification of Sign or Order). Suppose Assumptions SX and B hold.

Let θ ≡ −∆1B−11 p, and ∆0 ∈ {−1, 0, 1} and ∆
0 ∈ {−1, 0, 1} be the minimum and maximum

elements of vector ∆0, respectively. Then, L ≤ 0 ≤ U if and only if either one of the following

holds: (i) ∆0 < θ < ∆
0
, (ii) ∆0 ≥ θ ≥ 0, or (iii) ∆

0 ≤ θ ≤ 0.

16We want to find nonzero q0, since when q0 = 0, then ∆q = −θ for all q1 and hence we trivially point
identify ∆q (e.g., the welfare gap Wk −Wk′).
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Since scalar θ (up to p) and 1 × (dq − dp) vector ∆0 are known to the researcher, we

can directly detect the incomparability from the data p without solving the linear program-

mings.17 Furthermore, we can show the following results, which identify the sign of ∆q (e.g.,

whether Wk > Wk′ or Wk < Wk′):

Theorem 5.2 (Identification of Sign or Order). Suppose Assumptions SX and B hold. Let

θ ≡ −∆1B−11 p, and ∆0 ∈ {−1, 0, 1} and ∆
0 ∈ {−1, 0, 1} be the minimum and maximum

elements of vector ∆0, respectively. Then, L > 0 if and only if

θ < min{0,∆0}. (5.6)

Similarly, U < 0 if and only if θ > max{0,∆0}.

Theorem 5.2 provides the basis for the systematic computation of the DAG and the

identified set in the previous section. It suggests an algorithm that generates the DAG by

automating the task of checking the conditions for every (k, k′) pair with θ = θk,k′ and

∆ = ∆k,k′ . Compared to directly solving the set of large-scale linear programs, finding ∆0

and ∆
0

from a large-dimensional vector ∆0 (e.g., dq − dp = 268, 435, 456 − 60 when T = 2)

is an extremely simple computational task, especially since their values are known to be one

of {−1, 0, 1}. Next, based on (4.8), D∗p can be computed by negating (5.6):

D∗p = {δk′(·) : θk,k′ ≥ min{0,∆0
k,k′} for all k ∈ K and k 6= k′}. (5.7)

Unlike Theorem 5.2, Theorem 5.1 is not directly used in the derivation of the DAG and D∗p,

but is crucial in developing the inference procedure proposed later.

6 Topological Sorts and Bounds on Sorted Welfare

6.1 Topological Sorts as Observational Equivalence

The DAG is a useful policy benchmark. For a complicated DAG, it would be helpful to

have a summary of it. In fact, the identified set D∗p can be viewed as a summary of a DAG.

Another way to summarize a DAG is to use topological sorts. A topological sort of a DAG

is a linear ordering of its vertices that does not violate the order in the partial ordering

given by the DAG. That is, for every directed edge k → k′, k comes before k′ in this linear

ordering. Apparently, there can be multiple topological sorts for a DAG. Let LG be the

number of topological sorts of DAG G(K, Ep), and let kl,1 ∈ K be the initial vertex of the l-th

17Note conditions (i)–(iii) are exclusive. These conditions and conditions θ < min{0,∆0} and θ >

max{0,∆0} in the next theorem exhaust all possible configurations of θ, ∆0, ∆
0
, and zero.
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topological sort for 1 ≤ l ≤ LG. For example, given the DAG in Figure 2(a), (δ1, δ4, δ2, δ3) is

an example of a topological sort (with kl,1 = 1), but (δ1, δ2, δ4, δ3) is not. Topological sorts

are routinely reported for a given DAG, and there are well-known algorithms that efficiently

find topological sorts, such as Kahn (1962)’s algorithm.

In fact, topological sorts can be viewed as total orderings that are observationally equiv-

alent to the true total ordering of welfares. That is, each q generates the total ordering of

welfares via Wk = Akq, and q’s in {q : Bq = p}∩Q generates observationally equivalent total

orderings. This insight enables us to interpret the partial ordering we establish using the

more conventional notion of partial identification: the ordering is partially identified in the

sense that the set of all topological sorts is not a singleton. This insight yields an alternative

way of characterizing the identified set D∗p of the optimal regime.

Theorem 6.1. Suppose Assumptions SX and B hold. The identified set D∗p defined in (4.5)

satisfies

D∗p = {δkl,1(·) : 1 ≤ l ≤ LG},

where kl,1 is the initial vertex of the l-th topological sort of G(K, Ep).

Suppose the DAG we recover from the data is not too sparse. By definition, a topological

sort provides a ranking of regimes that is not inconsistent with the partial welfare ordering.

Therefore, not only δkl,1(·) ∈ D∗p but also the full sequence of a topological sort(
δkl,1(·), δkl,2(·), ...,dkl,|D|(·)

)
(6.1)

can be useful. A policymaker can be equipped with any of such sequences as a policy menu.

6.2 Bounds on Sorted Welfares

A topological sort provides ordinal information about counterfactual welfares. To gain more

comprehensive knowledge about these welfares, a topological sort can be accompanied by

cardinal information: bounds on the sorted welfares. One might especially be interested in

the bounds on “top-tier” welfares that are associated with the identified set or the first few

elements in the topological sort. Bounds on gains from adaptivity and regrets can also be

computed. These bounds can be calculated by solving linear programs. For instance, for

k ∈ K, the sharp lower and upper bounds on welfare Wk can be calculated via

Uk = maxq∈QAkq,

Lk = minq∈QAkq,
s.t. Bq = p. (6.2)
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This computational approach to calculating bounds is inevitable in this context. Unlike in

the static case of calculating the bounds on, e.g., the average treatment effect, calculating

the bounds on Wk (and Wk −Wk′) and proving their sharpness are analytically infeasible,

especially when T ≥ 3. Fortunately, as the partial order and thus the topological sort are

obtained analytically by Theorem 5.2, we can focus on solving only a few linear programs.

7 Additional Assumptions

Often, researchers are willing to impose more assumptions based on priors about the data-

generating process, e.g., agent’s behaviors. Examples are uniformity, agent’s learning, Marko-

vian structure, and stationarity. These assumptions are easy to incorporate within the linear

programming (4.6), and thus the conditions in Theorems 5.1 and 5.2. These assumptions

tighten the identified set D∗p by reducing the dimension of simplex Q, and thus producing a

denser DAG.18

To incorporate these assumptions, we extend the framework introduced in Sections 4–6.

Suppose h is a dq × 1 vector of ones and zeros, where zeros are imposed by given identifying

assumptions. Introduce dq×dq diagonal matrix H = diag(h). Then, we can define a standard

simplex for q̄ ≡ Hq as

Q̄ ≡ {q̄ :
∑
s

q̄s = 1 and q̄s ≥ 0 ∀s}. (7.1)

Note that the dimension of this simplex is smaller than the dimension dq of Q if h contains

zeros. Then we can modify (4.2) and (4.4) as

Bq̄ = p,

Wk = Akq̄,

respectively. Let δ∗(·; q̄) ≡ arg maxδk(·)∈DWk = Akq̄. Then, the identified set with the

identifying assumptions coded in h is defined as

D̄∗p ≡ {δ∗(·; q̄) : Bq̄ = p and q̄ ∈ Q} ⊂ D, (7.2)

which is assumed to be empty when Bq̄ 6= p. Importantly, the latter occurs when any of the

identifying assumptions are misspecified. Note that H is idempotent. Define ∆̄ ≡ ∆H and

B̄ ≡ BH. Then ∆q̄ = ∆̄q̄ and Bq̄ = B̄q̄. Therefore, to generate the DAG and characterize

the identified set, Theorems 4.1, 5.1, and 5.2 can be modified by replacing q, B and ∆ with

18Similarly, when these assumptions are incorporated in (6.2), we obtain tighter bounds on welfares.
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q̄, B̄ and ∆̄, respectively.

We now list examples of identifying assumptions. This list is far from complete, and

there may be other assumptions on how (Y ,D,Z) are generated. The first assumption

is a sequential version of the uniformity assumption (i.e., the monotonicity assumption) in

Imbens and Angrist (1994).

Assumption M1. For each t, either Dt(Z
t−1, 1) ≥ Dt(Z

t−1, 0) w.p.1 or Dt(Z
t−1, 1) ≤

Dt(Z
t−1, 0) w.p.1. conditional on (Y t−1,Dt−1,Zt−1).

Assumption M1 postulates that there is no defying (or complying) behavior in decision

Dt conditional on (Y t−1,Dt−1,Zt−1). Without being conditional on (Y t−1,Dt−1,Zt−1),

however, there can be a general non-monotonic pattern in the way that Zt influences Dt.

Recall S̃t ≡ ({Yt(yt−1,dt)}, {Dt(y
t−1,dt−1, zt)}) ∈ {0, 1}22t−1 × {0, 1}23t−2

. For example,

the no-defier assumption can be incorporated in h by having hs = 0 for s ∈ {S = β(S̃) :

Dt(y
t−1,dt−1, zt−1, 1) = 0 and Dt(y

t−1,dt−1, zt−1, 0) = 1 ∀t} and hs = 1 otherwise. By

extending the idea of Vytlacil (2002), we can show that M1 is the equivalent of imposing a

threshold-crossing model for Dt:

Dt = 1{πt(Y t−1,Dt−1,Zt) ≥ νt}, (7.3)

where πt(·) is an unknown, measurable, and non-trivial function of Zt.

Lemma 7.1. Suppose Assumption SX holds and Pr[Dt = 1|Y t−1,Dt−1,Zt] is a nontriv-

ial function of Zt. Assumption M1 is equivalent to (7.3) being satisfied conditional on

(Y t−1,Dt−1,Zt−1) for each t.

The dynamic selection model (7.3) should not be confused with the dynamic regime

(2.1). Compared to the dynamic regime dt = δt(y
t−1,dt−1), which is a hypothetical quantity,

equation (7.3) models each individual’s observed treatment decision, in that it is not only a

function of (Y t−1,Dt−1) but also νt, the individual’s unobserved characteristics. We assume

that the policymaker has no access to ν ≡ (ν1, ..., νT ). The functional dependence of Dt

on (Y t−1,Dt−1) and Zt−1 reflects the agent’s learning. Indeed, a specific version of such

learning can be imposed as an additional identifying assumption:

Assumption L. For each t and given zt, Dt(y
t−1,dt−1, zt) ≥ Dt(ỹ

t−1, d̃
t−1
, zt) w.p.1 for

(yt−1,dt−1) and (ỹt−1, d̃
t−1

) such that
∥∥yt−1 − dt−1∥∥ <

∥∥∥ỹt−1 − d̃t−1
∥∥∥ (long memory) or

yt−1 − dt−1 < ỹt−1 − d̃t−1 (short memory).

According to Assumption L, an agent has the ability to revise her next period’s decision

based on her memory. To illustrate, consider the second period decision, D2(y1, d1). Under
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Assumption L, an agent who would switch her treatment decision at t = 2 had she experienced

bad health (y1 = 0) after receiving the treatment (d1 = 1), i.e., D2(0, 1) = 0, would remain

to take the treatment had she experienced good health, i.e., D2(1, 1) = 1. Moreover, if an

agent has not switched even after bad health, i.e., D2(0, 1) = 1, it should be because of her

unobserved preference, and thus D2(1, 1) = 1, not because she cannot learn from the past,

i.e., D2(1, 1) = 0 cannot happen.19

Sometimes, we want to further impose uniformity in the formation of Yt on top of As-

sumption M1:

Assumption M2. Assumption M1 holds, and for each t, either Yt(D
t−1, 1) ≥ Yt(D

t−1, 0)

w.p.1 or Yt(D
t−1, 1) ≤ Yt(D

t−1, 0) w.p.1 conditional on (Y t−1,Dt−1,Zt−1).

This assumption postulates uniformity in a way that restricts heterogeneity of the con-

temporaneous treatment effect. As before, without being conditional on (Y t−1,Dt−1,Zt−1),

there can be a general non-monotonic pattern in the way that Dt influences Y t. It is worth

noting that Assumption M2 (and M1) does not assume the direction of monotonicity. This

is in contrast to the monotone treatment response assumption in, e.g., Manski (1997) and

Manski and Pepper (2000), which assume the direction. Using a similar argument as before,

Assumption M2 is the equivalent of a dynamic version of a nonparametric triangular model:

Yt = 1{µt(Y
t−1,Dt) ≥ εt}, (7.4)

Dt = 1{πt(Y t−1,Dt−1,Zt) ≥ νt}, (7.5)

where µt(·) and πt(·) are unknown, measurable, and non-trivial functions of Dt and Zt,

respectively.

Lemma 7.2. Suppose Assumption SX holds, Pr[Dt = 1|Y t−1,Dt−1,Zt] is a non-trivial

function of Zt, and Pr[Yt = 1|Y t−1,Dt] is a non-trivial function of Dt. Assumption M2 is

equivalent to (7.4)–(7.5) being satisfied conditional on (Y t−1,Dt−1,Zt−1) for each t.

The next assumption imposes a Markov-type structure in the Yt and Dt processes.

Assumption K. Yt|(Y t−1,Dt)
d
= Yt|(Yt−1, Dt) and Dt|(Y t−1,Dt−1,Zt)

d
= Dt|(Yt−1, Dt−1, Zt)

for each t.

In terms of the triangular model (7.4)–(7.5), Assumption K implies

Yt = 1{µt(Yt−1, Dt) ≥ εt},

Dt = 1{πt(Yt−1, Dt−1, Zt) ≥ νt},
19As suggested in this example, Assumption L makes the most sense when Yt and Dt are the same (or at

least similar) types over time, which is not generally required for the analysis of this paper.
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which yields the familiar structure of dynamic discrete choice models found in the literature.

Lastly, when there are more than two periods, an assumption that imposes stationarity can

be helpful for identification. Such an assumption can be found in Torgovitsky (2019).

8 Cardinality Reduction

The typical time horizons we consider in this paper are short. For example, a multi-stage ex-

periment called the Fast Track Prevention Program (Conduct Problems Prevention Research

Group (1992)) considers T = 4. When T is not small, the cardinality of D may be too large,

and we may want to reduce it for computational, institutional, and practical purposes.

One way to reduce the cardinality is to reduce the dimension of the adaptivity. Define

a simpler adaptive treatment rule δt : {0, 1} × {0, 1} → {0, 1} that maps only the lagged

outcome and treatment onto a treatment allocation dt ∈ {0, 1}:

δt(yt−1, dt−1) = dt.

In this case, we have |D| = 22T−1 instead of 22T−1. An even simpler rule, δt(yt−1), appears in

Murphy et al. (2001).

Another possibility is to be motivated by institutional constraints. For example, it may

be the case that adaptive allocation is available every second period or only later in the

horizon due to cost considerations. For example, suppose that the policymaker decides to

introduce the adaptive rule at t = T while maintaining static rules for t ≤ T − 1. Finally,

D can be restricted by budget or policy constraints that, e.g., the treatment is allocated to

each individual at most once.

9 Numerical Studies

We conduct numerical exercises to illustrate (i) the theoretical results developed in Sections 4–

6, (ii) the role of the assumptions introduced in Section 7, and (iii) the overall computational

scale of the problem. For T = 2, we consider the following data-generating process:

Di1 = 1{π1Zi1 + αi + vi1 ≥ 0}, (9.1)

Yi1 = 1{µ1Di1 + αi + ei1 ≥ 0}, (9.2)

Di2 = 1{π21Yi1 + π22Di1 + π23Zi2 + αi + vi2 ≥ 0}, (9.3)

Yi2 = 1{µ21Yi1 + µ22Di2 + αi + ei2 ≥ 0}, (9.4)
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Figure 4: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red)

where (v1, e1, v2, e2, α) are mutually independent and jointly normally distributed, the endo-

geneity of Di1 and Di2 as well as the serial correlation of the unobservables are captured by

the individual effect αi, and (Z1, Z2) are Bernoulli, independent of (v1, e1, v2, e2, α). Notice

that the process is intended to satisfy Assumptions SX, K, M1, and M2. We consider a

data-generating process where all the coefficients in (9.1)–(9.4) take positive values. In this

exercise, we consider the welfare Wk = E[Y2(δk(·))].
As shown in Table 1, there are eight possible regimes, i.e., |D| = |K| = 8. Because

the current exercise is small scale in generating the DAG, instead of using the analytical

algorithm proposed in Theorems 5.1 and 5.2, we directly calculate the lower and upper

bounds (Lk,k′ , Uk,k′) on the welfare gap Wk −Wk′ for all pairs k, k′ ∈ {1, ..., 8} (k < k′). This

is to illustrate the role of assumptions in improving the bounds. We conduct the bubble sort,

which makes
(

8

2

)
= 28 pair-wise comparisons, resulting in 28 × 2 linear programs to run.

As the researcher, we maintain Assumption K.
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Figure 5: Sharp Directed Acyclic Graph under M2

Figure 4 reports the bounds (Lk,k′ , Uk,k′) on Wk − Wk′ for all (k, k′) ∈ {1, ..., 8} under

Assumption M1 (in black) and Assumption M2 (in red). In the figure, we can determine the

sign of the welfare gap for those bounds that exclude zero. The difference between the black

and red bounds illustrates the role of Assumption M2 relative to M1. That is, there are more

bounds that avoid the zero vertical line with M2, which is consistent with the theory. Each

set of bounds generates an associated DAGs (produced as an 8 × 8 adjacency matrix). We

proceed with Assumption M2 for brevity.

Figure 5 (identical to Figure 1 in the Introduction) depicts the sharp DAG generated from

(Lk,k′ , Uk,k′)’s under Assumption M2, based on Theorem 4.1(i). Then, by Theorem 4.1(ii),

the identified set of δ∗(·) is

D∗p = {δ7(·), δ8(·)}.

Finally, the following is one of the topological sorts produced from the DAG:

(δ8(·), δ4(·), δ7(·), δ3(·), δ5(·), δ1(·), δ6(·), δ2(·)).

We also conducted a parallel analysis but with a slightly different data-generating process,

where (a) all the coefficients in (9.1)–(9.4) are positive except µ22 < 0 and (b) Z2 does not

exist. In Case (a), we obtain D∗p = {δ2(·)} as a singleton, i.e., we point identify δ∗(·) =

δ2(·). The results for Case (b) is shown in Figures 6 and 7. In this case, we obtain D∗p =

{δ6(·), δ7(·), δ8(·)}.
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Figure 6: Sharp Bounds on Welfare Gaps under M1 (black) and M2 (red) (with only Z1)

Figure 7: Sharp Directed Acyclic Graph under M2 (with only Z1)
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10 Estimation and Inference

The estimation of the DAG and the identified set D∗p is straightforward given the conditions

in Theorem 5.2. Recall that B1, ∆1
k,k′ , ∆0

k,k′ , and ∆
0

k,k′ are known objects to the researcher.

The only unknown object in the condition is p, the joint distribution of (Y ,D,Z), which can

be estimated as p̂, a vector of p̂y,d|z =
∑N

i=1 1{Y i = y,Di = d,Zi = z}/
∑N

i=1 1{Zi = z}.
Then, with θ̂k,k′ ≡ −∆1

k,k′B
−1
1 p̂, the estimated DAG is G(K, Êp), where

Êp = {(k, k′) : θ̂k,k′ < min{0,∆0
k,k′} for k, k′ ∈ K and k 6= k′}.

Then, D∗p can be estimated as

D̂∗ = {δk′(·) : θ̂k,k′ ≥ min{0,∆0
k,k′} for all k ∈ K and k 6= k′}.

Although we do not fully investigate inference in the current paper, we briefly discuss

it. To conduct inference on the optimal regime δ∗(·), we can construct a confidence set

(CS) for D∗p with the following procedure. We consider a sequence of hypothesis tests, in

which we eliminate regimes that are (statistically) significantly inferior to others. This is

a statistical analog of the elimination procedure encoded in (4.7) or (4.8). This inference

procedure extends Hansen et al. (2011)’s approach for the model confidence set, but in this

novel context. For each test given K̃ ⊂ K, we construct a null hypothesis that Wk ∼ Wk′ for

all k, k′ ∈ K̃. Geometrically, according to (5.5), this hypothesis restricts the range of θk,k′ so

that the hyperplane θk,k′ = ∆0
k,k′q0 lies within the cone Q2. Based on conditions (i)–(iii) in

Theorem 5.1, this results in a one-sided test for

H0,K̃ :
∣∣θk,k′ − l1(∆0

k,k′)
∣∣− l2(∆0

k,k′) ≤ 0 for all k, k′ ∈ K̃,

where l1 and l2 satisfy (i) l1(∆
0
k,k′) = (∆

0

k,k′ + ∆0
k,k′)/2 and l2(∆

0
k,k′) = (∆

0

k,k′ − ∆0
k,k′)/2

if ∆0
k,k′ < 0 < ∆

0

k,k′ ; (ii) l1(∆
0
k,k′) = ∆0

k,k′/2 and l2(∆
0
k,k′) = ∆0

k,k′/2 if ∆0
k,k′ ≥ 0; (iii)

l1(∆
0
k,k′) = ∆

0

k,k′/2 and l2(∆
0
k,k′) = −∆

0

k,k′/2 if ∆
0

k,k′ ≤ 0, corresponding to conditions (i)–(iii)

in Theorem 5.1, respectively.

Then, the procedure of constructing the CS, denoted as D̂CS, is as follows: Step 0. Initially

set K̃ = K. Step 1. Test H0,K̃ at level α with test function φK̃ ∈ {0, 1}. Step 2. If H0,K̃

is not rejected, define D̂CS = {δk(·) : k ∈ K̃}; otherwise eliminate vertex kK̃ from K̃ and

repeat from Step 1. In Step 1, TK̃ ≡ maxk,k′∈K̃ tk,k′ can be used as the test statistic for H0,K̃

where tk,k′ is a standard t-statistic, i.e., the ratio between
∣∣∣θ̂k,k′ − l1(∆0

k,k′)
∣∣∣ − l2(∆0

k,k′) and

its standard error. The distribution of TK̃ can be estimated using bootstrap. In Step 2, a

candidate for kK̃ is kK̃ ≡ arg maxk∈K̃maxk′∈K̃ tk,k′ . Following Hansen et al. (2011), we can
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show that the resulting CS has desirable properties. Let HA,K̃ be the alternative hypothesis.

Assumption CS. For any K̃, (i) lim supn→∞ Pr[φK̃ = 1|H0,K̃] ≤ α, (ii) limn→∞ Pr[φK̃ =

1|HA,K̃] = 1, and (iii) limn→∞ Pr[δkK̃(·) ∈ D∗p|HA,K̃] = 0.

Proposition 10.1. Under Assumption CS, it satisfies that lim infn→∞ Pr[D∗p ⊂ D̂CS] ≥ 1−α
and limn→∞ Pr[δ(·) ∈ D̂CS] = 0 for all δ(·) /∈ D∗p.

The procedure of constructing the CS does not suffer from the problem of multiple test-

ings. This is because the procedure stops as soon as the first hypothesis is not rejected, and

asymptotically, maximal elements will not be questioned before all sub-optimal regimes are

eliminated; see Hansen et al. (2011) for related discussions. The resulting CS can also be

used to conduct a specification test for a less palatable assumption, such as Assumption M2.

We can refute the assumption when the CS under that assumption is empty.

Inference on the welfare bounds in (6.2) can be conducted by using recent results as in

Deb et al. (2017), who develop uniformly valid inference for bounds obtained via linear pro-

gramming. Inference on optimized welfare Wδ∗ or maxδ(·)∈D̂CS
Wδ can also be an interesting

problem. Andrews et al. (2019) consider inference on optimized welfare (evaluated at the

estimated policy) in the context of Kitagawa and Tetenov (2018), but with point-identified

welfare under the unconfoundedness assumption. Extending the framework to the current

setting with partially identified welfare and dynamic regimes under treatment endogeneity

would also be interesting future work.

A Appendix

A.1 Stochastic Regimes

For each t = 1, ..., T , define an adaptive stochastic treatment rule δ̃t : {0, 1}t−1×{0, 1}t−1 →
[0, 1] that allocates the probability of treatment:

δ̃t(y
t−1, d̃

t−1
) = d̃t ∈ [0, 1]. (A.1)

Then, the vector of these δ̃t’s is a dynamic stochastic regime δ̃(·) ≡ δ̃
T

(·) ∈ Dstoch where

Dstoch is the set of all possible stochastic regimes.20 A deterministic regime is a special case

where δ̃t(·) takes the extreme values of 1 and 0. Therefore, D ⊂ Dstoch where D is the set of

deterministic regimes. We define YT (δ̃(·)) with δ̃(·) ∈ Dstoch as the counterfactual outcome

20Dynamic stochastic regimes are considered in, e.g., Murphy et al. (2001), Murphy (2003), and Manski
(2004).
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YT (δ(·)) where the deterministic rule δt(·) = 1 is randomly assigned with probability δ̃t(·)
and δt(·) = 0 otherwise for all t ≤ T . Finally, define

Wδ̃ ≡ E[YT (δ̃(·))],

where E denotes an expectation over the counterfactual outcome and the random mechanism

defining a rule, and define δ̃
∗
(·) ≡ arg maxδ̃(·)∈Dstoch

Wδ̃. The following theorem show that a

deterministic regime is achieved as being optimal even though stochastic regimes are allow.

Theorem A.1. Suppose Wδ̃ ≡ E[YT (δ̃(·))] for δ̃(·) ∈ Dstoch and Wδ ≡ E[YT (δ(·))] for

δ(·) ∈ D. It satisfies that

δ∗(·) ≡ arg max
δ(·)∈D

Wδ = arg max
δ̃(·)∈Dstoch

Wδ̃.

By the law of iterative expectation, we have

E[YT (δ̃(·))] = E
[
E
[
· · ·E

[
E[YT (d̃)|Y T−1(d̃

T−1
)]
∣∣∣Y T−2(d̃

T−2
)
]
· · ·
∣∣∣Y1(d̃1)]] , (A.2)

where the bridge variables d̃ = (d̃1, ..., d̃T ) satisfy

d̃1 = δ̃1,

d̃2 = δ̃2(Y1(d̃1), d̃1),

d̃3 = δ̃3(Y
2(d̃

2
), d̃

2
),

...

d̃T = δ̃T (Y T−1(d̃
T−1

), d̃
T−1

).

Given (A.2), we prove the theorem by showing that the solution δ̃
∗
(·) can be justified by

backward induction in a finite-horizon dynamic programming. To illustrate this with deter-

ministic regimes when T = 2, we have

δ∗2(y1, d1) = arg max
d2

E[Y2(d)|Y1(d1) = y1], (A.3)

and, by defining V2(y1, d1) ≡ maxd2 E[Y2(d)|Y1(d1) = y1],

δ∗1 = arg max
d1

E[V2(Y1(d1), d1)]. (A.4)

Then, δ∗(·) is equal to the collection of these solutions: δ∗(·) = (δ∗1, δ
∗
2(·)).
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Proof. First, given (A.2), the optimal stochastic rule in the final period can be defined as

δ̃∗T (yT−1, d̃
T−1

) ≡ arg max
d̃T∈[0,1]

E[YT (d̃)|Y T−1(d̃
T−1

) = yT−1].

Define a value function at period T as VT (yT−1, d̃
T−1

) ≡ maxd̃T
E[YT (d̃)|Y T−1(d̃

T−1
) =

yT−1]. Similarly, for each t = 1, ..., T − 1, let

δ̃∗t (yt−1, d̃
t−1

) ≡ arg max
d̃t∈[0,1]

E[Vt+1(Y
t(d̃

t
), d̃

t
)|Y t−1(d̃

t−1
) = yt−1]

and Vt(y
t−1, d̃

t−1
) ≡ maxd̃t

E[Vt+1(Y
t(d̃

t
), d̃

t
)|Y t−1(d̃

t−1
) = yt−1]. Then, δ̃

∗
(·) = (δ̃∗1, ..., δ̃

∗
T (·)).

Since {0, 1} ⊂ [0, 1], the same argument can apply for the deterministic regime using the

current framework but each maximization domain being {0, 1}. This analogously defines

δ∗t (·) ∈ {0, 1} for all t, and then δ∗(·) = (δ∗1, ..., δ
∗
T (·)), similarly as in Murphy (2003).

Now, for the maximization problems above, let W̃t(d̃
t
,yt−1) represent the objective func-

tion at t for 2 ≤ t ≤ T with W̃1(d̃1) for t = 1. By the definition of the stochastic regime, it

satisfies that

W̃t(d̃
t
,yt−1) = d̃tWt(1, d̃

t−1
,yt−1) + (1− d̃t)Wt(0, d̃

t−1
,yt−1)

= d̃t

{
Wt(1, d̃

t−1
,yt−1)−Wt(0, d̃

t−1
,yt−1)

}
+Wt(0, d̃

t−1
,yt−1).

Therefore, Wt(1, d̃
t−1
,yt−1) ≥ Wt(0, d̃

t−1
,yt−1) or 1 = arg maxd̃t∈{0,1} W̃t(d̃

t
,yt−1) if and only

if 1 = arg maxd̃t∈[0,1] W̃t(d̃
t
,yt−1). Symmetrically, 0 = arg maxd̃t∈{0,1} W̃t(d̃

t
,yt−1) if and only

if 0 = arg maxd̃t∈[0,1] W̃t(d̃
t
,yt−1). This implies that δ̃∗t (·) = δ∗t (·) for all t = 1, ..., T , which

proves the theorem.

A.2 Matrices in Section 4.3

We show how to construct matrices Ak and B in (4.2) and (4.4) for the linear programming

(4.6). The construction of Ak and B uses the fact that any linear functional of Pr[Y (d) =

y,D(z) = d] can be characterized as a linear combination of qs. Although the notation of

this section can be somewhat heavy, if one is committed to the use of linear programming

instead of an analytic solution, most of the derivation can be systematically reproduced in a

standard software, such as MATLAB and Python.
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Consider B first. By Assumption SX, we have

py,d|z = Pr[Y (d) = y,D(z) = d]

= Pr[Y (yT−1,d) = y,D(yT−1,dT−1, z) = d]

= Pr[S : Yt(y
t−1,dt) = yt, Dt(y

t−1,dt−1, zt) = dt ∀t]

=
∑

s∈Sy,d|z

qs, (A.5)

where Sy,d|z ≡ {S = β(S̃) : Yt(y
t−1,dt) = yt, Dt(y

t−1,dt−1, zt) = dt ∀t}, S̃ ≡ (S̃1, ..., S̃T )

with S̃t ≡ ({Yt(yt−1,dt)}, {Dt(y
t−1,dt−1, zt)}), and β(·) is a one-to-one map that transforms

a binary sequence into a decimal value. Then, for a dq × 1 vector By,d|z,

py,d|z =
∑

s∈Sy,d|z

qs = By,d|zq

and the dq × dp matrix B stacks By,d|z so that p = Bq.

For Ak, recall Wδk is a linear functional of qδk(y) ≡ Pr[Y (δk(·)) = y]. For given δ(·), by

repetitively applying the law of iterated expectation, we can show

Pr[Y (δ(·)) = y]

= Pr[YT (d) = yT |Y T−1(dT−1) = yT−1]

× Pr[YT−1(d
T−1) = yT−1|Y T−2(dT−2) = yT−2]× · · · × Pr[Y1(d1) = y1], (A.6)

where, because of the appropriate conditioning in (A.6), the bridge variables d = (d1, ..., dT )

satisfies

d1 = δ1,

d2 = δ2(y1, d1),

d3 = δ3(y
2,d2),

...

dT = δT (yT−1,dT−1).

Therefore, (A.6) can be viewed as a linear functional of Pr[Y (d) = y]. To illustrate, when
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T = 2, the welfare defined as the average counterfactual terminal outcome satisfies

E[YT (δ(·))] =
∑
y1

Pr[Y2(δ1, δ2(Y1(δ1), δ1)) = 1|Y1(δ1) = y1] Pr[Y1(δ1) = y1]

=
∑
y1

Pr[Y2(δ1, δ2(y1, δ1)) = 1, Y1(δ1) = y1]. (A.7)

Then, for a chosen δ(·), the values δ1 = d1 and δ2(y1, δ1) = d2 at which Y2(δ1, δ2(y1, δ1)) and

Y1(δ1) are defined is given in Table 1 as shown in the main text. Therefore, E[Y2(δ(·))] can

be written as a linear functional of Pr[Y2(d1, d2) = y2, Y1(d1) = y1].

Now, define a linear functional hk(·) that (i) marginalizes Pr[Y (d) = y,D(z) = d] into

Pr[Y (d) = y] and then (ii) maps Pr[Y (d) = y] into Pr[Y (δk(·)) = y] according to (A.6).

But recall that Pr[Y (d) = y,D(z) = d] =
∑

s∈Sy,d|z
qs by (A.5). Consequently, we have

Wk = f(qδk) = f(Pr[Y (δk(·)) = ·])

= f ◦ hk(Pr[Y (·) = ·,D(z) = ·]),

= f ◦ hk

 ∑
s∈S·,·|z

qs

 ≡ Akq.

To continue the illustration (4.3) in the main text, note that

Pr[Y (1, 1) = (1, 1)] = Pr[S : Y1(1) = 1, Y2(1, 1) = 1] =
∑
s∈S11

qs,

where S11 ≡ {S = β(S̃1, S̃2) : Y1(1) = 1, Y2(1, 1) = 1}. Similarly, we have

Pr[Y (1, 1) = (0, 1)] = Pr[S : Y1(1) = 0, Y2(1, 1) = 1] =
∑
s∈S01

qs,

where S01 ≡ {S = β(S̃1, S̃2) : Y1(1) = 0, Y2(1, 1) = 1}.

A.3 Proof of Theorem 4.1

Let Qp ≡ {q : Bq = p} ∩ Q be the feasible set. To prove part (i), first note that the sharp

DAG can be explicitly defined as G(K, Ep) with

Ep ≡ {(k, k′) ∈ K : Akq > Ak′q for all q ∈ Qp}.

Here, Akq > Ak′q for all q ∈ Qp if and only if Lk,k′ > 0 as Lk,k′ is the sharp lower bound of

(Ak −Ak′)q in (4.6). The latter is because the feasible set {q : Bq = p and q ∈ Q} is convex
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and thus {∆k,k′q : Bq = p and q ∈ Q} is convex, which implies that any point between

[Lk,k′ , Uk,k′ ] is attainable.

To prove part (ii), it is helpful to note that D∗p in (4.5) can be equivalently defined as

D∗p ≡ {δk′(·) : @k ∈ K such that Akq > Ak′q for all q ∈ Qp}

= {δk′(·) : Akq ≤ Ak′q for all k ∈ K and some q ∈ Qp}.

Let D̃∗p ≡ {δk′(·) : @k ∈ K such that Lk,k′ > 0 and k 6= k′}. First, we prove that D∗p ⊂ D̃∗p.

Note that

D\D̃∗p = {δk′ : Lk,k′ > 0 for some k 6= k′}.

Suppose δk′ ∈ D\D̃∗p. Then, for some k 6= k′, (Ak − Ak′)q ≥ Lk,k′ > 0 for all q ∈ Qp.

Therefore, for such k, Akq > Ak′q for all q ∈ Qp, and thus δk′ /∈ D∗p ≡ {arg maxδk Akq : q ∈
Qp}.

Now, we prove that D̃∗p ⊂ D∗p. Suppose δk′ ∈ D̃∗p. Then @k 6= k′ such that Lk,k′ > 0.

Equivalently, for any given k 6= k′, either (a) Uk,k′ ≤ 0 or (b) Lk,k′ < 0 < Uk,k′ . Consider (a),

which is equivalent to maxq∈Qp(Ak −Ak′)q ≤ 0. This implies that Akq ≤ Ak′q for all q ∈ Qp.

Consider (b), which is equivalent to minq∈Qp(Ak − Ak′)q < 0 < maxq∈Qp(Ak − Ak′)q. This

implies that ∃q ∈ Qp such that Akq = Ak′q. Combining these implications of (a) and (b), it

should be the case that ∃q ∈ Qp such that, for all k 6= k′, Ak′q ≥ Akq. Therefore, δk ∈ D∗p.

�

A.4 Proof of Theorem 5.1

Since Q0 is a finitely generated cone, finding conditions under which (5.5) holds is equiv-

alent to finding conditions under which ∆0q0 = θ intersects one of the edges of the cone:

{q0 : qs + qs′ = 1 for s, s′ ∈ S0 and other elements are zero} or {q0 : qs ∈ [0, 1] for s ∈
S0 and other elements are zero}. For s ∈ S0, let γs denote the element of ∆0. First, consider

condition (i) in the theorem. Choose q0 such that qs = t, qs′ = 1− t, and other elements are

equal to zero. Then,

θ = ∆0q0 = γst+ γs′(1− t) = (γs − γs′)t+ γs′

if and only if

t =
θ − γs′
γs − γs′

.
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But then t ∈ [0, 1] by (i), and thus such q0 ∈ Q0. Therefore, (5.5) holds.

Next, consider condition (ii) in the theorem. Choose q0 such that qs is possibly nonzero

for given s ∈ S0, while all other elements are zero. Then,

θ = ∆0q0 = γsqs

if and only if qs = θ/γs (assuming γs 6= 0), which is in [0, 1] by (ii), and thus such q0 ∈ Q0.

In this case, when γs = 0, then we trivially have q0 ∈ Q0. Therefore, (5.5) holds. The proof

with condition (iii) is symmetric, so omitted. �

A.5 Proof of Theorem 5.2

For s ∈ S0, let γs denote the element of ∆0. We prove the case with L > 0; the case with

U < 0 can be symmetrically proved, so omitted. Suppose (5.6) holds, i.e., ∆0 > θ and 0 > θ.

If ∆0 > θ, i.e., γs > θ for all s ∈ S0, then
∑

s∈S0 γsqs > θ
∑

s∈S0 qs since qs ≥ 0 for all

s ∈ S0 and qs > 0 for some s ∈ S0 (since q0 is a nonzero vector). But θ
∑

s∈S0 qs ≥ θ since∑
s∈S0 qs ≤ 1 and θ < 0. Combining these results, ∆q = ∆0q0 − θ > 0 for any q ∈ Q, or

equivalently, L > 0. Conversely, when (5.6) is violated, the case falls into either one of the

three conditions in Theorem 5.1 or θ > max{0,∆0}. The former case implies incomparability

which contradicts L > 0. The latter case implies U < 0 (by an argument symmetric to above)

which is contradiction since L ≤ U . This proves necessity and sufficiency of the condition.

�

A.6 Alternative Characterization of the Identified Set

Given the DAG, the identified set of δ∗(·) can also be obtained as the collection of initial

vertices of all the directed paths of the DAG. For a DAG G(K, E), a directed path is a

subgraph G(Kj, Ej) (1 ≤ j ≤ J ≤ 2|K|) where Kj ⊂ K is a totally ordered set with initial

vertex k̃j,1.
21 In stating our main theorem, we make it explicit that the DAG calculated by

the linear programming is a function of the data distribution p.

Theorem A.2. Suppose Assumptions SX and B hold. Then, D∗p defined in (4.5) satisfies

D∗p = {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}, (A.8)

where k̃j,1 is the initial vertex of the directed path G(Kp,j, Ep,j) of G(K, Ep).

21For example, in Figure 2(a), there are two directed paths (J = 2) with V1 = {1, 2, 3} (k̃1,1 = 1) and

V2 = {2, 3, 4} (k̃2,1 = 4).
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Proof. Let D̃∗ ≡ {δk̃j,1(·) ∈ D : 1 ≤ j ≤ J}. First, note that since k̃j,1 is the initial vertex

of directed path j, it should be that Wk̃j,1
≥ Wk̃j,m

for any k̃j,m in that path by definition.

We begin by supposing D∗p ⊃ D̃∗. Then, there exist δ∗(·; q) = arg maxδk(·)∈D Akq for some

q that satisfies Bq = p and q ∈ Q, but which is not the initial vertex of any directed path.

Such δ∗(·; q) cannot be other (non-initial) vertices of any paths as it is contradiction by

the definition of δ∗(·; q). But the union of all directed paths is equal to the original DAG,

therefore there cannot exist such δ∗(·; q).
Now suppose D∗p ⊂ D̃∗. Then, there exists δk̃j,1(·) 6= δ∗(·; q) = arg maxδk(·)∈D Akq for

some q that satisfies Bq = p and q ∈ Q. This implies that Wk̃j,1
< Wk̃ for some k̃. But k̃

should be a vertex of the same directed path (because Wk̃j,1
and Wk̃ are ordered), but then

it is contradiction as k̃j,1 is the initial vertex. Therefore, D∗p = D̃∗.

A.7 Proof of Theorem 6.1

Given Theorem A.2, proving D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG} will suffice. Recall D̃∗ ≡ {δk̃j,1(·) ∈
D : 1 ≤ j ≤ J} where k̃j,1 is the initial vertex of the directed path G(Kp,j, Ep,j). When all

topological sorts are singletons, the proof is trivial so we rule out this possibility. Suppose

D̃∗ ⊃ {δkl,1(·) : 1 ≤ l ≤ LG}. Then, for some l, there should exist δkl,m(·) for some m 6= 1 that

is contained in D̃∗ but not in {δkl,1(·) : 1 ≤ l ≤ LG}, i.e., that satisfies either (i) Wkl,1 > Wkl,m

or (ii) Wkl,1 and Wkl,m are incomparable and thus either Wkl′,1
> Wkl,m for some l′ 6= l or

Wkl,m is a singleton in another topological sort. Consider case (i). If δkl,1(·) ∈ Dj for some j,

then it should be that δkl,m(·) ∈ Dj as δkl,1(·) and δkl,m(·) are comparable in terms of welfare,

but then δkl,m(·) ∈ D̃∗ contradicts the fact that δkl,1(·) the initial vertex of the topological

sort. Consider case (ii). The singleton case is trivially rejected since if the topological sort

a singleton, then δkl,m(·) should have been already in {δkl,1(·) : 1 ≤ l ≤ LG}. In the other

case, since the two welfares are not comparable, it should be that δkl,m(·) ∈ Dj′ for j′ 6= j.

But δkl,m(·) cannot be the one that delivers the largest welfare since Wkl′,1
> Wkl,m where

δkl′,1(·). Therefore δkl,m(·) ∈ D̃∗ is contradiction. Therefore there is no element in D̃∗ that is

not in {δkl,1(·) : 1 ≤ l ≤ LG}.
Now suppose D̃∗ ⊂ {δkl,1(·) : 1 ≤ l ≤ LG}. Then for l such that δkl,1(·) /∈ D̃∗, either

Wkl,1 is a singleton or Wkl,1 is an element in a non-singleton topological sort. But if it is a

singleton, then it is trivially totally ordered and is the maximum welfare, and thus δkl,1(·) /∈
D̃∗ is contradiction. In the other case, if Wkl,1 is a maximum welfare, then δkl,1(·) /∈ D̃∗

is contradiction. If it is not a maximum welfare, then it should be a maximum in another

topological sort, which is contradiction in either case of being contained in {δkl,1(·) : 1 ≤ l ≤
LG} or not. This concludes the proof that D̃∗ = {δkl,1(·) : 1 ≤ l ≤ LG}. �
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A.8 Proof of Lemma 7.1

Conditional on (Y t−1,Dt−1,Zt−1) = (yt−1,dt−1, zt−1), it is easy to show that (7.3) implies

Assumption M1. Suppose πt(y
t−1,dt−1, zt−1, 1) > πt(y

t−1,dt−1, zt−1, 1) as πt(·) is a nontrivial

function of Zt. Then, we have

1{πt(yt−1,dt−1, zt−1, 1) ≥ Vt} ≥ 1{πt(yt−1,dt−1, zt−1, 0) ≥ Vt}

w.p.1, or equivalently, Dt(z
t−1, 1) ≥ Dt(z

t−1, 0) w.p.1. Suppose πt(y
t−1,dt−1, zt−1, 1) <

πt(y
t−1,dt−1, zt−1, 1). Then, by a parallel argument, Dt(z

t−1, 1) ≤ Dt(z
t−1, 0) w.p.1.

Now, we show that Assumption M1 implies (7.3) conditional on (Y t−1,Dt−1,Zt−1). For

each t, Assumption SX implies Yt(d
t), Dt(z

t) ⊥ Zt|(Y t−1(dt−1),Dt−1(zt−1),Zt−1), which in

turn implies the following conditional independence:

Yt(d
t), Dt(z

t) ⊥ Zt|(Y t−1,Dt−1,Zt−1). (A.9)

Conditional on (Y t−1,Dt−1,Zt−1), (7.3) and (A.9) correspond to Assumption S-1 in Vytlacil

(2002). Assumption R(i) and (A.9) correspond to Assumption L-1, and Assumption M1

corresponds to Assumption L-2 in Vytlacil (2002). Therefore, the desired result follows by

Theorem 1 of Vytlacil (2002). �

A.9 Proof of Lemma 7.2

We are remained to prove that, conditional on (Y t−1,Dt−1,Zt−1), (7.4) is equivalent to the

second part of Assumption M2. But this proof is analogous to the proof of Lemma 7.1 by

replacing the roles of Dt and Zt with those of Yt and Dt, respectively. Therefore, we have

the desired result. �
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