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Abstract

Agents about to engage in economic transactions may take costly actions to

influence their own or others’ information: costly signaling, information acquisition,

hard evidence disclosure, and so forth. We study the problem of optimally designing

a mechanism to be robust to all such activities, here termed information games. The

designer cares about welfare, and explicitly takes the costs incurred in information

games into account. We adopt a simple bilateral trade model as a case study. Any

trading mechanism is evaluated by the expected welfare, net of information game

costs, that it guarantees in the worst case across all possible games. Dominant-

strategy mechanisms are natural candidates for the optimum, since there is never

any incentive to manipulate information. We find that for some parameter values, a

dominant-strategy mechanism is indeed optimal; for others, the optimum is a non-

dominant-strategy mechanism, in which one party chooses which of two trading

prices to offer.
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1 Introduction

Consider two agents about to engage in an economic transaction — say, sale of a good, at

a price to be negotiated. Each agent may undertake various costly activities to influence

her trading partner’s information, or her own, to gain an advantage in bargaining: for

example, costly learning about her partner’s value for the good; efforts to prevent her

partner from learning her own value; conversely, disclosing hard evidence of her own value;

costly signaling as in Spence [26], where the meanings of the signals are determined within

the equilibrium; and many other possibilities. Considerable research in game theory

and information economics has gone into studying these kinds of activities, and their

implications for equilibrium trading behavior, welfare, and optimal mechanism design.

In this paper, we take a broader perspective and consider a large class of such infor-

mation games at once, which includes all of the above examples. An information game

is any game (possibly dynamic) in which the agents take some actions, at some possi-

ble costs, and receive signals which may be informative about the values for the good.

The benefits to receiving (and giving) such signals, and therefore the actions taken in

the information game, naturally vary depending on what trading mechanism the agents

will subsequently participate in. We therefore consider the following question: What

mechanism would a planner adopt to maximize social welfare — where welfare takes into

account both the outcome of the mechanism itself, and any costs spent on manipulating

information beforehand? Rather than take a specific stand on the information game at

hand, we envision a planner who is concerned about all such games. In the process, we

also address the related question of what kind of information game makes it most difficult

to achieve socially valuable trade. Note that the existence of an information game can

potentially either hurt or help social welfare (it can be helpful by removing information

frictions — in the extreme case where all agents become fully informed at no cost, the

first-best becomes achievable); our conservative approach here focuses on hurtful cases.

In general, either with two agents or with more, one can consider agents learning about

their own values, others’ values, or both. Here we assume private values (agents already

know their own preferences), so the learning is about others. This allows us to identify

a natural focal class of mechanisms: dominant-strategy mechanisms, in which each agent

is asked to report her preferences, and it is always in her best interest to be truthful, no

matter what anyone else does. Indeed, in such a mechanism, no agent can ever have an

incentive to spend any costs on affecting information (either her own or others’) since it

will not influence subsequent play of the mechanism.
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This property has in fact been discussed in more applied contexts. In the school

choice arena, for example, Pathak and Sönmez [22] present evidence of Boston parents

strategically gathering information about others’ choices. Moreover, Pathak and Sönmez

[23] indicate that one explicit reason for England’s shift away from the (non-dominant-

strategy) Boston mechanism was that the latter “made the system unnecessarily complex

... [forcing] many parents to play an ‘admissions game.’ ” This can be understood as

a concern about the costs incurred by parents in strategizing. Milgrom’s [20] review of

market design similarly refers to participants’ incentives to engage in espionage to learn

about each other in non-dominant-strategy mechanisms; see also Li [17]. On the more

theoretical side, Bikhchandani [4] also gives an example of how information acquisition can

break non-dominant-strategy mechanisms. Our approach here allows us to ask rigorously

whether this concern indeed justifies a focus on dominant-strategy mechanisms: If some

other mechanism can generate better welfare — and can do so regardless of the information

game at hand — then we reach a strong negative answer.

To study this question in detail, we need a specific application. As foreshadowed

above, we adopt a version of the classic model of Myerson and Satterthwaite [21], where

a buyer and seller meet to trade a single good. This is a natural choice because it is a

canonical model with two important features:

• The designer’s objective is welfare, so that it makes sense to be concerned with costs

incurred in the information game.

• In the standard formulation of the problem, dominant-strategy mechanisms are

suboptimal. (This is important; otherwise we would have no reason to consider

non-dominant-strategy mechanisms.)

In addition, the quasi-linear utility makes it easy to combine allocative welfare and infor-

mation game costs into a single objective.

In the usual treatment of this model, dominant-strategy mechanisms are simply posted

prices (or randomizations over posted prices): the price is given, each party can accept

or reject, and if both accept then trade occurs at that price [14]. This is not the case in

our version because we consider discrete types. In Section 2, after presenting our basic

bilateral trade model, we explicitly derive the optimal dominant-strategy mechanism,

which involves probabilistic trade.

In spite of their considerable robustness, dominant-strategy mechanisms need not be

optimal in our model. For some parameter values, the planner can guarantee a higher level

of welfare — regardless of the information game — by using a flexible-price mechanism,
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in which one agent can choose which of two prices to offer, and the other can accept

or reject. Which price to offer depends on the offerer’s belief about the receiver, and

so there are incentives for the offerer to try to acquire information, and for the receiver

to selectively reveal or hide information. Nonetheless, in equilibrium, we can bound the

costs spent on these activities, and show that they can be outweighed by the efficiency

gains from venturing outside the restrictive class of dominant-strategy mechanisms.

For what parameter values does this happen? For an intuition, note that the class of

dominant-strategy mechanisms depends on the set of possible types of each agent, but

not on their probabilities. Each such mechanism prescribes low probability of trade for

some type profiles. When these type profiles have relatively high probability, this is when

dominant-strategy mechanisms are too limiting, and flexible-price mechanisms can do

better.

We would like to go beyond comparing two particular mechanisms, however, and

actually optimize over all trading mechanisms. We can sharpen our question as follows:

Each mechanism is evaluated by its robust guarantee across all information games, i.e. by

the welfare that it generates in the worst case over information games. Here, welfare is

defined in expectation (with respect to a given prior over agents’ types) and, as stated

above, accounts for both the material gains from trade in the mechanism and any costs

(or benefits) incurred in the information game. Then we can ask, what exactly is the best

such welfare guarantee, and what mechanism achieves it?

We focus on a very modest setting: the bilateral trade model with just two types

of each agent. But for this setting, we answer our question completely (modulo some

technicalities). For all parameter values, the optimal guarantee comes from either a

dominant-strategy mechanism or a flexible-price mechanism, and we identify when each

case occurs; see Figure 3 below.

The analysis also identifies the worst-case information game. This worst case is not

one where agents pay to acquire information about each other, but rather one where

they must pay to prevent information from being released. That is, the buyer is given

a chance to pay some cost, and if she refuses, information becomes available that hurts

the buyer’s payoff in the trading mechanism; and the seller gets a chance to pay some

cost, otherwise information becomes available that hurts the seller. Note that “hurting

the buyer” does not necessarily mean that the seller becomes fully informed about the

buyer’s value; rather, the nature of the information that hurts the buyer is endogenous to

the trading mechanism, and also may be different for the high-type buyer than the low

type. Similarly for the seller.
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This idea, that “informational extortion” serves as an adversarial information game,

extends much more broadly than our specific bilateral trade model. Precursors to the

informational extortion construction exist elsewhere in the game theory literature [15, 24],

but making it precise in our setting requires much additional technical work, stemming

primarily from the fact that any given trading mechanism may have multiple equilibria,

and effective extortion depends on knowing which equilibrium is being played. All this is

discussed in much more detail in Section 4.

This construction of informational extortion can be employed judiciously to give an

upper bound on the welfare guarantee of any mechanism, and therefore of the best mech-

anism. On the other hand, we can also give a lower bound by simply analyzing the

performance of particular mechanisms. The analysis outlined in Section 5 shows how

the upper and lower bound coincide for all parameter values, thereby proving the main

theorem.

This paper ties in thematically with several other recent robustness studies in mech-

anism design. Most closely related is the work by Brooks and Du [7], who consider a

common-value auction model in which the information structure is unknown, and solve

for the optimal auction under a maxmin criterion. (In the process, they also identify

the worst-case information structure. See also [2].) Their objective is revenue, so the

designer in their model cares only about the information that agents have when entering

the mechanism, and not about costs they incur in getting to that information, as we do

here.

Insofar as we assess the robustness of dominant-strategy mechanisms, this paper also

connects with other studies on the foundations for such mechanisms. In particular, [9]

considers that dominant-strategy mechanisms are robust to agents’ beliefs about each

other’s types, and asks whether this robustness justifies focusing on such mechanisms

(there looking at an auction context): If the designer evaluates a mechanism by worst-

case revenue over all possible beliefs, is the optimal mechanism a dominant-strategy one?

Similarly, [27] studies robustness to uncertainty about others’ strategies, by assuming

agents only play undominated strategies rather than equilibrium. Both of these papers,

like ours, show that dominant-strategy mechanisms are indeed optimal for some param-

eters but not for others.1 (Unlike them, the present paper identifies the optimum even

when it is not a dominant-strategy mechanism.)

1Börgers [5] (see also [6]) observes that even if a dominant-strategy mechanism solves the maxmin
problem, it may be weakly dominated in an appropriate sense. The criticism applies to our setting as
well. However, the maxmin criterion is simple, and delivers (we hope) some relevant insights.
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In one sense, the robustness criterion in the present paper is more demanding than

those in [9, 27], and therefore more predisposed to select dominant-strategy mechanisms,

since we consider not only uncertainty over agents’ information but also care about costs

incurred in attaining that information. However, our robustness criterion is also less

demanding than theirs in that we restrict the space of possibilities by assuming equilibrium

and common priors. Thus our criterion is not nested with those of [9] or [27]. Note that

in our analysis here, if we did not impose any such “correct beliefs” assumptions, the

planner would effectievly be restricted to dominant-strategy mechanisms: For any non-

dominant-strategy mechanism, we could imagine an information game where an agent

learns the other’s type, and expects to pay nothing, but actually has to pay a million

dollars; thus the mechanism leads to arbitrarily large welfare costs. We need to impose

some modeling discipline to avoid such trivial conclusions, and we do this by assuming

equilibrium throughout.

Finally, this paper naturally relates to the existing literature on mechanism design with

endogenous information acquisition and other information games; although this literature

has largely focused on agents learning about their own preferences (such as the classic

studies [10, 12, 11]), rather than assuming, as we do here, that agents know their own

preferences and are learning about others. Moreover, much of that literature has assumed

very specific forms for the information game. An exception is Bergemann and Välimäki

[3] who considered general information acquisition (about own preferences) and showed

that the VCG mechanism is socially optimal, where the welfare criterion incorporates

information acquisition costs.

2 The bilateral trade model

In this section, we lay out the basic bilateral trade model, without any information ac-

quisition. It is a discrete-type version of the model of Myerson and Satterthwaite [21]

with an exact budget-balance requirement.2 (This two-type model was also studied by

Matsuo [19].) In the following section, we will introduce information games and give the

worst-case welfare criterion, and state the characterization of optimal mechanisms.

2We could instead consider weak budget balance, i.e. money can be thrown away but not created.
This would require more variables, but would not change the substantive results.
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Figure 1: Possible values for each agent.

2.1 Definitions

There are two agents, a buyer (B) and a seller (S) of a good. The buyer’s value for the

good is b, and the seller’s value (or cost of provision) is s. Each of these values has two

possible realizations, b, b for the buyer and s, s for the seller (where b < b, s < s). Payoffs

are quasi-linear, so if the interaction between the agents leads to a sale occurring with

probability q ∈ [0, 1], and the expected net payment from the buyer to seller is t ∈ R,

then the buyer’s payoff is qb− t and the seller’s is t−qs; social welfare is the sum, q(b−s).

The (common) prior is that the buyer’s and seller’s values are independently dis-

tributed, with probabilities pb, pb for the buyer and ps, ps for the seller (evidently pb+pb =

ps + ps = 1). All these probabilities are assumed strictly positive. Each agent knows her

own value at the time they interact.

The exogenous parameters of the model are the numbers (b, b, s, s, pb, ps). However,

we will sometimes treat b, b, s, s as fixed, and pb, ps as variable parameters, in order to

have a two-dimensional parameter space, which is conducive to drawing pictures.

We assume s < b < s < b. (It is straightforward to check that for any other ordering,

first-best welfare can be achieved by a single posted price — a dominant-strategy mecha-

nism — and so there is no reason for a planner to consider other mechanisms.) Thus the

four possible pairs (b, s) are as shown in Figure 1. For the realization (b, s), it is socially

optimal not to trade (q = 0), and for the other three realizations, it is optimal to trade

(q = 1).

A planner designs the mechanism by which the agents will interact. Formally, an

indirect mechanism — or a mechanism for short — is a quadruple (AB, AS, q, t), where:

• AB, AS are finite sets (specifying each agent’s possible actions in the mechanism);
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• q : AB × AS → [0, 1] and t : AB × AS → R are functions (representing probability

of trade and net payment, as a function of the actions taken);

• there is a “non-participation” action ∅ ∈ AB ∩ AS, satisfying

– q(∅, as) = 0 and t(∅, as) ≤ 0 for all as ∈ As;

– q(ab, ∅) = 0 and t(ab, ∅) ≥ 0 for all ab ∈ Ab.

The last requirement captures individual rationality — it ensures that each player can be

guaranteed a payoff of at least zero by staying out.

We make two comments here on the modeling. First, we have required action sets

to be finite; this assumption is made to avoid problems of equilibrium nonexistence, and

it will also be imposed later when we introduce information games. Second, we have

modeled mechanisms as effectively static. Later on we will use extensive-form games and

extensive-form equilibrium refinements. It is therefore natural to consider mechanisms

defined in extensive form. But by the end of the analysis it should be clear that this

would not change our main results, so we simply keep the normal-form representation to

save notation.

2.2 Dominant-strategy mechanisms

We begin the analysis by explicitly defining dominant-strategy mechanisms in our frame-

work, and identifying the optimal such mechanism.

A dominant-strategy mechanism is one in which participants announce their values,

and it is always optimal for them to do so truthfully. In our formalism, AB = {∅, b, b} and

AS = {∅, s, s}, but we can suppress the ∅ messages (assuming q = t = 0 whenever either

ab or as is ∅) and just represent the mechanism by functions q : {b, b} × {s, s} → [0, 1]

and t : {b, b} × {s, s} → R. These functions form a dominant-strategy mechanism if they

satisfy the IC and IR constraints:

bq(b, s)− t(b, s) ≥ bq(b′, s)− t(b′, s) for each b, b′ ∈ {b, b} and s ∈ {s, s};

bq(b, s)− t(b, s) ≥ 0 for each b ∈ {b, b}, s ∈ {s, s};

t(b, s)− sq(b, s) ≥ t(b, s′)− sq(b, s′) for each s, s′ ∈ {s, s} and b ∈ {b, b};

t(b, s)− sq(b, s) ≥ 0 for each s ∈ {s, s}, b ∈ {b, b}.
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Expected welfare from the mechanism can be written as

W = pbps(b− s)q(b, s) + pbps(b− s)q(b, s) + pbps(b− s)q(b, s) + pbps(b− s)q(b, s). (2.1)

Noting that individual rationality forces q(b, s) = t(b, s) = 0, so that the second right-side

term in (2.1) is zero, we can focus on the other three possible type profiles.

We can write uB(b, s) = bq(b, s)− t(b, s) and uS(b, s) = t(b, s)− sq(b, s) for the agents’

payoffs at each type profile. Incentive-compatibility for the buyer (type b imitating b)

implies uB(b, s) ≥ uB(b, s) + (b − b)q(b, s), and likewise incentive-compatibility for the

seller (type s imitating s) implies uS(b, s) ≥ uS(b, s) + (s − s)q(b, s). It now is apparent

that we cannot achieve first-best welfare in a dominant-strategy mechanism: First-best

would mean q(b, s) = q(b, s) = q(b, s) = 1. But this would require

uB(b, s) ≥ uB(b, s) + (b− b)q(b, s) ≥ (b− b)

and likewise

uS(b, s) ≥ (s− s),

so total welfare at profile (b, s) would satisfy

uB(b, s) + uS(b, s) ≥ (b− b) + (s− s) = (b− s) + (s− b) > b− s

which is impossible.

We can extend this reasoning to identify the optimal (welfare-maximizing) dominant-

strategy mechanism. The quantities q(b, s) and q(b, s) must satisfy a linear inequality

that bounds them away from (1, 1); there are two possible corner solutions depending on

which one is equal to 1. This leads to the two (symmetrically equivalent) mechanisms

described in Table 1. (The axes and labels have been oriented to be consistent with Figure

1.) Either may be optimal, depending on parameters.

Lemma 2.1. (a) If pbps
b−s

b−b
≥ pbps

b−s
s−s

, then the mechanism shown on the left side of

Table 1 is optimal among dominant-strategy mechanisms. The corresponding value

of welfare is

WDS = pbps(b− s) + pbps(b− s) + pbps
(b− s)(b− s)

s− s
.

(b) If pbps
b−s

b−b
≤ pbps

b−s
s−s

, then the mechanism shown on the right side of Table 1 is
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q : 0
t : 0

q : b−s

s−s

t : b−s

s−s
s

s
q : 1
t : b

q : 1
t : b

b b

s
q : 0
t : 0

q : 1
t : s

s
q : b−s

b−b

t : b−s

b−b
b

q : 1
t : s

b b

Table 1: Two possible forms for the optimal dominant-strategy mechanism.

pb

ps

0

1

10

(a)

(b)

Figure 2: Regions of (probability) parameters where each case of Lemma 2.1 applies.
(Here (s, b, s, b) = (1, 2, 3, 5).)

optimal among dominant-strategy mechanisms. The corresponding value of welfare

is

WDS = pbps
(b− s)(b− s)

b− b
+ pbps(b− s) + pbps(b− s).

The full proof is in Appendix D.

The mechanism in case (a) can be interpreted as follows: The seller can choose to

offer to sell the good at a price of b; or she can offer a lottery in which, with probability
b−s

s−s
, the buyer buys at the higher price of s (and with remaining probability, no trade

occurs). The buyer accepts if her value is at least the price offered (conditional on trade

being realized). The mechanism in case (b) has a similar interpretation, with the buyer

offering either to buy deterministically at price s or a lottery between buying at price b

and nothing.

Each of the two mechanisms is optimal over a non-degenerate region of the (pb, ps)

parameter space (for fixed b, b, s, s). Figure 2 shows typical such regions.
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2.3 No endogenous information

For contrast, we now briefly consider the Bayesian version of the problem, where the agents

are presumed to have no information about each other’s values (and no opportunities to

acquire information). This is the version originally considered in [21].

In this case, we can again consider direct mechanisms, where each agent reports her

value:3 a mechanism is defined by functions q : {b, b} × {s, s} → [0, 1] and t : {b, b} ×

{s, s} → R as before, but now they just need to satisfy the Bayesian versions of the IC

and IR constraints:

∑

s

ps [bq(b, s)− t(b, s)] ≥
∑

s

ps [bq(b
′, s)− t(b′, s)] for each b, b′;

∑

s

ps [bq(b, s)− t(b, s)] ≥ 0 for each b;

∑

b

pb [t(b, s)− sq(b, s)] ≥
∑

b

pb [t(b, s
′)− sq(b, s′)] for each s, s′;

∑

b

pb [t(b, s)− sq(b, s)] ≥ 0 for each s.

(Here the sums in the first two constraints are over s ∈ {s, s}; in the last two, over

b ∈ {b, b}.)

Welfare for any such mechanism can be defined as in (2.1).

Our main observation is the following:

Proposition 2.2. In the Bayesian problem, there exists a mechanism whose welfare is

strictly higher than the best dominant-strategy mechanism.

This can be seen by observing that the relevant incentive constraints are not binding at

the optimal dominant-strategy mechanism, so we can improve on it by slightly increasing

the probability of trade at the type profile that was originally constrained ((b, s) in case

(a) of Lemma 2.1, (b, s) in case (b)). The formal proof is in Appendix D.

(With some further work one can identify the optimal Bayesian mechanism; see Matsuo

[19]. For some parameters, even first-best welfare can be achieved. However, this is not

important for our main goal.)

Proposition 2.2 will be useful as a benchmark, because our main result will show that,

for some parameters, dominant-strategy mechanisms are optimal once information games

3The revelation principle says that the equilibrium outcome of any mechanism can be replicated by a
direct mechanism, but we actually do not need this fact for present purposes.
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are incorporated into the model. Comparing with Proposition 2.2 shows that we really

do need information games to reach this conclusion.

One might ask whether there are easy arguments for optimality of dominant-strategy

mechanisms by considering other canonical information structures. The answer is nega-

tive. For example, if both parties were fully-informed, then the first-best welfare could be

attained in equilibrium. In fact if just one agent was fully-informed, this would already

be sufficient (let the informed agent make a take-it-or-leave-it offer to the other). This

subject will be addressed more thoroughly in Section 6.

3 Information games and welfare guarantees

We now complete the presentation of the model by describing how agents may acquire

information. Then, we describe our central results.

3.1 Defining information games

Informally, we will define an information game to be any extensive-form game in which

the players B and S move, possibly sequentially, and end up receiving some signals, which

may be correlated with each other’s values. We will require only that each agent has an

“inaction” strategy available, of not actively spending anything to influence information.

To model these games, we will allow moves of nature to be correlated with the players’

values (as we must, if nature is to send signals that are informative about the values).

We will do this by explicitly modeling the probability space on which these moves are

defined. Thus, for our purposes, define a probability space to be a tuple P = (Ω, π, b, s)

where

• Ω is a finite set;

• π is a full-support distribution over Ω;

• b, s are random variables on Ω, i.e. functions b : Ω → {b, b}, s : Ω → {s, s}, whose

joint distribution follows the prior:

π({ω | b(ω) = b, s(ω) = s}) = pbps, π({ω | b(ω) = b, s(ω) = s}) = pbps,

π({ω | b(ω) = b, s(ω) = s}) = pbps, π({ω | b(ω) = b, s(ω) = s}) = pbps.
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(The use of the symbols b, s to denote both the random variables and specific realiza-

tions should not cause confusion in practice.)

Now we can be more specific: we define an information game to be a pair I = (P ,G),

where P is a probability space, and G is a finite extensive-form game of perfect recall (as

standardly defined, e.g. [13]) between players B and S, with the following modifications:

• in addition to the usual information partitions over nonterminal nodes, each player

has an information partition over the terminal nodes, which also respects perfect

recall;

• nature’s moves at each relevant node are represented not by probability distributions

but rather by mappings from possible states in Ω to successor nodes;

• at any two nodes in the same information set of player B, the random variable b

has the same value, and similarly for S and s;

• there exists a strategy sB for player B that guarantees a payoff of at least zero, i.e.

gB(z) ≥ 0 for every terminal node z reachable under sB (where gB is B’s payoff

function), and similarly a strategy sS for S that guarantees gS(z) ≥ 0.

This definition is, of course, still somewhat informal. The full formal definition is

lengthy (as is unavoidable for extensive-form games) so we place it in Appendix A.

A few comments are in order on the approach we have adopted:

• Our definition imposes the assumption that players know their own values before

participating in the information game. We could instead lift this assumption and

assume only that players know their value by the time they participate in the mech-

anism. Doing so would allow a broader class of information games, but our main

results would be unchanged.

• We have not assumed that players observe their realized payoffs in the information

game (gB, gS) before the mechanism takes place. This could be added as a further

restriction. Our main results would still hold, but the key ideas would be obscured:

the proof of Theorem 3.3 below relies on a fairly involved construction, which would

need to be further complicated to satisfy this extra restriction.

• We have allowed payoffs in the information game to be positive or negative. Costly

information acquisition naturally suggests negative payoffs, but positive payoffs also
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seem natural for some interactions (for example, one player selling verifiable infor-

mation about his type to the other). Our Theorem 3.3 will require us to allow

positive payoffs.

• If a player plays her inaction strategy, she can still passively receive information

(besides her own value), as can her opponent. Thus our class of information games

includes the possibility that information just arrives exogenously.

Now, given an information game I and a mechanismM, they together form a combined

game, in which the agents first play the information game and then (simultaneously)

choose actions in the mechanism. Their payoffs are then

gB(z) + bq(aB, aS)− t(aB, aS), gS(z) + t(aB, aS)− sq(aB, aS)

where z is the terminal node reached in the information game, b, s the players’ values

there, and aB, aS the actions played in the mechanism. (Formal details are again in

Appendix A.)

This defines the combined game as a standard, finite extensive-form game (with the

one slightly unconventional feature that moves of nature are defined in terms of states,

rather than probability distributions; it is easy to translate between the two). It describes

the complete interaction of the buyer and the seller, starting from the ex-ante stage before

their values are determined. Hence we can speak of strategies and equilibria in this game.

Our basic solution concept will be sequential equilibrium (possibly in mixed strategies).

We know that at least one such equilibrium exists.

Now, any mechanism M will be evaluated by its worst-case welfare, over all possible

information games, where the welfare includes the payoffs incurred in the information

game. That is, our criterion is the welfare guarantee

W (M) = inf
I
W (M, I)

where I ranges over all information games, and W (M, I) is the total welfare (sum of the

two agents’ expected payoffs) in equilibrium of the combined game resulting from I and

M.

This definition is informal. In particular, a given combined game may have multiple

equilibria, so which one should be used to define W (M, I)? We will address this shortly.

But first, we will introduce the rest of the concepts needed to describe our main results

informally. We will then return to address technicalities, and formally define the welfare
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criterion and state the results.

3.2 Dominant-strategy and flexible-price mechanisms

Let us consider now some specific mechanisms. For any dominant-strategy mechanism, we

can see that its welfare guarantee W (M) is simply the welfare defined in (2.1). Indeed,

for any information game, each player has the option of earning a payoff at least zero

in the information game (by inaction), and then the players simply play their dominant

strategies in the mechanism. Thus, each player’s equilibrium payoff in the combined

game is at least her expected payoff in the mechanism alone. (It may be higher, if the

information game allows positive payoffs. But this will not happen in the worst case.)

Taking the best dominant-strategy mechanism, we can thus get a welfare guarantee of

WDS, as defined in Lemma 2.1.

We now consider an alternative: a mechanism in which one agent (say, the seller) can

choose to offer trade at either of two prespecified prices, and the other agent can accept

or reject. We will take the two prices to be b and s; this will turn out to be optimal.

In our formalism (where mechanisms are represented as simultaneous-move games),

we can represent the seller’s actions as price offers b, s, and the buyer’s action as the

highest price she agrees to accept. Thus we define a flexible-price mechanism (with seller

offering) as follows: AB = {∅, b, s}, AS = {∅, b, s}, and the functions q, t defining the

mechanism are as in Table 2. (When aB = ∅ or aS = ∅, we take q, t to be zero.)4

aS = s
q : 0
t : 0

q : 1
t : s

aS = b
q : 1
t : b

q : 1
t : b

aB = b aB = s

Table 2: Flexible-price mechanism (with seller offering).

We claim that such a mechanism guarantees expected welfare at least

WFP = ps(b− s) + pb(b− s).

To see this, note that for any information game:

4This is a version of what Börgers and Smith [6] call a “downward flexible price mechanism.”
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• conditional on having value b, the buyer gets an expected payoff of at least b − s

(in the combined game), since she always has the option of being inactive in the

information game, and then accepting whichever price is offered;

• conditional on having value s, the seller gets an expected payoff of at least b− s (in

the combined game), since she can always sit out of the information game and then

offer price b, which is always accepted;

• the buyer with value b and the seller with value s are assured payoffs at least zero.

Note that we could also have defined a flexible-price mechanism with the buyer offering

(and the same choice of prices b, s); it would guarantee the same welfare level WFP , by a

symmetric argument.

Now we arrive at our first major observation: the flexible-price guarantee can be

strictly higher than the dominant-strategy guarantee, for a non-negligible range of pa-

rameters. Indeed, we can identify explicitly the parameter region in which this happens.

Define the following two thresholds for probabilities pb, ps:

p∗
b
=
b− s

b− s
, p∗s =

b− s

b− s
.

Note that both lie in the range (0, 1).5

Proposition 3.1. We have WFP ≥ WDS if and only if both pb ≤ p∗
b
and ps ≤ p∗s hold.

Moreover, if pb < p∗
b
and ps < p∗s, then WFP > WDS strictly.

The proof (by direct calculation) is in Appendix D.

For some intuition, temporarily relax the assumption that the buyer’s and seller’s

values are independently distributed. Imagine instead that the prior is one of perfect

correlation: the values are either (b, s) or (b, s). Then both parties are initially fully in-

formed about each other’s values. It is clear that the flexible-price mechanism can achieve

all gains from trade — and with no incentive to spend to manipulate information, since

there is already full information. On the other hand, dominant-strategy mechanisms per-

form strictly worse, since the probability of trade q(b, s) or q(b, s) in any such mechanism

is bounded away from 1. In fact, even if the prior also places weight on (b, s) (where trade

5These thresholds have the following natural interpretation: p∗
b
is the critical probability at which the

seller with value s, if she were able to offer any arbitrary price, would be indifferent between selling to
both types of buyer (at price b) or just to the high type (at price b); similarly, p∗

s
is the probability that

makes a price-offering buyer of value b indifferent.
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Figure 3: Parameter regions for the possible optimal mechanisms.

is inefficient), the flexible-price mechanism will still achieve all gains from trade without

incentivizing spending on information — since the players are, in effect, fully informed

conditional on gains from trade being available.

Now returning to full-support priors, a continuity argument suggests that flexible-price

will continue to outperform dominant-strategy mechanisms as long as value realizations

(b, s) and (b, s) are both very likely compared to the other state where trade is desirable,

namely (b, s). Under our original assumption of independent values, this is true simply

when pb and ps are both low — as reflected in the proposition.

3.3 The main result

Proposition 3.1 compares two guarantees from specific mechanisms. But what about the

optimal mechanism, as measured by our worst-case guarantee criterion? This question

leads to our main result: The optimum is either the dominant-strategy or the flexible-price

mechanism (and Proposition 3.1 tells us which one, depending on parameters).

Theorem (informal).

(a) If pb ≥ p∗
b
or ps ≥ p∗s, then the best welfare guarantee W (M) of any mechanism M

is WDS, attained by the best dominant-strategy mechanism.

(b) If pb < p∗
b
and ps < p∗s, then the best welfare guarantee W (M) is WFP , attained by

a flexible-price mechanism (with either the seller or buyer offering).

The parameter regions for the various possibilities — two forms of dominant-strategy

depending on the cases of Lemma 2.1, or flexible-price — are illustrated in Figure 3.

The statement above is informal because we still have not properly defined the welfare

guarantee. There are two natural ways to define the equilibrium welfare of mechanism
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M under information game I, when multiple equilibria exist: we can consider the worst

equilibrium, or the best equilibrium. Previous literature in robust mechanism design has

used one or the other as is convenient (for example [2] uses the worst equilibrium; [1, 8] use

the best). Here we will consider both, and will refer to them as W and W to distinguish.

Evaluating a mechanism by the worst equilibrium is naturally in the spirit of seeking

robust guarantees. Note however that any mechanism always has an equilibrium in which

each agent plays her non-participation strategy in the mechanism — it is a best reply to

not participate if the opponent does the same — so we need some refinement to rule out

this equilibrium in order to obtain a nontrivial welfare guarantee. We will impose here

the assumption that agents play undominated actions in the mechanism. (Alternative

refinements, such as trembling-hand perfect equilibrium, would give similar results.)

Formally: suppose we have a mechanism M = (AB, AS, q, t). For any mixed actions

αB ∈ ∆(AB), αS ∈ ∆(AS), we can define q(αB, αS) and t(αB, αS) by taking expectations.

Now for a buyer value b ∈ {b, b}, say that an action aB ∈ AB is weakly dominated given

value b if there exists a mixed action α′
B such that

bq(α′
B, aS)− t(α′

B, aS) ≥ bq(aB, aS)− t(aB, aS) for all aS ∈ AS,

with strict inequality for some aS. Similarly we define actions that are weakly dominated

for each seller value s ∈ {s, s}. Notice that the set of weakly dominated actions for a

given type of buyer (resp. seller) does not depend on any information that she may have

about the seller (buyer).

Then, given I, we consider sequential equilibria of the combined game in which each

agent, at any information set where she takes an action in the mechanism, puts probability

zero on any action that is weakly dominated given her value. For short, we call these

undominated sequential equilibria. There always exists such an equilibrium (for example,

any trembling-hand perfect equilibrium of the combined game).

We defineW (M, I) to be the lowest expected welfare, over all undominated sequential

equilibria in the game formed from M and I. We then define the corresponding welfare

guarantee of a mechanism M:

W (M) = inf
I
W (M, I). (3.1)

The above operationalizes the worst-equilibrium criterion to evaluate a mechanism.

An alternative is to instead use the best equilibrium. This also has methodological ad-
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vantages. For example, part (a) of the main theorem shows that for some parameters, a

designer can do no better than dominant-strategy mechanisms. This is clearly a stronger

statement when a mechanism is evaluated by the best rather than the worst equilib-

rium. More importantly, by proving this statement under the best equilibrium, we make

clear that the result is driven by the possibility of information acquisition, and not just

by the equilibrium selection. Also, the best-equilibrium approach is in line with most

of the mechanism design literature, where the implicit assumption is that the designer

can instruct the agents on what strategies to play (as long as these strategies form an

equilibrium).

However, our theorem using the best-equilibrium criterion will need one tweak to the

model above: we must allow the information game to involve additional players besides the

buyer and seller.6 To see intuitively why this is helpful, imagine that the information game

is being run by an adversary who wants to extract surplus from the traders. Because the

mechanism may have multiple equilibria, the adversary wants to know which equilibrium

is being played, and adapt the information game to that equilibrium; the additional

players’ role is to provide this information. (This will be discussed at greater length in

the description of the worst-case information game in Section 4, and further in Section

6.)

Accordingly, we extend the definition of information games to allow extra players.

These extra players need not have information partitions over the terminal nodes of the

game (since they will not participate in the mechanism). We again require that each

extra player have a strategy that guarantees her nonnegative payoff in the information

game. The formal definition of information games, in Appendix A, makes all this precise.

While incorporating additional players in the information game is somewhat inelegant,

there is some precedent for it in the literature [18]. And arguably, it is defensible from the

standpoint of realism: in reality, information exchange between two traders can involve

strategic agents besides the traders themselves.

We can now define the equilibrium welfare of a mechanismM, under information game

I, as the maximum sum of all players’ expected payoffs (including the extra players) over

all sequential equilibria of the combined game. Call this welfare level W (M, I), and

define the welfare guarantee of a mechanism by

W (M) = inf
I
W (M, I). (3.2)

6This author does not currently know whether the theorem holds without allowing additional players;
see Subsection 6.2.
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Now we can properly state our main theorem, in two flavors depending on the equi-

librium selection used. We note that we can also make the two versions of the theorem

more comparable, if desired, by allowing additional players in both cases.

Theorem 3.2. Define W (M) as in (3.1), where the infimum is over information games

without additional players.

(a) If pb > p∗
b
or ps > p∗s, then the maximum value of W (M) over all mechanisms M

is equal to WDS.

(b) If pb ≤ p∗
b
and ps ≤ p∗s, then the maximum value of W (M) over all mechanisms M

is WFP .

Moreover, if we instead define W (M) by taking the infimum over information games with

additional players allowed, the same results hold.

Theorem 3.3. Define W (M) as in (3.2), where the infimum is over information games

with additional players allowed.

(a) If pb > p∗
b
or ps > p∗s, then the maximum value of W (M) over all mechanisms M

is equal to WDS. This maximum is attained by the dominant-strategy mechanism

identified in Lemma 2.1.

(b) If pb ≤ p∗
b
and ps ≤ p∗s, then the maximum value of W (M) is equal to WFP . The

maximum is attained by a flexible-price mechanism (with either agent offering).

The following sections describe the ideas of the proofs.

As one more technical note, observe that the worst-equilibrium version, Theorem

3.2, does not say that the dominant-strategy and second-price mechanisms attain the

maximum guarantees. In fact, they do not, since we are looking at the worst equilibrium,

and the undominated-action refinement is not enough to prevent some types from non-

participation in these mechanisms. For example, in the dominant-strategy mechanism in

case (a) of Lemma 2.1, the low-value buyer is completely indifferent between the truthful

strategy b and the non-participation action ∅, so ∅ can be played in an undominated

sequential equilibrium. However, this problem can be circumvented by adding extra

actions so as to make non-participation become (weakly) dominated, as the full proof of

the theorem shows. (Alternatively, we could keep the action set unchanged but perturb q

and t so as to make non-participation become weakly dominated, and thereby approach

— though not attain — the optimal guarantee.)
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4 Informational extortion

In this section we present the key step in the proofs. This is the extortion lemma, a tool

to upper-bound the welfare guarantee of any mechanism.

Here, first, is an informal description of how the bound arises. Imagine any information

structure, describing the knowledge possessed by each agent when they enter the trading

mechanism. For example, each may be fully informed about the other’s value; or they

may be completely uninformed; or each may have some independent noisy signal of the

other’s value. Clearly, the welfare guarantee of a mechanism M (measured either as

W (M) or W (M); the difference does not matter for now) cannot exceed the expected

welfare that arises if the players have the specified information and then play M. And

for any given information structure, it is routine (at least in principle) to compute the

maximum possible welfare over all mechanisms. This number is thus a bound on the

guarantee W (M).

But we can find a potentially tighter bound as follows: Suppose S1 and S2 are two dif-

ferent information structures. Then, for any mechanism M, its guarantee on the buyer’s

expected payoff is at most what she gets in S1, and its guarantee on the seller’s expected

payoff is at most what she gets in S2. To see this, let S0 be any “default” information

structure, and now consider the following information game: Information is released ac-

cording to structure S1, unless the buyer makes a payment to prevent it. If the buyer does

make this payment, then information is released according to S2, unless the seller in turn

makes a payment to prevent it. If both parties make their payments then S0 arises. The

payments are calibrated to make each agent indifferent (or nearly indifferent) to paying.

Then, indeed, the buyer’s realized payoff in the combined game equals her payoff under

S1 and the seller gets her payoff under S2. (This game should also make clear why we

use the term “extortion.” Simple versions of this construction have appeared in other

contexts [15, 24], but additional work will be needed to implement the idea here.)

To apply this construction, we take S1 to be an information structure where the best

possible expected payoff for the buyer, over all mechanisms, is relatively low, and take

S2 to be an information structure that is likewise bad for the seller. This can give a

bound on the sum of the two players’ guarantees that is tighter than we could get by

using any single information structure. Intuitively, we might expect that S1 involves the

seller being fully informed and the buyer uninformed (so that any mechanism must give

the seller some information rents), and S2 the reverse, but this will not always turn out

to be the case.
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We can further tighten this bound with some additional observations. First, we need

not specify a priori which of S1,S2 is adversarial for the buyer and which is adversarial

for the seller; this choice may be endogenous to the mechanism. A similar construction

for the information game shows that each agent gets at most her payoff in whichever

information structure is worst for her. Second and relatedly, we need not consider just

two simultaneous information structures; we can equally well allow arbitrarily many (al-

though the applications of these ideas in Section 5 will only require two). And third, the

information structure that is worst for buyer type b may not be the same as for buyer

type b, and so we can further separate these types (and similarly for the seller).

In the rest of this section we develop these ideas formally. It should be apparent that

the method and results can generalize straightforwardly to arbitrarily many types of buyer

and seller, and indeed, that they can be applied not just to the bilateral trade setting but

to many other mechanism design problems. The ideas may therefore be of independent

interest. However, to avoid introducing yet more notation, we will state them here in the

specific context of the two-type bilateral trade model.

4.1 Information structures and the extortion lemma

We define an information structure to be S = (Ω, π, b, s,HB, HS, ηB, ηS) where

• (Ω, π, b, s) is a probability space;

• HB and HS are finite sets, representing the possible signals of the buyer and seller;

• ηB : Ω → HB and ηS : Ω → HS are surjective functions, such that if ηB(ω) = ηB(ω
′)

then b(ω) = b(ω′), and if ηS(ω) = ηS(ω
′) then s(ω) = s(ω′).

We may also use ηB, ηS as variables for representative elements of HB, HS (signals). Since

π is required to have full support, and ηB, ηS are surjective, every signal has positive

probability. Note that the last requirement effectively says that each agent knows her

own value, and consequently we may write b(ηB) or s(ηS) with clear meaning.

It will sometimes be useful to abbreviate the probability of a given signal, or profile

of signals, as

π(η∗B) =
∑

ω:ηB(ω)=η∗
B

π(ω), π(η∗S) =
∑

ω:ηS(ω)=η∗
S

π(ω), π(η∗B, η
∗
S) =

∑

ω:ηB(ω)=η∗B ,

ηS(ω)=η∗S

π(ω).

(4.1)
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We may also notate the conditional probabilites as

π(η∗B|η
∗
S) =

π(η∗B, η
∗
S)

π(η∗S)
, π(η∗S|η

∗
B) =

π(η∗B, η
∗
S)

π(η∗B)

(unambiguous since the denominators are positive).

Fix an information structure S, and suppose the players have the information specified

and then play some mechanism. The revelation principle tells us that the (expected)

outcome can be described by some direct mechanism, where the players simply report

their signals. This motivates us to define a direct mechanism on S as a pair of functions

(q, t), with q : HB×HS → [0, 1] and t : HB×HS → R, satisfying the IC and IR constraints

∑

ηS

π(ηS|η
∗
B) [b(η

∗
B)q(η

∗
B, ηS)− t(η∗B, ηS)] ≥

∑

ηS

π(ηS|η
∗
B) [b(η

∗
B)q(η

′
B, ηS)− t(η′B, ηS)]

for each η∗B, η
′
B ∈ HB;∑

ηS

π(ηS|η
∗
B) [b(η

∗
B)q(η

∗
B, ηS)− t(η∗B, ηS)] ≥ 0 for each η∗B ∈ HB;

∑

ηB

π(ηB|η
∗
S) [t(ηB, η

∗
S)− s(η∗S)q(ηB, η

∗
S)] ≥

∑

ηB

π(ηB|η
∗
S) [t(ηB, η

′
S)− s(η∗S)q(ηB, η

′
S)]

for each η∗S, η
′
S ∈ HS;∑

ηB

π(ηB|η
∗
S) [t(ηB, η

∗
S)− s(η∗S)q(ηB, η

∗
S)] ≥ 0 for each η∗S ∈ HS.

Wemay denote a direct mechanism (q, t) by the single variableM. Although the notations

M, q, t are also used for indirect mechanisms, no confusion should result.

We can define the expected payoff of each type of buyer and seller in a direct mechanism

M = (q, t):

ub(M) =
1

pb
×

∑

(ηB ,ηS):b(ηB)=b

π(ηB, ηS) [bq(ηB, ηS)− t(ηB, ηS)] ;

ub(M) =
1

pb
×

∑

(ηB ,ηS):b(ηB)=b

π(ηB, ηS)
[
bq(ηB, ηS)− t(ηB, ηS)

]
;

us(M) =
1

ps
×

∑

(ηB ,ηS):s(ηS)=s

π(ηB, ηS) [t(ηB, ηS)− sq(ηB, ηS)] ;

us(M) =
1

ps
×

∑

(ηB ,ηS):s(ηS)=s

π(ηB, ηS) [t(ηB, ηS)− sq(ηB, ηS)] .
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Our extortion lemma will involve multiple information structures. Thus, we will refer

to a finite list of the form (S1, . . . ,SK) as a list of information structures, and given such

a list, we can refer to a list of direct mechanisms on it, L = (M1, . . . ,MK), where each

Mk is a direct mechanism on Sk (k = 1, . . . , K).

Given such a list of information structures and corresponding list of direct mechanisms,

we can define the minimum utility of each type of agent as her worst payoff over all the

mechanisms in the list:

ub(L) = min
k
ub(M

k);

ub(L) = min
k
ub(M

k);

us(L) = min
k
us(M

k);

us(L) = min
k
us(M

k).

And finally, we can define the total minimum utility of the list as the (probability-

weighted) sum of the minimum utility of each type of each agent:

TMU(L) = pbub(L) + pbub(L) + psus(L) + psus(L). (4.2)

Now we come to the first complete statement of the extortion lemma. It says that,

for any given list of information structures, the guarantee of any mechanism is bounded

by the best possible TMU of any direct mechanism list. The lemma again comes in two

flavors, depending which equilibrium selection criterion we use.

Lemma 4.1. Let M be any mechanism. Define W (M) as in (3.1), where the infimum

is taken over information games without additional players. Let (S1, . . . ,SK) be any list

of information structures. Then

W (M) ≤ max
L

TMU(L),

where the max is over all lists of direct mechanisms L = (M1, . . . ,Mk) for the given

information structures.

(If we instead define W by taking the infimum over information games with additional

players allowed, the same result holds a fortiori.)

Lemma 4.2. Let M be any mechanism. Define W (M) as in (3.2), where the infimum

is over information games with additional players allowed. Let (S1, . . . ,SK) be any list of
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information structures. Then

W (M) ≤ max
L

TMU(L),

where the max is over all lists of direct mechanisms for the given information structures.

(It is straightforward to check that the max on the right-hand side is attained.)

In fact, our proofs of the main theorems will use a version of the extortion lemma with a

slight technical strengthening.7 Suppose that the information structures Sk overlap, in the

sense that a portion of one information structure is isomorphic to a portion of another

information structure. We can then impose that the corresponding direct mechanisms

behave in the same way across both information structures. This is a restriction on the

possible lists of direct mechanisms, and so it (potentially) makes the bound given by the

extortion lemma tighter.

Specifically: Given a list of information structures (S1, . . . ,SK), we use notation

(Ωk, πk, bk, sk, Hk
B, H

k
S, η

k
B, η

k
S) to refer to the components of information structure k. Sup-

pose we have a list of information structures, in which the same buyer signal may appear

in more than one information structure, and similarly for seller signals. We say that the

list is an overlapping list of information structures if it satisfies the following properties:

• For each k and k′, if ηB ∈ Hk
B ∩ Hk′

B , then bk(ηB) = bk
′

(ηB), and for each ηS ∈

Hk
S ∪Hk′

S ,

πk(ηS|ηB) = πk′(ηS|ηB).

• For each k and k′, if ηS ∈ Hk
S ∩ Hk′

S , then sk(ηS) = sk
′

(ηS), and for each ηB ∈

Hk
B ∪Hk′

B ,

πk(ηB|ηS) = πk′(ηB|ηS).

Here the probabilities πk(ηB), etc. are defined as in (4.1), and we take πk(ηB, ηS) = 0 if

ηB /∈ Hk
B or ηS /∈ Hk

S. Thus, the requirement says that any given signal should convey

the same information, both about values and about the other player’s signal, in each

information structure where it can arise.

In particular, we can write the conditional probabilities π(ηS|ηB), π(ηB|ηS) without

needing to specify k. We also can write b(ηB), s(ηS) for the values associated with these

signals, again without ambiguity.

7This author does not know whether the unstrengthened version of the lemma is already enough to
prove the main theorem. However, for the specific choice of information structures used in the proof here,
the strengthening is needed; see Appendix E.3.
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If (S1, . . . ,SK) is an overlapping list of information structures, then we say that L =

(M1, . . . ,MK) is an overlapping list of direct mechanisms on it if each Mk = (qk, tk) is

a direct mechanism on Sk, and for every signal pair (ηB, ηS) that appears in two different

information structures, ηB ∈ Hk
B ∩Hk′

B and ηS ∈ Hk
S ∩Hk′

S , we have

qk(ηB, ηS) = qk
′

(ηB, ηS) and tk(ηB, ηS) = tk
′

(ηB, ηS). (4.3)

Thus, the mechanisms should respect the overlaps across information structures. We then

define the minimum utility of each type, and the total minimum utility, as before.

We can now state the strengthened extortion lemma:

Lemma 4.3. Let M be any mechanism. Define W (M) as in (3.1), where the infimum

is taken over information games without additional players. Let (S1, . . . ,SK) be an over-

lapping list of information structures. Then

W (M) ≤ max
L

TMU(L),

where the max is over overlapping lists of direct mechanisms for the given information

structures.

(If we instead define W by taking the infimum over information games with additional

players allowed, the same result holds a fortiori.)

Lemma 4.4. Let M be any mechanism. Define W (M) as in (3.2), where the infimum

is over information games with additional players allowed. Let (S1, . . . ,SK) be an over-

lapping list of information structures. Then

W (M) ≤ max
L

TMU(L),

where the max is over overlapping lists of direct mechanisms for the given information

structures.

Ahead, we give an outline of the proofs. For intuition it suffices to focus on the

non-overlapping versions of the extortion lemma. The formal proofs are in Appendix

B, and they cover the overlapping versions, Lemmas 4.3 and 4.4. (Lemmas 4.1 and 4.2

immediately follow.)

4.2 Proof sketches

Worst-equilibrium criterion. The argument for the extortion lemma with the worst-
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equilibrium criterion is largely as outlined at the start of this section. Take the mechanism

M, and the list of information structures (S1, . . . ,SK), and also let S0 be an arbitrary

“default” information structure. For each k = 0, 1, . . . , K, imagine a game in which

the players exogenously receive signals ηB and ηS according to Sk, and then play the

mechanism. Fix an equilibrium of this game, in undominated actions. The (expected)

equilibrium outcome defines a direct mechanism Mk on Sk. This gives us a list of direct

mechanisms L. It suffices to show that the guarantee of M is at most the TMU of this

list.

Define k(b) as the value of k ∈ {1, . . . , K} for which ub(M
k) is lowest, and define

∆b = ub(M
0) − ub(M

k(b)). This latter quantity is type b’s willingness to pay to face

information structure S0 rather than Sk(b) (taking as given the play of the mechanism in

each information structure). Similarly we can define k(b), k(s), k(s) and ∆b,∆s,∆s.

Now, consider the information game structured as follows:

• First, the buyer has the chance to pay ∆b (that is, to pay ∆b if the buyer’s value is

b, and ∆b if b). The buyer can accept or reject this “extortion” opportunity.

• Then, if the buyer has accepted, the seller has the chance to pay ∆s. The seller can

accept or reject.

• An information structure is chosen as follows. If both players accepted, then k = 0.

If the buyer rejected, then k = k(b). If the buyer accepted but the seller rejected,

then k = k(s).

• Both parties receive signals (ηB, ηS) according to the chosen information structure

Sk. Payoffs in the information game are: −∆b for the buyer if she accepted, and 0

if she rejected; similarly for the seller.

This certainly describes an information game; note that each player does indeed have

an inaction strategy (rejecting the extortion offer). It is natural to then argue that the

players can play as follows: each player accepts the extortion, and when information

structure Sk is realized, they play the equilibrium corresponding to Mk. Note that the

payments are calibrated to make each player indifferent between accepting or rejecting

extortion, so that they are willing to accept in equilibrium. In particular, this means that

type b’s expected payoff in equilibrium is ub(M
k(b)) = ub(L). Similarly for types b, s, s.

Therefore total welfare in the combined game is TMU(L).

27



Actually, this construction does not quite work. There are two issues. First, suppose

k(s) 6= k(s), and consider an out-of-equilibrium information set (in the combined game)

where the buyer observes a signal that exists in information structure Sk(s), but not in

Sk(s). She then knows that the seller is type s (and unexpectedly rejected extortion).

Consequently, receiving this signal gives the buyer additional information, besides that

contained in Sk(s). We then cannot expect her to play according to the original equilibrium

of Sk(s).

To avoid this problem, we must add a trembling stage to the information game: After

the decisions have been made to accept or reject extortion, with exogenous probability ǫ,

the extortion decisions are ignored, and instead an information structure k ∈ {0, 1, . . . , K}

is drawn at random. (In this case, any previously accepted payments are not made.) These

changes ensure that every information structure arises with positive probability on path,

and so when either player finds that an information structure Sk has “unexpectedly”

arisen, she believes that it arose due to the tremble in the information game, and draws

no further inferences about the other player.

The second, and related, issue is that with the timing above, in the (off-equilibrium)

situation where the seller never receives an extortion offer, she knows the buyer has

rejected extortion. Then, she can infer the buyer’s value, based on whether she receives a

signal from Sk(b) or Sk(b). Thus the buyer’s rejection gives the seller more information than

intended. Note that trembles do not fix this issue (they make this inference imperfect

but still informative). Instead, we fix it by making the buyer’s and seller’s decisions

simultaneous — but then using the seller’s decision only if the buyer accepts. This way,

the seller doesn’t know if the buyer has rejected.

A full description of the information game used is in Appendix B.1. It is also described

schematically in Figure 4 below. Note that the figure does not show the full game tree

(which would involve many more nodes, due to moves of nature, first in assigning values

and then drawing signal realizations).

Best-equilibrium criterion. When we move to use the best-equilibrium selection

criterion, further complications arise and we outline them here, leaving a full description

of the information game to Appendix B.3. In this case, we need an information game that

ensures that every equilibrium leads to welfare at most maxL TMU(L) (or close to it).

The construction used above is not sufficient. To see why, note that this construction

depended on a particular prescription for equilibrium play of M under each information

structure Sk, in order to define the quantities ∆b,∆s. However, if this information game

arises, the players will not necessarily play the specified equilibrium of M; they might
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Figure 4: Adversarial information game, under the worst-equilibrium selection.

follow a different equilibrium. Then, ∆b no longer represents the difference in B’s equi-

librium payoff between S0 and Sk(b) (and likewise for S), so the information game fails to

push each player down to her payoff in the worst information structure.

Instead, we need an information game that endogenously elicits the quantities ∆b and

∆s (and the values k(b), k(s)), so that they correspond to whichever actual equilibrium

is being played. This is why we introduce additional players. Specifically, we include two

additional players, “informants” whom we call IB and IS. IB first reports a quadruple

(k(b), k(b),∆b,∆b), describing each buyer type’s least-preferred information structure and

willingness-to-pay to avoid it; and similarly for IS and the seller. Then the buyer and

seller are simultaneously given extortion offers as before: the buyer is extorted via the

(reported) (k(b),∆b) if her value is b, and (k(b),∆b) if her value is b; similarly for the

seller. The realized information structure is then determined according to the two agents’

responses to the extortion offers, with ǫ chance of trembling to a random information

structure, as before. One additional change needed is that, instead of processing the

buyer’s acceptance or rejection before the seller’s, we must process them in a random

order, in order to ensure that both players have positive probability of influencing the

resulting information structure in every equilibrium (this ensures that their response to

any extortion offer really does reflect willingness to pay). Finally, the informants are

incentivized to make reports that correspond to the traders’ actual willingness to pay, by

giving them small payments that are increasing in the reported amounts ∆b (respectively
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∆s), but imposing large fines if the extortion offers are rejected.

An additional subtlety arising in the proof is that (say) “the buyer’s payoff under

Sk” can mean two things: it can mean the expected payoff in equilibrium conditional on

reaching Sk, or it can mean the buyer’s payoff after a deviation where she rejects extortion

and thereby lands in Sk. The mechanism Mk is constructed from the former, but the

extortion procedure reflects the latter; so the proof can succeed only if these two measures

of the buyer’s payoff in Sk are (approximately) equal. Now, if the seller were to reject

extortion with non-negligible probability in equilibrium, then the two measures might

be different, because these two different avenues for reaching Sk might convey different

information to the buyer about whether the seller had rejected, and this might in turn

be correlated with the seller’s future play. However, by making the fines on rejected

informants sufficiently large, we ensure that in every equilibrium, the buyer and seller

both have very small probability of rejecting extortion (otherwise some informant would

have negative expected payoff and so would rather deviate to inaction). Then this whole

difficulty is avoided.

The details of the game construction, and the proof that it ensures the desired upper

bound on welfare, are in Appendix B. Subsection 6.2 below contains more discussion

about the role of informants in the construction.

5 Characterizing the optimal mechanism

The proof of our characterization of the optimum, Theorems 3.2 and 3.3, now proceeds by

applying the extortion lemma. Note that for any given list of information structures, the

problem of maximizing TMU(L) over all direct mechanism lists L is a linear program:

The variables are the direct mechanism parameters qk(ηB, ηS) and tk(ηB, ηS), and the

values ub, ub, us, us; the objective is to maximize pbub + pbub + psus + psus, subject to the

IC and IR constraints for each mechanism, and the constraints that the utility of type b in

each mechanism Mk should be at least ub, and similarly for b, s, s. (For overlapping lists,

we have the additional constraints (4.3).) Hence, in principle, solving this maximization

problem is mechanical.

Thus, for an appropriately chosen list of information structures, we can calculate the

maximum value of TMU(L) over all L. According to the extortion lemma, this is an

upper bound on the welfare guarantee of any possible mechanism M. Showing that this

bound is attained (by an appropriate version of the dominant-strategy or flexible-price

mechanism) then completes the characterization.
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Figure 5: Parameter regions for the proof of the main characterization.

In order to get a tight bound, we just have to find the right list of information struc-

tures. For this, we break into cases depending on the parameters. Figure 5 shows the

parameter space carved into five regions. We describe here the information structures

used in regions I, II, III. (Regions II′ and III′ are symmetric.) The upper bound for each

of these regions is stated as a lemma.

The (mechanical) proofs of these upper bounds are in Appendix C. Then, the formal

proofs of Theorems 3.2 and 3.3 just consist of tying together the pieces; these proofs are

in Appendix D.

5.1 Region I

In this region, pb ≤ p∗
b
and ps ≤ p∗s.

Here we can start from a straightforward guess at the worst information structures:

the worst information structure for the buyer is one where the seller is fully informed

(and the buyer knows only her value); the worst information structure for the seller is the

reverse.

Morally this is right, but it will be helpful for us to make two adjustments:

• First, we separate out the state in which the values are (b, s) so that trade is not

valuable; that is, we assume both agents find out whether this value profile has

occurred. If it has, then the IR constraints imply zero trade and zero payment.

This leaves us fewer remaining states to worry about.

Thus, the resulting information structures are as shown in Table 3. Here, in each

of the two information structures, there are four states, corresponding simply to

the possible value pairs (b, s) ∈ {b, b} × {s, s}. For each state, the table shows the
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Table 3: Information structures for parameter regions I and II: S1 (left) and S2 (right).

probability of that state and the pair of signals (ηB, ηS) received by the buyer and

seller.

In information structure S1, the seller knows exactly which state has occurred;

the buyer, if her value is b, does not know whether the seller is s or s. Information

structure S2 is similar but now it is the low-value seller s who is imperfectly informed.

• Second, actually S1 will serve as our bad information structure for types b and s; S2

will serve as the bad information structure for types b and s. This is not actually too

different from our original hypothesis that S1 is bad for the buyer and S2 bad for

the seller: intuitively, b and s are the types whose information matters because they

are the ones that earn information rents; we would expect an optimal mechanism

to give types b and s zero payoffs regardless of the information structure.

We summarize the analysis of this parameter region thus:

Lemma 5.1. If pb ≤ p∗
b
and ps ≤ p∗s, then for the list of information structures shown in

Table 3, any list of direct mechanisms L satisfies

TMU(L) ≤ pb(b− s) + ps(b− s).

The proof, in the appendix, indeed shows that the upper bound holds even if we “pre-

assign” each type to a particular information structure: using S1 to evaluate the utility of

types b, s, and S2 for b, s (rather than having to evaluate each type’s payoff by the worst

information structure, which may depend on the choice of mechanisms).

5.2 Region II (and II′)

In parameter region II, pb > p∗
b
, but still ps ≤ p∗s.
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This region can be analyzed using the same information structures in Table 3. How-

ever, we cannot pre-assign each type to one information structure: In particular, for types

b and s, we use both information structures in order to bound their minimum utilities

from any mechanism list L. (Appendix E.1 shows that pre-assigning types to information

structures as before is not sufficient to prove the bound.)

The result of our analysis of this region is as follows:

Lemma 5.2. If pb > p∗
b
and ps ≤ p∗s, then for the list of information structures shown in

Table 3, any list of direct mechanisms L satisfies

TMU(L) ≤ pbps(b− s) + pbps(b− s) + pbps(b− s)
b− s

b− b
.

Note that the bound given in the lemma is indeed the welfare from the optimal

dominant-strategy mechanism (Lemma 2.1; note case (b) applies).

We get a corresponding result for region II′. We do not write out a proof since it is

completely symmetric.

Lemma 5.3. If ps > p∗s and pb ≤ p∗
b
, then for the list of information structures shown in

Table 3, any list of direct mechanisms L satisfies

TMU(L) ≤ pbps(b− s) + pbps(b− s) + pbps(b− s)
b− s

s− s
.

5.3 Region III (and III′)

In parameter region III, ps > p∗s, and pbps
b−s

b−b
≤ pbps

b−s
s−s

(case (b) of Lemma 2.1).

For this region, the information structures used previously will no longer suffice (Ap-

pendix E.2 gives a counterexample). We use the same S1 as before, but a new S2, with the

following form: Conditional on the buyer having high value b, with a certain probability

1−λ, the seller is fully informed and the buyer uninformed (and both parties know this).

The rest of the state space is as in the earlier S2: the buyer is fully informed, and the

seller is uninformed if her value is s.

Here the value of λ is given by

λ =
pb
pb

×
b− s

b− b
.
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Table 4: Information structures for parameter region III: S1 (left) and S2 (right).

Note that the assumptions of this parameter region ensure that

0 < λ ≤
ps
ps

×
b− s

s− s
=

1− ps
ps

×
p∗s

1− p∗s
< 1.

Explicitly, the new information structures are as shown in Table 4. S2 now consists

of six states, labeled by pairs in {b, b, b
′
} × {s, s}; the buyer has high value b at states

labeled with either b or b
′
. The table again shows the probability of each state, and the

signals received by the buyer and seller. The b
′
states are the ones where the buyer does

not know the seller’s value.

In particular, the two information structures form an overlapping list: the new b
′
states

in S2 correspond to the b states in S1. Specifically, signals η3B, η
2
S, η

4
S are shared between

the two information structures.

We thus employ the overlapping version of the extortion lemma. We can pre-assign

types b, s to S1 and b, s to S2, but use the fact that the seller’s payoff under signal profile

(η3B, η
4
S) is the same in S1 as in S2. The result is then a bound equal to the welfare from

the optimal dominant-strategy mechanism (case (b) of Lemma 2.1):

Lemma 5.4. If ps > p∗s and pbps
b−s

b−b
≤ pbps

b−s
s−s

, then for the overlapping list of information

structures shown in Table 4, any overlapping list of direct mechanisms L satisfies

TMU(L) ≤ pbps(b− s) + pbps(b− s) + pbps(b− s)
b− s

b− b
.

Again, there is a corresponding result for region III′, which we give without a separate

proof. For brevity we avoid explicitly writing out the overlapping list of information

structures (it is the mirror image of the one in Table 4).

Lemma 5.5. If pb > p∗
b
and pbps

b−s

b−b
≥ pbps

b−s
s−s

, then there is an overlapping list of
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information structures such that any corresponding list L of overlapping direct mechanisms

satisfies

TMU(L) ≤ pbps(b− s) + pbps(b− s) + pbps(b− s)
b− s

s− s
.

As a side note, the overlapping version of the extortion lemma is needed: Appendix

E.3 gives a counterexample to show that the information structures used here give only a

weaker bound if the overlapping requirement is dropped.

6 Discussion of techniques

In this section we address a number of loose ends. In particular, we consider several

technical complexities that arise in the proofs, and discuss whether they can be simplified.

6.1 Free information

Our main result showed that, if a designer desires robustness to costly information games,

she can do no better than either a dominant-strategy or a flexible-price mechanism.

Can we do away with costly information acquisition? In particular, what if we restrict

to information games in which signals simply arrive exogenously at no cost. Thus the

designer seeks robustness to unknown information structures, as in the optimal auction

problem of Brooks and Du [7]. Does this already hold the designer down to our same

welfare guarantee? If so, then we would have no need for all the apparatus of extortion

games, and the characterizations in Section 5 could also be made simpler since we would

be able to use a single worst-case information structure instead of a list.

We show here that this is not the case: At least for some parameters, if the designer

only seeks robustness to information that arrives for free, she can guarantee welfare strictly

higher than that in Theorems 3.2 and 3.3. For brevity we keep the exposition slightly less

formal.

Specifically, we will focus on parameters with pb < p∗
b
and ps < p∗s, so that the original

theorem identifies a flexible-price mechanism as optimal, and WFP as the corresponding

welfare guarantee. Here is an intuition for how to improve when information is free:

Consider the flexible-price mechanism, with the seller offering. The worst information

structure for this mechanism is one where, whenever the type realization is (b, s), the

low-type seller receives a noisy signal that makes her close to indifferent as to which price

to offer, so that she just barely prefers to offer the high price s. Indeed, for any other
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information structure, either the low-type seller strictly benefits from her information and

so earns payoff above b − s, or else the high-type buyer sometimes gets offered the low

price b and so earns payoff above b− s.

Then, we can achieve an improved welfare by randomizing between the flexible-price

mechanism and some other mechanism that does better on this particular information

structure.

Specifically: Fix any positive number ǫ such that

1−
ps
ps

×
s− b

b− s
−
b− s

s− s
< ǫ < 1−

b− s

s− s
.

(The expression on the left is positive; this follows from ps < p∗s.) Consider the following

mechanism Mδ, where δ ∈ (0, 1) is a parameter:

(i) With probability 1−δ, run the flexible-price mechanism: The seller can choose price

b or s. The buyer can then accept or reject.

(ii) With remaining probability δ, run the following mechanism: The seller can choose

either to offer trade at price b, or a lottery in which, with probability qǫ = (b −

s)/(s − s) + ǫ, trade occurs at price s. The buyer can then accept or reject. (This

is the mechanism described in the proof of Proposition 2.2, in Appendix D).

For any information structure S, consider the information game I(S) where the players

take no actions, and simply receive signals according to S at no cost. We then have:

Proposition 6.1. For any sufficiently small δ, the infimum of W (Mδ, I(S)) over all

information structures S is strictly higher than WFP .

The proof is in Appendix D.

Note that we could again obtain a corresponding result using the welfare criterion W ,

by slightly elaborating the mechanism to get rid of spurious undominated strategies.

6.2 The role of informants

An awkward feature of the construction of the worst-case information game, under the

best-equilibrium criterion W , is the introduction of additional players IB, IS to provide

information about what equilibrium is being played. Could we get rid of these additional

players? In particular, could we have the original players B, S themselves supply the

needed information?

36



It would be natural to consider a construction in which B reports the seller’s least-

preferred information structure and willingness-to-pay, k(s) and ∆s, and simultaneously

S reports k(b) and ∆b. However, a difficulty that any such construction must confront

is the possibility of equilibria where the low type of buyer b reports a different choice of

(k(s),∆s) than the high type b does. Then, when the seller observes the extortion offer,

she can make inferences about the buyer’s value, and so continuation play after some

information structure Sk is realized does not need to correspond to a direct mechanism

on Sk (because each player may already have additional information about the other).

This informational difference also means that the seller’s willingness-to-pay after receiving

one extortion offer is different than her willingness-to-pay after a different offer, so that

it may indeed be possible to simultaneously sustain two different offers in equilibrium,

with each offer being a truthful report of the seller’s willingness-to-pay after receiving

that offer.

A related challenge is the possibility of mixed equilibria, where — even conditional on

a given value, say b — the buyer may mix between different reports (k(s),∆s), and then

correlate her reports with her actions in the mechanism. This correlation again can make

it possible to simultaneously sustain multiple different extortion offers.

Supposing that we cannot get rid of extra players, can we at least use a single infor-

mant, instead of having two separate informants IB and IS? That is, can we have one

player I who reports both the buyer’s and the seller’s willingnesses-to-pay? Here again,

it seems difficult to rule out equilibria that involve mixing and correlation in the reports.

In brief, the key property of our construction, with separate IB and IS, is that the buyer

does not incidentally learn anything during the information game that could possibly be

informative about the seller’s subsequent play in the mechanism (nor vice versa). This

ensures that when signals (ηkB, η
k
S) are realized, the players indeed have learned nothing

about each other beyond what is specified in the information structure Sk. It is not clear

how to do away with informants without sacrificing this key property.

6.3 On choice of information structures

The proof of our main result involved several different parameter regions and choices of

information structures to apply the extortion lemma. Is this complexity necessary?

In Appendix E, we consider this question more extensively, by examining several ways

one might try to simplify the arguments, and giving counterexamples to show that these

attempts fail. Here, for brevity, we simply summarize the findings (which have also been
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mentioned earlier):

• In parameter region I (subsection 5.1), we were able to “pre-assign” each type to a

particular information structure, and use only its payoff in that information struc-

ture to obtain the overall bound on TMU(L). In parameter region II, even though

the same list of information structures is used, we cannot pre-assign types in the

same way. Appendix E.1 gives a counterexample.

• In parameter region III, we used a different, and more complex, pair of information

structures than in parameter regions I and II. Appendix E.2 gives an example to

show that using the information structures from regions I and II would not have

sufficed to get a tight bound in region III.

• Also in parameter region III, we used the strengthened version of the extortion

lemma that considered overlapping lists of direct mechanisms. Appendix E.3 shows

by example that the non-overlapping version of the lemma, applied to the same

information structures, would not suffice.

6.4 General tightness of the extortion lemma

Our key tool for the analysis was the extortion lemma, which provides an upper bound on

the best possible welfare guarantee of any mechanism. As discussed earlier, this lemma

can be formulated much more generally than our two-type bilateral trade model. In our

analysis, the lemma always gives a tight bound for the optimal mechanism — as we

showed by exhibiting a mechanism that achieves the bound.

Is the bound always tight? That is, is it true beyond our setting that there is

some appropriate choice of (overlapping) information structures (S1, . . . ,SK) such that

supMW (M) = maxL TMU(L)?

It seems that this should be true: an intuition is that each type of each agent cannot

be forced down to a lower payoff than the worst she gets in equilibrium across all possible

information structures. However, this is not obviously correct. Conceivably, it might be

possible to drive an agent’s payoff even lower than the worst information structure for her,

by a variation of the extortion construction we have used. Notice that the amount that

can extorted from the buyer, in our model, is the difference between her payoff on the

equilibrium path (where she accepts extortion) and off the path (where she rejects). We

have used information structure Sk(b) to generate the off-path payoffs for the buyer (and

likewise for the seller). But in principle we could instead use an off-path continuation that
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“deceives” the seller, by sending her signals ηkS that come from some information structure

Sk but do not follow the distribution in πk. Such a continuation could potentially be even

worse for the buyer than any actual information structure Sk, and thereby allow us to

construct an adversarial information game that extorts from the buyer an amount even

greater than ∆b. So, sharpening the extortion lemma to a tight bound in general would

require showing that no such construction is possible.

7 Conclusion

We have considered a broad class of information games, in which agents can take costly

actions to acquire information or influence others’ information (or both), and asked how a

planner might choose among trading mechanisms, with an eye to their implications for the

costs spent on such activities. We formalized the planner’s overall objective as expected

welfare, which includes both the surplus generated within the trading mechanism itself and

the costs incurred in the information game. Rather than make some (necessarily arbitrary)

assumption about the particular information game available, we have considered all such

games, and used a worst-case robustness criterion to evaluate welfare. We focused on a

bilateral trade model as a natural case study. We have considered only the simplest case

— two types of each agent — but this allows for a complete and clean characterization.

In this setting (or any other private-values setting), dominant-strategy mechanisms

are a natural class of candidates for the optimally robust mechanism, since they give no

incentive for agents to manipulate information in any way. However, in our problem, the

optimum is not always a dominant-strategy mechanism. Moreover, when a dominant-

strategy mechanism is not optimal, the optimum is instead a quite simple mechanism,

where one agent can choose a price to offer to the other. And the parameter ranges for

preferring one mechanism or the other are also intuitive: Consider the state where both

agents’ values are low and the state where both values are high; no dominant-strategy

mechanism can realize all gains from trade in both these cases. Thus, if both of these

situations are likely (relative to the other case where trade is desirable — high buyer value

and low seller value), then it is better to use a more flexible mechanism. In this case,

each agent’s possible incentives to influence information are small, so any costs of such

influence are outweighed by the allocative benefits of the flexible-price mechanism.

The analysis also led to a simple description of the worst-case information game. It is

not one where each player pays to acquire information, but rather one where each player

must pay to prevent information from being released in an undesirable way. The particular
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information structure that is bad for each player (and each type) is not predetermined

but is endogenous to the mechanism, and to the choice of equilibrium being played. This

idea led to the extortion lemma, a tool for upper-bounding the informationally robust

welfare in any mechanism, which can be applied beyond the setting we have studied: it

essentially says that no mechanism can guarantee any better than giving each type its

worst payoff across all information structures.

What are next steps to take? There are two natural directions for improvement. First,

it would be desirable to find a way to avoid introducing extra players in the information

game. This would make for a simpler theorem statement and a more technically satisfying

analysis. And, second, it would of course be desirable to extend the results to give a tight

analysis for arbitrarily many types of buyer and seller, and to give techniques for other

mechanism design problems as well.

The extortion lemma gives an upper bound for welfare in any setting, and it is natural

to expect that this same technical machinery can be used in other mechanism design

problems to likewise identify the optimally robust mechanism. The trick is that getting

a tight bound requires a judicious choice of information structures to apply the lemma.

In the analysis here, this choice was made by hand. It appears that finding the right way

to make this choice in general will be a key step in order to extend the analysis to other

problems. Even when finding the optimal mechanism is difficult, however, the simple

insights about the flexible-price mechanism obtained here may prove useful in finding

some robust improvements over dominant-strategy mechanisms in other applications.

A Full definition of information games

Here we lay out the formal definition of information games. For the reasons introduced

in Section 3, we will allow for additional players besides B and S. The definition is based

on the standard formulation of extensive-form games, as in [13]. We allow for moves of

nature. Our definition would be slightly more compact if we required nature to move only

once at the beginning (as in [16]), but we will find it convenient to allow multiple moves

of nature; the two formulations are substantively equivalent.

An information game consists of a pair I = (P ,G), where P = (Ω, π, b, s) is a proba-

bility space, and G consists of the following objects:

• A set of players N = {1, 2, . . . , n}, where n ≥ 2 (we will take player 1 to be the

buyer and 2 to be the seller, and refer to them also as B and S). We will use the
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term information game without additional players to refer to the case n = 2 (and

with additional players allowed to emphasize the general case).

• A finite rooted tree. We write X for the set of nonterminal nodes and Z for the set

of terminal nodes, and x0 for the initial node.

• A move function ι : X → N ∪ {0}, specifying who moves at each node (or 0 for

nature).

• Information partitions for each player, (H1, . . . , Hn): specifically, for i = 1, 2, Hi

(with typical element hi) is a partition of ι−1(i) ∪ Z, and for each i > 2, Hi is a

partition of ι−1(i).

• For each i and each hi ∈ Hi, a set of action labels A(hi).

• For each node x ∈ X with ι(x) = i 6= 0, a bijection from the action labels A(hi(x))

to the successors of x in the tree.

(Note, this ensures that a terminal node and a nonterminal node can never be in the

same information set, since a terminal node must lie in an information set whose

set of action labels is empty.)

• For each node x with ι(x) = 0, a function from Ω to the successors of x.

• For each i ∈ N , a payoff function gi : Z → R.

We further require these objects to satisfy conditions (a)–(d) below. To state these

conditions, we first restate some standard definitions in our context.

A pure strategy si for player i ∈ N is a function that picks out, for each information set

hi ∈ Hi consisting of nonterminal nodes, an action si(hi) ∈ A(hi). Given a pure strategy

for each player and a state ω ∈ Ω, these together pick out a unique path through the tree

(and in particular a unique terminal node). We say a node x is reachable under strategy

si if there exist strategies for the other players and a state ω such that x is on the path

of play. We also say x is reachable in state ω if there exist strategies for each player such

that x is on the path of play under state ω.

At a node x with ι(x) = i, the experience of player i is the sequence of previous

information sets of player i and actions played there, on the unique path from the start

node to x [17].

Our requirements are as follows:
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(a) (Perfect recall) For any player i, any hi ∈ Hi and two nodes x, x′ ∈ hi, the experience

of i at x is the same as at x′.

(b) (No redundant nodes) For every node, there is some state in which it is reachable.

(Note that this is a requirement on the moves of nature.)

(c) (Known own values) If x, x′ are two nodes in the same information set of player B,

reachable in states ω and ω′ respectively, then b(ω) = b(ω′). If x, x′ are two nodes

in the same information set of player S, reachable in states ω and ω′ respectively,

then s(ω) = s(ω′).

(d) (Inaction strategies) For every player i ∈ N , there exists a pure strategy si such

that gi(z) ≥ 0 at every terminal node z reachable under si.

This is also a natural place to describe explicitly how an information game and a

mechanism come together to form a combined game. Suppose an information game I =

(P ,G) as above is given, and M = (AB, AS, q, t) is a mechanism. We would like to

specify that the players play I and then M. But M is described with simultaneous

moves, and the usual formulation of extensive-form games requires one player to move at

a time; arbitrarily we will specify that B moves before S. So the combined game is an

extensive-form game derived from G as follows:

• The players are the same as in G.

• The nodes consist of the nodes of G, plus additional nodes of the form (z, aB) and

(z, aB, aS) for each z ∈ Z, aB ∈ AB, aS ∈ AS. We specify that each node (z, aB, aS)

is a successor of (z, aB), which is in turn a successor of z. (Thus the terminal nodes

of the combined game are the nodes of the form (z, aB, aS).)

• Player B moves at each node z ∈ Z, and S moves at each node of the form (z, aB).

• Player B’s information sets are the same as in G. Player S has the same information

sets as in G, plus one information set of the form hS × AB for each information set

hS consisting of terminal nodes in G. Each other player’s information sets are the

same as in G.

• Actions are the same as in G, where applicable. At each information set for player

B consisting of terminal nodes in G, the set of actions is AB; at each information

set for player S of the form hS × AB, the set of actions is AS. The mapping from

actions at these information sets to successor nodes is the obvious one.
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• Moves of nature are the same as in G.

• Payoff functions for B and S over terminal nodes are defined by

uB(z, aB, aS) = gB(z) + b(z)q(aB, aS)− t(aB, aS),

uS(z, aB, aS) = gS(z) + t(aB, aS)− s(z)q(aB, aS),

where b(z) is defined to be b(ω) for any ω under which z is reachable (note this is

well-defined by conditions (b) and (c)), and similarly for s(z).

Payoff functions for any other player i > 2 are defined by

ui(z, aB, aS) = gi(z).

This is a standard extensive-form game, aside from the fact that moves of nature at

any node x are still referenced by states. We can easily convert each such description to

a probability distribution over x’s successors, by using the distribution π conditional on

the set of states under which x is reachable. Note that assumption (b) ensures that each

such distribution is well-defined and has full support.

This fully defines the combined game, in the usual framework of extensive-form games

with perfect recall, and we can apply notions such as sequential equilibrium.

B Proofs for extortion lemma

For convenience, this appendix is divided into four sections — first a description of the ad-

versarial information game, and then the actual proof of the welfare bound, for each of the

two versions of the extortion lemma (worst-equilibrium and best-equilibrium). Through-

out, we take the mechanism M = (AB, AS, q, t) as fixed, as well as the overlapping list of

information structures (S1, . . . ,SK), and an arbitrary default information structure S0.

We assume the signal sets in S0 to be disjoint from those of each other Sk, and thereby

can view (S0, . . . ,SK) as an overlapping list.

We will describe the information games without explicit reference to the probability

spaces, but it should be apparent that the games can be constructed as described, using

an appropriate common refinement of the Ωk for the underlying probability space.
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B.1 The information game (worst-equilibrium criterion)

First consider the following auxiliary game: An index k ∈ {0, . . . , K} is drawn uniformly

at random; the buyer and seller then receive signals (ηB, ηS) drawn according to infor-

mation structure Sk (without being informed of the choice of k); then they play the

mechanism M. Consider any undominated-strategy equilibrium of this game.

This leads to an overlapping list of direct mechanisms via the revelation principle.

Specifically, for each possible signal ηB, let αB(ηB) denote the buyer’s action in the mech-

anism after receiving signal ηB, and similarly αS(ηS) for the seller. (Note that we need

not further condition on the players’ values, since these are uniquely determined by their

signals.) Then, for each k and (ηB, ηS) ∈ Hk
B ×Hk

S, define q
k(ηB, ηS) = q(αB(ηB), αS(ηS))

and tk(ηB, ηS) = t(αB(ηB), αS(ηS)), where q and t are extended to mixed actions by

linearity.

Lemma B.1. The mechanisms Mk = (qk, tk) form an overlapping list of direct mecha-

nisms, for the given information structures.

The proof is is Appendix D. This list will be our L such that W (M) ≤ TMU(L).

Now define

k(b) = argmin
k≥1

ub(M
k), ∆b = ub(M

0)− ub(M
k(b)),

k(b) = argmin
k≥1

ub(M
k), ∆b = ub(M

0)− ub(M
k(b)),

k(s) = argmin
k≥1

us(M
k), ∆s = us(M

0)− us(M
k(s)),

k(s) = argmin
k≥1

us(M
k), ∆s = us(M

0)− us(M
k(s)).

(In each case, if there is more than one minimizing k then choose one arbitrarily.)

We can now describe our extortion information game. Let ǫ > 0 be small. Initially,

players know only their own values. Then:

1. The buyer chooses A or R (accept or reject extortion). Simultaneously, the seller

chooses A or R.

2. A value of k, together with payoffs gB, gS, are determined as follows.

– With exogenous probability ǫ, the value of k ∈ {0, 1, . . . , K} is chosen uniformly

at random, and gB and gS are both zero.
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– Otherwise: If the buyer chose R, then k is k(b) or k(b) (depending on the

buyer’s value in the realized state), and gB = gS = 0.

If the buyer chose A but the seller chose R, then k is k(s) or k(s) (depending

on the seller’s value), and gB = −∆b or −∆b (depending on the buyer’s value)

while gS = 0.

If both parties chose A, then k = 0, gB = −∆b or −∆b, and gS = −∆s or −∆s.

3. Signals (ηB, ηS) are drawn according to the corresponding information structure Sk.

The parties observe their signals (but do not further observe the realized k). Payoffs

are gB and gS as above.

This game meets the inaction requirement: each player can guarantee herself 0 by

choosing R.

It will be useful to describe the terminal nodes and the players’ knowledge about them.

The possible terminal nodes are of the form (dB, dS, d0, k, ηB, ηS) (where dB, dS ∈ {A,R}

indicate the buyer’s and seller’s responses to extortion, and d0 indicates which of the two

cases in step 3 occurred). The buyer’s information consists of (dB, ηB). (We need not

further include the value b in the buyer’s information since it is determined by ηB.) The

seller’s information consists of (dS, ηS).

B.2 Proof of lemma (worst-equilibrium criterion)

Proof of Lemma 4.3. We have constructed a list of direct mechanisms L, in the preceding

subsection. We will show that, with the specified information game I, the combined

game has an undominated sequential equilibrium whose welfare is close to TMU(L). Let

αB(ηB) and αS(ηS) denote the equilibrium actions from the auxiliary game.

We first describe the strategies in the combined game: The buyer, when asked to

choose A or R, always chooses A; the seller also always chooses A. When asked to play

the mechanism, if the buyer has received some signal ηB, she acts according to αB(ηB);

similarly, the seller acts according to αS(ηS).

Under these strategies, any information set of either player can be reached without a

deviation by the other player (recall the ǫ chance of random signal structure in stage 2).

Hence, beliefs are uniquely determined by Bayesian updating. Thus consistency of the

resulting assessment is automatic, and we just need to check sequential rationality.

Consider any information set of the buyer at the mechanism stage, either on or off

path (so dB may have been either A or R). What is the buyer’s belief about ηS? Note that

45



because both the low- and high-value seller are expected to play dS = A for certain, the

distribution over terminal nodes of the information game, given dB, can be decomposed

in the form

ρ(d0, k|dB, A)× πk(ηB, ηS)

(where ρ describes how (d0, k) are determined at stage 2 given (dB, dS)). In particular,

conditional on k and on ηB, the belief about ηS is distributed πk(ηS|ηB), which we know

can be written as π(ηS|ηB) without reference to k. Hence, this is also the buyer’s belief

about the seller’s signal, unconditional on k. (Note that this argument depends on the

fact that both the low- and high-value seller play A: otherwise, the realized ηB could be

informative about k, therefore about dS, and thereby give additional information about

the seller’s type.) Consequently, the buyer expects the seller to act in the mechanism

according to
∑

ηS
π(ηS|ηB)αS(ηS). Then αB is indeed a best reply; this follows from

equilibrium in the auxiliary game.

Similarly, since the buyer is always expected to play dB = A, the seller’s beliefs after

playing dS can be expressed in the form

ρ(d0, k|A, dS)× πk(ηB, ηS).

The belief about ηB conditional on k and ηS is given by πk(ηB|ηS) = π(ηB|ηS), and

so this is the belief about ηB given ηS alone. So the seller expects the buyer to play
∑

ηB
π(ηB|ηS)αB(ηB), and so αS(ηS) is indeed a best reply.

What about optimality of the stage-1 accept/reject decision? Note that if, in stage 2, a

random k is chosen, then the stage-1 decision has no effect on subsequent play or payoffs.

Conditioning on the complementary case in stage 2, and on the buyer’s value b ∈ {b, b},

the buyer’s expected payoff if she chooses A in stage 1 is −∆b in the information game

and ub(M
0) in the mechanism, for a total payoff of −∆b + ub(M

0) = ub(M
k(b)). If she

instead chooses R, the corresponding expected payoff is 0 in the information game and

ub(M
k(b)) in the mechanism. (These calculations use the fact that the seller is playing

dS = A.) Hence the buyer is indifferent.

Similarly, consider the seller’s stage-1 decision. Again, if a random k is chosen in

stage 2, the stage-1 decision has no effect. Conditioning on the complementary case in

stage 2, and on the seller’s value s ∈ {s, s}: if the seller chooses A then the conditional

expected payoff is −∆s in the information game and us(M
0) in the mechanism, hence

−∆s + us(M
0) = us(M

k(s)) in total; if she chooses R, she gets 0 in the information game

and us(M
k(s)) in the mechanism. So the seller is also indifferent.
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This verifies sequential rationality of the proposed strategies. And the fact that the

actions played in the mechanism are undominated is imediate from the original choice of

αB, αS. Thus we have an undominated sequential equilibrium.

What is the expected total welfare? Conditional on a random k in stage 2, the total

welfare is

W (Mk) = pbub(M
k) + pbub(M

k) + psus(M
k) + psus(M

k).

Conditional on the nonrandom outcome in stage 2, the above calculation shows that the

buyer’s (combined) payoff is ub(M
k(b)) = ub(L), and the seller’s is us(L); so expected

total welfare is TMU(L). Thus, overall, expected total welfare is

ǫ×
1

K + 1

K∑

k=0

W (Mk) + (1− ǫ)× TMU(L).

This is an upper bound on the welfare of the worst equilibrium, W (M, I), and therefore

on W (M). Now taking ǫ→ 0 gives W (M) ≤ TMU(L). The lemma follows.

B.3 The information game (best-equilibrium criterion)

First, given the mechanism M, let M be a large number: specifically, let tmax and tmin

be the maximum and minimum values of t, and take M > (b − s) + (tmax − tmin). Thus

M is larger than any possible payoff difference between two outcomes of the mechanism.

Let F (“fine”) be another arbitrarily large number. Also, let ǫ, δ > 0 be small numbers.

Assume δ is chosen such that M/δ is an integer. Assume ǫ is chosen small enough so that

1− ǫ

2
× (1− 2ǫ3) ≥

1

4
and ǫ ≤

(1− 2ǫ3)πmin

2(K + 1)
,

where πmin > 0 is such that πk(ηB), π
k(ηS) ≥ πmin for all information structures k =

0, . . . , K and all ηB ∈ Hk
B, ηS ∈ Hk

S. And assume F is large enough such that

F ≥
3M

ǫ2 ·min{pb, pb, ps, ps}
.

Our information game, with additional players IB, IS, is as follows. Initially, B and S

know their values b, s. Then:

1. IB can either choose inaction (∅), or can make a report (k̂(b), k̂(b), ∆̂b, ∆̂b), where

k̂(b), k̂(b) ∈ {1, . . . , K}, and ∆̂b, ∆̂b ∈ {−M,−M + δ,−M + 2δ, . . . ,M − δ,M}.
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Simultaneously, IS can either choose inaction (∅) or can make a report (k̂(s), k̂(s), ∆̂s, ∆̂s),

where k̂(s), k̂(s) ∈ {1, . . . , K}, and ∆̂s, ∆̂s ∈ {−M,−M + δ, . . . ,M}.

If IB chooses ∅, then we put k̂(b) = k̂(b) = 1 and ∆̂b = ∆̂b = 0. Similarly if IS

chooses ∅.

2. The buyer is informed of (k̂(b), ∆̂b) (which is (k̂(b), ∆̂b) or (k̂(b), ∆̂b) depending on

her value). The buyer chooses A or R.

Simultaneously, the seller is informed of (k̂(s), ∆̂s), and chooses A or R.

3. A value of k, and payoffs gB, gS, are determined as follows:

(a) With exogenous probability ǫ, the value of k ∈ {0, . . . , K} is chosen uniformly

at random, and gB = gS = 0.

(b) With probability (1− ǫ)/2:

If the buyer chose R, then k = k̂(b), and gB = gS = 0.

If the buyer chose A but the seller chose R, then k = k̂(s), gB = −∆̂b, and

gS = 0.

If both chose A, then k = 0, gB = −∆̂b and gS = −∆̂s.

(c) With remaining probability (1− ǫ)/2:

If the seller chose R, then k = k̂(s), and gB = gS = 0.

If the seller chose A but the buyer chose R, then k = k̂(b), gB = 0, and

gS = −∆̂s.

If both chose A, then k = 0, gB = −∆̂b and gS = −∆̂s.

4. Signals (ηB, ηS) are drawn according to the information structure Sk. Players B and

S observe their signals (but not the realized k). Their payoffs in the information

game are gB, gS as above.

5. The informants’ payoffs are determined as follows: If IB chose ∅, his payoff is 0.

Otherwise, his payoff is ǫ(∆̂b + 2M) if B chose A, and ǫ(∆̂b + 2M) − F if B chose

R.

If IS chose ∅, his payoff is 0. Otherwise, his payoff is ǫ(∆̂s + 2M) if S chose A, and

ǫ(∆̂s + 2M)− F if S chose R.
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This game meets the inaction requirement: B and S can each guarantee a payoff of 0

by choosing R, and the informants can each guarantee a payoff of 0 by choosing ∅.

Again, in order to talk about strategies in the combined game, it will be useful to

briefly note what information the players have each time they make a decision, and at

the end of the information game. The informants move only at the beginning, and they

have no information. When the buyer chooses A or R, she knows her value b and the pair

(k̂b, ∆̂b). At the end of the information game, she also knows her own previous action (A

or R) and the realized signal ηB. Similarly, when the seller first chooses, she knows s and

the pair (k̂s, ∆̂s). At the end of the information game, she also knows her own previous

action and the signal ηS.

B.4 Proof of lemma (best-equilibrium criterion)

The proof is a bit lengthy, so we give an outline. We want to show that any sequential

equilibrium of the combined game, using the information game in Subsection B.3, has

welfare bounded above by maxL TMU(L) (plus a small fudge factor). We will proceed

in six main steps:

• Step 1. Neither informant chooses inaction, in equilibrium.

• Step 2. In equilibrium, each type of buyer and seller has very low probability of

playing R.

• Step 3. Consider any two different information sets hB, h
′
B for the buyer (either on or

off the equilibrium path), in which she has received the same signal ηB, and now has

to choose an action in the mechanism. Her belief about the seller’s information at

hB is approximately the same as her belief about the seller’s information at h′B. (As

a consequence, her conjecture at hB about what the seller will do in the mechanism

is approximately the same as at h′B.)

• Step 4. The buyer’s equilibrium action in the mechanism, conditional on each

signal ηB — and likewise the seller’s action conditional on each ηS — can be used

to construct overlapping “direct mechanisms” Mk that are approximately IC and

IR.

• Step 5. In equilibrium, the informants’ reports ∆̂b, ∆̂b, ∆̂s, ∆̂s are close to the agents’

true willingnesses-to-pay, as represented by the difference in their expected payoffs

between M0 and Mk.
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• Step 6. In equilibrium, the buyer’s and seller’s expected payoffs (in the combined

game) are close to their payoffs in the worst Mk.

Before filling in details, we should formally define the “approximate direct mecha-

nisms” in Step 4. Given an information structure S, and a number γ > 0, we define a

γ-direct mechanism to be M = (q, t) with q : HB × HS → [0, 1], t : HB × HS → R,

satisfying approximate versions of the IC and IR constraints: for all η∗B, η
′
B ∈ HB and

η∗S, η
′
S ∈ HS,

∑

ηS

π(ηS|η
∗
B) ([b(η

∗
B)q(η

∗
B, ηS)− t(η∗B, ηS)]− [b(η∗B)q(η

′
B, ηS)− t(η′B, ηS)]) ≥ −γ;

∑

ηS

π(ηS|η
∗
B) [b(η

∗
B)q(η

∗
B, ηS)− t(η∗B, ηS)] ≥ −γ;

∑

ηB

π(ηB|η
∗
S) ([t(ηB, η

∗
S)− s(η∗S)q(ηB, η

∗
S)]− [t(ηB, η

′
S)− s(η∗S)q(ηB, η

′
S)]) ≥ −γ;

∑

ηB

π(ηB|η
∗
S) [t(ηB, η

∗
S)− s(η∗S)q(ηB, η

∗
S)] ≥ −γ.

If (S1, . . . ,SK) is an overlapping list of information structures, we define an overlapping

list of γ-direct mechanisms on it to be L = (M1, . . . ,MK), where each Mk = (qk, tk) is

a γ-direct mechanism on Sk, and (4.3) is satisfied whenever applicable.

Now we are ready.

Proof of Lemma 4.4. Let M = (AB, AS, q, t) be the given indirect mechanism. Fix

M,F, ǫ, δ as in Subsection B.3, and let the information game be as described there. Fix

any sequential equilibrium (σ∗, µ∗) of the resulting combined game.

Step 1. Consider the buyer’s decision in stage 2 of the information game, at any

information set hB where she is offered ∆̂b = −M . Suppose the buyer’s strategy σ∗
B calls

for choosing R with positive probability. Consider a deviation to play A, and then play

in the mechanism as if she had chosen R (holding fixed the received signal ηB).

This deviation has no effect on the buyer’s ultimate payoff if stage 3 of the information

game leads to realization (a), or realization (c) and the seller chose R. In both cases, the

deviation does not change payoffs in the mechanism (because it does not affect the choice

of k, so it is not detected by the seller and so does not affect her payoff; nor does it affect

the buyer’s information), nor does it change payoffs in the information game. On the other

hand, if stage 3 leads to realization (b), or realization (c) and the seller chose A, then

the deviation changes the buyer’s payoff in the information game from 0 to −∆̂b = M .
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It may also affect play in the mechanism, but this change can affect payoffs by at most

(b− s) + (tmax − tmin) < M . Hence, the deviation strictly improves the buyer’s payoff in

these cases. Moreover these cases arise with positive probability (since (b) has probability

(1− ǫ)/2). So the deviation is a strict improvement for the buyer.

Consequently, by sequential rationality, the buyer’s equilibrium strategy σ∗
B must call

for playing A (with probability 1) at each such information set hB.

Now, given this, consider the informant IB at stage 1 of the information game. He

can make any report with ∆̂b = ∆̂b = −M , and the buyer will accept, which gives the

informant a payoff of ǫM . If instead he chooses inaction, his payoff is 0. So inaction

cannot be a best reply.

Similarly, inaction cannot be optimal for IS given the seller’s equilibrium strategy σ∗
S.

Step 2. Suppose that, in the equilibrium outcome, the probability that the buyer

rejects, conditional on having value b, is ξb. Then the unconditional probability of rejection

is at least pbξb. Hence, informant IB’s overall payoff is at most 3Mǫ − pbξbF . This

must be at least 0 (otherwise the informant would rather deviate to inaction); therefore

ξb ≤ 3Mǫ/pbF . By choice of F , this is at most ǫ3.

Defining ξb similarly as the buyer’s probability of rejecting conditional on value b, we

get ξb ≤ ǫ3.

Similarly, conditional on either value s, s, the seller’s probability of rejecting is at most

ǫ3.

From now on, say that a strategy profile σ has the low-rejection property if the buyer’s

probabilities of rejecting conditional on b and conditional on b, and the seller’s probabilities

of rejecting conditional on s and s, are all < 2ǫ3.

Step 3. Write hB = (k̂(b), ∆̂b, dB, ηB) to denote a typical information set of the buyer

at the end of the information game. Here, as in the proof of Lemma 4.3, dB denotes the

buyer’s decision (A or R) in stage 2. We need not explicitly include the buyer’s value

b in the description of hB because b is fully determined by ηB, although sometimes it

will be useful to include it. Similarly, we can write hS = (k̂(s), ∆̂s, dS, ηS) for a typical

information set of the seller at the end of the information game.

Let (σ, µ) be any consistent assessment (not necessarily our equilibrium). For any hB,

we can write the implied belief µB(hS|hB), a probability distribution over information sets

hS conditional on reaching hB. This is obtained by taking the probability distribution

µB(z|hB) specified by the belief system µ at information set hB, which is a distribution

over nodes in hB (all of which are terminal nodes in the information game), and then

marginalizing over hS. In particular, this implied belief is well-defined even if hB is
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reached with probability zero under the proposed strategies.

We will show the following claim: If (σ, µ) is any consistent assessment that satisfies the

low-rejection property, then for any two information sets hB and h′B = (k̂
′
(b), ∆̂′

b, d
′
B, η

′
B)

such that η′B = ηB, the implied beliefs over hS are almost the same:

d(µB(·|hB), µB(·|h
′
B)) ≤ 12ǫ, (B.1)

where the distance d(·, ·) between distributions is measured by the L1-norm.

To see this, first suppose that σ is fully mixed, so that every information set has

positive probability and hence µB is pinned down by Bayesian updating. Let σ̃S be the

alternative strategy for the seller that simply always accepts in the information game (play

in the mechanism is irrelevant); let σ̃ be the strategy profile where S plays σ̃S and the

other players B, IB, IS play as in σ; and define µ̃B(hS|hB), µ̃B(hS|h
′
B) to be the implied

beliefs over hS that arise from σ̃. Notice that every information set for B is still reached

with positive probability under σ̃, so these alternative beliefs are still pinned down by

Bayes.

Now we make the following two subclaims:

(i) For each hS = (k̂(s), ∆̂s, dS, ηS) with dS = A, we have µ̃B(hS|hB) ≥ (1−2ǫ2)µB(hS|hB).

(ii) The information sets hS with dS = A have total probability at least 1 − ǫ under

distribution µB(·|hB).

To see why subclaim (ii) is true, write the desired total probability (slightly abusing

notation) as

µB(dS = A|hB) = µB(dS = A|k̂B, ∆̂B, dB, ηB)

=
Prσ(dS = A; b, k̂b, ∆̂b, dB) · Prσ(ηB|dS = A; b, k̂b, ∆̂b, dB)

Prσ(dS = A; b, k̂b, ∆̂b, dB) · Prσ(ηB|dS = A; b, k̂b, ∆̂b, dB)+

Prσ(dS = R; b, k̂b, ∆̂b, dB) · Prσ(ηB|dS = R; b, k̂b, ∆̂b, dB)

.

Now, in the denominator, the first summand is at least (1−2ǫ3)×πminǫ/(K+1), because

the probability of dS = A is at least 1 − 2ǫ3 and this event arises independently of

(b, k̂b, ∆̂b, dB) (since there is no interaction between the buyer’s and seller’s information or

their decisions by the time dS is decided), and because at stage 3, the signal ηB materializes

with probability at least ǫπmin/(K + 1) regardless of all previous events (as one of the

possibilities in realization (a)). By our assumption on ǫ, (1−2ǫ3)×πminǫ/(K+1) ≥ 2ǫ2 ≥

2(ǫ2 − ǫ3).
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Likewise, the second summand in the denominator is at most 2ǫ3 × 1 = 2ǫ3, because

dS = R happens with probability at most 2ǫ3 and this is independent of (d, k̂b, ∆̂b, dB).

Hence, we have

µB(dS = A|hB) ≥
2(ǫ2 − ǫ3)

2(ǫ2 − ǫ3) + 2ǫ3
= 1− ǫ.

Similarly, for subclaim (i), write

µ̃B(hS|hB) =
Prσ̃(hS, hB)

Prσ̃(hB)

=
Prσ̃(s, k̂s, ∆̂s, dS, b, k̂b, ∆̂b, dB)× Prσ̃(ηS, ηB|s, k̂s, ∆̂s, dS, b, k̂b, ∆̂b, dB)

Prσ̃(ηB|b, k̂b, ∆̂b, dB)× Prσ̃(b, k̂b, ∆̂b, dB)
.

Here dS = A by assumption. Now write out a similar formula for µB(hS|hB), where all

the probabilities are under σ rather than σ̃. Now divide the two formulas. Note that

Prσ̃(s, k̂s, ∆̂s, dS, k̂b, ∆̂b, dB) ≥ Prσ(s, k̂s, ∆̂s, dS, k̂b, ∆̂b, dB)

because the seller is more inclined to choose dS = A under σ̃ than σ, and everything else

affecting these probabilities is the same under σ̃ as σ. Also notice that

Pr(ηS, ηB|s, k̂s, ∆̂s, dS, b, k̂b, ∆̂b, dB)

is the same under σ̃ as under σ (both probabilities are determined identically by stage 3

of the information game). And Pr(b, k̂b, ∆̂b, dB) is also clearly the same under σ̃ as σ. So

when the smoke clears, we get

µ̃B(hS|hB)

µB(hS|hB)
≥

Prσ(ηB|b, k̂b, ∆̂b, dB)

Prσ̃(ηB|b, k̂b, ∆̂b, dB)
.

Now the logic is similar to subclaim (ii): break up the numerator and denominator on

the right-hand side into

Prσ(ηB|dS = A; b, k̂b, ∆̂b, dB) · Prσ(dS = A|b, k̂b, ∆̂b, dB)+

Prσ(ηB|dS = R; b, k̂b, ∆̂b, dB) · Prσ(dS = R|b, k̂b, ∆̂b, dB)

Prσ̃(ηB|dS = A; b, k̂b, ∆̂b, dB) · Prσ̃(dS = A|b, k̂b, ∆̂b, dB)
. (B.2)

(There is no additional summand in the denominator, since σ̃ places probability zero on

R.)
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Given that the seller accepts, the probability of producing signal ηB in stage 3 depends

only on k̂b and dB; in particular, the first factor Pr(ηB|dS = A; b, k̂b, ∆̂b, dB) is the same

under σ and σ̃. So we can divide through by this probability, and also note that the

second factor in the denominator is 1, to rewrite (B.2) as

Prσ(dS = A|b, k̂b, ∆̂b, dB) +
Prσ(ηB|dS = R; b, k̂b, ∆̂b, dB) · Prσ(dS = R|b, k̂b, ∆̂b, dB)

Prσ(ηB|dS = A; b, k̂b, ∆̂b, dB)
.

This is at least Prσ(dS = A|b, k̂b, ∆̂b, dB) which is just the seller’s probability of accepting

(by independence) which is at least 1− 2ǫ2.

This proves subclaims (i) and (ii). Combining, we see that there is at least (1−2ǫ2)(1−

ǫ) ≥ 1− 3ǫ probability mass that is shared between distributions µ̃B(·|hB) and µB(·|hB).

Thus,

d(µB(·|hB), µ̃B(·|hB)) ≤ 6ǫ. (B.3)

Similarly,

d(µB(·|h
′
B), µ̃B(·|h

′
B)) ≤ 6ǫ. (B.4)

However, we also have

µ̃B(hS|hB) = µ̃B(hS|h
′
B) (B.5)

for each information set hS. This is because σ̃S always accepts, so if hS involves decision

dS = R then both probabilities are zero; on the other hand if dS = A then we have

µ̃B(hS|hB) = Prσ̃(s, k̂s, ∆̂s)× Prσ̃(ηS|s, k̂s, ∆̂s, dS = A;hB)

= Prσ̃(s, k̂s, ∆̂s)× π(ηS|ηB)

since ηB is part of hB, and once an information structure k is chosen at stage 3, the

distribution of ηS given ηB is always π(ηS|ηB) regardless of everything else that has hap-

pened. Now, an identical calculation shows that µ̃B(hS|h
′
B) is given by exactly the same

formula, proving (B.5). Finally, combining (B.3), (B.4), and (B.5) (and applying the

triangle inequality) gives the claim, inequality (B.1).

This proves (B.1) when the strategy profile σ is fully mixed.

Now if (σ, µ) is any consistent assessment that satisfies the low-rejection property, it

is the limit of fully mixed consistent assessments (σr, µr) with r → ∞. For sufficiently

large r, σr also satisfies the low-rejection property, so (B.1) holds for each such µr, and

therefore it holds for the limit µ. This proves the claim in general.
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In particular, the claim holds for the equilibrium (σ∗, µ∗), completing this step.

Step 4. Consider the path of play generated by the equilibrium strategies σ∗. This

involves some joint distribution over signals (ηB, ηS) and actions in the mechanism (aB, aS)

(among other things).

For each possible signal ηB, define αB(ηB) to be the probability distribution over aB

conditional on ηB being realized. This is well-defined, because each signal arises with

positive probability. Thus αB(ηB) defines a mixed action in the mechanism. Similarly we

define αS(ηS) for each possible signal ηS.

Now, just as in Appendix B.1, for each k and each (ηB, ηS) ∈ Hk
B × Hk

S, we define

qk(ηB, ηS) = q(αB(ηB), αS(ηS)) and tk(ηB, ηS) = t(αB(ηB), αS(ηS)), where q and t from

the mechanism are extended to mixed actions by linearity.

We will show that these qk and tk form an overlapping list of γ-direct mechanisms,

where γ = 24Mǫ. The overlapping condition (4.3) is satisfied by construction, so we need

to check the approximate IC and IR conditions. Fix a signal ηB, let b be the corresponding

buyer’s value, and let a∗B ∈ AB be an action chosen with positive probability under αB(ηB).

For the approximate IC condition, it suffices to show that any deviation from a∗B to any

alternative action a′B cannot produce a gain of more than γ: that is,

∑

ηS

π(ηS|ηB) ([bq(a
∗
B, αS(ηS))− t(a∗B, αS(ηS))]− [bq(a′B, αS(ηS))− t(a′B, αS(ηS))]) ≥ −γ.

(B.6)

Indeed, this will imply that there is at most γ gain from deviating from the mixed action

αB(ηB) to any a′B, and therefore at most γ gain from deviating to αB(η
′
B), which is what

is needed.

Let hB be some information set, reached with positive probability, under which the

buyer has signal ηB and plays action a∗B in equilibrium. Write Pr(hS|hB) for the distribu-

tion over hS given hB (as in step 3; note we can write this as an objective probability dis-

tribution rather than a belief µB since hB has positive probability). And write Pr(hS|ηB)

for the equilibrium distribution over hS conditional only on the buyer receiving signal ηB.

Since the latter is an average over the distributions Pr(hS|h
′
B) for various information sets

h′B, all with signal ηB, step 3 implies that these two distributions satisfy

d∆(H∪

S
)(Pr(·|hB),Pr(·|ηB)) ≤ 12ǫ.

(The subscript is notation to emphasize that the two Pr(· · · )’s lie in the space of distribu-

tions over H∪
S = ∪kH

k
S.) Consequently, the same is true for the distributions over seller’s
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actions σS(hS) conditional on hB and on ηB respectively:

d∆(AS)(Pr(·|hB),Pr(·|ηB)) ≤ 12ǫ. (B.7)

Now, after conditioning on ηB, the distributions over seller’s actions is equal to the

weighted average of the distributions obtained by further conditioning on seller’s signal

ηS, where each ηS occurs with the appropriate probability, which is π(ηS|ηB):

Pr(aS|ηB) =
∑

ηS

π(ηS|ηB) Pr(aS|ηB, ηS). (B.8)

However, conditional on the seller’s information hS at the time of the mechanism, the

choice of aS is independent of any additional information possessed by the buyer (since the

seller cannot condition on this additional information). In particular, aS is independent

of ηB conditional on hS:

Pr(aS, ηB|hS) = Pr(aS|hS) Pr(ηB|hS) = π(ηB|ηS) Pr(aS|hS).

Doing a weighted sum over all information sets hS at which the seller receives signal ηS

gives

Pr(aS, ηB|ηS) =
∑

hS

Pr(aS, ηB|hS) Pr(hS|ηS)

= π(ηB|ηS)
∑

hS

Pr(aS|hS) Pr(hS|ηS)

= π(ηB|ηS) Pr(aS|ηS)

or, after dividing by the probability of ηB given ηS,

Pr(aS|ηB, ηS) = Pr(aS|ηS).

Thus (B.8) becomes

Pr(aS|ηB) =
∑

ηS

π(ηS|ηB) Pr(aS|ηS). (B.9)

Combining with (B.7) gives a bound on the distance between the distribution of the

seller’s actions conditional on the buyer being at hB, and the weighted average of the

56



distributions αS(ηS):

d∆(AS)(Pr(·|hB),
∑

ηS

π(ηS|ηB)αS(ηS)) ≤ 12ǫ. (B.10)

Now, let α̂S(hB) denote the distribution over actions aS conditional on the buyer’s

information set hB. Because a change in the seller’s action affects the buyer’s payoff in

the mechanism by at most M , (B.10) implies

∣∣∣∣∣[bq(a
∗
B, α̂S(hB))− t(a∗B, α̂S(hB))]−

∑

ηS

π(ηS|ηB) [bq(a
∗
B, αS(ηS))− t(a∗B, αS(ηS))]

∣∣∣∣∣ ≤ 12Mǫ

(B.11)

and

∣∣∣∣∣[bq(a
′
B, α̂S(hB))− t(a′B, α̂S(hB))]−

∑

ηS

π(ηS|ηB) [bq(a
′
B, αS(ηS))− t(a′B, αS(ηS))]

∣∣∣∣∣ ≤ 12Mǫ.

(B.12)

And since the equilibrium strategy prescribes playing a∗B at hB, sequential rationality

gives

[bq(a∗B, α̂S(hB))− t(a∗B, α̂S(hB))]− [bq(a′B, α̂S(hB))− t(a′B, α̂S(hB))] ≥ 0.

Combining with (B.11) and (B.12) (and the triangle inequality) gives (B.6). This implies

that the approximate IC condition for the buyer is satisfied. And by taking a′B to be the

non-participation action ∅ in (B.6), we get the approximate IR condition as well.

The corresponding conditions for the seller hold by analogous reasoning.

Step 5. Fix any signal ηB that the buyer may receive, and let b ∈ {b, b} be the

associated value. Let u∗B(ηB) denote the buyer’s expected payoff, conditional on receiving

signal ηB, in the direct mechanism constructed in Step 4; that is,

u∗B(ηB) =
∑

ηS

π(ηS|ηB) [bq(αB(ηB), αS(ηS))− t(αB(ηB), αS(ηS))] .

(Note that this is the correct payoff formula for any direct mechanism (qk, tk) for an

information structure in which ηB appears.)

We claim the following: Under the equilibrium assessment (σ∗, µ∗), starting from any

information structure hB at which the buyer receives signal ηB, her expected payoff is

within 36Mǫ of u∗B(ηB).

57



To show this, we need more notation. First, let α̃S(ηB) denote the equilibrium dis-

tribution over seller’s actions in the mechanism conditional on the buyer receiving signal

ηB. From (B.9), we have

α̃S(ηB) =
∑

ηS

π(ηS|ηB)αS(ηS).

Also let α̂S(hB) be the distribution over σS(hS) when hS is distributed according to

µB(hS|hB), just as in Step 4.

The same reasoning leading to (B.7) implies that for any action aB that B could take

in the mechanism,

|[bq(aB, α̂S(hB))− t(aB, α̂S(hB))]− [bq(aB, α̃S(ηB))− t(aB, α̃S(ηB))]| ≤ 12Mǫ. (B.13)

Here we again use the fact that a change in the seller’s action in the mechanism can affect

the buyer’s payoff by at most M . (In Step 4, we assumed that hB was an information set

reached with positive probability, but that property is not needed here.)

Now, if a∗B is any action in the support of αB(ηB), then it is an action taken with

positive probability at some information set h′B with signal ηB. Hence, by (B.6), it gives

a payoff that is within γ = 24Mǫ of optimal against action distribution α̃S(ηB) by the

seller. Consequently, the mixed action αB(ηB) is also within γ of optimal against α̃S(ηB).

That is, u∗B(ηB) is within 24Mǫ of the best payoff the buyer can get against α̃S(ηB). By

(B.13), the latter is within 12Mǫ of the best payoff the buyer can get against α̂S(hB).

But this latter quantity is exactly the payoff that the buyer gets starting from hB. This

proves the claim.

Now, for each b ∈ {b, b}, write

ub(M
k) =

∑

ηB

πk(ηB|b)u
∗
B(ηB)

for the expected payoff of the buyer in direct mechanism Mk given that her value is b,

exactly as with the definitions of ub, ub in Subsection 4.1.

Consider now any information set (b, k̂b, ∆̂b) at which the buyer has value b and has

to choose to accept or reject extortion. For each k = 0, . . . , K, let ψk be the probability,

as assessed at this information set, that one of the two below cases occurs: either

• stage 3 of the information game will lead to realization (a) with information structure

Sk being chosen; or
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• realization (c) will occur, and k̂(s) = k, and the seller chose R.

In either of these cases, no matter whether the buyer chooses A or R, information structure

k will be realized and gB = 0. Let ψ be the probability that either (b) or (c) realizes and

the seller chose A; in this case, the buyer choosing A leads to information structure 0 and

gB = −∆̂b, whereas R leads to k = k̂(b) and gB = 0. Finally, let ψ̃k be the probability

that (b) realizes, k̂(s) = k, and the seller chose R; in this case the buyer’s A/R action

chooses between information structure k and gB = −∆̂b, and k̂(b) and gB = 0.

So if the buyer chooses A at the current information set (b, k̂b, ∆̂b), her expected payoff

in the combined game is within 36Mǫ of

∑

k

ψkub(M
k) + ψ(ub(M

0)− ∆̂b) +
∑

k

ψ̃k(ub(M
k)− ∆̂b), (B.14)

and if she chooses R, her expected payoff in the combined game is within 36Mǫ of

∑

k

ψkub(M
k) + ψ(ub(M

k̂b)) +
∑

k

ψ̃k(ub(M
k̂b)). (B.15)

Subtracting: the difference in payoffs from choosing A versus choosing R is within 72Mǫ

of

ψ(ub(M
0)− ub(M

k̂b)− ∆̂b) +
∑

k

ψ̃k(ub(M
k)− ub(M

k̂b)− ∆̂b). (B.16)

Now, we know from step 2 that the seller’s probability of rejecting is < 2ǫ3, and this

is independent of the information (b, k̂b, ∆̂b) received so far. Therefore,
∑

k ψ̃
k < 2ǫ3

and ψ ≥ ((1 − ǫ)/2) × (1 − 2ǫ3) ≥ 1/4 (by choice of ǫ). Combining with the fact that

|ub(M
k) − ub(M

k̂b)| ≤ M and |∆̂b| ≤ M , we see that the difference in payoffs between

choosing A and R is within 76Mǫ of

ψ(ub(M
0)− ub(M

k̂(b))− ∆̂b).

So if

ub(M
0)− ub(M

k̂(b))− ∆̂b > 400Mǫ, (B.17)

then this choosing A is strictly better than choosing R.

Hence, the buyer’s equilibrium strategy must call for choosing A at every information

set (b, k̂b, ∆̂b) where (B.17) is satisfied.

Now define the true worst information structure k(b) and true willingness-to-pay ∆b,

for each buyer type b, as in Appendix B.1. It follows that in equilibrium, the informant
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IB must report ∆̂b ≥ ∆b − 400Mǫ− δ (for each buyer type b) with probability 1: If this

were not the case for some buyer type b, then the informant could increase his report ∆̂b

while having it still be below ∆b − 400Mǫ and could report k̂(b) = k(b), and this would

increase the informant’s payoff, since the buyer of type b would still accept this higher

extortion. (Note the δ term that comes from the discretization of the informant’s action

space.)

By a similar argument, in equilibrium, the informant IS must with probability 1 make

a report that satisfies ∆̂s ≥ ∆s − 400Mǫ− δ, for each type of seller s ∈ {s, s}.

Step 6. Finally, we can estimate the ex-ante expected equilibrium payoff of each player.

We know that with probability at least (1− 2ǫ3)2(1− ǫ) ≥ 1− 5ǫ, both players choose

A and then either (b) or (c) is realized in stage 3 of the information game. When this

happens, the resulting information structure will be k = 0 and the players’ payoffs in the

information game are given by gB = −∆̂b, gS = −∆̂s. In the remaining 5ǫ of probability

mass, these players’ information-game payoffs will in any case be different than the above

by at most 2M (since payoffs in the information game are always in [−M,M ]). Hence,

the buyer’s expected payoff in the information game is

≤ −E[∆̂b] + 10Mǫ ≤ −E[∆b] + 410Mǫ+ δ

where the expectations are with respect to b ∈ {b, b}.

What about the payoff in the mechanism? Step 5 also showed us that, conditional

on receiving any signal ηB, the buyer’s expected payoff in the mechanism is within 36Mǫ

of u∗B(ηB); hence, buyer type b’s expected payoff conditional on information structure

k = 0 realizing is within 36Mǫ of ub(M
0). Again, information structure 0 realizes with

probability at least 1 − 5ǫ, and in the remaining 5ǫ mass of cases, the buyer’s payoff in

the mechanism cannot differ by more than M . So the buyer’s ex-ante expected payoff in

the mechanism is

≤ E[ub(M
0)] + 41Mǫ.

Hence, the buyer’s ex-ante expected payoff in the combined game is

≤ E[ub(M
0)−∆b] + 451Mǫ+ δ = E[ub(M

k(b))] + 451Mǫ+ δ.

A similar bound applies to the seller’s ex-ante expected payoff. Finally, each informant

can never obtain a payoff of more than 3Mǫ.

Thus, adding up across the buyer, seller, and two informants, total equilibrium welfare
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in the combined game is at most

E[ub(M
k(b))] + E[us(M

k(s))] + 908Mǫ+ 2δ = TMU(L) + 908Mǫ+ 2δ

where L is the list of γ-direct mechanisms constructed in step 4, and its total minimum

utility TMU(L) is defined as in (4.2).

Wrapping up the proof. At this point we have shown the following: For suitably small

ǫ, δ (with M/δ an integer), for any sequential equilibrium of the corresponding combined

game, total equilibrium utility is at most TMU(Lγ) + 908Mǫ + 2δ, for some Lγ that is

an overlapping list of γ-direct mechanisms with γ = 24Mǫ.

Now, different choices of the equilibrium may lead to different choices of mecha-

nism list Lγ. Nonetheless, for all such choices, welfare satisfies an upper bound of

maxLγ
TMU(Lγ) + 908Mǫ + 2δ, where the max is over all overlapping lists of γ-direct

mechanisms. By taking L∗
γ to be a list that attains the max (it is straightforward to check

that this exists), we then get the bound

W (M) ≤ W (M, I) ≤ TMU(L∗
γ) + 908Mǫ+ 2δ.

Now take ǫ → 0 and δ → 0. By compactness arguments, we can assume that the

direct mechanisms L∗
γ converge to some limiting L∗. It is straightforward to check that

L∗ is an overlapping list of (0-)direct mechanisms. We thus get

W (M) ≤ TMU(L∗)

and the lemma follows.

C Computations for upper bounds on welfare

Here we give the details on the upper bounds on TMU(L), for each region in Section 5.

In the proofs of Lemmas 5.1 and 5.2, since the states have been labeled by value

pairs, we can represent a direct mechanism by functions q : {b, b} × {s, s} → [0, 1] and

t : {b, b} × {s, s} → R as in Subsection 2.2.8 We also adopt the notation uB(b, s), uS(b, s)

for the players’ payoffs, as in that subsection.

8This representation may lose information, since it does not describe the outcome specified by the
mechanism when the players report a signal pair that can never occur. However, this will not be a
problem for proving the lemmas.
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Proof of Lemma 5.1. Let L = (M1,M2) be a list of direct mechanisms for the given

(S1,S2) in Table 3. We will show that

pbub(M
1) + psus(M

1) ≤ pb(b− s), (C.1)

pbub(M
2) + psus(M

2) ≤ ps(b− s). (C.2)

We will just prove (C.1) here; the proof of (C.2) is symmetrical. First, in state (b, s),

both players know the state and trade is not efficient, so the two players’ IR constraints

imply that both get payoff zero in this state. Then

pbub(M
1) + psus(M

1) = pbpsuB(b, s) + pbpsuB(b, s) + pbpsuS(b, s)

= pbpsuB(b, s) + pbps(b− s)q(b, s). (C.3)

The IC constraint for the seller in state (b, s) (who can pretend to have value s) implies

uS(b, s) ≥ uS(b, s) + (s − s)q(b, s). Since the two parties’ payoffs add up to at most the

total surplus b− s, we have

uB(b, s) ≤ (b− s)−
[
uS(b, s) + (s− s)q(b, s)

]

≤ (b− s)− (s− s)q(b, s)

since uS(b, s) ≥ 0 by the seller’s IR.

Therefore,

pbpsuB(b, s) + pbps(b− s)q(b, s) ≤ pbps
[
(b− s)− (s− s)q(b, s)

]
+ pbps(b− s)q(b, s)

= pb
(
ps(b− s) +

(
ps(b− s)− ps(s− s)

)
q(b, s)

)
.(C.4)

The assumption ps ≤ p∗s implies ps(b− s)− ps(s− s) ≥ 0, and therefore the right side

of (C.4) is maximized over q(b, s) ∈ [0, 1] by taking q(b, s) = 1. Hence we get

pbpsuB(b, s) + pbps(b− s)q(b, s) ≤ pb
(
ps(b− s) + ps(b− s)− ps(s− s)

)

= pb
(
ps(b− s) + ps(b− s)

)

= pb(b− s).

Combining with (C.3) gives (C.1), as needed.

Now putting together (C.1) and (C.2) gives the result.
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Proof of Lemma 5.2. Let L = (M1,M2) be a list of direct mechanisms. Note that our

proof of (C.1) in region I used only the assumption ps ≤ p∗s, which is still valid here, and

never used pb ≤ p∗
b
. Thus (C.1) still holds.

Let λ =
pb

p
b

× b−s

b−b
. The parameter assumption pb > p∗

b
implies λ ∈ (0, 1).

We will show that any mechanism M2 for S2 satisfies

pbub(M
2) + (1− λ)pbub(M

2) + psus(M
2) + (1− λ)psus(M

2)

≤ pbps(b− s) + (1− λ)pbps(b− s). (C.5)

To begin the argument, note that in state (b, s), both players know the state and IR

ensures both players get payoff zero. In state (b, s), the two players’ payoffs add up to at

most the maximum feasible surplus b− s.

Now, when the seller has type s, she does not know the buyer’s value, so the IC

constraint for the buyer in state (b, s), and then the IR in (b, s), give

uB(b, s) ≥ uB(b, s) + (b− b)q(b, s) ≥ (b− b)q(b, s).

Hence

pbuB(b, s) + (1− λ)pbuB(b, s) + uS(s)

= pb(uB(b, s) + uS(b, s)) + pb(uB(b, s) + uS(b, s))− λpbuB(b, s)

≤ pb(b− s)q(b, s) + pb(b− s)q(b, s)− λpb(b− b)q(b, s)

=
[
pb(b− s)− λpb(b− b)

]
q(b, s) + pb(b− s)q(b, s)

≤ pb(b− s) (C.6)

(where we have used, in the third line, that in each state (b, s), the two players’ payoffs

add up to the total surplus (b − s)q(b, s); and in going from the fourth to the fifth line,

the fact that the bracketed expression is zero by definition of λ).

Thus, the left side of (C.5) can be expanded to

pbpsuB(b, s)+(1−λ)pbpsuB(b, s)+(1−λ)pbpsuB(b, s)+pspbuS(b, s)+pspbuS(b, s)+(1−λ)pspbuS(b, s)
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(where we have already removed the terms associated with state (b, s), which are zero)

≤ ps
(
pbuB(b, s) + (1− λ)pbuB(b, s) + pbuS(b, s) + pbuS(b, s)

)

+(1− λ)pbps
(
uB(b, s) + uS(b, s)

)

≤ pspb(b− s) + (1− λ)pbps(b− s)

by (C.6) and the fact that total surplus under (b, s) is at most b− s. This proves (C.5).

Now, adding (C.5) to λ times (C.1) gives the bound:

TMU(L) ≤
(
pbub(M

2) + (1− λ)pbub(M
2) + psus(M

2) + (1− λ)psus(M
2)
)

+λ
(
pbub(M

1) + psus(M
1)
)

≤ pbps(b− s) + (1− λ)pbps(b− s) + λpb(b− s)

= pbps(b− s) + pbps(b− s) + λpb(1− ps)(b− s)

= pbps(b− s) + pbps(b− s) +

(
pb
b− s

b− b

)
× ps(b− s)

which is the desired bound.

For parameter region III, recall that a new information structure S2 was introduced,

with its states labeled by pairs (b, s) ∈ {b, b, b
′
} × {s, s}. We will again represent a

mechanism by functions q, t defined on such pairs.

Proof of Lemma 5.4. As noted in the text, we have λ ∈ (0, 1). Also note that our param-

eter assumption implies

λ ≤
ps
ps

×
b− s

s− s
. (C.7)

Let L = (M1,M2) be an overlapping list of direct mechanisms. We will show the

following bounds:

pbub(M
1) + psus(M

1) + (1− λ)pbpsu
1
S(b, s) ≤ pbps(b− s) + pbps(b− s) (C.8)

−pbps(s− s)
b− s

b− b
,

pbub(M
2) + pbpsu

2
S(b, s) + λpbpsu

2
S(b, s) ≤ pbps(b− s)

b− s

b− b
. (C.9)

Here the superscripts on u1S, u
2
S refer to the mechanism (and information structure) in
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which the payoff is being evaluated.

To prove (C.8), consider mechanism M1 for information structure S1. The IC for

seller type s in state (b, s), and IR for the seller in state (b, s), give

uS(b, s) ≥ uS(b, s) + (s− s)q(b, s) ≥ (s− s)q(b, s).

Taking into account that both parties get payoff zero in state (b, s), the left-hand side

of (C.8) is

pbpsuB(b, s) + pbpsuB(b, s) + pbpsuS(b, s) + (1− λ)pbpsuS(b, s)

= pb
(
ps

(
uB(b, s) + uS(b, s)

)
+ ps

(
uB(b, s) + uS(b, s)

)
− λpsuS(b, s)

)

= pb
(
ps(b− s)q(b, s) + ps(b− s)q(b, s)− λpsuS(b, s)

)

≤ pb
(
ps(b− s)q(b, s) + ps(b− s)q(b, s)− λps(s− s)q(b, s)

)

= pb
(
ps(b− s)q(b, s) +

[
ps(b− s)− λps(s− s)

]
q(b, s)

)

Because the bracketed expression is ≥ 0 by (C.7), and because q(b, s), q(b, s) ≤ 1, we

get

≤ pb
(
ps(b− s) +

[
ps(b− s)− λps(s− s)

])

which is the right-hand side of (C.8). Thus (C.8) holds.

To prove (C.9), consider mechanism M2. As usual, because B gets payoff 0 in state

(b, s), the left side simplifies to

ps
(
pbuB(b, s) + pbuS(b, s) + λpbuS(b, s)

)
.

Using the IC of type b in state (b, s) and IR of type b in state (b, s), we have

uB(b, s) ≥ uB(b, s) + (b− b)q(b, s) ≥ (b− b)q(b, s)

and therefore

uS(b, s) ≤ (b− s)− (b− b)q(b, s).
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So

pbuB(b, s) + pbuS(b, s) + λpbuS(b, s) ≤ pb(b− s)q(b, s) + λpb
[
(b− s)− (b− b)q(b, s)

]

=
[
pb(b− s)− λpb(b− b)

]
q(b, s) + λpb(b− s)

= λpb(b− s)

since the bracketed factor is zero. Multiplying through by ps, and plugging in the value

of λ, gives (C.9).

Now, note that

us(M
2) = pbu

2
S(b, s) + λpbu

2
S(b, s) + (1− λ)pbu

2
S(b

′
, s)

= pbu
2
S(b, s) + λpbu

2
S(b, s) + (1− λ)pbu

1
S(b, s)

because u1S(b, s) = u2S(b
′
, s) by the overlapping condition. Thus, when we add together

the left sides of (C.8) and (C.9), the three s terms combine into psus(M
2). Thus, adding

together the two inequalities gives

pbub(M
2)+pbub(M

1)+psus(M
2)+psus(M

1) ≤ pbps(b−s)+pbps(b−s)+pbps(b−s)
b− s

b− b

which is exactly what we need.

D Additional omitted proofs

Proof of Lemma 2.1. It is straightforward to check that the mechanisms shown are dominant-

strategy incentive-compatible. (In particular, note that in the left mechanism, when the

buyer’s type is b, the seller of type s gets a payoff of b − s from either report; similarly

for the buyer of type b in the mechanism on the right.) So we just need to show that no

mechanism can exceed the welfare formulas stated.

As above, for any dominant-strategy mechanism, incentive-compatibility implies uB(b, s) ≥

uB(b, s) + (b − b)q(b, s) ≥ (b − b)q(b, s), and similarly uS(b, s) ≥ (s − s)q(b, s). Adding

gives

(b− b)q(b, s) + (s− s)q(b, s) ≤ uB(b, s) + uS(b, s) = (b− s)q(b, s) ≤ b− s.
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Let us rewrite this as

(b− b)(1− q(b, s)) + (s− s)(1− q(b, s)) ≥ s− b. (D.1)

Now, in case (a), consider the welfare shortfall relative to first-best; it must satisfy

[
pbps(b− s) + pbps(b− s) + pbps(b− s)

]
−W

≥ pbps(b− s)(1− q(b, s)) + pbps(1− q(b, s))

≥ pbps
b− b

s− s
(b− s)(1− q(b, s)) + pbps(b− s)(1− q(b, s))

≥ pbps
b− s

s− s
(s− b)

where the first inequality is by q(b, s) ≤ 1, the second is by the assumption of case (a),

and the third is by (D.1). Rearranging shows that W is bounded above by the expression

stated in (a), as needed.

The proof of case (b) is symmetric.

Proof of Proposition 2.2. First note that any dominant-strategy mechanism certainly sat-

isfies the constraints of the Bayesian problem. Now suppose we are in case (a) of Lemma

2.1 (case (b) is analogous).

Consider the optimal dominant-strategy mechanism, on the left side of Table 1. Notice

that the Bayesian incentive constraint for the buyer of type b to report type b is satisfied

with strict inequality (since misreporting has no effect if the seller is type s, and only

hurts the buyer if the seller is type s). Likewise, the Bayesian incentive constraint for the

seller of type s to report type s is satisfied as a strict inequality (the seller is indifferent

if the buyer is b, and is strictly hurt by misreporting if b).

Now change q(b, s) from b−s

s−s
to b−s

s−s
+ ǫ, and change t(b, s) from b−s

s−s
s to

(
b−s

s−s
+ ǫ

)
s,

where ǫ > 0. If ǫ is small enough, this change cannot lead to a violation of the Bayesian

IC constraints of types b, s, since these constraints were originally slack; and it also cannot

violate the other IC constraints or the IR constraints since it only makes types b, s better

off. So the new mechanism still satisfies all constraints, and evidently has a strictly higher

welfare than before.

Proof of Proposition 3.1. Assume the parameters are as in case (a) of Lemma 2.1. (Case
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(b) is analogous.) If ps ≤ p∗s, then the condition for case (a) can be rearranged to give

pb
pb

≥
ps
ps

×
b− s

s− s
×
b− b

b− s
≥
b− b

b− s

from which pb ≤ p∗b also. Moreover, if ps < p∗s then pb < b∗ strictly, by the same logic.

Now consider the difference WFP −WDS. By subtracting pbps(b− s) from both WFP

and WDS, we compute

WFP −WDS =
[
pbps(b− s) + pb(b− s)

]
−

[
pbps(b− s) + pbps

(b− s)(b− s)

s− s

]

= pb

([
ps(b− s) + (ps + ps)(b− s)

]
−

[
ps(b− s) + ps

(b− s)(b− s)

s− s

])

= pb

(
ps(b− s) + ps(b− s)− ps

(b− s)(b− s)

s− s

)

= pb(s− b)

(
−ps + ps

b− s

s− s

)
.

So evidentlyWFP −WDS is the same sign as −ps/ps+(b−s)/(s−s); the latter expression

is zero exactly at ps = p∗s.

Thus:

• If ps < p∗s (and then also pb < p∗
b
), then WFP −WDS > 0.

• If ps = p∗s (and then pb ≤ b
∗
), then WFP −WDS = 0.

• If ps > p∗s, then WFP −WDS < 0.

So in all three subcases, the comparison between WFP and WDS runs as claimed in the

proposition.

Proof of Lemma B.1. Consider the buyer, in the auxiliary game, after receiving some

signal η∗B. If she plays according to her proposed equilibrium action αB(η
∗
B), her expected

payoff is ∑

ηS

π(ηS|η
∗
B) [b(η

∗
B)q(αB(η

∗
B), αS(ηS))− t(αB(ηB), α

∗
S(ηS))] ,

where the sum is over all ηS lying in any Hk
S. (Here the conditional probability π(ηS|η

∗
B)
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is unambiguously defined, as described in Subsection 4.1.) We can rewrite this as

∑

ηS∈H
k
S

π(ηS|η
∗
B)

[
b(η∗B)q

k(η∗B, ηS)− tk(η∗B, ηS)
]

(D.2)

where k is any index with η∗B ∈ Hk
B. If instead she deviates to αB(η

′
B) for some η′B, then

her expected payoff is likewise

∑

ηS∈H
k
S

π(ηS|η
∗
B)

[
b(η∗B)q

k(η′B, ηS)− tk(η′B, ηS)
]
. (D.3)

The equilibrium condition says that (D.2) must be greater than or equal to (D.3). Multi-

plying through by πk(η∗B), and re-expressing both sides in terms of states in Ωk, we obtain

the IC constraint for the buyer in a direct mechanism on Sk.

Also, the the buyer can always get a nonnegative payoff by playing ∅ in the mechanism,

equilibrium implies that (D.2) must be at least 0. Multiplying by πk(η∗B) and re-expressing

in terms of states gives us the buyer IR constraint for a direct mechanism.

Similarly, we see that the seller’s IC and IR constraints are all satisfied.

And the overlapping condition (4.3) is trivially satisfied, by the construction of the qk

and tk.

Proof of Theorem 3.2. First, we prove the upper bound on W (M) in each parameter

region, for any (indirect) mechanism M. (We can restrict to information games without

additional players, or allow additional players; the arguments are the same.)

If pb ≤ p∗
b
and ps ≤ p∗s (region I), then apply the extortion lemma, Lemma 4.3, to

the information structures in Table 3. The lemma gives us W (M) ≤ maxL TMU(L).

Combining with Lemma 5.1 gives W (M) ≤ pb(b− s) + ps(b− s) = WFP .

Now suppose pb > p∗
b
but ps ≤ p∗s (region II). Then likewise combining Lemma 4.3

with Lemma 5.2 gives W (M) ≤ maxL TMU(L) ≤ WDS where WDS is determined by

case (b) of Lemma 2.1. If ps > p∗s but pb ≤ p∗
b
(region II′) then we combine Lemmas 4.3

and 5.3 to obtain W (M) ≤ maxL TMU(L) ≤ WDS, where now WDS is given by case (a)

of Lemma 2.1.

This leaves us with the case where pb > p∗
b
and ps > p∗s. In this case, if pbps

b−s

b−b
≤

pbps
b−s
s−s

, we are in region III; combining Lemmas 4.3 and 5.4 givesW (M) ≤ maxL TMU(L) ≤

WDS in this case. Otherwise, we are in region III′, and combining Lemmas 4.3 and 5.5

gives W (M) ≤ maxL TMU(L) ≤ WDS.

This shows the upper bound in all cases. Next we need to show that the upper bound is
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attained (again, it does not matter whether we allow additional players in the information

game). As mentioned in the text, we cannot quite use the dominant-strategy and flexible-

price mechanisms as originally formulated because of the worst-case equilibrium selection

criterion. We instead slightly modify them as follows.

First consider the dominant-strategy mechanism on the left side of Table 1. We modify

it to a new mechanism M′ as follows: AB = {∅,−, b, b}, AS = {∅,−, s, s}, and the q and t

functions are as shown on the left side of Table 5. Here x is an arbitrary positive number,

and we have explicitly included the non-participation action for clarity.

For buyer type b, action b now weakly dominates all other actions. For buyer type b,

action b weakly dominates all other actions. Similarly for the seller: s weakly dominates

all other actions for type s, and s weakly dominates all other actions for type s. Thus, no

matter what the information game I is, in any undominated sequential equilibrium, each

agent reports her type truthfully at the mechanism stage, both on and off the equilibrium

path. Then each player’s equilibrium payoff must be at least her payoff from truthful play

of the mechanism (since she has the option of being inactive in the information game and

then reporting truthfully in the mechanism), hence total welfare in the combined game is

at least the total welfare in the mechanism, which isWDS. A symmetric argument applies

when the optimal dominant-strategy mechanism is the one on the right side of Table 1.

For the flexible-price mechanism, we do the same construction. Instead of the mecha-

nism shown in Table 2, which represents a flexible-price mechanism with the seller offering,

we take the version on the right side of Table 5. For type b of buyer, action b weakly

dominates all others; for type b, action s weakly dominates all others. For type s of the

seller, both actions b and s are undominated, but ∅ and − are dominated by b; for type

s, action s dominates all others. So in any undominated equilibrium, types b, b, s always

play their unique undominated action in the mechanism, and s plays either b or s. In par-

ticular, in the combined game, the buyer of type b always has the option of being inactive

in the information game and then playing b in the mechanism, which assures her a payoff

at least b− s; and the seller of type s has the option of being inactive in the information

game and then playing s in the mechanism, which assures her b − s. And types b, s are

assured at least zero by non-participation. So, any undominated sequential equilibrium

of the combined game gives a total welfare at least pb(b− s) + ps(b− s) = WFP .

This shows that, for all parameters, both WDS and WFP are indeed attainable values

of W (M), as needed.
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−
q : 0
t : 0

q : 0
t : −x

q : 0
t : −x

q : 0
t : 0

s
q : 0
t : 0

q : 0
t : 0

q : b−s

s−s

t : b−s

s−s
s

q : 0
t : x

s
q : 0
t : 0

q : 1
t : b

q : 1
t : b

q : 0
t : x

∅
q : 0
t : 0

q : 0
t : 0

q : 0
t : 0

q : 0
t : 0

∅ b b −

−
q : 0
t : 0

q : 0
t : −x

q : 0
t : −x

q : 0
t : 0

s
q : 0
t : 0

q : 0
t : 0

q : 1
t : s

q : 0
t : x

b
q : 0
t : 0

q : 1
t : b

q : 1
t : b

q : 0
t : x

∅
q : 0
t : 0

q : 0
t : 0

q : 0
t : 0

q : 0
t : 0

∅ b s −

Table 5: Modified versions of dominant-strategy (left) and flexible-price (right) mecha-
nisms. Columns are buyer’s actions, rows are seller’s. x > 0 is arbitrary.

Proof of Theorem 3.3. The proof of the upper bound on W (M) for any mechanism M

is exactly as for Theorem 3.2, using Lemma 4.4 instead of Lemma 4.3.

It remains to show that the bound is attained: in particular, that the dominant-

strategy mechanism from Lemma 2.1 attains the welfare guaranteeWDS, and the flexible-

price mechanism attains the welfare guaranteeWFP , in some sequential equilibrium of the

combined game (for any I). This was already argued in the text. More precisely, consider

the combined game, but suppose the players’ actions are restricted by never allowing them

to play the action ∅ in the mechanism. The argument in Subsection 3.2 shows that the

resulting game has an equilibrium that achieves welfare WDS or WFP , respectively. This

remains an equilibrium when we allow action ∅, since it is never strictly preferred over

the existing actions.

Proof of Proposition 6.1. We first describe equilibrium strategies in the mechanism. The

buyer of type b accepts if offered price b, and rejects price s. The buyer of type b accepts

both prices. Clearly this is a (weakly) dominant strategy for each buyer type.

The seller, if type s, offers trade at price s (either deterministic or probabilistic,

depending on whether branch (i) or (ii) of the mechanism realizes). If the seller’s type is

s, her choice of what to do depends on her posterior belief about the buyer’s type, which

comes from her signal:

• If branch (i) is realized (probability 1 − δ), the seller offers price b if she places

posterior probability at most (b − s)/(s − s) on the high type of buyer b, and

otherwise she offers price s.
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• If branch (ii) is realized (probability δ), the seller offers price b if she places posterior

probability at most (1/qǫ)×(b−s)/(s−s) on the high type of buyer b, and otherwise

she offers (probabilistic trade at) price s.

Given the buyer’s strategy above, this is optimal for the seller. Hence, the proposed

strategies do form an equilibrium. We now need to show that the resulting expected

welfare is bounded strictly above WFP , regardless of the information structure S.

First, consider any signal ηS that the seller may receive if her value is s. Let p be the

probability that the buyer has value b conditional on the seller receiving ηS. We will show

that the expected welfare conditional on the seller receiving signal ηS satisfies

E[welfare | ηS] ≥ p[(b− s) + δ(s− b)] + (b− s)− p(s− s). (D.4)

We show this in three cases:

• p ≤ (b− s)/(s− s). Then, in both branches, the seller offers price b, and trade takes

place with certainty. Hence, expected welfare is p(b− s) + (1− p)(b− s). We check

that this satisfies (D.4): this is equivalent to

(1− p)(b− s) ≥ pδ(s− b) + (b− s)− p(s− s)

or

0 ≥ p[δ(s− b) + (b− s)− (s− s)] = p(δ − 1)(s− b)

which is true.

• b−s

s−s
< p ≤ 1

qǫ
× b−s

s−s
. Then in branch (i) the seller offers price s, but in branch (ii)

she offers b. Then, if the buyer actually has value b, trade occurs (deterministically)

in both branches. If the buyer has value b, then no trade occurs in the first branch,

and trade occurs (deterministically) in the second branch. Hence, expected welfare

is

p(b− s) + (1− p)δ(b− s).

This satisfies (D.4) if and only if

(1− p)δ(b− s) ≥ pδ(s− b) + (b− s)− p(s− s). (D.5)

Since both sides are linear in p, it suffices to check that (D.5) is satisfied at both

ends of the interval [ b−s

s−s
, 1]. At the lower endpoint p = b−s

s−s
, both sides of (D.5) are
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equal. At the upper endpoint p = 1, the inequality reduces to 0 ≥ (δ − 1)(s − b),

which is true.

• p > 1
qǫ
× b−s

s−s
. Then, the seller offers price s (with trade being deterministic in branch

(i), probabilistic in branch (ii)), which is accepted if and only if the buyer has value

b. Hence, if trade is realized, it produces surplus of b− s; so expected welfare in this

case is

p((1− δ) + δqǫ)(b− s).

Thus (D.4) is equivalent to

pδ(−1 + qǫ)(b− s) ≥ pδ(s− b) + (b− s)− p(s− s). (D.6)

Now, when δ = 0, the difference between the left side and right side of (D.6) is

p(s− s)− (b− s) ≥
(

1
qǫ
− 1

)
(b− s) > 0. It follows that for any sufficiently small δ

(given fixed ǫ), the difference remains positive for all p, so (D.4) continues to hold.

Thus, as long as δ is chosen small enough, (D.4) holds for each ηS such that the seller’s

value is s.

Now we can give a lower bound on expected welfare conditional only on the seller

having value s, by taking expectations of (D.4) over all ηS. Note that the right side is

linear in p, and on average p must equal the prior probability of the high buyer value, pb.

Thus,

E[welfare | s] ≥ pb[(b− s) + δ(s− b)] + (b− s)− pb(s− s)

= pb[(b− s) + δ(s− b)] + (b− s). (D.7)

What about expected welfare when the seller has value s? Since the seller only offers

price s, which is accepted only by the b buyer, welfare in this case is

E[welfare | s] = pb((1− δ) + δqǫ)(b− s).

Combining the two cases, overall expected welfare is at least

ps
[
pb[(b− s) + δ(s− b)] + (b− s)

]
+ pspb(1− δ + δqǫ)(b− s). (D.8)

It remains to check that this expression is strictly higher than WFP . We may view
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it as a linear function of δ. When δ = 0, it equals pb(b − s) + ps(b − s) = WFP . The

derivative with respect to δ is

pspb(s− b) + pspb(−1 + qǫ)(b− s) = pbps

(
(−1 + qǫ) +

ps
ps

×
s− b

b− s

)
× (b− s).

The choice of ǫ ensures that the middle factor is positive, so the entire expression is

positive. So for δ > 0, the expression in (D.8) is strictly aboveWFP . Since we have shown

that the equilibrium welfare of the mechanism is bounded below by (D.8) regardless of

the information structure S, the proposition follows.

E Counterexamples for simpler information structures

We detail here the counterexamples mentioned in Section 6.3, showing that various at-

tempts to simplify the proof of the main theorem would not succeed.

E.1 Assigning types to information structures

We show that in region II, we cannot pre-assign types to information structures as in

region I. That is, we show that for some parameters in this region, there exists a list of

direct mechanisms (M1,M2) for the information structures (S1,S2) shown in Table 3,

such that

pbub(M
2) + pbub(M

1) + psus(M
2) + psus(M

1) > WDS.

Specifically, we take (s, b, s, b) = (1, 2, 3, 4), so that p∗
b
= p∗s = 1/3. Then take pb =

1/2 and ps = 1/4. These parameters indeed lie in region II. The dominant-strategy

welfare bound given there is easily computed to be 13/16. However, for each of the two

information structures, we can consider a posted-price mechanism:

• for S1, a posted price of 3 (accepted by both seller types and by the high-value

buyer);

• for S2, a posted price of 4 (again accepted by both seller types and the high-value

buyer).

Then

pbub(M
2)+pbub(M

1)+psus(M
2)+psus(M

1) =
1

2
×0+

1

2
×1+

1

4
×2+

3

4
×0 = 1 >

13

16
= WDS.
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s
uB = 0
uS = 0

uB = 6/7
uS = 0

s
uB = 0
uS = 1

uB = 9/7
uS = 12/7

b b

s
uB = 0
uS = 0

uB = 1
uS = 0

s
uB = 0
uS = 4/7

uB = 8/7
uS = 13/7

b b

Table 6: Payoffs from example mechanisms for information structures from regions I, II,
applied in region III.

E.2 Information structures in region III

Here we show that the list of information structures (S1,S2) used in regions I, II would

not suffice for a tight bound in region III. We give an example of parameters in this region

and a list L of direct mechanisms such that TMU(L) > WDS strictly.

We again take (s, b, s, b) = (1, 2, 3, 4), and pb = 3/4, ps = 1/2. These parameters

indeed lie in region III. The optimal dominant-strategy welfare is computed to be WDS =

25/16. We consider the following two mechanisms M1,M2 for information structures

S1,S2 respectively:

• For S1, where the seller is fully informed: If the buyer is type b (uninformed), the

seller can choose either to sell with probability 6/7, at a price of 3 conditional on

trade; or to sell for sure at a price of 19/7. (We can check that the seller of type s

takes the second option, and the seller of type s takes the first.) If the buyer is type

b, the seller can sell at a price of 2 (only type s takes this up).

• For S2, where the buyer is fully informed: If the seller is type s (uninformed), the

buyer has the choice of either buying with probability 4/7, at a price of 2 conditional

on trade; or buying for sure at a price of 20/7. (Check that the buyer of type b

takes the first option, and type b takes the second.) If the seller is type s, then the

buyer can buy at a price of 3 (only type b takes this up).

The resulting payoff of each agent, for each possible pair of values (b, s), is as shown in

Table 6.

We can check that each type has the same expected payoff in M1 as in M2. Types b

and s have payoff zero in both; and

ub(M
1) = ub(M

2) = 15/14, us(M
1) = us(M

2) = 43/28.
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Therefore,

TMU(L) = pbub(L) + pbub(L) + psus(L) + psus(L)

=
1

4
× 0 +

3

4
×

15

14
+

1

2
×

43

28
+

1

2
× 0

=
11

7

>
25

16
= WDS.

E.3 Overlapping information structures

Here we show that the argument for region III could not have used the non-overlapping

version of the extortion lemma. We give an example with a non-overlapping list L of

direct mechanisms (on the same information structures) where TMU(L) > WDS.

We again take (s, b, s, b) = (1, 2, 3, 4), pb = 3/4, ps = 1/2, so that WDS = 25/16. The

information structures are those shown in Table 4, where λ = 1/6.

In describing information structure S2, we will refer to b, b, b
′
(in the labeling of the

states) as “quasi-types” of the buyer, to distinguish them from the types (values) which

are only b, b.

We consider the following mechanisms for each information structure:

• For S1, where the seller is fully informed: If the buyer is type b (uninformed), the

seller can either sell with probability 8/9, at a price of 13/4 conditional on trade;

or to sell for sure at a price 3. (The seller of type s is willing to take the second

option, and s takes the first.) If the buyer is type b, the seller can sell at a price of

1 (only type s takes this up.)

(Since there is full information about the buyer’s value, we can indeed design the

mechanism on the b states independently from the b states, without worrying about

incentive-compatibility for the buyer.)

• For S2: If the seller is type s and the buyer is not quasi-type b
′
(so the seller does

not know whether the buyer is b or b), then the good is sold at price 1. If the

seller is s and the buyer is not b
′
, then the seller can offer the good at price 3 (and

only quasi-type b of buyer takes the sale). Finally, when the buyer is b
′
(and so is

uninformed of the seller’s value), then the good is sold at price 17/5.

The payoff of each agent in each state is as shown in Table 7.
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s
uB = 0
uS = 0

uB = 2/3
uS = 2/9

s
uB = 1
uS = 0

uB = 1
uS = 2

b b

s
uB = 0
uS = 0

uB = 1
uS = 0

uB = 3/5
uS = 2/5

s
uB = 1
uS = 0

uB = 3
uS = 0

uB = 3/5
uS = 12/5

b b b
′

Table 7: Payoffs in example of non-overlapping mechanisms in region III.

These are indeed non-overlapping mechanisms: the outcome in M1 when the buyer

has high value b is different than the outcome in M2 when the buyer has quasi-type b
′
.

We can again check the payoff of each of the types b, b, s, s in each mechanism. Note

that in information structure 2, the buyer is quasi-type b with marginal probability λpb =

1/8 and b
′
with probability (1−λ)pb = 5/8, and ub(M

2) is computed by combining these

cases.

ub(M
1) = ub(M

2) = 1/2, ub(M
1) = ub(M

2) = 5/6,

us(M
1) = us(M

2) = 3/2, us(M
1) = 1/6, us(M

2) = 1/4.

Therefore, the total minimum utility is

TMU(L) = pbub(L) + pbub(L) + psus(L) + psus(L)

=
1

4
×

1

2
+

3

4
×

5

6
+

1

2
×

3

2
+

1

2
×

1

6

=
19

12

>
25

16
= WDS.
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