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Abstract. I study a dynamic model in which a decision maker (DM) acquires information
about the payoffs of different alternatives prior to making her decision. The key feature of
the model is the flexibility of information: the DM can choose any dynamic signal process
as an information source, subject to a flow cost that depends on the informativeness of the
signal. Under the optimal policy, the DM looks for a signal that arrives according to a Pois-
son process. The optimal Poisson signal confirms the DM’s prior belief and is sufficiently
accurate to warrant an immediate action. Over time, absent the arrival of a Poisson signal,
the DM continues seeking an increasingly more precise but less frequent Poisson signal.
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1 Introduction
When individuals make decisions, they often have imperfect information about the

payoffs of different alternatives. Therefore, the decision maker (DM) would like to acquire
information to learn about the payoffs prior to making a decision. For example, when com-
paring new technologies, a firm may not know the profitability of alternative technologies.
The firm often spends a considerable amount of money and time on R&D to identify the
best technology to adopt. One practically important feature of the information acquisition
process is that the choice of “what to learn” often involves considering a rich set of salient
aspects. In the previous example, when designing the R&D process, a firm may choose
which technology to test, how much data to collect and analyze, how intensive the test-
ing should be, etc. Other examples include investors designing algorithms to learn about
the returns of different assets, scientists conducting research to investigate the validity of
different hypotheses, etc.

To capture such richness, in this paper, I consider a DM who can choose “what to learn”
in terms of all possible aspects, as well as “when to stop learning”. The main goal is to
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obtain insight into dynamic information acquisition without restriction on what type of
information can be acquired. In contrast to my approach, the classic approach is to focus
on one aspect while leaving all other aspects exogenously fixed. The seminal works by
Wald (1947.) and Arrow, Blackwell, and Girshick (1949.) study the choice of “when to stop”
in a stopping problem with all aspects of the learning process being exogenous. Building
upon the Wald framework, Moscarini and Smith (2001.) endogenize one aspect of learning,
the precision, by allowing the DM to control a precision parameter of a Gaussian signal
process. Che and Mierendorff (2016.) endogenize another aspect of learning, the direction,
by allowing the DM to allocate limited attention to different news sources, each biased in
a different direction. Here, by allowing all learning aspects to be endogenous, the current
paper contributes by studying which learning aspect(s) is(are) endogenously relevant for
the DM and how the optimal strategy is characterized in terms of these aspects.

In the model, the DM is to choose from a set of actions, whose payoffs depend on a
state unknown to the DM. The state is initially selected by nature and remains fixed over
time. At any instant of time, the DM chooses whether to stop learning and select an action
or to continue learning by nonparametrically choosing the evolution of the belief process.
The choice of a nonparametric belief process models the choice of a dynamic information
acquisition strategy with no restriction on any aspect. I introduce two main economic
assumptions. (i) The DM discounts delayed payoffs. (ii) Learning incurs a flow cost, which
depends convexly on how fast the uncertainty about the unknown state is decreasing. The
main model is formulated as a stochastic control-stopping problem in continuous time.

The main result shows that the optimal strategy is contained in a simple family char-
acterized by a few endogenously relevant aspects (Theorem 1.) and fully solves for the
optimal strategy in these aspects (Theorems 2. and 3.). Specifically, the first result states
that although the model is nonparametric and allows for fully flexible strategies, the belief
process can be restricted to a simple jump-diffusion process without loss. In other words, a
combination of a Poisson signal—a rare and substantial breakthrough that causes a jump in
belief—and a Gaussian signal—frequent and coarse evidence that drives belief diffusion—is
endogenously optimal. A jump-diffusion belief process is characterized by four parame-
ters: the direction, size and arrival rate of the jump, and the flow variance of the diffusion.
The four parameters represent four key aspects of learning: the direction, precision and fre-
quency of the Poisson signal, and the precision of the Gaussian signal. The first result sug-
gests that the DM need consider only the trade-offs among these aspects; any other aspect
is irrelevant for information acquisition.

The second result fully characterizes the parameters of the optimal belief process. I
find that the Poisson signal strictly dominates the Gaussian signal almost surely, i.e. no
resources should ever be invested in acquiring the Gaussian signal. The optimal Poisson
signal satisfies the following qualitative properties in terms of the three aspects and the
stopping time:

• Direction: The optimal direction of learning is confirmatory– the arrival of a Poisson

2



signal induces the belief to jump toward the state that the DM currently finds to be
most likely. As an implication of Bayes rule, the absence of a signal causes the belief to
drift gradually towards the opposite direction, namely, the DM gradually becomes less
certain about the state.

• Precision: The optimal signal precision is negatively related to the continuation value.
Therefore, when the DM is less certain about the state, the corresponding continuation
value is lower, which leads the DM to seek a more precise Poisson signal.

• Frequency: The optimal signal frequency is positively related to the continuation value.
In contrast to precision, the optimal signal frequency decreases when the DM is less
certain.

• Stopping time: The optimal time to stop learning is immediately after the arrival of the
Poisson signal. Therefore, the breakthrough happens only once at the optimum. Then,
the DM stops learning and chooses an optimal action based on the acquired informa-
tion.

The optimal strategy is very heuristic and easy to implement. In the previous example,
the firm can choose the technology to test, as well as the test precision and frequency. As
a result, the optimal strategy is implementable. The optimal R&D process involves testing
the most promising technology. The optimal test is designed to be difficult to pass, so good
news comes infrequently, as in a Poisson process. A successful test confirms the firm’s
prior conjecture that the technology is indeed good and the firm immediately adopts the
technology. Otherwise, the firm continues the R&D process. No good news is bad news,
so the firm becomes more pessimistic about the technology and revises the choice of the
most promising technology accordingly. The future tests involve higher passing thresholds
and lower testing frequency. As illustrated by the example, although this paper studies
a benchmark with fully flexible information acquisition, the optimal strategy applies to
more general settings where information acquisition is not fully flexible, but involves these
salient aspects.

The main intuition behind the optimal strategy is a novel precision-frequency trade-off.
Consider a thought experiment of choosing an optimal Poisson signal with fixed direc-
tion and cost level. The remaining two parameters—precision and frequency—are pinned
down by the marginal rate of substitution between them. Importantly, the trade-off de-
pends on the continuation value. Due to discounting, when the continuation value is
higher, the DM loses more from delaying the decision. Therefore, the DM finds it opti-
mal to acquire a signal more frequently at the cost of lowering the precision to avoid costly
delay. In other words, the marginal rate of substitution of frequency for precision is increas-
ing in the continuation value. As a result, frequency (precision) is positively (negatively)
related to the continuation value.
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In addition to precision and frequency, this intuition also explains other aspects. First,
the Gaussian signal is equivalent to a special Poisson signal with close to zero precision and
infinite frequency. The previous intuition implies that infinite frequency is generally sub-
optimal except when the continuation value is so high that the DM would like to sacrifice
almost all signal precision. As a result, the Gaussian signal is strictly suboptimal except for
the non-generic stopping boundaries. Second, for any fixed learning direction, Bayes rule
implies that the absence of a signal pushes belief away from the target direction; to ensure
the same level of decision quality the signal precision should increase over time to offset
the belief change. By acquiring a confirmatory signal, the DM becomes more pessimistic
and, consequently, more patient over time. Therefore she can reconcile both incentives
through reducing the signal frequency and increasing the signal precision. By contrast, if
the DM acquires a contradictory signal, she becomes more impatient over time and prefers
the frequency to be increasing. The two incentives become incongruent, thus, learning in a
confirmatory way is optimal.

This intuition suggests that the crucial assumption for the optimal strategy is discount-
ing — discounting drives the key precision-frequency trade-off. This observation high-
lights the deep connection between dynamic information acquisition and the DM’s attitude
toward time-risk. Discounting implies that the DM is risk loving toward payoffs with un-
certain resolution time, as the exponential discounting function is convex. Intuitively, the
riskiest information acquisition strategy is a “greedy strategy” that front-loads the proba-
bility of success as much as possible, at the cost of a high probability of long delays. The
confirmatory Poisson learning strategy in this paper exactly resembles a greedy strategy.
The key property of the strategy is that all resources are used in verifying the conjectured
state directly and no intermediate step occurs before a breakthrough. By contrast, alter-
native strategies, such as Gaussian learning and contradictory Poisson learning, involve
accumulating substantial intermediate evidence to conclude a success. The intermediate
evidence in fact hedges the time risk: the DM sacrifices the possibility of immediate suc-
cess to accelerate future learning.

Extensions of the main model further illustrate the role played by each key assumption.
The first extension replaces discounting with a fixed flow delay cost. In this special case, all
dynamic learning strategies are equally optimal, as the crucial precision-frequency trade-
off becomes value independent. This extension also illustrates that all learning strategies
in the model are equally “fast” on average and differ only in “riskiness”. This result fur-
ther illustrates that the preference for time risk pins down the optimal strategy. Second,
I consider general cost structures and find that the (strict) optimality of a Poisson signal
over a Gaussian signal is surprisingly robust: it requires a minimal continuity assumption.
Third, I study an extension where the flow cost depends linearly on the uncertain reduction
speed. In this special case, learning has a constant return to signal frequency. As a result,
the optimal strategy is to learn infinitely fast, that is, acquire all information at period zero.

This paper provides rich implications by allowing learning to be flexible in all aspects.

4



First, the main results highlight the optimality of the Poisson signal compared to the widely
adopted diffusion models. Specifically, the diffusion models are shown to be justified only
under the lack of discounting. Second, the characterization of the optimal strategy uni-
fies and clarifies insights from some existing results. In these results, although the DM is
limited in her learning strategy, she actually implements the flexible optimum whenever
feasible and approximates the flexible optimum when infeasible. Moscarini and Smith
(2001.)’s insight that the “intensity” of experimentation increases in continuation value car-
ries over to my analysis. I further unpack the design of experiment and show that higher
“intensity” contributes to faster signal arrival but lower signal precision. Che and Mieren-
dorff (2016.) make same prediction about the learning direction as that of my analysis when
the DM is uncertain about the state. But they predict the opposite when the DM is more
certain about the state– the DM looks for a signal contradicting the prior belief. I clarify
that the contradictory signal is an approximation of a high-frequency confirmatory signal
when the DM is constrained in increasing the signal frequency.

The rest of this paper is structured as follows. The related literature is reviewed in
Section 2.. The main continuous-time model and illustrative examples are introduced in
Section 3 .. The dynamic programming principle and the corresponding Hamilton-Jacobi-
Bellman (HJB) equation are introduced in Section 4 .. I analyze an auxiliary discrete-time
problem and verify the HJB equation in Section 5 .. Section 6 . fully characterizes the opti-
mal strategy and illustrates the intuition behind the result. In Section 7 . I discuss the key
assumptions used in the model. Section 8 . explores the implications of the main model on
response time in stochastic choice and on a firm’s innovation. Further discussions of other
assumptions are presented in Appendix A ., and key proofs are provided in Appendix B ..
All the remaining proofs are relegated to the Supplemental material..

2 Related literature
2.1 Dynamic information acquisition

My paper is closely related to the literature about acquiring information in a dynamic
way to facilitate decision making. The earliest works focus on the duration of learning.
Wald (1947.) and Arrow, Blackwell, and Girshick (1949.) analyze a stopping problem where the
DM controls the decision time and action choice given exogenous information. Moscarini
and Smith (2001.) extend the Wald model by allowing the DM to control the precision
of a Gaussian signal. A similar Gaussian learning framework is used as the learning-
theoretic foundation for the drift-diffusion model (DDM) by Fudenberg, Strack, and Strza-
lecki (2018.). Following a different route, Che and Mierendorff (2016.), Mayskaya (2016.) and
Liang, Mu, and Syrgkanis (2017.) study the sequential choice of information sources, each
of which is prescribed exogenously.

Other frameworks of dynamic information acquisition include sequential search mod-
els (Weitzman (1979.), Callander (2011.), Klabjan, Olszewski, and Wolinsky (2014.), Ke and
Villas-Boas (2016.) and Doval (2018.)) and multi-arm bandit models (Gittins (1974.), Weber
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et al. (1992.), Bergemann and Välimäki (1996.) and Bolton and Harris (1999.)). These frame-
works are quite different from my information acquisition model. However, the forms of
information in these models are also exogenously prescribed, and the DM has control over
only whether to reveal each option.

Compared to the canonical approaches, the key new feature of my framework is that
the DM can design the information generating process nonparametrically. In a similar vein
to this paper, two concurrent papers Steiner, Stewart, and Matějka (2017.) and Hébert and
Woodford (2016.) model dynamic information acquisition nonparametrically; however they
focus on other implications of learning by abstracting from sequentially smoothing learn-
ing. In Steiner, Stewart, and Matějka (2017.) the linear flow cost assumption makes it opti-
mal to learn instantaneously, whereas in Hébert and Woodford (2016.), the no-discounting
assumption makes all dynamic learning strategies essentially equivalent.1 . By contrast, the
main focus of this paper is on characterizing the optimal way to smooth learning. I analyze
the setups of these two papers as special cases in Sections 7.1. and 7.3..

A main result of my paper is the endogenous optimality of Poisson signals. Section 7.2.

shows a more general result: a Poisson signal dominates a Gaussian signal for generic cost
functions that are continuous in the signal structure. This result justifies Poisson learn-
ing models, which are used in a wide range of problems, e.g., Keller, Rady, and Cripps
(2005.), Keller and Rady (2010.), Che and Mierendorff (2016.), and Mayskaya (2016.); see also
a survey by Hörner and Skrzypacz (2016.).

2.2 Rational inattention
This paper is a dynamic extension of the static rational inattention (RI) models, which

consider the flexible choice of information. The entropy-based RI framework is first intro-
duced in Sims (2003.). Matějka and McKay (2014.) study the flexible information acquisition
problem using an entropy-based informativeness measure and justify a generalized logit
decision rule. Caplin and Dean (2015.) take an axiomatization approach and characterize
decision rules that can be rationalized by an RI model. On the other hand, this paper also
serves as a foundation for RI models, as it characterizes, in detail, how the reduced-form
decision rule is supported by acquiring information dynamically. In several limiting cases,
my model completely reduces to a standard RI model.

The RI framework is widely used in models with strategic interactions (Matějka and
McKay (2012.), Yang (2015a.), Yang (2015b.), Matějka (2015.), Denti (2015.), etc). My paper
is different from these works as no strategic interaction is considered and the focus is on
repeated learning. Despite the strategic component, Ravid (2018.) also studies a dynamic
model with repeated learning. In Ravid (2018.), an RI buyer learns sequentially about the
offers from a seller and the value of the object being traded. Similar to the DM in my model,

1Steiner, Stewart, and Matějka (2017.) assume the decision problem to be history dependent. Therefore, non-trivial dynamics remain
in the optimal signal process. However, the dynamics are a results of the history dependence of the decision problem rather than the
incentive to smooth information. In the dynamic learning foundation of Hébert and Woodford (2016.), all signal processes are equally
optimal because of a key no-discount assumption. They select a Gaussian process exogenously to justify a neighbourhood-based static
information cost structure.
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the buyer systematically delays trading in equilibrium, and the stochastic delay resembles
the arrival of a Poisson process.2 . However, in Ravid (2018.), the delay is an equilibrium
property that ensures the buyer’s strategy is responsive to off-path offers. By contrast, the
stochastic delay in my paper is a property of an optimally smoothed learning process.

I use the reduction speed of uncertainty as a measure of the amount of information
acquired per unit time. This measure captures the posterior separability from Caplin and
Dean (2013.). The posterior separable measure nests mutual information (introduced in Shan-
non (1948.)) as a special case and is widely used in Gentzkow and Kamenica (2014.), Clark
(2016.), Matyskova (2018.), Rappoport and Somma (2017.), etc. I provide an axiomatization
for posterior separability based on the chain rule in Appendix A.4.1.. Caplin, Dean, and
Leahy (2017.) axiomatize (uniform) posterior separability based on behavior data. Morris
and Strack (2017.) provide a dynamic foundation for posterior separability based on imple-
menting an information structure with Gaussian learning. In addition to axiomatizing pos-
terior separability, Frankel and Kamenica (2018.) relates to my paper in another interesting
way. The valid measure of information defined in their paper coincides with the uncertainty
reduction speed per unit arrival rate of a Poisson signal derived in this paper.

2.3 Information design
In this paper, I use a belief-based approach to model the choice of information. This ap-

proach is widely used for studying Bayesian persuasion models (Kamenica and Gentzkow
(2011.), Ely (2017.), Mathevet, Perego, and Taneva (2017.), etc.). An important methodol-
ogy in this literature is the concavification method developed in Aumann, Maschler, and
Stearns (1995.) (based on Carathéodory’s theorem). An alternative approach to model in-
formation is the direct signal approach 3

. used in both information design problems, such
as Bergemann and Morris (2017.), and rational inattention problems. However, neither
of the two methods applies to my dynamic information acquisition problem. I take the
belief-based approach as in Bayesian persuasion models, but utilize the generalized con-
cavification method developed in Zhong (2018a.).

2.4 Stochastic control
Methodologically, this paper is closely related to the theory of continuous-time stochas-

tic control. The early theories study control processes measurable to the natural filtration
of Brownian motion (see Fleming (1969.) for a survey). The application of Bellman (1957.)’s
dynamic programming principle leads to the HJB equation characterization of the value
function. On the contrary, the main stochastic control problem of this paper has general
martingale control process, which is a variant of the (semi)martingale models of stochastic
control studied in Davis (1979.), Boel and Kohlmann (1980.), Striebel (1984.), etc. However,
none of the existing theories are sufficiently general to nest the stochastic control problem
studied in this paper. I introduce an indirect method that proves a verification theorem for

2Precisely speaking, in the analysis of Proposition 2, Ravid (2018.) shows that when quality is deterministic, the delay time distribution
is exponential, which is the same as the stopping time induced by a Poisson signal process.

3This approach applies to settings where without loss of generality we can restrict the problem to considering only signals that are
direct recommendations of actions.
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a tractable HJB equation.

3 Model setup
The main model is a continuous-time stochastic control problem. A DM chooses an

irreversible action at an endogenous decision time. The DM can control the information
received before the decision time in a flexible manner, bearing a cost on information.

Decision problem: Time t P r0, `8q. The DM discounts the delayed utility with rate
ρ ą 0. The DM is a vNM expected utility maximizer with Bernoulli utility associated with
action-state pair pa, xq P A ˆ X at time t being e´ρtupa, xq. Both the action space A and
the state space X are finite. The DM holds a prior belief µ P ∆pXq about the state. Define
Fpνq fi maxaPA Eνrupa, xqs given belief ν P ∆pXq.

Information: I model information using a belief-based approach. A distribution of
posterior beliefs is induced by an information structure according to Bayes rule iff the ex-
pectation of posterior beliefs is equal to the prior. Hence, in a static environment the choice
of information can be equivalently formulated as the choice of a distribution of posterior
beliefs (see Kamenica and Gentzkow (2011.) for example). Extending this formulation to
the dynamic environment in the current paper, I assume that the DM chooses the entire
posterior belief process xµty in a nonparametric way. Now Bayes’ rule should be satisfied
at every instant of time—@s ą t, the expectation of µs is µt. Thus, I restrict xµty to be a
martingale, with xFty as its natural filtration. A formal justification that choosing a be-
lief martingale is equivalent to choosing a dynamic information structure is provided in
Appendix A.4 ..

It is useful to define the following operator Lt for any xµty and f : ∆pXq Ñ R:

Lt f pµtq “ E
„

d f pµtq

dt

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

fi lim
t1Ñt`

E
„

f pµt1q ´ f pµtq

t1 ´ t

ˇ

ˇ

ˇ

ˇ

Ft

ȷ

By definition, Lt f captures the expected speed at which f pµtq increases. Let Dp f q be the
domain of xµty on which Lt f pµtq is well defined.4 . For well-behaved Markov process xµty

and Cp2q smooth f , L f is the standard infinitesimal generator (subscript t omitted).
Cost of information: I assume that the flow cost of information depends on how fast

the information reduces uncertainty. The flow cost of information is CpItq, where:

Assumption 1. It “ ´LtHpµtq, where H : ∆pXq Ñ R is concave and continuous.

I call H an uncertainty measure—because H is concave iff ErHpµqs captures the Black-
well order on the belief distribution. By Assumption 1., It is the speed at which uncertainty
falls when the belief updates. I call It the (flow) informativeness measure. One example of
H is the entropy function Hpµq “ ´

ř

µx logpµxq. Revelation of information reduces en-
tropy; hence, the entropy reduction speed is a natural measure of the amount information.

4Formally, xµty P Dp f q if the uniform limit (w.r.t t) exists almost surely. Let D “
Ş

f PCp∆Xq Dp f q. D contains all Feller processes,
whose transition kernels are stochastically continuous w.r.t. t and continuous w.r.t. state µ. However, D is much more general than Feller
processes as it allows the transition kernel to be discontinuous in state µ.
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Assumption 1 . is the main technical assumption in my analysis. I generalize this assump-
tion in Section 7.2.. For further discussions, see Appendix A.4., where I show that it is the
continuous-time analog of “posterior separability” and provide an axiom for posterior sep-
arability.

Stochastic control: The DM solves the following stochastic control problem:

Vpµq “ sup
xµtyPM,τ

E
„

e´ρτFpµτq ´

ż τ

0
e´ρtCpItqdt

ȷ

(1)

where M is the set of all martingales xµty in DpHq with cadlag5
. path and satisfying µ0 “ µ,

and τ is a xFty-measurable stopping time.6 .

The objective function in Equation (1) . is fairly standard in canonical information ac-
quisition problems. The DM acquires information that affects xµty and chooses stopping
time τ to maximize the expected stopping payoff E

“

e´ρτFpµτq
‰

less the total information
cost E

“şτ
0 e´ρtCpItqdt

‰

. The novel feature is that the DM is allowed to fully control xµty, in
contrast to canonical models, where the DM controls only a few parameters determining
xµty. The nonparametric control of the belief process exactly captures the flexible design of
information by the DM.

I make the following assumption on the cost function CpIq to generate incentive to
smooth learning over time.

Assumption 2. C : R` Ñ R` is weakly increasing, convex and continuous. lim
IÑ8

C1pIq “ 8.

The increasing and continuous cost function assumption is standard. The convexity of
CpIq and the condition lim C1pIq “ 8 give the DM strict incentive to smooth the acquisition
of information. Given Assumption 2., if the DM acquires all information immediately then
uncertainty falls at infinite speed and the marginal cost C1pIq is infinite, hence suboptimal.7 .

I solve a special case violating Assumption 2 . in Section 7.3 ., where I assume C to be linear.
In this case the optimal strategy is to acquire all information at t “ 0 (a static strategy).

In Example 1 ., I present a few examples of canonical Wald-type sequential learning mod-
els, each of which is a variant of Equation (1) . with additional constraints on the set of ad-
missible belief processes. Example 1 . first illustrates how different learning technologies
can be systematically compared under the same framework with an entropy-based cost
function. The comparison also illustrates why a fully flexible learning framework is useful.

Example 1. Let the state be binary X “ tl, ru. The prior belief of state x “ r is µ P p0, 1q.
A “ tL, Ru. The DM wants to choose an action that matches the state: upL, lq “ upR, rq “ 1;

5cadlag: µt : t ÞÑ ∆pXq is right continuous with left limits. Note that assuming martingale xµty being cadlag can be weakened to
assuming xFty being right continuous (see the martingale modification theorem in Lowther (2009.)).

6I postpone the formal definition of integrability in Equation (1). to Section 5.1.. For now, assume that the integral is well defined for
all admissible strategies. Further discussions in Remark B.2 . provide a formal justification that ignoring the integrability is innocuous.

7A weaker sufficient condition can guarantee information smoothing: supI λI ´ CpIq ą ρ sup F, where λ “ limIÑ8
CpIq

I . This
condition explicitly states that when I is sufficiently large, C is sufficiently convex that the utility gain from smoothing information
dominates the loss from waiting longer. All the following theorems in this paper are proved under this weaker condition.
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upL, rq “ upR, lq “ ´1. The discount rate ρ “ 1, H is the standard entropy function:
Hpµq “ ´µ logpµq ´ p1 ´ µq logp1 ´ µq, and the information cost CpIq “ 1

2 I2.
I consider three simple heuristic learning technologies: Gaussian learning, perfectly re-

vealing breakthroughs and partially revealing evidence. A DM who uses a specific learning
technology is modeled by restricting the admissible control set M to include only the cor-
responding family of processes. In each case, the DM controls a parameter that represents
one aspect of learning.

1. Gaussian learning: The signal follows a Brownian motion whose drift is the true state,
and whose variance is controlled by the DM. Therefore, the posterior belief follows a
diffusion process (Bolton and Harris (1999.)), so the set of admissible controls are:

MD “ txµty|dµt “ σtdWtu

The DM controls the signal precision xσty. According to Ito’s lemma, It “ ´1
2 σ2

t H2pµtq “

σ2
t

2µtp1´µtq
. This problem is studied in Moscarini and Smith (2001.)8

., where the value func-
tion is characterized by HJB:

ρVDpµq “ sup
σą0

1
2

σ2V2
Dpµq ´

1
2

ˆ

σ2

2µp1 ´ µq

˙2

The solution VDpµq is plotted as the blue curve in Figure 1 .. The shaded region is the
experimentation region and the non-shaded region is the stopping region.

σt dWt

0.2 0.4 0.6 0.8 1.0
μ

0.2
0.4
0.6
0.8
1.0
V

Figure 1: Incremental information
0.2 0.4 0.6 0.8 1.0

μ

0.2
0.4
0.6
0.8
1.0
V

Figure 2: Breakthroughs

2. Breakthroughs: The DM observes breakthroughs that perfectly reveal the true state with
arrival rate λt. Then, belief follows a Poisson process that jumps to 1 if the state is r and
to 0 if the state is l. The set of admissible control is:

MB “

!

xµty|dµt “ p1 ´ µtqdJ1
t pλtµtq ` p0 ´ µtqdJ0

t pλtp1 ´ µtqq

)

xJi
tp¨qy are independent Poisson counting processes with Poisson rate p¨q. The DM con-

trols the signal frequency xλty. The Entropy reduction speed is λtHpµq. The HJB equation
is as follows:

ρVBpµq “ sup
λą0

λpµFp1q ` p1 ´ µqFp0q ´ VBpµqq ´
1
2

pλHpµqq
2

8With “belief elasticity” defined as E pµq “ µp1 ´ µq in my model.
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The solution VB is plotted as the red curve in Figure 2 .. The two arrows show the belief
jumps induced by breakthroughs at µ.

3. Partially revealing evidence: The DM allocates one unit of total attention to two news
sources, each revealing one state with arrival rate γ “ 2. Then belief follows a com-
pensated Poisson process, and the set of admissible belief processes is:

MP “

#

xµty

ˇ

ˇ

ˇ

ˇ

dµt “p1 ´ µtqpdJ1
t pαtγµtq ´ αtγµtdtq

`p0 ´ µtqpdJ0
t pp1 ´ αtqγp1 ´ µtqq ´ p1 ´ αtqγp1 ´ µtqdtq

+

xJi
tp¨qy are independent Poisson counting processes with Poisson rate p¨q. The DM con-

trols xαty, the attention allocated to the signal revealing state r. This control process is
identical to that in Che and Mierendorff (2016.). Applying their analysis, optimal αt is a
bang-bang solution, and the HJB equation is:

ρVPpµq“max
!

γµ
`

Fp1q´VPpµq´V1
Ppµqp1´µq

˘

´
1
2
`

γµpHpµq`H1pµqp1´µqq
˘2,

γp1´µq
`

Fp0q´VPpµq´V1
Ppµqp0´µq

˘

´
1
2
`

γp1´µqpHpµq`H1pµqp0´µqq
˘2
)

The solution VP is plotted as the black curve in Figure 3 .. The optimal strategy is qual-
itatively the same as in Che and Mierendorff (2016.). In the deep gray region, optimal
learning direction is confirmatory: the arrival of news reveals the a priori more likely
state (represented by solid arrows). In the light gray region, optimal learning direction
is contradictory: the arrival of news reveals the a priori less likely state (dashed arrows).

0.2 0.4 0.6 0.8 1.0
μ

0.2
0.4
0.6
0.8
1.0
V

Figure 3: Partially revealing evidence
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Figure 4: Comparison

In this example, the three learning technologies are analyzed for the same underlying
decision problem and the same entropy cost function. Therefore, the utilities are directly
comparable. I plot all three value functions in Figure 4. and use differently colored regions
to illustrate the order of utility. Each color corresponds to a learning strategy being op-
timal: blue—Gaussian learning, red—breakthroughs, and gray—confirmatory evidence.9 .

As shown in Figure 4 ., allowing the DM to use a rich set of strategies improves the decision-
making quality.

9In this example, whenever contradictory learning dominates confirmatory learning, contradictory learning is dominated by Gaus-
sian learning, thus, contradictory learning is not optimal in any region.

11



More interestingly, there appears to be a pattern when optimizing in different aspects.
When the prior belief is highly uncertain, a fully revealing Poisson signal that can bring
the DM directly to a conclusion is optimal. When the prior belief is quite uncertain but
asymmetrically in favor of one state, allocating attention to the more promising direction
becomes optimal. When the prior belief is very certain, an imprecise but frequent Gaussian
signal becomes optimal. The formal analysis for fully flexible information acquisition in
Section 6. illustrates that this pattern is systematic: the optimal direction, precision and
frequency of learning are exactly the relevant aspects and are closely related to the location
of the prior belief.

3.1 Motivation for a flexible model
Example 1 . implies that single-aspect models are insufficient for modeling a dynamic in-

formation acquisition problem with a rich strategy set. For instance, the model considering
only partially revealing evidence predicts that seeking contradictory evidence is generally
optimal when the belief is uncertain. However, further analysis shows that this prediction
is misleading when Gaussian signals are also feasible. Studying a model where informa-
tion acquisition is flexible in all aspects enables us to obtain insights about information
acquisition without interference from any ad hoc restriction. Such insights include which
aspect(s) is(are) endogenously salient for information acquisition and how each of these
aspects is determined by the DM’s incentives.

Although the results are derived in a fully flexible model, they apply to much more gen-
eral settings where information acquisition is not flexible in all aspects. First, all results di-
rectly apply to all settings where information acquisition is flexible in those endogenously
salient aspects, as all other aspects are redundant for implementing the unconstrained op-
timum. Second, even for settings where some of the relevant aspects are constrained, the
intuitions from the flexible model identify the DM’s most important incentive and how the
hypothetically ideal strategy might be approximated by adjusting other aspects. In fact, the
analysis of the flexible model in Sections 4 . and 6. shows that the set of endogenously salient
aspects is quite small, and the optimal strategy satisfies very simple qualitative properties
in these aspects. Therefore, the findings of this paper are useful in a very wide range of
settings.

4 Dynamic programming and HJB equation
Solving Equation (1) . is not an easy task due to the abstract strategy space. To the best

of my knowledge, no general theory applicable to this stochastic control problem exists.
The most closely related problems are studied in a set of remarkable papers on the martin-
gale method in stochastic control (Davis (1979.),Boel and Kohlmann (1980.),Striebel (1984.)).
These papers introduce abstract formulations of stochastic control problems with general
(semi)martingale control processes. The problems have finite horizon and specific objective
functions; hence, they do not nest Equation (1) ..

Nevertheless, it is useful to introduce the general dynamic programming principle and

12



HJB characterization. On the basis of the intuition of dynamic programming, the conjecture
that Vpµtq satisfies the following HJB is reasonable:

max
␣

Fpµtq ´ Vpµtq
looooooomooooooon

stopping value

, ´ρVpµtq
looomooon

discount

` sup
dµt

␣

LtVpµtq
looomooon

continuation value

´ Cp´LtHpµtqq
looooooomooooooon

control cost

((

“ 0 (2)

HJB Equation (2) . is conceptually the same as the standard HJB equation. Recall the defi-
nition for operator Lt, LtVpµtq is the flow utility gain from continuing. The exact form of
LtV and LtH depends on the probability space, the filtration and the control process in the
neighbourhood of t (which are summarized by the symbol dµt). Therefore, Equation (2) .

essentially states the dynamic programming principle: at any instance when the control is
chosen optimally, either stopping is optimal (the first term is 0) or continuing is optimal
and the net continuation gain equals the loss from discounting (the second term is 0).

For a simple example, let M be a family of Markov jump-diffusion belief processes,
characterized by the following SDE:

dµt “ pνpµtq ´ µtqpdJtpppµtqq ´ ppµtqdtq
looooooooooooooooooooomooooooooooooooooooooon

compensated Poisson part

` σpµtqdWt
loooomoooon

Gaussian diffusion

(3)

where pp, ν, σq : µt ÞÑ R` b ∆pSupppµqq b R|Supppµq|´1 are control parameters, Jtp¨q is a Pois-
son counting process with Poisson rate p¨q, and Wt is a standard one-dimensional Wiener
process. Note that this example also nests all three families of strategies in Example 1 . as
special cases10

.. Itô’s lemma implies an explicit form for the infinitesimal generator:

LVpµq “ ppVpνq ´ Vpµq ´ ∇Vpµqpν ´ µqq
loooooooooooooooooooomoooooooooooooooooooon

flow value of Poisson jump & drift

`
1
2

σTHVpµqσ
loooooomoooooon

flow value of diffusion

where ∇ and H are the gradient and Hessian operators, respectively. By replacing L in
Equation (2) . with its explicit expression, we obtain a parametrized HJB Equation (4) .:

ρVpµq“max
"

ρFpµq, sup
p,ν,σ

ppVpνq´Vpµq´∇Vpµqpν´µqq`
1
2

σTHVpµqσ (4)

´C
ˆ

ppHpµq´Hpνq`∇Hpµqpν´µqq´
1
2

σTHHpµqσ

˙*

On the other hand, when M is the jump-diffusion family, the jump-diffusion control theory
(see textbooks, e.g., Hanson (2007.)) provides a verification theorem that proves that the value
function for Equation (1). is exactly characterized by HJB Equation (4) ..

This simple example illustrates how a specific stochastic control problem relates to an
HJB equation. Now, consider the general problem Equation (2) . without any restriction on
the admissible belief process. First, we require a verification theorem stating that the HJB
Equation (2) . characterizes the solution of Equation (1) .. Second, a representation theorem

10The admissible control sets in the second and third cases in Example 1 . are not exactly nested in Equation (3) .. However, they can be
viewed as mixed strategies of pure Poisson-jump processes defined by Equation (3) ..
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for the abstract operator Lt is also necessary to make Equation (2) . practically tractable. The
existing theories on martingale methods have little power for both tasks.11

. In Theorem 1 ., I
achieve both goals by showing that the solution of Equation (1) . is characterized by a simple
parametric HJB equation:

Theorem 1. Assume H is strictly concave and Cp2q smooth on interior beliefs in ∆pXq, Assump-
tions 1. and 2. are satisfied. Let Vpµq P Cp1q∆pXq be a solution12

. to HJB Equation (4).; then Vpµq

solves Equation (1)..

Theorem 1 . first states that Vpµq is characterized by a HJB equation. More surprisingly,
Theorem 1 . also states that the HJB is exactly Equation (4) .. As a direct corollary, Equation (1) .

can be solved by considering only the family of Markov jump-diffusion processes charac-
terized by SDE (3.). The compensated Poisson jump part and Gaussian diffusion part in
SDE (3.) each represents a simple learning strategy.

• Poisson learning: The DM uses Poisson learning or acquires a Poisson signal when a
compensated Poisson part exists in the belief process. A Poisson jump in the belief
process can be induced by observing non-conclusive news whose arrival follows a
Poisson process. The compensating belief drift is induced by observing no news
arriving. The control variables for Poisson learning are pp, νq, which represent three
endogenously relevant aspects of Poisson learning. The arrival rate p represents the
frequency of learning. The direction of belief jump represents the direction of learning.
The magnitude of belief jump represents the precision of learning.

• Gaussian learning: The DM uses Gaussian learning or acquires a Gaussian signal when
a diffusion part exists in the belief process. Gaussian diffusion in the belief process
can be induced by observing the realization of a Gaussian process, with state x being
the unobservable drift. The flow variance σ represents the signal precision.

Equation (4) . suggests that to determine the optimal strategy in all relevant aspects, the
DM considers four types of trade-offs : (i) the standard continuing-stopping trade-off in
optimal stopping problems, captured by the outer-layer maximization; (ii) the informa-
tion cost-utility gain trade-off, which determines the total cost spent on learning; (iii) the
Poisson-Gaussian trade-off, which determines the proportion of cost allocated to the Pois-
son signal pp, νq and the Gaussian signal σ; (iv) the precision-frequency trade-off, which
determines the marginal rate of substitution of signal frequency for precision. These trade-
offs, especially the precision-frequency trade-off, will be discussed in detail to characterize
the solution to Equation (4). in Section 6..

11First, the existing martingale methods verify the HJB equation for different sets of problems that do not cover this specific problem.
Moreover, the martingale method only states the existence of such LtV (for example theorem 4.3.1 of Boel and Kohlmann (1980.)) and
does not provide an explicit representation. This issue is considered to be the main drawback of the martingale method (see discussions
in Davis (1979.)).

12The Cp1q solution to the second-order ODE is not well defined. To be precise, V is a viscosity solution (see Crandall, Ishii, and Lions
(1992.)). In the viscosity solution, σTHVpµqσ is replaced by D2Vpµ, σq||σ||2, where D2Vpµ, σq “ lim

δÑ0
2 Vpµ`δσq´Vpµq´∇Vpµqδσ

δ∥σ∥2 .
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The proof of Theorem 1 . uses an indirect method. I characterize Equation (1) . as the limit
of a series of auxiliary discrete-time problems. The discrete-time analyses are presented in
Section 5 .. Readers interested in the solution of HJB Equation (4) . can jump to Section 6 ..

5 The auxiliary discrete-time problem
In this section, I introduce the steps for proving Theorem 1. using an auxiliary discrete-

time problem. First, in Section 5.1. I introduce a discrete-time stochastic control problem
that converges to the continuous-time problem. Then I characterize the Bellman equation
for the discrete-time problem in Section 5.2 .. In Section 5.3 ., I introduce a key lemma that
links all the discrete-time analyses and proves Theorem 1..

5.1 Discrete-time problem
I consider a stochastic control problem that is a discrete-time analog of Equation (1) ..

Then I illustrate the discretization of the original problem. The discretization serves as a
useful intermediary showing that the discrete-time problem converges to the continuous-
time problem.

Decision problem: The primitives pA, X, u, µ, ρq are the same as those in Section 3 .. Time
is discrete t P N, and the period length dt ą 0. The payoff delayed by t periods is dis-
counted by e´ρdt¨t.

Information: The DM chooses the posterior belief process xpµty in a nonparametric way.
xpµty is restricted to be a martingale. Let x pFty be the natural filtration of xpµty.

Cost of information: Define CdtpIq fi C
` I

dt

˘

dt. The per-period cost of information is
assumed to be CdtpErHppµtq ´ Hppµt`1q| pFtsq. Note that this is exactly the finite-difference
analog of the flow cost Cp´LtHpµtqq in the continuous-time problem.

Optimization problem: The DM solves the following stochastic control problem:

Vdtpµq “ sup
xpµtyPxM,pτ

E

«

e´ρdt¨pτFppµ
pτq ´

pτ´1
ÿ

t“0

e´ρdt¨tCdt

´

E
”

Hppµtq ´ Hppµt`1q| pFt

ı¯

ff

(5)

where xM is the set of discrete-time martingales satisfying pµ0 “ µ, and τ is a x pFty´measurable
stopping time. Note that in this section, all discrete-time stochastic processes and random
variables are labeled with “hat” to differentiate them from continuous-time processes.

The purpose of analyzing the discrete-time problem is to characterize the continuous-
time value function Vpµq. Therefore, the first step is to show that Vdtpµq approximates Vpµq.
To study the relation between Vdtpµq and Vpµq, let us discretize the objective function in
Equation (1) .. For any admissible strategy pxµty, τq, consider the Riemann sum:

Wdtpµt, τq “

8
ÿ

i“1

Probpτ P rpi ´ 1qdt, idtsqE
„

e´iρdtFpµidtq ´

i´1
ÿ

j“0

e´jρdtC
`

Ijdt
˘

dt
ȷ

where Ijdt “ E
”Hpµjdtq´Hpµpj`1qdtq

dt

ˇ

ˇFjdt

ı

. The objective function in Equation (1) . is defined in
the notion of the Riemann-Stieltjes integral as limdtÑ0 Wdtpµt, τq. I call the martingale xµty
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integrable if the limit limdtÑ0 Wdtpµt, τq exists.13
. Unless otherwise stated, M is restricted to

contain integrable processes, an innocuous restriction that enables me to avoid technical
discussions of integrability.14

. Then it follows that Vpµq “ supxµtyPM,τ limdtÑ0 Wdtpµt, τq.
Now, consider the relation between Wdt and Vdt. I argue that the objective function

in Equation (5). is equivalent to Wdtpµt, τq. This result can ben verified by noting that if
pxµty, τq and pxpµty, pτq jointly satisfy pµt “ µt¨dt and pτ “ rτ{dts, then:

Wdtpµt, τq “ E

«

e´ρdtpτFppµ
pτq ´

pτ´1
ÿ

t“0

e´ρdt¨tCdt

´

E
”

Hppµtq ´ Hppµt`1q| pFt

ı¯

ff

Given feasible strategy pxµty, τq, such pxpµty, pτq can be constructed by simply discretizing the
continuous-time strategy. Given feasible strategy pxpµty, pτq, such pxµty, τq can be constructed
by the Kolmogorov extension theorem. Therefore, it follows that Vdtpµq “ supxµtyPM,τ Wdtpµt, τq.
Now that both V and Vdt are characterized using Wdt, Wdt can be used as an intermediary
to link V and Vdt:

$

’

’

&

’

’

%

Vpµq “ sup
xµty,τ

lim
dtÑ0

Wdtpµt, τq

lim
dtÑ0

Vdtpµq “ lim
dtÑ0

sup
xµty,τ

Wdtpµt, τq

Clearly, V and lim Vdt are obtained by taking the limit of Wdt in different orders. There-
fore, Vdt approximates V when the two limits are interchangeable, which is indeed true as
proved in Lemma 1.:

Lemma 1. Given Assumption 1 ., @µ P ∆pXq, limdtÑ0 Vdtpµq “ Vpµq.

5.2 Discrete-time Bellman equation
Equation (5) . is a discrete-time sequential optimization problem with bounded payoffs

and exponential discounting. Therefore, standard dynamic programming theory applies
and provides the Bellman equation that characterizes Vdt.

Lemma 2 (Discrete-time Bellman). Vdt is the unique solution in Cp∆Xq of the following func-
tional equation:

Vdtpµq “ max
"

Fpµq, max
pi,νi

e´ρdt
N
ÿ

i“1

piVdtpνiq ´ Cdt

´

Hpµq ´
ÿ

piHpνiq
¯

*

(6)

s.t.
ÿ

piνi “ µ

where N “ 2|X|, p P ∆pNq, νi P ∆pXq.

13The standard definition for integrability also requires the limit to exist uniformly for all alternative nonuniform discretizations of the
time horizon and all alternative measurable stopping times. Here I use the weaker integrability requirement for notational simplicity.
The optimal strategy actually satisfies the stronger integrability requirements, so the current definition can be used without loss. The
discretization of xIty is WLOG given the uniform convergence in the definition of DpHq.

14The detailed discussion of why restricting belief to be integrable is innocuous is in Remark B.2..
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Equation (6) . is a standard Bellman equation, except that it covers a restricted space
of strategies. The choice of signal structure is restricted to have support size no larger
than 2|X|, while the original space contains signal structures with an arbitrary number
of realizations. This simplification is based the generalized concavification methodology
developed in Theorem 2 of Zhong (2018a.). The standard concavification methodology
is an application of the Carathéodory theorem to the graph of the objective function in
the belief space.15

. Equation (6). involves an additional term CdtpHpµq ´
ř

piHpνiqq, which
makes the standard method inapplicable. The general method suggests that the maximum
is characterized by concavifying a linear combination of Vdt and H.

5.3 Convergence and verification theorem
The following figure illustrates the roadmap for proving Theorem 1 ..

V Vdt
Lemma 1.

Continuous-
time HJB

Discrete-time
Bellman

Lemma 3.

Theorem 1. Lemma 2.

Theorem 1. is represented by the red dashed arrow on the left. The discrete-time problem’s
value function Vdt is the solution of the Bellman equation Equation (6) . (the double arrow
on the right, proved in Lemma 2.). I have shown that Vdt converges to the continuous-time
optimal control value V (the arrow on the top, proved in Lemma 1 .). In the next lemma, I
show that solution of HJB Equation (4) . is the limit of solution of Equation (6) . (the arrow on
the bottom, to be proved in Lemma 3 .). Therefore, the function solving HJB Equation (4) . is
the value function of the continuous-time stochastic control problem Equation (1)..

Lemma 3. Assume H is strictly concave and Cp2q on interior beliefs, Assumption 2 . is satisfied.
Suppose Vpµq P Cp1q is a solution to Equation (4).. Then Vdt

L8
ÝÝÝÑ
dtÑ0

V.

Lemma 3 . proves that whenever Equation (4). has a solution, the solution is unique and
coincides with the limit of solution to discrete-time problem Equation (6).. Verification the-
orem Theorem 1. is a direct corollary of Lemmas 1., 2. and 3..

6 Optimal information acquisition
In this section I prove the existence of the solution to the continuous-time HJB Equa-

tion (4). and fully characterize the value and policy functions, assuming binary states and
two forms of flow cost function: a hard cap and a smooth convex function. In both cases,
the optimal strategies share the same set of qualitative properties. Then in Section 6.2 ., I
discuss the key trade-offs in the optimization problem and provide the intuition for the
optimal strategy. First, I introduce the assumptions for tractability:

15See Aumann, Maschler, and Stearns (1995.) and Kamenica and Gentzkow (2011.))
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Assumption 3.

1. (Binary states): |X| “ 2.
2. (Positive payoff): @µ P r0, 1s, Fpµq ą 0.
3. (Uncertainty measure): H2pµq ă 0 and locally Lipschitz on p0, 1q, lim

µÑ0,1
|H1pµq| “ 8.

Assumption 3. comprises three parts. First, I restrict the state space to be binary. There-
fore, the belief space is one dimensional, and I can use ODE theory to construct a candi-
date solution. Although the existence of the solution technically relies on the binary state
assumption, the characterization generalizes to general state spaces, as discussed in Ap-
pendix A.3 .. Second, I assume that the utility from decision making is strictly positive so
that “delay forever” is strictly suboptimal. This restriction is made without loss of gener-
ality in the sense that we can always add a dummy “outside action” that gives ε payoff.
Third, I assume that H is sufficiently smooth, strictly convex (which rules out free infor-
mation) and satisfies an Inada condition (which guarantees a non-degenerate stopping re-
gion).

6.1 Main characterization theorem
Theorem 1 . states that to characterize Vpµq, it is sufficient to find a smooth solution to

HJB Equation (4) .. I prove the existence of a solution and characterize the optimal strategy
under Assumption 2-a . or Assumption 2-b ., two slightly stronger variants of Assumption 2 ..

Assumption 2-a (Capacity constraint). There exists c s.t. CpIq “

#

0 when I ď c
`8 when I ą c

Assumption 2-a. restricts the cost function C to be a hard cap: information is free when
its measure is below capacity c and infinitely costly when it exceeds this capacity.16

. This
condition forces the DM to smooth the information acquisition process over time.

Theorem 2. Given Assumptions 1., 2-a. and 3., there exists a quasi-convex value function V P

Cp1qp0, 1q solving Equation (4).. Let E “ tµ P r0, 1s|Vpµq ą Fpµqu be the experimentation region.
There exists policy function ν : E Ñ r0, 1s satisfying:

ρVpµq “ ´ c
Fpνpµqq ´ Vpµq ´ V1pµqpνpµq ´ µq

Hpνpµqq ´ Hpµq ´ H1pµqpνpµq ´ µq

where νpµq is unique a.e. and satisfies the following properties. Dµ˚ P arg min V s.t.
1. Poisson learning: ρVpµq ą ´c V2pµq

H2pµq
@µ P Ezµ˚.

2. Direction: µ ą µ˚ ùñ νpµq ą µ and µ ă µ˚ ùñ νpµq ă µ.
3. Precision: |νpµq ´ µ˚| is decreasing in |µ ´ µ˚| on each interval of E.
4. Stopping time: νpµq P EC (a successful experiment lands in the stopping region).

16limIÑ8 C1pIq is not well defined with Assumption 2-a .. However, it is not hard to see that Assumption 2-a . still satisfies the weaker
formulation discussed in Footnote 7.. As a result, Theorem 1. applies with Assumption 2-a ..
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Theorem 2 . proves the existence of a solution to Equation (4) . and characterizes the op-
timal policy function. The theorem first states that the optimal value function is imple-
mented by a Poisson signal, i.e., seeking a breakthrough that causes the belief to jump to
νpµq. Moreover, property 1 states that the Gaussian signal is strictly dominated, except
for at most one critical belief. Therefore, as discussed in Section 4 ., the optimal strategy is
Poisson learning, which can be characterized by three aspects of learning and the stopping
time.

Direction: Property 2 states that the optimal direction is confirmatory: when µ ą µ˚, the
DM holds a high prior belief for state 1 and acquires a signal whose arrival induces an even
higher posterior belief νpµq and vice versa for µ ă µ˚.

Precision: Property 3 states that the optimal precision measured by |νpµq ´ µ˚| is nega-
tively related to how certain the belief is (measured by |µ ´ µ˚|). Since µ˚ P arg max V, the
property equivalently states that precision is negatively related to the continuation value.

Frequency: With Assumption 2-a ., frequency is automatically determined given the pre-
cision, according to ppµq “ ´ c

Hpνpµqq´Hpµq´H1pµqpνpµq´µq
. Thus, the optimal frequency is

positively related to the continuation value.
Stopping time: Property 4 states that the image of ν is always in the stopping region. In

other words, the optimal stopping time is exactly the signal arrival time.
By combinging these properties, we can qualitatively determine the optimal learning

dynamics. The DM seeks a signal that arrives according to a Poisson process. The arrival
of the signal confirms the DM’s prior belief and is sufficiently accurate to warrant an im-
mediate action. Absent the arrival of a Poisson signal, the DM becomes less certain about
the state, following Bayes’ rule. The DM’s continuation value decreases correspondingly;
hence, she continues seeking a Poisson signal with higher frequency and lower precision.

Assumption 2-b (Convex cost). C P Cp2qR`, Cp0q “ 0, C1pIq ě 0, C2pIq ą 0, lim
IÑ8

C1pIq “ 8.

Assumption 2-b. restricts the cost function C to be Cp2q smooth and strictly convex: ac-
quiring an additional unit of information is of strictly increasing marginal cost. The condi-
tion on lim C1pIq in Assumption 2 . is retained. If we replace Assumption 2 . with Assump-
tion 2-b ., we obtain the following characterization theorem:

Theorem 3. Given Assumptions 1 ., 2-b. and 3., there exists a quasi-convex value function V P

Cp1qp0, 1q solving Equation (4).. Let E “
␣

µ P r0, 1s
ˇ

ˇVpµq ą Fpµq
(

be the experimentation region.
There D policy functions ν : E Ñ r0, 1s and I P Cp1qpEq17

. satisfying:

ρVpµq “ ´ Ipµq ¨
Fpνpµqq ´ Vpµq ´ V1pµqpνpµq ´ µq

Hpνpµqq ´ Hpµq ´ H1pµqpνpµq ´ µq
´ CpIpµqq

where ν and I are unique a.e. and satisfy the following properties. Dµ˚ P arg min V s.t.
1. Poisson learning: ρVpµq ą max

σ

1
2 σ2V2pµq ´ Cp´1

2 σ2H2pµqq @µ P Ezµ˚.

17Note that given ν, selecting I or p is equivalent. They uniquely pin down each other according to equation Ipµq “

ppµqp´Hpνpµqq ` Hpµq ` H1pµqpνpµq ´ µqq.
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2. Direction: µ ą µ˚ ùñ νpµq ą µ and µ ă µ˚ ùñ νpµq ă µ.
3. Precision: |νpµq ´ µ˚| is decreasing in |µ ´ µ˚| on each interval of E.
4. Stopping time: νpµq P EC.
5. Intensity: Ipµq is increasing in Vpµq .

With the exception of property 5, the optimal strategy has the same set of properties as
Theorem 2.. Property 5 states that the informativeness measure I of the optimal signal is
higher when the continuation value is higher. Since the belief process drifts downward the
value function conditional on continuation, the DM invests less in information acquisition
as time passes.

The intuition for property 5 is discussed in Moscarini and Smith (2001.). The marginal
gain from experimentation is proportional to the continuation value while marginal cost is
increasing in I. Therefore, the optimal cost is increasing in the value function. This prop-
erty is called “value-level monotonicity” in Moscarini and Smith (2001.), where the level
(flow variance of the diffusion process) is a parameter for both the cost and precision of
a Gaussian signal. My analysis identifies this intuition separately from another important
trade-off between signal precision and frequency. I refer to property 5 as “value-intensity
monotonicity” in this paper. Here I rename parameter I the intensity of learning, which is
more intuitive and concise than “informativeness measure”.

Examples
In this section, I first provide a minimal working example that illustrates Theorem 3 . in

Example 2 .. Then I provide supplementary examples to illustrate a rich set of implications
of my model, including multiple phases of learning in Example 3. and learning from a one-
sided search in Example 4..

Example 2. Consider the problem studied in Example 1 .. Fpµq “ maxt2µ ´ 1, 1 ´ 2µu,
Hpµq “ ´µ logpµq ´ p1 ´ µq logp1 ´ µq, ρ “ 1, and CpIq “ 1

2 I2. No parametric assump-
tion is placed on the set of admissible belief process.

The solution is presented in Figures 5 . and 6.. In Figure 5 .-(a), dashed lines depict Fpµq,
the blue curve depicts Vpµq, and the blue shaded region is experimentation region E. Fig-
ure 5 .-(b) shows the optimal posterior νpµq as a function of the prior. As stated in Theorem 3 .,
the policy function is piecewise smooth and decreasing. The three arrows in Figure 5.-(a)
depict the optimal strategies prescribed at three different priors. The arrows start at the
priors and point to the optimal posteriors. The blue curve in Figure 5.-(c) shows the op-
timal intensity Ipµq as a function of the prior. Clearly, Ipµq is isomorphic to Vpµq in the
experimentation region.

Figure 6. illustrates the dynamics of the optimal policy. Figure 6.-(a) depicts the opti-
mal belief process. Conditional on no signal arrival, the posterior belief drifts towards the
critical belief level µ˚ “ 0.5. In this example, two phases of learning occur (represented by
different colors of shaded regions in Figure 6 .-(a)). In the first phase (blue region), the DM
seeks a Poisson signal to confirm the most likely state. As time passes, the signal precision
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Figure 5: Value and policy functions

increases while signal frequency and learning intensity decreases (as in Figure 6.-(b)&(c)).
Eventually, the DM believes that the two states are equally likely and switches to the sec-
ond phase (gray region). In the second phase, she seeks two signals that confirm each state
in a balanced way such that before any signal arrives her posterior belief is stationary.
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Figure 6: Dynamics of optimal policy

Recall the three learning technologies in Example 1 .. They approximate the full solution
in Example 2 .. In general, the optimal signal is a confirmatory Poisson signal with varying
precision and frequency. However, in Example 1 ., the precision and frequency of the con-
firmatory Poisson signal are exogenously fixed. Therefore, for very certain prior beliefs,
the ideal high-frequency Poisson signal is approximated by a Gaussian signal. For very
uncertain prior beliefs, the ideal signal is approximated by acquiring perfectly revealing
breakthroughs with low frequency.

Example 3 (Multiple phases). Figure 7 . depicts an example with four actions, whose ex-
pected payoffs are represented by the four dashed lines in Figure 7.-(a). The two blue
dashed lines are called riskier actions, and the two red dashed lines are called safer ac-
tions. The upper envelope of the four lines is Fpµq. The experimentation region contains
three disjoint intervals. For the middle interval, in the red regions, the DM has a more
extreme belief and searches for a signal that confirms a safer action (red arrow). In the blue
region, the DM has a more ambiguous belief and searches for a riskier action (blue arrow).
Figure 7.-(c) depicts the optimal belief process with a prior belief in the red region. The ex-
perimentation follows three phases, the DM searches for a safer action in phase 1, searches
for a riskier action in phase 2 and searches in a balanced way in phase 3.
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Figure 7: Example with four alternatives

Example 4 (One-sided search). Figure 8 . depicts an example where the optimal strategy
includes only one-sided search. A safe action with deterministic payoff and a risky action
whose payoff is higher than that of the safe action in state 1 exists. As illustrated in Figure 8.-
(a), both Fpµq and Vpµq are monotonically increasing. According to property 1, µ ą µ˚ in
the entire experimentation region E. Figure 8 .-(b) shows that the optimal strategy is always
to search for a Poisson signal that induces a posterior belief higher than the prior. Figure 8 .-
(c) shows that in this example, only one phase occurs. If no signal arrives before the belief
reaches to the critical belief, the optimal solution is for the DM to stop learning and choose
the safe action.

This example illustrates more precisely the definition of confirmatory evidence: the op-
timal belief jump is in the direction of a more profitable state. The profitability of a state de-
pends jointly on its likelihood and the corresponding payoff of the actions. In this example,
consider a prior belief less than 0.5. Although state 0 is more likely, since it is dominated by
state 1 for any action, state 1 is unambiguously more profitable to learn about. Therefore,
the optimal confirmatory evidence is always revealing state 1.
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Figure 8: Example with one-sided search

6.2 Proof methodology and key intuitions
In Section 3 ., I introduce four types of trade-offs. Now, I discuss the trade-offs in detail

and illustrate how they determine the optimal strategy in each salient aspect. I first derive
a geometric characterization of the optimal policy in Section 6.2.1 .. Then, I discuss how the
key trade-offs are represented by the geometric characterization and provide intuitions for
the optimal policy. In Section 6.2.2 ., I present the sketch of a proof for Theorem 2..
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6.2.1 Geometric representation and key trade-offs
A though experiment is useful to gain intuition. Fix the value function V and consider

a simplified optimization problem:

sup
pě0,ν

p
`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

´ C
`

p
`

Hpµq ´ Hpνq ` H1pµqpν ´ µq
˘˘

(7)

Equation (7). is more restrictive than Equation (4).. I assume that the DM acquires only a
Poisson signal. Let us temporarily ignore the Gaussian signal. Define:

$

&

%

Upµ, νq “ Vpνq ´ Vpµq ´ V1pµqpν ´ µq

Jpµ, νq “ Hpµq ´ Hpνq ` H1pµqpν ´ µq

The interpretation of Upµ, νq is the flow value per unit arrival rate from a Poisson signal
with posterior ν. Similarly, Jpµ, νq is the flow uncertainty reduction per unit arrival rate
from the Poisson signal. Then Equation (7). can be rewritten as:

sup
pě0,ν

p ¨ Upµ, νq ´ Cpp ¨ Jpµ, νqq

Ifip¨Jpµ,νq
ðùùùùùñ sup

Iě0,ν

ˆ

Upµ, νq

Jpµ, νq

˙

¨ I ´ CpIq

The problem is separable in choosing I and ν. The solution pν˚, I˚q is characterized by:
$

&

%

ν˚ P arg max
ν

Upµ,νq

Jpµ,νq

C1pI˚q “ max
ν

Upµ,νq

Jpµ,νq

The optimal posterior ν˚ maximizes Upµ,νq

Jpµ,νq
—the value to uncertainty reduction ratio. Let

λ “ C1pI˚q “ max Upµ,νq

Jpµ,νq
; then, Upµ, νq ď λJpµ, νq and the equality holds at ν˚.18

. Define
Gpµq “ Vpµq ` λHpµq. I call Gpµq the gross value function. Then, the definition of U and V
implies Upµ, νq ´ λJpµ, νq “ Gpνq ´ Gpµq ´ G1pµqpν ´ µq. Hence, Upµ, νq ď λJpµ, νq implies
that the gross value function has the following property:

#

Gpνq ď Gpµq ` G1pµqpν ´ µq @ν P r0, 1s

Gpν˚q “ Gpµq ` G1pµqpν˚ ´ µq
(8)

Equation (8) . states that Gpνq is everywhere (weakly) below the tangent line of G at µ, except
Gpµq and Gpν˚q touch the tangent line. The tangent line is linear (hence concave) and
thus weakly dominates G’s upper concave hull copGq. Therefore, Gpµq “ copGqpµq and
Gpν˚q “ copGqpν˚q. See Figure 9. for a graphical illustration.

18With Assumption 2-a., I˚ “ c and λ “ max Upµ,νq

Jpµ,νq
is the Lagrangian multiplier for constraint I ď c.
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Figure 9: Concavification of the gross value function

Figure 9 .-(a) and Figure 9 .-(b) depict the value function V and the uncertainty measure
H, respectively. Figure 9 .-(c) depicts the gross value function G “ V ` λH, where λ is
calculated for the prior µ. As discussed, G touches the upper concave hull at both µ and
ν˚. When ν˚ is unique, µ and ν˚ are the two boundary points of the concavified region (the
interval pµ, νq on which G ă copGq).

Equation (8). is called a concavification characterization as it is an analog to the concav-
ification method in Bayesian persuasion problems. The difference is that in a Bayesian
persuasion problem, the boundary points of a concavified region are optimal posteriors,
whereas in the current problem, the prior is also on the boundary of a concavified region.
This property has clear economic meaning. G is called the gross value function because it
integrates value function V and uncertainty measure H using marginal cost level λ. λ is a
multiplier that captures the marginal effect of reducing uncertainty on flow cost. Therefore,
solving:

sup
pě0,ν

ppGpνq ´ Gpµq ´ G1pνqpν ´ µqq (9)

is equivalent to solving Equation (7) .. Whether Equation (9) . yields a positive payoff de-
pends on whether Gpµq ă copGqpµq. Suppose Gpµq ă copGqpµq. Then, there is a strictly
positive gain from information and Equation (9). is strictly positive. However, Equation (9).

is linear in the signal arrival rate p. As a result the DM has incentive to increase p, which
drives up marginal cost C1p¨q. Thus, when the optimum is reached, C1p¨q (or λ) must be such
that solving Equation (9). yields exactly zero utility: Gpµq “ copGqpµq. This characterization
illustrates that in the continuous time limit, information is smoothed such that uncertainty
is reduced by only an infinitesimal amount at every instant of time.

Now, suppose that the HJB is satisfied, i.e., Equation (7) . equals the flow discounting
loss ρVpµq. Then applying I˚ “ p˚ ¨ Jpµ, ν˚q and C1pI˚q “

Upµ,ν˚q

Jpµ,ν˚q
to the HJB implies:

ρVpµq “ p˚ ¨ Upµ, ν˚q ´ Cpp˚ ¨ Jpµ, ν˚qq

ùñ ρVpµq “ I˚C1pI˚q ´ CpI˚q (10)

Combining Equation (8) . and Equation (10) . dentifies the value function V and correspond-
ing strategies p, ν.19

. Now, I analyze key trade-offs in the dynamic information acquisition
problem by studying Equations (8) . and (10)..

19 With Assumption 2-a ., CpI˚q “ 0 and I˚ “ c. Thereofre, ρVpµq “ λc.
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1. Utility gain vs. information cost
Equation (10) . illustrates the utility gain vs. information cost trade-off. Since C is a

convex function, IC1pIq ´ CpIq is increasing in I20
., that is, the optimal flow informativeness

measure I is isomorphic in continuation value Vpµq. This property is exactly the ”value-
intensity monotonicity“ I introduced in Section 6.1..

The intuition for this property is simple. The marginal cost of increasing the intensity
of the signal proportionately is IC1pIq. The marginal gain is obtained from increasing the ar-
rival rate proportionately (keeping the signal precision fixed, as in the envelope theorem).
Increasing the arrival rate by a unit proportion reduces the waiting time by the same pro-
portion, so the marginal gain from increasing I by a unit proportion is discount ρV plus
cost CpIq. At the optimum, the maginal cost equals the margina gain; therefore, we obtain
Equation (10) . and the flow informativeness is monotonic in value function.

If we consider the case with Assumption 2-a ., then λ in Equation (8) . is replaced by the
shadow cost of increasing informativeness (see Footnotes 18 . and 19.). Equation (10) . can be
written as ρVpµq “ cλ. Although the intensity is fixed, in this case, a monotonicity between
the shadow cost and value function remains.

In summary, by studying the utility gain vs. information cost trade-off, I established
a monotonicity between the shadow/marginal cost λ and the continuation value Vpµq. (I
refer to both as the “value-intensity monotonicity” for notational simplicity.) Now that I
characterized λ, we can proceed to Equation (8) ..

2. Precision vs. frequency
A novel trade-off characterized by Equation (8) . is the precision vs. frequency trade-off.

The value-intensity monotonicity determines I from the value function. Now, the DM allo-
cates total intensity I to precision (parametrized by the size of belief jumps) and frequency
(parametrized by the arrival rate of jumps). Equation (8) . suggests that the optimal signal
precision can be solved by concavifying the gross value function Gpµq. In this section, I
illustrate how this trade-off changes for different priors and explain the intuition.

0 μ ν 1
μ

G

0 1
μ

G

0 μ' ν' 1
μ

G

Figure 10: Precision-frequency trade-off

Figure 10 . shows how varying λ affects the optimal jump size. In Figure 10 .-(a) the blue
curve is Gpµq, and the dashed curve is copGq. I call the blue region, where Gpµq ă copGqpµq,
the concavified region and the white region, where Gpµq “ copGqpµq, the globally concave

20 d
dI pIC1pIq ´ CpIqq “ IC2pIq ě 0
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region. The prior µ and optimal posterior ν are on the boundary of a concavified region.
Consider G1 “ V ` λ1H, where λ1 ą λ. Figure 10 .-(b) depicts both G (the dashed curve)
and G1 (the blue curve). Since G1 is G plus a strictly concave function, any belief in the
globally concave region of G is still in the globally concave region of G1. As a result, as
λ increases, the white region is expands and the blue region contracts (see Figure 10.-(c)).
Thus, the prior and optimal posterior move closer together. Recall that λ is monotonic in
V, which means the DM is more willing to choose a signal that induces shorter belief jump
when the continuation value is higher.

The intuition for this property is as follows. When the DM is more certain about the
state, the continuation value is higher; hence, the utility loss from discounting is higher.
The DM wants to receive a signal more frequently to benefit from the high value sooner.
In other words, the marginal rate of substitution of frequency for precision is increasing in
the continuation value. In this analysis, the continuation value is isomorphic to λ, which
controls the shape of G. The marginal rate of substitution of frequency for precision is
exactly captured by the global concavity of the gross value function; thus, the analysis
presented by Figure 10. exactly illustrates the intuition.

Confirming vs. contradicting: The analysis above determines the magnitude of the op-
timal belief jump. The optimal jump direction remains to be determined to pin down the
optimal posterior. Now, I show that the precision-frequency trade-off also implies the op-
timality of confirmatory learning.

Let us hypothetically consider a belief µ at which jumping toward the right is optimal
(weakly). In both panels of Figure 11 ., µ is the prior and νL, νR are optimal posteriors on
each side of µ. Jumping to νR (the black arrow) is better than jumping to νL (the dashed
black arrow). Let V be increasing around µ. Now consider the DM’s incentive at µ1 slightly
larger than µ (in Figure 11 .-(a)). Although the corresponding optimal posteriors could also
move, keeping them fixed at νL and νR has only a second-order effect on utility. We can
compare νL and νR to pin down the optimal posterior for µ1. Since µ1 ą µ, νR is closer
to prior, and νL is farther from prior. Moreover, Vpµ1q ą Vpµq implies that the DM has a
stronger preference for frequency to precision with belief µ1. Since V1 ą 0, the effect is first
order. Therefore, νR is strictly preferred to νL at µ1. Consider µ2 slightly smaller than µ (in
Figure 11.-(b)). A similar analysis shows that now size of jump to νR is larger, and the DM
has a stronger preference for precision with belief µ2. Thus, νR is also strictly optimal for
µ2.

μνL νRμ1
μ1

μνL νR
μ2

Figure 11: Confirmatory v.s. contradictory

In this analysis, jumping in the direction of increasing value function means the signal
is confirmatory. When value function is quasi-convex, this property is equivalent to prop-

26



erty 2 of Theorems 2 . and 3.. Therefore, the precision-frequency trade-off implies that the
incentive for confirmatory learning is self-enforcing.

3. Poisson vs. Gaussian
Thus far, I have ignored the possibility of Gaussian signals. In fact, Gaussian signals are

implicitly modeled in Equation (8).. Consider the optimization w.r.t. Gaussian signals:

sup
σ

σ2V2pµq ´ Cp´σ2H2pµqq

ùñ FOC : V2pµq ` λH2pµq “ 0

ðñ G2pµq “ 0 (11)

where λ “ C1p´σ2H2pµqq with Assumption 2-a . or λ “
ρ
c Vpµq with Assumption 2-b .. Com-

parison of Equations (8). and (11). shows that Equation (11). is exactly the limit of Equa-
tion (8) . when optimal posterior ν converges to prior µ. This result is intuitive since a
Gaussian signal can be approximated as a Poisson signal with very low precision and high
arrival rate.

The comparison of Gaussian and Poisson signals is effectively the comparison of a spe-
cial imprecise Poisson signal and other Poisson signals. Therefore, this trade-off is a special
case of the precision-frequency trade-off. Selecting a Gaussian signal is a corner solution
when the DM wants to sacrifice almost all precision for frequency—a slightly less patient
DM is willing to avoid any waiting and stop immediately, while a slightly more patient
DM is willing to wait for a more precise Poisson signal. Therefore, the Gaussian signal is
optimal only on the boundaries of the experimentation regions. Given this intuition, one
could imagine that the Gaussian signal is generically suboptimal except for special cases
where the precision-frequency trade-off is invariant. Since the preference between preci-
sion and frequency depends on the loss from delaying, the trade-off is invariant only when
the DM does not discount future payoffs. This intuition is confirmed in a no-discounting
special case in Section 7.1 ., as well as in the model of Hébert and Woodford (2016.).

4. Continuing vs. stopping
Consider the optimal stopping time. Theorems 2 . and 3. states that repeated jumps are

suboptimal. I prove by showing that repeated jumps can be improved by a direct jump.
Let ν be the optimal posterior for prior µ (see Figure 12.). Then, Equation (8). implies that
U0
J0

“
U1

0
J1
0

“ λpµq.
Hypothetically, imagine that at ν, it is optimal to continue, and the optimal posterior is

ν1. Then, U1
J1

“ λpνq, and λpνq ą λpµq by the confirmatory evidence property and value-

intensity monotonicity. I want to show that this result implies Upµ,ν1q

Jpµ,ν1q
“

U1`U1
1

J1`J1
1

ą λpµq,
i.e., jumping to posterior ν1 directly is strictly better than a two-step jump. By elementary
geometry, there exists α s.t U1

1 “ αU0 and J1
1 “ αJ0.21

. Therefore, the value to uncertain
reduction ratio Upµ,ν1q

Jpµ,ν1q
“

U1`αU0
J1`αJ0

is a weighted average of U0
J0

and U1
J1

, which is larger than
λpµq.

21See Figure 12.. U0
J0

“
U1

0
J1
0

“ λpµq implies U1
1

J1
1

“ λpµq, hence, U1
1

U0
“

J1
1

J0
. I assume the ratio to be α.
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Figure 12: Continuing vs. stopping

The intuition for the stopping rule is now clear. If we combine a two-step jump into a
direct jump, the flow utility gain is a weighted sum of that of the two jumps. The flow un-
certainty reduction is exactly the same weighted sum of that of the two jumps. Therefore,
the net value from a direct jump is a weighted average of the net values from each jump.
As a result, sequentially jumping to higher values is dominated by directly jumping to the
highest value.

Remark 1.
The intuition behind the value-intensity monotonicity is driven purely by convexity of

cost function h and is clearly independent of the formulation of the information measure.
The intuition behind the optimality of a Poisson signal over a Gaussian signal is the use
of the precision-frequency trade-off to compare a generic Poisson signal with an extremely
imprecise Poisson signal. The result does not depend on the exact form of I. I generalize the
optimality of a Poisson signal to the generic cost of information in Theorem 5 ., Section 7.2 ..
I also discuss confirmatory evidence and immediate stopping properties with generic cost
functions in Section 7.2..

The precision-frequency trade-off also does not depend on the size of the state space.
I confirm this result via a general characterization of optimal strategy with more states
(Theorem 9 .) in Appendix A.3 .. However, the binary states assumption is crucial for proving
the existence of the solution to the HJB equation. A constructive proof of the binary state
case based on ODE theory is introduced in Section 6.2.2 ..

Our discussion thus far does not rely on the exact form of λ. The qualitative properties
of all these trade-offs depend only on the monotonicity of λ in continuation value, which
is true with both Assumptions 2-a . and 2-b.. Therefore, when I introduce the sketch of the
proof, I discuss only Theorem 2., and the proof extends to Theorem 3 ..

6.2.2 Sketched proof of Theorem 2.

I prove Theorem 2 . by construction and verification. I conjecture that the optimal policy
for Equation (4) . takes the form of Theorem 2 .: a single confirmatory signal associated with
an immediate action. I first construct Vpµq and νpµq via three steps:

• Step 1. Determine µ˚. Since µ˚ P arg min V, except for the special case where V is strictly
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monotonic, µ˚ is essentially the unique belief at which V1pµ˚q “ 0, and searching for
posteriors on either side of µ˚ is equally good. The HJB equation implies:

sup
νďµ˚

Fpνq

1 `
ρ
c Jpµ˚, νq

“ sup
νěµ˚

Fpνq

1 `
ρ
c Jpµ˚, νq

Vpµ˚q and νpµ˚q are pinned down correspondingly. The special case occurs when F is
strictly monotonic. Take F1 ą 0 for example. µ˚ is the smallest belief that ρFpµq ď

sup
νěµ

´c Fpνq´Fpµq´F1pµqpν´µq

Jpµ,νq
, and vice versa for F1 ă 0.

• Step 2. Solve for the value function while holding the action fixed. Let a be the optimal
action for optimal posterior ν solved in step 1. Let Fapµq “ Eµrupa, xqs. Now, solve for
the value function given payoff Fapνq:

ρVpµq “ max
νěµ

´c
Fapνq ´ Vpµq ´ V1pµqpν ´ µq

Hpνq ´ Hpµq ´ H1pµqpν ´ µq

The primitives in the objective function are all sufficiently smooth in ν. Then, the first-
order condition w.r.t. ν yields a well-behaved ODE characterizing νpµq with initial con-
dition νpµ˚q. Therefore, we can solve for the optimal policy ν and calculate value Vpµq

accordingly for µ ě µ˚. Vpµq and νpµq for all µ ď µ˚ are solved by a symmetric process.

• Step 3. Update the value function w.r.t. all alternative actions and smoothly paste the
solved value function piece by piece. This step begins with solving the ODE defined in
step 2 at µ˚. Then, I extend the value function towards µ “ t0, 1u. Whenever I reach
a belief at which two actions yield the same payoff, I setup a new ODE with the new
action. This process continues until the calculated value function Vpµq smoothly pastes
to Fpµq. This procedure generates a quasi-convex value function (minimized at µ˚).

Solving the ODE characterizing νpµq directly implies monotonicity of νpµq in each con-
nected experimentation region. Now, I need to verify the optimality of the constructed
strategy. The verification takes three steps, which rule out repeated jumps, contradictory
evidence and Gaussian signals. The intuition for the suboptimality of these three alterna-
tive strategies is explained in Section 6.2 .. The formal proof is relegated to Appendix B.3 ..

7 Discussion
In this section, I discuss, in detail, the assumptions I make in the baseline model, which

can be categorized into three classes.
1. Economic assumptions:

• Discounting (positive ρ).
• Informativeness measure (Assumption 1.).
• Convexity of cost function (Assumption 2.).

2. Restrictive assumptions: Finite actions and binary states (Assumption 3.).
3. Technical assumptions: Smoothness and positiveness assumptions (Assumption 3 .).
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The economic assumptions are crucial for my results and deserve an in-depth discus-
sion. To illustrate the role of discounting, in Section 7.1 ., I discuss the case with no discount-
ing but a flow waiting cost, and show that without discounting, the trade-off between pre-
cision and frequency diminishes and the dynamics of information become irrelevant. In
Section 7.2., I generalize Assumption 1. to general information measures and show that a
Poisson signal almost always strictly dominates a Gaussian signal. I also explain that im-
mediate action and confirmatory learning properties are tightly tied to Assumption 1 .. To
illustrate the role of Assumption 2 ., I discuss the case where the cost function is linear in
Section 7.3 . and show that without convexity, the optimal strategy is static.

The restrictive assumptions do limit the generality of the model. However, relaxing
them does not fundamentally alter the key intuition, and the methodology generalizes.
The discussion of these assumptions is relegated to the appendix. In Appendix A.2 ., I relax
the finite action assumption and show that the problem with a continuum of actions can be
approximated well by adding actions. In Appendix A.3., I relax the binary state assumption.
Although the constructive proof of existence no longer works with the general state space, I
show that all the properties in Theorem 2. extend. The technical assumptions do not restrict
my model in a meaningful way and are therefore not discusses.

7.1 Linear delay cost
As is discussed in Section 6.2 ., discounting is the key factor driving all the dynamics.

With exponential discounting, the trade-off between the arrival frequency and precision
of signals changes according to the continuation value. A sensible conjecture is that if we
replace exponential discounting with linear discounting, i.e., the DM pays a fixed flow cost
of delay, the time distribution of the utility gain and information cost no longer matters to
the DM. In fact, this conjecture is correct. Consider the following problem:

Vpµq “ sup
xµtyPM,τ

E
„

Fpµτq ´ mτ ´

ż τ

0
CpItqdt

ȷ

(12)

Theorem 4. Given Assumptions 1. and 2., suppose Vpµq solves Equation (12).; then:

Vpµq “ sup
PP∆2pXq,λą0

EPrFpνqs ´
m ` Cpλq

λ
EPrHpµq ´ Hpνqs

Theorem 4. illustrates that solving Equation (12). is equivalent to solving a static rational
inattention problem, with m`Cpλq

λ being the marginal cost on the information measure (see
Caplin and Dean (2013.) and Matějka and McKay (2014.)). The optimal value function can
be obtained through various learning strategies. Assuming pP˚, λ˚q to be the solution to the
problem in Theorem 4., then all dynamic information acquisition strategies that eventually
implement P˚ (i.e., µ8 „ P˚) and incur flow cost λ˚ achieve the same utility level Vpµq.22

.

Note that in Equation (12) ., the utility depends on the decision time only through ex-
pected delay Erτs. Therefore, the previous analysis implies that all dynamic information

22This result is stated and proved formally in Zhong (2018b.).
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acquisition strategies that eventually implement P˚ and incur flow cost λ˚ have the same
expected delay. This result suggests that the cost structure specified by Assumptions 1 .

and 2. has the property that all learning strategies are equally fast on expectation, but they
might differ in terms of riskiness. The linear delay cost case is a knife-edge case where
the DM is risk neutral on the time dimension and, consequently, all learning strategies are
equally good.

When the DM discounts delayed payoffs, as is assumed in the main model, she is risk
loving on the time dimension; therefore, the DM prefers a riskier strategy. Intuitively, the
riskiest information acquisition strategy is a “greedy strategy” that maximizes the proba-
bility of early decision (at the cost of a high probability of long delays as the expected de-
lay is fixed). The confirmatory Poisson learning strategy exactly resembles such a greedy
strategy. The key property of the strategy is that all resources are used in verifying the con-
jectured state directly, and no intermediate step exists before a breakthrough. Alternative
strategies, such as Gaussian learning and contradictory Poisson learning all involve the ac-
cumulation of substantial intermediate evidence to conclude a success. The intermediate
evidence accelerates future learning and hence hedges the risk of decision time. Moreover,
the decision time is further dispersed by acquiring signals with decreasing frequency.

Equation (12) . is the dynamic learning foundation provided in Hébert and Woodford
(2016.) to justify Gaussian learning.23

. The analysis of Equation (12) . suggests that a linear
delay cost is a knife-edge case.

7.2 General information measure
Technically, Assumption 1 . helps throughout the entire analysis. The methodology of

concavifying ”the gross value function“ is possible only when the expected utility gain
and information measure take consistent forms. However, I want to show that one key
feature of the baseline model—the optimality of Poisson learning—does not depend on
this assumption. Let Jpµ, νq and κpµ, σq be bivariate functions. Consider the following
functional equation:

ρVpµq “ max
"

ρFpµq, sup
p,ν,σ2

p
`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

`
1
2

σ2V2pµq

*

(13)

s.t. pJpµ, νq ` κpµ, σq ď c

The objective function of Equation (13) . is exactly the same as that of Equation (4) . with
Assumption 2-a .. I assume that the DM controls a jump-diffusion belief process. The gain
from information is the same as before. I assume Jpµ, νq to be an arbitrary function that is
both prior and posterior dependent. The cost of the diffusion signal is κpµ, σq. I impose the
following assumptions on Jpµ, νq and κpµ, σq.

Assumption 4.

23In Hébert and Woodford (2016.), informativeness measures that are more general than Assumption 1. are also considered in the
Appendix.
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1. J P Cp4qp0, 1q2.
2. @µ P p0, 1q, Jpµ, µq “ J1

νpµ, µq “ 0, and J2
ννpµ, µq ą 0.

3. κpµ, σq “ 1
2 σ2 J2

ννpµ, µq.

First, J is assumed to be sufficiently smooth to eliminate technical difficulties. Jpµ, µq “

0 is the implication of “an uninformative Poisson signal is free”.24
. J1

νpµ, µq “ 0 and J2
ννpµ, µq ą

0 are implications of “any informative Poisson signal is costly”. Within this continuous
time framework, these assumptions are imposed on J without loss of generality. The cru-
cial assumption is the third condition: κpµ, σq “ 1

2 σ2 J2
ννpµ, µq. This assumption states that

the cost functional is “continuous” in the space of the signal structures. Consider a Poisson
signal pp, νq. When ν Ñ µ, the utility gain from learning this signal is:

p
`

Vpνq ´ Vpµq ´ V1pµqpν ´ µq
˘

“ p
ˆ

1
2

V2pµqpν ´ µq2 ` O|ν ´ µ|3
˙

Therefore, pp, νq approximates a Gaussian signal with flow variance ppν ´ µq2. Meanwhile,
the cost of this signal is:

pJpµ, νq “p
ˆ

Jpµ, µq ` J1
νpµ, µqpν ´ µq `

1
2

J2
ννpµ, µqpν ´ µq2 ` Op|ν ´ µ|3q

˙

“
1
2

ppν ´ µq2 J2
ννpµ, µq ` pOp|ν ´ µ|3q

Hence, if the cost of a Gaussian signal is consistent with the cost of imprecise Poisson
signals in the limit, κpµ, σq “ 1

2 σ2 J2
ννpµ, µq.

Theorem 5. Given Assumption 4 ., suppose V P Cp3qp0, 1q solves Equation (13)., and let Lpµq be
defined by:

Lpµq “
ρ

c
J2
ννpµ, µq2 ´

2Jp3q
ννµpµ, µq2 ` Jp3q

νννpµ, µqJp3q
ννµpµ, µq

J2
ννpµ, µq

` Jp4q
νννµpµ, µq ` Jp4q

ννµµpµ, µq

Then in the open region: D “

!

µ
ˇ

ˇ

ˇ
Vpµq ą Fpµq and Lpµq ‰ 0

)

, the set of µ s.t.:

ρVpµq “ c
V2pµq

J2
ννpµ, µq

is of zero measure.

The interpretation of Theorem 5 . is that a Poisson signal is almost always strictly supe-
rior to the diffusion signal. In the experimentation region where Lpµq ‰ 0, Vpµq can be
achieved by a diffusion signal only at a zero measure of points. Lpµq “ 0 is a partial differ-
ential equation on Jpµ, νq in the diagonal of space. Therefore, the set of points that Lpµq “ 0
could contain an interval only when Jpµ, νq is a local solution to the PDE. The solution to a

24In this setup, Jpµ, µq “ 0 is WLOG. If an uninformative signal has a strictly positive cost, we can always shift the capacity constraint
c to normalize Jpµ, µq to 0.

32



specific PDE is a non-generic set in the set of all functions satisfying Assumption 4 .. In this
sense, for an arbitrary information measure Jpµ, νq, the optimal policy function contains a
diffusion signal almost nowhere.

A trivial sufficient condition for Lpµq ‰ 0 is Assumption 1.. Assumption 1. implies that
Jp2q
νν pµ, νq is invariant in µ. In this case Lpµq “

ρ
c J2

ννpµ, µq2 ą 0 for certain. The first corollary
of Theorem 5 . characterizes D when J is almost locally posterior separable. @ f P Cp1qp0, 1q2,
define a norm ∥ f p¨q∥δ “ supxPrδ,1´δs

␣

| f px, xq|, ∥∇ f px, xq∥L2

(

.

Corollary 5.1. Given Assumption 4 ., suppose V P Cp3qp0, 1q solves Equation (13).; then, for any
δ ą 0, there exists ε s.t. if

∥∥∥Jp3q
ννµ

∥∥∥
δ

ď ε, then in the interval rδ, 1 ´ δs the set of µ s.t.:

ρVpµq “ c
V2pµq

J2
ννpµ, µq

is of zero measure.

The condition in Corollary 5.1. states that J2
ννpµ, νq is approximately constant over µ for

ν close to µ. This result verifies my analysis in Section 6.2.1 . that the comparison of Poisson
and Gaussian signals relies only on the local properties of J. Another simple sufficient
condition for Lpµq ‰ 0 is high impatience or low learning capacity.

Corollary 5.2. Given Assumption 4., suppose V P Cp3qp0, 1q solves Equation (13).. Then, for any
δ ą 0, there exists ∆ s.t. if ρ

c ě ∆, then in the interval rδ, 1 ´ δs, the set of µ s.t.:

ρVpµq “ c
V2pµq

J2
ννpµ, µq

is of zero measure.

Corollaries 5.1 . and 5.2. complement the discussion in Section 7.1 . and illustrate the com-
plete picture of how the DM’s incentives pin down the optimal learning dynamics. First,
when Assumption 1. holds, Theorem 4. implies that the cost structure does not favor any
learning strategy. Any positive discount rate gives the DM incentive to choose a Poisson
signal. All learning strategies, including Gaussian learning, become equally optimal only
when time preference is risk neutral. Second, when Assumption 1 . is violated by a small
amount, then even though the cost structure might favor a Gaussian signal, the incentive
is dominated by discounting. Third, when the cost structure provides arbitrarily strong
incentive for a Gaussian signal, sufficiently high discount rate overweights the incentive.

Although Poisson learning is generally optimal, immediate action and confirmatory evi-
dence are implications of Assumption 1 .. Imagine a case in which high-precision signals are
relatively inexpansive (e.g., Jpµ, νq is truncated both below and above). Then, when the
prior is close to the boundary of the stopping region, seeking confirmatory evidence (with
low precision and high frequency) results in very high cost, whereas seeking for a precise
contradictory signal is inexpensive. Searching for a contradictory signal causes the belief
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to drift rapidly toward the more likely state, which effectively enables quick confirmation.
Therefore, the contradictory signal becomes optimal. In fact, this example has the same
intuition as the findings in Che and Mierendorff (2016.). In their setup, the DM allocates
limited attention to two exogenous Poisson signals, each revealing a state. When the DM is
more uncertain, their model predicts that the DM acquires a confirmatory signal. However,
near the stopping boundary, their model predicts a contradictory signal, as the contradic-
tory signal approximates an infeasible confirmatory signal with low precision and high
frequency.

On the other hand, consider the immediate action property. Imagine a case in which
low-precision signals are inexpensive. Then, breaking a long jump into multiple short
jumps may be profitable. The immediate action property is called the single experiment
property (SEP) in Che and Mierendorff (2016.). In their paper, SEP is also shown not to be a
robust property in a generic Poisson learning model.

7.3 Linear flow cost
In this subsection, I study the case where the flow cost CpIq is a linear function. As-

sumption 2 . is replaced by the following assumption:

Assumption 21 (Linear flow cost). Function h is defined by CpIq “ λI, λ ą 0.

The convexity of CpIq in Assumption 2 . gives the DM incentive to smooth the acquisition
of information. When CpIq is a linear function, the optimal value is achieved by acquiring
all the information and immediately making a decision.

Theorem 6. Given Assumptions 1. and 21
., suppose Vpµq solves Equation (1)., then:

Vpµq “ sup
PP∆2pXq

EPrFpνqs ´ λEPrHpµq ´ Hpνqs (14)

The intuition for this result is simple. At any instant in time, suppose that the optimal
decision is to continue learning for a positive amount of time. The value is the discounted
future value at the next instant of time pt ` dtq less the flow cost of information. Now,
consider moving the learning strategy at t ` dt to the current period. Then, both the future
value at t ` dt and the cost are discounted by dt less. If the net utility gain from learning at
t ` dt is nonnegative, then this operation increases the current utility by reducing the wait-
ing time.25

. If the net utility gain from learning at t ` dt is negative, then stopping learning
immediately increases current utility. This operation can always be applied recursively and
strictly improves the strategy until all information is acquired at period 0.26

.

In fact, given Assumptions 1 . and 2-b., Equation (1) . is a variant of the more general model
in Steiner, Stewart, and Matějka (2017.), which considers a varying state and repeated de-
cision making. With linear cost function CpIq, no motivation for smoothing the learning

25This step utilizes Assumption 21
., which implies that the cost of a combined signal structure is the sum of the cost of each of them.

26Strictly speaking, an immediate learning strategy is not admissible because its belief path is not cadlag. However, there always
exists a way to implement a signal structure in an arbitrarily short period of time, and the payoff approximates the immediate learning
payoff.
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behavior exists. The dynamics in Steiner, Stewart, and Matějka (2017.) are a result of the
intertemporal dependence of decision problems.

8 Applications
8.1 Choice accuracy and response time

The two-choice sequential decision making problem has been extensively studied in
the psychological and behavioral studies. One of the key objective is to explain the data on
choice accuracy and response time from experiments. The drift-diffusion model (DDM) has
been the most popular theoretical model for these decision problems, for the reason that
DDM is very tractable and fits the accuracy/ response time data well. However, accounting
for the joint distribution of choice accuracy and response time remains a challenge for DDM.
In this section, I apply my model to predict a systematic feature in the data: the crossover of
response time-accuracy relationship.

The crossover happens when the difficulty of decision problem varies: the error re-
sponses are faster than the correct responses when the task is easy; the error responses are
slower than the correct responses when the task is hard (see Luce et al. (1986.), Ratcliff, Van
Zandt, and McKoon (1999.)). First, I illustrate the crossover of time-accuracy relationship
in Example 5..

Example 5. Consider the same decision problem as in Example 1.. Fpµq “ maxt1 ´ 2µ, 2µ ´ 1u

and ρ “ 1. Assume prior belief µ0 “ 0.5 and let H0pµq be the entropy function. Define un-
certainty measure Hpµq as:

Hpµq “

$

’

’

’

&

’

’

’

%

H0pµq if µ P r0.5, 0.65s

H0pµq ´ |µ ´ 0.5|
3 if µ ă 0.5

H0pµq ´ 4|µ ´ 0.65|
3 if µ ą 0.65

Hpµq is an asymmetric uncertainty measure, and Hpµq is slightly more concave than H0

when µ ă 0.5 or µ ą 0.65. The different difficulty levels are modeled as different capacity
constraints on ´LHpµtq, the higher the capacity constraint is, the easier the decision prob-
lem is. I study the joint distribution of choice and decision time conditional on the true
state being r (µ “ 1). Figure 13 . depicts the latency-probability (LP) and quantile-probability
(QP) plots. The horizontal coordinates of the points to the right of p “ 0.5 shows the choice
probability of the action R (the correct choice). Each such point has a corresponding point
to the left of p “ 0.5 showing the remaining probability of the action L (the error). The
vertical coordinates of all points show the response time measured by mean (in LP plot) or
by quantiles (in QP plot).

The crossover of time-accuracy relationship is illustrated by the differently colored
points. The red points are data points where the errors happen earlier than the correct
responses (measured by both mean or quantiles). They are simulated with high capacity,
thus are of higher accuracy in general. On the contrary, the blue points are data points
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Left panel: The latency-probability function (the thin line) and the data points simulated from 8 difficulty
levels. Right panel: The quantile-probability functions (the thin lines, from bottom to top: 0.1, 0.3, 0.5, 0.7,
0.9 quantile) and the data points simulated from 8 difficulty levels. The correct responses are to the right of
0.5, the errors are to the left of 0.5. Red points: the errors have shorter response times. Blue points: the errors
have longer response time.

Figure 13: LP and QP plots

where the errors happen later than the correct responses. They are simulated with low
capacity, and of low accuracy in general. In fact, Figure 13 . is qualitatively the same as the
LP and QP plots documented in Ratcliff and Rouder (1998.) and Ratcliff, Van Zandt, and
McKoon (1999.).
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Figure 14: The critical beliefs of different difficulty levels

The main reason for the crossover is explained in Figure 14 .. When the capacity is low
(the task difficulty is high), the optimal size of belief jump is small. By construction of
Hpµq, when the posterior belief is not far away from µ0, learning the state L is more costly
than learning the state R. As a result, the critical belief µ˚ at which searching for both
direction is indifferent is biased toward left. Since µ0 ą µ˚, the correct responses are font-
loaded. Applying the same intuition, when the capacity is high, µ0 ă µ˚ and the errors are
font-loaded.

Applying the idea from Example 5 ., creating a crossover of µ˚ and µ0 is necessary for
creating a crossover of the response time-accuracy relationship.
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Proposition 1. Suppose |A| “ 2, Assumption 2-a . is satisfied. H0pµq and Fpµq are symmetric
around µ0 “ 0.5 and satisfy Assumption 3 .. @ partition of R` : t0, c1, ¨ ¨ ¨ , ck, 8u, there exists
uncertainty measure Hpµq satisfying Assumption 3. such that:

1. When c P tcku, µ˚ “ µ0, and the optimal strategy at µ0 is the sames as that with H0pµq.
2. When c increases on R`, the sign of µ˚ ´ µ0 alternates on each partition.

Proposition 1. states that the flexible learning model can fit an arbitrary number of
crossovers of the response time-accuracy relationship at given difficulty levels. The stan-
dard DDM predicts identical decision time distribution for the correct responses and the er-
rors (Ratcliff (1981.)). To accommodate a non-trivial speed-accuracy trade-off/complementarity,
DDM with varying boundary (Cisek, Puskas, and El-Murr (2009.)) or DDM with random
starting point and drift (Ratcliff and Rouder (1998.)) are proposed, and there are a lot of
debate about which variation works better. Fudenberg, Strack, and Strzalecki (2018.) shows
that the collapsing (expanding) boundary maps exactly to the complementarity (trade-off),
and in an uncertain-difference DDM with endogenous stopping, decision boundary col-
lapses to zero asymptotically and accuracy declines over time. These analyses suggest that
DDM is able to fit the crossover, however at the cost of adding trial dependent parameters.
Meanwhile, it remains to be disentangled which set of parameters in DDM are task specific
and which set are subject specific. On the contrary, the flexible learning model predicts
the crossovers clearly with varying only a task difficulty parameter, while keeping the task
payoffs and the learning technology constant across trials.

8.2 Radical innovation
An important question in the study of innovation is to understand what characteristics

of a firm foster innovation. The second application relates the radicality of firm’s R&D
and innovation to its safe option. I consider two firms: an incumbent (I) and an entrant (E).
They face the identical set of risky new products. The only difference between the two
firms is that the incumbent has a better existing safe product. I am interested in which
firm innovates more radically in the R&D process. Intuitively, there are two competing
incentives:

1. Impatience effect: The incumbent has an overall higher continuation value than the en-
trant. Therefore, by the value-precision monotonicity, the more impatient incumbent
should prefer the frequency of signal to the precision of signal. So the impatience
effect suggests that the entrant innovates more radically.

2. Threshold effect: The incumbent has a better outside option. Therefore, it has a higher
threshold of belief for accepting a risky option. The relative value of a precise signal
to an imprecise signal is higher for the incumbent. Therefore, the threshold effect
suggests that the incumbent innovates more radically.

I model the problem using the following setup. There is one safe product Ps and K risky
products tP1, ¨ ¨ ¨ , PKu. The state is x P tG, Bu. x “ G means the new technology is good,

37



and the new products are better than the safe product: @i, k uipPk, Gq ą uipPs, Gq. When
x “ B, the new technology fails, and @i, k uipPk, Bq ă uipPs, Bq. @x, k, uIpPk, xq “ uEpPk, xq

and uIpPsq ą uEpPsq. The two firms share the same Hpµq function and capacity constraint
c.27

. Let νipµq be the two firms’ optimal strategies. I define that a firm is looking for more
radical innovation given belief µ iff |νipµq ´ µ| ą |ν´ipµq ´ µ|, namely firm i is searching for
a more precise Poisson signal.

Example 6. I calculate a simple example. There is only one risky product and K “ 1. The
incumbent’s safe option pays uIpPs, xq “ 0.3 and the entrant’s safe option pays uEpPs, xq “

0.15. The risky option pays 1 when x “ G and ´1 when x “ B. H is the standard entropy
function, ρ “ 1, c “ 0.3.
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Figure 15: Value function
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Figure 16: Policy function

Figure 15 . depicts the value functions (red curve: incumbent; blue curve: entrant). The
two dashed lines are the payoffs of the corresponding safe options. Figure 16 . depicts the
policy functions (red curve: incumbent; blue curve: entrant). There is clearly a crossover of
the policy functions. In the union of the two firm’s experimentation regions, when µ ă µc

the entrant seeks more radical innovation, when µ ą µc the incumbent seeks more radical
innovation.

The result of Example 6 . can be summarized by the following proposition. Suppose
K “ 1, let E0 be the union of the two firms’ experimentation regions.

Proposition 2. There exists µc s.t. @µ P E0, µ ą µc ùñ |νIpµq ´ µ| ą |νEpµq ´ µ| and
µ ă µc ùñ |νIpµq ´ µ| ă |νEpµq ´ µ|. Moreover, E0

Ş

p0, µcq ‰ H and E0
Ş

pµc, 1q ‰ H.

Proposition 2 . first states that there exist a threshold belief that the incumbent looks
for more radical innovation if (and only if) the belief is higher than the threshold. More-
over, there exist none degenerate regions that either firm is innovating more radically than
the other. Therefore, the order of radically of the two firms’ innovations switches exactly
once when the belief changes. Here is the intuition for the crossover. The entrant’s value
function is always steeper than the incumbent’s, hence, the difference in the continuation

27It is straightforward that if the cost of R&D is flexible, the incumbent invests (strictly) more as a direct implication of the value-
intensity monotonicity. So I fix the capacity and focus on the choice of signal precision. It is not hard to extend the results to the flexible
cost case.
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value is decreasing in the belief. As a result, the impatience effect is diminishing when
µ increases. On the other hand, when µ is higher, it is ex ante more likely that the risky
arm will be chosen. As a result, the threshold effect outweighs the impatience effect when
µ increases. Therefore, when µ increases, the incumbent is increasingly favoring a more
precise signal, comparing to the entrant. Thus, there is a crossover.

Proposition 2. extends to multiple risky products as well. When K ą 1, the experimen-
tation regions are no longer simple intervals. Instead, they are unions of open intervals.
In any experimentation interval where V never touches Fs, the two firms use the identical
strategy (since the outside option is never triggered). So we only consider the leftmost in-
terval in each firm’s experimentation region. Let E0 be the union of the two firms’ leftmost
intervals of the experimentation region.

Proposition 3. There exists µc s.t. @µ P E0, µ ą µc ùñ |νIpµq ´ µ| ą |νEpµq ´ µ| and
µ ă µc ùñ |νIpµq ´ µ| ă |νEpµq ´ µ|. Moreover, E0

Ş

p0, µcq ‰ H and E0
Ş

pµc, 1q ‰ H.

9 Conclusion
This paper provides a dynamic information acquisition framework which allows fully

general design of signal processes, and characterizes the optimal information acquisition
strategy. My first contribution is an optimization foundation for a family of simple infor-
mation generating processes: for an information acquisition problem with flexible design
of information, the optimal information structure causes beliefs to follow a jump-diffusion
process. Second, I characterize the optimal policy: seeking a Poisson signal whose arrival
confirms the prior belief is optimal. The arrival of the signal leads to an immediate action.
The absence of the signal is followed by continued learning with increasing precision and
decreasing frequency.
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A Further discussions
In Appendix A ., I first discuss the convergence of discrete-time optimal policy in Appendix A.1.. It is shown that

the discrete-time optimal policy’s support as a correspondence of prior belief converges to that of the continuous-
time optimal policy. Then I complete the discussion in Section 7. by generalizing each of the restrictive assumptions.
Appendix A.2 . generalizes the finite actions assumption and shows that the solution of a problem with infinite ac-
tions can be approximated by solutions to a series of problems with increasing number of actions. Appendix A.3 .

generalizes the binary states assumption in Assumption 3 . and shows that the properties of optimal policy in The-
orem 2 . all extend in a problem with general finite state space. The proofs of theorems stated in this section are
relegated to Section S5 ..

A.1 Convergence of policy
By Theorems 2 . and 3., the optimal policy solving Equation (4) . is essentially unique in the jump-diffusion class.

However, Theorem 1. does not rule out other possible optimal policies for the original stochastic control problem
Equation (1) .. To get behavior predictions from my model, additional refinement of optimal policy of Equation (1) . is
necessary. In this discussion, I show that the discrete-time optimal policy of Equation (6) . converges to the solutions
defined in Theorems 2. and 3.. I define a modified version of Lévy distance that characterizes the difference between
two policy correspondences:

Definition 1 (Lévy metric). Let F,G: r0,1sÑ2r0,1s be two correspondences. The Lévy metric dL pF,Gq is defined as:

dL pF,Gq:“inf
"

εą0
ˇ

ˇ

ˇ

ˇ

inf
|y´x|ďε

dHpFpxq,Gpyqqďε,@xPr0,1s

*

where dH is the standard Hausdorff metric on R.

dL pF,Gq“a means that @µPr0,1s, @yPFpµq, there exists some µ1 in a-neighbourhood of µ such that y is in the
a-neighbourhood of Gpµ1q. When G is continuous at µ, and a is sufficiently small, it simply states that the images of
F and G at µ are close to each other (measured by dH). If dL pF,Gq“0 then F and G are identical.

Theorem 7 (Convergence of policy). Given either Assumptions 1., 2-a. and 3. or Assumptions 1., 2-b. and 3., let νpµq be the
policy correspondence solving Equation (4).. Let Npµq“tµu

Ť

νpµq. Let Ndtpµq be the support of optimal posteriors solving
Equation (6).. Then:

lim
dtÑ0

dL pN,Ndtq“0

Theorem 7 . states that the graph of policy function of discrete-time problem Equation (5’) . converges to the graph
of the continuous solution defined in Theorems 2. and 3.. The convergence is illustrated in Figure 17.. I calculate
the discrete-time policy function using parameters in Example 2 .. The red, blue and green lines represent the set
of optimal posteriors as functions of prior when Vdt ąF with dt“10´5,10´3 and 10´2. As is shown in the figure,
when dtÑ0, one of optimal posterior is converging to the prior, and the other optimal posterior is converging to the
continuous time solution. The posterior converging to prior captures a drift term and the other posterior captures a
Poisson jump in the limit.
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Figure 17: Convergence of policy function
A.2 Infinite action space

In this section, I extend my model to accommodate infinite actions (or even continuum of actions) in the un-
derlying decision problem, i.e. |A|“8. Mathematically, the difference is that the value from immediate action
Fpµq“supaPA Erupa,xqs is no-longer a piecewise linear function. There are several technical problems arising from a
continuum of actions. For example whether the supremum is indeed achieved and whether F has bounded subdif-
ferentials. I impose the following assumption to rule out these technical issues:

Assumption 5. Fpµq“maxaPA Erupa,xqs has bounded subdifferentials.

Assumption 5 . rules out two cases. The first case is that the supremum is not achievable. The second case is that
some optimal action being infinitely risky: the optimal action with belief approaching x“0 has utility approaching
´8 at state 1 (and similar case with states swapped). A sufficient condition for Assumption 5 . is:

Assumption 51. A is a compact set. @xPX, upa,xqPCpAq
Ş

TBpAq.

It is useful to notice that the proof of Theorem 1. does not rely on the fact that Fpµqis piecewise linear. Actually
the only necessary properties of Fpµq are boundedness and continuity in Lemma 2 ., which prove the existence of
solution to discrete time functional equation Equation (S.1).. Therefore Assumption 5. guarantees that Lemma 2.

and Lemma S.8 . still hold when there is a continuum of actions. With Assumption 5 ., the problem with continuum
of actions can be approximated well by a sequence of problems with discrete actions. I first define the following
notation: @F satisfying Assumption 5 ., VdtpFq is the unique solution of Equation (6) . and VpFq“limdtÑ0VdtpFq28

..

Lemma A.1. Given Assumption A . and Assumptions 2 . and 5., V is a Lipschitz continuous functional under L8 norm.

Lemma A.1. implies that a problem with continuum of actions can be approximated well by a sequence of prob-
lems with discrete actions in the sense of value function convergence. Next, I push the convergence criteria further
to the convergence of policy function.

Theorem 8. Given Assumptions 1., 2-a., 3. and 5., let tFnu be a set of piecewise linear functions on [0,1] satisfying:
1. ∥Fn´F∥8Ñ0;
2. @µPr0,1s, limF1

npµq“F1pµq.
Then |VpFq´VpFnq|Ñ0 and:

1. VpFq solves Equation (4)..
2. @µ s.t. VpµqąFpµq, if each νn is maximizer of VpFnq and ν“limnÑ8 νn exists, then ν is the optimal posterior in

Equation (4). at µ.

Theorem 8 . states that to solve the problem with a continuum of actions, one can simply use both value function
and policy function from problems with finite actions to approximate. As long as the immediate action values Fn
converge uniformly in value and pointwise in first derivative, the optimal value functions have a uniform limit. The
limit solves Equation (4). and the optimal policy function is the pointwise limit of policy functions from the finite
action problems.

Figure 18 . illustrates this approximation process. On both panels, only µPr0.5,1s is plotted (policy and value on
r0,0.5s are symmetric). On the right panel, the thin black curve shows a smooth Fpµq associated with continuum of

28The existence of limit is guaranteed by monotonic convergence theorem.
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Left panel shows the optimal policy function of discrete actions (red) and continuous actions
(blue). The dashed line is ν“µ.
Right panel shows the optimal value function. The thin black line is value from immediate
action Fpµq, the dashed lines are discrete approximations of the continuous function F.

Figure 18: Approximation of a continuum of actions
actions. Since optimal policy only utilizes a subset of actions, I approximate the smooth function only locally as the
upper envelope of dashed lines (each represents one action). The optimal value function with continuous actions is
the blue curve and the discrete action approximation is the red curve. The left panel shows the approximation of
policy function. The blue smooth curve is the optimal policy of the continuous action problem and the red curve
with breaks is the optimal policy of the discrete action problem.

To approximate a smooth Fpµq, one can simply add more and more actions to the finite action problem and use
F’s supporting hyper planes to approximate it. Then the optimal policy functions have more and more breaks as
optimal policys involve more frequent jumps among actions. In the limit, as number of breaks grows to infinity, the
size of breaks shrinks to zero and approaches a continuous policy function.

A.3 General state space
In this section, I extend the size of state space. The constructive proof for Theorems 2 . and 3. relies on the ODE

theory to guarantee existence of solution. With a larger state space, construction of value function relies on existence
of PDE. There is no general theory ensuring existence of solution.29

. Nevertheless, the verification part still works.
In fact, the discussion in Section 6.2. seems to extend to higher dimensional spaces in a natural way. I formalize a
partial characterization theorem in the section.

Let n“|X|. Consider value function Vpµq on ∆pXq. Let VpµqPC∆pXq and Cp2q smooth when VpµqąFpµq. Con-
sider the following HJB equation:

ρVpµq“max
"

ρFpµq,max
ν,p,σ

ppVpνq´Vpµq´∇Vpµq¨pν´µqq`σTHVpµqσ

*

(15)

s.t. ´ppHpνq´Hpµq´∇Hpµq¨pν´µqq´σTHHpµqσďc

where νP∆psupppµqq, pP∆I and σPR|supppµq|. Equation (15) . comes from applying Assumption 2-a . and smoothness
condition to Equation (4) .. 30

. I only discuss Assumption 2-a . because the intuition is the same and similar proof
methodology can be applied to Assumption 2-b. to show an analog result.

Theorem 9. Let E“tµP∆pXq|VpµqąFpµqu be the experimentation region. Suppose there exists Cp2q smooth Vpµq on E
solving Equation (15)., then D policy function ν :E ÞÑ∆pXq s.t.

ρVpµq“´c
Fpνpµqq´Vpµq´∇Vpµqpνpµq´µq

Hpνpµqq´Hpµq´∇Hpµqpνpµq´µq

and ν satisfies the following properties:

1. Poisson learning: ρVpµqěsup
σ

´c σTHVpµqσ

σTHHpµqσ
.

2. Direction: Dνpµq´µVpµqě0.
3. Precision: Dµ´νpµqνpµq¨HHpνqpν´µqď0.

29The maximization problem can be translated into a PDE system. What is problematic is the boundary conditions. In fact, to solve for Vpµq searching over
one action, I need to use the value function at regions where DM is indifferent between two actions as a boundary condition. That boundary condition is
unknown, in contrast to the one dimensional analog Vpµ˚q which can be easily calculated.

30HHpµq is defined on boundary where Vpµq“Fpµq as continuous extension of interior Hessian’s by Kirszbraun theorem.
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4. Stopping time: νpµqPEC.
There exists a nowhere dense set K s.t. strict inequality holds on EzK in property 1,3 and 4.

Theorem 9 . states that if a solution Vpµq to Equation (15) . exists, then Vpµq can be solved with only Poisson signals.
The four properties are extensions to the four properties in Theorem 2 . respectively. Property 1 and 4 are exactly
the suboptimality of Gaussian signal and the immediate action property. Property 2 and 3 are weaker than the
corresponding properties in Theorem 2 .. Property 2 is the extension to the confirmatory signal property. It states that
optimal direction of jump is in the myopic direction that value function increases. Property 3 is the extension to the
increasing precision property. Dµ´ννpµq is the direction ν is moving when µ is moving against ν. HHpνqpν´µq is the
direction pν´µq distorted by a negative definite matrix HHpνq. In a special case when Hpµq“∥µ´µ0∥2

2, HHpνqpν´µq

is in the same direction as pµ´νq, which implies (together with property 3) that the distance between µ and ν
is increasing when µ is drifting against ν. In a generic case, this property does not directly predict how ∥ν´µ∥
changes.

Figure 19: Value function with 3 states

Figures 19 . and 20. illustrate Theorem 9 . in a numerical example. There are three states and three actions. Belief
space is a two-dimensional simplex. Fpµq is assumed to be a centrally symmetric function on belief space (Figure 19 .-
(a)). Value function Vpµq is the meshed manifold in Figure 19 .-(c). Each blue curve in Figure 19 .-(b) shows a drifting
path of posterior beliefs. Take a prior in lower right region. The optimal policy is to search for one posterior (red
points in lower right corner of Figure 20 .-(c)), and posterior belief conditional on receiving no signal drifts along the
curve in arrowed direction as in Figure 20.-(c). Once belief reaches the boundary, optimal policy becomes searching
for two posteriors in a balanced way and posterior drifts towards center of belief space (see Figure 20 .-(b), arrowed
blue curve is belief trajectory and dashed arrows points to optimal posterior). Finally, if belief reaches center, optimal
policy is to search for three posteriors in a balanced way (Figure 20.-(a)).
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Dashed arrows start from priors and point to optimal posteriors. Blue arrows represents drift of posrtior beliefs conditional on
no signal arrival. Left panel shows a point at which a balanced search over three posteriors is optimal. MIddle panel shows a
curve along which searching over two posteriors is optimal. Right panel shows curves along witch searching over one unique
posterior is optimal.

Figure 20: Policy function with 3 states

A.4 Discrete-time information acquisition
In this section, I introduce a general discrete-time information acquisition problem. In the general problem,

information is explicitly modeled as state-dependent signal process, and the cost of information is defined using a
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posterior separable function. I show that the discrete-time auxiliary problem Equation (5) . introduced in Section 5.1 . is
a reduced form of the general problem. In Appendix A.4.1., I axiomatize posterior separability.

Decision problem: Time is discrete tPN. Period length is dtą0. The other primitives pA,X,u,µ,ρq are the same
as in Section 3 .. The Bernoulli utility of action-state pair pa,xq in period t is e´ρdt¨tupa,xq.

Strategy: a strategy is a triplet pS t,τ,Atq. S t is a random process correlated with the state, called an information
structure. The realization of S t is called a signal history. The signal history up to period t is denoted by S t. Each S t

specifies the signal structure acquired in period t conditional on all histories up to period t.31
. τ is a random variable

whose realization is in N. τ specifies a random decision time. The action choice At is a random process whose
realization is in A. Each At specifies the joint distribution of action choice and state conditional on making decision
in period t. Let the marginal distribution of the state be denoted by random variable X .

Cost of information: Define CdtpIq“C
´

I
dt

¯

dt. The per-period cost of information is CdtpIpS t;X |S t´1,1τďtqq,32
.

where the measure of signal informativeness I is defined as:
Assumption A. IpS ;X |µq“EsrHpµq´Hpνp¨|sqqs, where ν is the posterior belief about x according to Bayes rule.

It is not difficult to see that IpS t;X |S t´1,1τďtq is exactly the finite difference formulation of ´LtHpµtqdt. Assump-
tion A . is called (uniform) posterior separability in the literature. If H is the standard entropy function, then I is the
mutual information between signal S t and unknown state X (conditional on history).

Dynamic optimization: The dynamic optimization problem of the DM is:

Vdtpµq“ sup
S t,τ,At

E

«

e´ρdt¨τupAτ,X q´

8
ÿ

t“0

e´ρdt¨tCdt

´

I
´

S t;X |S t´1,1τďt

¯¯

ff

(5.’)

s.t.

#

X ÑS t´1Ñ1τďt

X ÑS t´1ÑAt conditional on τ“t
The two constraints in Equation (5’) . are called the information processing constraints. Notation X ÑSÑT means
X |ù T |S . The first constraint states that signal history prior to action time is sufficient for action time. The second
constraint states that signal history prior to period t is sufficient for action at time t.33

. They are extensions to the
standard measurability requirement, allowing randomness unrelated to unknown state to be added.

Equation (5’) . is more general than Equation (5) . in that it explicitly models the fully flexible choice of information.
Take any strategy in Equation (5) ., if we consider belief as direct signal, then it resembles a special kind of strategy
which is feasible in Equation (5’) .. These special strategies involve no irrelevant randomness and unused information,
which are permitted in Equation (5’) .. In fact, Equation (5’) . is more general than Equation (5) . only in permitting
irrelevant randomness and unused information. It is quite intuitive that allowing those more general strategies
doesn’t improve utility at all. In fact, it is proved in Lemmas S.4. and S.5. that Vdt defined by Equation (5’). is identical
to that defined by Equation (5)., for which reason I do not differentiate the notation.

Given the discussion above, Equation (5’) . serves as a formal justification for using a belief based approached to
model dynamic information acquisition. Moreover, it also relates Assumption 1. to posterior separable function — a
measure for information widely used in rational inattention problems. In addition to existing attempts to axiomatize
or microfound Assumption A., I provide a different axiomitization based on sequential information decomposition
in Appendix A.4.1..

A.4.1 Axiom for Assumption A .

Theorem 10. IpS ;X |µq is a non-negative function of information structure and prior belief. I satisfies Assumption A . if and
only if the following axiom holds:
Axiom: @µ, @ information structure S1 and information structure S2|S1 whose distribution depends on realization of S1:

IppS1,S2q;X |µq“ IpS1;X |µq`ErIpS2;X |S1,µqs

Theorem 10 . states that the chain rule (the name for a key property of mutual information in Cover and Thomas
(2012.)) is not only a necessary condition but also a sufficient condition for posterior separability. Given any exper-
iment, we can divide it into multiple stages of “smaller“ experiments. This axiom requires that the total informa-
tiveness of this sequence of small experiments is ”path-independent“: it always equals to the informativeness of the
compound experiment.

31S´1 is defined as a degenerate random variable that induces belief same as prior belief µ for notation simplicity.
321τďt is an indicator whether learning is already stopped up to current period, which is known to the DM. So pS t´1,1T ďtq summarizes all knowledge of

the DM.
33Notice that in every period, the information in current period has not been acquired yet. So decision can only be taken based on the information already

acquired in the past. As a result in the information processing constraints information is advanced by one period. This within period timing issue does not
make a difference when going to continuous-time limit.
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B Omitted proofs
B.1 Roadmap for proofs

Figure 21: Roadmap for proofs
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Figure 21 . illustrates the roadmap for proofs in this paper. Each node in the figure displays a theorem/lemma’s
name and its page number. Proof of each node depends (indirectly) on all nodes linked (indirectly) to it on the
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right. From top to bottom, the nodes are ordered by order of proofs: each node only depends on nodes on the right
of it or above it. So it is clear that there is no circular argument. Dependent nodes that have been proved earlier
are boxed by dashed lines. From left to right, the nodes are ordered by importance. Lemmas in the first layer are
conceptually important and are directly supporting the proof for theorems. Lemmas in the second layer or above
are more technical lemmas.

B.2 Proof of Theorem 1 .

The general road map for proving Theorem 1. is introduced in Section 5.3.. The proof relies on three lemmas.
Lemma 1. proves that the value function Vdt of discrete-time optimization problem Equation (5’). converges to the
value function V of continuous-time optimization problem Equation (1) . as dtÑ0. Lemma 3 . proves that the solution
of discrete time Bellman Equation (6) . converges to the solution of continuous time HJB Equation (4) . as dtÑ0.
Lemma 2 . proves that Vdt is also the solution of Bellman Equation (6) .. Therefore, V is the solution of HJB Equation (4) ..

Among the three lemmas, Lemmas 1 . and 2. are quite standard, and the proofs are mostly variations of standard
arguments. In Appendices B.2.1 . and B.2.2., I discuss only the main proof ideas and some non-standard details and
relegate the standard parts and purely technical details to Section S2.1 ..

Lemma 3. is the key lemma for Theorem 1., as it provides an important link between discrete time Bellman and
continuous time HJB. Proof of Lemma 3 . is provided in details in Appendix B.2.3 .. The discussion also formalizes the
definition of HJB Equation (4). by clarifying the notion of viscosity solution I am using.

B.2.1 Proof of Lemma 1.

Remark B.1. The proof of Lemma 1 . uses Lemma 2 . for some minor technical arguments. However the main proof
idea does not conceptually depend on Lemma 2 .. So I show the proof of Lemma 1 . first.

Proof. As already stated in Section 5.1 ., it is sufficient to show that the order of limits can be switched:
sup

xµty,τ
lim
dtÑ0

Wdtpµt,τq“ lim
dtÑ0

sup
xµty,τ

Wdtpµt,τq (16)

Here Wdtpµt,τq is defined in Section 5.1 . as the discretized payoff of continuous time strategy xµty,τ. The inner limit of
LHS in Equation (16). is then by definition the payoff of strategy xµty,τ in the continuous time problem Equation (1)..
So the LHS is Vpµq. The inner limit of RHS is Vdtpµq (as the problem optimizing Wdt is a discrete time problem
equivalent to Equation (5’)., formally shown in Lemma S.5., a dependence lemma for Lemma 2.). So RHS is limVdt (a
technical lemma Lemma S.8. guarantees existence of such limit).

I prove by showing inequality in two directions. The direction VpµqďlimVdtpµq is trivial since Wdtpµt,τqďVdtpµq

for all xµty,τ,dt. The key is to prove the other direction VpµqělimVdtpµq. I prove this claim by showing that @dtą0,
there exists a continuous time strategy that achieves a payoff in Equation (1) . no less than Vdtpµq.

Given time period dt, by Lemma 2. there exists discrete time optimal solution µ˚
t and τ˚, where µ˚

t`1|Ft has
support size N. The goal is to construct an admissible continuous-time belief process xµty, which satisfies two
properties: 1) at each discrete time idt, µt has exactly the same distribution as µ˚

i , 2) within each dt period, un-
certainty reduction speed of µt is exactly ErHpµ˚

i q´Hpµ˚
i`1q|Fis{dt. Such xµty with stopping time τ˚ achieves

higher payoff than Vdtpµq. Now this construction can be done by a technique introduced in Lemma S.3 .. @i and
conditional on Fi, apply Lemma S.3 . to the distribution of µ˚

i`1 to smooth it on ridt,pi`1qdts. Lemma S.3 . states
that there exists a continuous-time martingale xrµty (with a corresponding probability space) satisfying: @s,tPr0,1s,
sąt: ErHpµtq´Hpµsq|Fts“ps´tqErHpµ˚

i q´Hpµ˚
i`1q

ˇ

ˇFis. For tPridt,pi`1qdts, define µt
ˇ

ˇFidt “rµ t´idt
dt

ˇ

ˇFi. Therefore,

@tPridt,pi`1qdtq:

´LtHpµtq“ lim
sÑt`

E

«

Hpµtq´Hpµsq

s´t

ˇ

ˇ

ˇ

ˇ

ˇ

Ft

ff

“ lim
sÑt`

ps´tqE
“

Hpµ˚
i q´Hpµ˚

i`1q
ˇ

ˇFi
‰

s´t

“Hpµ˚
i q´

ÿ

pj
i Hpµ

˚j
i`1q

Let τ“τ˚dt. It is easy to see that by construction τ is measurable to the natural filtration of µt. Therefore:

VpµqěE
„

e´ρτ Fpµτq´

ż τ

0
e´ρtCpItqdt

ȷ

“E

»

–e´ρdt¨τ˚
Fpµτ˚q´

τ˚´1
ÿ

t“0

C

¨

˝

Hpµ˚
i q´

ř

pj
i Hpµ

˚j
i`1q

dt

˛

‚e´ρdt¨t¨
1´e´ρdt

ρ

fi

fl
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ěE

»

–e´ρdt¨τ˚
Fpµτ˚q´

τ˚´1
ÿ

t“0

C

¨

˝

Hpµ˚
i q´

ř

pj
i Hpµ

˚j
i`1q

dt

˛

‚e´ρdt¨t¨dt

fi

fl

“E

«

e´ρdt¨τ˚
Fpµτ˚q´

τ˚´1
ÿ

t“0

Cdt

´

Hpµ˚
i q´

ÿ

pj
i Hpµ

˚j
i`1q

¯

e´ρdt¨t

ff

“Vdtpµq

Second inequality is from 1´e´x ďx. Therefore, VpµqělimVdtpµq. Q.E.D.

Remark B.2 (Non-integrable xµty). In fact, the integrability requirement introduced in Equation (1). (defined as ex-
istence of limWdt in Section 5.1 .) is not necessary for my analysis of Theorem 1 .. Suppose now I extend the set of
admissible belief profiles M to satisfy only the first two conditions: cadlag path, martingale property and initial
value µ0“µ. Then the limit of finite Riemann sum Wdtpµt,τq might not exist (although each finite Riemann sum is
always well defined). Whenever this is the case, I define the payoff of strategy xµty,τ as:

E
„

e´ρτ Fpµτq´

ż τ

0
e´ρtCp´LtHpµtqqdt

ȷ

filimsup
dtÑ0

Wdtpµt,τq (17)

Since Wdtpµt,τq is bounded above by maxF, Equation (17) . is always well defined. Equation (17) . is the essential
upper-bound of payoff of an ill-behaved strategy, and when xµty is integrable it is consistent with the original
definition of V. Obviously, such extension of admissible strategy set weakly increases the value of Vpµq. Here I call
the extended value function pVpµq“ sup

xµty,τ
limsup

dtÑ0
Wdtpµt,τq.

In the proof of Theorem 1 ., Lemmas 2 . and 3. are not affected at all since they are about the discrete-time prob-
lem and corresponding value function Vdt. If Lemma 1 . can be extended to pVpµq“limdtÑ0Vdt, then Theorem 1 .

still holds with V replaced with pV. This extension is quite trivial by observing @xµty,τ,dt, Wdtpµt,τqďVdtpµq ùñ

limsupWdtpµt,τqďlimVdtpµq ùñ pVpµq“limsupďlimVdtpµq.
To sum up, if we extend the admissible strategy set, and relax the definition of the objective function to its

essential upper-bound, a solution to HJB Equation (4) . still achieves the value function. Therefore, it is WLOO to
eliminate all those ill-behaved strategies from the admissible control set.

B.2.2 Proof of Lemma 2.

Remark B.3. The proof presented here is stronger than the statement of Lemma 2. in Section 5.2.. It proves that
the Bellman Equation (6) . characterizes both Equations (5) . and (5’). (while Lemma 2 . only states that Equation (5) .

is characterized by Equation (6) .). The first step of the proof shows that Vdt defined by Equations (5) . and (5’). are
identical (Lemmas S.4. and S.5.), and can be rewritten as a recursive problem (Lemma S.6.). To proof the Lemma 2.

exactly stated in Section 5.2., one can simply skip Lemmas S.4. and S.5. and start with Lemma S.6 ., noticing that
Equation (S.9). is simply rewriting Equation (5)..

Proof. The proof of Lemma 2 . is mostly the standard theory of discrete-time dynamic programming with a few
tweaks. The proof involves 4 steps:

Step 1. Rewrite the sequential problem into the recursive problem. The technical details of the rewriting of
problem is shown in Lemmas S.4 ., S.5. and S.6.. The only non-standard analysis is to show that in Equation (5’) ., St
may contain unused information/ randomness which can be discarded without loss of utility. Then the sequential
problem without any redundant information can be represented in the belief space and easily written as a recursive
problem.

Step 2. Verify the standard transversality condition. This is trivial as the payoff is bounded by maxF and
discounted exponentially.

Step 3. Verify the Blackwell contract mapping condition. The contraction parameter in Equation (6) . is trivially
the discount factor e´ρdt. The non-standard analysis is to show that the optimization operation is into the domain
Cp∆Xq. To show this I invoke a maximum theorem in information design problems (theorem 5 of Zhong (2018a.), it
shows the existence of maximum as well).

Step 4. With steps 1-3, I invoke the standard contract-mapping fixed point theorem and show that value function
Vdt is the unique solution to Equation (6) .. The final bits show that I can restrict the optimal strategy of Equation (6) .

to have support size N. This part is proved using a generalized concavification result: Notice that the objective
function in Equation (6) . is not in the standard “expected valuation” form as in the literature of information design
(see Kamenica and Gentzkow (2011.)). Instead, there is an extra Cdtp¨q term. However, intuitively this problem can
be handle using a Lagrange method and take the term inside Cdtp¨q to combine it with ErVs linearly. This intuition
is formalized by Theorem S.1., which is a corollary of a more general result in Zhong (2018a.). Q.E.D.

50



B.2.3 Proof of Lemma 3.

Before going to the proof of Lemma 3 ., I first formally rewrite the problem to accommodate viscosity solutions
(see Crandall, Ishii, and Lions (1992.)). First define a space of functions on ∆pXq:

L“

#

V :∆pXqÞÑR`

ˇ

ˇ

ˇ

ˇ

@µP∆X,µ1P∆psupppµqq, lim sup
µ1Ñµ

|Vpµ1q´Vpµq|

∥µ1´µ∥ PR

+

where ∥¨∥ is Euclidean norm on ∆X. By definition, L is the set of pointwise Lipschitz functions on ∆pXq. Two
technical lemmas Lemmas S.8. and S.9. guarantee that limVdt is well defined, and there exists VPL which is the
uniform limit of Vdt. Now I show that V coincides with the solution of the HJB equation. Consider the following
HJB equation defined on L:

ρVpµq“max

#

ρFpµq, sup
νiP∆psupppµqq,

piPR`,
pσPR|supppµq|

ÿ

pipVpνiq´Vpµqq´DV
´

µ,
ÿ

piνi´µ
¯∥∥∥´ÿpiνi´µ

¯∥∥∥`
1
2
∥pσ∥2D2Vpµ,pσq (18)

´C
ˆ

´
ÿ

pipHpνiq´Hpµq´∇Hpµq¨pνi´µqq´
1
2
pσT¨HHpµq¨pσ

˙

+

∇ and H denote gradient and Hessian operator (well-defined on all interior points). Since V is not necessarily
differentiable, I use operator D and D2 to replace the Jacobian and Hessian operators on V. D and D2 are defined
as follows. @yPB|supppxq|´1 (Unit ball in |supppxq|´1 dimensional space):

Definition 2 (General differentials). @ f PL:
$

&

%

D f px,yq“liminfδÑ0
f pxq´ f px´δyq

δ∥y∥
D2 f px,yq“limsupδÑ02 f px`δyq´ f pxq´δ¨D f px,yq¨∥y∥

δ∥y∥2

Notice that if f PCp1qp∆Xq, then D f px,yq“
∇ f pxq¨y
∥y∥ . If f PCp2qp∆Xq then D2 f px,yq“

yT ¨H f pxq¨y
∥y∥2 . It is not hard to verify

that for Cp1q smooth value function Vpµq, Equation (18) . is equivalent to Equation (4) ..

Proof.
Consider Lemma 3 . by replacing Equation (4) . with Equation (18) .. If the statement is proved with Equation (18) .,

then since V“V is Cp1q smooth, V is smooth and Equation (4). automatically holds. I prove by induction on di-
mensionality of supppµq. First of all, Lemma 3 . is trivially true when µ“δx since Vpµq“Vpµq“Fpµq when the state
is deterministic. Now it is sufficient to prove V“V on interior of ∆X conditional on V“V being true on B∆X
(boundary of ∆X).

The proof takes three steps. Before going to the details, I introduce the steps briefly. The first step is to show
that V is unimprovable in HJB Equation (18) .. The proof is quite standard as any continuous-time strategy that
improves V can be approximated by a discrete-time strategy. The second step shows VěV. Proof is by a standard
contradiction argument. If VăV, then there exists a belief s.t. the same strategy implements strictly higher HJB
with V, which violates unimprovability. The last and most difficult step is to show that VěV.

Unimprovability: First I show that V is unimprovable in Equation (18) .. Suppose for the sake of contradiction
that V is improvable at interior µ, then there exists pi,νi,pσ, I such that:

ρVpµqă
ÿ

pi
`

Vpνiq´Vpµq
˘

´DVpµ,µ´
ÿ

piνiq
∥∥∥ÿpiνi´µ

∥∥∥`
ÿ

D2Vpµ,pσjq∥pσ∥2
j ´CpIq

where I“´
ÿ

pipHpνiq´Hpµq´∇Hpµq¨pνi´µqq´
ÿ

pσT
j HHpµqpσj

Then if we compare the following two ratios:
ř

pi
`

Vpνiq´Vpµq
˘

´DVpµ,
ř

piνi´µq∥
ř

piνi´µ∥
´
ř

pipHpνiq´Hpµq´∇Hpµq¨pνi´µqq
;

D2Vpµ,pσq∥pσ∥2

´pσTHHpµqpσ

At least one of them must be larger than ρVpµq`CpIq

I .

• Case 1:
ř

pi
`

Vpνiq´Vpµq
˘

´DVpµ,
ř

piνi´µq∥
ř

piνi´µ∥
´
ř

pipHpνiq´Hpµq´∇Hpµq¨pνi´µqq
ą

ρ

I
Vpµq`

CpIq

I
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By Definition 2., there exists δ,εą0 s.t. :
ř

pi
`

Vpνiq´Vpµq
˘

´
Vpµq´Vpµ´δp

ř

piνi´µqq

δ
ř

pipHpµq´Hpνiqq`
Hpµq´Hpµ´δp

ř

piνi´µqq

δ

ě
ρ

I
Vpµq`

CpIq

I
`ε (19)

where δ is sufficiently small that µ0“µ´δp
ř

piνi´µqP∆Xo. Then by construction, if we assume:
#

p1
0“ 1

1`δ

p1
i “

δ
1`δ pi

Then
`

p1
i,ν

1
i
˘

is Bayesian plausible:
#

ř

p1
i “1

ř

p1
iνi “µ

where 0 is also included in indices i’s. Replacing terms in Equation (19) . and let Ipνi|µq“Hpµq´
ř

p1
i Hpνiq:

ř

p1
iVpνiq´Vpµq

´
ř

p1
i Hpνiq`Hpµq

ě
ρ

I
Vpµq`

CpIq

I
`ε

ùñ
ÿ

p1
iVpνiq´

Ipνi|µq

I
CpIqě

ˆ

1`ρ
Ipνi|µq

I

˙

Vpµq`εIpνi|µq (20)

It is easy to verify that Ipνi|µq is continuous in δ and it is zero when δ“0. So δ can be chosen sufficiently small that

eρ
Ipνi|µq

I ´

ˆ

1`ρ
Ipνi|µq

I

˙

“

8
ÿ

k“1

1
pk`1q!

´ρ

I

¯k`1
Ipνi|µq

k
¨Ipνi|µqď

εIpνi|µq

4supF
(21)

The equality is from Taylor expansion of exponential function. Plug Equation (21). into Equation (20).:
ÿ

p1
iVpνiq´

Ipνi|µq

I
CpIqěeρ

Ipνi|µq

I Vpµq`
ε

4
Ipνi|µq

ùñe´ρ
Ipνi|µq

I

´

ÿ

p1
iVpνiq

¯

´
Ipνi|µq

I
CpIqěVpµq`e´ρ

Ipνi|µq

I
εIpνi|µq

4
´

ˆ

1´e´ρ
Ipνi|µq

I

˙

Ipνi|µq

I
CpIq (22)

Noticing that
ˆ

1´e´ρ
Ipνi|µq

I

˙

Ipνi|µq is a second order small term. Then we can pick δ such that Equation (22).

implies:

e´ρ
Ipνi|µq

I

´

ÿ

p1
iVpνiq

¯

´
Ipνi|µq

I
CpIqěVpµq`

ε

8
Ipνi|µq

From now on, we fix ε and δ. Pick dt“
Ipνi|µq

I , dtm “ dt
m . By uniform convergence, there exists N s.t. @měN:

e´ρdt
´

ÿ

p1
iVdtmpνiq

¯

´dt¨C
ˆ

Ipνi|µq{m
dtm

˙

ąVdtmpµq

ùñe´ρmdtm
´

ÿ

p1
iVdtmpνiq

¯

´

m´1
ÿ

τ“0

e´ρτdtm Cdtm

ˆ

Ipνi|µq

m

˙

ąVdtmpµq

That is to say we find a feasible experiment, whose cost can be spread into m periods (the split of experiment is
done by applying Lemma S.3 .). This experiment strictly dominates the optimal experiment at µ for discrete time
problem with dtm. Contradiction. Therefore, V must be unimprovable at µ.

• Case 2:
D2Vpµ,pσq∥pσ∥2

´pσTHHpµqpσ
ą

ρ

I
Vpµq`

CpIq

I
Then by the definition of operator D2 in Definition 2., there exists pσ, δ,εą0 s.t.:

Vpµ`δpσq´Vpµq´δDVpµ,pσq∥pσ∥
´Hpµ`δpσq`Hpµq`δ∇Hpµq¨pσ

ě
ρ

I
Vpµq`

CpIq

I
`2ε

Then by the definition of operator D in Definition 2 ., there exists δ1 s.t.:

Vpµ`δpσq´Vpµq´δ
Vpµq´Vpµ´δ1

pσq

δ1

´Hpµ`δpσq`Hpµq`δ
Hpµq´Hpµ´δ1

pσq

δ1

ě
ρ

I
Vpµq`

CpIq

I
`ε
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Let µ1“µ´δ1
pδ and µ2“µ`δpσ, p1“ δ1

δ`δ1 ,p2“ δ
δ`δ1 , then:

ÿ

piVpνiqě

ˆ

1`ρ
Ipνi|µq

I

˙

Vpµq`
Ipνi|µq

I
CpIq`εIpνi|µq (23)

Noticing that Equation (23) . is exactly the same as Equation (20) . in Case 1. Then using same argument, This case
is also ruled out.

Equality: I show that @ smooth function V solving Equation (18)., V“V. Notice that this automatically proves
the uniqueness of solution of Equation (18).. I prove inequality from both directions for µP∆pXqo:

• VpµqěVpµq: Suppose not, then consider Upµq“Vpµq´Vpµq. Since both V and V are continuous, U is continuous.
Therefore argminU is non empty and minUă0 according to our assumption. Choose µPargminU (µP∆Xo since
V“V on boundary). Since VpµqěFpµq, VpµqąFpµq. Let ppi,νi,σ̂q be a strategy solving Vpµq:

ρVpµq“
ÿ

pipVpνiq´Vpµqq´DV
´

µ,
ÿ

piνi´µ
¯∥∥∥ÿpipνi´µq

∥∥∥`
1
2

D2Vpµ,pσq∥σ̂∥2 (24)

´C
ˆ

´
ÿ

pipHpνiq´Hpµq´∇Hpµqpνi´µqq´
1
2
pσTHHpµqpσ

˙

Now compare DV and DV:

Vpµq´Vpµ1q

∥µ´µ1∥ “
Vpµq´Vpµ1q`Upµq´Upµ1q

∥µ´µ1∥ ď
Vpµq´Vpµ1q

∥µ´µ1∥

ùñ liminf
Vpµq´Vpµ1q

∥µ´µ1∥ ďlim
Vpµq´Vpµ1q

∥µ´µ1∥
ùñDVpµ,µ1´µq

∥∥µ1´µ
∥∥ď∇Vpµq¨pµ1´µq

Compare D2V and D2V:

Vpµ1q´Vpµq´DVpµ,µ1´µq∥µ1´µ∥
∥µ1´µ∥2 ě

Vpµ1q´Vpµq´∇Vpµq¨pµ1´µq`Upµ1q´Upµq

∥µ´µ1∥2

ùñ D2Vpµ,pσqěD2Vpµ,pσq

Therefore Equation (24). implies:

ρVpµqď
ÿ

pi
`

Vpνiq´Vpµq´pUpνiq´Upµqq
˘

´DVpµ,
ÿ

νi´µq

∥∥∥ÿνi´µ
∥∥∥`

1
2

D2Vpµ,pσq∥pσ∥2

´C
ˆ

´
ÿ

pipHpνiq´Hpµq`∇Hpµqpνi´µqq´
1
2
pσTHHpµqpσ

˙

ďρVpµq

The first inequality comes from replacing DV and D2V with DV and D2V. The second inequality comes from
Upνiq´Upµqě0 and unimprovability of V. Contradiction.

• VpµqěVpµq: I prove by showing that @dtą0, VěVdt. Suppose not, then there exists µ1,dt s.t. Vdtpµ1qąVpµ1q. Let
dtn “ dt

2n . Since Vdtn is increasing in n, there exists εą0 s.t. Vdtnpµ1q´Vpµ1qěε @nPN. Now consider Un “V´Vdtn . Un
is continuous by Lemma 2 . and Unpµ1qď´ε. Pick µn PargminUn. Since ∆pXq is compact, there exists a converging
sequence limµn “µ. By assumption, Unpµnqď´ε, therefore since Upµq“limUnpµnqď´ε, µ must be in interior of
∆pXq. So without loss, µn can be picked that µn P∆pXqO. Now consider the optimal strategy of discrete time
problem:

$

’

’

&

’

’

%

Vdtnpµnq“e´ρdtn
ÿ

pn
i Vdtnpνn

i q´dtnCpInq
ÿ

pn
i pHpµnq´Hpνn

i qq“ Indtn
ÿ

pn
i νn

i “µn;
ÿ

pn
i “1

By definition of Unpµq:
ÿ

pn
i pVpνn

i q´Vpµnqq“
ÿ

pn
i
`

Vdtnpνn
i q´Vdtnpµnq´Unpµnq`Upνn

i q
˘

ě
ÿ

pn
i
`

Vdtnpνn
i q´Vdtnpµnq

˘
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“

´

eρdtn´1
¯

Vdtnpµnq`eρdtn dtnCpInq

ěρdtnVdtnpµnq`eρdtn dtnCpInq

ěρdtnε`ρdtnVpµnq`eρdtn dtnCpInq

ùñρVpµnqď´ρε`
ÿ pn

i
dtn

pVpνn
i q´Vpµnqq´eρdtn CpInq

ùñρVpµnqď´ρε`
ÿ pn

i
dtn

pVpνn
i q´Vpµnqq´CpInq (25)

The first equality is by the definition of Un. The first inequality is from µn PargminUn. The second inequality is
from ex´1ěx. The third inequality is from Unpµnqď´ε. Now since the number of posteriors νn

i is no more than
2|X|, we can take a subsequence of n such that all limνn

i “νi. Partition νn
i into two kinds: limνn

i “νi ‰µ, limνn
j “µ.

Since V is unimprovable, @c,pσ we have D2Vpµ,pσq∥pσ∥2
ď´pσTHHpµqpσ

´

ρ
I Vpµq`

CpIq
I

¯

. Since VPCp1q, HPCp2q, @η,
there exists δ s.t. @|µ1´µ|ďδ:

#

∥HHpµq´HHpµ1q∥ďη

|Vpµq´Vpµ1q|ďη

ùñ D2Vpµ1,pσqď

ˆ

ρ

I
Vpµ1q`

CpIq

I

˙

˜

´
pσTHHpµ1qpσ

∥pσ∥2

¸

ď

ˆ

ρ

I
Vpµq`

CpIq

I

˙

˜

´
pσTHHpµqpσ

∥pσ∥2

¸

`

ˆ

ρ

I
supF`

CpIq

I

˙

η`
ρ

I
η∥HHpµq∥

If we pick η and δ properly:

D2Vpµ1,pσqď

ˆ

ρ

I
Vpµq`

CpIq

I

˙

˜

´
pσTHHpµqpσ

∥pσ∥2

¸

`
1`CpIq

I
η

Then there exists N s.t. @něN,
ˇ

ˇ

ˇ
νn

j ´µ
ˇ

ˇ

ˇ
ăδ, |µn´µ|ăδ. Now I want to do a second-order approximation of Vpνn

j q´

Vpµnq´∇Vpµnqpνn
j ´µnq. To apply Taylor expansion to a not necessarily twice differentiable function V, I invoke

a technical Lemma S.10 . to gpαq“Vpανn
j `p1´αqµnq:

Vpνn
j q´Vpµnq´∇Vpµnqpνn

j ´µnq“gp1q´gp0q´g1p0q

ď
1
2

sup
αPp0,1q

D2gpα,1q“ sup
αPp0,1q

limsup
dÑ0

gpα`dq´gpαq´g1pαqd
d2

“ sup
ξPpµn,νn

j q

limsup
dÑ0

Vpξ`dpνn
j q´µnq´Vpξq´dJVpξqpνn

j ´µnq

d2

ď
1
2

sup
|ξ´µ|ďδ

D2Vpξ,νn
j ´µnq

∥∥∥νn
j ´µn

∥∥∥2

ď´
1
2

ˆ

ρ

I
Vpµq`

CpIq

I

˙

pνn
j ´µnqTHHpµqpνn

j ´µnq`
1`CpIq

2I
η
∥∥∥νn

j ´µn
∥∥∥2

(26)

Therefore, by applying Equation (26) .:
ÿ

pn
i,j

´

Vpνn
i,jq´Vpµnq

¯

“
ÿ

pn
i pVpνn

i q´Vpµnq´∇Vpµnqpνn
i ´µnqq`

ÿ

pn
j

´

Vpνn
j q´Vpµnq´∇Vpµnq

´

νn
j ´µn

¯¯

ď
ÿ

pn
i pVpνn

i q´Vpµnq´∇Vpµnqpνn
i ´µnqq

´
1
2

ˆ

ρ

I
Vpµq`

CpIq

I

˙

ÿ

pn
j

´

νn
j ´µnqTHHpµqpνn

j ´µnq

¯

`
1`CpIq

2I
η
ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
(27)

Notice that Equations (26). and (27). are true uniform to I, so we can replace I with In and Equation (27). is still
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true. Now let pn
i “

pn
i

dtn
, ´pσT

n HHpµnqpσndtn “
ř

pn
j

´

Hpµnq´Hpνn
j q`∇Hpµqpνn

j ´µnq

¯

, we have:
ÿ

pn
i
`

Hpµnq´Hpνn
i q`H1pµnqpνn

i ´µnq
˘

´pσT
n HHpµnqpσn “ In (28)

`

pn
i ,νn

i ,pσn
˘

is a feasible experiment for Equation (18).. Therefore, by optimality of V at µn, we have
$

’

’

’

&

’

’

’

%

ÿ

pn
i pVpνn

i q´Vpµnq´∇Vpµnqpνn
i ´µnqqď

´

In`σ̂nTHHpµnqpσn
¯

ˆ

ρ

In
Vpµnq`

CpInq

In

˙

D2Vpµn,pσnqď´
pσnTHHpµqpσn

∥pσn∥2

ˆ

ρ

In
Vpµnq`

CpInq

In

˙ (29)

Then we study term
ř

pn
j pνn

j ´µnq2. Apply Lemma S.10. to gpαq“Hpανn
j `p1´αqµnq:

ÿ

pn
j

´

Hpµnq´Hpνn
j q`∇Hpµnqpνn

j ´µnq

¯

ě
1
2

inf
ξn

j Prµn,νj
ns

ÿ

pn
j

´

´pνn
j ´µnqTHHpξn

j qpνn
j ´µnq

¯

ě´
1
2

ÿ

pn
j ppνn

j ´µnqTHHpµqpνn
j ´µnqq´

1
2

η
ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
(30)

Therefore, to sum up:
ÿ pn

i,j

dtn

´

Vpνn
i,jq´Vpµnq

¯

ď
ÿ

pn
i pVpνn

i q´Vpµnq´∇Vpµnqpνn
i ´µnqq

`
1
2

ÿ pn
j

dtn

ˆ

´pνn
j ´µnqTHHpµqpνn

j ´µnq

ˆ

ρ

In
Vpµq`

CpInq

In

˙˙

`
ÿ pn

j

dtn

ˆ

1`CpInq

2In
η
∥∥∥νn

j ´µn
∥∥∥2
˙

ď

´

In`pσnTHHpµnqpσn
¯

ˆ

ρ

In
Vpµnq`

CpInq

In

˙

`

˜

ÿ pn
j

dtn
pHpµnq´Hpνn

j q`∇Hpµnqpνn
j ´µnqq

`
1

dtn

η

2

ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
˙ˆ

ρ

In
Vpµq`

CpInq

In

˙

`
1

dtn

ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2 1`CpInq

2In
η

“

´

In`pσnTHHpµnqpσn
¯

ˆ

ρ

In
Vpµnq`

CpInq

In

˙

`

ˆ

´pσnTHHpµnqpσn`
1

dtn

η

2

ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
˙ˆ

ρ

In
Vpµq`

CpInq

In

˙

`
1

dtn

ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2 1`CpInq

2In
η

ďρVpµnq`CpInq`
1

dtn

ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
ˆ

1`ρVpµq`2CpInq

2In

˙

η`ρη

The first inequality is Equation (27) .. The second inequality comes from Equation (29) . and Equation (30).. The next
equality comes from definition of pσ2

n. The last inequality comes from canceling out terms and ´pσnTHHpµnqpσn ď In
(Notice the difference between Vpµq and Vpµnq). Then by plug into Equation (25) .:

ρVpµnqď´ρε`ρVpµnq`
1

dtn

ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
ˆ

1`ρVpµq`2CpInq

2In

˙

η`ρη

Moreover:
ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
inf

σ

ˇ

ˇσTHHpµqσ
ˇ

ˇ

∥σ∥2
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ď
ÿ

pn
j pνn

j ´µnqHHpµqpµn´µnqď Indtn`η
ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2

ùñ
ÿ

pn
j

∥∥∥νn
j ´µn

∥∥∥2
ď

Indtn

infσ
|σTHHpµqσ|

∥σ∥2 ´η

ùñρεď
1
2

p1`ρVpµq`2CpInqq
η

infσ
|σTHHpµqσ|

∥σ∥2 ´η
`ρη

By Lemma S.7 ., CpInq is uniformly bounded above. Since H is strictly concave infσ
|σTHHpµqσ|

∥σ∥2 is positive. The

inequality holds when η is chosen smaller than infσ
|σTHHpµqσ|

∥σ∥2 . By taking ηÑ0, the LHS is eventually larger than

the RHS. Contradiction. Therefore:
Vpµq“lim sup

dtÑ0
Vdtpµq“Vpµq

Q.E.D.

B.3 Proof of Theorem 2 .

Proof. I prove Theorem 2 . by guess and verification. To simplify notation, I define a flow version of information
measure:

Jpµ,νq“Hpµq´Hpνq`H1pµqpν´µq

Then total flow information cost is p¨Jpµ,νq. Let Fm “Eµrupam,xqs and reorder am s.t. F1
m is increasing in m. Let µ

k
be

each kink points of F: Fpµq“FkpµqðñµP

”

µ
k´1

,µ
k

ı

. m is the smallest index s.t. F1
m ě0.

Algorithm:
In this part, I introduce the algorithm for constructing Vpµq and νpµq. I only discuss the case µěµ˚. The remaining
case µďµ˚ follows by a symmetric method. The main steps are illustrated in Figure 22.. The first step is to find
critical the belief µ˚ at which two sided stationary Poisson signal is optimal (µ˚=0.5 in a symmetric problem). Then
value function is solved by searching over optimal posterior beliefs, given choosing an action (say am). Then the
remaining actions are added one by one to consideration. And value function is updated when each additional
action is added. Finally, after all actions have been considered, I complete the construction of value function.

• Step 1: Define:

V`pµq“max
νěµ

Fmpνq

1`
ρ
c Jpµ,νq

V´pµq“max
νďµ

Fmpνq

1`
ρ
c Jpµ,νq

In Lemma B.1. I analyze the technical details of V` and V´. The main property is that: V` is increasing and
V´ is decreasing. There exists µ˚Pr0,1s s.t. V`pµqěV´pµq when µěµ˚ and V´pµqďV´pµq when µďµ˚. Define
Vpµq“max

␣

V`pµq,V´pµq
(

.

• Step 2: I construct the first piece of Vpµq to the right of µ˚. There are three possible cases of µ˚ to be discussed (I
omitted µ˚“1 by symmetry).

Case 1: Suppose µ˚Pp0,1q and Vpµ˚qąFpµ˚q. Then, there exists m and νpµ˚qPpµ˚,1q s.t.

Vpµ˚q“
Fmpνpµ˚qq

1`
ρ
c Jpµ˚,νpµ˚qq

Initial condition
`

µ0“µ˚,V0“Vpµ˚q,V1
0“0

˘

satisfies Lemma B.2 ., which states that there exists Vmpµq solving:

Vmpµq“max
νěµ

c
ρ

Fmpνq´Vpµq´V1pµqpν´µq

Jpµ,νq

This refers to Figure 22.-1. Define

Vµ˚pµq“

#

Fpµq if µďµ˚

Vmpµq if µěµ˚
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The two black (dashed and solid) lines are Fm´1pµq,Fmpµq.
The blue line is optimal value function from taking immediate action m.
The red line is optimal value function from taking immediate action m´1.

Figure 22: Construction of optimal value function.
Be Lemma B.2., when Vµ˚pµqąFpµq, Vµ˚ is smoothly increasing and optimal νpµq is smoothly decreasing.

Now update Vµ˚pµq with respect to more actions (in the order of decreasing index m). First consider Fm´1 and let
µ̂m be the smallest µěµ˚ such that:

Vµ˚ppµmq“max
νěpµm

c
ρ

Fm´1pνq´Vµ˚ppµmq´V1
µ˚ppµmqpν´pµmq

Jppµm,νq
(31)

At pµm, searching posterior on Fm´1 first dominates searching posterior on Fm
34

.. This step refers to Figure 22 .-2.
pµm is the smallest intersection point of blue curve (Vµ˚pµq, LHS of Equation (31) .) and thin red curve (RHS of
Equation (31).). If VmppµmqąFm´1ppµmq then solve for Vm´1 with initial condition µ0“µ̂m,V0“Vmpµ̂mq,V1

0“V1
mpµ̂mq

according to Lemma B.2 . and redefine Vµ˚pµq“Vm´1pµq when µěpµm. Otherwise skip to looking for pµm´1. If
m´1ąm, continue this procedure by looking for µ̂m´1 and update Vµ˚ |µěpµm´1

with corresponding Vm´2 . . . until
m“m (No action with the slope of F1

m being negative is considered). This refers to Figure 22.-3. Now suppose Vm
first hits Fpµq at some point µ˚˚ (µ˚˚ąµ˚ since Vmpµ˚qąFpµ˚q). Vµ˚ is a (piecewise) smooth function on rµ˚,µ˚˚s

such that:

Vµ˚pµq“

#

Fpµq if µďµ˚ or µěµ˚˚

Vkpµq if µPrpµk,pµk´1s35
.

By construction, optimal posterior νµ˚pµq is smoothly decreasing on each ppµk`1,pµkq and jumps down at each pµk
36

..
Notice that it is not yet proved that this order of value function updating is WLOO. It is possible that optimal
policy function is non-monotonic. This is taken care of by Lemma S.18., which proves the order of updating being
WLOO. I relegate the proof of Lemma S.18 . to supplemental materials to conserve space, but it uses exactly the
techniques of the verification step 2. Now I can claim that @µPrµ˚,µ˚˚s:

Vµ˚pµq“ max
νěµ,k

c
ρ

Fkpνq´Vµ˚pµq´V1
µ˚pµqpν´µq

Jpµ,νq
(32)

34Existence is guaranteed by smoothness of Vµ˚ and J. Noticing that Vmpµ̂mqěFm´1ppµmq. Otherwise, there will be a pµ1
m ăpµm s.t. Vmppµ1

mq“Fm´1ppµ1
mq and it

is easy to verify that Vm is weakly larger than the maximum. So there is an even smaller pµm, contradiction.
35Define pµm`1 “µ˚ and pµm “µ˚˚ for consistency.
36Since Fk´1 always crosses Fk from above, when indifference between choosing Fk´1 and Fk , the posterior corresponding to Fk´1 must be smaller.
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Case 2: Suppose µ˚Pp0,1q but Vpµ˚q“Fpµ˚q, let µ˚˚“inf
␣

µěµ˚|VpµqąFpµq
(

.

Case 3: Suppose µ˚“0, then F1p0qě0 (by Lemma B.1.). Consider

rVpµq“ max
νěµ,k

c
ρ

Fkpνq´F1pµq´F1
1pν´µq

Jpµ,νq

Define, µ˚˚“inf
!

µ|rVpµqąF1pµq

)

. By Assumption 3., limµÑ0|H1pµq|“8, then there exists δ s.t. @µăδ, @νěµ
2
,

supF
Jpµ,νq

ďinfF. Therefore µ˚˚ěδą0. This step refers to Figure 22.-4.

• Step 3: Solve for V to the right of µ˚˚. For all µ˛ěµ˚˚ such that:

Fpµ˛q“ max
νěµ,k

c
ρ

Fkpνq´Fpµ˛q´F1´pµ˛qpν´µ˛q

Jpµ˛,νq
(33)

Let m be the index of optimal action. Solve for Vm with initial condition µ0“µ˛,V0“Fpµ˛q,V1
0“F1´pµ˛q. 37

. Then
take same steps in Step 2 and solve for pµk and Vk´1 sequentially until Vm0 first hits F. This step refers to Figure 22 .-
4,5. Now suppose Vm0 first hits Fpµq at some point µ˛˛ (can potentially be µ), define:

Vµ˛pµq“

#

Fpµq if µăµ˛ or µąµ˛˛

Vkpµq if µPrpµk`1,pµks38
.

By Lemma B.2 ., Vµ is piecewise smooth are pasted smoothly. So Vµ is a smooth function on rµ,µ2s. Optimal
posterior νµ˛pµq is smoothly decreasing on each ppµk`1,pµkq and jumps down at each pµk. By Lemma S.18. and our
construction, @µPrµ˛,µ˛˛s:

Vµpµq“ max
νěµ˛,k

c
ρ

Fkpνq´Vµ˛pµq´V1
µ˛pµqpν´µq

Jpµ,νq
(32.)

Let Ω be the set of all such µ˛’s.

• Step 4: Define:

Vpµq“

$

&

%

Vµ˚pµq if µPrµ˚,µ˚˚s

sup
µ˛PΩ

␣

Vµ˛pµq
(

if µěµ˚˚ (34)

In the algorithm, I only discussed the case µ˚ă1 and constructed the value function on the right of µ˚. On the left
of µ˚, V can be defined using a totally symmetric argument by referring to Lemma B.21

. and Lemma S.181
..

Smoothness:
I need to verify that Vpµq that defined as Equation (34) . is a Cp1q smooth function on r0,1s. This claim is purely
for technical use (for example, the validity of using V1 and V2). I relegate this technical proof to Section S2.1 . in
Lemmas S.11 ., S.12., S.13. and S.14.. In addition, it is shown in Section S2.1 . that there exists a set of µ0 such that on
each interval when VpµqąFpµq, Vpµq is defined as one Vµ0 .

Unimprovability:
Finally, I prove unimprovability of Vpµq.

• Step 1: I first show that Vpµq solves the following problem:

Vpµq“max
"

Fpµq,max
ν,m

c
ρ

Fmpνq´Vpµq´V1pµqpν´µq

Jpµ,νq

*

(P-C)
#

νěµ when µěµ˚

νďµ when µďµ˚

Equation (P-C) . is the maximization problem over all confirmatory evidence seeking with immediate decision
making upon arrival of signals. Equation (P-C) . is implied by Equation (32) . for µPE. So it is sufficient to prove
Equation (P-C) . for µPEC. Suppose for the sake of contradictoin that there exists µěµ˚ s.t. Equation (P-C) . is
violated. Let Fpµq“Fkpµq. Then it is equivalently stating that:

Upµq“ max
ν,k1ąk

c
ρ

F1
kpνq´Fkpµq´F1

kpν´µq

Jpµ,νq
ąFkpµq

37By definition of µ˚˚, µ0 is bounded away from t0,1u and Equation (33) . implies conditions in Lemma B.2. are satisfied.
38Define pµm`1 “µ˛ and pµm0 “µ˛˛ for consistency.
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Consider µ
k

(the intercection of Fk and Fk´1). By Lemma S.11., there exists Ik s.t. µ
k
P Ik. At bk “sup Ik, UpbkqďFkpbkq.

Therefore, since Upµq is continuous, by intermediate value theorem there exists largest µ1 between µ
k

and µ s.t
.Upµ1q“Fkpµ1q. Then Equation (33) . is satisfied at µ1 so consider Vµ1 . Sicne Vµ1pµqďVpµq“Fkpµq, there exists µ2P

pµ1,µq s.t. Vµ1pµ2qďFkpµ2q and V1
µ1pµ2qďFkpµ2q. Therefore Upµ2qąFkpµ2q implies Vµ1pµ2qąFkpµ2q, contradiction.

Apply a symmetric argument to µďµ˚, I prove Equation (P-C)..

• Step 2: I show that Vpµq solves the following problem:

Vpµq“max
"

Fpµq,max
ν

c
ρ

Vpνq´Vpµq´V1pµqpν´µq

Jpµ,νq

*

(P-D)
#

νěµ when µěµ˚

νďµ when µďµ˚

Equation (P-D) . is the maximization problem over all confirmatory learning strategies. It has less constraint than
Equation (P-C).: when a signal arrives and posterior belief ν is realized, the DM is allowed to continue experimen-
tation instead of being forced to take an action.

I only show the case µěµ˚ and a totally symmetric argument applies to µďµ˚. Suppose Equation (P-C) . is violated
at µ, then there exists ν1 such that:

Vpµq“ max
νěµ,m

c
ρ

Fmpνq´Vpµq´V1pµqpν´µq

Jpµ,νq
ă

c
ρ

Vpν1q´Vpµq´V1pµqpν1´µq

Jpµ,ν1q
(35)

Let rV“Vpµq. Suppose the maximizer is ν,m. Optimality implies first order conditions Equation (41). and Equa-
tion (40) .:

$

’

&

’

%

F1
m`

ρ

c
rVH1pνq“V1pµq`

ρ

c
rVH1pµq

´

Fmpνq`
ρ

c
rVHpνq

¯

´

´

Vpµq`
ρ

c
rVHpµq

¯

“

´

V1pµq`
ρ

c
VpµqH1pµqpν´µq

¯

We define LpV,λ,µqpνq and GpV,λqpµq as:
#

LpV,λ,µqpνq“pVpµq`λHpµqq`pV1pµq`λH1pµqqpν´µq

GpV,λqpνq“Vpνq`λHpνq
(36)

Then L is a linear function of ν and GpFm, ρ
c
rVqpνq is a strictly concave smooth function of ν. Consider:

L
´

V,
ρ

c
rV,µ

¯

pνq´G
´

Fm,
ρ

c
rV
¯

pνq

Equation (41) . implies that it attains minimum 0 at ν. For any m1 other than m,

L
´

V,
ρ

c
rV,µ

¯

pνq´G
´

Fm1 ,
ρ

c
rV
¯

pνq

is convex and weakly larger than zero. However by Equation (35).:

L
´

V,
ρ

c
rV,µ

¯

pν1q´G
´

V,
ρ

c
rV
¯

pν1q“´

´

Vpν1q´Vpµq´V1pµqpν1´µq´
ρ

c
rV Jpµ,ν1q

¯

ă0

Therefore L
´

V, ρ
c
rV,µ

¯

pνq´G
´

V, ρ
c
rV
¯

pνq has strictly negative minimum. Suppose it’s minimized at rµ (rµąµ since
LpV,λ,µqpµq”GpV,λqpµq). Then FOC is a necessary condition:

V1pµq`
ρ

c
rVH1pµq“V1prµq`

ρ

c
rVH1prµq

Consider:

L
´

V,
ρ

c
rV,rµ

¯

pνprµqq´G
´

Fm,
ρ

c
rV
¯

prνq

“L
´

V,
ρ

c
rV,µ

¯

pνprµqq´G
´

Fm,
ρ

c
rV
¯

pνprµqq

`Vprµq´Vpµq`
ρ

c
rVpHprµq´Hpµqq´

´

V1pµq`
ρ

c
rVH1pµq

¯

prµ´µq

ěVprµq´Vpµq`
ρ

c
rVpHprµq´Hpµqq´

´

V1pµq`
ρ

c
rVH1pµq

¯

prµ´µq

“G
´

V,
ρ

c
rV
¯

prµq´L
´

V,
ρ

c
rV,µ

¯

prµqą0
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In the first equality I used Equation (41) . at rµ. In first inequality I used suboptimality of rµ at µ. However for m1

and νprµq being optimizer at rµ:

0“L
´

V,
ρ

c
Vprµq,rµ

¯

pνprµqq´G
´

Fm1 ,
ρ

c
Vprµq

¯

pνprµqq

“L
´

V,
ρ

c
rV,rµ

¯

pνprµqq´G
´

Fm1 ,
ρ

c
rV
¯

pνprµqq

`
ρ

c
pVprµq´rVqpHprµq´Hpνprµqq`H1prµqpνprµq´rµqq

ą
ρ

c
pVprµq´rVqJprµ,νprµqq

Contradiction. Therefore, I proved Equation (P-D)..

• Step 3: I show that V satisfies Equation (18)., which is less restrictive than Equation (P-D). by allowing 1) diffusion
experiments. 2) evidience seeking of all possible posteriors instead of just confirmatory evidence.
First, since V is smoothly increasing and has a piecewise differentiable optimizer ν, envelope theorem implies:

V1pµq“
c
ρ

´V2pµqpν´µq

Jpµ,νq
`Vpµq

´H2pµqpν´µq

Jpµ,νq

“´
c
ρ

ν´µ

Jpµ,νq

´

V2pµq`
ρ

c
VpµqH2pµq

¯

ą0

ùñ V2pµq`
ρ

c
VpµqH2pµqă0

Therefore, allocating to diffusion experiment is strictly suboptimal. Moreover, consider:

V´pµq“max
νďµ

c
ρ

Vpνq´Vpµq´V1pµqpν´µq

Jpµ,νq

ùñV´1pµq“´
c
ρ

ν´µ

Jpµ,νq

´

V2pµq`
ρ

c
V´H2pµq

¯

V´pµq is by definition the utiltiy gain from searching contradictive evidence, given value function Vpµq. By
definition of µ˚, V´pµ˚q“Vpµ˚q and whenever Vpµq“V´pµq V´1pµqă0. Therefore, V´pµq can never cross Vpµq

from below — V´pµq is lower than Vpµq and Vpµq is unimprovable with contraditive evidence. That is to say:

ρVpµq“max
"

ρFpµq,max
ν,p,σ

ppVpνq´Vpµq´V1pµqpν´µqq`
1
2

V2pµqσ2
*

s.t. pJpµ,νq`
1
2

H2pµqσ2ďc

To sum up, I construct a policy function νpµq and value function Vpµq solving Equation (18) .. Now consider the four
properties in Theorem 2 .. First, by my construction algorithm, in the case µ˚Pt0,1u, I can replace µ˚ with µ˚˚Pp0,1q.
Therefore WLOG µ˚Pp0,1q. Second, E“

␣

µPr0,1s
ˇ

ˇVpµqąFpµq
(

is a union of disjoint open intervals E“
Ť

Im. By my
construction, Vpµq“Vµmpµq|µPIm . On each Im, νµmpµq is sctrictly decreasing and jumps down at finite pµk’s. Finally,
uniqueness argument in Lemma B.2 . implies that ν is uniquely determined by FOC. Therefore, except for those
discountinous points of ν, ν is uniquely defined. Number of such discontinuous points is countable, thus of zero
measure. Q.E.D.

Lemma B.1. Define V` and V´:

V`pµq“ max
νěµ,m

Fmpνq

1`
ρ
c Jpµ,νq

V´pµq“ max
νďµ,m

Fmpνq

1`
ρ
c Jpµ,νq

There exists µ˚Pr0,1s s.t. V`pµqěV´pµq @µěµ˚; V`pµqďV´pµq @µďµ˚.

Proof. I define function U`
m and U´

m as follows:

U`
m pµq“max

νěµ

Fmpνq

1`
ρ
c Jpµ,νq

U´
m pµq“max

νďµ

Fmpνq

1`
ρ
c Jpµ,νq
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First of all, I solve U`
m ,U´

m on interior µPp0,1q. Since Fmpµq is a linear function, Jpµ,νqě0 is smooth, the objective
function is a continuous function on compact domain. Therefore both maximization operators are well defined.
Existence is already guaranteed, therefore I can refer to first order condition to characterize the maximizer:

FOC: F1
m

´

1`
ρ

c
Jpµ,νq

¯

`Fmpνq
ρ

c
`

H1pνq´H1pµq
˘

“0 (37)

SOC:
ρ

c
F1

m
`

H1pνq´H1pµq
˘

(38)

First discuss solving for νěµ. Since p1`
ρ
c Jqą0, H2ă0, H1pνq´H1pµqď0 and inequality is strict when νąµ. Therefore,

if F1
m ă0, FOC being held will imply SOC being strictly positive at νąµ. So @F1

m ă0, optimal ν is a corner solution.
Moreover:

Fmpµq

1`
ρ
c Jpµ,µq

“FmpµqąFmp1qą
Fmp1q

1`
ρ
c Jpµ,1q

So U`
m pµq“Fmpµq. If F1

m “0, then @νąµ:
Fmpµq

1`
ρ
c Jpµ,µq

“Fmpµq“Fmpνqě
Fmpνq

1`
ρ
c Jpµ,νq

Therefore @F1
m ď0, U`

m pµq“Fmpµq. Then consider the case F1
m ą0. It can be easily verified that SOC is strictly negative

when FOC holds and νąµ. Therefore solution of FOC characterizes maximizer. Consider:

lim
νÑµ

F1
mp1`

ρ

c
Jpµ,νqq`Fmpνq

ρ

c
pH1pνq´H1pµqq“F1

m ą0

lim
νÑ1

F1
mp1`

ρ

c
Jpµ,νqq`Fmpνq

ρ

c
pH1pνq´H1pµqq“´8

Therefore be intermediate value theorem a unique solution νPpµ,1q exists by solving FOC. Since FOC is a smooth
function of µ,ν and SOC is strictly negative, implicit function theorem implies ν being a smooth function of µ. This
is sufficient to apply envelope theorem:

d
dµ

U`
m pµq“

Fmpνqp´H2pµqpν´µqq
`

1`
ρ
c Jpµ,νq

˘2 ą0

Moreover, Equation (37). is strictly positive when ν“µ. This implies U`
m pµqąFmpµq when F1

m ą0.
New consider limit of U`

m when µÑ0,1. When µÑ1, U`
m pµqďmaxνěµ Fmpνq“Fp1q. When µÑ0, consider FOC

Equation (37).:

lim
µÑ0

F1
m

´

1`
ρ

c
Jpµ,νq

¯

`Fmpνq
ρ

c
`

H1pνq´H1pµq
˘

“ lim
µÑ0

F1
m

´

1`
ρ

c
Jpν,µq

¯

`Fmpµq
ρ

c
`

H1pνq´H1pµq
˘

“F1
m

´

1`
ρ

c
Jpν,0q

¯

` lim
µÑ0

Fmpµq
ρ

c
`

H1pνq´H1pµq
˘

“´8

Therefore, when µÑ0, optimal νÑ0. Therefore Fmpνq

1`
ρ
c Jpµ,νq

ďFmpνqÑFmp0q. To conclude, U`
m pµq“Fmpµq when µ“0,1.

Let m be the first F1
m ą0 (not necessarily exists). Let:

U`pµq“max
měm

U`
m pµq

Then U`pµq is a strictly increasing function when m exists. Symmetrically I can define m to be last F1
m ă0 and:

U´pµq“max
mďm

U´
m pµq

There are three cases:

• Case 1: when F is not monotonic, then both U` and U´ exists. Moreover, Fp0qąFmp0q and Fp1qąFmp1q.
Therefore, U`p0qăU´p0q and U`p1qąU´p1q. There must exists unique µ˚Pp0,1q s.t. U`pµ˚q“U´pµ˚q.

• Case 2: when F1ě0, then define µ˚“0.

• Case 3: when F1ď0, then define µ˚“1.

Finally, define V:

V`pµq“max
␣

Fpµq,U`pµq
(

V´pµq“max
␣

Fpµq,U´pµq
(
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Vpµq“max
␣

V`pµq,V´pµq
(

Given our construction, µ˚ always exists and satisfies the conditions in Lemma B.1 ..
Q.E.D.

Lemma B.2. Assume µ0ěµ˚, F1
m ě0, V0,V1

0ě0 satisfies:
$

’

&

’

%

Vpµ0qěV0ěFmpµ0q

V0“max
νěµ0

c
ρ

Fmpνq´V0´V1
0pν´µ0q

Jpµ0,νq

Then there exists a Cp1q smooth and strictly increasing Vpµq defined on rµ0,1s satisfying

Vpµq“max
νěµ

c
ρ

Fmpνq´Vpµq´V1pµqpν´µq

Jpµ,νq
(39)

and initial condition Vpµ0q“V0,V1pµ0q“V1
0. Maximizer νpµq is Cp1q and strictly decreasing on tµ|VpµqąFmpµqu.

Proof. I start from deriving the FOC and SOC for Equation (39) .:

FOC:
F1

m´V1pµq

Jpµ,νq
`

Fmpνq´Vpµq´V1pµqpν´µq

Jpµ,νq2

`

H1pνq´H1pµq
˘

“0

SOC:
H1pνq´H1pµq

Jpµ,νq

ˆ

F1
m´V1pµq

Jpµ,νq
`

Fmpνq´Vpµq´V1pµqpν´µq

Jpµ,νq2

`

H1pνq´H1pµq
˘

˙

`
H2pνq

Jpµ,νq

`

Fmpνq´Vpµq´V1pµqpν´µq
˘

ď0

If feasibility is imposed:

Vpµq“
c
ρ

Fmpνq´Vpµq´V1pµqpν´µq

Jpµ,νq
(40)

FOC and SOC reduces to:

FOC: F1
m´V1pµq`

ρ

c
VpµqpH1pνq´H1pµqq“0 (41)

SOC:
ρ

c
H2pνqVpµqď0 (42)

Let us proceed as follows. I use FOC and feasiblity to derive an ODE system with intial value defined by V0,V1
0. Then

I prove that the solution V must be strictly positive. Therefore, SOC is strict at the point where FOC is satisfied, the
solution must be a local maximizer. Moreover, since H1pνq´H1pµqă0, when FOC is negative, SOC must be strictly
negative, then FOC can cross zero only from above and hence the solution to FOC is unique. Therefore the solution
I get from the ODE system is the maximizer in Equation (39) ..

$

’

’

&

’

’

%

Equation (40). ùñVpµq“
Fmpνq´V1pµqpν´µq

1`
ρ
c Jpµ,νq

Equation (41). ùñV1pµq“F1
m`

ρ

c
VpµqpH1pνq´H1pµqq

ùñ

$

’

’

’

&

’

’

’

%

Vpµq“
Fmpµq

1´
ρ
c Jpν,µq

V1pµq“F1
m`

ρ
c FmpµqpH1pνq´H1pµqq

1´
ρ
c Jpν,µq

(43)

Consistency of Equation (43) . implies that ν“νpµq is characterized by the following ODE:

B

Bµ

Fmpµq

1´
ρ
c Jpν,µq

`
B

Bν

Fmpµq

1´
ρ
c Jpν,µq

9ν“F1
m`

ρ
c FmpµqpH1pνq´H1pµqq

1´
ρ
c Jpν,µq

(44)

Simplifying Equation (44) .:

F1
m

1´
ρ
c Jpν,µq

`

ρ
c FmpµqpH1pνq´H1pµqq

`

1´
ρ
c Jpν,µq

˘2 `

ρ
c FmpµqH2pνqpµ´νq

`

1´
ρ
c Jpν,µq

˘2 9ν

“
F1

m`
ρ
c p´F1

m Jpν,µq`FmpµqpH1pνq´H1pµqqq

1´
ρ
c Jpν,µq
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ùñ FmpµqpH1pνq´H1pµqq`FmpµqH2pνqpµ´νq 9ν“p´F1
m Jpν,µq`FmpµqpH1pνq´H1pµqqqp1´

ρ

c
Jpν,µqq

ùñ FmpµqH2pνqpµ´νq 9ν“´F1
m Jpν,µqp1´

ρ

c
Jpν,µqq´

ρ

c
Jpν,µqFmpµqpH1pνq´H1pµqq

ùñ 9ν“ Jpν,µq
F1

m
`

1´
ρ
c Jpν,µq

˘

`
ρ
c FmpµqpH1pνq´H1pµqq

FmpµqH2pνqpν´µq

Since I want to solve for V0 on rµ0,1s, I solve for ν0 at µ0 as the initial condition of ODE for ν. The technical details
proving the existence of solution to the ODE is relegated to Lemma S.16 ., which checks standard conditions and
invokes the Picard-Lindelof theorem. Lemma S.16 . requires an inequality condition and I show it here:

The FOC characterizing ν is Equation (43).:

pF1
m´V1

0q

´

1´
ρ

c
Jpν0,µ0q

¯

`
ρ

c
Fmpµ0q

`

H1pν0q´H1pµ0q
˘

“0

ðñF1
m

´

1`
ρ

c
Jpµ0,ν0q

¯

`
ρ

c
Fmpν0qpH1pν0q´H1pµqq“V1

0

´

1´
ρ

c
Jpν0,µ0q

¯

ðñFmpµ0q

´

F1
m

´

1`
ρ

c
Jpµ0,ν0q

¯

`
ρ

c
Fmpν0qpH1pν0q´H1pµqq

¯

“V1
0Fmpµ0q

´

1´
ρ

c
Jpν0,µ0q

¯

Since V0“
Fmpµ0q

1´
ρ
c Jpν0,µ0q

ě0, LHS is weakly positive. This satisifes the condition in Lemma S.16 .. Then Lemma S.16 .

guarantees existence of unique νpµq, and νpµq is continuously decreasing from µ0 until it hits ν“µ. Suppose νpµq

hits ν“µ at µm ă1, define Vpµq as following:

Vpµq“

$

’

&

’

%

Fmpµq

1´
ρ
c Jpνpµq,µq

if µPrµ0,µmq

Fmpµq if µPrµm,1s

Then I prove the properies of V:

1. V is by construction smooth except for at µ. When µÑµm, νpµqÑµ. Therefore Jpν,µqÑ0. This implies VpµqÑ

Fmpµq. So V is continuous.

2. By Equation (43) ., when µPrµ0,µmq:

V1pµq“F1
m`

FmpµqpH1pνpµqq´H1pµqq
c
ρ ´Jpνpµq,µq

When µÑµm, H1pνpµqq´H1pµqÑ0, Jpνpµq,µqÑ0. Thus V1pµqÑF1
m. So V1PCrµ0,1s ùñ VPCp1qrµ0,1s.

3. Rewrite Equation (43) . on rµ0,1s:

V1pµq“
F1

m
`

1`
ρ
c Jpµ,νq

˘

`FmpνqpH1pνq´H1pµqq

1´
ρ
c Jpν,µq

(45)

According to proof of Lemma S.16., V1pµqą0 @µPpµ0,1s. Moreover since V0ě0, @µPpµ0,1s Vpµqą0 .

Q.E.D.
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