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Abstract

Empirical researchers often combine multiple instruments for a single treatment
using two stage least squares (2SLS). When treatment effects are heterogeneous, a
common justification for including multiple instruments is that the 2SLS estimand can
still be interpreted as a positively-weighted average of local average treatment effects
(LATEs). This justification requires the well-known monotonicity condition. However,
we show that with more than one instrument, this condition can only be satisfied if
choice behavior is effectively homogenous. Based on this finding, we consider the use of
multiple instruments under a weaker, partial monotonicity condition. This condition is
implied by standard choice theory and allows for richer heterogeneity. First, we show
that the weaker partial monotonicity condition can still suffice for the 2SLS estimand
to be a positively-weighted average of LATEs. We characterize a simple sufficient and
necessary condition that empirical researchers can check to ensure positive weights.
Second, we develop a general method for using multiple instruments to identify a wide
range of causal parameters other than LATEs. The method allows researchers to
combine multiple instruments to obtain more informative empirical conclusions than
one would obtain by using each instrument separately.
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1 Introduction

Instrumental variables (IVs) are widely used to estimate causal relationships. In prac-

tice, researchers often combine multiple instruments using two stage least squares

(2SLS). In Appendix A, we document this practice with a survey of empirical research

published in leading journals since 2000. We find that among the papers using an IV,

more than half report results from a specification with multiple instruments, typically

combined using 2SLS.

The textbook motivation for combining multiple instruments is greater statistical

efficiency. However, this requires an assumption of constant treatment effects. In con-

trast, allowing for heterogeneous treatment effects is a key motivation in the modern

program evaluation literature, and one which is supported by a large body of empirical

work.1 In an influential paper, Imbens and Angrist (1994, “IA” hereafter) provided

an alternative justification for using 2SLS with multiple instruments, which allows for

heterogeneous treatment effects. They show that the 2SLS estimand can be interpreted

as a positively-weighted average of local average treatment effects (LATEs) for subpop-

ulations whose treatment status would be affected by the instrument. This result holds

for any number of instruments, as long as IA’s “monotonicity” condition is satisfied.2

The fact that widespread empirical practice rests on the monotonicity condition

raises a number of questions. What requirements does this condition place on behav-

ior when there are multiple instruments? Can we expect these requirements to be

satisfied? If not, then how else can one use multiple instruments for causal inference

and policy evaluation while still allowing for heterogeneous treatment effects? The

contribution of our paper is to answer these questions and, by doing so, develop a gen-

eral blueprint for extracting and aggregating information about treatment effects from

multiple controlled or natural experiments while still allowing for rich heterogeneity in

both treatment effects and choice behavior.

We begin, in Section 2, by showing that the monotonicity condition cannot be

satisfied with more than one instrument without restricting choice behavior to be ef-

1 Heckman (2001) compiled a list of empirical evidence on heterogeneous treatment effects prior to
2001. More recent papers that find evidence of heterogeneity include Bitler, Gelbach, and Hoynes (2006),
Doyle Jr. (2007), Moffitt (2008), Carneiro and Lee (2009), Firpo, Fortin, and Lemieux (2009), Carneiro,
Heckman, and Vytlacil (2011), Maestas, Mullen, and Strand (2013), Bitler, Hoynes, and Domina (2014),
Walters (2014), Felfe and Lalive (2014), French and Song (2014), Havnes and Mogstad (2015), Kirkeboen,
Leuven, and Mogstad (2016), Kline and Walters (2016), Hull (2016), Carneiro, Lokshin, and Umapathi
(2016), Cornelissen, Dustmann, Raute, and Schönberg (forthcoming), Nybom (2017), and Brinch, Mogstad,
and Wiswall (2017).

2 In discussing the use of multiple instruments instead of a single binary instrument, Angrist and Pischke
(2009, p. 173) write that “The econometric tool remains 2SLS and the interpretation remains fundamentally
similar to the basic LATE result, with a few bells and whistles.”
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fectively homogenous.3 For example, if the treatment is college attendance and the

instruments are tuition and proximity, the monotonicity condition requires all individ-

uals to respond more to tuition than to proximity, or vice versa. This is a concerning

implication; it shows that appealing to IA monotonicity to justify combining multiple

instruments using 2SLS comes at the cost of assuming homogeneity in choice behavior.

Motivated by this observation, we then develop ways to to use multiple instru-

ments under a strictly weaker, partial version of the monotonicity condition. The

partial monotonicity condition is that the IA monotonicity condition is satisfied for

each instrument separately, holding all of the other instruments fixed. We show that

partial monotonicity is satisfied if each instrument makes every individual weakly more

likely to choose treatment. For example, a sufficient condition for partial monotonicity

is that all individuals are at least as likely to attend college if they live closer to a

college or face lower tuitions. However, unlike the IA monotonicity condition, partial

monotonicity does not restrict heterogeneity in the relative impacts of different instru-

ments; it allows for some individuals to respond more to tuition than to proximity, and

for others to respond more to proximity than to tuition.

In Section 3, we show that even though partial monotonicity permits heterogeneous

choice behavior, it can still be sufficient to give the 2SLS estimand an interpretation as

a positively-weighted average of LATEs. Moreover, we characterize sufficient and nec-

essary conditions for this interpretation. We show that the conditions can be checked

empirically by verifying that the unconditional correlations between the treatment and

each instrument have the expected sign. These results provide a simple empirical check

that researchers can report alongside 2SLS estimates formed from multiple instruments.

Weighted averages of LATEs do not generally answer interesting policy counterfac-

tuals, so in Section 4 we develop a new general framework for conducting inference on

specific target parameters. The framework is based on insights from the literature on

marginal treatment effects (Heckman and Vytlacil, 1999, 2001, 2005, 2007a,b). While

that literature always maintains the IA monotonicity condition, we develop our frame-

work under only partial monotonicity so that multiple instruments can be considered

without imposing choice homogeneity.4

There are two inherent identification problems that arise when considering inference

on specific, policy-relevant target parameters. First, there is the problem of extrapo-

3Our analysis here builds upon points made by Heckman and Vytlacil (2005, Section 6) and Heckman,
Urzua, and Vytlacil (2006, Section III.D).

4 Our framework therefore provides a middle-ground between approaches rooted in IA monotonicity and
approaches that remain agnostic on treatment choice, such as Manski (1990, 1994), Manski and Pepper
(2000, 2009), and Chernozhukov and Hansen (2005).
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lating from the individuals whose treatment choices would be affected by the variation

in the data to the individuals relevant for the counterfactual question posed by the

desired target parameter. This problem arises even if there is only a single instrument

(Mogstad and Torgovitsky, 2018). Second, combining multiple instruments requires

aggregating across the different choice margins generated by each instrument.

We address the first identification problem by using the ideas developed in Mogstad,

Santos, and Torgovitsky (2018). Their method allows researchers to extract identify-

ing information about a specific target parameter using each instrument separately.

We solve the second problem by showing that using each instrument separately gener-

ates implications about certain “instrument-invariant” parameters, such as the average

treatment effect. This suggests a “logical consistency” condition that requires these

implications to not be contradictory. We show that this logical consistency condition

allows identifying information to be aggregated across different instruments. Thus, our

new method provides a general blueprint for extracting and aggregating variation across

different sources of exogenous variation, including controlled or natural experiments,

without imposing strong restrictions on choice behavior such as the IA monotonicity

condition.

2 The Monotonicity Condition with Multiple Instruments

We begin by considering the interpretation of the IA monotonicity condition when there

are multiple instruments. To do this, we first develop an equivalent characterization

of the condition which facilitates a graphical interpretation of its content. Then, we

argue that the condition severely restricts choice heterogeneity. This motivates interest

in the weaker, partial monotonicity assumption that we use in the rest of the paper.

Throughout the paper, we focus on the workhorse case of a binary treatment, and we

condition on covariates nonparametrically.

2.1 Definition of the IA Monotonicity Condition

Consider a population of individuals i ∈ I. Denote individual i’s potential treatment

status if some instrument Zi were set to z by Di(z) ∈ {0, 1}, where z takes values in

some subset Z of RL. We assume that the support of Zi is contained in Z, possibly as

a proper subset. When L > 1, we view each component of the vector Zi as comprising

an economically distinct quantity. That is, if L = 2 then Zi,1 and Zi,2 will denote the

two distinct instruments, each of which can take two or more values.

Imbens and Angrist (1994, “IA”) introduced the following assumption on the po-

tential treatment states, which they described as “monotonicity.”
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Assumption IAM. (IA Monotonicity) For all z, z′ ∈ Z either Di(z) ≥ Di(z
′) for

all i ∈ I, or Di(z) ≤ Di(z
′) for all i ∈ I.

Heckman and Vytlacil (2005, pp. 715-716) observed that Assumption IAM requires

uniformity across individuals, not monotonicity in the instrument. The results ahead

provide further justification of their observation. Nevertheless, to conform with the

existing literature, we still refer to Assumption IAM as “IA monotonicity.” For clarity,

we refer to the usual definition of monotonicity as “actual monotonicity.”

Assumption AM. (Actual Monotonicity) If z′ ≥ z in the vector sense (component-

wise), then Di(z
′) ≥ Di(z) for all i ∈ I.

We show below that IA monotonicity (Assumption IAM) neither implies nor is implied

by actual monotonicity (Assumption AM).

2.2 A Graphical Characterization of IA Monotonicity

Assumption IAM is a comparison across all individuals for any two values of Zi. To

interpret this condition when Zi is a vector, it is useful to rephrase it as a comparison

across all values of Zi for any two individuals. The equivalent condition is that for any

two individuals j and k, either j must take treatment under all instrument values that

k does, or the opposite. This is the content of the following proposition.5

Proposition 1. For any i ∈ I, define Zi ≡ {z ∈ Z : Di(z) = 1} as the set of all

instrument values for which individual i would take treatment. Then Assumption IAM

holds if and only if for all j, k ∈ I, either Zj ⊆ Zk, or Zk ⊆ Zj.

Proposition 1 shows that Assumption IAM can be interpreted as a “nesting condition”

among the sets of instrument values that induce different agents to take treatment.6

This means that with two instruments one can gain intuition about the content of

Assumption IAM by drawing sets in R2.

For example, in Figure 1a, we have drawn two sets Zj and Zk that are not nested.

Proposition 1 says that Assumption IAM fails, which can be verified by comparing the

choices individuals j and k would make at the points marked zj and zk. Yet, for both

individuals j and k, the instrument has a monotonic effect in the sense that Di(z) is

5 Proofs for all propositions are contained in Appendix B.
6 This nesting condition is different than the “equivalent monotonicity condition” used by Vytlacil (2002,

p. 335), although it shares a superficial resemblance. Vytlacil (2002, p. 336) used the sets Zi for his proof
of the existence of an equivalent latent index model.
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z1

z2

Zk

Zj

zk

zj

(a) Sets Zj and Zk are not nested,
so Proposition 1 implies that Assumption
IAM does not hold. For example, compare
zj and zk: Dj(zj) = 1 > 0 = Dk(zj), while
Dk(zk) = 1 > 0 = Dj(zk). Yet, Di(z) is
monotone in z for both i = j, k.

z1

z2

Zk

Zj

z

z′

z′′

(b) If I = {j, k}, then Proposition 1 shows
that Assumption IAM would hold. How-
ever, neither Dj(z) nor Dk(z) are mono-
tone in z. For example, z ≤ z′, and z′ ≤
z′′, but Di(z) = Di(z

′′) = 0 < Di(z
′) = 1

for i = j, k.

Figure 1: Assumption IAM neither implies nor is implied by monotonicity of Di(z) in z.

increasing in z. That is, if z′ ≥ z as a vector (component-wise), then Di(z
′) ≥ Di(z).

This shows that Assumption AM does not imply Assumption IAM.7

Figure 1b depicts the opposite case, in which Zj ⊆ Zk. If I only consists of

individuals like j and k, then Proposition 1 implies that Assumption IAM is satisfied.

However, the instrument does not have a monotonic effect on treatment choice. For

example, moving from z to z′ ≥ z moves both individuals’ choices from 0 to 1, but

moving from z′ to z′′ ≥ z′ moves their choices back to 0. This shows that Assumption

IAM does not imply monotonicity in the usual sense of Assumption AM.

2.3 Implications for Heterogeneity in Choice Behavior

In this section, we examine the restrictions that Assumption IAM places on choice

behavior. To do this, we use a random utility model. Assume that individual i’s

indirect utility from choosing d when the instrument is z is given by Vi(d, z). The

7 This finding contrasts with the assertion of Heckman et al. (2006, p. 400) that “If [Di(z)] is monotonic
in the usual usage of this term, and response are in the same direction for all people, then the ‘monotonicity’
or ‘uniformity’ condition IV-3 will be satisfied.” The context of their statement is somewhat ambiguous.
While it is true for a scalar instrument (see Proposition 3 ahead), Figure 1a shows that it is false in general.
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{z : Vk(z) = 0}
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(a) Each instrument takes two binary val-
ues. Individual j has Zj = {(1, 0), (1, 1)}
and individual k has Zk = {(0, 1), (1, 1)}.
Points (1, 0) and (0, 1) violate the nesting
condition in Proposition 1.
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{z : Vj(z) = 0}

{z : Vk(z) = 0}

∂Vj(z
?)
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?)

zk

zj
z?

(b) An illustration of Proposition 2.
When (3) fails to hold for two individu-
als j, k ∈ I, one can find points zj and
zk which violate the nesting condition in
Proposition 1 by taking small steps in the
directions of the dotted arrows.

Figure 2: Assumption IAM requires homogenous choice behavior.

individual chooses Di(z) = 1 if and only if Vi(1, z) ≥ Vi(0, z):

Di(z) = arg max
d∈{0,1}

Vi(d, z) ≡

1, if Vi(z) ≥ 0

0, if Vi(z) < 0
, (1)

where Vi(z) ≡ Vi(1, z)− Vi(0, z) and ties are resolved in favor of treatment.

For concreteness, consider the familiar setting of the returns to schooling in which

Di(z) represents a binary decision to attend college. Suppose that z = (z1, z2), where z1

is a tuition subsidy, and z2 is proximity to a college. Larger values of either instrument

encourages college attendance, so that Di(z) is a monotonic function of z and Assump-

tion AM is satisfied. As just noted, this neither implies nor is implied by Assumption

IAM. In Figure 2, we draw two possible indifference curves along which individuals j

and k would be on the margin between attending and not attending college.

Suppose that z only takes the values {(0, 0), (0, 1), (1, 0), (1, 1)} shown in Figure 2a.

Then individual j would attend college if and only if they received a tuition subsidy,

regardless of whether they lived in close proximity. Individual k would attend college if

and only if they lived in close proximity, regardless of whether they received a tuition

subsidy. That is, (1, 0) is in Zj but not Zk, and (0, 1) is in Zk but not Zj , so that
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Assumption IAM fails. Thus, Assumption IAM does not permit individuals to differ in

their response to different incentives to attend college: All individuals must find either

a tuition subsidy or distance to be more compelling. This suggests a strong form of

preference homogeneity.

We can sharpen this statement when the instrument is continuous and the net

indirect utility function is differentiable. This is shown in the next proposition, which

is illustrated in Figure 2b.

Proposition 2. Suppose that Di(z) is determined by (1). Let z? be a point in the

interior of Z, and let I(z?) ≡ {i ∈ I : Vi(z
?) = 0} denote the set of individuals

who are indifferent between treatment and non-treatment when faced with z?. Suppose

further that Vi is continuously differentiable in a neighborhood of z?. Then Assumption

IAM implies that

∂1Vj(z
?)∂2Vk(z

?) = ∂1Vk(z
?)∂2Vj(z

?) (2)

for all j, k ∈ I(z?), where ∂`Vi(z) ≡ ∂
∂z`
Vi(z) for ` = 1, 2.

Proposition 2 says that if Assumption IAM holds, then any two individuals who are

indifferent between treatment and non-treatment at z? must have the same marginal

rate of substitution between the two components of the instrument. That is, assuming

that the second component has an impact at z? (so that ∂2Vi(z
?) 6= 0), Assumption

IAM implies

∂1Vj(z
?)

∂2Vj(z?)
=
∂1Vk(z

?)

∂2Vk(z?)
(3)

for all individuals j and k who are indifferent at z?. This is a strong statement about

preference homogeneity.

For example, suppose that individual i’s net utility from attending college is given

by the random coefficients specification

Vi(z) = Bi,0 +Bi,1z1 + z2 so that Di(z) = 1[Bi,0 +Bi,1z1 + z2 ≥ 0], (4)

where Bi,1 ≥ 0 controls variation in the taste for subsidies relative to proximity. Propo-

sition 2 shows that Assumption IAM does not hold if Bi,1 varies with i.8 Thus, the

college attendance decision of every individual is either affected more by tuition subsi-

dies (if b1 ≡ Bi,1 ≥ 1), or by proximity (if b1 < 1), and all individuals trade off these

8 Heckman et al. (2006, p. 399) note that Assumption IAM can fail in random coefficient specifications
like (4). Our analysis shows that it must fail when the instruments are continuous.
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incentives at the same rate. Assumption IAM does not permit heterogeneity in these

behavioral responses.

2.4 Partial IA Monotonicity

Assumption IAM creates unattractive implications for choice behavior because it re-

quires cross-instrument comparisons, such as the comparison between (0, 1) and (1, 0)

in Figure 2a. We can eliminate these comparisons by considering a condition that com-

pares only values of a single component of the instrument, holding all other components

fixed. To state such a condition, we divide vectors z ∈ Z into their `th component,

z`, and all other (L − 1) components, z−`. We write z = (z`, z−`) to emphasize the

separation of the `th component.

Consider the following assumption:9

Assumption PM. (Partial Monotonicity) Take any ` = 1, . . . , L, and let (z`, z−`)

and (z′`, z−`) be two points in Z. Then either Di(z`, z−`) ≥ Di(z
′
`, z−`) for all i ∈ I, or

Di(z`, z−`) ≤ Di(z
′
`, z−`) for all i ∈ I.

Assumption IAM clearly implies Assumption PM. When L = 1, Assumption PM is

equivalent to Assumption IAM; when L > 1, it is strictly weaker. To see this, recall

Figure 2a, where we determined that Assumption IAM fails. Holding z2 = 0 fixed,

both individuals j and k are weakly induced to treatment by switching z1 from 0 to

1. The same is true when the roles of z1 and z2 are swapped. If I consisted of only

individuals like j and k, then Assumption PM would be satisfied.

Figure 2 suggests that a simple sufficient condition for Assumption PM is mono-

tonicity in the usual sense of Assumption AM. This is the content of the following

proposition.

Proposition 3. Assumption AM implies Assumption PM.

Unlike Assumption IAM, Assumption AM can be easily satisfied in random utility

models with heterogeneous preferences. For example, if Vi(z) follows the random co-

efficients specification (4), then it will be satisfied if Bi,1 is positive for all i. This is

easy to interpret and justify: All individuals are more likely to attend college if tu-

ition is lower, even if they differ in their preferences for tuition relative to proximity.

More generally, Proposition 3 shows that Assumption PM is satisfied whenever Vi(z)

is weakly increasing in z.10

9 Mountjoy (2018) uses a similar assumption in a setting with multiple unordered treatments.
10 More generally still, Theorem 4 of Milgrom and Shannon (1994) implies that Assumption PM will be

satisfied if Vi(d, z) has the single-crossing property in (d; z). The single-crossing property is ordinal, and is
strictly weaker than monotonicity in the usual sense.
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Assumption AM is a sufficient but not necessary condition for Assumption PM. To

see the difference, consider the interacted random coefficient specification

Vi(z) = Bi,0 +Bi,1z1 + z2 +Bi,2z1z2, (5)

and suppose for simplicity that Z = {0, 1}2. If for all individuals i ∈ I, Bi,1 ≥ 0,

Bi,2 ≤ −1, but Bi,1 ≤ −Bi,2, then Assumption AM fails while Assumption PM is

satisfied. The reason is due to the strong negative interaction effect between z1 and z2

on indirect net utility, which is controlled here by Bi,2. This implies that Di(z1, z2) is

increasing as a function of z1 when z2 = 0, but decreasing when z2 = 1, and similarly

when the roles of z1 and z2 are reversed. This violates Assumption AM, even though

Assumption PM is satisfied.11

3 Interpreting 2SLS under Partial IA Monotonicity

Imbens and Angrist (1994, Theorem 2) showed that under standard instrument ex-

ogeneity and relevance conditions, Assumption IAM ensures that the 2SLS estimand

can be written as a weighted average of causal effects for complier subpopulations.

The weights are convex in that they are non-negative and sum to one. Their result

holds regardless of the number of instruments, as long as the first stage for the 2SLS

estimand is fully saturated, and the instruments satisfy Assumption IAM. However, we

have shown that Assumption IAM requires a strong form of preference homogeneity

with two or more distinct instruments. In this section, we show that their result can

be partially salvaged when one replaces Assumption IAM with the weaker Assumption

PM.

3.1 Potential Outcomes and Exogeneity Condition

Before continuing, we need to introduce an outcome variable, Yi. We write potential

outcomes for Yi as Yi(1) and Yi(0) to correspond to settingDi to treatment (Di = 1) and

non-treatment states (Di = 0). The observed outcome is Yi = DiYi(1)+(1−Di)Yi(0) =

Yi(Di). The observed treatment state is related to the potential treatment states

analyzed in the previous section as

Di =
∑
z∈Z

1[Zi = z]Di(z) = Di(Zi).

11 To see that the above configuration satisfies Assumption PM, note that Bi,1 ≥ 0 implies that Di(0, 0) ≤
Di(1, 0), Bi,1 ≤ −Bi,2 implies that Di(0, 1) ≥ Di(1, 1), Di(0, 0) ≤ Di(0, 1) by virtue of the normalized
coefficient on z2, and Bi,2 ≤ −1 implies that Di(1, 0) ≥ Di(1, 1).
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Gi (group) Di(0, 0) Di(0, 1) Di(1, 0) Di(1, 1)

Always-taker (at) 1 1 1 1
Eager complier (ec) 0 1 1 1

Reluctant complier (rc) 0 0 0 1
Never-taker (nt) 0 0 0 0
Z1 complier (1c) 0 0 1 1
Z2 complier (2c) 0 1 0 1

Table 1: Types of individuals under Assumption AM with two binary instruments.

Throughout the paper, we maintain the following exogeneity condition:

Assumption E. (Exogeneity) (Yi(0), Yi(1), {Di(z)}z∈Z)⊥⊥Zi.

Assumption E is common in nonparametric IV models, and identical to Condition 1

of Imbens and Angrist (1994). For simplicity, we state the condition in terms of full

independence, although our analysis will be about mean outcomes, so only requires a

weaker form of Assumption E.12

3.2 Two Binary Instruments

To build intuition, we first consider a special case in which Zi = (Zi,1, Zi,2) consists

of two binary instruments Zi,1 ∈ {0, 1} and Zi,2 ∈ {0, 1}, so that Z = {0, 1}2. We

also assume that Assumption AM holds, instead of the weaker Assumption PM that

we consider in the subsequent sections. Thus, each instrument weakly encourages all

individuals to participate in treatment, so that Di(1, z2) ≥ Di(0, z2) and Di(z1, 1) ≥
Di(z1, 0) for all (z1, z2) and all i. Under these conditions the population I can be

partitioned into six mutually exclusive and exhaustive groups.

Proposition 4. If Z = {0, 1}2 and Assumption AM is satisfied, then each i ∈ I
belongs to exactly one of the six groups in Table 1.

The terminology in Table 1 modifies that of Angrist, Imbens, and Rubin (1996). Al-

ways and never takers always exhibit the same behavior regardless of either instrument.

Z1 compliers take treatment if and only if Zi,1 is switched on, while Z2 compliers take

treatment if and only if Zi,2 is switched on. Eager compliers participate in treatment

if either instrument is on, and reluctant compliers only participate if both instruments

are on. For any of the six groups, an increase in either instrument weakly increases

12 The weaker form still requires that {Di(z)}z∈Z ⊥⊥Zi, but relaxes full joint independence to the restriction
that E[Yi(d)|{Di(z)}z∈Z , Zi = z′] not depend on z′ for both d = 0 and d = 1.
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−2 −1 0
0

1

2

Bi,0

Bi,1

Always-takers Eager compliers
Z1 compliers Z2 compliers
Reluctant compliers Never-takers

Figure 3: Correspondence between random coefficients and behavioral types if treatment were
determined by the binary choice model (4) with Bi,1 ≥ 0. For example, a Z2 complier has Di(0, 0) =
0, Di(1, 0) = 0, Di(0, 1) = 1, and Di(1, 1) = 1. The first three choices imply that Bi,0 < 0,
Bi,0 + Bi,1 < 0, and Bi,0 + 1 > 0, with the fourth choice implied by the third. The region of such
(Bi,0, Bi,1) realizations is shown in cross-hatches.

treatment. Assumption IAM will be violated if the population includes both Z1 and

Z2 compliers, since in this case a change in Zi from (0, 1) to (1, 0) would induce Z1

compliers to enter treatment and Z2 compliers to exit treatment. Figure 3 shows how

realizations of random coefficients would map into these six types if potential treatment

states were generated by (4).

As in Imbens and Angrist (1994, Theorem 2), we consider the 2SLS estimand with

a saturated first stage, and a second stage with Di and a constant. That is, the 2SLS

estimand is formed by using 1 (a constant), Zi,1, Zi,2, and Zi,1Zi,2 as instruments for

1 and Di. Since the first stage is saturated, this 2SLS procedure generates the same

coefficient estimate on Di as the IV estimator that uses the propensity score p(Zi) ≡
P[Di = 1|Zi] as the sole instrument for Di. Let β2sls denote this coefficient.13 Let

Gi ∈ {at, nt, 1c, 2c, ec, rc} denote individual i’s group among the six shown in Table 1,

and define πg ≡ P[Gi = g] and ∆g ≡ E[Yi(1)−Yi(0)|Gi = g] to be the population shares

and average treatment effects for each group. The following proposition establishes the

relationship between these quantities and β2sls.

13 That is, β2sls = Cov(Yi,p(Zi))
Cov(Di,p(Zi))

.
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Proposition 5. Suppose Zi has support {0, 1} × {0, 1} and that Assumption AM is

satisfied. Suppose in addition that Assumption E is satisfied, and that β2sls exists.

Then

β2sls =
∑

g∈{1c,2c,ec,rc}

τg∆g,

where the τg are weights that sum to 1. Both τec and τrc are always non-negative. If

π1c ≥ π2c, then τ1c is also non-negative, while the sign of τ2c is given by

sgn(τ2c) = 1[π2c > 0]× sgn
(

P[Di = 1|Zi,2 = 1]−P[Di = 1|Zi,2 = 0]
)
.

If π2c ≥ π1c, then τ2c is non-negative, and the sign of τ1c is given by

sgn(τ1c) = 1[π1c > 0]× sgn
(

P[Di = 1|Zi,1 = 1]−P[Di = 1|Zi,1 = 0]
)
.

Proposition 5 shows that the 2SLS estimand is a linear combination of average

treatment effects for the four groups that change treatment status in response to one

or both of the instruments. The groups are non-overlapping, and the weights on the

groups (τg) sum to unity.14 The 2SLS estimand might not be a convex average of

treatment effects for the four groups, however, because some of the weights might be

negative. The weights for reluctant compliers and eager compliers are always non-

negative. If π1c ≥ π2c, the weight given to the Z1 compliers is also non-negative, but

the weight given to the Z2 compliers can be either positive or negative.

The intuition is that a shift of Zi from (0, 1) to (1, 0) induces Z1 compliers to enter

treatment and Z2 compliers to exit treatment. If π1c ≥ π2c, then the net effect of

this shift is still more participation in treatment. However, the Z2 compliers act as

“defiers,” and therefore receive negative weight for this binary contrast. Whether the

overall weight given to the Z2 compliers is positive or negative depends on whether

this negative weight is outweighed by the positive weight given to the Z2 compliers

in the two other instrument contrasts for which they enter treatment: Zi = (0, 0) to

Zi = (0, 1), and Zi = (1, 0) to Zi = (1, 1). If instead π2c ≥ π1c, then the roles of the

Z1 and Z2 compliers are reversed.

3.3 When is the 2SLS Estimand a Positive Weighted Average?

Proposition 5 shows that one can check whether the 2SLS estimand is a positive

weighted average of causal effects by examining observable relationships between treat-

14 Formulas for τg are given in the proof.
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ment and instruments. Specifically, if π1c ≥ π2c, then τ2c will be negative if and only if

the coefficient on Zi,2 in a regression ofDi on Zi,2 (and a constant) is negative. Likewise,

if π2c ≥ π1c, then τ1c will be negative if and only if the coefficient on Zi,1 in a regression

of Di on Zi,1 (and a constant) is negative. One can either check both cases, or check

only the relevant case, which is identified by the sign of p(1, 0)− p(0, 1) = π1c − π2c.15
Finding negative weights in either case represents a situation in which the uncondi-

tional relationship between an instrument and the treatment has a different sign than

the ceteris paribus impact of the instrument, which is positive under Assumption AM.

This may be rare in practice, since researchers often have prior beliefs regarding the

impacts of the instruments (e.g. if each instrument is an encouragement to take treat-

ment), and a researcher may be unlikely to use an instrument if the raw correlation

with the treatment contradicts the theoretically expected sign. A necessary condition

for such a contradiction is that the instruments are negatively correlated.

Proposition 6. Suppose Zi consists of two binary instruments that satisfy Assumption

AM, Assumption E is satisfied, and β2sls exists. If Cov(Zi,1, Zi,2) ≥ 0, then both τ1c

and τ2c are non-negative.

An important special case of Proposition 6 is when the instruments are independent,

so that Cov(Zi1, Zi,2) = 0 and the 2SLS weights are guaranteed to be positive. The

leading scenario in which the instruments would be negatively correlated is when Zi,j =

1 tends to imply Zi,k = 0 for j 6= k. For example, Zi,1 and Zi,2 may indicate two

different arms in an experiment corresponding to different types of encouragement

to take the treatment. In this setting, Cov(Zi,1, Zi,2) < 0 and negative weights are

possible.

3.4 Multivalued Instruments

Suppose that Zi consists of two or more distinct, discrete instruments, and that its

support has K elements total. Label these elements as supp(Zi) ≡ {z1, . . . , zK} in

increasing order of the propensity score, so that p(zk) ≥ p(zk−1) for all k ≥ 2. In the

case considered in Section 3.2, K = 4 and the instrument values would be ordered as

z1 = (0, 0), z2 = (0, 1), z3 = (1, 0), and z4 = (1, 1) if p(1, 0) ≥ p(0, 1), with the roles of

z2 and z3 switched in the opposite case.

Suppose that Assumption PM is satisfied. Let G represent the set of all realizations

of {Di(z)}z∈Z that are consistent with Assumption PM. In Section 3.2, there were two

binary instruments that satisfied Assumption AM, so G was composed of the six groups

15 Except for πat and πnt, the group shares are not themselves separately identified, since there are five
linearly independent unknown shares πg and only four values of p(Zi).
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in Table 1. As before, let Gi denote individual i’s group membership, let πg denote

the proportion of the population in each group g, and let ∆g denote group g’s average

treatment effect.

For each g ∈ G, define the set:

Cg = {k ∈ {2, . . . ,K} : Di(z
k) = 1 and Di(z

k−1) = 0 for all i with Gi = g}.

This is the set of instrument values k at which individuals in group g are compliers in

the sense that they would not take treatment if Zi = zk−1, but would take treatment

if Zi = zk. Similarly, define

Dg = {k ∈ {2, . . . ,K} : Di(z
k) = 0 and Di(z

k−1) = 1 for all i with Gi = g}

as the set of instrument values at which individuals in group g act as defiers. For

example, in Section 3.2 with p(1, 0) ≥ p(0, 1), we had C1c = {3}, D1c = ∅, C2c = {2, 4},
and D2c = {3}. We also had Cec = {1}, Crc = {4}, Cat = Cnt = ∅, and Dg = ∅ for each

g ∈ {at, nt, ec, rc}.
As before, consider the same 2SLS specification used by Imbens and Angrist (1994,

Theorem 2) with a saturated first stage, and a second stage that contains Di and a

constant. Let β2sls denote the 2SLS estimand corresponding to the coefficient on Di.

The following proposition provides an interpretation of the 2SLS estimand.

Proposition 7. Suppose Zi takes K values {z1, . . . , zK} labeled so that the propensity

score is increasing and suppose that the support of Zi is rectangular, that is supp(Zi) =

supp(Zi,1)×· · ·×supp(Zi,L). If Assumptions PM and E are satisfied, and if β2sls exists,

then

β2sls =
∑

g∈G:Cg 6=∅

τg∆g,

where τg are weights such that
∑

g∈G:Cg 6=∅ τg = 1, and

sgn(τg) = 1[πg > 0]× sgn

(
K∑
k=2

(1[k ∈ Cg]− 1[k ∈ Dg]) Cov
(
Di, 1[p(Zi) ≥ p(zk)]

))
.

Proposition 7 shows that under Assumption PM, the 2SLS estimator produces a

weighted average of treatment effects for groups that comply with some instrument

change. The weights on each group could be positive or negative, but this can be

checked empirically. To do this, one must generate the sets Cg and Dg by applying
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Assumption PM to the set of K instrument values. The sign of the weight for group g

is then determined by the overall sum of Cov(Di, 1[p(Zi) ≥ p(zk)] for instrument values

k at which they comply less the sum of these terms at values k for which they defy.

The additional rectangular support condition is necessary to ensure that the contrasts

picked up in β2sls are restricted by Assumption PM. For example, if in the special case

in Section 3.2 the support of Zi were only {(0, 1), (1, 0)}, then either the Z1 compliers

or Z2 compliers would always have negative weight. This is intuitive since Assumption

PM does not place any direct restrictions on behavior in the contrast between (0, 1)

and (1, 0).

4 Identification with Multiple Instruments

In the previous section, we showed that under Assumption PM, the 2SLS estimand

can still identify a positive weighted average of causal effects over exhaustive and

mutually exclusive subpopulations. However, even when this is so, the 2SLS estimand

will not necessarily answer a policy counterfactual of interest to the researcher. This is

a consequence of restricting oneself to the 2SLS estimator, which weights groups based

on statistical considerations rather than economic considerations. In this section, we

develop a new general framework for causal inference with multiple instruments under

Assumption PM.

4.1 Instruments and Treatment Choices

As before, we let Zi ≡ (Zi,1, . . . , Zi,L) denote a vector of L instruments. In this section,

we assume for notational simplicity that supp(Zi) = Z. However, we will not place any

restrictions on the joint distribution of Zi, and in particular its components may be

discrete or continuous, and dependent with each other in arbitrary ways. As in Section

2.4, we let Zi,−` denote the (L − 1)–dimensional random vector formed by removing

the `th component (Zi,`) from Zi. We denote the supports of Zi,` and Zi,−` by Z` and

Z−`, respectively.

For each `, the potential treatments {Di(z)}z∈Z generate a collection of marginal

potential treatments, defined as

Di,`(z`) ≡
∑

z−`∈Z−`

1[Zi,−` = z−`]Di(z`, z−`) ≡ Di(z`, Zi,−`). (6)

The marginal potential treatments represent individual i’s treatment choice if the `th

component of Zi had been set to z`, but all other components had remained at their

observed realizations. Conditional on Zi,−`, each marginal potential treatment is equal
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to a single joint potential treatment:

P[Di,`(z`) = Di(z`, z−`)|Zi,−` = z−`] = 1. (7)

Thus, if Assumption PM is satisfied, then each set of potential treatments {Di,`(z`)}z`∈Z`

satisfies Assumption IAM conditional on any realization of Zi,−`.

In addition to Assumption PM, we continue to maintain Assumption E. Notice

that Assumption E does not imply that {Di,`(z`)}z`∈Z`
⊥⊥Zi. This is because Di,`(z`)

depends on Zi,−`, which is itself a subvector of Zi. However, Assumption E does imply

that

{Di,`(z`)}z`∈Z`
⊥⊥Zi,`|Zi,−` for every `. (8)

This observation combined with (7) suggests considering L different models of treat-

ment choice, where in the `th model the instrument is the scalar Zi,`, and the other

components, Zi,−`, are conditioned on as control variables.

4.2 Selection Equations

We formulate the models of treatment choice using Vytlacil’s (2002) equivalence result.

This result shows that for every ` there exists a scalar latent variable Vi,` that satisfies

Vi,`⊥⊥Zi,`|Zi,−`, and such that

Di,`(z`) = 1 [Vi,` ≤ η`(z`, Zi,−`)] , (9)

where η` is a function that does not vary across i. Using the standard normalization,

this model is equivalent to

Di,`(z`) = 1 [Ui,` ≤ p(z`, Zi,−`)] , (10)

where Ui,` is distributed uniformly over [0, 1], conditional on any realization of Zi,−`,

and p(z) ≡ P[Di = 1|Zi = z] is the propensity score. We maintain this normalization

for each model ` = 1, . . . , L.

The unobservable Ui,` can be interpreted as individual i’s latent propensity to take

treatment as measured against the incentive (or disincentive) created by the `th instru-

ment. Individuals with lower values of Ui,` are more prone to take treatment than those

with higher values. Individuals with intermediate values of Ui,` are compliers whose

treatment decisions are impacted by shifts in Zi,`. The choice behavior of each indi-

vidual is characterized by a vector of unobservables, (Ui,1, . . . , Ui,L), which measures
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the propensity to take treatment along different margins.

It is important to emphasize that Ui,` is only directly comparable within strata

defined by the other instruments, Zi,−`. To see this, return to the example with two

binary instruments, and recall the six latent groups shown in Table 1. Conditional

on Zi,2 = z2, the propensity score p(Zi,1, z2) takes two values, which divides the unit

interval into three sets, (0, p(0, z2)], (p(0, z2), p(1, z2)], and (p(1, z2), 1]. An individual

with Ui,1 in the first set takes treatment even if Zi,1 = 0. They must be an always-taker

if z2 = 0. However, if z2 = 1, then they could be an always-taker, an eager complier, a

reluctant complier, or a Z2 complier. This underscores the importance of conditioning

on Zi,−`, which is a consequence of using Assumption PM instead of Assumption IAM.

Another novel consequence of considering Assumption PM is that each selection

model provides a different representation of the same observed treatment status. That

is:

Di =
∑
z`∈Z`

1[Zi,` = z`]Di,`(z`) = 1 [Ui,` ≤ p(Zi)] for every ` = 1, . . . , L. (11)

Thus, replacing Assumption IAM with Assumption PM requires replacing threshold

crossing models like (9) with multiple hurdle models like (11).16 Notice that (11) will

only be satisfied if the joint distribution of (Ui,1, . . . , Ui,L) satisfies some particular

properties. For example, if L = 2, then it necessary for P[Ui,1 ≤ p(z), Ui,2 > p(z)|Zi =

z] = 0 for any z, since otherwise we would have the logical contradiction that Di = 1

and Di = 0. These properties get incorporated into our analysis through the concept

of “logical consistency” which is discussed in the next section.

Instead of deriving (11) from Assumption PM, one can also derive it directly from a

threshold crossing equation that satisfies Assumption PM. For example, suppose that

L = 2 with potential outcomes determined by a random coefficients specification of

16 See Poirier (1980) and the related models in Heckman (1978). Lee and Salanié (2018) have recently
considered marginal treatment effect methods when the selection equation is assumed to have a double hurdle
model form like (11) with L = 2. Their approach takes the double hurdle model as primitive, and requires
maintaining assumptions sufficiently strong to point identify the joint distribution of its latent variables. In
contrast, our approach derives the double hurdle model from Assumption PM, and we will not need such
assumptions. However, our work can be viewed as sharing their motivation of allowing for richer unobserved
heterogeneity in treatment choice than is allowed by Assumption IAM. In this regard, our work is also
related to a recent active literature that focuses on providing weaker models of choice behavior for use with
discrete, unordered treatments. For example, see Heckman, Urzua, and Vytlacil (2008), Kirkeboen et al.
(2016), Kline and Walters (2016), Mountjoy (2018), Heckman and Pinto (2018), and Kamat (2018). None
of this literature addresses the restrictions on choice behavior implied by having multiple instruments.
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indirect utility as in (4). That is,

Di(z1, z2) = 1[Bi,0 +Bi,1z1 + z2 ≥ 0], (12)

where (Bi,0, Bi,1)⊥⊥(Zi,1, Zi,2). As shown in Proposition 2, this specification leads to

a violation of Assumption IAM unless Var(Bi,1) = 0. However, Proposition 3 implies

that Assumption PM will be satisfied as long as Bi,1 ≥ 0 (almost surely).

From (12), the two pre-normalized selection equations (9) can be derived as

Di,1(z1) = 1
[ ≡Vi,1︷ ︸︸ ︷
−(Bi,0 + Zi,2)

Bi,1
≤
≡ η1︷︸︸︷
z1

]
and Di,2(z2) = 1

[ ≡Vi,2︷ ︸︸ ︷
−(Bi,0 +Bi,1Zi,1) ≤

≡ η2︷︸︸︷
z2

]
.

Notice in particular that even though (Bi,0, Bi,1) is independent of (Zi,1, Zi,2), this will

not be the case for (Vi,1, Vi,2). Instead, Vi,1 is dependent with Zi,2, and in general only

independent with Zi,1 after conditioning on Zi,2. Similarly, Vi,2 is dependent with Zi,1

with independence between Vi,1 and Zi,2 only guaranteed after conditioning on Zi,1.

In addition, Vi,1 and Vi,2 are clearly dependent, since they are both functions of Bi,0

and Bi,1. The joint distribution of the normalized selection unobservables, (Ui,1, Ui,2),

is effectively the copula of (Vi,1, Vi,2), and so will also be dependent.

4.3 Marginal Treatment Response Functions

For each `, we define a pair of marginal treatment response (MTR) functions,

m`,d(u`, z−`) ≡ E [Yi(d)|Ui,` = u`, Zi,−` = z−`] for d = 0, 1. (13)

The MTR functions describe variation in outcomes as a function of the propensity to

take treatment along the `th margin, Ui,`, again conditioning on all other instruments,

Zi,−` = z−`. We denote each pair of MTR functions as m` ≡ (m`,0,m`,1). Each pair m`

generates a marginal treatment effect (MTE) function (Heckman and Vytlacil, 1999,

2001, 2005, 2007a,b) formed as m`,1(u`, z−`)−m`,0(u`, z−`). We let m ≡ (m1, . . . ,mL),

and assume that m belongs to a known parameter space,M≡M1× · · · ×ML, which

reflects prior information (assumptions) that the researcher wants to impose about the

MTR pairs.17

Each MTR pair and corresponding MTE function is defined in terms of a different

margin of selection, Ui,`, which is itself defined by the `th instrument component. Since

the MTR pairs are instrument-specific, they are not directly comparable. However, a

17 We assume throughout that each M` is contained in a vector space.
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MTR pairs that are logically consistent

m1,1(u1, 0) = m1,1(u1, 1)

m2,1(u2, 0)

m2,1(u2, 1)

(a) Both m1,1 and m2,1 imply the same
value of E[Yi(1)]. These MTR pairs are
logically consistent.
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MTR pairs that are logically inconsistent

m1,1(u1, 0) = m1,1(u1, 1)

m2,1(u2, 0)

m2,1(u2, 1)

(b) The value of E[Yi(1)] implied by m1,1

differs from that implied by m2,1. These
MTR pairs are logically inconsistent.

Figure 4: MTR pairs along different margins of selection are not directly comparable. Nev-
ertheless, they are not completely unrelated, since both pairs provide a description of the entire
population.

key point for our discussion ahead is that each MTR pair still describes the entire

population, just organized along a different dimension of choice behavior. Thus, while

the MTR pairs for different ` will typically be different, they cannot be arbitrarily

different.

For example, Figure 4a plots m1,1(·, z2) for a case in which this function does not

vary with z2. It also plots m2,1(·, z1) for both z1 = 0 and z1 = 1. While m1,1 is

not directly comparable to m2,1, both functions are a conditional mean for the same

random variable, Yi(1). To be logically consistent, it should be the case that

E [m1,1(Ui,1, Zi,2)] = E[Yi(1)] = E [m2,1(Ui,2, Zi,1)] ,

so that both functions generate the same mean for Yi(1). In Figure 4a this is the case,

since the integrals of both dotted curves are the same as the integral of the solid line.

In contrast, the functions m2,1(·, z1) in Figure 4b are not logically consistent. The

areas under m2,1(·, 0) and m2,1(·, 1) are clearly greater than the area under m1,1. These

MTR pairs cannot both be describing conditional means for Yi(1), since they would

imply different values of E[Yi(1)]. In the following, we will develop a method that
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requires logical consistency, so that pairs like those in Figure 4b are excluded from

consideration.

4.4 The Target Parameter

We assume that the researcher has a well-posed empirical question that can be informed

by a specific target parameter, β?. We require the target parameter to be expressed as

a weighted average of the L MTR pairs in the form

β?(m) =
L∑
`=1

β?` (m`) ≡
L∑
`=1

∑
d∈{0,1}

E

[∫ 1

0
m`,d(u, Zi,−`)ω

?
`,d(u, Zi) du

]
, (14)

where ω?`,d are weighting functions. The weighting functions are assumed to be known

given knowledge of the joint distribution of (Yi, Di, Zi). For catalogues of common

weighting functions, see Heckman and Vytlacil (2005, 2007b), Mogstad et al. (2018,

“MST” hereafter), and Mogstad and Torgovitsky (2018). When L = 1, (14) reduces

to the form used for the target parameter by MST.

When L > 1, there might be several ways to express the same target parameter.

For example, if β? is the population average treatment effect (ATE), E[Yi(1)− Yi(0)],

then one could take ω?`,0(u, z−`) = −1 and ω?`,1(u, z−`) = 1 for any `, while setting all

other weight functions to 0. This is another manifestation of the logical consistency

issue illustrated in Figure 4. When using multiple instruments, the way we incorporate

this idea will require the implied value of the ATE to be the same for any `. Thus,

as a practical matter, any choice of ` will yield the same inference on an instrument-

invariant parameter like the ATE or the average effect of treatment on the treated

(ATT).

Other target parameters might be instrument-specific. For example, the class of

policy-relevant treatment effects (PRTE) introduced by Heckman and Vytlacil (1999,

2005) includes parameters that measure the impact of changing the incentive associated

with a given instrument. A special case of a PRTE is an extrapolated LATE, for

example

LATE1,+δ% ≡ E

[
Yi(1)− Yi(0)

∣∣∣ p(0, Zi,2) < Ui,1 ≤
(

1 +
δ

100

)
× p(1, Zi,2)

]
, (15)

which is the LATE that would result if the Zi,1 instrument were changed sufficiently

to cause a δ% increase in participation under Zi,1 = 1. This target parameter can be

used to gauge the sensitivity of point identified IV estimates to the definition of the

complier group. See Heckman and Vytlacil (2005), Carneiro, Heckman, and Vytlacil
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(2010), and MST for further discussion and additional examples of PRTEs.

When the definition of the target parameter depends on the instrument as in (15),

there will only be a single set of weights that delivers the desired target parameter.

Nevertheless, we still want to require instrument-invariant parameters to be logically

consistent across different MTR pairs. As we demonstrate ahead, this requirement will

allow information to flow from one model to another. The surprising implication is

that even if the target parameter is instrument-specific, there can still be a benefit

from combining multiple instruments.

4.5 Using One Instrument at a Time

We briefly recall the procedure in MST by describing how to use each instrument

separately for inference about β?.

If (Yi(0), Yi(1), Di) were generated by (9) for any `, with MTR pairm` ≡ (m`,0,m`,1),

then it must be the case that

E[s(Di, Zi)Yi] =
∑

d∈{0,1}

E

[∫ 1

0
m`,d(u, Zi,−`)ωd,s(u, Zi) du

]
(16)

where ω0,s(u, Zi) ≡ s(0, Zi)1[u > p(Zi)] and ω1,s(u, Zi) ≡ s(1, Zi)1[u ≤ p(Zi)],

for any (measurable) function, s. MST refer to a choice of s as an IV–like specification,

and show that by choosing s appropriately, one can reproduce any linear IV estimand

on the left-hand side of (16). Given a collection S of IV–like specifications, we say

that an MTR pair m` is observationally equivalent under S if it satisfies (16) for every

s ∈ S and each ` = 1, . . . , L. We denote the set of such pairs by

Mobs
` ≡ {m` : m` satisfies (16) for each s ∈ S} .

The identified set for the `th MTR pair is defined as

Mid
` ≡M` ∩Mobs

` .

Mid
` is the collection of MTR pairs for the `th instrument that satisfy the researcher’s

prior assumptions (m` ∈ M`) and are observationally equivalent (m` ∈ Mobs
` ) for the

choice of IV–like estimands in S. The identified set for the `th component of the target

parameter is

Bid` ≡
{
β?` (m`) : m` ∈Mid

`

}
.
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If M` is a convex set, then Bid` is an interval, [β?` , β
?
` ], with endpoints given by

β?` ≡ inf
m`∈Mid

`

β?` (m`) and β?` ≡ sup
m`∈Mid

`

β?` (m`).

MST show that if M can be represented as a finite linear basis, then β?` and β?`
can be computed using linear programming. As a particular case of this, they also

show that exact nonparametric bounds can be computed by using a constant spline

with appropriately chosen knot points. As shown in MST, if S is a sufficiently rich

class of functions, then Bid` is the smallest set of values for the target parameter that

are consistent with both the maintained assumptions (m` ∈ M`) and the conditional

means of Y . Extending this argument to the present setting is straightforward.

4.6 Combining Instruments

The observational equivalence condition (16) restricts each of the L pairs of MTR func-

tions in isolation. We connect them by requiring logical consistency in the unobservable

quantities they imply. For example, for every `, a choice of m`,1 implies a value for

E[Yi(1)] given by

E[Yi(1)] = E

[∫ 1

0
m`,1(u, Zi,−`) du

]
. (17)

We will restrict attention to choices of m for which the right-hand side of (17) is

invariant to ` = 1, . . . , L.18 This restricts our attention to MTR pairs like those in

Figure 4a, while ruling out inconsistent pairs like those in Figure 4b. The result will

be tighter inference on each β?` , as well as on the overall target parameter, β?.

We formalize the property of logical consistency in a similar fashion to the ob-

servational equivalence condition, (16). Specifically, given a collection S of IV–like

specifications, we say that a collection of MTR functions m ≡ (m1, . . . ,mL) is logically

18 This is similar in spirit to the concept of a “coherent model” (e.g. Heckman, 1978; Tamer, 2003; Lewbel,
2007; Chesher and Rosen, 2012). However, it is different because (17) is an unobservable quantity—not a
feature of the observed data—and so one could proceed without requiring (17) to be invariant to ` as in the
previous section. Note that Maddala (1983, Section 7.5) uses the phrase “logical consistency” to describe a
coherency condition in a simultaneous binary response model, so our use of this phrase differs from his.
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Observational equivalence:
Implied E[s(Di, Zi)Yi]
matches data for all `

m1 ≡ (m1,0,m1,1)

...

m` ≡ (m`,0,m`,1)

...

mL ≡ (mL,0,mL,1)

Logical consistency:
Implied E[s(Di, Zi)Yi(d

′)]
does not vary with `

for both d′ = 0 and d′ = 1
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Figure 5: Observational equivalence (16) constrains each m` ≡ (m`,0,m`,1) in isolation. Logical
consistency (18) ties the m` together across ` = 1, . . . , L. This allows the information contained
in different instruments to flow in the direction of the arrows, and therefore be combined across
models that use different instruments.

consistent under S if

E[s(Di, Zi)Yi(d
′)] implied by m`︷ ︸︸ ︷∑

d∈{0,1}

E

[∫
m`,d′(u, Zi,−`)ωd,s(u, Zi) du

]
=

E[s(Di, Zi)Yi(d
′)] implied by m`′︷ ︸︸ ︷∑

d∈{0,1}

E

[∫
m`′,d′(u, Zi,−`′)ωd,s(u, Zi) du

]
for all s ∈ S, all d′ ∈ {0, 1}, and all `, `′ ∈ {1, . . . , L} with ` 6= `′, (18)

where ωd,s is still defined as in (16). Unlike observational equivalence, which involves

the observed outcome, Yi, logical consistency involves the implied conditional means

of the unobserved potential outcomes, Yi(0), and Yi(1). This is why (18) is stated for

each d′ ∈ {0, 1}, with the weights changing in the summation over d ∈ {0, 1}. This is

also the reason that (18) is directly stated as an equality across different MTR pairs

(` and `′), whereas in (16) this equality is implied by matching each MTR pair to the

same observable quantity on the left-hand side.

Given a set of IV–like specifications, S, the set of logically consistent MTR pairs is

Mlc ≡ {m ≡ (m1, . . . ,mL) : m satisfies (18)} .

To combine multiple instruments together, we focus on the identified set

Mid ≡M∩Mobs ∩Mlc,
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where Mobs ≡Mobs
1 × · · · ×Mobs

L . The identified set for the target parameter is

Bid ≡
{
β?(m) : m ∈Mid

}
.

Figure 5 illustrates how the logical consistency condition allows information to

flow between different selection models. Intuitively, given a set of assumptions, the

observational equivalence condition (16) places restrictions on m` for each `, while the

logical consistency condition propagates these restrictions from m` to m`′ . The result

is a sort of equilibrium in which none of the MTR functions contradict each other on

their implications for the instrument-invariant quantities E[s(Di, Zi)Yi(d
′)] equated in

(18). Limiting attention to this smaller set of MTR pairs that are consistent with this

equilibrium mechanically shrinks the identified set for the target parameter as well.

The logical consistency condition is a collection of linear equality constraints, so

adding it does not fundamentally alter the procedure in MST. In particular, if M is a

convex set, then Bid is an interval, [β?, β?], with endpoints given by

β? ≡ inf
m∈Mid

Γ?(m) and β? ≡ sup
m∈Mid

Γ?(m).

As a result, if M can be represented as a finite linear basis, then a straightforward

modification of the linear programming procedure developed by MST can be used to

compute and/or estimate the identified set for β?.19 It is also straightforward to extend

Proposition 3 in MST to show that if S is chosen to contain a sufficiently rich class of

functions, then Mid fully exhausts the information contained in the conditional mean

of Y given D and Z.

4.7 An Algebraic Example

The content of the logical consistency condition can be illustrated with an algebraic

example. Suppose that Zi ≡ (Zi,1, Zi,2) is binary, so that Z = {0, 1}2, and that

Assumptions E and PM are satisfied. This setting gives rise to two selection equations

like (9) with unobservables Ui,1 and Ui,2, and therefore two pairs of marginal treatment

response functions, m1 and m2. To simplify the discussion, we will focus solely on

the MTR functions for the treated state, d = 1, so that our objects of concern are

m1,1(u, z2) and m2,1(u, z1), viewed as functions of (u, z2) ∈ [0, 1]× {0, 1} and (u, z1) ∈
[0, 1]× {0, 1}, respectively.

19 In particular, the procedure just needs to be modified to include all selection models, ` = 1, . . . , L, and
to also incorporate the logical consistency constraints (18), which are linear.
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Suppose that we assume m1,1 is a linear function of u for each value of z2, i.e.

m1,1(u1, z2) = α0 + α1u1 + α2z2 + α3z2u1, (19)

for some unknown parameters α ≡ (α0, α1, α2, α3). Brinch, Mogstad, and Wiswall

(2012; 2017) showed that α is point identified as long as p(1, 0) > p(0, 0), and p(1, 1) >

p(0, 1). Their argument uses the implications of (19) for the observed mean of the

treated group:

E[Yi|Di = 1, Zi,1 = z1, Zi,2 = z2]

= E[Yi(1)|Ui,1 ≤ p(z1, z2), Zi,2 = z2]

=
1

p(z1, z2)

∫ p(z1,z2)

0
m1,1(u, z2) du

= α0 +
1

2
p(z1, z2)α1 + z2

[
α2 +

1

2
p(z1, z2)α3

]
. (20)

Intuitively, if p(1, 0) > p(0, 0), then α0 and α1 are point identified by a linear regression

of Yi on a constant and 1
2p(Zi,1, Zi,2) in the Zi,2 = 0 group, while p(1, 1) > p(0, 1)

ensures that α2 and α3 can then be point identified off of the same linear regression in

the Zi,2 = 1 group.

The logical consistency condition is based on the observation that (19) also has

implications for the conditional mean of the treated outcome for the untreated group.

This quantity is not observed, but it can be expressed in terms of α using an argument

similar to (20):

E[Yi(1)|Di = 0, Zi,1 = z1, Zi,2 = z2]

= α0 +
1

2
(1 + p(z1, z2))α1 + z2

[
α2 +

1

2
(1 + p(z1, z2))α3

]
. (21)

Since α is point identified, these counterfactual mean outcomes are also point identified.

They could be used to evaluate treatment parameters for the first selection model with

unobservable Ui,1. The more surprising finding is that these counterfactual means

can also be used as additional identifying information for the selection model with

unobservable Ui,2.

One way to see this is to consider a specification for m2,1 that would typically not

be point identified in the current setting. For example, suppose that

m2,1(u2, z1) = γ0 + γ1u2 + γ2z1 + γ3z1u2 + γ4u
2
2, (22)
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so that m2,1 is more flexible than m1,1 in having an additional quadratic term. While

this MTR function now has five unknown parameters, γ ≡ (γ1, γ2, γ3, γ4, γ5), there

are still only four observed conditional means: E[Yi|Di = 1, Zi,1 = z1, Zi,2 = z2] for

(z1, z2) ∈ {0, 1}2. If the selection model for Ui,2 were viewed in isolation, then γ would

not be point identified. However, the logical consistency condition effectively provides

four more moments via (21). Since α is point identified, these moments can be treated

as known.

With eight moments total, it is possible to point identify (indeed, overidentify) the

five parameters in γ. In analogy to (20) and (21), the system of equations is given by:

1 p(0,0)
2 0 0 p(0,0)2

3

1 p(1,0)
2 0 0 p(1,0)2

3

1 p(0,1)
2 1 p(0,1)

2
p(0,1)2

3

1 p(1,1)
2 1 p(1,1)

2
p(1,1)2

3

1 1+p(0,0)
2 0 0 1−p(0,0)3

3(1−p(0,0))

1 1+p(1,0)
2 0 0 1−p(1,0)3

3(1−p(1,0))

1 1+p(0,1)
2 1 (1+p(0,1))

2
1−p(0,1)3
3(1−p(0,1))

1 1+p(1,1)
2 1 (1+p(1,1))

2
1−p(1,1)3
3(1−p(1,1))





γ0

γ1

γ2

γ3

γ4


=



E[Yi|Di = 1, Zi = (0, 0)]

E[Yi|Di = 1, Zi = (1, 0)]

E[Yi|Di = 1, Zi = (0, 1)]

E[Yi|Di = 1, Zi = (1, 1)]

E[Yi(1)|Di = 0, Zi = (0, 0)]

E[Yi(1)|Di = 0, Zi = (1, 0)]

E[Yi(1)|Di = 0, Zi = (0, 1)]

E[Yi(1)|Di = 0, Zi = (1, 1)]


.

The entire right-hand side is known: The first four quantities are observed in the data,

and the second set of four are identified from the first model via (21), since α is point

identified. The coefficient matrix on the left-hand side can be full rank, depending

on the values of the propensity score.20 When this is the case, the linear system of

equations either has no solution, or a unique solution. If there is no solution, then the

model is misspecified, while if there is a unique solution, then γ is point identified.21

Thus, the quadratic MTR specification (22) can be point identified even though the only

source of exogenous variation in the second selection model is the binary instrument,

Zi,1.

4.8 A Numerical Simulation

The logic of the previous section does not require m1,1 to be point identified. When

m1,1 is partially identified, then its implied values of E[Yi(1)|Di = 0, Zi = z] will

also be partially identified. However, logical consistency will still require m2,1 to be

20 For example, take p(0, 0) = .3, p(1, 0) = .45, p(0, 1) = .55, and p(1, 1) = .7.
21 It is common to call γ point identified regardless of which case holds, since the identified set consists of

no more than a single element for both cases. The ambiguity comes from whether one is tacitly assuming
that the model is correctly specified. We maintain a distinction between the two cases here just for clarity.
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z = (z1, z2) P[Zi = z] p(z)

(0, 0) .4 .3
(0, 1) .3 .5
(1, 0) .1 .6
(1, 1) .2 .7

Table 2: The distributions of Zi and Di|Zi = z in the numerical simulation.

such that its own implied values of these counterfactual moments lie within the same

identified set as those implied by m1,1. Unless the two sets are the same, this will yield

identifying content for m1,1 and/or m2,1.

We illustrate this possibility with a numerical simulation. The simulation is like the

previous example with two binary instruments Zi ∈ {0, 1}×{0, 1}. The distribution of

Zi and the propensity score are shown in Table 2. The propensity score is increasing

in each component of Zi, so that both instruments can be viewed as incentives that

make choosing Di = 1 more attractive. We assume that Yi ∈ {0, 1} is binary, so that

conditional expectations of Yi are bounded between 0 and 1, and we generate the data

using model ` = 1 with MTR functions that are linear in u1:

m1,0(u1, z2) = .5− .1u1 and m1,1(u1, z2) = .8− .4u1.

In all results that follow, we use a saturated specification of S, so the reported bounds

are sharp.

Figure 6 shows bounds on the average treatment on the treated (ATT). These

bounds are derived under specifications of m` ≡ (m`,0,m`,1) that are K`th order poly-

nomials in u`, and fully interacted in z−`. We implement these polynomials using the

Bernstein basis so that it is easy to impose shape constraints. There are three sets of

bounds shown for increasing values of K1 = K2, as well as exact nonparametric bounds

indicated with horizontal lines. The exact nonparametric bounds are computed using

the constant spline formula developed in Proposition 4 of MST.

The two wider sets of bounds are derived using the ` = 1 and ` = 2 models in

isolation. The bounds are different because in the ` = 1 model the instrument is Zi,2,

with Zi,1 serving as a control variable, while in the ` = 2 model the instrument is Zi,1,

with Zi,2 as a control. The third set of bounds is computed while also imposing logical

consistency between the two models. This substantially tightens both the nonparamet-

ric bounds and the polynomial bounds at all polynomial degrees. Notice in particular

that the logical consistency bounds are tighter than the intersections of the ` = 1 and
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Figure 6: Imposing logical consistency tightens bounds on the average treatment on the treated
(ATT) for both parametric and nonparametric specifications of the MTR functions.

` = 2 bounds. Under logical consistency the whole is greater than the sum of its parts.

In Figure 7, we report bounds on LATE1,δ%, as defined in (15) for δ = 20. This

quantity can only be expressed in terms of the unobservable Ui,1 for the ` = 1 model.

Nevertheless, comparing the four sets of bounds in Figure 7 shows that the ` = 2 model

provides information on LATE1,+20% through the logical consistency condition. Thus,

the logical consistency condition allows information from the ` = 2 model to propagate

to the ` = 1 model.

In this data generating process, the additional information is small (but still present)

when the ` = 2 model is specified nonparametrically. Adding the nonparametric shape

constraints that m2,0(·, z1),m2,1(·, z2) and (m2,1 −m2,0)(·, z1) are decreasing functions

for every z1 provides substantially more information. An extreme case occurs when

the ` = 2 model is specified as linear in u2 for each value of z1. Under this assumption,

all model-invariant quantities will be point identified by the ` = 2 model. However, a

model-specific parameter like LATE1,+20% generally remains partially identified. An
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Figure 7: The ` = 2 model provides identifying content for parameters, such as LATE1,+%20,
that can only be defined using the ` = 1 model.

exception occurs when the ` = 1 model is specified as quadratic. Here, the linearity of

the ` = 2 model turns out to be sufficient to achieve point identification of m1,0 and

m1,1 (and therefore LATE1,+20%) despite the fact that Zi,1 is only binary, as suggested

by the algebraic example in Section 4.7.

5 Conclusion

The IA monotonicity condition is a cornerstone of modern IV analysis. It is appealed

to often, but rarely justified explicitly. As we have shown, it will not hold when there

are multiple instruments without severe restrictions on choice heterogeneity. This

creates a dilemma for using IV methods to aggregate findings into a larger body of

knowledge: Each instrument is associated with a different set of complier groups, but

combining multiple instruments together using IA monotonicity requires assuming that

these groups are effectively identical in terms of their choice behavior.

In this paper, we have made progress towards resolving this dilemma by consid-
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ering a weaker, partial version of IA monotonicity. This “partial monotonicity” does

not require strong assumptions about choice behavior. It is satisfied under the usual

mathematical interpretation of “monotonicity” that each instrument encourages all in-

dividuals either towards or away from treatment. We have shown that it still preserves

the interpretation of the 2SLS estimand as a positive weighted average of complier

groups, except in rare cases. These rare cases can and should be checked for when

reporting 2SLS estimates with multiple instruments.

We have also developed a framework for aggregating multiple instruments to con-

duct inference about specific target parameters. The framework generalizes the ap-

proach of Mogstad et al. (2018) to replace IA monotonicity with partial monotonicity.

The key idea is that even under partial monotonicity, each instrument still carries iden-

tifying content about parameters that are invariant to the instrument. We show that

this allows for information aggregation by enforcing this content to be logically consis-

tent across different instruments. This logical consistency condition lets us accumulate

the identifying content from multiple instruments; this ensures that the whole of the

method is greater than the sum of its parts. The method provides a general blueprint

for extracting and aggregating information about treatment effects from multiple con-

trolled or natural experiments while still maintaining plausible conditions on choice

behavior.
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(1) (2) (3) (4)

All papers Papers that use
more than one IV

Papers with more
IVs than treatment

variables

Papers with more
IVs than treatment

variables using
2SLS/GMM

American
Economic Review

100% 39% 36% 34%
44 17 16 15

Quarterly Journal
of Economics

100% 54% 46% 43%
28 15 13 12

Journal of Political
Economy

100% 65% 48% 43%
23 15 11 10

Econometrica
100% 67% 60% 53%
15 10 9 8

Review of
Economic Studies

100% 67% 67% 58%
12 8 8 7

All 100% 53% 47% 43%
122 65 57 52

Table A.1: Results of our IV survey by journal.

A Survey on the Use of Multiple Instruments22

We searched the Web of Science Database for articles published between January 2000

and October 2018 containing the words “instrument” or “instrumental variable” in the

abstract, title, or topic words. We restricted our search to the following five journals:

Journal of Political Economy, American Economic Review, Quarterly Journal of Eco-

nomics, Review of Economic Studies, and Econometrica. There were 266 articles that

matched our search criteria. We restrict our attention to the empirical studies that

use at least one IV, which includes 122 papers. The other 144 papers either discussed

IV methodology without having an application, or they used the word instrument to

describe a policy or financial instrument.

In column (2) of Table A.1, we define a paper as using multiple instruments if at

least one specification in the main body of the paper includes more than one IV. The

number of IVs is determined by the number of moment conditions used to construct

the estimator. If a paper uses multiple IVs, but no more than one instrument in any

given specification, then it is not counted as having multiple instruments. If a paper

22 This survey was carried out with the assistance of Christine Blandhol and John Bonney.
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divides a continuous variable into mutually exclusive discrete or binary instruments,

then it is counted as having multiple instruments. Furthermore, if Zi,1 and Zi,2 are

IVs and Zi,2 is a function of Zi,1 (e.g., Zi,2 = Z2
i,1), then we would still count this

specification as having multiple instruments. The bottom row of column (2) reveals

that more than half of the IV papers in our sample used more than one instrument.

In column (3) of Table A.1, we define a paper as having more IVs than treatment

variables if at least one specification in the main body of the paper includes more

IVs than endogenous variables. For example, let Di,1 and Di,2 denote the endogenous

variables used in a specification in the main body of the paper, and Zi,1, Zi,2, Zi,3

denote IVs. If Zi,1, Zi,2, and Zi,3 are included in the instrument set, then the paper

has more IVs than endogenous variables. However, if only Zi,1 and Zi,2 are included in

the instrument set, then the paper does not have more IVs than endogenous variables.

Comparing column (3) to column (2), we see that most papers that used more than

one instrument had fewer treatment variables than IVs.

A few papers that used more IVs than endogenous variables did so in a way that

was either nonstandard or unclear. In column (4) of Table A.1 we remove these papers

and focus on only those that combined multiple instruments using 2SLS or GMM.

This leaves 43% of papers across the five journals. This shows that combining more

instruments than treatments through 2SLS or GMM is widespread empirical practice.

B Proofs

Proof of Proposition 1. (⇒) Suppose that nesting statement is not true. Then

there exist j, k ∈ I such that Zj 6⊆ Zk and Zk 6⊆ Zj . Since the empty set ∅ is a subset

of every set (including itself), this implies that both Zj and Zk are not empty. Thus,

there exists a zj ∈ Zj such that zj /∈ Zk, and there exists a zk ∈ Zk such that zk /∈ Zj .
By the definition of these sets, this means that

Dj(zj) = 1 > 0 = Dj(zk)

and Dk(zj) = 0 < 1 = Dk(zk). (23)

Thus, Di(zj) ≥ Di(zk) for some i = j, but Di(zj) < Di(zk) for i = k. This violates As-

sumption IAM. By contraposition, it follows that Assumption IAM implies the nesting

statement.

(⇐) Conversely, if Assumption IAM is not true, then there exist j, k ∈ I and

zj , zk ∈ Z such that (23) holds. By definition, (23) implies that zj ∈ Zj , but zj /∈ Zk,
and that zk ∈ Zk, but zk /∈ Zj . That is, Zk 6⊆ Zj , and Zj 6⊆ Zk. It follows that the
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nesting statement also implies Assumption IAM. Q.E.D.

Proof of Proposition 2. Suppose to the contrary that there exist j, k ∈ I(z?) for

which (2) does not hold. Then the matrix

∂Vjk(z
?) ≡

[
∂1Vj(z

?) ∂2Vj(z
?)

∂1Vk(z
?) ∂2Vk(z

?)

]
≡
[
∂Vj(z

?)

∂Vk(z
?)

]

is invertible. Thus, the span of ∂Vjk(z
?) is R2, so there exists a unit vector v? ∈ R2

such that ∂Vj(z
?)v? > 0, while ∂Vk(z

?)v? < 0. Taking a Taylor series expansion at

z? + εv? for sufficiently small ε > 0, we have that

Vj(z
? + εv?) ≈ Vj(z?) + ε [∂Vj(z

?)] v? > 0,

while Vk(z
? + εv?) ≈ Vk(z?) + ε [∂Vk(z

?)] v? < 0

since Vj(z
?) = Vk(z

?) = 0. On the other hand, an ε step in the direction −v? yields

Vj(z
? − εv?) < 0 while Vk(z

? − εv?) > 0.

Using (1), we have that

Dj(z
? + εv?) = 1 > Dj(z

? − εv?) = 0

and Dk(z
? + εv?) = 0 < Dk(z

? − εv?) = 1,

which shows that Assumption IAM is violated. This establishes the result through

contraposition. Q.E.D.

Proof of Proposition 3. Take any (z`, z−`) and (z′`, z−`) in Z. Since z`, z
′
` ∈ R,

either z` ≥ z′` or z′` ≥ z`. Suppose that the first case holds. Then (z`, z−`) ≥ (z′`, z−`),

so Di(z`, z−`) ≥ Di(z
′
`, z−`) for all i, as required by Assumption PM. Q.E.D.

Proof of Proposition 4. That an individual i cannot belong to more than one of

the six groups can be verified by inspection. To see that i must belong to at least one

of these groups, note that Assumption AM implies that i must satisfy either

Di(0, 0) ≤ Di(0, 1) ≤ Di(1, 0) ≤ Di(1, 1) (24)

or Di(0, 0) ≤ Di(1, 0) ≤ Di(0, 1) ≤ Di(1, 1). (25)

If i satisfies (24) then by Table 1, their group is Gi ∈ {at,nt, 1c, ec, rc}; that is, some-

thing other than a Z2 complier. If i satisfies (25), then their group is something other
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than a Z1 complier. In either case, they must belong to one of the six groups listed in

Table 1. Q.E.D.

Proof of Proposition 5. Label the instrument pairs as z1 = (0, 0), z2 = (0, 1), z3 =

(1, 0), and z4 = (1, 1), and denote their associated probabilities as qk ≡ P[Zi = zk]

for k = 1, 2, 3, 4. We will prove the result for the case with π1c ≥ π2c, so that the

propensity score p(zk) ≡ P[Di = 1|Zi = zk] is increasing in k, due to Assumption AM.

A symmetric proof applies to the case with π2c ≥ π1c.
Theorem 2 in Imbens and Angrist (1994) shows that the 2SLS estimand is given

by a convex weighted average of three Wald (1940) estimands, which we write as

β2sls = λ2w2 + λ3w3 + λ4w4, (26)

where the Wald estimands are given by

wk ≡
E[Yi|Zi = zk]−E[Yi|Zi = zk−1]

p(zk)− p(zk−1) ,

and the weights are defined by

λk ≡
(
p(zk)− p(zk−1)

)∑4
`=k q

`
(
p(z`)−E[p(Zi)]

)∑4
j=2

[
(p(zj)− p(zj−1))∑4

`=j q
` (p(z`)−E[p(Zi)])

] .
Theorem 1 of Imbens and Angrist (1994) shows that each Wald estimand, wk, gives the

average treatment effect for individuals who change treatment status in response to a

change in the instrument from zk−1 to zk. Using the group definitions in Proposition 4,

this implies that w2 represents the average treatment effect for both the Z2 compliers

and eager compliers. Similarly, w4 reflects the average treatment effect for the Z2

compliers and the reluctant compliers. So,

w2 =

(
π2c

π2c + πec

)
∆2c +

(
πec

π2c + πec

)
∆ec,

and w4 =

(
π2c

π2c + πrc

)
∆2c +

(
πrc

π2c + πrc

)
∆rc.

However, w3 is different, since a shift from z2 ≡ (0, 1) to z3 ≡ (1, 0) creates two-

way flows. In particular, such a shift induces Z1 compliers to take treatment, but Z2

compliers to exit treatment. Using a minor modification of the argument in Imbens

34



and Angrist (1994), it follows that

w3 =
E [(Yi(1)− Yi(0))(Di(1, 0)−Di(0, 1)]

p(z3)− p(z2)

=

(
π1c

p(z3)− p(z2)

)
∆1c −

(
π2c

p(z3)− p(z2)

)
∆2c

=

(
π1c

π1c − π2c

)
∆1c −

(
π2c

π1c − π2c

)
∆2c,

where the last equality used p(z3)− p(z2) = (π1c + πec)− (π2c + πec) = π1c − π2c.
Substituting the expressions for the Wald estimands into (26), we have

β2sls =
∑

g∈{1c,2c,ec,rc}

τg∆g,

where

τec ≡
λ2πec

πec + π2c
, τ1c ≡

λ3π1c
π1c − π2c

,

τrc ≡
λ4πrc

πrc + π2c
, and τ2c ≡

(
λ2π2c

πec + π2c

)
−
(

λ3π2c
π1c − π2c

)
+

(
λ4π2c

πrc + π2c

)
.

It is straightforward to verify that τec, τ1c, and τrc are each non-negative, and that∑
g∈{1c,2c,ec,rc}

τg = λ2 + λ3 + λ4 = 1.

For τ2c, note first that

πec + π2c = p(z2)− p(z1),

and that, similarly,

π1c − π2c = p(z3)− p(z2) and πrc − π2c = p(z4)− p(z3).

Substituting this observation and the definition of λk into the expression for τ2c and

simplifying, we have

τ2c = π2c ×
q2
(
p(z2)−E[p(Zi)]

)
+ q4

(
p(z4)−E[p(Zi)]

)∑4
j=2

[
(p(zj)− p(zj−1))∑4

`=j q
` (p(z`)−E[p(Zi)])

] .
The denominator of this expression is always positive and π2c is always non-negative.
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For the numerator, notice that since Zi,2 = 1 if and only if Zi ∈ {z2, z4},

q2
(
p(z2)−E[p(Zi)]

)
+ q4

(
p(z4)−E[p(Zi)]

)
= E [Zi,2 (p(Zi)−E[p(Zi)])]

= E [Zi,2 (Di −E[Di])] ≡ Cov(Di, Zi,2),

where the second equality follows by iterating expectations. Thus, the sign of τ2c is

the same as that of Cov(Di, Zi,2), which is in turn the same as the sign of E[Di|Zi,2 =

1]−E[Di|Zi,2 = 0], since

Cov(Di, Zi,2) = (E[Di|Zi,2 = 1]−E[Di|Zi,2 = 0]) P[Zi,2 = 1] P[Zi,2 = 0].

Q.E.D.

Proof of Proposition 6. Since Zi,1 and Zi,2 are binary,

P[Di = 1|Zi,2 = 1]−P[Di = 1|Zi,2 = 0]

= p(1, 1) P[Zi,1 = 1|Zi,2 = 1] + p(0, 1) P[Zi,1 = 0|Zi,2 = 1]

− p(1, 0) P[Zi,1 = 1|Zi,2 = 0]− p(0, 0) P[Zi,1 = 0|Zi,2 = 0].

Assumptions AM and E imply that

p(1, 1) ≡ P[Di = 1|Zi,1 = 1, Zi,2 = 1] = P[Di(1, 1) = 1] ≥ P[Di(0, 1) = 1] = p(0, 1),

and similarly that p(1, 0) ≥ p(0, 0) and p(0, 1) ≥ p(0, 0). If Cov(Zi,1, Zi,2) ≥ 0, then

also P[Zi,1 = 1|Zi,2 = 1] ≥ P[Zi,1 = 1] ≥ P[Zi,1 = 1|Zi,2 = 0]. Thus,

Pr[Di = 1|Zi,2 = 1]− Pr[Di = 1|Zi,2 = 0]

≥ p(1, 1) P[Zi,1 = 1] + p(0, 1) (1−P[Zi,1 = 1])

− p(1, 0) P[Zi,1 = 1]− p(0, 0)(1−P[Zi,1 = 1])

= [p(1, 1)− p(1, 0)] P[Zi,1 = 1] + [p(0, 1)− p(0, 0)] (1− Pr[Zi,2 = 1]) ≥ 0.

By Proposition 5, this implies that τ2c ≥ 0. A symmetric argument shows that P[Di =

1|Zi,1 = 1]−P[Di = 1|Zi,1 = 0] ≥ 0, so that τ1c ≥ 0 as well. Q.E.D.

Proof of Proposition 7. By Theorem 2 in Imbens and Angrist (1994),

β2sls =
K∑
k=2

λkwk, (27)
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where the Wald estimands are

wk ≡
E[Yi|Zi = zk]−E[Yi|Zi = zk−1]

p(zk)− p(zk−1) ,

and the weights are

λk ≡
(
p(zk)− p(zk−1)

)∑K
`=k q

`
(
p(z`)−E[p(Zi)]

)∑K
j=2

[
(p(zj)− p(zj−1))∑K

`=j q
` (p(z`)−E[p(Zi)])

] . (28)

By Assumption E,

wk =
E[Yi(Di(z

k))− Yi(Di(z
k−1))]

p(zk)− p(zk−1)

=

∑
g∈G E[Yi(Di(z

k))− Yi(Di(z
k−1))|Gi = g]πg

p(zk)− p(zk−1)

=

∑
g:k∈Cg ∆gπg −

∑
g:k∈Dk

∆gπg

p(zk)− p(zk−1) , (29)

since Yi(Di(z
k)) − Yi(Di(z

k−1)) = 0 except when k ∈ CGi or k ∈ DGi . Substituting

(29) into (27),

β2sls =

K∑
k=2

λk

(∑
g:k∈Cg ∆gπg −

∑
g:k∈Dg

∆gπg

p(zk)− p(zk−1)

)

=
K∑
k=2

λk

(∑
g∈G (1[k ∈ Cg]− 1[k ∈ Dg]) ∆gπg

p(zk)− p(zk−1)

)

=
∑
g∈G

(
πg

K∑
k=2

(1[k ∈ Cg]− 1[k ∈ Dg])
(

λk
p(zk)− p(zk−1)

))
∆g ≡

∑
g∈G

τg∆g. (30)

Substituting the definition of λk from (28) and simplifying,

τg = πg

K∑
k=2

(1[k ∈ Cg]− 1[k ∈ Dg])
( ∑K

`=k q
`(p(z`)−E[p(Zi)])∑K

j=2[(p(zj)−p(zj−1))
∑K

`=j q
`(p(z`)−E[p(Zi)])]

)

= πg

K∑
k=2

(1[k ∈ Cg]− 1[k ∈ Dg])
(

Cov(Di,1[p(Zi)≥p(zk)])
Var(p(Zi))

)
, (31)
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where in the numerator we used

Cov
(
Di, 1[p(Zi) ≥ p(zk)]

)
= E

[
1[p(Zi) ≥ p(zk)] (Di −E[Di])

]
= E

[
1[p(Zi) ≥ p(zk)] (p(Zi)−E[p(Zi)])

]
=

K∑
`=k

q`
(
p(z`)−E[p(Zi)]

)
,

and in the denominator we used

Var(p(Zi)) = E [Di (p(Zi)−E[p(Zi)])]

=
K∑
`=1

p(z`)
(
p(z`)−E[p(Zi)]

)
q`

=
K∑
`=1

 K∑
j=2

1[j ≤ `]
(
p(zj)− p(zj−1)

)(p(z`)−E[p(Zi)]
)
q`

=
K∑
j=2

(p(zj)− p(zj−1)) K∑
`=j

(
p(z`)−E[p(Zi)]

)
q`

 ,
where the third equality follows from a telescoping sum identity,23 together with the

fact that
∑K

`=1

(
p(z`)−E[p(Zi)]

)
q` = 0. Examining the expression for the weights in

(31), we have that

sgn(τg) = 1[πg > 0]× sgn

(
K∑
k=2

(1[k ∈ Cg]− 1[k ∈ Dg]) Cov
(
Di, 1[p(Zi) ≥ p(zk)]

))
.

It remains to show that τg = 0 when Cg = ∅, so that only groups that comply with

at least one instrument contrast receive weight in the 2SLS estimand. To see that this

is so, suppose to the contrary that there is a group g with πg > 0 for which Cg = ∅,
while τg 6= 0. Given the structure of τg, such a group must have Dg 6= ∅. That is, this

group must defy at some instrument contrast, even though they do not comply at any

other instrument contrasts. We will prove that such a “pure defier” group cannot exist

under Assumption PM by establishing a contradiction.

Let j0 ∈ Dg be the instrument contrast at which the “pure defier” group g defies.

By definition, Di(z
j0) = 0, while Di(z

j0−1) = 1. Since Cg = ∅, it follows that for any i

23 In particular, that a` = a1 +
∑K

j=2 1[j ≤ `](aj − aj−1) for any scalars {a`}K`=1.
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with Gi = g,

Di(z
j) = 1[j < j0]. (32)

In particular, Di(z
1) = 1, while Di(z

K) = 0.

To proceed, it will be helpful to use the following terminology. We call two vectors zj

and zk pm-comparable if they differ in only one component. That is, zj and zk are pm-

comparable if there exists an `′ ∈ {1, . . . , L} such that zj` = zk` for all ` 6= `′. If and zj

and zk are pm-comparable, then Assumption PM requires that either Di(z
j) ≤ Di(z

k)

for all i ∈ I or that Di(z
j) ≥ Di(z

k) for all i ∈ I. Moreover, as we show in Lemma

1, if j ≤ k, then there cannot exist a group g? with πg? > 0 for which individuals i in

group g? have Di(z
j) > Di(z

k). We will now use this result to show that the existence

of the “pure defier” group g defined above creates a contradiction.

Let zj1 be the vector whose first component is the same as that of the largest

propensity-score instrument value, zK , while all other components are the same as the

smallest, z1. That is,

zj1 ≡ (zK1 , z
1
−1).

Then zj1 and z1 are pm-comparable, and zj1 ∈ supp(Zi), which we have assumed is

rectangular. Since Di(z
1) = 1 for any i with Gi = g and p(z1) is the smallest propensity

score value, it follows from Lemma 1 that Di(z
j1) = 1 for these individuals as well.

Thus by (32), it must be that j1 < j0.

Now let zj2 be the same as zj1 except with its second component replaced by zK2 .

That is,

zj2 ≡ (zK2 , z
j1
−2) ≡ (zK1 , z

K
2 , z

1
3 , . . . , z

1
L).

Then zj2 is pm-comparable to zj1 , and zj2 ∈ supp(Zi). If it were the case that j2 ≥ j0,
then p(zj2) ≥ p(zj0) ≥ p(zj1), so that Lemma 1 would imply that Di(z

j2) = 1 for

individuals with Gi = g. At the same time, (32) would imply that Di(z
j2) = 0 for

these individuals, yielding a contradiction. Thus, it must be that j2 < j0.

Continuing in this way, we find a sequence of vectors zj1 , zj2 , zj3 , . . . , zjL that each

differ from zK in one component less than its predecessor, and such that j` < j0 for

each `. This process ends once we reach jL, at which point zjL = zK is the instrument

value corresponding to the largest propensity score value. However, this implies a

contradiction, because jL < j0 while at the same time jL = K ≥ j0. We conclude that

a “pure defier” group cannot exist under Assumption PM, and therefore that the sum
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in (30) only needs to be indexed over g ∈ G for which Cg 6= ∅. Q.E.D.

Lemma 1. Suppose that Assumption E holds. Let G denote the set of all realizations

of {Di(z)}z∈Z that are consistent with Assumption PM. Suppose that z and z′ are pm-

comparable and that p(z) ≤ p(z′). Then there does not exist a group g? ∈ G such that

πg? > 0 and Di(z) > Di(z
′) for all i with Gi = g?.

Proof of Lemma 1. Since z and z′ are pm-comparable, Assumption PM requires

that Di(z) ≤ Di(z
′) for all i ∈ I, or Di(z) ≥ Di(z

′) for all i ∈ I. If such a group g?

did exist, then the latter case would need to hold. However, this would imply that

p(z) ≡ P[Di = 1|Zi = z]

= P[Di(z) = 1]

= P[Di(z) = 1|Gi = g?]πg? + P[Di(z) = 1|Gi 6= g?](1− πg?)

> P[Di(z
′) = 1|Gi = g?]πg? + P[Di(z

′) = 1|Gi 6= g?](1− πg?)

= P[Di = 1|Zi = z′] ≡ p(z′),

which contradicts the assumption that p(z) ≤ p(z′). Q.E.D.
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