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Abstract

When forecasting with economic time series data, researchers often use a restricted win-
dow of observations or downweight past observations in order to mitigate the potential
effects of parameter instability. In this paper, we study the problem of selecting a window
for point forecasts made at the end of the sample. We develop asymptotic approximations
to the sampling properties of window selection methods, and post-window selection point
forecasts, where there is local parameter instability of various sorts. We examine risk prop-
erties of point forecasts made after cross-validation to select the window, and compare this
approach to some alternative methods of selecting the window. We also propose a quasi-
Bayesian form of cross-validation that we find to have good risk properties.
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1 Introduction

Parameter instability is widely viewed as an obstacle to time series forecasting, and as a leading

reason why econometric relationships that appear to be strong in sample can perform poorly

for out-of-sample prediction. Motivated by concerns of parameter instability, researchers often

want to make predictions using relatively recent data. They may do this by using a window of

recent data, where it is hoped that the effects of parameter instability is negligible within the

window (e.g. Pesaran and Timmermann (2007)).

For this approach, the researcher is faced with a choice of what window to use. If the true model

has a discrete structural break, the optimal estimation window might include some pre-break

data because the bias that this induces might be more than offset by the variance reduction,

as noted by Pesaran and Timmermann (2007). The approach that we focus on in this paper is

cross-validation, in the form suggested by Pesaran and Timmermann (2007). Cross-validation

reserves a fraction of the data at the end of the sample for out-of-sample evaluation, and selects

the start date for the estimation window as the one that minimizes the mean square forecast

error over this out-of-sample period. The cross-validation method has also been analyzed by

Giratis, Kapetanios, and Price (2013), and is part of the procedure proposed by Inoue, Jin, and

Rossi (2017).

We analyze cross-validation and other approaches to selecting the estimation window, when

the underlying model has structural instability of various forms. We model the degree of struc-

tural instability as being small enough that no test for a structural break will reject with proba-

bility approaching one. Under this type of local instability, we can obtain approximations to the

distributions of the window chosen by cross-validation as well as other commonly used window

selection procedures. From this we calculate and compare the asymptotic risk of post-window

selection point forecasts based on cross-validation to other approaches, such as imposing a

possibility misspecified parametric model for the structural instability. Not surprisingly, we find

that cross-validation does less well in terms of forecast accuracy than estimating a parametric
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model if that model is correctly specified. But cross-validation can be a competitive alternative

if the model is misspecified.

While cross-validation brings a degree of robustness to model misspecification, the cross-validation

criterion function can be noisy. In addition, the risk of end-of-sample point forecasts, as a func-

tion of the window start date, can be strongly asymmetric around the risk-minizing start date.

Motivated by these observations, we also consider an alternative approach that uses the en-

tire cross-validation criterion function as a pseudo-likelihood, where the parameter is the win-

dow length. Rather than taking the optimizer of the pseudo-likelihood, our proposed “Laplace”

cross-validation scheme calculates a quasi-Bayesian posterior mean for the window start date

based on the cross-validation pseudo-likelihood. In large-sample numerical calculations as

well as small-sample Monte Carlo simulations, we find that this leads to point forecasts with

attractive risk properties.

Another approach to dealing with structural instability is to downweight past observations, as

in exponential smoothing, an idea that goes back to Holt (1957). This is motivated by a model

of slowly changing parameters. We also analyze the properties of cross-validation and other

approaches to selecting the smoothing coefficient under various forms of instability.

The plan for the remainder of this paper is as follows. We set up the basic model and forecast-

ing methods, and obtain local asymptotic approximation results in Section 2. Numerical work

based on the local asymptotics is in Section 3. Section 4 contains Monte Carlo simulations and

Section 5 gives some illustrative empirical applications. Section 6 concludes.

2 Analysis

We consider a linear regression model with structural instability. The model specifies that yt+1

is a dependent variable, xt is a K ×1 vector of regressors, and εt is a sequence with mean zero
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and variance σ2 such that:

yt+1 = x ′
tβt +εt+1, t = 1, . . . ,T.

We will take limits as T → ∞, rescaling time to the interval [0,1]. We make the following as-

sumptions:

A1 T −1 ∑[Tr ]
t=1 xt x ′

t →p r M for r ∈ [0,1], where M is a positive definite bounded matrix.

A2 T −1/2 ∑[Tr ]
t=1 xtεt+1 → Ω1/2V (r ), where Ω is a symmetric K × K matrix, with symmetric

square rootΩ1/2, and V (r ) is a standard K -dimensional Brownian motion for r ∈ [0,1].

These assumptions essentially require that xt is stationary but allow the errors to have serial

correlation and conditional heteroskedasticity. If the errors are homoskedastic and serially un-

correlated, thenΩ=σ2M . Although we denote the dependent variable with a t+1 subscript, we

could handle k-step ahead forecasting for an arbitrary fixed k, by defining yt+1 appropriately.

The parameter βt can change over time. In order to develop large-sample approximations, we

suppose that the sequence {βt }, after rescaling, converges to a process in the following sense:

T 1/2β[Tr ] → M−1Ω1/2H(r ),

where H(r ) is either a deterministic or stochastic function of r ∈ [0,1], which represents the

path of the time-varying parameter in a rotated space. To develop concrete results we consider

three specific models for the time-varying parameter βt :

M1 A one-time structural break at date [cT ]. Before the break, βt = βPRE = T −1/2Ω1/2M−1µ0

while after the break βt = βPOST = T −1/2Ω1/2M−1µ1. The local asymptotic sequence

makes the degree of structural instability small. In this model,

T 1/2β[Tr ] → M−1Ω1/2µ1 +M−1Ω1/2µ1(r < c),
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where µ=µ0 −µ1. Here H(r ) =µ1 +µ1(r < c).

M2 A random walk parameters model:

βt =βt−1 +δT vt ,

β0 = 0

where vt ∼ (0, M−1ΩM−1), and δT =µ/T , for a scalar µ.1 In this model,

T 1/2β[Tr ] →µM−1Ω1/2Wv (r ),

where H(r ) =µWv (r ), and Wv (r ) is a standard K -dimensional Brownian motion.

M3 A Poisson breaks model of the sort considered by Koop and Potter (2007). In this model,

there are breaks with intensity λ/T , and the break dates are t1, t2, .... Let βti−1,ti denote

the constant value of the parameter vector between ti−1 and ti . We assume that βti−1,ti =
βti−2,ti−1+T −1/2µΩ1/2M−1ξi whereµ is a scalar and ξi is iid standard normal. Here we have

T 1/2β[Tr ] → M−1Ω1/2H(r ) where H(r ) = µ
∑C (r )

j=1 ξ j , where C (r ) is the number of Poisson

jumps by time r .

Define a rolling window estimator using data from date h up to date t1 as:

β̂(h,t1) =
(

t1∑
t=h

xt x ′
t

)−1 t1∑
t=h

xt yt .

More generally (and with a minor recycling of notation), we could consider weighted least

squares estimators with weights w = {wt }, which we denote

β̂(w,t1) =
(

t1∑
t=1

wt xt x ′
t

)−1 t1∑
t=1

wt xt yt .

1If the errors are homoskedastic and not serially correlated, this is the same parametrisation chosen by Nyblom
(1989). This ensures that the parameter innovations are uncorrelated if the regressors are rotated to be uncorre-
lated.
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The rolling window estimator corresponds to wt = 1(t ≥ h), but we can consider more general

weighting schemes. We require that the weights converge in the following sense:

w[Tr ] →ω(r ),

for some function ω(r ). For example, if we define the rolling window estimator as wt = 1(t ≥
[ηT ]), we have

w[Tr ] → 1(r ≥ η).

Another weighting scheme is

wt =
(
1− η

T

)t1−t
,

which amounts to exponential smoothing. If t1 = [r1T ], this satisfies the convergence require-

ment:

w[Tr ] → exp(−η(r1 − r )).

For a fixed window or weighting scheme, we can derive the limiting distribution of the end-of-

sample weighted least squares estimator. Given H(r ) and ω(r ), we have:

T 1/2(β̂(w,[Tr ]−1) −β[Tr ]) →d M−1Ω1/2

[∫ r
0 ω(s)H(s)d s∫ r

0 ω(s)d s
−H(r )

]
+M−1Ω1/2

∫ r
0 ω(s)dV (s)∫ r

0 ω(s)d s

≡ M−1Ω1/2G(r,η).

The limiting function G(r,η) depends on the model and weighting scheme. With the rolling

weighting scheme ω= 1(r ≥ η):

G(r,η) = 1

r −η
∫ r

η
H(s)d s −H(r )+ 1

r −η (V (r )−V (η)). (2.1)
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With the one-time break H(r ) =µ1 +µ1(r < c), this further simplifies to

1

r −η
∫ r

η
H(s)d s −H(r ) = c −η

r −ηµ1(η< c < r ).

With exponential weighting, the limit is instead:

G(r,η) = η
∫ r

0 exp(−η(r − s))H(s)d s

1−exp(ηr )
−H(r )+ η

∫ r
0 exp(−η(r − s))dV (s)

1−exp(ηr )
. (2.2)

In order to compare different approaches to selecting the window or weighting scheme, we

focus on a concrete decision problem. Suppose that the forecaster observes xT and wants to

predict yT+1. The researcher does this by estimating the model using an estimator β̂(w,T ). The

loss function is squared error loss:

L(yT+1, ŷT+1) = (
yT+1 − ŷT+1

)2 .

where ŷT+1 = x ′
T β̂(w,T ). Since the forecaster cannot do anything about the future shock εT+1,

we subtract σ2 from the loss to obtain the regret loss. The rescaled regret risk2 when using the

parameter estimator β̂(w,T ) is:

R = T
[
E

(
(yT+1 −x ′

T β̂(w,T ))
2)−σ2]= T E

(
((β̂(w,T ) −β)′xT )2) (2.3)

Then, as T →∞, we have R → R∗, where:

R∗ = E

([∫ 1
0 ω(s)H(s)d s∫ 1

0 ω(s)d s
−H(1)

]′
Λ

[∫ 1
0 ω(s)H(s)d s∫ 1

0 ω(s)d s
−H(1)

])

+E

([∫ 1
0 ω(s)dV (s)∫ 1

0 ω(s)d s

]′
Λ

[∫ 1
0 ω(s)dV (s)∫ 1

0 ω(s)d s

])
2We consider the unconditional mean square forecast error in the remainder of the paper. In principle it would

be possible in principle to consider the mean square forecast error conditional on xT , or evaluate risk under other
loss functions besides squared error loss.
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andΛ=Ω1/2M−1Ω1/2. IfΩ=σ2M , this simplifies to:

R∗ =σ2E

([∫ 1
0 ω(s)H(s)d s∫ 1

0 ω(s)d s
−H(1)

]′[∫ 1
0 ω(s)H(s)d s∫ 1

0 ω(s)d s
−H(1)

])

+σ2E

([∫ 1
0 ω(s)dV (s)∫ 1

0 ω(s)d s

]′[∫ 1
0 ω(s)dV (s)∫ 1

0 ω(s)d s

])
. (2.4)

With the rolling weighting scheme and fixed η, it simplifies further to:

R∗ =σ2E

([
1

1−η
∫ 1

η
H(s)d s −H(1)

]′[ 1

1−η
∫ 1

η
H(s)d s −H(1)

])
+ σ2K

1−η . (2.5)

In model M1, this reduces to:

R∗ =σ2µ′µmax

(
0,

c −η
1−η

)2

+ σ2K

1−η . (2.6)

In model M2, it instead reduces to:

R∗ = σ2µ2K (1−η)

3
+ σ2K

1−η , (2.7)

With the exponential weighting scheme and fixed η, equation (2.4) instead simplifies to:

R∗ =µ2σ2E

([
η

∫ 1
0 ω(s)β(s)d s

1−exp(−η)
−β(1)

]′[
η

∫ 1
0 ω(s)β(s)d s

1−exp(−η)
−β(1)

])
+ ηKσ2(1−exp(−2η))

2(1−exp(−η))2
. (2.8)

In model M1, this further reduces to:

R∗ =µ′µσ2
[

exp(−η)(exp(ηc)−1)

1−exp(−η)

]2

+ ηKσ2(1−exp(−2η))

2(1−exp(−η))2
. (2.9)

7



In model M2, it instead reduces to:

R∗ =µ2Kσ2
[

e−2η

(1−exp(−η))2

e2η−4eη+2η+3

2η

]
+ ηKσ2(1−exp(−2η))

2(1−exp(−η))2
. (2.10)

It is important to note that these risk functions are asymmetric, and the degree and even di-

rection of asymmetry depends on the magnitude of the structural break, µ. Figure 1 plots the

limiting risk function in equations (2.6) and (2.7), in which the asymmetry can clearly be seen.

2.1 Selection of a Rolling Weighting Scheme

The limiting distributions and asymptotic risk results above hold for a fixed weighting scheme.

Our main goal is to understand the implications of different approaches to choosing the weight-

ing scheme for end-of-sample forecast risk. To do this we consider a number of approaches

to selecting the weighting scheme, and derive large-sample approximations to the window or

weights chosen by the scheme under our local asymptotic framework. Consider first the case of

rolling weighting, where h is the start date of the window. There are a number of schemes that

have been proposed in the literature including:

1. Least squares estimator of the break date, which is also the pseudo-Gaussian maximum

likelihood estimator assuming homoskedastic and serially uncorrelated errors:

ĥ1 = arg min
hmin≤h≤hmax

S(h),

where

S(h) =
h−1∑
t=1

(
yt+1 −x ′

t

[
h∑

s=1
xs x ′

s

]−1 h∑
s=1

xs ys

)2

+
T∑

t=h

(
yt+1 −x ′

t

[
T∑

s=h+1
xs x ′

s

]−1 T∑
s=h+1

xs ys

)2

and hmin = [Tηmin] and hmax = [Tηmax].
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2. An alternative to least squares estimation of the break data is to take the least squares esti-

mates ofµ and c, µ̂LS and ĉLS = ĥ1/T , plug these estimates into the risk function (equation

(2.6)) and minimize, giving a window start date of:

ĥ2 =
[

T argmin
η
µ̂′

LSµ̂LS max

(
0,

ĉLS −η
1−η

)2

+ K

1−η
]

.

Note that ĥ2 ≤ ĥ1. One might want to use a little data before the estimated break to reduce

bias, but the researcher has no motivation not to use all the data after the estimated break.

A finite-sample version of this method was proposed by Pesaran and Timmermann (2007)

and referred to as the tradeoff method, in recognition of the bias-variance trade-off. We

henceforth refer to it as the tradeoff method.

3. Pesaran and Timmermann (2007) proposed selecting the window as

ĥ3 = arg min
1≤h≤hmax

C (h),

where C (h) is the following cross-validation criterion:

C (h) =
T−1∑
t=r

(
yt+1 −x ′

t β̂(h,t )
)2

,

where w = [ρT ], β̂(h,t ) is the rolling window estimator with start date h, and hmax = [T (ρ−
ζ)] for some fixed ζ> 0.

4. A variant of this cross-validation approach, also proposed by Pesaran and Timmermann

(2007), is to select the window as ĥ4 = argmin1≤h≤min(ĥ1,hmax) C (h). In other words we only

consider rolling window start dates that come on or before the estimated break date and

apply the cross-validation approach.

The following proposition gives the limiting distributions of these estimators:
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Proposition 2.1. Using least squares (method 1) gives an estimate of the break fraction (ĥ1/T )

that converges to:

ηLS = arg max
ηmin<η<ηmax

Q(η)′ΛQ(η)

η
+ (Q(1)−Q(η))′Λ(Q(1)−Q(η))

1−η (2.11)

where Q(η) ≡V (η)+∫ η
0 H(s)d s. In the model with the one-time break,

∫ η
0 H(s)d s =µmin(c,η).

The tradeoff (method 2) estimate of the break fraction (ĥ2/T ) converges to:

ηT O = argmin
η
µ′

LSµLS max

(
0,
ηLS −η

1−η
)2

+ K

1−η . (2.12)

where the least squares estimate of µ converges to µLS = Q(ηLS )
ηLS

− Q(1)−Q(ηLS )
1−ηLS

.

The cross-validated estimate (method 3) of the break fraction (ĥ3/T ) converges to:

ηCV = arg min
0≤η≤ρ−ζ

∫ 1

ρ
G(r,η)′ΛG(r,η)dr −2

∫ 1

ρ
G(r,η)′ΛdV (r ). (2.13)

with G(r,η) given by equation (2.1).

Considering only windows starting on or before ĥ1, the cross-validated estimate (method 4) of the

break fraction (ĥ4/T ) converges to:

ηCV 2 = arg min
0≤η≤min(ρ−ζ,ηLS )

∫ 1

ρ
G(r,η)′ΛG(r,η)dr −2

∫ 1

ρ
G(r,η)′ΛdV (r ). (2.14)

Proof: The proof of equation (2.11) is from Elliott and Müller (2007). Equation (2.12) follows
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immediately. The cross-validation estimate of the risk function is:

C (h) =
T−1∑
t=r

(yt+1 −x ′
t β̂(t ))

2 =
T−1∑
t=r

(εt+1 − (β̂(t ) −βt+1)′xt+1)2

=
T−1∑
t=r

ε2
t+1 +

T−1∑
t=r

(β̂(t ) −βt+1)′xt+1x ′
t+1(β̂(t ) −βt+1)

−2
T−1∑
t=r

(β̂(t ) −βt+1)′xt+1εt+1.

Hence,

C (h)−
T−1∑

t=T−r
ε2

t+1 →d

∫ 1

ρ
G(r,η)′ΛG(r,η)dr −2

∫ 1

ρ
G(r,η)ΛdV (r ).

implying equations (2.13) and (2.14). ■

It is important that method 3 evaluates the risk over a fixed window from r to T −1. As a result,

the term
∑T−1

t=r ε
2
t+1 drops out of the minimization over h (i.e. argminh C (h) = argminh C (h)−∑T−1

t=r ε
2
t+1). We can imagine schemes in which the sample for evaluation changes as a function

of h. But then
∑
ε2

t+1 does not drop out, and in fact because it is Op (T ) whereas the other terms

in C (h) are Op (1), it is the only term that matters asymptotically. This is effectively shown in

Ploberger and Krämer (1990) who show that the CUSUM of squares tests has only trivial local

asymptotic power.

2.2 Laplace Cross-validation

In our time-series setting, the cross-validation criterion function C (h) is based on out-of-sample

evaluations over a limited time span, and may be fairly noisy.3 Moreover, as we saw in Figure 1,

the underlying risk function being approximated by cross-validation can be asymmetric.

Motivated by these observations, we consider a pseudo-Bayesian alternative to minimization of

C (h). Consider C (h)/σ̂2, the cross-validation function scaled by σ̂2 (a consistent estimate of the

3An alternative approach to accounting for estimation error in the cross-validation criterion was proposed by
Lei (2017) in a cross-sectional setting.

11



variance). We treat L(h) = exp(−0.5C (h)/σ̂2) as a pseudo-likelihood in terms of the parameter

h, and then take:

ĥ5 =
∫

hL(h)dh∫
L(h)dh

as the estimate of the window start date. This is a pseudo-posterior mean, with a flat prior for

the rolling window start date. It is based on the entire cross-validation function, not just the

minimizer of C (h). It takes account of the asymmetry of the risk function, which was shown

in Figure 1 to be potentially important, whereas simply minimizing C (h) does not. We call this

the Laplace cross-validation estimator. From the Continuous Mapping Theorem, ĥ5
T →d ηCV L ,

where

ηCV L =
∫ ρ−ζ

0 ηexp[−0.5
∫ 1
ρ G(r,η)′ΛG(r,η)dr +∫ 1

ρ G(r,η)′ΛdV (r )]dη∫ ρ−ζ
0 exp[−0.5

∫ 1
ρ G(r,η)′ΛG(r,η)dr +∫ 1

ρ G(r,η)′ΛdV (r )]dη
. (2.15)

with G(r,η) given by equation (2.1).

Laplace-type estimators and inference procedures have been proposed for a number of econo-

metric settings, including Chernozhukov and Hong (2003), Christensen, Chen, and Tamer (2017),

and Inoue and Shintani (2018). Our proposal has a similar form, but its properties are quite dis-

tinct because the criterion function does not having a limiting log-quadratic form under our

local asymptotics. As a consequence the limiting distribution of our window estimator ĥ5 is

non-Gaussian.

Laplace cross-validation is also related to Bayesian Model Averaging. Geweke and Amisano

(2011) use the one-step ahead predictive likelihood as weights in Bayesian Model Averaging

where there is uncertainty about which variables to include in the model. This is similar to

Laplace cross-validation, except that Laplace cross-validation picks a single window, and so

does not involve any kind of model averaging, and we are considering uncertainty about the

window length rather than the variables to be included.
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2.3 Selection of Exponential Weighting Scheme

Next, we consider the case of the exponential weighting scheme. Here we can also select the

smoothing parameter η by cross validation. This gives the estimate η̂1 = argminη≥0 C (η) where:

C (η) =
T−1∑
t=r

(yt+1 −x ′
t β̂(w,t ))

2

r = [ρT ] and β̂(w,t ) is the exponential weighted estimator with parameter η. The cross-validated

estimate of η converges to:

ηCV = argmin
η≥0

∫ 1

ρ
G(r,η)′ΛG(r,η)dr −2

∫ 1

ρ
G(r,η)′ΛdV (r ).

with G(r,η) given by equation (2.2).

Alternatively, we can pick η by Laplace cross-validation. Letting g (η) be a prior for the exponen-

tial smoothing parameter, the cross-validated Laplace estimator is:

η̂2 =
∫ ∞

0 ηC (η)g (η)dη∫ ∞
0 ηg (η)dη

.

This converges to:

ηEW
CV L =

∫ ∞
0 g (η)ηexp[−0.5

∫ 1
ρ G(r,η)′ΛG(r,η)dr +∫ 1

ρ G(r,η)′ΛdV (r )]dη∫ ∞
0 g (η)exp[−0.5

∫ 1
ρ G(r,η)′ΛG(r,η)dr +∫ 1

ρ G(r,η)′ΛdV (r )]dη
. (2.16)

The parameter µ can also be estimated by pseudo-Gaussian maximum likelihood in model M2

and can be used as η in the exponential smoothing scheme. Maximum likelihood estimation

of µ can be done by way of the Kalman filter. Model M2 with xt = 1 is equivalent to an MA(1)

specification (Shephard, 1993; Stock and Watson, 1998) with an MA unit root of 1− µ
T + o( 1

T ).

Davis and Dunsmuir (1996) and Müller and Wang (2017) give the asymptotic distribution of the

maximum likelihood (ML) estimator in this case, but those results only apply when the random
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walk parameter model is correctly specified.

3 Numerical Work

In this section we use the local asymptotic approximations in Section 2 to numerically compare

various methods for selecting the weighting scheme for end-of-sample point forecasts.

3.1 Rolling Window

Figures 2-4 give the local asymptotic distributions from equations (2.11)-(2.13) and (2.15) in

models M1, M2 and M3. The different estimators are labeled LS, TO, CV and CVL, respectively.

The settings areΩ=σ2M , K = 1, σ2 = 1, M = 1, ηmin = 0.15, ηmax = 0.85 and ω= 0.9 in all cases.

In model M1, we set µ = 10 and consider c = 0.25, 0.5, 0.75. The risk-minimizing fixed η from

equation (2.6) is 0.24, 0.49 and 0.74 respectively. In model M2, we set µ = 1, 5, 10. The risk-

minimizing η from equation (2.7) is 0, 0.65 and 0.83 respectively. In model M3, we set µ= 3 and

λ= 1,2,3. The risk-minimizing η is 0.43, 0.59 and 0.75, respectively.

In Figure 2, the LS estimates are tightly concentrated around the true break fraction, even

though not consistent. So are the TO estimates. The CV estimates are more dispersed, and

the CVL estimate is shrunk towards the middle of the sample.

In Figures 3 and 4, the single break model is misspecified. The LS estimate is not centered

anywhere in particular, which is not surprising. The CV estimator is also very dispersed. It has

a distribution with some point mass at 0 and ηmax. The CVL estimator is centered around the

middle of the sample, but the higher is λ, the more likely CVL is to pick a larger η. It is also

influenced by the asymmetry of the loss function.
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3.2 Exponential Weighting

With the exponential weighting scheme, model M2 is correctly specified and models M1 and

M3 are misspecified. Figures 5-7 give the local asymptotic distributions of the CV and CVL

estimators of η in models M1-M3. The settings are the same as for the rolling window, but

the prior g (η) specifies that the midpoint of the exponential weighting function4 is uniform on

[0.5,0.95].

In Figure 6, the model is correctly specified. The well-known pileup problem applies to the CV

estimate in that the estimate of η has point mass at zero. The CVL estimator does not have any

pileup, as expected given that it is a pseudo-posterior mean.

In Figures 5 and 7, the model is misspecified. The mean of the CV estimator is close to the risk-

minimizing η. The CV estimate has point mass at zero, but the pileup probability is declining

in the break-date parameter c (in Figure 5) and in the jump intensity parameter λ (in Figure 7).

The CVL estimator is shrunk towards the prior mean, and is also influenced by the asymmetry

of the loss function. Again, the CVL estimator does not exhibit any pileup.

3.3 Local Asymptotic Risk

Table 1 gives numerical calculations of local asymptotic risk. For each draw of β(·) and V (·) we

compute the chosen η and hence the weight function ω(s). We then plug these into:

µ2

[∫ 1
0 ω(s)H(s)d s∫ 1

0 ω(s)d s
−H(1)

]2
+

[∫ 1
0 ω(s)dV (s)∫ 1

0 ω(s)d s

]2
 , (3.1)

and average across all the draws. Table 1 reports results for both the rolling window (where

model M1 is correctly specified) and exponential weighting (where model M2 is correctly spec-

ified).

4This is r̄ :
∫ 1

r̄ exp(−η(1−r ))dr∫ 1
0 exp(−η(1−r ))dr

= 0.5.
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The tradeoff rolling window gives smaller risk than the LS estimate of the break date, in all the

cases considered here regardless of whether the model is correctly specified or not. Ordinary

cross-validation gives larger risk than the correctly specified LS estimate, in model M1. But

cross-validation gives lower asymptotic risk than misspecified least squares estimation in mod-

els M2 and M3. Moreover, the Laplace form of cross-validation gives lower asymptotic risk than

ordinary cross-validation in most cases considered here. Overall, these results indicate that the

Laplace form of cross-validation has attractive asymptotic risk properties.

In this numerical work, the LS procedure always estimates a break. Another variant of course is

to do a sup-F pretest, and use the whole sample if no break is found. This doesn’t change the

main conclusions about the local asymptotic performance of the different procedures.

Within ordinary or Laplace cross-validation, it would also be possible to compute the choices

of ρ and ζ that minimize average risk in model M1, averaging over possible choices of the break

date, c. This will, of course, depend on the magnitude of the break, µ.

4 Monte Carlo Simulations

We report some Monte Carlo evidence of the finite-sample performance of the different proce-

dures in a model with instability in the conditional mean.

The design is:

yt = bt +ut

where ut is an AR(1) process with coefficientφ and i.i.d. normal innovations with mean zero and

variance scaled such that 2π times the spectral density of ut at frequency zero is 1, t = 1, ...T .

We have 10 different specifications for bt :

1. bt = 0.
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2. bt = 10T −1/21( t
T > 0.25)

3. bt = 10T −1/21( t
T > 0.5)

4. bt = 10T −1/21( t
T > 0.75)

5. b0 = 0, bt = bt−1 +T −1ξt for t ≥ 1 where ξt is iid standard normal.

6. b0 = 0, bt = bt−1 +5T −1ξt for t ≥ 1 where ξt is iid standard normal.

7. b0 = 0, bt = bt−1 +10T −1ξt for t ≥ 1 where ξt is iid standard normal.

8. b0 = 0 and there are Poisson jumps with an intensity 1
T at each of which the parameter

increases by 3T −1/2ξ where ξ is standard normal.

9. As in (8) except that the Poisson intensity is 2
T .

10. As in (9) except that the Poisson intensity is 3
T .

The first design has no structural break, designs 2-4 have a discrete break, designs 5-7 have

a random parameter, and designs 8-10 feature Poisson jumps. The models are chosen to be

directly comparable to the local asymptotic approximations that we considered earlier, to let

us assess whether the local asymptotics provide a useful guide to finite sample performance.

In these models, we then forecast yT+1 and consider various methods for selecting the rolling

window or exponential smoothing parameter:

1. A window starting at the least squares estimate of a single break date.

2. A rolling window selected by the break date estimation method of Bai and Perron (1998)

with a number of breaks between 0 and 5 determined by the BIC. If no break is found, the

whole sample is used for forecasting. If one or more breaks are found, then the window

starting on the last estimated break date is used for forecasting.

3. The tradeoff rolling window based on the least squares estimate in (1).
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4. Cross-validation using the last 10 percent of the sample for evaluation considering all

possible window start dates (ĥ3).

5. Cross-validation using the last 10 percent of the sample for evaluation considering only

start dates before the last estimated break date (ĥ4).

6. The Laplace cross-validation scheme, as proposed in subsection 2.2.

7. The Laplace cross-validation scheme, considering only start dates before the last esti-

mated break date.

8. The method for window selection of Inoue, Jin, and Rossi (2017). This uses cross-validation

without an estimated break date to select an initial window, uses local linear regression

to estimate the parameter at the end of the sample, and then uses the window that gets

closest to this local linear estimate.5

9. Exponential weighting using the maximum likelihood estimate of a random walk plus

noise model.

10. The corresponding tradeoff exponential weighting, selectingη to minimize equation (2.10)

where the parameters µ and σ2 are replaced by their maximum likelihood estimates.

11. Exponential weighting using cross-validation.

12. Exponential weighting with Laplace cross-validation.

With each of these methods for selecting the weighting scheme, we compute the mean square

error of the forecast as a predictor of bT+1. Let ŷi ,T+1 denote the forecast of the T +1th observa-

tion using a rolling window in the i th replication and let bi ,T+1 denote the draw of bT+1 in this

replication. The mean square forecast error is:

MSF E = T
R∑

i=1

(
ŷi ,T+1 −bi ,T+1

)2 (4.1)

5Concretely, we are using method OptR1 in the notation of Inoue, Jin, and Rossi (2017).
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where R is the number of Monte Carlo replications, which we set to 5,000. We scale the mean

square forecast error by the sample size to make it comparable to the rescaled risk function in

equation (2.3). Note also that we are viewing the forecasts as predictors of bT+1rather than yT+1.

This is so as to remove the effect of noise that is going to be the same for all methods and just

serves to obscure the difference between them. The performance of these methods has been

evaluated in Monte Carlo simulations in existing work, including Pesaran, Pick, and Pranovich

(2013), except that the assessment of the Laplace cross-validation and exponential weighting

cross-validation schemes are new.

The results are reported in Table 2 with φ = 0 (meaning that the errors are i.i.d.) and sample

sizes T = 100 and T = 200. Results with φ= 0.7 and the same sample sizes are shown in Table 3.

In the models with a single discrete break, the rolling window methods that estimate this break

date (or use the tradeoff method) give smallest MSFE, although the efficiency losses from using

cross-validation to select the window can be small. In the models with slow-moving param-

eters, exponential weighting with maximum likelihood estimation does best, but the cross-

validation rolling window does quite well too. The Laplace forms of cross-validation gives

smaller loss than ordinary cross-validation in most cases. In the models with Poisson jumps,

one of the two versions of Laplace cross-validation gives the smallest MSFE with both sample

sizes, and with both iid and AR(1) errors. In general, the conclusions are consistent with the lo-

cal asymptotic risk calculations of the previous section, and are quite consistent across sample

size and error persistence. However, persistence of the errors substantially degrades the per-

formance of the maximum-likelihood estimator of the random walk plus noise model and the

associated tradeoff estimator.
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5 Empirical Applications

5.1 Inflation Forecasting

We illustrate our theory with an application to the use of the Phillips curve in inflation forecast-

ing. A tradeoff between unemployment and inflation is central to new Keynesian macroeco-

nomic models. However, there are widely thought to have been changes to inflation dynamics

over the last few decades, with the Phillips curve having flattened and inflation having become

less persistent (e.g. Stock and Watson (2010)).

We define annualized inflation in quarter t as πt , and define k-period inflation as

π(k)
t = k−1Σk

i=iπt+i−1.

Following Stock and Watson (2009), we consider forecasting k−period inflation as of time t from

the regression:

π(k)
t+k −πt =β0 +β1(πt −πt−1)+β2(ut − ūt )+εt , (5.1)

where ut is the average civilian unemployment rate in quarter t , and ūt is the CBO measure

of NAIRU in that quarter. In this regression, we select the rolling window using LS estimation

of break dates with a single break, LS estimation with the number of breaks set by BIC, the

tradeoff method, cross-validation, Laplace cross-validation, and the method of Inoue, Jin, and

Rossi (2017).

Our data are quarterly from 1959:Q1 to 2018:Q2, and we measure inflation by either the total or

core PCE price index. We assess the methods on the basis of out-of-sample forecast accuracy,

with the first forecast made using rolling windows from the first 80 quarters of data. For total

PCE inflation, we use the real-time data from the Federal Reserve Bank of Philadelphia. Unfor-

tunately, core PCE inflation was not released at all before 1996, and so we have to use ex-post

revised data for that.
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The results are shown in Table 4. No window selection method does best in all cases. Cross-

validation is however competitive, and in nearly all cases, the Laplace form of cross-validation

gives a smaller root mean square error than ordinary cross-validation. Laplace cross-validation

seems to be especially beneficial at longer forecasting horizons. For both inflation measures,

Laplace cross-validation gives lower root mean square prediction error at both the 3 and 4 quar-

ter horizons. Inflation forecasting is hard, and simple univariate benchmarks generally do bet-

ter than Phillips curve forecasts in terms of out-of-sample forecast accuracy (e.g. Faust and

Wright (2013)). However, within Phillips curve forecasts, the Laplace cross-validation method

for choosing the rolling window appears to work relatively well.

5.2 Fitting Autoregressions to a Large Dataset

As another illustration, we took the quarterly version of the database of McCracken and Ng

(2016) and considered all 210 series for which data are available from 1959Q1-2017Q4. We ap-

plied the transformation to induce stationarity as given in that paper to each series, and then

forecasted each series by an AR(1), selecting the rolling window by the same 8 different meth-

ods as in the previous subsection. For each series, we computed the one-quarter-ahead out-

of-sample root mean square prediction error using the different methods for selecting rolling

windows, relative to that from simply using the full sample. The exercise is meant to illustrate

the relative performance of different methods for choosing windows in a generic environment.

Table 5 reports the averages and 25th, 50th, and 75th percentiles of the relative root mean

square error across all 210 series, for each of 8 methods. Table 5 also reports the proportion

of series for which the best forecast, in an out-of-sample root mean square error sense, is given

by each of the 8 methods, and it reports the proportion of series for which the chosen window

is the entire sample, meaning that the relative root mean square error is exactly equal to 1.

LS estimation with the BIC number of breaks allows for the information criterion to pick any-

thing from 0 to 5 breaks. For 68 percent of the series, it picks no breaks at all, meaning that
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the relative root mean square prediction error is exactly 1. The cross-validation methods allow

for the possibility of using the whole sample as the estimation window, but this is not actually

chosen for any of the 210 series. Therefore only LS estimation with the BIC number of breaks

gives a positive probability of the relative root mean square error being exactly 1.

For all 8 methods, the average relative root mean square error across all series is around 1, in-

dicating that picking rolling windows does not typically help much, and might well actually

worsen forecasting performance. But the two Laplace cross-validation methods are the only

two approaches that give average relative root mean square error that are very slightly below

one. For nearly half of the series, the best forecasts are given by LS estimation with the BIC

number of dates. However, cross-validation methods are also competitive and one of the two

forms of Laplace cross-validation is optimal for about a quarter of the series.

6 Conclusions

In this paper we have considered the risk properties of various methods for selecting the esti-

mation window to be used for point forecasting in the linear regression model in the presence of

local parameter instability of various forms. Cross-validation, and especially a quasi-Bayesian

form of cross-validation are found to have good risk properties. These predictions are con-

firmed in Monte-Carlo simulations and are also borne out in out-of-sample accuracy in some

illustrative empirical applications.
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Figure 1: Asymptotic Loss as a Function of η in Models M1 and M2
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Notes: The figures show the risk functions in model M1 (Equation (2.6)) and in model M2 (Equa-
tion (2.7)), as functions of η for K = 1, σ2 = 1 and selected choices of µ. In model M1, we set
c = 0.5.
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Figure 2: Simulated Local Asymptotic Distributions of Estimates of η in Rolling Window with
Model M1
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Notes: The figures show the simulated densities. The blue lines show the rescaled risk as a
function of η, from Equation (2.6), and the vertical dashed lines mark the risk-minimizing fixed
η.
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Figure 3: Simulated Local Asymptotic Distributions of Estimates of η in Rolling Window Model
M2
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Notes: The figures show the simulated densities. The blue lines show the rescaled risk as a
function of η, from Equation (2.7), and the vertical dashed lines mark the risk-minimizing fixed
η.
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Figure 4: Simulated Local Asymptotic Distributions of Estimates of η in Rolling Window Model
M3
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Notes: The figures show the simulated densities. The blue lines show the rescaled risk as a
function of η, from substituting the Poisson breaks process into equation (2.5), and the vertical
dashed lines mark the risk-minimizing fixed η.
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Figure 5: Simulated Local Asymptotic Distributions of Estimates of η in Exponential Window
with Model M1

Notes: The figures show the simulated densities. The blue lines show the rescaled risk as a
function of η, from Equation (2.9), and the vertical dashed lines mark the risk-minimizing fixed
η.

27



Figure 6: Simulated Local Asymptotic Distributions of Estimates of η in Exponential Window
with Model M2

Notes: The figures show the simulated densities. The blue lines show the rescaled risk as a
function of η, from Equation (2.10), and the vertical dashed lines mark the risk-minimizing
fixed η.
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Figure 7: Simulated Local Asymptotic Distributions of Estimates of η in Exponential Window
with Model M3
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Notes: The figures show the simulated densities. The blue lines show the rescaled risk as a
function of η, from substituting the Poisson breaks process into equation (2.8), and the vertical
dashed lines mark the risk-minimizing fixed η.
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Table 1: Local Asymptotic Risk

Rolling Window Exp Window
Rolling Window LS TO CV CVL CV CVL
Model M1
c = 0.25 1.9 1.8 5.8 1.9 7.3 2.4
c = 0.5 2.9 2.8 8.0 3.8 9.4 4.8
c = 0.75 6.8 6.5 10.3 16.9 11.6 11.4
Model M2
µ= 1 7.8 4.7 5.3 2.1 6.5 2.2
µ= 5 9.4 7.7 8.5 6.3 9.7 5.5
µ= 10 17.1 16.2 14.0 15.4 13.7 12.5
Model M3
λ= 1 7.9 5.3 6.0 3.2 7.4 2.8
λ= 2 8.5 6.3 7.2 4.8 8.1 4.2
λ= 5 9.0 7.2 7.9 6.2 9.6 5.9

Notes: This table reports the average of Equation (3.1) averaged across all the draws.
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Table 2: Simulated Finite Sample Loss: i.i.d. Errors

Rolling Window Exp Window
DGP LS LS TO CV CV CVL CVL IJR ML TO CV CVL

1 BIC All Pre All Pre
T=100
1 5.35 1.42 3.47 4.37 3.40 1.74 1.27 3.10 2.15 2.12 6.84 7.71
2 1.50 2.13 1.54 5.00 3.09 1.74 3.08 3.17 5.88 5.88 7.80 7.74
3 2.23 2.75 2.41 6.54 5.25 3.70 9.80 4.24 6.16 6.16 9.94 7.83
4 4.67 7.09 5.42 7.56 7.26 16.7 22.7 9.06 8.24 8.28 12.2 8.79
5 5.39 1.84 3.59 4.52 3.56 1.97 1.55 3.23 2.44 2.41 7.10 7.91
6 7.26 7.43 6.53 6.78 6.34 6.14 6.92 6.00 6.20 6.23 9.88 9.08
7 15.4 15.6 15.3 11.8 13.8 15.5 19.7 14.3 12.0 12.3 14.4 12.2
8 5.87 3.74 4.48 5.29 4.40 3.39 3.31 4.12 3.80 3.79 7.88 8.41
9 6.42 5.56 5.42 6.05 5.31 4.86 5.16 5.18 5.10 5.11 8.63 8.59
10 7.14 6.84 6.30 6.84 6.26 6.19 6.89 6.18 6.07 6.08 9.78 9.21
T=200
1 6.16 1.41 3.92 4.79 3.85 1.80 1.30 3.46 2.22 2.18 6.95 7.92
2 1.58 2.32 1.57 5.37 3.31 1.80 3.11 3.73 6.18 6.18 7.83 7.90
3 2.25 2.92 2.31 7.05 5.64 3.93 9.76 4.75 6.48 6.48 10.1 7.93
4 4.84 8.56 5.20 8.22 7.82 17.3 22.8 7.82 8.46 8.49 12.4 8.90
5 6.02 1.67 3.92 4.67 3.76 1.93 1.50 3.53 2.38 2.35 6.76 7.64
6 7.42 7.59 6.54 6.83 6.27 6.07 6.73 6.16 6.12 6.15 9.47 8.79
7 15.2 15.9 14.9 11.5 13.2 15.0 18.9 13.3 11.6 11.7 13.9 11.8
8 6.54 3.72 4.74 5.54 4.69 3.35 3.29 4.42 3.78 3.77 7.48 8.07
9 6.76 5.41 5.42 6.18 5.37 4.71 4.99 5.21 5.02 5.03 8.55 8.50
10 7.21 6.98 6.17 6.83 6.12 6.00 6.64 6.16 5.93 5.95 9.41 8.88

Notes: This table reports the simulated MSFE in Equation (4.1) for the 10 DGPs described in
the text and with different ways of selecting the window start date. The methods are (i) Least
squares with a single break, (ii) least squares estimation of the break dates following Bai and
Perron (1998) in which the number of breaks is from 0 to 5, selected by BIC, (iii) the tradeoff
method using least squares with a single break, (iv) cross-validation using the estimate ĥ3, (v)
cross-validation using the estimate ĥ4, (vi) the Laplace cross-validation counterpart of ĥ3, (vii)
the Laplace cross-validation counterpart of ĥ4, (viii) the Opt-R1 method of Inoue, Jin, and Rossi
(2017), (ix) exponential weighting using the maximum likelihood estimate of model M2, (x) the
tradeoff method for exponential weighting, (xi) exponential weighting with cross validation and
(xii) exponential weighting with Laplace cross validation.
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Table 3: Simulated Finite Sample Loss: AR(1) Errors

Rolling Window Exp Window
DGP LS LS TO CV CV CVL CVL IJR ML TO CV CVL

1 BIC All Pre All Pre
T=100
1 4.65 4.56 4.35 4.37 3.36 2.64 1.85 2.40 15.17 15.17 8.13 6.96
2 1.39 4.54 1.39 4.73 2.72 2.00 2.76 2.59 15.55 15.55 8.17 6.48
3 2.00 4.58 2.00 5.46 4.20 3.61 6.51 4.08 15.51 15.51 8.58 6.32
4 4.01 3.81 4.02 5.79 5.51 7.17 9.30 8.69 15.52 15.52 8.86 6.69
5 4.68 4.60 4.40 4.46 3.50 2.79 2.05 2.55 15.35 15.35 8.30 7.11
6 6.70 6.39 6.60 6.23 5.90 5.69 5.96 5.29 15.69 15.69 9.12 7.82
7 14.90 11.49 14.87 10.69 13.15 12.19 15.46 12.97 16.71 16.71 11.09 10.05
8 5.20 5.27 4.98 5.00 4.19 3.72 3.25 3.48 15.89 15.89 8.61 7.35
9 5.84 5.84 5.69 5.68 5.02 4.78 4.66 4.56 15.39 15.39 8.73 7.50
10 6.53 6.45 6.41 6.26 5.78 5.60 5.80 5.42 16.09 16.09 9.14 7.82
T=200
1 5.69 5.49 5.21 5.07 3.96 3.01 2.13 3.07 30.92 30.92 10.68 8.97
2 1.52 5.48 1.52 5.44 3.09 2.43 2.87 3.14 31.10 31.10 10.69 8.45
3 2.14 5.47 2.15 6.47 4.96 4.52 6.54 3.99 31.09 31.09 11.17 8.13
4 4.42 4.41 4.45 6.98 6.62 8.31 9.93 7.05 31.05 31.05 11.57 8.66
5 5.58 5.43 5.15 4.92 3.87 3.02 2.20 3.09 30.29 30.29 10.29 8.61
6 7.15 7.08 6.98 6.61 6.09 5.92 5.97 5.44 30.47 30.47 11.12 9.32
7 14.98 11.97 14.92 10.88 12.87 11.89 14.53 11.70 31.01 31.01 12.99 11.40
8 6.08 6.16 5.71 5.65 4.68 4.04 3.50 3.96 30.79 30.79 10.51 8.79
9 6.34 6.48 6.06 6.13 5.24 4.90 4.60 4.75 31.19 31.19 10.90 9.15
10 6.82 7.00 6.63 6.65 5.89 5.81 5.76 5.40 31.35 31.35 11.15 9.33

Notes: As for Table 2, except that the errors follow an AR(1) with coefficient 0.7.
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Table 4: Inflation Root Mean Square Errors

LS LS TO CV CV CVL CVL IJR
1B BIC All Pre All Pre

Total PCE
h = 1 1.882 1.767 1.834 1.808 1.787 1.784 1.777 1.824
h = 2 1.685 1.570 1.670 1.666 1.610 1.597 1.589 1.642
h = 3 1.679 1.490 1.650 1.590 1.586 1.475 1.489 1.513
h = 4 1.612 1.572 1.567 1.539 1.521 1.411 1.425 1.428
Core PCE
h = 1 0.806 0.814 0.800 0.809 0.812 0.810 0.807 0.804
h = 2 0.706 0.728 0.710 0.718 0.705 0.714 0.707 0.706
h = 3 0.726 0.727 0.743 0.773 0.708 0.698 0.685 0.733
h = 4 0.770 0.878 0.769 0.843 0.736 0.712 0.732 0.763

Notes: This table reports the out-of-sample root mean square error of the inflation prediction
regression in equation (5.1). There are two inflation measures: total PCE (real-time) and core
PCE (revised) over the sample period 1959Q1-2018Q2, with out-of-sample forecasting starting
after 80 quarters. Units are 100 times annualized log differences. We use rolling windows with 8
methods for selecting the window (i) LS(1B), least squares with a single break, (ii) LS(BIC), least
squares estimation of the break dates following Bai and Perron (1998) in which the number of
breaks is from 0 to 5 selected by BIC, (iii) TO, the tradeoff method using least squares with a
single break, (iv) CV (All) cross-validation using the estimate ĥ3, (v) CV (Pre) cross-validation
using the estimate ĥ4, (vi) CVL (All) and CVL (Pre) the Laplace cross-validation counterparts of
these, and (vii) IJR the Opt-R1 method of Inoue, Jin, and Rossi (2017).
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Table 5: Root Mean Square Error of AR(1) Forecasts with Alternative Windows

LS-1 LS-BIC TO CV All CV Pre CVL All CVL Pre IJR
Average RRMSE 1.0368 1.0003 1.026 1.0169 1.0085 0.9951 0.9989 1.0032
25th Pctile RRMSE 1.0065 1.000 1.0041 1.0060 1.0019 0.9919 0.9964 0.9954
50th Pctile RRMSE 1.0322 1.000 1.0189 1.0209 1.0153 1.0036 1.0030 1.0107
75th Pctile RRMSE 1.0569 1.000 1.0415 1.0406 1.0261 1.0088 1.0070 1.0198
P(Min RRMSE) 0.0286 0.4762 0.019 0.0667 0.0476 0.1333 0.1238 0.1048
P(RRMSE=1) 0 0.681 0 0 0 0 0 0

Notes: This table considers out-of-sample root mean square error of prediction of each of the
210 series in the quarterly dataset of McCracken and Ng (2016) that are available from 1959Q1-
2017Q4 using an AR(1). All of the window selection methods considered in Table 5 are used.
Root mean square prediction errors are computed relative to the benchmark of an AR(1) es-
timated on the whole sample. The table reports the average and quartiles of the relative root
mean square error (RRMSE) for each method across the 210 series. It also reports the propor-
tion of the series that are best predicted by each method. The last line of the table gives the
proportion of the series for which the method has RRMSE equal to one, which occurs when the
method selects the full window.
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