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Abstract: Name-your-own-price selling is a tractable laboratory paradigm for studying bidding 

behavior because it involves only one bidder per transaction. Using data from an incentive-

compatible laboratory experiment that implemented a name-your-own-price seller who charges 

entry fees, we estimate a flexible model of risk preferences at the individual level, and we find 

substantial population heterogeneity. The behavior of three quarters of our subjects is more 

consistent with prospect theory than with expected utility theory in that their estimated utility 

functions are convex in the loss domain. In several counterfactual simulations, we measure the 

impact of accounting for the heterogeneity in risk preferences on setting entry and reserve prices 

in three market institutions that involve bidding, including first-price auctions. We find that when 

the seller cannot discriminate based on risk preferences, prices set using the simpler homogeneous 

model (that assumes everyone has the same risk preferences) achieve over 99% of the optimal 

profit. By contrast, a discriminating seller can benefit from using the heterogeneous model in 

several situations that we characterize as depending on both the institution and the dispersion in 

the distribution of valuations. 
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1. Introduction 

Bidding behavior has long been recognized as a potentially rich source of information about 

preferences, because it contains not only ordinal information about utility revealed by the choice 

to submit the bid, but also cardinal information about the strength of preference revealed by the 

bid’s magnitude. Because most markets that give rise to bidding data are governed by publicly 

known and strictly enforced rules, empirical researchers and data analysts can infer the bidders’ 

preferences from bidding data by inverting the mapping from preferences to bids implied by the 

rules (Sutton, 1993; Laffont and Vuong, 1996). A prominent example of this approach is the 

analysis of first-price auctions with independent private values by Guerre, Perrigne, and 

Vuong (2000), who invert the optimal bidding strategy to estimate bidders’ valuations under the 

assumption of risk neutrality. Although human bidders are likely not neutral to risk, joint 

identification of risk preferences and valuations from bids alone is not possible (Guerre, Perrigne, 

and Vuong, 2009). However, in a laboratory setting with induced values, the analyst knows and 

controls bidder valuations, so estimation of bidder risk preferences is possible. In this paper, we 

propose and estimate a flexible individual-level model of risk preferences using bidding data from 

an incentive-compatible laboratory implementation of a very simple single-bidder auction called 

“name-your-own-price” (NYOP) selling. Instead of having to compete with other bidders, as 

would be the case in a standard auction, an NYOP bidder makes a binding price offer to the seller, 

and the seller’s hidden reserve price determines whether the bid is accepted. The econometric 

inference about bidder preferences is thus particularly tractable because the optimal NYOP bidding 

strategy is a single-agent decision problem without strategic interactions among different bidders. 

Thanks to the tractable laboratory paradigm, this paper is the first to identify individual-

level risk preferences from entry and bidding behavior. Our estimates imply a substantial 
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population heterogeneity in risk preferences. Using a set of counterfactual simulations, we explore 

the impact of this preference heterogeneity on optimal selling strategies in a variety of markets 

with consumer bidding, including auctions. Compared to accounting for risk preferences only at 

the population level using a homogeneous model that assumes all customers have the same risk 

preferences, estimating the model with heterogeneous risk preferences requires considerably more 

data and effort. We ask the following practical question: When is the additional work involved in 

empirically identifying the heterogeneous model justified by the additional profit thus attained, 

and when is the homogeneous model good enough for optimizing seller decisions? We find that 

sellers who cannot discriminate between buyers gain very little from carefully accounting for 

heterogeneity in risk preferences, but discriminating sellers can benefit a lot in some market 

institutions. An important driver of the benefit to discriminating sellers is the variance of the 

distribution of valuations, which can both enhance the benefit (when the seller uses reserve prices) 

and reduce it (when the seller uses entry fees). 

We now briefly outline our data and modeling assumptions. The data come from an 

experiment conducted and analyzed by Zeithammer et al. (2019). The experiment varied not only 

the private valuations of the bidders, but also the entry costs (framed as non-refundable “bidding 

fees” to bidders). Because our bidders can thus end up with a net loss, we can empirically 

distinguish between two dominant models of behavior under risk—the expected utility theory 

(EUT) and prospect theory (PT)—which differ markedly in their model of utility in the loss 

domain. We measure risk preferences at the individual level using a parametric model with a 

flexible specification of the utility function that nests both models. Our results suggest substantial 

heterogeneity in both the best-fitting model as well as in the specific curvatures of the utility 

function. The behavior of three quarters of our subjects is more consistent with PT than with EUT 
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in that their utility functions seem to be convex in the loss domain. All individual-specific utility 

functions we estimate are concave in the gain domain, with average relative risk aversion of 0.6 

and a wide range from 0 to 0.9. 

2. Literature review 

Because of the uncertainty inherent in auctions and other bidding markets, individual risk 

preferences play a key role in modeling bidder behavior, as documented by empirical and 

experimental studies (e.g., Cox, Smith, and Walker, 1988; Athey and Levin, 2001; Goeree, Holt, 

and Palfrey, 2002; Abbas and Hann, 2010). However, no general consensus exists concerning 

which model of risk preferences is best suited to explain commonly observed phenomena, for 

example, overbidding in auctions (Guerre et al., 2009). We contribute to the literature on modeling 

bidder behavior by first estimating individual-level risk preferences using a more flexible model 

specification than prior work on bidding, and then exploring when accounting for the population 

preference heterogeneity we find is useful for an auctioneer setting reserve prices and entry fees. 

The data from the laboratory paradigm we exploit allow us to overcome the lack of 

nonparametric joint identification of valuations and risk preferences from bidding data alone 

(Guerre et al., 2009). In a closely related paper that also uses laboratory bidding data, Bajari and 

Hortaçsu (2005) examined the ability of existing econometric approaches to recover the known 

valuation distribution from bids, and found the homogeneous risk-averse expected utility model 

works better than several alternatives. Instead of trying to recover the known valuation distribution 

using only the observed bids as observations, we consider the known valuations together with the 

bids in estimation, and infer the shape of bidders’ utility functions at the individual level.  

Another closely related experimental paper is Chakravarty et al (2011) who also use a 

bidding task designed to eliminate strategic considerations, and proceed to interpret the observed 
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bids through the lens of a model with constant relative risk aversion. They estimate a population 

distribution of risk aversion and compare it across two conditions in their study, but they do not 

conduct counterfactual simulations that use the estimates to optimize selling. In contrast to both 

Bajari and Hortaçsu (2005) and Chakravarty et al (2011), our model endogenizes entry and is 

flexible enough to accommodate both expected utility and prospect theories of preferences. 

Because of the lack of joint identification of valuations and risk preferences, structural 

approaches to auctions based on bidding data alone often employ risk neutrality as an identifying 

assumption (Athey and Haile, 2007). Several papers achieve the joint identification using either 

parametric assumptions or exogenous variation that gives rise to various exclusion restrictions. 

Specifically, Guerre et al. (2009) exploit exogenous bidder participation as an exclusion restriction 

to identify the bidders’ utility function and their private value distribution nonparametrically. 

Campo et al. (2011) exploit heterogeneity across auctioned objects and a parameterization of the 

bidders’ utility function. Lu and Perrigne (2008) use the fact that both ascending and sealed-bid 

auctions are used in timber sales. Bolotnyy and Vasserman (2019) estimate bidders’ risk 

preferences in infrastructure procurement auctions, identifying a constant absolute risk aversion 

model of risk preferences using a subset of auctions for which bidding behavior is known a priori 

to be driven mostly by risk preferences. Campo (2012) exploits a parameterization of the bidders’ 

utility function to show that semi-parametric joint identification of individual-level risk aversion 

and valuation distribution is possible when the analyst observes a bidder characteristic known to 

affect the bidder’s valuation but not her risk preference. 

With the exception of Campo (2012), all of the above existing approaches to identifying 

risk aversion from bids identify the homogeneous model, in which all bidders have the same risk 

preferences. We make two contributions to the structural econometric literature on auctions. First, 
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we document when such a homogeneous model is sufficient for the auctioneer’s decision-making 

across several different counterfactual bidding markets. Second, we show the expected-utility 

model is too restrictive when also modeling entry behavior, as evidenced by the fact that a 

prospect-theoretic utility model captures the overall entry and behavior of a majority of the 

subjects in our data better than the expected utility model. Our results reveal that considering the 

complete entry and bidding behavior has a strong and meaningful impact on inference as compared 

to considering only observed bids. Palfrey and Pevnitskaya (2008) also study the complete entry 

and bidding behavior in a laboratory setting, but they do not estimate the underlying preferences, 

and neither do Zeithammer et al. (2019), whose data we use in this research for our estimations. 

The present research also connects to the large literature studying risk preferences from 

data on individual behavior in non-bidding domains. These papers typically rely on survey and 

experimental data (e.g., Holt and Laury, 2002; von Gaudecker, van Soest, and Wengström, 2011), 

but have also exploited economic field data (e.g., Cicchetti and Dubin, 1994; Cohen and Einav, 

2007; Sydnor, 2010; Barseghyan, Molinari, O’Donoghue, and Teitelbaum, 2013; Barseghyan, 

Molinari, and Teitelbaum, 2016; Chiappori, Salanié, Salanié, and Gandhi, 2019). With respect to 

more methodological contributions in studying risk preferences under PT (e.g., Abdellaoui, 2000; 

Abdellaoui, Bleichrodt, and Paraschiv, 2007), this paper differs from the extant literature based on 

lottery choices in that we use data from a setting in which the subjects can decide how much risk 

they want to face by changing their bids. 

Our emphasis on the importance of accounting for heterogeneity further relates this paper 

to the broader literature on modeling of consumer heterogeneity as summarized, for example, in 

Allenby and Rossi (1999). That literature focuses on modeling the heterogeneity in preferences for 

product attributes, and finds both large amounts of heterogeneity and large profit gains for 



6 

marketers using posted prices who can exploit the heterogeneity through various forms of price 

discrimination. By contrast, we focus on the modeling of the population heterogeneity in risk 

preferences, and our counterfactuals study the profit gains of auctioneers facing bidders who are 

heterogeneous in both risk preferences and valuations. Despite studying different market 

institutions, our results echo the results from work on the heterogeneity in consumer product 

preferences in that we also find that a price-discriminating seller can gain substantial profits from 

using the heterogeneous model instead of relying on the homogeneous one. 

3. Data 

We analyze data from Experiment 2 in Zeithammer et al. (2019), focusing on the “decision aid” 

condition. As discussed by Zeithammer et al. (2019), the decision aid makes the task easier and 

the behavior more stable across rounds of the experiment. 48 subjects participated in this condition, 

each completing 25 rounds corresponding to a 5×5 within-subject manipulation of valuation drawn 

from {5, 20, 35, 50, 65} and bidding fee drawn from {0,1,6,12,18}. Each subject experienced all 

possible combinations of valuations and fees in random order. The seller was a computer program, 

which drew its procurement cost c randomly from Uniform[0,70], and accepted bids that exceeded 

the current cost draw. 

In the beginning of each round, the subject learned her valuation and the bidding fee (but 

not the current cost c), and had to decide whether to participate in the bidding or skip the round. 

To help the subject with this decision, the bidding interface in the experiment provided a decision 

aid that calculated and displayed both the probability of acceptance 
70

b
 and the monetary payoff 

v b f   should the subject’s bid be accepted. The subject was required to use the decision aid at 

least once before submitting her bid, and she could use it as many times as she liked to try out 
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different bid levels. If she chose to bid, she entered the bid amount into a box and pressed “Submit 

Bid,” automatically deducting the bidding fee. Please see Zeithammer et al. (2019) for sample 

stimuli as well as for a detailed discussion of the effect of the decision aid on bidding and entry 

behavior. 

At the end of each round, payoffs were determined as follows: When the buyer decided to 

skip a round, she received a payment of 0 points and the round ended. When the buyer submitted 

a bid and the bid was rejected, she lost the bidding fee f paid. Finally, when the buyer submitted a 

bid and the bid was accepted, she received a payment equal to her surplus v b f  . 

The data were collected at a large European public university. Subjects took a little over a 

minute per task. They earned, on average, about 16.90 EUR (USD 21.70 at the time of the 

experiments), which included a show-up fee of 4 EUR (USD 5.10) and another 4 EUR for taking 

the exit survey. 

4. Model 

The experiment described above presented the bidder with a costly opportunity to submit a bid in 

an NYOP setting, where the cost was framed as a non-refundable “bidding fee,” deducted upon 

submission of a bid. From the bidder’s perspective, the bidding fee acts exactly like the entry cost 

in Samuelson (1985). We assume that when considering entry with a bidding fee of f, the buyer 

with valuation v evaluates the two potential outcomes of offering a bid b as follows. First, if b is 

accepted, she combines the relevant experimental currency amounts into a net surplus s v b f  

, and experiences her utility of this potential surplus as    u s u v b f   . Second, if her bid is 

not accepted, she represents her utility of spending f without getting anything back as  u f . To 

decide whether and how much to bid, she solves the following: 
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      
0

max 0 ,max 1
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enter

b
V

V
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

 
             

    
  


, (1) 

where V represents the buyer’s choice-relevant values of entering or not. Without loss of 

generality, we can set the intercept and scale of the utility function as    0 0 and 1 1u u    . 

Given this normalization, the general model in equation 1 nests both classical EUT (with u concave 

for risk-averse bidders and convex for risk-seeing bidders)1 and a simple version of PT (with u 

corresponding to the “value function” concave in gains and convex in losses)2. Our goal is to 

specify a parsimonious yet flexible model of u, and let the data determine which of the above two 

major theories of risk preferences fits our data better, at the individual level. 

To allow for different curvatures in the loss and gain domains, as well as to allow a kink at 

zero motivated by loss aversion, we adopt the following three-parameter specification: 

  
 

0 :

0 :

r

t

s s
u s

s s

  
  

, (2) 

where all three parameters γ, r, and t are positive. When s>0, that is, in the gain domain, equation 

2 assumes CRRA with relative risk aversion 1-r. In other words, r<1 implies greater risk aversion 

                                                            
1 Given the  0 0u   intercept, u represents the change in the underlying utility from some initial wealth level w0 to 

a new wealth level, either w0+v-b-f in the case of an accepted bid, or w0–f in the case of a rejected bid. The  1 1u     

scale normalization simply expresses the changes in the underlying utility as fractions of the change from losing one 
unit of experimental currency to getting no surplus. Specifically, if the underlying utility over wealth is  u w , we let 

     
   

0 0

0 0 1

u w s u w
u s

u w u w

 


 

 
 

. Because we do not observe the initial wealth level w0, estimation at the individual level is 

imperative to preserve the expected-utility interpretation. 

2 PT evaluates uncertain outcomes as gains or losses relative to a reference point. In our NYOP setting, it is natural to 
let the income state in the beginning of the game be the reference point as implicitly assumed by the u(0)=0 
normalization: If the buyer does not pay any bidding fees and does not buy any products, she remains at this reference 
point. When she buys a product, she experiences a net gain of v-b-f. When her bid is rejected, the buyer experiences a 
loss of the bidding fee f. Also note that compared to the fully general model of Tversky and Kahneman (1992), we 
assume away the probability weighting function because it is not separately identified in our setting. 
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in the gains, r=1 implies risk neutrality in the gains, and r>1 implies risk-seeking preferences in 

the gains. The t parameter has the mirror-image interpretation in the loss domain; for example, t>1 

implies risk aversion in the gains. Finally, the γ parameter allows for a kink at zero consistent with 

loss aversion; that is, a bidder is loss averse when γ<1. Our goal is to estimate three structural 

parameters  , ,r t   for each subject. 

To complete the specification of the empirical model, we now describe the econometric 

error structure that allows observed bids and entry decisions to randomly deviate from theoretical 

predictions. Let  , | , ,b v f r t   be the solution to the inner maximization problem in equation 1, 

and denote the buyer’s n-th observed bid nbid . We model the observed bid as 

  = , | , ,n n n nbid b v f r t   , (3) 

where n  is distributed normally with a mean of 0 and variance 2 , truncated such that

0 n n nbid v f   . The truncation restricts the observed bid to be low enough that the bidder would 

receive a net gain should the bid be accepted—a natural rationality restriction. 

To model the entry decision, let  , , ,enter n nV v f r t   be the choice-relevant value of entering 

defined in equation 1. We model the subject’s n-th entry choice as a logistic transformation of the 

choice-relevant value: 

     
  

exp , , ,
Pr , , , ,

1 exp , , ,

enter n n

enter n n

enter n n

V v f r t
v f r t

V v f r t

 
 

 



. (4) 

For tractability, we assume the error term related to entry (with a scale 1/τ) is independent of the 

error term related to bid magnitude (with a scale σ). 
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5. Parameter Identification and Estimation 

We now discuss how the entry and bidding data from the experiment identify the five parameters 

of the model  , , , ,r t     at the individual level. The curvature parameter in the gain domain 

r is identified by the magnitude of bids given valuations (larger bids imply smaller r) as well as by 

the entry decisions (more risk-averse buyers enter less). Consider the special case of zero fee. The 

optimal bidding function in this special case is well known3 to be  ,0 | , ,
1

v
b v r t

r
 


, so the ratio 

of bids to valuations is negatively correlated with the relative risk-aversion parameter. The t 

parameter capturing the shape of u in the loss domain is identified both from bids (for a fixed v 

and f, a larger t implies a larger bid) and from entry decisions (a smaller t implies more entry given 

a fixed v and f). The loss-aversion parameter is identified by fixing the valuation, and comparing 

bids with f=0 and f=1. The small increase in fee naturally increases the optimal bid, and it increases 

it more when γ is larger. Finally, the two standard deviations σ and τ of the errors are identified by 

departures from predictions. 

Note the NYOP framework makes the individual-level identification much more tractable 

than an auction framework would: When bidders are heterogeneously risk averse, the first-price 

auction no longer has a symmetric pure-strategy equilibrium. Instead, bidder asymmetries in risk 

aversion lead to complicated asymmetric equilibria akin to the situation with asymmetric valuation 

distributions analyzed by Maskin and Riley (2000). Solving for such equilibria in the course of 

parameter estimation would be much more demanding than solving our equation 1. To appreciate 

                                                            
3 In standard expected-utility models, risk aversion is known to increase bids in first-price sealed-bid auctions, both 
in theory (Riley and Samuelson, 1981) and in the laboratory (Cox, Smith, and Walker, 1988). Our model’s concavity 
of the utility function in the gains domain leads to the same result. Bidders bid more because they experience 
diminishing marginal utility in surplus; therefore (compared to risk-neutral bidders), they prefer increased chances of 
winning associated with higher bids. 
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the complexity, please see the counterfactual section for an example of equilibrium bidding when 

two bidders are heterogeneously risk averse. 

To estimate θ at the individual level, we maximize the likelihood of the individual’s 

observations implied by equations 3 and 4. Because bidding more than n nv f  is clearly irrational 

and assumed away in the above model, we use only the 22 observations with n nv f  for each 

bidder. Two of the 48 bidders bid more than n nv f  more than once, so we exclude them 

completely. Six other bidders bid more than or equal to n nv f  exactly once, so we exclude these 

observations and only use the remaining 21 observations in our estimation. 

The likelihood maximization is straightforward except for the need to solve the bidding 

problem in equation 1 at every step, which we accomplish by searching for the optimal bid on a 

fine grid. To keep the estimates in a realistic range, we conduct a constrained search for the 

maximum-likelihood estimates, allowing both risk-averse and risk-seeking preferences in gains 

and losses.4 To estimate θ at the population level, we pool the observations of all 46 subjects 

together, and estimate θ using the same procedure under the same constraints. 

6. Results: Parameters and Utility Functions 

Table 1 shows the maximum likelihood estimates for the homogeneous model as well as several 

summary statistics about the maximum likelihood estimates for the heterogeneous model. 

Apparently, the heterogeneous model fits much better: Regarding entry, the average predicted 

probability of entry when the bidder actually entered is 0.89 in the heterogeneous model versus 

0.77 in the homogeneous model. Regarding bidding, the best indication of a better fit is the lower 

σ estimate shown in Table 1. 

                                                            
4 Specifically, we constrain        , 0, 2 , 0.001, 20 , 0.1,10 ,  and 0.5, 2r t       . 
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Table 1: Parameter Estimates Homogeneous 
Model 

Estimates (SE) 

Heterogeneous Model Estimates 

 Mean Median SD % > 1 

r (curvature in the gain domain) 0.39 (0.01) 0.40 0.35 0.20 0% 
t (curvature in the loss domain) 0.51 (0.03) 0.70 0.60 0.46 24% 
γ (inverse of loss aversion) 1.65 (0.08) 2.64 1.81 1.77 72% 
σ (error in the bids) 6.93 (0.26) 4.42 3.97 2.63 100% 
τ (scaling parameter in entry model) 1.47 (0.13) 5.86 5.40 4.07 83% 
N (number of observations) 1006 46 subjects, 21 or 22 obs./subject 

To interpret the results shown in Table 1, we begin by discussing the parameters of the 

homogeneous model. Because its r and t curvature parameters are both below 1, the homogeneous 

model involves an S-shaped utility function reminiscent of PT. In contrast to most prior 

calibrations of the prospect-theoretic value function, the homogeneous model does not find loss 

aversion, because γ > 1. For a recent survey of other work that also does not find loss aversion, see 

Walasek, Mullett, and Stewart (2018). 

Figure 1: Estimated Utility Function of the Homogeneous Model 

 

Whereas most prior analyses of bidding behavior consider only the submitted bids, we are 

able to also add data about the costly entry decisions. We find that considering the complete 

behavior has a strong and meaningful impact on inference as compared to considering only bids. 

Figure 1 plots the utility function estimated from the homogeneous model as a solid line, and also 

surplus ($)

ut
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Data used:
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plots (as a dotted line) the utility function that using only the bidding data and omitting the 

observations in which bidders did not enter would suggest. Both functions are S-shaped, but the 

one based on the complete data is more curved in both losses and gains, and involves lower 

marginal sensitivity to losses. 

We now turn to the parameters of the heterogeneous model. Table 1 does not include 

asymptotic standard errors for this model, because the small sample size involved in each 

estimation makes asymptotics invalid. The homogeneous model’s estimated coefficients are 

clearly biased estimates of the respective population averages, but the central tendency of the 

curvature and gain-liking parameters is qualitatively consistent with the homogeneous model 

estimates. All coefficients exhibit wide variation in the population. For each parameter, the “% > 

1” column shows the proportion of the population with an estimate that exceeds unity. It thus 

shows that all subjects are risk averse in the gains, but only 24% of them are also risk averse in the 

losses. Finally, only 28% of the subjects exhibit loss aversion. Figure 2 plots the joint distribution 

of the two curvatures, with each subject represented by a point, and the vertical line separating 

subjects whose preferences seem prospect theoretic (left of the line) and subjects whose 

preferences are consistent with risk-averse EUT (right of the line). 

Our findings have three important implications for modeling bidder behavior. First, we 

clearly reject the risk-neutral model commonly used in the empirical literature on auctions with 

entry costs. Second, we show the homogeneous risk-averse expected utility model often suggested 

as a remedy to the known shortcomings of the risk-neutral model (e.g., Bajari and Hortaçsu, 2005; 

Bolotnyy and Vasserman, 2019) also does not fit our data well, especially when the entry behavior 

is considered alongside the observed bids. The risk-averse expected utility model does not fit the 

majority of our subjects even at the individual level. Finally, our results suggest the behavior of 
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about three quarters of our subjects is well captured by a prospect-theoretic model without loss 

aversion. How important is it for market designers to account for all the heterogeneity we find? 

The next section outlines our strategy for answering this question. 

Figure 2: Joint Distribution of Utility Curvatures r and t in the Bidder Population 

 

7. How Much Does Accounting for Preference Heterogeneity Increase Profits? 

Having summarized the shapes of the utility functions our estimation finds, we now turn to the 

main question of managerial interest, namely, how important it is for auctioneers and NYOP sellers 

to account for the heterogeneity in risk preferences we document. 

To make the above question concrete, consider an NYOP seller who would like to set the 

optimal bidding fee, and assume the seller must post this bidding fee publicly and thus cannot price 

discriminate. Such a seller could obtain a detailed panel dataset such as the one we use, estimate 

bidder preferences at the individual level, simulate each bidder’s response to counterfactual levels 

of the bidding fee, and then select the most profitable level for the population. Alternatively, the 

seller could ignore preference heterogeneity and base the counterfactuals on a population-level 
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homogeneous model. How much profit would the seller leave on the table by relying on the 

homogeneous model to set his fee? To answer this question, we propose the following procedure: 

1) Let    
1

1 ˆ
I

het i
i

f f
I

  


   be the expected counterfactual profit suggested by the estimated 

parameters  
1

ˆ I

i
i




 of the fully heterogeneous model, where i indexes bidders and  f   is 

the expected profit from a person with model parameters θ. Then, let  *

0

arg maxhet het
f

f f


 . 

2) Let    ˆ
hom homf f    be the expected counterfactual profit suggested by the estimated 

parameter ĥom  of the homogeneous model (estimated on the same data as the heterogeneous 

model but pooling across bidder identities as in Table 1), and let  *

0

arg maxhom hom
f

f f


 . 

3) Estimate the profit loss from relying on the homogeneous model as    * *
het het het homf f  . 

The key assumption behind step 3) is that we consider the heterogeneous model to be the 

“truth,” so we can use it to estimate the profitability of arbitrary strategies, for example, strategies 

suggested by the homogeneous model or strategies suggested by the risk-neutral model. 

Importantly for the above procedure, the data used in the estimation and the specification of the 

individual-level model are the same under both models; only the model of heterogeneity in risk 

preferences changes between the objective functions being maximized. In reality, estimation of 

such a homogeneous model would require less data than the estimation of a heterogeneous model, 

but we want to isolate the effect of model specification throughout. 

When the seller does not have to post the optimal bidding fee publicly, she can engage in 

first-degree price discrimination and charge higher fees to bidders with higher overall tolerance 

for risk, effectively setting bidder i's fee to  *

0

ˆarg maxi i
f

f f 


 . Obviously, this strategy is only 

available to the seller who can estimate the heterogeneous model. We can estimate the joint profit 
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improvement from having the heterogeneous model and being able to price discriminate in this 

way as    * *

1

ˆ
I

i i het hom
i

f f  


 . This estimate of the profit gain from first-degree discrimination 

bounds the profit gain available from any other form of price discrimination, for example, second 

or third degree. 

The key construct of our counterfactual strategy is  z  —the expected profit from a 

person with model parameters θ when the seller plays z. This profit depends on the distribution of 

valuations as follows: 

       2

,

, | , ,
Pr , , , ,

140v enter

b v f r t
f E v f r t f

 
   

      
    

, (5) 

where the revenue from received bids is averaged over realizations of the seller’s cost (distributed 

uniformly on [0,70]) that result in the bid being accepted: 

      
2

0

1
Pr

70 140

b

c

b
b c E b c b c b c dc

       
  . (6) 

The experiment we analyze induces a discrete uniform distribution of valuations on {5, 20, 

35, 50, 65}, approximating the distribution of seller cost (uniform [0,70]). But in the 

counterfactuals, we are free to use any distribution of valuations. To explore the impact of 

population dispersion of valuations on our conclusions, we consider uniform distributions 

 35 ,35k k   that all have the same mean but differ in variance of 2 3k  (variance of the uniform 

distribution on [a,b] is  2
12b a ). In some of our simulations, we also explore the impact of 

treating the econometric errors as measurement noise, and shutting them down in the profit 

estimation. Specifically, we sometimes let 0   and   , and explore the impact on seller 

strategy. When the counterfactual setting differs considerably from the experimental setting, for 
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example, in the case of a two-bidder auction with a reserve price, this “zero error” approach is the 

only one available. When the counterfactual setting is quite similar to the experiment, for example, 

in the case of an NYOP seller who uses bidding fees, we conduct the analysis both ways (with and 

without the econometric error terms). Note that we abstract away from our uncertainty about the 

parameter estimates, and use the plug-in MLE numbers throughout as î . This approach is 

necessary because we do not have good estimates of the MLE estimation errors in our small-

sample setting. 

Having outlined our strategy for assessing the profit impact of accounting for the 

heterogeneity in risk preferences on the example of an NYOP seller who sets fees, we note the 

same strategy can be used to analyze other sellers, for example an NYOP seller who sets a 

minimum bid level or an auctioneer who sets a public reserve price. Table 2 collects all the 

simulation results for valuations distributed on [0,70]. We now cover each of these institutions in 

turn, starting with the bidding fee. 

7.1. Results: Bidding Fees in NYOP 

The closest counterfactual setting to the experimental situation is an NYOP monopolist who 

charges bidding fees, faces customers with private valuations distributed uniformly on [0,70], and 

incurs a production cost also distributed uniformly on [0,70]. The counterfactual simulation needs 

to interpolate behavior and the implied profit between the experimental levels of the bidding fee.  

Figure 3 shows the simulated expected profit of an NYOP retailer for all levels of the fee 

in increments of 0.1. The solid (red) line shows the expected profit predicted by the heterogeneous 

model, and finds the fee of about 2.7 to be optimal, as highlighted by the left (red) vertical dashed 

line. The dashed (green) line shows the expected profit predicted by the homogeneous model, and 

suggests the fee of about 3.8 highlighted by the right (green) vertical dashed line. To assess the 
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profit lost by a uniform-strategy seller who relies on the homogeneous model, we compare the 

heterogeneous model’s predicted profit at f=3.8 of 6.82 with the maximal profit achieved at f=2.7 

of 6.84, and conclude the loss is only 0.4%. To assess the profit lost by a perfectly discriminating 

seller, we compare the heterogeneous model’s predicted profit at  f=3.8 suggested by the 

homogeneous model with the “first degree bound” profit of 7.69 achieved by targeting fees to 

individual buyers, and find the loss is 11.3%.  

Figure 3: Expected Profit of an NYOP Retailer Who Charges Bidding Fees 

 
Note to figure: Valuations distributed uniformly on [0,70], econometric error terms included. 

Both profit reductions are robust to the exclusion of the econometric error terms from the 

simulation: When we set the econometric errors to zero, the simulations reveal a 1.2% drop in 

profit for the uniform-strategy seller and an 11.6% reduction for the discriminating seller. We 

conclude that when the seller cannot discriminate, the profit loss from using the homogeneous 
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model is minimal. On the other hand, a seller who can discriminate can increase profits by more 

than 10% by using the heterogeneous model. 

Although we find the simplified model with homogeneous risk aversion is sufficient for 

optimization of uniform selling strategies, further simplification by assuming risk neutrality is not 

warranted. For example, a seller who relies on the risk-neutral model would select a fee of 

40 7 5.7 , which would result in a 4% profit reduction relative to using the heterogeneous model 

without the econometric error terms. 

Figure 4: Profit Loss from Using the Homogeneous Model to Set Bidding Fees  

as a Function of Variance of Valuations 

 

How does the above conclusion depend on the distribution of valuations? Figure 4 shows 

the percentage profit loss from using the homogeneous model for both types of sellers as a function 

of the standard deviation of valuations when the distribution of valuations is  35 ,35k k  . In 

Figure 4, the case shown in Figure 3 is captured by the right endpoints of the solid lines—the 

simulations with the econometric error terms and largest possible standard deviation. Figure 4 
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shows the error from using the homogeneous model increases as the distribution of valuations 

becomes more concentrated around the mean, but remains in low single digits for sellers who use 

the uniform strategy (i.e., same fee for all buyers). In contrast, sellers who can discriminate leave 

over 30 percent of profit on the table by using the homogeneous model. 

One notable feature of Figure 4 is the divergence between simulations with and without 

econometric error terms when the standard deviation of valuations is small. The simulations 

without error terms involve much larger losses because the error-free individual-level (and hence 

also the homogeneous) model’s profit curves look more like Half Dome in Yosemite than the 

rounded shape in Figure 3 reminiscent of the North Dome just across the famous valley. The half-

dome shape with a gentle slope on the left and a sharp drop from the summit as the fee increases 

beyond the optimal value occurs because each individual enters up to a certain fee level, above 

which the profit from that individual drops to zero. The summit of the homogeneous model is to 

the right (higher fee) of the summits of many individual-level models, which means the fee 

suggested by the homogenous model generates zero profit from many potential customers. Given 

this topography, a seller with access to the individual-level profit curves tends to select a smaller 

fee to get some profit from everyone. 

7.2. Results: Minimum Bid in NYOP 

Published reserve prices, aka “minimum bids,” are a prominent feature of the optimal NYOP 

selling mechanism to risk-neutral bidders (Zeithammer, 2015). We can simulate the profit impact 

of a minimum bid m on the predicted bid by solving    , arg max
r

b m
bid v r m b v b


  . Because a 

bidder facing a minimum bid cannot end up with a loss, the prediction does not involve the 

parameters , ,t   of the full model. Optimizing minimum bids is thus simpler than optimizing 

fees. On the other hand, the minimum bid setting is further from the experimental paradigm, so we 
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need an assumption about the impact of econometric error terms on bidding. To incorporate the 

estimated error term ε, we truncate its distribution such that  ,bid v r m m  . We now turn to 

the results of the simulation. 

Figure 5: Expected Profit of an NYOP Retailer Who Charges Bidding Fees 

 

Figure 5 shows the analogue of Figure 3. The homogeneous model suggests a minimum 

bid of 34—substantially more than the optimal magnitude of 26. However, the heterogeneous-

model profit is quite flat around the optimum, so the mistake made by the homogeneous model 

results in only a 0.5% profit reduction. As in the case of bidding fees, the seller who can tailor 

minimum bids to individual customers achieves a much higher profit, and charging everyone 34 

as suggested by the homogeneous model results in a 5.4% reduction in profit compared to that 

first-degree bound. Both profit reductions are robust to the exclusion of the econometric error 

terms from the simulation: When we set ε=0, the simulations reveal no drop in profit for the 

uniform-strategy seller and a 4.1% reduction for the discriminating seller. The “no drop” result for 
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the uniform-strategy seller arises from the fact that both variants of the model suggest the same 

zero fee as optimal. Contrary to basic intuition from auction theory, an NYOP seller facing risk-

averse bidders can be better off without a bidding fee, because risk aversion increases bids so much 

that excluding any buyers is not profitable. 

As in the case of bidding fees, further simplification by assuming risk neutrality is not 

warranted. A seller who relies on the risk-neutral model would select a minimum bid of 

140 3 47,  which would result in a 7.7% profit reduction relative to using the heterogeneous 

model without the econometric error terms. 

Figure 6: Profit Loss from Using the Homogeneous Model to Set Minimum Bids  

as a Function of Variance of Valuations 

 

Figure 6 is the analogue of Figure 4. The profit loss is minimal for a uniform-strategy seller, 

and we find the above 5.4% reduction is the largest across all simulations. The reason the profit 

loss is zero for small standard deviations is that when valuations are concentrated around the mean, 

the optimal minimum bid is the bottom of the valuation support, and it is paid by all bidders. In 
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other words, and as also discussed by Zeithammer (2015), a concentrated valuation distribution 

makes NYOP with a minimum bid equivalent to posted pricing. 

7.3. Result: Reserve Price in a First-Price Sealed-Bid Auction 

What is the profit foregone by using the simpler homogeneous model instead of the better 

heterogeneous model to set reserve prices in auctions? The homogeneous model has been analyzed 

extensively (e.g., Maskin and Riley, 1984; Hu, Matthews, and Zou, 2010), and risk aversion is 

well known to increase bids and reduce the optimal reserve price. On the other hand, the 

heterogeneous model has not received much attention to date, perhaps because of the difficulty in 

characterizing equilibrium bidding. The heterogeneity in risk aversion results in asymmetric 

equilibria in a fashion analogous to the effect of heterogeneity in valuation distributions analyzed 

by Maskin and Riley (2000). We numerically solve for equilibria in auctions with two bidders by 

adapting the approach from Hubbard and Paarsch (2009); please see the Appendix for details of 

our approach. Solving for bidding equilibrium with three or more bidders, each with a different 

risk-aversion coefficient, is not tractable to us. 

Given the two-bidder limitation described above, we answer our question about the profit 

impact of correctly accounting for heterogeneity in risk aversion by comparing the profit from the 

two-bidder homogeneous model with the average profit from all possible pairs of bidders from our 

population. In terms of the “1-2-3” process introduced in the beginning of this section, i thus 

indexes pairs of bidders, and π is the auction revenue from a given pair of bidders. In each scenario, 

we assume the marginal procurement cost is zero (so profit equals revenue), and the valuations of 

the bidders are distributed uniformly on [0,1]. Because this scenario is the furthest from the 

experiment setup, more heroic assumptions are needed on the econometric error terms. Because 

we do not have any data on bidding errors in an auction without two bidders, we consider only the 
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model without econometric error terms. As in the case of minimum bids, only the risk-aversion 

coefficients in the gain domain play a role here, so each auction setting can be captured by a pair 

of risk-aversion coefficients. Conceptually, a seller with a uniform strategy can only set the reserve 

price before knowing the pair of risk aversions participating in the auction. A discriminating seller 

knows the two risk aversions before setting the reserve. We now turn to the results of the 

simulation. 

Figure 7: Expected Profit of an Auctioneer with Zero Marginal Cost  

and Two Bidders per Auction 

 
 
Figure 7 is the analogue of Figures 3 and 5. When we consider the uniform-strategy seller 

restricted to charging the same reserve price to all bidder pairs, Figure 7 conveys the same 

qualitative conclusion as Figure 5: The heterogeneous model suggests a reserve of 0.25, which 

results in an expected profit of 0.487. Relying on the homogeneous model instead (i.e., assuming 

both bidders have a constant relative risk aversion of 0.38) would make the seller set a smaller 

reserve price of 0.20 and collect 0.486—less than 0.1% lower than optimal. Again, relying on the 
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risk-neutral model and setting the reserve of ½ would forego a lot more than relying on the 

homogeneous model, namely, 4.4% of profit. 

In contrast to Figure 5, Figure 7 finds that a discriminating seller receives minimal benefit 

from the heterogeneous model: A seller who can customize the reserve price to the bidder pair 

would use a range of reserves and collect an average profit of 0.491—only 0.9% more than the 

seller who relies on the homogeneous model (and is thus restricted to a uniform strategy). One 

way to explain the difference between Figures 5 and 7 is that compared with NYOP, auctions 

involve the additional profit-enhancing force of bidder competition, and this additional force is a 

partial substitute for carefully optimizing the selling strategy (i.e., the reserve price). In fact, one 

way to interpret Figure 7 is that a seller facing risk-averse bidders can simply stop using the reserve 

price altogether without facing much downside. 

Table 2: Percentage profit loss from using simpler models to optimize strategy 

 
 Simpler model 

homogeneous estimated risk-neutral 
no errors estimated errors no errors 

Uniform 
selling 

strategies 

NYOP with bidding fee -1.2% -0.4% -4.0% 

NYOP with minimum bid 0.0% -0.5% -7.7% 

First-price auction with reserve -0.1% n/a -4.4% 

Individualized 
selling 

strategies 

NYOP with bidding fee -11.6% -11.3%  

NYOP with minimum bid -4.1% -5.4%  

First-price auction with reserve -0.9% n/a  
 
Note to table: seller profit attained, relative to strategy suggested by the heterogeneous model, as 
percent of potential. The results for the homogeneous model are presented both with the estimated 
econometric errors and without them. 

 
Contrasting the profit curves for the focal first-price auction with those for the second-price 

(Vickrey) auction, which is not affected by risk aversion, is also useful. As Hu, Matthews, and 

Zou (2010) show, the optimal reserve in the first-price auction is lower than that in the second-

price auction. Figure 7 also extends this ranking to the asymmetric auctions—all the first-degree 
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reserves are below ½—the optimal reserve when valuations are uniform on [0,1]. As predicted by 

Maskin and Riley (1984), the revenue in the first-price auction is lower than that in the second-

price auction. The magnitude of the difference implied by the extent of risk aversion we find is 

quite large: The optimized first-price auction delivers about 17% higher revenue than the 

optimized second-price auction. 

8. General Discussion 

Because bidding markets are typically governed by publicly known and strictly enforced rules, 

empirical researchers can infer bidders’ preferences from bidding data by inverting the mapping 

from preferences to bids implied by the rules. In this paper, we inform the analysts about what 

assumptions they should use in formulating the model of individual behavior, and when they 

should exert the additional effort required to estimate the model at the individual level (or 

otherwise account for heterogeneity in risk aversion). We propose and estimate a flexible 

individual-level model of risk preferences using bidding data from an incentive-compatible 

laboratory implementation of a very simple single-bidder auction called name-your-own-price 

price (NYOP) selling. Thanks to the tractable laboratory paradigm, this paper is the first to identify 

individual-level risk preferences from complete bidding behavior (entry decisions and bid 

amounts). Our estimates imply a substantial population heterogeneity in risk preferences. The 

behavior of three quarters of our subjects is more consistent with prospect theory than with 

expected utility theory as borne out by their utility functions being convex in the loss domain. All 

individual-specific utility functions we estimated are concave in the gain domain.  

Additionally, we used the estimated individual-level risk preferences for a set of 

counterfactual simulations in several bidding markets closely related to the paradigm from which 

the estimates were inferred. Specifically, we considered an NYOP seller who sets bidding fees for 
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the right to submit a bid, an NYOP seller who sets a minimum bid level, and an auctioneer who 

sets a public reserve price. Another institution we analyzed but not reported in detail is an NYOP 

seller who offers a buy-it-now price alongside her bidding offer. We have not reported this analysis 

in detail because the results mirror those for the NYOP seller who uses only bidding fees. 

Most empirical models of bidding behavior in auctions and NYOP assume bidder risk 

neutrality (Athey and Levin, 2007; Guerre, Perigne, and Vuong, 2000). With the exception of 

Campo (2012), all existing models that acknowledge buyer risk aversion assume a homogeneous 

model of risk preferences, in which all bidders have the same coefficient of risk aversion (e.g., 

Bajari and Hortaçsu, 2005; Abbas and Hann, 2010, Campo, Guerre, Perrigne, and Vuong, 2011; 

Lu and Perrigne, 2008; Bolotnyy and Vasserman, 2019). Our results show future analysts can keep 

calm and continue to ignore heterogeneity in risk preferences as long as they use their models to 

optimize non-discriminatory selling strategies, and as long as they allow for prospect-theoretic 

preferences whenever the bidders face the possibility of a loss. In other words, as long as 

institutional details prevent price discrimination on the basis of individual risk aversion, the 

analysts can use a homogeneous model to optimize the seller strategy (e.g., entrance fee or reserve 

price). The much simpler homogeneous model is sufficient for decision-making in that the strategy 

it suggests realizes over 99% of potential profit across all three market institutions we studied. See 

the upper left quadrant of Table 2 for a summary of the relevant profit losses by market institution 

and assumption about econometric error terms. In the domain of NYOP selling, these profit-loss 

numbers remain small across all the dispersions of the valuation distribution we studied, maxing 

out at less than 3 percent for the bidding fee, less than 1 percent for the minimum bid. 

Although we find the simplified model with homogeneous risk aversion sufficient for 

optimization of uniform selling strategies, further simplification by assuming risk neutrality is not 
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warranted. For all selling strategies we considered, the strategy derived from the risk-neutral model 

foregoes considerably more profit than the strategy derived from the homogeneous risk-averse 

model: between 4% and 7% depending on the strategy. See the upper right quadrant of Table 2 for 

a summary of the relevant profit losses by market institution. 

In contrast to the homogeneous model’s sufficiency for optimizing uniform strategies, we 

find large profit gains from identifying risk preferences at the individual level when the seller can 

price discriminate, especially in the market institution of NYOP with bidding fees. The magnitude 

of gains from price discrimination depends both on the selling strategy and on the dispersion of 

valuations in the bidder population. For the bidding-fee strategy in the NYOP setting, the profit 

loss from not discriminating increases to over 30% as the distribution of valuations shrinks to its 

mean. For the minimum-bid strategy in the NYOP setting, dispersion of valuations acts in the 

opposite direction, increasing the profit loss from not discriminating to about 5%. 

The homogeneous model we find sufficient for decision-making is empirically identified 

in the auction setting with exogenously varying participation, as shown by Bajari and 

Hortaçsu (2005). We now briefly outline how their approach can be adapted to the context of 

NYOP selling without bidding fees by exploiting variance in the probability of bid acceptance: 

When the probability of an NYOP bid acceptance is  G b  instead of the Uniform[0,70] used in 

the experiment we analyze, the first-order condition of the bidding problem in equation 1 is 

 
 

G b
v b r

g b
  . With two different probabilities of acceptance  jG b , j=1,2, the α-th percentiles 

of the two respective bid distributions ,jb   can be used as in equation 15 of Bajari and 

Hortaçsu (2005) to estimate r via the following linear regression: 
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 
 

 
 

2 2, 1 1,

1, 2,

2 2, 1 1,

G b G b
b b r

g b g b
 

  
 


 

    
  

. (7) 

In settings where the seller has control over  jG b , he can select particularly tractable pairs 

of distributions. For example, letting  2G b  be the Uniform[0,M] and letting    2

1G b x M  (the 

increasing triangle distribution on [0,M]) simplifies the expression in the square bracket in 

equation 7 to 1,
2, 2

b
b 

  , and suggests a very simple estimator of r¸ namely, 

 1, 2,

2, 1,

2
ˆ ,

2

b b
r E

b b
 


 

 
 

  
 with the expectation taken over different levels of α. Of course, the simple 

linear form of equation 7 is a special feature of the constant relative risk-aversion utility—other 

functional forms involve a more complicated relationship. 

We acknowledge some limitations that provide avenues for future research. In some of our 

counterfactual simulations, we explored the impact of treating the econometric errors as 

measurement noise and shutting them down in the profit estimation. However, we could only 

provide these analyses for counterfactual settings that are more similar to the experiment that 

generated the data we used, for example, an NYOP seller who uses bidding fees. For counterfactual 

settings that differed more substantially from the setup of the original experiment (e.g., a two-

bidder auction with a reserve price), we are unable to provide the corresponding analyses. This 

inability is a limitation of the data we use. Examining our counterfactual simulations 

experimentally would also be very interesting. One could, for example, design an experiment in 

which, first, sufficient data are generated to estimate the individual risk preferences of the subjects. 

In a subsequent, second part of the experiment, using the same set of subjects, this information 

could then be used to test the predictions of our model for the different pricing mechanisms. 
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Appendix: Bidding Equilibrium in a First-Price Sealed-Bid Auction with a Reserve and 

Two Bidders with Different Risk Aversions 

Two bidders exist with valuations distributed iid uniformly on the [0,1] interval. The two bidders 

differ in their relative risk aversion ri. Similar to the approach in Kaplan and Zamir (2012), let 

 iv b  be the inverse bidding function of bidder i, and look for a pure-strategy equilibrium in which 

both bidders bid inside an interval ,R b   , with initial conditions  iv R R . Bidder i solves 

   max ir

i i
b R

v b v b
 . (8) 

When the b R  constraints are not binding, first-order conditions are necessary for 

optimality, and they imply the two inverse bidding functions must satisfy the following system of 

differential equations: 

 
      
      

1 2 2 1

2 1 1 2

0

0

v b v b b r v b

v b v b b rv b

   

   
. (9) 
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To compute expected revenue, we only need the product of the two inverse bidding 

functions, because           1 1 2 2 1 2Pr &G x v x v x v x v x      is the cumulative distribution 

function (cdf) of the revenue. Given G, the expected revenue with reserve price R is 

 

          
 

 

     

Pr0

2
1 2

1 1 1 1

1 1

i

b b b

R R R
v h

b

R

xdG x x G x dx b G b R G R G x dx

R R v x v x dx



         

   

  




, (10) 

where the inverse bidding functions implicitly also depend on R. 

For each  1 2, ,r r R  , we use Chebyshev polynomials of degree 5 to approximate the pair of 

inverse bidding functions as follows: Given a guess of the upper bound of bid support b , we 

represent each inverse bidding function on a fine grid of bids  1 ,..., ,...kb R b b , and we minimize 

the sum of squares implied by the above first-order condition: 

         
2

1 2, i k i k k i i
i k

SSQ r r b v b v b b r v b      . (11) 

To find the upper bound b , we try every possible value on a fine grid, and select the one 

that minimizes the  1 2,SSQ r r b  over all possible b . With estimates of equilibrium inverse bidding 

functions in hand, we then estimate the key integral    1 21
b

R

v x v x dx  in equation 10 by the 

appropriate sum. 


