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Abstract

This paper proposes a new approach to the identification and estimation of

production functions. It extends the literature on the structural estimation of

production functions, which dates back to the seminal work of Olley and Pakes

(1996), by relaxing the scalar-unobservable assumption about the proxy vari-

ables. The key additional assumption needed in the identification argument is

the existence of two conditionally independent proxy variables (e.g. the invest-

ment and the material input). The proposed generalized method of moment

(GMM) estimator is flexible and straightforward to apply. The method is ap-

plied to study how rapidly firms in the Chilean food-product industry adjust

their inputs in response to shocks to their productivity.
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1 Introduction

The literature on the structural estimation of production functions addresses

two main problems: the simultaneity bias and sample selection. Both problems

are caused by the unobserved productivity in production functions. Olley and

Pakes (1996) (hereafter OP), in their seminal paper, suggest using investment

as a proxy variable to control for the latent productivity. Their key insight

is that if productivity, a scalar random variable, is the only unobserved factor

affecting investment (i.e., the scalar-unobservable assumption), and investment

is, ceteris paribus, a strictly monotonic function of the latent productivity (i.e,

the monotonicity assumption), then one can consistently estimate the structural

parameters in the production function by using a nonparametric function of

investment and other covariates to control for the latent productivity. OP’s

approach and the later extensions of it have been widely applied in the IO and

trade literature (e.g., Pavcnik (2002), Bernard et al. (2003), Javorcik (2004), Aw

et al. (2008)). Building on the insights from the literature, this paper proposes a

new approach to identifying and estimating production functions while relaxing

the scalar-unobservable assumption. We focus on dealing with the simultaneity

bias, following Levinsohn and Petrin (2003) and Ackerberg et al. (2015).

Important discussions and extensions of the OP’s method include Levinsohn

and Petrin (2003) (hereafter LP), Ackerberg et al. (2015) (hereafter ACF), among

others. LP argue that static inputs, such as material and energy, may be better

proxy variables for productivity because the primitive conditions that ensure the

monotonicity condition for these proxy variables are easier to come by, and that

they are normally much less lumpy and have fewer observations of zero. ACF

point out an important identification problem with estimating the coefficient of

the labor input in the first step of OP/LP’s procedure. In particular, if the

labor demand, like investment/intermediate inputs, is also a function of capital

and productivity but of no other unobserved factors, then, after controlling for

capital and productivity perfectly by a nonparametric function of capital and

the proxy variable, there would be no independent variations in the labor input

left to identify the coefficient of labor in the OP/LP’s first step.

Though the scalar-unobservable assumption is a key to the above methods,

it has been a concern since OP’s original paper (p.1265). LP also point out that

a major criterion in selecting their proxy variable is the avoidance of inputs that

could be subject to the influence of other unobserved factors (LP, p.326). In

general, some other unobserved factors, such as supply disruptions, optimiza-

tion errors and measurement errors, could also affect the observed investment

and inputs. If these other unobserved factors were important in practice, the
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OP/LP/ACF procedures might not fully control for the latent productivity.1

Furthermore, the scalar-unobservable assumption also forces us to give up some

important sources of identification. This problem manifests itself most clearly

through the identification problem, as ACF point out, in the estimation of the

labor coefficient in LP’s first step. Although researchers may not run into such

an identification problem in practice, to maintain logical consistency, one does

not want both to use the additional sources of variations in the labor input—due

to cost shocks, for example—to identify the labor coefficient in OP/LP’s first

step and to exploit the single-unobservable assumption to use the investment

or an intermediate input as a perfect proxy variable for the latent productiv-

ity. Related to this issue, Bond and Söderbom (2005) point out the difficulty of

identifying the coefficients of fully flexible inputs when there are no variations in

input prices across firms; they suggest that one may use stochastic input adjust-

ment costs to help identify the input coefficients. The authors argue that with

stochastic adjustment costs it is better to use the instrumental variable meth-

ods, as in Blundell and Bond (2000), to estimate production functions since the

model of OP and LP would be misspecified if the stochastic input adjustment

costs were present.

We propose a new method in this paper to identify and estimate production

functions, allowing the proxy variables to be affected by other unobserved fac-

tors in addition to the latent productivity. The idea of our method is as follows:

because researchers normally have multiple proxy variables such as intermedi-

ate inputs and investment available for productivity, we may be able to find

two such proxy variables that, conditional on productivity (and other covari-

ates), are independent of each other in some reasonable cases. Then, we may

intuitively view these two proxy variables as two contaminated measures of pro-

ductivity, such that we may use one proxy variable as the instrument for the

other contaminated measure of productivity to fully control for the latent pro-

ductivity in the estimation of production functions. Hu and Schennach (2008)

establish the corresponding identification results for a general class of nonclas-

sical measurement-error models. In this paper, we apply their results to show

that production functions can be identified in many important cases, even when

the proxy variables do not satisfy the scalar-unobservable assumption.

Two key conditions are needed for our identification of production functions.

The first one is the conditional independence condition alluded to above, and

1Closely related to the literature, Imbens and Newey (2009) use the conditional CDF of the input
given some instrumental variables, such as cost shocks, as the control variable for the latent produc-
tivity. But as Imbens (2007) points out, such an approach cannot correct all the simultaneity bias if
the input demand is also affected by other unobservables besides the latent productivity.
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the second is an injectivity condition that may be viewed as a generalization

of the monotonicity condition of OP/LP after relaxing the scalar-unobservable

assumption. As will be discussed in detail later, the conditions are reasonable in

some important cases.

Our identification argument provides the foundation for alternative estima-

tion methods that do not rely on the scalar-unobservable assumption about the

proxy variables. A sieve maximum likelihood estimation (MLE) method follows

directly from our identification result. The MLE method is feasible but harder

to implement in practice than the methods of OP/LP, due to the functional nui-

sance parameters involved in the estimation. As a more practical alternative to

the MLE method, we propose a GMM estimation approach, based on the same

general identification idea of using two proxy variables for the latent produc-

tivity. To derive the GMM estimator, we impose several moment restrictions

that are related to, but not implied by, the conditional independence condition

mentioned above. Our GMM estimator may be viewed as an extension of the

IV approach (Blundell and Bond (2000)) in that we do not restrict the AR(1)

process for productivity transition to be linear.

We also provide a test of the econometric model of OP/LP to help applied

researchers choose between OP/LP’s model and our extension of their model.

We base our test on the ACF critique of the OP/LP procedure, that is, the

coefficient of the labor input (βl) is not identified in the first step of the OP/LP

estimation procedure. The lack of identification implies that we cannot reject

such a null hypothesis as H0 : βl = β∗l for β∗l being any fixed finite value in the

first step of OP/LP’s estimation procedure. Our specification test can thus be

formulated as a test of the null of H0 : βl = 0, for example, in the first step of

OP/LP’s estimation procedure. Rejection of the null hypothesis H0 : βl = 0 thus

also leads to the rejection of OP/LP’s model. We develop the theory of the test

using an inference procedure that is robust against possible non-identification of

parameter(s). The test rejects OP/LP’s model for the Chilean manufacturing

data that we use in our empirical illustration.

To illustrate our GMM estimation method, we first compare its performance

to those of the existing methods in Monte Carlo studies. The results show the

robustness of our method—but not of the existing ones discussed above—against

the existence of additional unobserved factors affecting the proxy variables. We

then apply our method to the Chilean manufacturing data, as used by LP, to

investigate how rapidly firms adjust the various inputs in response to the latest

shocks to productivity. The empirical analysis shows that firms adjust the mate-

rial input quickly to fit the latest level of productivity, but they are considerably
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slower in adjusting the labor and capital inputs, suggesting significant frictions

in the corresponding input markets. The empirical results also help explain the

differences in the estimates of production functions using the various methods.

The rest of the paper proceeds as follows. Section 2 shows the identification

of production functions in a model that relaxes the scalar-unobservable assump-

tion. Section 3 first proposes new estimation methods based on our identification

result; then develops a test of the model of OP/LP and compares our methods

to the existing ones using simulated data. Section 4 applies our method to the

Chilean manufacturing-industry census data. Section 5 concludes.

2 Model and Identification

In this section, we study the identification of production functions assuming

that each observed intermediate input (and investment) is affected by another

unobservable factor in addition to productivity. In the following, we first outline

the main idea of our identification strategy; then, we set up a standard model of

gross-output production function and show its identification. To save space, we

defer our review and discussion of the related literature to the appendix, and refer

readers to Ackerberg et al. (2007) and Ackerberg et al. (2015) for comprehensive

reviews of the related literature.

Our main identification idea is to simultaneously use two proxy variables for

productivity in the estimation of production functions. The two proxy variables

can be thought of as two contaminated measures of the latent productivity. In-

tuitively, although one cannot directly invert the demand function of a proxy

variable to fully control for the latent productivity, due to the presence of ad-

ditional unobserved factors affecting the variable, we can use the other proxy

variable as an instrument for the first one. Given this perspective of the model,

we can employ the identification result from Hu and Schennach (2008) for non-

classical measurement-error models to show the identification of parameters in

the production function. To illustrate the crux of our identification argument,

suppose that we are interested in estimating the structural parameters β in the

following equation of yt,

yt = W1tβ + ωt + ηt, (1)

where W1t is a vector of observed variables; and ωt and ηt are unobserved scalar

random variables. And suppose that we have two proxy variables for the latent

variable ωt: xt and zt, such that 1) the three dependent variables (yt, zt, xt) are

independent of each other conditional on ωt and Wt = (W1t,W2t) (W2t indicates

other covariates relevant to xt and zt)—i.e., f (yt|ωt, zt, xt,Wt) = f (yt|ωt,Wt)
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and g (zt|ωt, xt,Wt) = g (zt|ωt,Wt), where f(.) and g(.) are conditional density

functions; and 2) the integral operators defined by f(yt|ωt,Wt) and h(ωt|xt,Wt)

are injective for any given Wt,
2 and g(zt|ωt,Wt) satisfies a mild technical assump-

tion (to be clarified later). Then, it can be shown that the conditional density of

f (yt|ωt,Wt), as well as g (zt|ωt,Wt) and h (ωt|xt,Wt), are identified through the

following equation based on the observed conditional density of f (yt, zt|xt,Wt):
3

f (yt, zt|xt,Wt)

=

∫ ∞
−∞

f (yt|ωt,Wt) g (zt|ωt,Wt)h (ωt|xt,Wt) dωt.

As a result, the structural parameters β are identified given that f (yt|Wt, ωt) is

identified.

Note that we impose the injectivity assumption on the integral operator de-

fined by the conditional density related to one of the two proxy variables, and

require the conditional density related to the other proxy variable to satisfy only

a mild technical condition. We normally can find two such proxy variables in

applications as we discuss in detail below.

2.1 Model

We assume that the general underlying structural framework is the same as that

described by Olley and Pakes (1996), and follow the tradition of using uppercase

letters to denote levels and lowercase letters to denote the logarithms of levels.

We focus on the following Cobb-Douglas gross-output production function:4

yt = βllt + βkkt + βmmt + βuut + ωt + ηt, (2)

where yt, lt, kt,mt and ut are, respectively, the logarithms of the output and the

inputs of labor, capital, material and energy; ωt is the logarithm of the latent

productivity that subsumes the constant and is serially correlated; and ηt is the

residual term with E (ηt|lt, kt,mt, ut, ωt) = 0. The functional form assumption

is made here for the ease of demonstration. The identification result that we

2For a conditional density function f (x|z), the corresponding integral operator is defined as follows:
Lx|z (h (.)) (x) =

∫
f (x|z)h (z) dz.

3The equation is a result of the total law of probability and the conditional independence assump-
tion.

4Gandhi et al. (2013) provides some compelling motivations for researchers to focus on gross-
output, as opposed to value-added, production functions. We focus on the Cobb-Douglas production
function in the paper because of its importance and popularity in applications. One may adapt our
identification and estimation framework without much difficulty if one chooses to work with alternative
production functions (e.g., CES production functions).
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show in the following applies equally well to other common forms of production

functions. Our interest here is to identify and estimate (βl, βk, βm, βu), given that

ωt is correlated with (lt, kt,mt, ut) but is not observed by the econometrician.

For productivity ωt, let E (ωt|It−1) be the prediction of ωt based on It−1, the

information available in period t− 1, and ξt = ωt − E (ωt|It−1) is the prediction

error. In the following, we assume that ωt follows an exogenous first-order Markov

process, such that E (ωt|It−1) = E (ωt|ωt−1). We define ρ (ωt−1) ≡ E (ωt|ωt−1).

The more general case of ωt following a controlled Markov process can be treated

similarly as long as the control variable is observed.

The timing assumptions about the input decisions determine the appropriate

arguments to be included in the input demand functions. In applications, these

assumptions should be made to suit the specific industries under analysis. To

be specific, we assume that decisions about inputs of lt, mt and ut are made

simultaneously in period t after observing ωt and kt, and that kt is determined

in period t− 1 without observing the period-t innovation, ξt, of productivity.

More specifically, let the optimal choices of lt, mt and ut for a firm be deter-

mined as the solution to the following profit-maximization problem:

max
Lt,Mt,Ut

E exp(ηt) exp(ωt)L
βl
t K

βk
t Mβm

t Uβut − (pltLt + pmtMt + putUt) ,

where the expectation is taken with respect to ηt; (plt, pmt, put) are the input

prices of Lt,Mt and Ut respectively; and the output price is normalized to be 1 per

unit. This problem yields linear reduced-form input choice rules, for x = l,m, u,

as follows:

xt = αx0 + αxkkt + αxωωt + ptαxp,

where pt = (plt, pmt, put) and αxp is a vector of the corresponding parameters.

The reduced-form parameters (αx0, αxk, αxω, αxp) are functions of (βl, βk, βm, βu)

and E exp(ηt). Following the literature, we call lt, mt and ut static inputs (except

when we consider lt being determined in period t− 1).

As an important extension of the literature, we let the observed static inputs

be determined, for x = l,m, u, as follows:

xt = αx0 + αxkkt + αxωωt + εxt, (3)

where εxt is a scalar random variable. The inclusion of εxt relaxes the scalar-

unobservable assumption maintained by the previous papers (e.g. OP, LP and

ACF) in the literature. In practice, εxt can capture ptαxp if the input prices are

firm-specific and not observed by researchers, and/or other factors that cause the
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observed inputs to deviate from their optimal levels.5 We defer more detailed

discussions of possible empirical interpretations of εxt to section 2.4.1. In our

identification argument, we use the following expression of xt+1:

xt+1 = αx0 + αxkkt+1 + αxωρ(ωt) + αxωξt+1 + εxt+1, (4)

connecting xt+1 with ωt.

It is worth noting that the optimal input demand functions derived from the

first-order conditions are just natural candidates that we extend to illustrate

how we may allow the input demand functions to depend on more than a single

unobservable. It is straightforward to extend our identification and estimation

to allow more flexible specifications. In particular, we can allow the following

more flexible specifications for the static inputs:

xt = µxt(kt, ωt) + εxt,

where µxt(kt, ωt) are polynomials of kt and ωt. We can also extend our methods

easily to the cases in which lt depends on lt−1 or lt is determined in period t−1.6

The data-generating process for the investment It is somewhat different from

those of the above static inputs.7 In practice, we often observe a significant

portion of the firms in the data making no investment in physical capital in some

periods. To account for the fact that there are a lot of zero observations for

investment, we model investment as a censored variable as follows:

I∗t = ιt (ωt, kt, ζt)

It = I∗t × 1 (I∗t ≥ 0) ,

where It is the observed investment; I∗t is a latent index variable; and ζt cap-

tures unobservable factors, other than ωt, that affect investment. The observed

investment data are censored at zero.

To complete the model, let capital accumulates according to the following

equation:

Kt = κ(Kt−1, It−1, νt−1), (5)

5We can simply add ptαxp back to equation (3) in cases in which researchers do observe firm-specific
input prices.

6As will become clear later, the only adjustment that we need for these two cases is to include lt+1

in the equations of mt+1 and ut+1
7The optimal investment is determined as the solution to firms’ dynamic profit optimization prob-

lems (Olley and Pakes (1996)), which we omit here to avoid unnecessarily restricting us to a particular
model specification.
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where νt−1 captures other factors affecting the capital accumulation process. As

we explain later, by breaking the deterministic linear relationship between Kt

and (Kt−1, It−1), the specification in (5) allows us to use It as one of the proxy

variables for ωt in identification. In practice, νt−1 can include, for example, 1)

lagged investments when some investments take more than one period to become

productive capital (as argued by the influential paper of Kydland and Prescott

(1982)); 2) shocks to the process of turning investment into productive capital;

and 3) stochastic factors that affect capital depreciation. It is worth noting that

a common specification for the capital accumulation process, as adopted by the

papers that we discussed above, is Kt = (1 − δ)Kt−1 + It−1, where δ is a de-

preciation factor. We interpret this particular deterministic process mainly as a

parsimonious specification assumed to be consistent with the timing assumption

of kt being determined in period t − 1 (without observing the period-t produc-

tivity innovation ξt), instead of literately to emphasize that the current-period

investment becomes productive capital in the next period. Our data also show

that the actual capital accumulation is a more nuanced process, and thus the

above more flexible specification seems appropriate here. Lastly, we assume that

ηt, αxωξt+1 + εxt+1, ζt (where x = m,u) are mutually independent conditional on

(ωt, lt, kt,mt, ut), and that ηt ⊥⊥ νt|(ωt, lt, kt,mt, ut).

2.2 Identification

In the following, we base our identification discussion on three endogenous vari-

ables, (yt,mt+1, It), all of which depend on the unobserved productivity ωt, in

addition to the control variables and error terms. Let Wt ≡ (lt, kt,mt, ut, kt+1)

indicate the vector of control variables. We begin our identification argument by

listing the conditions that we need to prove identification.

Condition 1. (Conditional Independence) f (yt|mt+1, It, ωt,Wt) = f (yt|ωt,Wt),

and g (It|mt+1, ωt,Wt) = g (It|ωt,Wt), for all Wt, where f and g are conditional

density functions.

Condition 2. (Injectivity) i) ηt ⊥⊥ ωt|Wt, and (αmωξt+1 + εmt+1) ⊥⊥ ωt|Wt; ii)

ρ(ωt) = E(ωt+1|ωt) is strictly monotonic in ωt; and iii) conditional characteristic

functions of f(yt|ωt,Wt) and h(ωt|mt+1,Wt) do not vanish on the real line.

The first equality in condition 1 states that mt+1 and It do not provide

information about yt beyond what is already contained in ωt. The second equality

in condition 1 says that the two proxy variables are independent of each other,

conditional on ωt and other control variables. The conditional independence

assumptions follow from our model assumption that ηt, αmωξt+1+εmt+1 and ζt are
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mutually independent conditional on (ωt, lt, kt,mt, ut), and they can be thought

of intuitively as similar to the exclusion restrictions in the instrumental variable

(IV) method. As a direct application of Proposition 2.4 in D’Haultfoeuille (2011),

condition 2 guarantees that the integral operators defined by f(yt|ωt,Wt) and

h(ωt|mt+1,Wt) are invertible. The injectivity assumption plays a role in our

identification similar to that of the rank condition in the IV method. We also

need the following two technical conditions for our identification.

Condition 3. (Distinctive Eigenvalues) for any given Wt and any ωt 6= ω̃t, there

exists a set A such that g (It|ωt,Wt) 6= g (It|ω̃t,Wt) for all It ∈ A and Pr (A) > 0.

Condition 4. (Normalization) E (yt − βllt − βkkt − βmmt − βuut|ωt, lt, kt,mt, ut) =

ωt; that is, E(ηt|ωt, lt, kt,mt, ut) = 0.

Condition 3 is a relatively mild condition — it requires only that, ceteris paribus,

any change in a firm’s productivity has to lead to some change in the distribu-

tion of the firm’s investment decisions. The condition guarantees that we can

always find distinctive eigenvalues and, consequently, different eigenfunctions in

the spectral decomposition that we employ in the proof of our identification. It

is also worth noting that condition 3 is feasible given the flexible capital accumu-

lation process specified in (5). If we assumed Kt = (1− δ)Kt−1 + It−1, It would

be completely determined by kt and kt+1 (both of which are in Wt).
8 Condition

4 will be used to pin down the eigenfunctions for each given ωt, which follows

directly from our model assumption in equation (2). We will discuss the practical

validity of the four conditions later in this section.

Given condition 1, we have:

f (yt, It|mt+1,Wt)

=

∫
f (yt|It,mt+1, ωt,Wt) g (It|mt+1, ωt,Wt)h (ωt|mt+1,Wt) dωt

=

∫
f (yt|ωt, lt, kt,mt, ut) g (It|ωt,Wt)h (ωt|mt+1,Wt) dωt,

where the first equality follows by the law of total probability; and the second

equality follows from the conditional independence condition and our model as-

sumption that ηt and νt are mutually independent conditional on (ωt, lt, kt,mt, ut).

8Meanwhile, as we often observe several different types of investments, such as building, machinery
and vehicles, one may use one of the different types of investments as a proxy variable so that condition
3 is feasible even if one assumes Kt = (1− δ)Kt−1 + It−1.
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Copying the above equation for easier reference, we have:

f (yt, It|mt+1,Wt) =

∫
f (yt|ωt, lt, kt,mt, ut) g (It|ωt,Wt)h (ωt|mt+1,Wt) dωt.

(6)

Now, the identification question is whether we can identify the latent conditional

densities on the right-hand side of equation (6), especially f (yt|ωt, lt, kt,mt, ut),

given the observed conditional density of f (yt, It|mt+1,Wt).

Given the conditions above, Theorem 1 in Hu and Schennach (2008) can

be applied to show that the latent densities f (yt|ωt, lt, kt,mt, ut), g (It|ωt,Wt),

and h (ωt|mt+1,Wt) are identified.9 In the following, we sketch the main idea

of the proof of the identification to help make the key identification sources

more transparent. We omit the control variables (Wt) in the proof for simpler

notations. First, we define an integral operator based on a conditional density.

Definition 1. Let F (X ) and F (Z) be spaces of functions defined on the domains

of X and Z respectively. Then, define the integral operator Lx|z based on the

conditional density function f(x|z) as:

[
Lx|zg

]
(x) =

∫
Z
f (x|z) g (z) dz,

where the operator Lx|z maps a function g (z) in F (Z) into a function in F (X ).

Now equation (6) can be equivalently written in corresponding integral oper-

ators as:

LI;y|m = Ly|ω∆I;ωLω|m, (7)

where LI;y|m is defined similarly to Ly|m with f (y|m) replaced by f (I, y|m) for

a given I, and where ∆I;ω is a “diagonal operator” mapping a function h (ω) to

f (I|ω)h (ω). Meanwhile, by integrating both sides of equation (7) with respect

to I, we get Ly|m = Ly|ωLω|m, which is equivalent to:

Lω|m = L−1
y|ωLy|m.

Next, we substitute the above expression of Lω|m into (7) and rearrange the

operators based on observable densities to the left-hand side, and we get:

LI;y|mL
−1
y|m = Ly|ω∆I;ωL

−1
y|ω. (8)

The inverse of Ly|m used in the above equation can be shown to exist because

9Hu and Schennach’s theorem is stated without control variables. We can define, for example,
ỹt ≡ yt−βllt−βkkt−βmmt−βuut, such that their identification results can be applied directly given
that (βl, βk, βm, βu) are identified from the variations in lt, kt,mt and ut in the data.
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Ly|ω and Lm|ω are invertible.

Equation (8) means that LI;y|mL
−1
y|m admits an eigenvalue-eigenfunction de-

composition. The left-hand-side operator based on observed conditional densities

is decomposed to obtain f (y|ω, .), and g (I|ω, .), the latent conditional densities

of interest. Theorem XV.4.5 in Dunford and Schwartz (1971) can be used to

show that the decomposition is unique given that the operators are defined with

the density functions.

Lastly, conditions 3 and 4 together ensure the uniqueness of the ordering and

indexing of the eigenvalues and eigenfunctions. By condition 3, the eigenvalue

g(I|ω, .) is distinct for distinct values of ω. With condition 4, we uniquely deter-

mines both f(y|ω, .) and g(I|ω, .), by ordering them according to E(yt−βllt−βkkt
− βmmt − βuut|ωt, lt, kt,mt, ut).

The following Lemma summarizes our main result on the identification of

f (yt|ωt, lt, kt,mt, ut).

Lemma 1. Suppose that, for any fixed Wt, the joint density of (yt, It,mt+1, ωt)

conditional on Wt is bounded, and all marginal and conditional densities are also

bounded. Then, under conditions 1, 2, 3, 4, the observed conditional density of

f (yt, It|mt+1,Wt) uniquely determines the latent conditional densities of

f (yt|ωt, lt, kt,mt, ut), g (It|ωt,Wt) and h (ωt|mt+1,Wt).

Proof. The assumption of bounded densities corresponds to the Assumption 1

in Hu and Schennach (2008). Conditions 1-4 correspond to their Assumptions

2-5. Our theorem follows as a direct application of their Theorem 1.

The independence and injectivity conditions play important roles in the above

identification proof. The independence assumptions help reduce the dimensional-

ity of the latent conditional densities to make the spectral decomposition possible.

The injectivity assumptions ensure that the integration operators are invertible.

This role played by the injectivity condition bears some similarity to that of the

rank conditions for the IV method in the classical linear regression models.

Given the identification of the conditional densities and the assumptions of

ηt ⊥⊥ ωt| (lt, kt,mt, ut) and E (ηt|ωt, lt, kt,mt, ut) = 0, the conditional density

of ηt, fηt|(lt,kt,mt,ut), and the structural parameters, (βl, βk, βm, βu), in the pro-

duction function are identified given enough variations in (lt, kt,mt, ut). We

summarize the identification results in the following Theorem.

Theorem 1. Let Vt ≡ (lt, kt,mt, ut)
′ and β ≡ (βl, βk, βm, βu)′. Suppose that

E(VtV
′
t ) is nonsingular, then under conditions 1, 2, 3 and 4, the observed con-

ditional density f (yt, It|mt+1,Wt) uniquely determines (βl, βk, βm, βu), together
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with fηt|(ωt,lt,kt,mt,ut), g(It|ωt,Wt) and h(ωt|mt+1,Wt) from the following equa-

tion:

f (yt, It|mt+1,Wt) (9)

=

∫ ∞
−∞

fηt|(ωt,lt,kt,mt,ut) (yt − βllt − βkkt − βmmt − βuut − ωt)×

g (It|ωt,Wt)× h (ωt|mt+1,Wt) dωt.

Proof. The identification of f (yt|ωt, lt, kt,mt, ut) implies the identification of

E(yt|ωt, lt, kt,mt, ut). Meanwhile, our model has that yt = βllt + βkkt + βmmt +

βuut + ωt + ηt. Hence, we have E(yt|0, lt, kt,mt, ut) = V ′t β. Given that E(VtV
′
t )

is nonsingular by assumption, we get β = (E(VtV
′
t ))−1 E(E(yt|0, lt, kt,mt, ut)Vt).

With E(VtV
′
t ) directly identified from data, β is identified.

Meanwhile, we have:

fηt|(ωt,lt,kt,mt,ut) (η̃) = f (yt = βllt + βkkt + βmmt + βuut + ωt + η̃|ωt, lt, kt,mt, ut) ,

for any given η̃ and (ωt, lt, kt,mt, ut). Since yt and ηt share the same domain of

the entire real line, the above equation identifies fηt|(ωt,lt,kt,mt,ut).

It is worth noting that the above identification arguments can also be made

with (yt, It,mt+1) replaced by (yt, It, ut+1) or (yt, It, yt+1). However, we cannot

make the same identification argument with (yt,mt+1, ut+1), because the residual

errors of both static inputs depend on ξt+1 (equation (4)), directly contradicting

condition 1. We cannot make the same identification argument with (yt, It,mt)

either, because, in such a case, we cannot identify the coefficients of mt and kt

in the production function due to collinearity.10

2.3 Extension

As an extension of the above identification result, we can allow ωt to be endoge-

nously determined. This extension is important for applications in which it is

essential to assume that firms actively spend resources to improve productivity.

For example, Doraszelski and Jaumandreu (2013) show that it is important to

account for firms’ R&D investment in explaining the evolution of firms’ produc-

tivity in the Spanish manufacturing industry.11

10This is easy to check in the case with linear demand function for mt. We can solve the mt equation
for ωt as a function of mt, kt and εmt, and substitute it into the production function. Then, we can
see that the coefficients of mt and kt in the production function cannot be separately identified from
the coefficients of kt and ωt in the mt equation.

11Doraszelski and Jaumandreu (2013) propose an alternative method to use a static input, as
suggested by LP, to proxy for productivity in their estimation of production functions. Their key
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Our method can conveniently accommodate the case of productivity following

a controlled first-order Markov process. Specifically, suppose that the control

variable affecting the process of ωt is determined in the following way:

rt = R (ωt, kt) + %t,

where rt is the R&D spending in period t (or some other control variable affecting

the evolution of productivity),12 and %t captures other unobserved factors affect-

ing rt. Under the alternative assumption, we have E (ωt+1|It) = E (ωt+1|ωt, rt).
Given that R&D spending is observed, our identification arguments above can

be largely replicated as long as we replace the term E (ωt+1|ωt) in the mt+1

equations with E (ωt+1|ωt, rt).

2.4 Discussion

We have shown above that the identification of production functions can be

achieved even if we allow for additional unobservables in determining the proxy

variables. In the following, we discuss the practical validity of the underlying

conditions in order to assess the applicability of the above identification results

for estimation. We discuss the key conditions in turn, assuming that the general

underlying structural framework is the same as described in Olley and Pakes

(1996).

2.4.1 The conditional independence assumption

The conditional independence assumption can be equivalently stated through

the residuals in the corresponding equations. For example, the assumption of

mutual independence among yt, It and mt+1 is equivalent to the assumption of

mutual independence, conditional on the observable covariates, among the corre-

sponding residual errors—i.e., ηt, ζt, αmωξt+1+εmt+1. Whether it is reasonable to

assume that the residual terms are mutually independent depends on the factors

that they capture. The residual error of the output equation, ηt, may capture,

for example, unanticipated technology shocks, such as the number of defective

products and machine breakdowns, and/or measurement error of the output.

And the residual errors in the equation of intermediate inputs and investment

insight is that, for some commonly used parametric production functions, one can easily solve for the
optimal demand function for a static input and, thus, can get an explicit expression for the inverse
function to back out the productivity. This observation, together with data on firm specific input costs,
allows them to get around the identification problem, as pointed out by ACF, with LP’s approach.

12rt can also be other firm activities, such as exporting experience (De Loecker (2010)), that affect
firms’ productivity.
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could be results of supply disruptions, optimization errors, idiosyncratic cost

shocks, measurement errors, etc.. In the following, we discuss the conditional

independence assumption for the main types of unobserved factors. We focus

our discussion on the assumption of ηt, ζt and εmt+1 being mutually indepen-

dent, assuming that ξt+1 is independent of (ηt, ζt) (which seems reasonable given

typical interpretations of ηt and the possible interpretations of ζt that we discuss

below).

Optimization error The conditional independence assumption seems rea-

sonable if the residual errors in the equations of mt+1 and It are mainly opti-

mization errors. Because mt+1 is a static input without dynamic implications

(ACF), we expect no dependence between a firm’s decisions on mt+1 and It.

Furthermore, firms probably do not often observe their optimization errors; and

if they find such an error, they are likely to respond by adjusting the inputs

instead of their investment decisions. Thus, it seems reasonable to assume that

the optimization errors in mt+1 and It are independent of each other, no matter

whether the optimization error in mt+1 is independent across time or serially

correlated. Meanwhile, the optimization errors of both mt+1 and It are unlikely

to be related to the unanticipated technology shock or measurement errors of the

output. Therefore, with ζt, εmt+1 being optimization errors, it seems reasonable

to assume that ηt, ζt and εmt+1 are mutually independent.13

Unobserved idiosyncratic cost shocks Unobserved firm-level idiosyn-

cratic cost shocks for static inputs can be important in some applications. In

this case, the residual error in the mt+1 equation can capture the idiosyncratic

cost shocks for static inputs. Our model assumptions and identification condi-

tions would still hold in this case if the cost shocks do not affect firms’ investment

decisions or enter ηt, the residual error of the output equation. Thus, for this

case, our identification requires that the idiosyncratic cost shocks are indepen-

dent across time and data on the actual inputs are available to researchers.

Measurement error Measurement errors in the output, inputs and invest-

ment can arise in a number of ways. They can be caused simply by record-

ing errors and/or by researchers’ imperfect ways of computing the actual out-

put/inputs/investment. For example, measurement errors in inputs can arise

13Gandhi et al. (2013) propose a method for identifying and estimating production functions by
exploiting the first-order conditions in firms’ static profit-optimization problems. Our paper comple-
ments theirs in providing an alternative method for applications in which firms’ optimization errors
might be important.
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when we observe only the expenditures on the inputs, but not the actual inputs,

and the input prices vary across firms; the measurement error in the capital in-

put can arise due to the imperfect ways that we use to deal with capital stock

depreciation and aggregating different types of capital inputs.14 In addition,

as LP point out, some intermediate inputs —such as materials and fuels—may

be storable, and, thus, measurement errors can occur if the econometrician can

observe only the new purchases of such inputs instead of the actual usage of

them.

The conditional independence assumption may still hold for (yt, It,mt+1) if

the residual errors capture only measurement errors that are independent across

time. In this case, the residual error in the production function equation, ηt,

can capture measurement errors in the output as well as in the inputs, which

seem unlikely to be related to the measurement error in It. Suppose that the

conditional independence conditions continue to hold despite the measurement

errors in the inputs, what we identify through equation 6 is f(yt|kt, lt,mt, ut, ωt)

(and, thus, E(yt|kt, lt,mt, ut, ωt)) with (kt, lt,mt, ut) being the observed inputs

instead of the actual inputs as in the structural production functions.

Thus, although our identification argument still holds if the mutually inde-

pendent measurement errors are limited to the output or investment, it is not

sufficient for the case with measurement errors in the input variables. The mea-

surement errors in the input variables bias the estimates of their coefficients

toward zero. Meanwhile, as we show in the next section, we may deal with

the measurement errors in the inputs by incorporating instruments for the mis-

measured inputs into our flexible GMM estimation method, assuming that the

measurement errors in the inputs are independent across time.

In summary, the conditional independence assumption seems reasonable for

(yt, It,mt+1) in many important cases. We get similar conclusions if there are

multiple intermediate inputs or if we replace (yt, It,mt+1) with (yt, It, ut+1) or

(yt, It, yt+1). In practice, researchers should pay close attention to the interpre-

tations of the residual errors when assessing the validity of the assumptions.

2.4.2 The injectivity assumption

The part i) of condition 2 can be restrictive. For example, the distribution of ξt+1

may depend on ωt, because we have only E(ξt+1|ωt) = 0 in our model. However,

the conditioning on the covariates Wt makes the requirement less restrictive,

14We thank one of the referees for pointing out these important issues. Note that our identification
works for the case in which the firm-specific input prices are missing but the actual inputs (instead
the expenditures on the inputs) are available.
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because it allows the distributions (and hence, for example, the variances) of ηt

and (αmωξt+1 + εmt+1) to depend on the covariates Wt.

The part ii) requirement of ρ(ωt) being strictly monotonic says that a higher

productivity today leads to a higher expected productivity tomorrow, which

seems reasonable. In the case of mt+1 = µmt+1(kt+1, ωt+1)+ εmt+1 with µmt+1(.)

being nonlinear, we also require that µmt+1(kt+1, ωt+1), equivalently E(mt+1|kt+1, ωt+1),

is strictly monotonic in ωt+1 for any given kt+1. The condition is, in practice,

less restrictive than the assumption of mt+1 being strictly monotonic in ωt+1 for

any given kt+1.

The part iii) is a technical assumption, which is equivalent to the conditional

characteristic functions of ηt and αmωξt+1 + εmt+1, residual errors in the yt and

mt+1 equations respectively, being nonvanishing on the real line. These condi-

tions seem reasonable given that yt and mt+1 are continuous variables.

It is worth noting that condition 2 is sufficient, but not necessary, to ensure

the injectivity of the corresponding integral operators. Unfortunately, we are not

aware of weaker primitive conditions that can guarantee the injectivity that we

need in our identification proof.

2.4.3 The distinctive eigenvalues and the normalization

The distinctive eigenvalue condition requires that, for any fixed Wt and ω̄t 6=
ω̃t, ι(ω̄t,Wt, ζt) and ι(ω̃t,Wt, ζt) have different distributions. This condition is

relatively mild, because all it requires is that, ceteris paribus, any change in a

firm’s productivity has to lead to some change in the distribution of the firm’s

investment decisions. A sufficient, but not necessary, condition that implies the

distinctive eigenvalue condition is E(It|ωt,Wt) being strictly increasing in ωt for

any given Wt (which is less restrictive than requiring that It itself being strictly

increasing in ωt for any given Wt). Lastly, the normalization assumption of

E(ηt|ωt, lt, kt,mt, ut) = 0 is standard in the literature.

3 Estimation

In light of the identification results above, one possible method of estimating the

production function in equation (2) is Maximum Likelihood Estimation (MLE).

Due to the presence of many functional nuisance parameters, the MLE approach

is feasible but harder to implement in practice than the methods of OP/LP/ACF.

We briefly describe the MLE approach in the Appendix, and refer interested read-

ers to an earlier version of this paper (Huang and Hu (2011)) for more details

on the approach. Our focus in this section will be on a straightforward GMM
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estimator that we propose. The GMM estimator is based on the same identi-

fication idea of using two proxy variables for the latent productivity, although

the moment conditions that we use to derive the GMM estimator do not follow

directly from the identification conditions introduced in Section 2.2.

Let us first rewrite the gross-output Cobb-Douglas production function in

logs as:

ỹt(β) = ωt + ηt, (10)

where β = (βl, βk, βm, βu)′ and ỹt(β) ≡ yt−(βllt+βkkt+βmmt+βuut). Likewise,

we write the reduced-form demand functions for the static inputs of x = m and

u in logs as:

x̃t+1(αx) = αxωωt+1 + εxt+1, (11)

where αx = (αx0, αxk)
′ and x̃t+1(αx) ≡ xt+1 − (αx0 + αxkkt+1).

Assume that the productivity ωt transitions according to the following AR(1)

process:

ωt = ρ(ωt−1) + ξt =
P∑
p=1

ρpω
p
t−1 + ξt. (12)

Furthermore, we require the following moment conditions to derive our GMM

estimator.

Condition 5. The following moment independence conditions:

E

((
εxt+1

ξt+1

)
|ωt, z̃td

)
= 0, (13)

E(ηqt |ωt, z̃td) = E(ηqt ), q = 1, ...P, (14)

are satisfied for z̃td = It, lt, kt,mt, and ut.

The moment conditions in (13) implies that E(αxωξt+1 + εxt+1|ωt, z̃td) = 0,

for z̃td = It, lt, kt,mt, and ut, which is a condition that we use directly in deriving

our GMM estimator and is similar to the moment condition (2.12) in Wooldridge

(2009). In the following, we use the moment conditions in (13) and (14) to derive

our GMM estimator.

Let us denote z̃t ≡ (It, lt, kt,mt, ut). Then, by (10), (11), (12), (13) and (14),

we have that, for p = 1, ..., P ,

cov(ỹt(β)p, z̃t) =

p∑
q=1

(
p

q

)
E(ηp−qt )cov(ωqt , z̃t), (15)

and cov(x̃t+1(αx), z̃t) =
P∑
q=1

ϕqcov(ωqt , z̃t), (16)
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where ϕq = αxωρq for each q = 1, · · · , P . We note that, because E(ηt) = 0, for

the cases of P = 1 or P = 2, (15) can be simply written as

cov(ỹt(β)p, z̃t) = cov(ωpt , z̃t), for p = 1, 2,

which can be substituted into (16) to obtain moment restrictions of the following

form:

E
[
z̃t

(
x̃t+1(αx)−

∑P
p=1 ϕpỹt(β)p

) ]
= 0, for P ≤ 2

for any proxy x = m or u. Taking these moment conditions to the GMM frame-

work provides an estimate of θ = (α′x, αxω, β
′, ϕ1, · · · , ϕP )′.

In cases of P > 2, (15) can still be explicitly solved for cov(ωqt , z̃t) for each

q = 1, · · · , P . Note that equation (15) can be written in matrix form as follows:
cov(ỹt(β), z̃t)

cov(ỹt(β)2, z̃t)
...

cov(ỹt(β)P , z̃t)

 = M(t, P )


cov(ωt, z̃t)

cov(ω2
t , z̃t)

...

cov(ωPt , z̃t)

 ,

where M(t, P ) is a P × P lower triangular matrix defined as follows:

M(t, P ) =


1(

2
1

)
E[ηt] 1
...

...
. . .(

P
1

)
E[ηP−1

t ]
(
P
2

)
E[ηP−2

t ] · · · 1

 . (17)

Since its diagonal elements are all non-zero, M(t, P ) is invertible. Let M(t, P )−1

denote the inverse of M(t, P ), and let [M(t, P )−1](q,p) denote its (q, p)-th element.

Then, we can solve for cov(ωqt , z̃t) as follows:

cov(ωqt , z̃t) =
P∑
p=1

[M(t, P )−1](q,p)cov(ỹt(β)p, z̃t) for each q = 1, · · · , P.

The above solution can be substituted into equation (16) to obtain moment

restrictions with the following form:

E
[
z̃t

(
x̃t+1(αx)−

∑P
p=1 ϕ̃pỹt(β)p

) ]
= 0, (18)

for any proxy x = m or u and instrument vector z̃t, where ϕ̃p :=
∑P

q=1 ϕq[M(t, P )−1](q,p)

for p = 1, · · · , P . Taking the moment condition in (18) to the GMM framework

provides an estimate of θ = (α′x, αxω, β
′, ϕ̃1, · · · , ϕ̃P )′. The following are a few
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examples of the relationship between the scaled AR parameters ϕp = αxωρp and

the reduced-form parameters ϕ̃p:

1. P = 1: ϕ̃1 = ϕ1.

2. P = 2: (ϕ̃1, ϕ̃2) = (ϕ1, ϕ2).

3. P = 3: (ϕ̃1, ϕ̃2, ϕ̃3) = (ϕ1 − 3σ2
ηtϕ3, ϕ2, ϕ3).

We make three observations here about the GMM estimator that we derive

above. First, in deriving the moment restrictions above, although we need the

additional moment-independence condition in (14), we make no use of the condi-

tional independence assumptions of ηt ⊥⊥ ωt|Wt and (αxωξt+1 + εxt+1) ⊥⊥ ωt|Wt

(which are part of condition 2 we used in proving identification in Section 2).

The mean-independence assumptions in (13) are standard in the literature. We

test the robustness of our estimation method to minor violations of condition

(14) through Monte Carlo experiments. Second, under the alternative assump-

tion of the labor input being determined one period before the static inputs, we

need simply include lt+1 in the xt+1 (with x = m or u) equation and add lt+1

to z̃t, the vector of instruments, in the estimation by GMM. Lastly, the above

estimation method may be viewed as an extension of the IV approach (Blundell

and Bond (2000)) in that we do not restrict the AR(1) process for productivity

transition to be linear.

3.1 Extensions

A convenient feature of the above GMM approach is that we can add moment

conditions if doing so improves statistical power. We get moment conditions

similar to equation (18) if we replace (yt, It,mt+1) with (yt, It, yt+1). To improve

efficiency, we may add the moment restrictions based on yt+1 in our estimation,

given the following mean-independence condition:15

Condition 6. E (ξt+1 + ηt+1|ωt, z̃td) = 0 holds for z̃td = It, lt, kt,mt, and ut.

Recall that z̃t ≡ (It, lt, kt,mt, ut). Then, we can use the following augmented

set of moment restrictions in estimation:

E

 z̃t

(
ỹt+1(αx)−

∑P
p=1 α

−1
xω ϕ̃pỹt(β)p

)
z̃t

(
x̃t+1(αx)−

∑P
p=1 ϕ̃pỹt(β)p

)  = 0,

where ϕ̃p :=
∑P

q=1 ϕq[M(t, P )−1](q,p).

15The mean-Independence condition is common in the literature (e.g., condition (2.12) in
Wooldridge (2009)).
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Furthermore, if one is concerned about classical measurement errors in the

inputs and the measurement errors are independent across time, we may replace

the mis-measured inputs with their one-period lagged values in z̃t to get consis-

tent estimates of the production-function parameters.16 For example, suppose

that the main concern is classical measurement errors in the material input.

Let mt denotes the observed material input, which measures the actual material

input m∗t with error—that is, mt = m∗t + ε̃mt, where ε̃mt is the measurement

error.17 In this case, maintaining all our original notations, we would have both

the residual error εmt in the mt equation and ηt in the yt equation (partly) cap-

ture the measurement error ε̃mt. As a result, the moment conditions in (14) and

the covariance equation (15) do not hold if z̃t includes mt. However, if the mea-

surement error in mt is independent across time, then the moment conditions

in (13) and (14) and the covariance equations (15) and (16) would hold if we

replace the mt in z̃t with mt−1. Thus, we may estimate the model parameters

using the following moment conditions:

E
[
z̃t

(
x̃t+1(αx)−

∑P
p=1 ϕ̃pỹt(β)p

) ]
= 0,

where z̃t = (It, lt, kt,mt−1, ut) (instead of z̃t = (It, lt, kt,mt, ut)).
18

Lastly, the above estimation method can also be extended to accomondate

the following first-order controlled Markov process for productivity:

ωt+1 =
P∑
p=1

ρ1pω
p
t +

P∑
p=1

ρ2pr
p
t +

P∑
p=1

P∑
q=1

ρ3pqω
p
t r
q
t + ξt+1,

where rt is the firm’s expenditure on research and development (R&D) in period

t. In this case, we have:

cov (x̃t+1(αx), z̃t) = αxω

P∑
p=1

ρ1pcov (ωpt , z̃t) + αxω

P∑
p=1

ρ2pcov (rpt , z̃t) +

αxω

P∑
p=1

P∑
q=1

ρ3pqcov (ωpt r
q
t , z̃t) .

(19)

16il Kim et al. (2016) allow for measurement errors in the inputs in the method they propose
for estimating production functions within the modeling framework of Olley and Pakes (1996) and
Levinsohn and Petrin (2003). Their method combines sieve MLE in the first step and GMM as in
Wooldridge (2009) in the second step.

17We get the specification of measurement error if, for example, we observe log(MtPmt) but not
log(Mt).

18It is worth emphasizing here that replacing the mis-measured inputs in z̃t with their lagged values
would not work if the measurement errors in the inputs are serially correlated.
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Suppose that E(ηqt |ωt, z̃t, rt) = E(ηqt ), for q = 1, ..., P . Then, for any given

p, q ≤ P , we have:

cov (ỹt(β)prqt , z̃t) =

p∑
j=0

(
p

j

)
E
(
ηp−jt

)
cov

(
ωjt r

q
t , z̃t

)
.

We can solve the above equation for cov (ωpt r
q
t , z̃t) as follows:

cov (ωpt r
q
t , z̃t) =

P∑
j=1

[
M (t, P )−1

]
(p,j)

(
cov

(
ỹt(β)jrqt

)
− E

(
ηj
)

cov (rqt , z̃t)
)
,

where M (t, P ) is just the invertible matrix defined above in (17). In addition,

recall that cov (ωpt , z̃t) =
∑P

q=1

[
M (t, P )−1

]
(p,q)

cov (ỹt(β)q, z̃t). Substituting the

solutions for cov (ωpt r
q
t , z̃t) and cov (ωpt , z̃t) into equation (19), we get:

cov (x̃t+1(αx), z̃t) =

P∑
q=1

ρ̃1qcov (ỹt(β)q, z̃t) +

P∑
q=1

ρ̃2qcov (rqt , z̃t) +

P∑
j=1

P∑
q=1

ρ̃3jqcov
(
ỹt(β)jrqt , z̃t

)
,

where

ρ̃1q = αxω

P∑
p=1

ρ1p

[
M (t, P )−1

]
(p,q)

,

ρ̃2q = αxω

ρ2q −
P∑
p=1

ρ3pq

P∑
j=1

[
M (t, P )−1

]
(p,j)

E
(
ηj
) ,

ρ̃3jq = αxω

P∑
p=1

ρ3pq

[
M (t, P )−1

]
(p,j)

.

Then, we can transform the above covariance equality into the following moment

condition:

E

z̃t
x̃t+1(αx)−

P∑
q=1

ρ̃1qỹt(β)q −
P∑
q=1

ρ̃2qr
q
t −

P∑
j=1

P∑
q=1

ρ̃3jqỹt(β)jrqt

 = 0,

which we can use to estimate the production-function parameters in the GMM

framework if we observe rt.
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3.2 The GMM Estimator and Its Asymptotic Prop-

erties

We prove the asymptotic properties of our GMM estimator in the subsection.

The moment restrictions (18) may be written as E[gt(θ)], where

gt(θ) = z̃t

x̃t+1(αx)−
P∑
p=1

ϕ̃pỹt(β)p


For a suitable weighting matrix Ŵ , the generalized method of moments (GMM)

estimator θ̂ for the true parameter vector θ0 is defined by

θ̂ = arg min
θ∈Θ

1

2
En[gt(θ)]

′ŴEn[gt(θ)]

where En denotes the cross-sectional sample mean operator. The variance of
√
n(θ̂ − θ0) is approximated by

V̂ = (Ĝ′Ŵ Ĝ)−1Ĝ′Ŵ Σ̂Ŵ Ĝ(Ĝ′Ŵ Ĝ)−1

where Ĝ = En[Dθgt(θ̂)] is an estimator forG = E[Dθgt(θ0)] and Σ̂ = En[gt(θ̂)gt(θ̂)
′]

is an estimator for Σ̂ = E[gt(θ0)gt(θ0)′]. To guarantee that the GMM estimator

and its variance estimator behave well in large sample, we make the following

assumption.

Assumption 1. (i) The sample is i.i.d. (ii) Ŵ
p→W , which is positive definite.

(iii) θ0 is in the interior of Θ, which is compact. (iv) z̃t, xt+1, and kt+1 have

bounded second moments, and yt, lt, kt, mt, and ut have bounded 2P -th moments.

(v) z̃t, xt+1, and kt+1 have bounded fourth moments, and yt, lt, kt, mt, and ut

have bounded 4P -th moments.

Theorem 2. If Assumption 1 (i), (ii), (iii), (iv) is satisfied, then the following

result holds:

(I) θ̂
p→ θ0.

If Assumption 1 (i), (ii), (iii), (v) is satisfied, then the following results hold:

(II)
√
n(θ̂ − θ0)

d→ N(0, (G′WG)−1G′WΣWG(G′WG)−1); and

(III) V̂
p→ (G′WG)−1G′WΣWG(G′WG)−1.

Proof. We prove the theorem by checking the conditions of Newey and McFadden

(NM, 1994).

(I) The identification and Assumption 1 (ii) satisfy condition (i) of Theorem

2.6 in NM. Assumption 1 (iii) satisfies condition (ii) of Theorem 2.6 in NM. The
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functional form of our gt and Assumption 1 (iii) satisfy condition (iii) of Theorem

2.6 in NM. By Hölder’s inequality, the functional form of our gt and Assumption

1 (iii), (iv) satisfy condition (iv) of Theorem 2.6 in NM. Therefore, θ̂
p→ θ0 by

Theorem 2.6 in NM.

(II) Assumption 1 (iii) satisfies condition (i) of Theorem 3.4 in NM. The

functional form of our gt and Assumption 1 (iii) satisfy condition (ii) of Theorem

3.4 in NM. By Hölder’s inequality, the functional form of our gt and Assumption 1

(iii), (v) satisfy conditions (iii) and (iv) of Theorem 3.4 in NM. The identification

and Assumption 1 (ii) satisfy condition (v) of Theorem 3.4 in NM. Therefore,
√
n(θ̂ − θ0)

d→ N(0, (G′WG)−1G′WΣWG(G′WG)−1) by Theorem 3.4 in NM.

(III) By Hölder’s inequality, the functional form of our gt and Assumption

1 (iii), (v) satisfy the condition of Theorem 4.5 in NM in addition to those of

Theorem 3.4 in NM.

For convenience of readers, we present the estimation and inference procedure

based on the above theory as an algorithm.

Algorithm 1.

1. Compute the first-step estimate θ̂I = arg minθ∈Θ En[gt(θ)]
′En[gt(θ)].

2. Compute the estimated variance matrix Σ̂I = En[gt(θ̂I)gt(θ̂I)
′]

3. Compute the second-step estimate θ̂II = arg minθ∈Θ En[gt(θ)]
′Σ̂−1
I En[gt(θ)].

4. Compute the estimated second-step variance matrix V̂II = (Ĝ′IIΣ̂
−1
I ĜII)

−1

Ĝ′IIΣ̂
−1
I Σ̂IIΣ̂

−1
I ĜII (Ĝ′IIΣ̂

−1
I ĜII)

−1, where ĜII = En[Dθgt(θ̂II)] and Σ̂II =

En[gt(θ̂II)gt(θ̂II)
′].

5. Report estimation and inference results based on θ̂II and V̂II .

3.3 A Test of the Model of OP/LP/Wooldridge

We propose a test of the model of OP/LP to help researchers choose between

the model of OP/LP and the extended model that we propose in this paper. LP

use a nonparametric function µ−1
mt(mt, kt) to control for ωt (see the appendix for

the OP/LP procedure in detail). Thus, the first-step estimating equation of LP

is:

yt = βllt + φ̃t(mt, kt) + ηt,

where φ̃t(mt, kt) ≡ βkkt+βmmt+µ−1
mt(mt, kt) is unknown and needs to be speci-

fied nonparametrically. One can similarly consider the first-step estimating equa-

tion of OP, where It is used as a control variable. From the ACF critique, βl
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in this first-step estimating equation is unidentified in the model of OP/LP due

to functional dependence: lt is determined as a function of (ωt, kt) and, hence,

a function of (mt, kt), because ωt = µ−1
mt(mt, kt). Thus, the standard 95% confi-

dence set for βl should contain all real values. We propose to use this argument

based on the ACF critique to construct a test of the functional dependence, an

implication of the model of OP/LP.

Following the convention (LP/Woodridge), we use an ι-dimensional linear-in-

parameter approximation to the control function φ̃t by a parameter vector ν, i.e.,

φ̃t(mt, kt) = ν ′v(mt, kt) for some basis v(mt, kt). The first-step moment function

is written as

fi(βl, ν) = (lit, v(mit, kit)
′)′(yit − βllit − ν ′v(mit, kit)),

which is (1 + ι) × 1 dimensional vector-valued. Let the vectorized gradient of

fi(βl, ν) be denoted by:

qi(βl, ν) =


−(lit, v(mit, kit)

′)′lit

−(lit, v(mit, kit)
′)′ν1(mit, kit)

...

−(lit, v(mit, kit)
′)′νι(mit, kit)

 ,

which is (1 + ι)2 × 1 dimensional vector-valued. The joint variance matrix of

(fi(βl, ν)′, qi(βl, ν)′)′ is denoted by(
Vff (βl, ν) Vfθ(βl, ν)

Vθf (βl, ν) Vθθ(βl, ν)

)
= Var

(
fi(βl, ν)

qi(βl, ν)

)
.

The projected score is denoted by

D̂n(βl, ν) =

[
n−1

n∑
i=1

(
qi,1(βl, ν)− V̂θf,1(βl, ν)V̂ff (βl, ν)−1fi(βl, ν)

)
..., n−1

n∑
i=1

(
qi,ι+1(βl, ν)− V̂θf,ι+1(βl, ν)V̂ff (βl, ν)−1fi(βl, ν)

)]
.

With these notations, we can write the concentrated K-statistic (Kleibergen
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(2005)) as

K(β∗l ) = n

(
n−1

n∑
i=1

fi(β
∗
l , ν(β∗l ))′V̂ff (β∗l , ν(β∗l ))−1D̂n(β∗l , ν(β∗l ))

)

×
(
D̂n(β∗l , ν(β∗l ))′V̂ff (β∗l , ν(β∗l ))−1D̂n(β∗l , ν(β∗l ))

)−1

×

(
n−1

n∑
i=1

fi(β
∗
l , ν(β∗l ))′V̂ff (β∗l , ν(β∗l ))−1D̂n(β∗l , ν(β∗l ))

)′
.

Under the following assumption, this statistic can be used to test the hypothesis

H0 : βl = β∗l robustly without assuming that the labor coefficient βl is identified.

Assumption 2. (i) ν belongs to the interior of a compact parameter set. (ii)

(yit, lit, v(mit, kit)
′)′ has bounded fourth moments. (iii) ((lit, v(mit, kit)

′)′ν1(mit, kit),

..., (lit, v(mit, kit)
′)′νι(mit, kit)) has a full rank ι.

Theorem 3. If Assumption 1 (i) and Assumption 2 are satisfied, then K(β∗l )
d→

χ2(1) under the null hypothesis H0 : βl = β∗l .

Proof. Assumption 1 (i) and Assumption 2 (i)–(ii) imply that Assumption 1 of

Kleibergen (2005) is satisfied by Lindeberg-Lévy CLT. Similarly, Assumption

1 (i) and Assumption 2 (i)–(ii) imply that Assumption 2 of Kleibergen (2005)

is satisfied by the weak law of large numbers. Assumption 2 (iii) implies that

Assumption 2 of Kleibergen (2005) is satisfied by the definition of fi.

Consider the null hypothesisH0 : βl = β∗l where β∗l is set to a negative number

(for example). If the model of OP/LP is true, then the functional dependence

property pointed out by ACF implies that this null hypothesis cannot be rejected.

Therefore, if the test based on the K statistic rejects such a null hypothesis, then

we can take it as an evidence against the model of OP/LP. We apply the test

in our Monte Carlo experiments and empirical application ahead. Based on this

testing procedure, we indeed find that the empirical data does not support the

model of OP/LP (see Section 4.1).

3.4 Monte Carlo Experiments

We consider the following data-generating process (DGP) for simulating data.

The gross-output Cobb-Douglas production function in logs is given by

yt = βllt + βkkt + βmmt + βuut + ωt + ηt, ηt ∼ N(0, s2
η),
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where (βl, βk, βm, βu) = (0.4, 0.3, 0.2, 0.1), and sη = 1. The productivity level ωt

follows a linear AR(1) process

ωt+1 = ρ1ωt + ξt+1, ξt+1 ∼ N(0, s2
ξ),

where ρ1 = 1.00 and sξ = 0.05. The capital accumulates according to the

following law of motion:

Kt+1 = (1− δ)Kt + 0.5It + 0.5It−1,

where δ = 0.1 and the reduced-form investment policy is specified as:

log(It) = −0.02kt − 0.01it−1 + 1.00ωt + ζt, ζ ∼ N(0, s2
ζ),

for sζ = 1.00. The static input choices are determined as the solution to the

profit-maximization problem:

max
Lt,Mt,Ut

E exp(ηt) exp(ωt)L
βl
t K

βk
t Mβm

t Uβut − (plLt + pmMt + puUt) ,

where the input prices (pl, pm, pu) = (0.3, 0.2, 0.1). This problem yields linear

reduced-form input choice rules as in (11). For xt = mt for example, it holds with

the reduced-form parameters αmk = βk
1−βl−βm−βu and αmω = 1

1−βl−βm−βu . Thus,

the scaled AR parameter takes the value of ϕ1 = ρ1
1−βl−βm−βu = 31

3 . We will

refer to the DGP described here later as the baseline DGP when differentiating

DGPs that deviate from it.

To avoid arbitrary initial conditions, we simulate the above model for ten

periods and use the last two periods to estimate the parameters (following ACF).

Estimation results with xt+1 = mt+1 based on 2,500 simulated random samples

are reported in Table 1. Similarly, Table 2 shows estimation results with xt+1 =

yt+1, and Table 3 shows results using both mt+1 and yt+1. The latter two settings

allow us to directly identify the AR parameter ρ1 instead of only the reduced-

form parameters ϕ̃1(= ϕ1) (as in the first setting). The difference is because

ωt+1 enters the yt+1 equation directly, but enters the mt+1 equation linearly as

αmωωt+1.

The estimates in Tables 1-3 show that we can obtain consistent estimates us-

ing the moment conditions based on either (yt, It,mt+1) or (yt, It, yt+1); and us-

ing moment conditions based on (yt, It,mt+1, yt+1) produces consistent estimates

with smaller variances than either of the two prior cases (and we get essentially

the same results when we use higher-order polynomials for ρ(ωt)). Overall, all

these simulation results show the effectiveness of our estimation strategies.
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We next compare our estimates with those produced using existing methods,

including the ordinary least squares (OLS) method and the GMM method pro-

posed by Wooldridge (2009) (which efficiently implements the estimation strategy

of OP and LP).19 Table 4 reports the estimates, based on the same simulated

data as above, using the methods of OLS, Wooldridge’s (W), LP’s and ours

(HHS). The OLS estimates have the largest root mean square errors (RMSEs),

which do not diminish with sample size. Wooldridge’s and LP’s methods re-

duce the RMSEs relative to OLS, but the RMSEs do not decrease with sample

size either. The estimates of OLS, Wooldridge’s and LP’s show upward bias for

the coefficients of static inputs, (lt,mt, ut), and OLS (Wooldridge’s and LP’s)

estimates show downward (small upward) biases for the coefficient of capital,

kt. In contrast, the RMSEs of our estimates diminish toward zero with sample

size.20 The RMSEs of the estimates of OLS and Wooldridge’s change little as the

sample size increases, because the standard deviations are significantly smaller

than the magnitude of the biases and RMSEs are dominated by the persistent

biases in the estimates. Therefore, in the case in which the scalar-unobservable

assumption is violated, the methods of OP/LP/Wooldridge reduce biases in the

estimates but do not eliminate them, whereas our method is able to produce

consistent estimates by exploiting two proxy variables.

Recall that we impose the moment restriction (14) for our GMM estimator,

which is not used in the existing methods of production function estimation.

To examine how our estimator behaves under a violation of this condition, and

compare the bias of our estimator with those of the existing methods, we simulate

data using a DGP that is the same as the baseline DGP above, except that η is

now generated heterosketastically according to ηt ∼ N(0, s2
η(1 + (ωt/2)2)). Such

a DGP entails a violation of the moment restriction (14). Table 5 reports the

estimates using the methods of OLS, Wooldridge’s (W), LP’s and ours (HHS).

The biases of our estimator are significantly smaller than those of the OLS,

Wooldridge’s and LP’s, showing evidence that our estimator still performs better

than the existing estimators even under a violation of the assumption (14).

We next illustrate our method for the case with a nonlinear transition equa-

tion for the productivity ωt. In particular, let us modify the baseline DGP by

19As in our method, we use x = m as a proxy. Polyno-
mial sieve control function of degree three is employed—i.e., γ′ct =
(γ00, γ10, γ01, γ20, γ11, γ02, γ30, γ22, γ12, γ03)(1, kt,mt, k

2
t , ktmt,m

2
t , k

3
t , k

2
tmt, ktm

2
t ,m

3
t )′. Following

Wooldridge (2009), we use the restrictions E[(1, lt, ut, lt−1, ut−1, ct, ct−1)′(ỹ(β) − γ′ct)] = 0 and
E[(1, kt, lt−1, ut−1, ct−1)′(ỹ(β)− ρ0 − ρ1γ′ct−1)] = 0. The two-step GMM is used for estimation.

20For the estimates in Table 1, the
√
N convergence rate for large samples does not seem to start

until N = 4000.
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assuming the following quadratic AR(1) process for productivity:

ωt+1 = ρ1ωt + ρ2ω
2
t + ξt+1, ξt+1 ∼ N(0, s2

ξ),

where ρ1 = 1.000, ρ2 = −0.025, and sξ = 0.050. We simulate the model similarly

for ten periods and use the last two periods for estimation. Table 6 reports the

estimates using moment conditions based on (yt, It,mt+1, yt+1). It shows that

the estimates assuming P = 1 have persistent biases even under a large sample,

whereas those with P = 2, 3 have biases vanishing as the sample size increases.

Although the biases in the case with P = 1 are in the same direction as OLS

estimates, the magnitude of the biases are significantly smaller than those of the

OLS estimates. Note that, with the mis-specification of P = 1, the root-mean-

square error (RMSE) (unlike the standard deviation) does not converge at the

rate of
√
N because of the bias. Hence, with a sufficiently flexible specification

for ρ(ωt) = E(ωt+1|ωt), our method produces consistent estimates; and, even

with a linear specification for ρ(ωt), our method still helps reduce bias in the

estimates relative to the OLS estimates.

The baseline DGP focuses on the unit-root process for the productivity, but

our method does not rely on the unit-root process. To demonstrate the robust-

ness of our method against alternative AR(1) specifications, we present Monte

Carlo simulation results under sub-unit-root AR(1) process of the transition of

the productivity. Specifically, we set ρ1 = 0.95, as opposed to ρ1 = 1.00 as in

the baseline DGP. Table 7 reports the estimates. The estimates demonstrate the

consistency of our GMM estimator under this alternative DGP, showing that our

method does not rely on the unit root assumption for the productivity transition

process.

Finally, we report Monte Carlo studies for the test of identifiability of βl in

the first step of OP/LP’s estimation procedure, following the theory proposed

in Section 3.3. The test of identifiability is based on the null hypothesis H0 :

βl = β∗l , with β∗l being a fixed finite value. Figure 1 shows power curves for the

nominal size of 0.05 over −0.6 ≤ β∗l ≤ 0.6 under various sample sizes of N = 100,

200, 400 and 800. The simulation size approaches the nominal size 0.05 around

β∗l = 0.49, consistent with the estimates of βl reported for LP method in Table

4. Besides this location of β∗l , the power curves increase to one as the sample size

becomes larger, showing the consistency of the test. Therefore, the proposed test

rejects the null of H0 : βl = β∗l , for β∗l being any negative value (for example),

and thus correctly rejects the model of OP/LP.
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4 Empirical Application: The Input Deci-

sions and Productivity Shocks

In the following, we apply our method to the Chilean manufacturing data that LP

use in their paper. We first present our estimates to illustrate the performance

of our method with real data. Then, we study empirically how quickly firms

adjust their inputs in response to the latest changes in their productivity. The

analysis helps us to understand how efficiently firms in the industry operate

and to identify potential frictions in the input markets. Methodologically, the

analysis can provide guidance for choosing proxies for the latent productivity

and help explain differences in the estimates using various methods.

4.1 Estimates of the Production Function

We apply our estimation method to industry ISIC 311 (the industry of food

products), which has the most observations, in the Chilean manufacturing data.

Following LP, we estimate a gross-output production function. The inputs in-

clude two types of labor inputs (high-skill and low-skill, lst and lut , respectively),

capital (kt), material (mt), electricity (et) and fuel (ut). We use the moment con-

ditions based on (yt, It, xt+1, yt+1), where x is one of the three inputs of (m, e, u),

in our estimation. Following LP (2003), we include fixed effects for the three

time periods, 1979–1981, 1982–1983, and 1984–1986, and we use d1
t and d2

t to

denote time-period dummies for the latter two of the three periods. This setup

yields six structural parameters β = (βlu, βls, βk, βm, βe, βu)′ and two coefficients

βd = (βd1 , βd2)′ of the time dummies (d1
t , d

2
t ) for the production function equa-

tion (10); five reduced-form parameters in (α′x, αxω)′ = (αx0, αxk, αxls, αxlu, αxω)′

and two coefficients αxd = (αxd1 , αxd2)′ of the time dummies (d1
t , d

2
t ) for equation

(11) of xt+1, and P + 1 reduced-form parameters ϕ̃ = (ϕ̃0, ..., ϕ̃P ) for the AR(1)

transition process of ω.21 Thus, we have a total of 16 + P unknown parameters.

Before proceeding with estimation of the production function, we first test

the model validity of OP/LP based on the method presented in Section 3.3. To

this end, we compute the K-statistic on a grid of points for the parameter sub-

vector (β∗lu, β
∗
ls) of labor coefficient values. Figure 2 illustrates the region where

the test fails to reject the null hypothesis H0 : (βlu, βls) = (β∗lu, β
∗
ls). Recall that

the model of OP/LP entails the functional dependence in the first steps of their

estimation procedures, as pointed out by ACF. Hence, if their model were true,

then the test would fail to reject such a null hypothesis globally. However, the

21We include a constant in the transition equation for ω here to make the specification more flexible
for the real data.
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results illustrated in Figure 2 imply otherwise. We take this finding as an evidence

against the validity of the model of OP/LP for the food-product industry in the

Chilean manufacturing data.

We now turn to our estimation procedure. We use the two-step GMM proce-

dure, as described at the end of Section 3.2, in estimation. Separately for x = m,

e, and u, we obtain the following 20 moment restrictions:

E

 z̃t

(
ỹt+1(β′, β′d)−

∑P
p=0 α

−1
xω ϕ̃pỹt(β

′, β′d)
p
)

z̃t

(
x̃t+1(α′x, α

′
xd)−

∑P
p=0 ϕ̃pỹt(β

′, β′d)
p
)  = 0, (20)

where z̃t = (1, It, l
s
t , l

u
t , kt,mt, et, ut, d

1
t , d

2
t )
′, ỹt((β

′, β′d)
′) = yt − (βlul

u
t + βlsl

s
t +

βkkt +βmmt +βeet +βuut +βd1d
1
t +βd2d

2
t ) and x̃t+1((α′x, α

′
xd)
′) = xt+1− (αx0 +

αxkkt+1 +αxlsl
s
t+1 +αxlul

u
t+1 +αxd1d

1
t+1 +αxd2d

2
t+1). Note that, although we work

with the assumption of the labor inputs being static inputs, we allow them to be

possibly dynamic inputs by including the labor inputs, lst+1 and lut+1, in the xt+1

(x = m, e and u) equations. The vector of instruments z̃t does not include lst+1

and lut+1, because, under the working assumption, lst+1 and lut+1 are correlated

with ξt+1 in the xt+1 equations.

We consider the cases of P = 1, 2, and 3 for the AR(1) process for ω. The

standard errors are computed using the covariance formula of the asymptotic

distribution of the two-step GMM procedure. To deal with potential problems

of local optimums, we use 125 different initial points for numerical optimization

and report the optimal interior estimates. More flexible specifications of the

AR(1) process (i.e., with P > 3) do not produce any significant changes in the

estimates of the structural parameters.22 In a note on implementing the LP’s

estimation procedure, Petrin et al. (2004) (p.116) also suggests choosing P = 3

for the AR(1) process.

Table 8 presents our estimation results for different choices of xt+1 and P . As

a reference, we copy, in the table, the estimates from Table 3 in LP, for which they

use materials as the proxy for productivity. We also report the estimates using

the GMM approach of Wooldridge (2009) and one of the static inputs (mt, et and

ut) as a proxy for productivity (W-LP). The estimate of return-to-scale (RTS) is

computed as the sum of the estimates of all the β coefficients in the production

function.

For each choice of xt+1, the differences in the estimates of the production-

22A common practice in applied research is to choose P by increasing it one by one and stopping
when further increasing P does not bring significant changes in the estimates of the structural param-
eters. Hu and Schennach (2008) (p.206) also suggests similar informal guidelines for determining the
smoothing parameters.

31



function parameters with P = 1, 2 and 3 are small, and the estimates of the

ϕ̃2 and ϕ̃3 are also relatively small (except for the case with xt+1 = mt+1 and

P = 3).

The main difference in the estimates with the three different choices of xt+1

is in βm and, consequently, in the RTS. With xt+1 = mt+1, the point estimates

of βm range from 0.354 to 0.369, and those of the RTS range from 0.892 to 0.978.

In comparison, with xt+1 = et+1 or ut+1, the point estimates of βm range from

0.636 to 0.673, and those of the RTS range from 1.153 to 1.386. Meanwhile, our

estimates of βe and βu are similar across the different choices of xt+1 and P ,

and none of our estimates of the two parameters is statistically significant. A

possible explanation for these results is that the demand for electricity and fuel

is determined mainly by the levels of the other inputs—i.e., labor, capital and

materials—but rarely by the latest level of a firm’s productivity. As a result,

et+1 and ut+1 make poor proxies for productivity in our method.

There are also differences between our estimates using mt+1 and LP’s. We

focus on comparing with LP’s original estimates given that the W-LP estimates

are close to LP’s original ones. In particular, our estimates of βm and βk (βls

and βlu) are noticeably smaller (larger) than LP’s corresponding estimates, but

our point estimates of βe and βu are similar to those of LP.

As LP point out in Section 2 of their paper, it is generally impossible to sign

the simultaneity biases in the OLS estimates when there are multiple inputs,

and the sign of biases depends on how the inputs covary with each other and

with the latent productivity. Their analysis suggests that, without control for

firms’ productivity, the estimated coefficients of the most-variable inputs are

likely biased upward, whereas those of the least-variable inputs can be biased

downward if the inputs are positively correlated. Therefore, to better understand

the causes of the difference in the estimates using the various methods, we need

to know how variable the different inputs are and how rapidly they adjust with

the latest productivity shocks (Marschak and Andrews (1944)).

The empirical analysis that we present in the following subsection shows that

only mt+1, but not et+1 or ut+1, depends, statistically significantly, on ξt+1 and

ξt, the innovations in productivity in the two latest periods. With ξt being a

part of ωt, these findings help explain why et+1 and ut+1 seem poor proxies for

ωt in our method, and why only the estimate of βm, but not those of βe and

βu, are significantly inflated in OLS estimation and when we use either et+1 or

ut+1 as one of the proxies for ωt in our method. In addition, we find that neither

lst+1 nor lut+1 depends, statistically significantly, on ξt+1 or ξt, showing that the

labor inputs adjust considerably more slowly than the material input. Thus,
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these findings also offer a potential explanation for the difference between our

estimates and LP’s: the estimates of the coefficients of more- (less-) variable

inputs may be biased upward (downward) due to imperfect control of the latent

productivity under LP’s method.

4.2 Inputs and Productivity Shocks

To study how quickly firms adjust their inputs to the latest changes in their

productivity, we note that, for each period-(t + 1) input zt+1 = lst+1, lut+1, kt+1,

mt+1, et+1, and ut+1, we have:

cov(ωt+1, zt+1) = cov(ỹt+1(β), zt+1), (21)

and

cov(ξt+1, zt+1) = cov

ỹt+1(β)−
P∑
p=0

α−1
xω ϕ̃pỹt(β)p, zt+1

 . (22)

Thus, for each input zt+1 = lst+1, lut+1, kt+1, mt+1, et+1, and ut+1, we may esti-

mate cov(ωt+1, zt+1) by cov(ỹt+1(β̂), zt+1) and cov(ξt+1, zt+1) by

cov
(
ỹt+1(β̂)−

∑P
p=0 α̂

−1
xω

ˆ̃ϕpỹt(β̂)p, zt+1

)
, where β̂ denotes the vector of estimated

production-function parameters. To account for the effect of estimating β by β̂

on the standard errors of the estimates for these covariances, we separately add

each moment equality for these covariances (equations (21) and (22)) as one ad-

ditional moment restriction to the moment conditions in (20) to estimate the

covariance together with θ by the two-step GMM. Because using mt+1, in com-

parison to et+1 or ut+1, as one of the two proxies for ωt seems to perform better,

we let x̃t+1 = m̃t+1 in the moment restrictions in (20) in our estimation.

Table 9 shows estimates of the covariances. The covariance between pro-

ductivity ωt+1 and the inputs, shown in part (A) of the table, are significantly

positive for all inputs under all the different specifications of P . This shows that

each input choice is affected, directly or indirectly, by a firm’s current produc-

tivity. On the other hand, the covariances between technological innovation ξt+1

and the inputs, shown in part (B) of the table, are all positive, but statistically

insignificant, for all the cases of P that we consider. Among them, the covariance

between ξt+1 and material input mt+1 is closer to being statistically significantly

positive. To gain statistical power, we reestimate the covariances by using the

longer panel data (1979–1996) available, along with biennial time fixed effects.

We report the results in part (C) of the table. With the increase in sample size,

we find a statistically significant and positive covariance between ξt+1 and mt+1,

but not between ξt+1 and any other input. These results show that only the
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material input m adjusts in response to the latest innovation in productivity.

The other inputs, including the two types of labor inputs, adjust more slowly to

changes in productivity.23

To further analyze how inputs adjust with productivity, we also estimate

cov(ωt, zt+1) by cov(ỹt(β̂), zt+1) and cov(ξt, zt+1) by

cov
(
ỹt(β̂)−

∑P
p=0 α̂

−1
mω

ˆ̃ϕpỹt−1(β̂)p, zt+1

)
, for each input zt+1 = lst+1, lut+1, kt+1,

mt+1, et+1, and ut+1. The analysis of these covariances also help explain the

differences in our estimates under different choices of xt+1. Estimation and com-

putation of standard errors follow the same procedure as above. Table 10 reports

the estimates of the covariances.

The covariance between the one-period lag productivity ωt and each input,

shown in part (A) of the table, is significantly positive for all the specifications of

P that we consider. The covariance between lag technological innovation ξt and

the inputs, shown in part (B) of the table, is significantly positive for the material

input mt+1 for the cases of P = 2, 3, but it is statistically insignificant for all

the other inputs. To gain statistical power, we again reestimate the covariances

by using the longer panel (1979-1996) available, along with biennial time fixed

effects. We report the results in part (C) of the table. With the increase in sample

size, we obtain qualitatively the same results as those with the shorter panel,

except that the positive covariance between the lag technological innovation ξt

and material input mt+1 is statistically significant, at either the 5% or the 10%

level, for all three choices of P .

In sum, we find that, although all the inputs show positive covariance with

the current and one-period lagged productivity, only the material input shows

statistically significant and positive covariance with the current and one-period

lag productivity shock. This suggests that, although firms generally determine

the levels of their inputs in accordance with their productivity, they rapidly

adjust only the material input to the latest change in their productivity. The

slower adjustments of the labor inputs are likely due to frictions in the labor mar-

ket: hiring and firing costs may prevent firms from adjusting their labor inputs

rapidly to respond to shocks to their productivity. Meanwhile, the adjustment

in the capital input is also slow, which is not surprising given the time needed

to put new capital in place. Therefore, in light of these findings, policies that

aim to reduce the frictions in the labor markets have the potential to improve

efficiency in the industry.

23The covariance between ξt+1 and kt+1 is negative and statistically significant at the 5% level for
the case of P = 2. The negative correlation may be due to a nonlinear relationship between ω and k.
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5 Conclusions

In this paper we propose a new approach for structural identification and es-

timation of production functions, relaxing the well-known scalar-unobservable

assumption maintained by the existing methods of OP/LP/ACF. The new ap-

proach is more robust when there are important unobservables in addition to the

latent productivity. It also frees up some important identification sources that

were not applicable under the scalar-unobservable assumption. We introduce a

straightforward GMM procedure for estimating structural parameters in produc-

tion functions, following our identification results. The estimation procedure is

straightforward to apply and can be adjusted to allow for potential measurement

errors in the input variables as long as the measurement errors are independent

across time.

We apply our method to studying how rapidly firms respond in their input

decisions to the latest changes in their productivity. Based on the estimates of

the covariances between the inputs and the latest shocks to productivity, we find

that firms are quick to adjust the material input, but much slower to adjust the

labor and capital inputs.

It worth pointing out that, although our method does not produce point

estimates of firm-level productivity, its applicability does not seem significantly

limited by the issue. For example, it can be used to essentially replicate OP’s

empirical analysis of deregulation’s effects in the telecommunications equipment

industry. In view of the large number of applications based on the previous

methods, we believe that our contribution to this literature can be of value to

future studies of various issues centered around firm productivity and production

functions.
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Tables

Table 1: Monte Carlo results with xt+1 = mt+1

N P βl βm βu βk ϕ̃1

True 0.400 0.200 0.100 0.300 3.333
1000 1 Simulation Mean 0.364 0.164 0.064 0.405 3.227

Simulation St. Dev. (0.070) (0.070) (0.070) (0.249) (1.898)
Theoretical St. Err. [0.087] [0.087] [0.087] [0.271] [3.243]
Simulation RMSE (0.079) (0.079) (0.079) (0.270) (1.901)
Simulation 95% Cover 0.999 0.997 0.999 0.994 0.941

2000 1 Simulation Mean 0.382 0.182 0.082 0.354 3.535
Simulation St. Dev. (0.054) (0.053) (0.054) (0.182) (1.794)
Theoretical St. Err. [0.061] [0.061] [0.061] [0.191] [2.293]
Simulation RMSE (0.057) (0.056) (0.057) (0.190) (1.806)
Simulated 95% Cover 0.996 0.998 0.997 0.992 0.934

4000 1 Simulation Mean 0.393 0.193 0.093 0.321 3.677
Simulation St. Dev. (0.041) (0.041) (0.041) (0.132) (1.544)
Theoretical St. Err. [0.043] [0.043] [0.043] [0.135] [1.622]
Simulation RMSE (0.042) (0.042) (0.041) (0.133) (1.582)
Simulation 95% Cover 0.994 0.995 0.994 0.986 0.927

8000 1 Simulation Mean 0.397 0.198 0.097 0.308 3.597
Simulation St. Dev. (0.030) (0.030) (0.030) (0.094) (1.211)
Theoretical St. Err. [0.031] [0.031] [0.031] [0.096] [1.147]
Simulation RMSE (0.030) (0.030) (0.030) (0.094) (1.240)
Simulation 95% Cover 0.986 0.983 0.982 0.978 0.935
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Table 2: Monte Carlo results with the xt+1 = yt+1

N P βl βm βu βk φ1

True 0.400 0.200 0.100 0.300 1.000
1000 1 Simulation Mean 0.400 0.199 0.099 0.313 1.002

Simulation St. Dev. (0.044) (0.044) (0.044) (0.231) (0.036)
Theoretical St. Err. [0.043] [0.043] [0.043] [0.205] [0.025]
Simulation RMSE (0.044) (0.044) (0.044) (0.231) (0.037)
Simulation 95% Cover 0.926 0.923 0.929 0.934 0.926

2000 1 Simulation Mean 0.400 0.200 0.100 0.304 1.003
Simulation St. Dev. (0.032) (0.032) (0.031) (0.153) (0.022)
Theoretical St. Err. [0.030] [0.030] [0.030] [0.145] [0.018]
Simulation RMSE (0.032) (0.032) (0.031) (0.153) (0.022)
Simulation 95% Cover 0.916 0.920 0.922 0.945 0.922

4000 1 Simulation Mean 0.400 0.200 0.101 0.302 1.001
Simulation St. Dev. (0.022) (0.022) (0.022) (0.107) (0.014)
Theoretical St. Err. [0.021] [0.021] [0.021] [0.102] [0.012]
Simulation RMSE (0.022) (0.022) (0.022) (0.107) (0.015)
Simulation 95% Cover 0.933 0.930 0.932 0.942 0.925

8000 1 Simulation Mean 0.400 0.200 0.100 0.304 1.000
Simulation St. Dev. (0.015) (0.016) (0.016) (0.073) (0.009)
Theoretical St. Err. [0.015] [0.015] [0.015] [0.072] [0.009]
Simulation RMSE (0.015) (0.016) (0.016) (0.073) (0.009)
Simulation 95% Cover 0.944 0.941 0.939 0.952 0.942
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Table 3: Monte Carlo results with both mt+1 and yt+1

N P βl βm βu βk φ1 φ2 φ3

True 0.400 0.200 0.100 0.300 1.000 0.000 0.000
1000 1 Mean 0.388 0.187 0.088 0.338 1.000

St. Dev. (0.041) (0.041) (0.041) (0.160) (0.027)
RMSE (0.043) (0.043) (0.043) (0.164) (0.027)
95% Cover 0.915 0.918 0.911 0.930 0.937

2000 1 Mean 0.393 0.192 0.093 0.325 0.999
St. Dev. (0.030) (0.030) (0.030) (0.113) (0.019)
RMSE (0.030) (0.031) (0.031) (0.116) (0.019)
95% Cover 0.917 0.911 0.916 0.929 0.934

4000 1 Mean 0.397 0.197 0.097 0.307 1.000
St. Dev. (0.021) (0.021) (0.021) (0.077) (0.013)
RMSE (0.021) (0.021) (0.021) (0.077) (0.013)
95% Cover 0.922 0.927 0.925 0.943 0.939

8000 1 Mean 0.398 0.198 0.098 0.306 1.000
St. Dev. (0.014) (0.014) (0.014) (0.054) (0.009)
RMSE (0.014) (0.015) (0.014) (0.054) (0.009)
95% Cover 0.935 0.936 0.941 0.943 0.942

1000 2 Mean 0.385 0.182 0.084 0.350 1.000 -0.000
St. Dev. (0.038) (0.040) (0.039) (0.156) (0.043) (0.029)
RMSE (0.041) (0.044) (0.043) (0.164) (0.043) (0.029)
95% Cover 0.932 0.920 0.920 0.934 0.951 0.989

2000 2 Mean 0.390 0.189 0.090 0.334 0.999 0.000
St. Dev. (0.028) (0.028) (0.028) (0.112) (0.021) (0.013)
RMSE (0.030) (0.031) (0.030) (0.117) (0.021) (0.013)
95% Cover 0.940 0.930 0.939 0.925 0.946 0.982

4000 2 Mean 0.396 0.195 0.096 0.313 1.000 0.000
St. Dev. (0.021) (0.021) (0.021) (0.078) (0.014) (0.008)
RMSE (0.021) (0.021) (0.021) (0.079) (0.014) (0.008)
95% Cover 0.933 0.932 0.930 0.941 0.949 0.978

8000 2 Mean 0.398 0.198 0.098 0.306 1.000 0.000
St. Dev. (0.015) (0.014) (0.014) (0.055) (0.009) (0.005)
RMSE (0.015) (0.015) (0.015) (0.055) (0.009) (0.005)
95% Cover 0.931 0.931 0.938 0.937 0.950 0.974

1000 3 Mean 0.385 0.184 0.085 0.354 1.000 -0.000 -0.000
St. Dev. (0.036) (0.036) (0.036) (0.163) (0.113) (0.025) (0.038)
RMSE (0.039) (0.040) (0.039) (0.171) (0.113) (0.025) (0.038)
95% Cover 0.935 0.944 0.939 0.922 0.952 0.990 0.993

2000 3 Mean 0.391 0.190 0.091 0.329 1.000 -0.000 0.000
St. Dev. (0.027) (0.028) (0.027) (0.111) (0.076) (0.014) (0.026)
RMSE (0.028) (0.029) (0.029) (0.115) (0.076) (0.014) (0.026)
95% Cover 0.937 0.930 0.941 0.931 0.949 0.983 0.994

4000 3 Mean 0.395 0.194 0.095 0.316 1.000 -0.000 -0.000
St. Dev. (0.020) (0.020) (0.020) (0.078) (0.045) (0.008) (0.014)
RMSE (0.021) (0.021) (0.021) (0.079) (0.045) (0.008) (0.014)
95% Cover 0.940 0.932 0.936 0.940 0.955 0.974 0.987

8000 3 Mean 0.398 0.198 0.098 0.306 0.999 -0.000 0.000
St. Dev. (0.014) (0.014) (0.014) (0.053) (0.032) (0.006) (0.009)
RMSE (0.014) (0.014) (0.014) (0.053) (0.032) (0.006) (0.009)
95% Cover 0.947 0.948 0.942 0.956 0.950 0.972 0.984
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Table 4: A comparison of Monte Carlo results across the ordinary least squares (OLS),
the method of Wooldridge (W) with polynomial sieve control function of degree three,
the method of Levinsohn and Petrin (LP) with polynomial sieve control function of
degree three, and our method (HHS) for the case of P = 1 copied from Table 3.

N βl βm βu βk βl βm βu βk
True 0.400 0.200 0.100 0.300 0.400 0.200 0.100 0.300

OLS 1000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.014) (0.014) (0.014) (0.045)
RMSE (0.090) (0.090) (0.090) (0.165)
95% Cover 0.000 0.000 0.000 0.000

OLS 2000 Mean 0.489 0.289 0.188 0.143
St. Dev. (0.010) (0.010) (0.010) (0.032)
RMSE (0.090) (0.089) (0.089) (0.160)
95% Cover 0.000 0.000 0.000 0.000

OLS 4000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.007) (0.007) (0.007) (0.022)
RMSE (0.089) (0.089) (0.089) (0.159)
95% Cover 0.000 0.000 0.000 0.000

OLS 8000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.005) (0.005) (0.005) (0.016)
RMSE (0.089) (0.089) (0.089) (0.159)
95% Cover 0.000 0.000 0.000 0.000

W 1000 Mean 0.445 0.248 0.147 0.292 LP 0.487 0.233 0.188 0.322
St. Dev. (0.009) (0.017) (0.016) (0.103) (0.010) (0.055) (0.010) (0.285)
RMSE (0.046) (0.051) (0.049) (0.103) (0.088) (0.064) (0.088) (0.286)
95% Cover 0.006 0.000 0.001 0.003 — — — —

W 2000 Mean 0.444 0.247 0.146 0.301 LP 0.487 0.233 0.188 0.299
St. Dev. (0.006) (0.015) (0.012) (0.078) (0.007) (0.036) (0.007) (0.232)
RMSE (0.045) (0.049) (0.047) (0.078) (0.088) (0.049) (0.088) (0.232)
95% Cover 0.002 0.000 0.000 0.001 — — — —

W 4000 Mean 0.445 0.245 0.144 0.310 LP 0.488 0.236 0.188 0.308
St. Dev. (0.003) (0.009) (0.006) (0.041) (0.005) (0.022) (0.005) (0.169)
RMSE (0.045) (0.046) (0.045) (0.042) (0.088) (0.042) (0.088) (0.169)
95% Cover 0.000 0.000 0.000 0.000 — — — —

W 8000 Mean 0.445 0.245 0.144 0.314 LP 0.487 0.237 0.188 0.313
St. Dev. (0.001) (0.003) (0.003) (0.016) (0.004) (0.014) (0.004) (0.120)
RMSE (0.045) (0.045) (0.044) (0.022) (0.088) (0.040) (0.088) (0.121)
95% Cover 0.000 0.000 0.000 0.000 — — — —

HHS 1000 Mean 0.388 0.187 0.088 0.338
St. Dev. (0.041) (0.041) (0.041) (0.160)
RMSE (0.043) (0.043) (0.043) (0.164)
95% Cover 0.915 0.918 0.911 0.930

HHS 2000 Mean 0.393 0.192 0.093 0.325
St. Dev. (0.030) (0.030) (0.030) (0.113)
RMSE (0.030) (0.031) (0.031) (0.116)
95% Cover 0.917 0.911 0.916 0.929

HHS 4000 Mean 0.397 0.197 0.097 0.307
St. Dev. (0.021) (0.021) (0.021) (0.077)
RMSE (0.021) (0.021) (0.021) (0.077)
95% Cover 0.922 0.927 0.925 0.943

HHS 8000 Mean 0.398 0.198 0.098 0.306
St. Dev. (0.014) (0.014) (0.014) (0.054)
RMSE (0.014) (0.015) (0.014) (0.054)
95% Cover 0.935 0.936 0.941 0.943
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Table 5: Monte Carlo results under heteroskedasticity, ηt ∼ N(0, s2
η(1 + (ωt/2)2)).

N βl βm βu βk βl βm βu βk
True 0.400 0.200 0.100 0.300 0.400 0.200 0.100 0.300

OLS 1000 Mean 0.489 0.289 0.189 0.144
St. Dev. (0.018) (0.018) (0.018) (0.062)
RMSE (0.090) (0.090) (0.091) (0.168)
95% Cover 0.000 0.000 0.000 0.004

OLS 2000 Mean 0.489 0.289 0.188 0.141
St. Dev. (0.013) (0.013) (0.013) (0.044)
RMSE (0.090) (0.090) (0.089) (0.165)
95% Cover 0.000 0.000 0.000 0.000

OLS 4000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.009) (0.009) (0.009) (0.031)
RMSE (0.089) (0.089) (0.089) (0.161)
95% Cover 0.000 0.000 0.000 0.000

OLS 8000 Mean 0.489 0.289 0.189 0.142
St. Dev. (0.006) (0.006) (0.006) (0.022)
RMSE (0.089) (0.089) (0.089) (0.160)
95% Cover 0.000 0.000 0.000 0.000

W 1000 Mean 0.445 0.247 0.146 0.301 LP 0.487 0.241 0.187 0.455
St. Dev. (0.005) (0.015) (0.014) (0.086) (0.013) (0.089) (0.013) (0.428)
RMSE (0.045) (0.049) (0.048) (0.086) (0.088) (0.098) (0.088) (0.456)
95% Cover 0.017 0.002 0.002 0.002 — — — —

W 2000 Mean 0.445 0.246 0.145 0.310 LP 0.487 0.236 0.188 0.350
St. Dev. (0.003) (0.010) (0.009) (0.052) (0.009) (0.059) (0.009) (0.317)
RMSE (0.045) (0.047) (0.046) (0.053) (0.088) (0.069) (0.088) (0.321)
95% Cover 0.005 0.000 0.000 0.0004 — — — —

W 4000 Mean 0.445 0.245 0.144 0.314 LP 0.487 0.233 0.188 0.320
St. Dev. (0.001) (0.003) (0.002) (0.012) (0.006) (0.038) (0.006) (0.249)
RMSE (0.045) (0.045) (0.044) (0.019) (0.088) (0.050) (0.088) (0.250)
95% Cover 0.000 0.000 0.000 0.000 — — — —

W 8000 Mean 0.445 0.245 0.144 0.315 LP 0.488 0.235 0.187 0.303
St. Dev. (0.001) (0.001) (0.001) (0.000) (0.004) (0.023) (0.004) (0.198)
RMSE (0.045) (0.045) (0.044) (0.015) (0.088) (0.042) (0.087) (0.198)
95% Cover 0.000 0.000 0.000 0.000 — — — —

HHS 1000 Mean 0.375 0.174 0.074 0.382
St. Dev. (0.055) (0.055) (0.055) (0.212)
RMSE (0.060) (0.061) (0.061) (0.228)
95% Cover 0.901 0.888 0.894 0.923

HHS 2000 Mean 0.387 0.186 0.087 0.340
St. Dev. (0.040) (0.041) (0.040) (0.148)
RMSE (0.042) (0.043) (0.042) (0.153)
95% Cover 0.906 0.903 0.909 0.928

HHS 4000 Mean 0.394 0.193 0.093 0.320
St. Dev. (0.029) (0.029) (0.030) (0.104)
RMSE (0.030) (0.030) (0.030) (0.106)
95% Cover 0.906 0.913 0.896 0.931

HHS 8000 Mean 0.397 0.197 0.097 0.311
St. Dev. (0.020) (0.020) (0.020) (0.072)
RMSE (0.020) (0.020) (0.020) (0.073)
95% Cover 0.918 0.921 0.920 0.939
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Table 6: Monte Carlo results with both mt+1 and yt+1 for a quadratic AR(1) process
of the transition of productivity, where the model with P = 1 is mis-specified.

N P βl βm βu βk φ1 φ2 φ3

True 0.400 0.200 0.100 0.300 1.000 -0.025 0.000
1000 1 Mis-specified Mean 0.410 0.208 0.109 0.313 1.056

St. Dev. (0.036) (0.036) (0.036) (0.177) (0.028)
RMSE (0.037) (0.037) (0.037) (0.178) (0.062)
95% Cover 0.905 0.914 0.905 0.911 0.352

2000 1 Mis-specified Mean 0.419 0.218 0.119 0.276 1.057
St. Dev. (0.024) (0.025) (0.025) (0.123) (0.020)
RMSE (0.031) (0.031) (0.031) (0.125) (0.061)
95% Cover 0.842 0.843 0.840 0.909 0.149

4000 1 Mis-specified Mean 0.422 0.222 0.123 0.260 1.057
St. Dev. (0.017) (0.017) (0.017) (0.083) (0.015)
RMSE (0.028) (0.028) (0.028) (0.093) (0.059)
95% Cover 0.694 0.696 0.692 0.898 0.034

8000 1 Mis-specified Mean 0.424 0.224 0.124 0.254 1.056
St. Dev. (0.012) (0.012) (0.012) (0.061) (0.011)
RMSE (0.027) (0.027) (0.027) (0.076) (0.058)
95% Cover 0.474 0.462 0.451 0.835 0.003

1000 2 Mean 0.382 0.182 0.083 0.357 0.998 -0.024
St. Dev. (0.042) (0.043) (0.042) (0.168) (0.046) (0.021)
RMSE (0.046) (0.047) (0.045) (0.177) (0.046) (0.021)
95% Cover 0.914 0.914 0.918 0.918 0.938 0.795

2000 2 Mean 0.389 0.188 0.089 0.343 0.999 -0.024
St. Dev. (0.032) (0.032) (0.031) (0.123) (0.028) (0.012)
RMSE (0.034) (0.034) (0.033) (0.130) (0.028) (0.012)
95% Cover 0.906 0.909 0.918 0.912 0.935 0.806

4000 2 Mean 0.394 0.194 0.095 0.324 1.000 -0.024
St. Dev. (0.022) (0.022) (0.022) (0.084) (0.018) (0.007)
RMSE (0.023) (0.023) (0.023) (0.087) (0.018) (0.007)
95% Cover 0.916 0.930 0.918 0.926 0.934 0.853

8000 2 Mean 0.397 0.196 0.096 0.319 1.000 -0.024
St. Dev. (0.015) (0.015) (0.015) (0.057) (0.012) (0.005)
RMSE (0.016) (0.016) (0.016) (0.060) (0.012) (0.005)
95% Cover 0.932 0.929 0.933 0.930 0.932 0.866

1000 3 Mean 0.389 0.186 0.088 0.344 0.993 -0.025 0.000
St. Dev. (0.028) (0.029) (0.028) (0.137) (0.050) (0.036) (0.007)
RMSE (0.030) (0.032) (0.031) (0.144) (0.051) (0.036) (0.007)
95% Cover 0.980 0.972 0.975 0.961 0.976 0.930 1.000

2000 3 Mean 0.393 0.193 0.094 0.326 0.997 -0.023 0.000
St. Dev. (0.021) (0.021) (0.021) (0.097) (0.029) (0.018) (0.003)
RMSE (0.022) (0.023) (0.022) (0.101) (0.029) (0.018) (0.003)
95% Cover 0.978 0.984 0.977 0.963 0.962 0.919 0.999

4000 3 Mean 0.395 0.195 0.095 0.319 1.001 -0.022 0.000
St. Dev. (0.016) (0.016) (0.016) (0.070) (0.017) (0.009) (0.002)
RMSE (0.017) (0.017) (0.017) (0.072) (0.017) (0.010) (0.002)
95% Cover 0.976 0.972 0.975 0.964 0.958 0.898 0.996

8000 3 Mean 0.397 0.197 0.097 0.313 1.001 -0.022 0.000
St. Dev. (0.012) (0.011) (0.011) (0.049) (0.011) (0.007) (0.001)
RMSE (0.012) (0.012) (0.012) (0.051) (0.011) (0.007) (0.001)
95% Cover 0.976 0.978 0.976 0.960 0.952 0.881 0.977
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Table 7: Monte Carlo results with both mt+1 and yt+1 for a sub-unit-root AR(1) process
of the transition of productivity.

N P βl βm βu βk φ1 φ2 φ3

True 0.400 0.200 0.100 0.300 0.950 0.000 0.000
1000 1 Mean 0.391 0.190 0.090 0.346 0.950

St. Dev. (0.037) (0.037) (0.037) (0.163) (0.042)
RMSE (0.038) (0.039) (0.038) (0.169) (0.042)
95% Cover 0.891 0.899 0.900 0.913 0.900

2000 1 Mean 0.396 0.195 0.095 0.320 0.951
St. Dev. (0.026) (0.026) (0.026) (0.110) (0.031)
RMSE (0.026) (0.026) (0.026) (0.112) (0.031)
95% Cover 0.912 0.910 0.915 0.926 0.911

4000 1 Mean 0.398 0.197 0.098 0.312 0.950
St. Dev. (0.018) (0.018) (0.018) (0.075) (0.020)
RMSE (0.018) (0.019) (0.018) (0.076) (0.020)
95% Cover 0.918 0.926 0.931 0.932 0.939

8000 1 Mean 0.398 0.198 0.098 0.307 0.949
St. Dev. (0.012) (0.012) (0.012) (0.051) (0.014)
RMSE (0.012) (0.012) (0.013) (0.052) (0.014)
95% Cover 0.943 0.941 0.942 0.946 0.944

1000 2 Mean 0.385 0.184 0.085 0.355 0.926 -0.005
St. Dev. (0.037) (0.038) (0.037) (0.158) (0.106) (0.091)
RMSE (0.040) (0.041) (0.040) (0.167) (0.108) (0.091)
95% Cover 0.922 0.916 0.926 0.924 0.937 0.940

2000 2 Mean 0.392 0.191 0.092 0.326 0.940 -0.001
St. Dev. (0.026) (0.026) (0.026) (0.105) (0.046) (0.042)
RMSE (0.027) (0.028) (0.027) (0.108) (0.047) (0.042)
95% Cover 0.935 0.935 0.931 0.938 0.942 0.936

4000 2 Mean 0.396 0.195 0.097 0.312 0.944 0.000
St. Dev. (0.018) (0.019) (0.018) (0.073) (0.024) (0.024)
RMSE (0.019) (0.019) (0.019) (0.074) (0.025) (0.024)
95% Cover 0.934 0.937 0.937 0.947 0.947 0.948

8000 2 Mean 0.398 0.198 0.098 0.307 0.947 0.001
St. Dev. (0.013) (0.013) (0.013) (0.050) (0.015) (0.015)
RMSE (0.013) (0.013) (0.013) (0.050) (0.015) (0.015)
95% Cover 0.940 0.941 0.940 0.953 0.950 0.944

1000 3 Mean 0.384 0.183 0.085 0.372 0.973 -0.008 -0.019
St. Dev. (0.034) (0.034) (0.034) (0.171) (0.382) (0.081) (0.173)
RMSE (0.037) (0.038) (0.038) (0.185) (0.382) (0.081) (0.174)
95% Cover 0.948 0.947 0.945 0.934 0.974 0.957 0.9744

2000 3 Mean 0.392 0.190 0.092 0.333 0.957 -0.002 -0.007
St. Dev. (0.024) (0.024) (0.024) (0.111) (0.272) (0.037) (0.131)
RMSE (0.025) (0.026) (0.025) (0.115) (0.272) (0.037) (0.132)
95% Cover 0.962 0.956 0.960 0.944 0.968 0.952 0.969

4000 3 Mean 0.396 0.195 0.096 0.315 0.951 -0.000 -0.002
St. Dev. (0.017) (0.017) (0.018) (0.076) (0.185) (0.023) (0.092)
RMSE (0.018) (0.018) (0.018) (0.077) (0.185) (0.023) (0.092)
95% Cover 0.961 0.947 0.948 0.947 0.952 0.936 0.961

8000 3 Mean 0.398 0.197 0.098 0.308 0.946 -0.000 0.002
St. Dev. (0.013) (0.013) (0.013) (0.052) (0.131) (0.015) (0.066)
RMSE (0.013) (0.013) (0.013) (0.053) (0.131) (0.015) (0.066)
95% Cover 0.945 0.940 0.952 0.948 0.946 0.946 0.955
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Table 8: Estimates of the gross output production function for ISIC 311.

Production Function AR Coefficients
xt+1 P βls βlu βm βe βu βk RTS ϕ̃1 ϕ̃2 ϕ̃3

OLS 0.111 0.231 0.659 0.060 0.002 0.058 1.121
(0.008) (0.009) (0.008) (0.006) (0.004) (0.005) (0.006)

LP 0.051 0.139 0.500 0.085 0.023 0.240 1.037
(0.009) (0.010) (0.078) (0.007) (0.004) (0.053) (0.059)

W-LP 0.067 0.156 0.491 0.066 0.000 0.255 1.035
(m) (0.031) (0.029) (0.091) (0.104) (0.096) (0.049) (0.326)
W-LP 0.076 0.166 0.494 0.079 0.001 0.262 1.077
(e) (0.031) (0.029) (0.091) (0.091) (0.096) (0.049) (0.315)
W-LP 0.058 0.147 0.487 0.066 0.010 0.247 1.015
(u) (0.031) (0.029) (0.090) (0.104) (0.090) (0.049) (0.324)
HHS mt+1 1 0.090 0.209 0.354 0.094 0.033 0.112 0.892 1.008
(1) yt+1 (0.036) (0.033) (0.111) (0.136) (0.123) (0.057) (0.408) (0.027)
HHS mt+1 2 0.077 0.235 0.369 0.101 0.032 0.165 0.978 0.983 0.183
(2) yt+1 (0.038) (0.034) (0.110) (0.136) (0.124) (0.059) (0.413) (0.025) (0.019)
HHS mt+1 3 0.090 0.234 0.368 0.099 0.030 0.141 0.962 1.070 0.115 -0.070
(3) yt+1 (0.038) (0.034) (0.111) (0.137) (0.125) (0.059) (0.414) (0.026) (0.019) (0.022)
HHS et+1 1 0.069 0.219 0.636 0.065 0.015 0.153 1.155 1.068
(4) yt+1 (0.040) (0.037) (0.126) (0.153) (0.138) (0.063) (0.459) (0.022)
HHS et+1 2 0.098 0.207 0.659 0.087 0.022 0.218 1.291 0.943 0.042
(5) yt+1 (0.039) (0.036) (0.128) (0.157) (0.141) (0.062) (0.465) (0.032) (0.034)
HHS et+1 3 0.062 0.205 0.636 0.099 0.030 0.121 1.153 0.855 0.077 0.199
(6) yt+1 (0.038) (0.034) (0.117) (0.143) (0.130) (0.061) (0.432) (0.019) (0.015) (0.013)
HHS ut+1 3 0.071 0.198 0.652 0.118 0.014 0.167 1.220 1.014
(7) yt+1 (0.038) (0.035) (0.122) (0.149) (0.134) (0.060) (0.441) (0.033)
HHS ut+1 3 0.094 0.179 0.673 0.115 0.020 0.304 1.386 0.976 0.036
(8) yt+1 (0.038) (0.035) (0.123) (0.151) (0.136) (0.060) (0.449) (0.030) (0.033)
HHS ut+1 3 0.134 0.215 0.669 0.135 0.031 0.127 1.311 0.642 -0.304 0.510
(9) yt+1 (0.036) (0.033) (0.111) (0.137) (0.125) (0.060) (0.418) (0.023) (0.020) (0.020)

Note: Standard errors in parentheses.
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Table 9: The covariance between ωt+1 (ξt+1) and inputs

(A) Covariance between technology ωt+1 and each input: 1979–1986

P Cov(ωt+1, l
s
t+1) Cov(ωt+1, l

u
t+1) Cov(ωt+1,mt+1) Cov(ωt+1, et+1) Cov(ωt+1, ut+1) Cov(ωt+1, kt+1)

1 0.260*** 0.264*** 0.511*** 0.406*** 0.302*** 0.233***
(0.022) (0.022) (0.015) (0.013) (0.013) (0.015)

2 0.182*** 0.196*** 0.422*** 0.328*** 0.207*** 0.207***
(0.023) (0.024) (0.016) (0.014) (0.014) (0.015)

3 0.232*** 0.257*** 0.474*** 0.360*** 0.255*** 0.192***
(0.022) (0.023) (0.016) (0.014) (0.014) (0.015)

(B) Covariance between technological innovation ξt+1 and each input: 1979–1986

P Cov(ξt+1, l
s
t+1) Cov(ξt+1, l

u
t+1) Cov(ξt+1,mt+1) Cov(ξt+1, et+1) Cov(ξt+1, ut+1) Cov(ξt+1, kt+1)

1 0.004 0.009 0.039 0.021 0.011 -0.001
(0.058) (0.071) (0.038) (0.033) (0.033) (0.049)

2 -0.005 0.003 0.025 0.005 -0.000 -0.018
(0.062) (0.076) (0.039) (0.035) (0.035) (0.048)

3 -0.003 0.006 0.037 0.014 0.006 -0.008
(0.061) (0.076) (0.039) (0.035) (0.035) (0.050)

(C) Covariance between technological innovation ξt+1 and each input: 1979–1996

P Cov(ξt+1, l
s
t+1) Cov(ξt+1, l

u
t+1) Cov(ξt+1,mt+1) Cov(ξt+1, et+1) Cov(ξt+1, ut+1) Cov(ξt+1, kt+1)

1 -0.010 -0.018 0.043** 0.019 -0.013 -0.031
(0.027) (0.029) (0.018) (0.016) (0.015) (0.019)

2 -0.017 -0.009 0.045** 0.017 -0.015 -0.037*
(0.026) (0.029) (0.018) (0.015) (0.015) (0.019)

3 -0.017 -0.009 0.036* 0.016 -0.015 -0.020
(0.027) (0.030) (0.019) (0.016) (0.015) (0.020)

Note: 1) Standard errors in parentheses; 2) ∗ p < 0.1, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01.
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Table 10: The covariance between ωt (ξt) and inputs

(A) Covariance between lag technology ωt and each input: 1979–1986

P Cov(ωt, l
s
t+1) Cov(ωt, l

u
t+1) Cov(ωt,mt+1) Cov(ωt, et+1) Cov(ωt, ut+1) Cov(ωt, kt+1)

1 0.337*** 0.308*** 0.614*** 0.492*** 0.404*** 0.406***
(0.023) (0.025) (0.015) (0.015) (0.014) (0.016)

2 0.096*** 0.156*** 0.313*** 0.274*** 0.076*** 0.028
(0.035) (0.030) (0.023) (0.018) (0.022) (0.025)

3 0.087*** 0.095*** 0.309*** 0.233*** 0.118*** 0.053***
(0.030) (0.030) (0.020) (0.017) (0.018) (0.018)

(B) Covariance between lag technological innovation ξt and each input: 1979–1986

P Cov(ξt, l
s
t+1) Cov(ξt, l

u
t+1) Cov(ξt,mt+1) Cov(ξt, et+1) Cov(ξt, ut+1) Cov(ξt, kt+1)

1 0.002 0.013 0.048 0.013 0.003 -0.002
(0.057) (0.057) (0.037) (0.033) (0.032) (0.034)

2 0.010 0.020 0.069** 0.026 0.009 -0.006
(0.056) (0.056) (0.035) (0.032) (0.031) (0.034)

3 -0.004 0.012 0.056* 0.023 -0.002 -0.006
(0.051) (0.052) (0.034) (0.027) (0.024) (0.034)

(C) Covariance between lag technological innovation ξt and each input: 1979–1996

P Cov(ξt, l
s
t+1) Cov(ξt, l

u
t+1) Cov(ξt,mt+1) Cov(ξt, et+1) Cov(ξt, ut+1) Cov(ξt, kt+1)

1 -0.014 -0.014 0.066*** -0.001 -0.029 -0.033
(0.030) (0.032) (0.018) (0.018) (0.019) (0.018)

2 -0.009 -0.004 0.050** 0.009 -0.011 -0.032
(0.033) (0.034) (0.020) (0.019) (0.020) (0.019)

3 -0.021 -0.011 0.038* -0.014 -0.025 -0.055***
(0.034) (0.036) (0.021) (0.019) (0.021) (0.020)

Note: 1) Standard errors in parentheses; 2) ∗ p < 0.1, ∗∗ p < 0.05, ∗ ∗ ∗ p < 0.01.
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Figure 1: Monte Carlo results of rejection frequencies for the null hypothesis of H0 :
βl = β∗l based on the K-statistics for a test of the Model of OP/LP/Wooldridge.
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Figure 2: The 95% confidence set of (βls, βlu) based on K-statistics for a test of the
Model of OP/LP/Wooldridge.
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Appendix A: Literature Review

We start by laying out the model used by OP/LP/ACF. To simplify notation,

we omit the subscript for firms. The goal is to estimate the following form of

industry production function:

yt = β0 + βllt + βkkt + ωt + ηt,

by using firm-level panel data, where yt, lt, and kt are, respectively, the output

(value added), labor and capital inputs; ωt is the latent productivity that is

serially correlated; and ηt is the residual term with E (ηt|ωt, lt, kt) = 0. The

productivity ωt follows an exogenous first-order Markov process:

ωt = E (ωt|ωt−1) + ξt,

where ξt is mean-independent of ωt−1. The capital accumulates according to the

following equation:

Kt = (1− δ)Kt−1 + It−1,

where δ ∈ (0, 1) is the depreciation rate, and It−1 is the investment made in

period t − 1. OP note that, under certain conditions, the firm investment is

determined as:

it = ιt (ωt, kt) ,

where ιt (ωt, kt) is the investment demand function, which is strictly increasing

in ωt for any given kt. LP make use of the following intermediate input demand

function:

mt = µmt (ωt, kt) ,

which is similarly assumed to be strictly increasing in ωt for any given kt in their

estimation procedure. The difficulty in estimating the production function is

that, normally, lt and kt are correlated with ωt, and we do not observe ωt.

Olley and Pakes (1996)

OP propose a structural approach to estimate the production function. Their

key observation is that we can use investment as a proxy for ωt. More specifically,

if the investment demand function ιt (ωt, kt) is strictly increasing in ωt and we

use ι−1 (., kt) to indicate the inverse function of ιt (ωt, kt) for any fixed kt, we

have ωt = ι−1
t (It, kt). Based on this insight, OP propose the following procedure

to estimate the production function:
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Step 1: semiparametrically estimate:

yt = βllt + φt (it, kt) + ηt,

where φt (it, kt) = β0 + βkkt + ι−1
t (it, kt) is estimated nonparametrically. We get

an estimate of βl and φt−1 in this step.

Step 2: semiparametrically estimate:

yt − β̂llt = β0 + βkkt + ρ
(
φ̂t−1 − β0 − βkkt−1

)
+ ξt + ηt,

where ρ (ωt−1) ≡ E (ωt|ωt−1) is specified nonparametrically. Here, one gets a

consistent estimate of βk using the condition that kt, kt−1 and ωt−1 are mean-

independent of ξt.

Levinsohn and Petrin (2003)

The insight of LP is that we can actually use intermediate inputs, such as mate-

rials and energy inputs, as the proxy for ωt if similarly the demand functions for

such inputs are also strictly monotonic in ωt for any given kt. For example, we

have ωt = µ−1
mt(mt, kt), where µ−1

mt(., kt) denotes the inverse function of µmt(ωt, kt)

for any fixed kt. Then, following OP’s idea, we can use a nonparametric function

of kt and mt to control for ωt when estimating the production function. Based

on this insight, LP uses a two-step procedure, similar to OP’s, to estimate the

production function.

The LP method has two advantages over the original OP method. First, one

does not have to eliminate the observations with zero investment. Second, prim-

itive conditions that ensure monotonic intermediate input demand functions are

easier to derive and test since intermediate inputs have no dynamic implications.

Ackerberg, Caves and Frazer (2015)

The critique of ACF is that the first steps in OP’s and LP’s procedures are

actually not identified because lt would have no independent variations when φt

is nonparametrically estimated. To see this, suppose that, similar to the demand

of mt and it, we have the following labor demand function:

lt = ψt (ωt, kt) .

And for LP’s method, one has ωt = µ−1
t (mt, kt). Thus, lt = ψt

(
µ−1
t (mt, kt) , kt

)
is also a function of (mt, kt) and would be collinear with the nonparametric terms
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used to approximate the unknown function of φ̃t (mt, kt) ≡ β0+βkkt+µ
−1
mt(mt, kt).

ACF assume that the decision on lt is made before that of mt, and thus the

intermediate input demand function would be mt = µmt (ωt, kt, lt), where µmt is

assumed to be strictly increasing in ωt for any given (kt, lt). So, after substituting

in the expression of ωt = µ−1
mt(mt, kt, lt), the production function can be written

as follows:

yt = β0 + βllt + βkkt + µ−1
t (mt, kt, lt) + ηt.

To get around the identification problem of lt in the first step of LP’s procedure,

ACF suggest estimating the coefficients of both lt and kt in the second step. They

propose estimating the production function through the following two steps:

Step 1. To net out the effect of ηt, nonparametrically estimate the unknown

function of ϕt (mt, lt, kt) = β0 + βllt + βkkt + µ−1
t (mt, kt, lt). This step produces

estimates of ϕt and ϕt−1.

Step 2. Estimate β ≡ (β0, βl, βk) using the following set of two moment

conditions,

E
(
ξt(β) ·

(
kt
lt−1

))
= 0,

where ξt = ωt−E (ωt|ωt−1) is estimated by ξ̂t = ϕ̂t− β0− βllt− βkkt− ρ̂(ϕ̂t−1−
β0 − βllt−1 − βkkt−1), and ρ(ωt−1) ≡ E(ωt|ωt−1) is specified nonparametrically.

Wooldridge (2009)

Wooldridge (2009) points out that we can actually implement the above methods

with a GMM approach. In particular, we may stack up the moment conditions

from the two steps of the above methods and estimate them together using the

GMM framework. The approach is more efficient and allows one to use standard

formulas to compute the asymptotic standard errors for the estimates.

Discussion

All of the above methods rely critically on the key assumption that the latent

productivity is the only unobservable affecting the intermediate inputs and in-

vestment. So, when the observed intermediate inputs and investment are also

affected by supply disruptions, optimization errors, measurement errors, etc.,

these methods would not be able to eliminate the simultaneity bias. To illus-

trate the problem, suppose that the material demand function is a linear function
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as in the following:

mt = µmt + εt

µmt = γ̃0 + γ̃1ωt + γ̃2kt + γ̃3lt.

In this case, the latent productivity can be written as a linear function of

(kt,mt, lt) and εt:

ωt = γ0 + γkkt + γllt + γm (mt − εt) ,

where (γ0, γk, γl, γm) are functions (γ̃0, γ̃1, γ̃2, γ̃3). Substituting the expression for

ωt into the production function, we have:

yt = (β0 + γ0) + (βl + γl) lt + (βk + γk) kt + γmmt − γmεt + ηt.

However, now the equation cannot be consistently estimated since Cov (mt, εt) 6=
0. Thus, when one tries to use a nonparametric function of (lt, kt,mt) to control

for ωt, the part of ωt that is a linear combination of mt and εt would always

be missed. Therefore, in this case, the above methods would not be able to

completely eliminate the simultaneity bias. We will demonstrate this issue via

simulations.
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Appendix B: Semi-Nonparametric MLE Ap-

proach

We treat each firm as an observation, and the data as i.i.d across firms. A com-

plete specification of the likelihood for each firm can be complicated, especially

for longer panels. The likelihood of the observation of a firm would involve, for

example, the conditional density of the firm’s last period data given its data

in all previous periods. Specifying such complete models requires many addi-

tional assumptions, which are undesirable and are unnecessary for estimating

the structural parameters of interest here. In our case, the structural parameters

in the production functions are identified with the partial conditional likelihood,

which involves only data of two periods. Thus we adopt the partial likelihood

framework (c.f. Wooldridge (2002)).

For estimation, we first spell out the observed density, f(yt,mt+1, It,Kt+1,mt,

ut|lt, kt), as a mixture of the product of several latent conditional densities as

follows:

f (yt,mt+1, It, kt+1,mt, ut|lt, kt)

=

∫
gm′ (mt+1|yt, It, kt+1, lt, kt,mt, ut, ωt) gk′ (kt+1|yt, It, lt, kt,mt, ut, ωt)

gy (yt|It, lt, kt,mt, ut, ωt) gI (It|lt, kt,mt, ut, ωt) gm (mt|lt, kt, ut, ωt)

gu (ut|lt, kt, ωt) gω (ωt|lt, kt) dωt

=

∫
gm′ (mt+1|kt+1, ωt) gk′ (kt+1|It, kt) gy (yt|lt, kt,mt, ut, ωt)

gI (It|kt, ωt) gm (mt|lt, kt, ωt) gu (ut|lt, kt, ωt) gω (ωt|lt, kt) dωt

=

∫
gm′ (mt+1|kt+1, ωt) gy (yt|lt, kt,mt, ut, ωt) gI (It|kt, ωt)

gm (mt|lt, kt, ωt) gu (ut|lt, kt, ωt) gω (ωt|lt, kt) dωt · gk′ (kt+1|It, kt)

The first equality above follows by the total law of probability; the second equal-

ity follows from our model specification, the conditional independence assump-

tion and the fact that the variables in period t are independent of the period-

t + 1 innovation in the latent productivity. Thus we can estimate the model

using Semi-Nonparametric Maximum Likelihood estimation (SNPMLE) method
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as follows

(β̂, ĝm′ , ĝηt|., ĝI , ĝm, ĝm, ĝω)

= arg max
(β,gm′ ,gηt|.,gI ,gm,gu,gω)

1

J

J∑
j=1

T∑
t=1

ln

∫ ∞
−∞

gm′ (mjt+1|kjt+1, ωjt)

gηt|(ωt,lt,kt,mt,ut) (yjt − βlljt − βkkjt − βmmjt − βuujt − ωjt) gI (Ijt|kjt, ωjt)

gm (mjt|ljt, kjt, ωjt) gu (ujt|ljt, kjt, ωjt) gω (ωjt|ljt, kjt) dωjt.

Note that the sum of per-period likelihoods over t for each firm j is not the

likelihood of the observation of firm j.

We refer readers to Chen (2007) for a comprehensive treatment of concrete

procedures of the SNPML estimator. We can use artificial neural networks (Chen

and White (1999)) to approximate the conditional density functions, and use

Hermitian series (Gallant and Nychka (1987)) to approximate some of the condi-

tional density functions if they are assumed to be independent of the variables in

the conditioning set. The main cost of implementing the SNPMLE is the compu-

tational time. Our GMM estimator is a computationally less costly alternative

to the SNPML estimator.
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